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Abstract

This paper presents a theoretical model of stability and coordination of posture
and locomotion, together with algorithms for continuous-time quadratic opti-
mization of motion control. Explicit solutions to the Hamilton-Jacobi equation
for optimal control of rigid-body motion are obtained by solving an algebraic
matrix equation. The stability is investigated with Lyapunov function theory
and it is shown that global asymptotic stability holds. It is also shown how
optimal control and adaptive control may act in concert in the case of unknown
or uncertain system parameters. The solution describes motion strategies of
minimum effort and variance. The proposed optimal control is formulated to
be suitable as a posture and movement model for experimental validation and
verification. The combination of adaptive and optimal control makes this al-
gorithm a candidate for coordination and control of functional neuromuscular
stimulation as well as of prostheses. Validation examples with experimental
data are provided.
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1. Introduction

The quantitative knowledge of biped gait and stance is important both for
performance evaluation in basic physiology, neurology, physical therapy and for
improvement of functional neuromuscular stimulation and human-limb substi-
tutes [67, 14, 71, 17]. Experimental work has been conducted with several
different foci such as purely physical properties (mass, center of gravity, ground
reaction forces) and myophysiology [68, 71, 8, 14, 44]. Measurement of mechan-
ical work during walking as a function of speed, step length, frequency is one
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Mathematical Notation

Symbol Description Units

Kinematics—Coordinates

q Generalized position coordinates q =
ˆ
q1 q2 . . . qn

˜T
q ∈ R

n

q̇ Generalized velocity coordinates q̇ ∈ R
n

qr Reference value for position qr ∈ R
n

eq Position error eq = q − qr eq ∈ R
n

p Generalized momenta p ∈ R
n

x(t) State of motion x =
ˆ
q̇T qT

˜T
x ∈ R

2n

xr(t) Reference state of motion xr =
ˆ
q̇T

r qT
r

˜T
xr ∈ R

2n

ex(t) Error state of motion ex = x− xr =
h

ėqT eqT

iT

ex ∈ R
2n

Dynamics—Torques, forces, inertias,

τ Applied torques or forces τ ∈ R
n

M(q) Moment of inertia M(q) = MT (q) > 0 M ∈ R
n×n

C(q, q̇)q̇ Coriolis, centripetal and frictional forces C ∈ R
n×n

G(q) Gravitational forces G ∈ R
n

N(q, q̇)q̇ Workless forces of τ N ∈ R
n×n

u Control variable u = M(q)BTT0 ėx+ ( 1

2
Ṁ(q, q̇) +N(q, q̇))BTT0ex u ∈ R

n

Energy functions

L Lagrangian of mechanical motion
L Lagrangian of optimization
H Hamiltonian of mechanical motion
H Hamiltonian of optimization
U(q) Potential energy
T (q, q̇) Kinetic energy
V (ex, t) Hamilton principal function of optimization
VX(ex, t) Lyapunov function of control and adaptation
J (u) Optimization criterion

Matrices

Q Optimization weighting matrix w.r.t. x Q ∈ R
2n×2n

R Optimization weighting matrix w.r.t. u R ∈ R
n×n

S Optimization cross weighting matrix w.r.t. x, u S ∈ R
n×2n

S1 Optimization cross weighting matrix w.r.t. q̇, u S1 ∈ R
n×n

S2 Optimization cross weighting matrix w.r.t. q, u S2 ∈ R
n×n

T0 State space transformation matrix T0 ∈ R
2n×2n

Adaptive control

θ Vector of unknown parameters θ ∈ R
p

ψ Regression matrix ψ ∈ R
n×p

ex(t) Error state of motion ex =
h

ėqT eqT eθ
iT

ex ∈ R
2n+p

Table 1: Mathematical notation of the optimal control problem
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such approach [14]. The elementary reflexes of a muscle to control its force,
velocity, and length according to sensory feedback derived from various muscle
and tendon receptors have been widely studied [67, 66].

A basic topic of postural control is the capacity to withstand gravitation and
disturbances and the dynamics thereof. From a mechanical point of view, a
minimal model for postural control must include a model for balancing of the
center of mass. A mechanistic abstraction sometimes used is that of a an in-
verted pendulum, the stability of the unstable equilibrium being maintained by
means of neural feedback involving visual, vestibular and somatosensory feed-
back [50, 54, 72, 81, 15] with elaborations on biomechanical complexity and
neuromuscular aspects [33, 32, 36, 37, 40, 41, 44]. In addition to dynamic feed-
back control, other manifestations of neural feedback should be considered—e.g.,
adaptation, learning and calibration of ’inverse models’ [46, 47].

An important problem is evaluation of multisensory feedback control properties
resulting in stable stance and locomotion. System identification methodology
for postural feedback assessment have been developed in a series of contributions
[50, 52, 56, 57, 58]. Whereas the feedback control is necessary for stable stance,
the low error feedback gains observed appear to be insufficient to support vol-
untary motion and disturbance rejection—e.g., on rough or compliant support
surfaces. Based on related methodology and with attention to passive mucscle
dynamics and neural feedback latencies, Mergner, Peterka et al. summarized
some observed properties of multisensory postural control with low-gain feed-
back combined with integral action and positive feedback control [80, 81, 72, 86].
An important structural observation was that the proportional position control
inadequate to maintain upright stance on a tilted support surface was compen-
sated by positive force feedback [80, 81], an idea related to the Hogan principle
of ’impedance control’ [42].

As compared to the elementary motion reflexes [66], [25], control and coordina-
tion strategies of locomotion are incompletely understood [40, 41, 10]. Impor-
tant contributions with attention to biomechanics were proposed by Hogan et

al. [22, 41, 42] and Houk et al. [43, 44]. A variety of interpretations involving
voluntary and reactive behavior is found in the research literature. Mittelstaedt
focused on graviception [73]. Grillner suggested central pattern generators for
locomotion [29]. Nashner and colleagues [75, 77] made influential contributions
with their formulation of ‘ankle and hip strategies’. Nashner, Berthoz et al.

emphasized the kinematic stabilization of the eyes in space—i.e., the notion of
the head as a stabilized platform for the eyes and stabilized vision [76, 82].

In order to accomplish coordinated motion in task execution of intended motion,
inversion of biomechanical input-output dynamics is required—e.g., transforma-
tion of position-velocity trajectories into force and motor commands—which, in
turn, suggests neural incorporation of internal (inverse) models instrumenting
coordinated control [43, 21, 59, 91, 47]. Whereas calibrated inverse models
could execute motor programs, such open-loop control strategies would not be
robust with respect to external disturbances and model calibration errors and
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stabilizing sensory feedback control is necessary to maintain the trajectory dur-
ing task execution. As decomposition of control into internal inverse models for
(’proactive’) trajectory generation and sensory feedback for (’reactive’) stable
task execution and adaptation is essential for motor control, optimality princi-
ples should apply to both [95]. This decomposition involving sensory feedback,
corrective control and adaptation is illustrated in Fig.1.

In early literature on postural control, the presence of biological optimization cri-
teria was postulated [18], [9]. The linear optimal control solutions thus derived
relied on linearized (approximate) equations with regard to a given operating
point. Optimality of energy expenditure is an attractive hypothetical principle
of motion coordination investigated by Levine, Zajac and colleagues [65], [34].
A reason to presume that biological organisms might adapt to minimization of
mechanical work is that such operation would be closely related to the ability
of maximum effort and performance, and to thermodynamic equilibrium. How-
ever, it has not yet been experimentally established whether human stance and
locomotion do indeed obey an optimality principle [12, 23, 48, 7, 95].

Experimental investigation of the integrative action in the mechanisms of motor
control must be quantitative and must include both static and dynamic com-
ponents of the motor response [33], [40]-[44]. A prerequisite for quantitative
understanding of integrative aspects is obviously a meticulous mathematical in-
vestigation on a form suitable for experimental verification. The need has been
stressed of suitable identification models as a necessary basis for progress in the
understanding of locomotion control, coordination and adaptation [36], [46].
As yet, however, mathematical modeling has failed to produce experimentally
validated, complete models that satisfactorily explains the complexity of coor-
dination, stability, control effort, and equilibrium. The absence of results in this
respect is due both to experimental conditions and to the difficulties inherent
in control systems modeling [46].

In this context, the subsystems requiring treatment are:

• The mechanical motion of multilinked body segments;

• Control systems modeling of coordination and reflex action;

• The active adaptation of neural control;

A methodological aspect also requires serious attention, namely:

• The model should allow for system identification and model validation
with experimental data.

The rigid body mechanics of musculo-skeletal motion is often formulated with
the general equations obtained from Lagrangian mechanics (time arguments
omitted).

M(q)q̈ + C(q, q̇)q̇ +G(q) = τ, M(q) = MT (q) > 0, q ∈ R
n (1)
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Figure 1: Postural control modeled with components of (’reactive’) feedback control and
(’proactive’) feedforward control using inverse models, the kinematic error as obtained from
sensory information being crucial information for feedback control as well as adaptation
(oblique arrows) of feedforward (inverse model) and feedback control.

The position coordinates q ∈ R
n with associated velocities q̇ and accelerations q̈

are controlled with the driving torques τ ∈ R
n. The (generalised) moment of in-

ertia M(q), the Coriolis, centripetal and frictional forces C(q, q̇)q̇, and the grav-
itational forces G(q) all vary along the trajectories. Several models of the type
(1), varying in biomechanical complexity have been formulated hitherto: e.g.,
a four-segment model of Vukobratović and Juricić [97], a five-segment model of
Hemami and Farnsworth [40], and a 17-segment model of Hatze [33], [32].

The coordination of muscular forces may be considered either at the level of
muscular activation or at the level of joint torque. The control problem for-
mulated in terms of joint torques is as follows: Find the torques (forces) τ so
that the linked body segments assume a prescribed final position (or follow a
prescribed trajectory), provided that the body mechanics is described by Eq.
(1).

Optimal control solutions always rely on the accuracy of the underlying model in
order to remain optimal. Contexts of model uncertainty or model changes pose
a need of active adaptation to new conditions in order to maintain optimality.

Consider the problem of multilink coordination of torques and kinematics. The
aim is to minimize velocity and position errors (state errors) with a minimum
both of the applied torques and of the energy consumption. We provide an
analytic solution to the optimal motion control problem and formulate the so-
lutions suitable for extensions to adaptive control. The problem how to identify
a mathematical model for this type from experimental data is considered in a
special section.
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2. Problem statement

The following aspects in the modeling of postural control need to be covered
in any attempt to describe the integrative coordination of motor control.

• variance of position and velocity errors;

• muscular control effort magnitude;

• mechanical energy consumed by muscular control;

• stability;

Other desirable modeling features:

• The model should explain feedback notions;

• The model should explain quantitative motion coordination;

• The control effort should not tend to violate muscle stiffness;

• The model should allow for adaptation;

• The model should be experimentally verifiable.

The desired reference trajectory for the control object to follow, as generated by
some motor program (volition or motion pattern generators), is here assumed
to be available as a final desired position or as bounded functions of time in
terms of generalized positions qr ∈ C1 in R

n and, if specified, its corresponding
accelerations q̈r and velocities q̇r. Define the errors of accelerations, velocities,
and positions as



¨̃q
˙̃q
q̃


 =



q̈ − q̈r
q̇ − q̇r
q − qr


 ; x̃ = x− xr =

[
q̇ − q̇r
q − qr

]
(2)

The control objective is to follow the given, bounded reference trajectory q̇r, qr
without position errors q̃, or velocity errors ˙̃q.

Consider an optimization criterionJ (u) where the matrix S is used for weighting
of the cross term between x̃ and u.

J(u) =

∫ ∞

0

L(x̃, u)dt; L(x̃, u) =
1

2
x̃T (t)Qx̃(t) +

1

2
uT (t)Ru(t) + uT (t)Sx̃(t)

(3)
The positive definite matrices Q,R and the matrix S =

[
S1 S2

]
define the

weighting compromises of the optimization. The first term of (3) penalizes
the variances of position and velocities. The second term of (3) represents the
control effort magnitude. A weighted sum of the energy consumed at each joint
can be expressed as the integral of uTS1

˙̃q (the instantaneous power), whereas
uTS2q̃ penalizes control actions that tend to increase local errors and results in
enhancement of local reflex actions.
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It is the purpose of this paper to present stable, analytic solutions to the prob-
lem of quadratic optimal control of motion control with minimization of the
applied torques (forces) when velocity and position feedback are available. The
optimal control problem is solved with the Hamilton-Jacobi equation, and feed-
back solutions to the stated optimal motion control problem are presented. The
second stage problem of adaptive control is then solved.

3. Dynamics of segmented, articulated bodies

We model the motion dynamics as a set of n rigid bodies connected and
described by a set of generalized position coordinates q ∈ R

n. The deriva-
tion of the motion equations (1) in accordance with Lagrange theory [5], [24]
involves explicit expression both of kinetic energy T and potential energy U .
The Lagrangian L of motion in a space with a velocity independent gravitation
potential is defined by

L(q, q̇) = T (q, q̇) − U(q) =
1

2
q̇TM(q)q̇ − U(q) (4)

The Lagrangian L is the basis for formulation of the Euler-Lagrange equations
of motion [24, 5]

d

dt
(
∂L

∂q̇
) −

∂L

∂q
= τ (5)

where τ ∈ R
n are the externally applied torques and forces. The standard

general equations (1) are obtained from Eq. (5) as

M(q)q̈ + C(q, q̇)q̇ +G(q) = τ (1)

where M(q) is the inertia matrix, C(q, q̇)q̇ represents Coriolis and centripetal
forces. It is assumed that the positions q and velocities q̇ but not the ac-
celerations q̈ are available as neural feedback. It is further assumed that the
torque vector τ is available as the control input. Already Eq. (1) covers a large
model set including the equations of Hatze [32], Hemami and Farnsworth [40],
Vukobratovic and Juricic [97]. Further, model extensions with various forms of
friction and contact forces as well as holonomic constraints may be expressed in
equations of the type (1).

3.1. What control effort should be minimized?

A natural aim is to minimize velocity and position errors (state errors) with a
minimum of applied torque and energy consumption. For a velocity-independent
potential energy U , the Euler-Lagrange equations give:

d

dt
(
∂T

∂q̇
) −

∂T

∂q
+
∂U

∂q
= τ (6)

Changes in potential energy due to gravitation are inevitable and can be de-
termined from the start and end points only. Thus, the gravitation-dependent
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energy expenditure can not be altered and there is little point in trying to opti-
mize the corresponding torques or forces. Consider therefore the applied torques
τK that selectively affect kinetic energy.

τK = τ −
∂U

∂q
=

d

dt
(
∂T

∂q̇
) −

∂T

∂q
= M(q)q̈ + Ṁ(q, q̇)q̇ −

1

2

∂

∂q
(q̇TM(q)q̇) (7)

To investigate the properties of τK , we introduce the skew-symmetric matrix
N(q, q̇) with elements nij defined from the components mij of M(q) as

nij =
1

2

n∑

k=1

(
∂mik(q)

∂qj
−
∂mjk(q)

∂qi

)
q̇k, nij = −nji (8)

which verifies

N(q, q̇)q̇ =
1

2
Ṁ(q, q̇)q̇ −

1

2

∂

∂q
(q̇TM(q)q̇) (9)

so that

τK = M(q)q̈ +
1

2
Ṁ(q, q̇)q̇ +N(q, q̇)q̇ (10)

which contains the force terms associated with inertia (acceleration), centripetal
and Coriolis forces. It is a standard result from Lagrangian mechanics that the
third term N(q, q̇)q̇ of Eq. (10) represents the workless forces of the system. It
is straightforward to verify that the work done on the system by the applied
forces τK determines the kinetic energy

∫
τT
K q̇dt =

∫
q̇T

[
M(q)q̈ + 1

2Ṁ(q, q̇)
]
q̇ dt =

1

2
q̇TM(q)q̇ (11)

A modification of Eq. (10) is appropriate in cases where the motion is prescribed
not only with respect to the final position but also with respect to its intermedi-
ary values. During voluntary motion along a prescribed trajectory (qr(t) 6= 0),
it is important that the optimization does not compromise the desired trajectory
qr. Instead, we model the optimization so that the motion of body segments
is stabilized to follow the desired trajectory with minimal effort. To minimize
the necessary forces (torques), we include the control variable τK in the more
general definition

u =
[
M(q) 1

2Ṁ(q, q̇) +N(q, q̇)
] [

˙̃z1

z̃1

]
(12)

with z̃ and T1 introduced via the following state-space transformation of x̃

z̃ =




z̃1
−
z̃2



 = T0x̃ =




T1

−
T2




[
˙̃q
q̃

]
=

[
T11 T12

0 In×n

] [
˙̃q
q̃

]
; T11, T12 ∈ R

n×n (13)
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This definition includes forces (torques) affecting kinetic energy (10), reference
trajectories (2), and a state-space transformation (13). The control variable u
of (13) can be reduced to τK of Eq. (10) for qr = 0, T11 = In×n, and T12 = 0
so that

u = M(q)q̈ + (
1

2
Ṁ(q, q̇) +N(q, q̇))q̇ (14)

= τ −G(q) + (
1

2
Ṁ(q, q̇) +N(q, q̇) − C(q, q̇))q̇ (15)

where the last term is zero when no friction forces are present.

4. Quadratic optimization

We therefore embed the motion control problem into the following somewhat
more general optimization problem. The assumptions made are summarized as
follows:

Basic assumptions

A1: The motion equations are M(q)q̈ + C(q̇, q)q̇ +G(q) = τ with coordinates
q and external torques (forces) τ .

A2: The reference trajectory given as qr, q̇r, q̈r ∈ L∞, and qr ∈ C1 with the

error-state x̃ =
[
˙̃q
T

q̃T

]T

A3: A state-space transformation is given

z̃ = T0x̃ =

[
T11 T12

0n×n In×n

]
x̃ (16)

A4: The control action to minimize is

u = τ −G(q) (17)

or for non-zero reference trajectories qr as

u = (
1

2
Ṁ(q, q̇) +N(q, q̇))BTT0x̃+M(q)BTT0

˙̃x, B =

[
In×n

0n×n

]
(18)

A5: Positions and velocities of all segments of rigid link motion are available
for measurement

A6: The structure of M,C,G is known

A7: The parameters of M,C,G are known
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A8: The optimization criterion of optimal control is

J (u) =
1

2

∫ ∞

t0

[
x̃(t)
u(t)

]T [
Q S
ST R

] [
x̃(t)
u(t)

]
dt, Q− STR−1S > 0, R > 0 (19)

the condition Q−STR−1S > 0 being imposed to render the minimization
of J(u) a well-posed optimization problem [64].

�

Given the performance index J(u), we find an optimal control u = u∗ that will
transfer from an initial state to a desired state. The control u = u∗ moves
the system from an arbitrary initial state x̃(t0) to the origin of the error-space
while minimizing J(u). The control variable u is weighted with the matrix
R = RT > 0, and the vector of velocity and position errors x̃ is weighted with
the matrix Q = QT > 0. The rate of compensation can be adjusted by chosing
proper weights Q. The term uTRu guarantees smoothness of operation.

4.1. The Hamilton-Jacobi equation

Solutions for optimization problems of the type (3) under assumptions (A1-
A8) are obtained by solving partial differential equations obtained from Hamilton-
Jacobi theory, dynamic programming or the Pontryagin maximum principle [23],
[64, 12, 7].

As the Hamiltonian of optimization is defined as

H(x̃, u,
∂V (x̃, t)

∂x̃
) = (

∂V (x̃, t)

∂x̃
)T ˙̃x+ L(x̃, u) (20)

a necessary and sufficient condition for optimality [23], [64], is to choose a value
function V that satisfies the Hamilton-Jacobi equation.

∂V

∂t
+ min

u
H(x̃, u,

∂V

∂x̃
) = 0 (21)

This minimum is attained for the optimal control u = u∗ and the Hamiltonian

H∗ = min
u
H = min

u
((
∂V

∂x̃
)T ˙̃x+ L(x̃, u)) = H(x̃, u∗,

∂V (x̃, t)

∂x̃
) = −

∂V (x̃, t)

∂t
(22)

The optimal value function V solving Eq. (21) for u = u∗ is called the Hamilton

principal function of the system, the adjoint or co-state being ∂V/∂x̃ [23].

Lemma 1: The following function V composed of x̃, qr(t), T0, M , and a sym-
metric matrix K ∈ R

n×n solves the Hamilton-Jacobi equation

V (x̃(t), t) =
1

2
x̃TT T

0

[
M(q) 0

0 K

]
T0x̃ (23)

for K, T0 solving the algebraic matrix equation

x̃T

[[
0 K
K 0

]
+Q− (S +BTT0)

TR−1(S +BTT0)

]
x̃ = 0 (24)
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The optimal feedback control law u = u∗ that minimizes J (u) is

u∗(t) = −R−1(S +BTT0)x̃(t) (25)

The minimum optimization criterion is then obtained as

J (u∗) = min
u

∫ ∞

t0

L(x̃, u)dt =

∫ ∞

t0

L(x, u∗)dt = V (x̃(t0), t0) − V (x̃(∞),∞) (26)

�

Proof: See Appendix 1.
�

5. Stability and control

All optimal control generated by the solutions (23-25) to the Hamilton-
Jacobi equation does not necessarily guarantee stable closed-loop behavior.
Only solutions that also guarantee a stable closed-loop behavior are interesting
for stance and locomotion. Such a stability condition provides some constraints
as to the choice of the weighting matrices Q, R, and S. A sufficient condition
for stable, optimal control is that K = KT > 0 in (20) as formulated in the
following theorem:

Theorem 1: Let the weighting matrices Q, R with Cholesky factors Q1, Q2,
R be chosen such that

Q = QT =

[
Q11 Q12

QT
12 Q22

]
=

[
QT

1Q1 Q12

QT
12 QT

2Q2

]
;

0 < R = RT = RT
1 R1 (27)

0 < QT
1Q2 +QT

2Q1 − (QT
12 +Q12)

Let T0, K be chosen as the matrices

T0 =

[
T11 T12

0 In×n

]
=

[
RT

1 Q1 − S1 RT
1 Q2 − S2

0 In×n

]
(28)

K = KT =
1

2
(QT

1Q2 +QT
2Q1) −

1

2
(QT

12 +Q12) > 0 (29)

The optimal control solution subject to assumptions (A1-A8) then provides an
asymptotically stable and an L2−stable closed-loop system with the optimal
feedback control law u = u∗

u∗(t) = −R−1(S +BTT0)x̃(t) (30)

The minimal optimization criterion is then obtained as

J(u∗) = min
u

∫ ∞

t0

L(x̃, u)dt =

∫ ∞

t0

L(x̃, u∗)dt = V (x̃(t0), t0) (31)
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where V solves the Hamilton-Jacobi equation (23)

V (x̃(t), t) =
1

2
x̃TT T

0

[
M(q) 0

0 K

]
T0x̃ (23)

Moreover, the value function V (x̃, t) is a Lyapunov function for the asymptot-
ically stable system. The Lyapunov function derivative V̇ = dV/dt < 0 for
‖x̃‖ 6= 0 and global asymptotic stability holds for Q− STR−1S > 0, R > 0.

�

Proof: See Appendix 2.
�

The function V (x̃, t) of Eq. (23) can be viewed as an aggregate of kinetic
energy and the ’potential energy’ from a set of springs with a stiffness matrix
K. The controlled motion keeps stable with an equilibrium on the prescribed
reference trajectory as long as V does not grow. This physical analogy can
be mathematically formalized in a stability proof with a Lyapunov function as
stated in the previous theorem.

5.1. The Control Law

The optimal control was given as the feedback control

u∗(t) = −R−1(S +BTT0)x̃(t) (25)

The appropriate external torques to apply are then calculated from (18) and
(25). This gives the applied torque τ∗ which is calculated in accord with as-
sumptions (A1-7), and which is optimal in the sense of (A8).

τ∗ = M(q)(q̈r − T−1
11 T12

˙̃q − T−1
11 M(q)−1((

1

2
Ṁ(q, q̇) +N(q, q̇))BTT0x̃+ u∗))

+ C(q, q̇)q̇ +G(q) (32)

The decomposition into an inverse model and optimal feedback is obvious from
Eqs. (25) and (32). The torque obtained contains compensation of gravity
and Coriolis torques as well as an anticipatory action with respect to q̈r. The
special choices qr = 0, T0 = I2n×2n and the absence of frictional forces provide
a simplified interpretation as

τ∗ = u∗ +G(q) (33)

5.2. Stability with Respect to External Persistent Disturbances

The asymptotic stability also implies that the optimal closed-loop system is
stable under persistent disturbances [31]. Stability analysis extending Lyapunov
theory to system stability with respect to external persistent disturbances can
be approached by means of passivity analysis [101, 39]. As shown in stability
analysis of Appendix 4, the optimal control is stable in repsonse to external
persistent disturbances.
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q, q̇

q, q̇

θ̂

Figure 2: Algorithmic organization of the quadratic optimal feedback control

6. Self-optimizing adaptation

As model based optimal control laws are contingent upon the model accu-
racy, performance is sensitive to changes of physical parameters or other model
changes. In cases with uncertain or time-varying parameters of M,C,G, there
is a need of adaptation of the optimal control to the operating conditions. The
optimal control algorithm presented here (32-33) is readily modified for self-
optimizing adaptive control.

Assume that the matrices M,C,G have a known structure (A6) and consider a
case of uncertain parameters (cf. A7). Let the optimal control law be expressed
in terms of the unknown parameters θ ∈ R

p of M,C,G and the data vector
ψ ∈ R

n×p, ψ0 ∈ R
n. The matrix ψ and the vector ψ0 contain the terms of τ∗

that may be computed without reference to unknown or uncertain parameters.

τ∗ = M(q)(q̈r − T12
˙̃q) −

1

2
Ṁ(q, q̇)BTT0x̃+ C(q, q̇)q̇ +G(q) + u∗ (34)

= ψθ + ψ0 + u∗ (35)

The adaptive control law is a modification (28) with θ replaced by θ̂

τ = ψθ̂ + ψ0 + u∗ (36)

= M̂(q)(q̈r − T12
˙̃q) −

1

2
̂̇M(q, q̇)BTT0x̃+ Ĉ(q, q̇)q̇ + Ĝ(q) + u∗ (37)

A prerequisite of successful motor learning and adaptation to a changing envi-
ronment is that θ̂ may be purposely modified.

Theorem 2: Assume that the optimal control u∗ is determined according to
Theorem 1. Let the optimal control law be expressed in terms of uncertain
parameters θ ∈ R

p of M,C,G and the data matrices ψ ∈ R
n×p, ψ0 ∈ R

n. The
matrices ψ, ψ0 contains terms of τ∗ that may be computed without reference to
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Figure 3: An anthropomorphic five-link model climbing a step. The ground reaction forces
are denoted Fy, Fz and act at the foot support point located at the origin of the coordinate
system Oxyz. The prescribed final erect position is shown (right).

unknown or uncertain parameters.

M(q)(q̈r − T12
˙̃q) −

1

2
Ṁ(q, q̇)BTT0x̃+ C(q, q̇)q̇ +G(q) = ψθ + ψ0 (38)

The adaptive control law with θ replaced by an estimate θ̂ ∈ R
p is

τ = ψθ̂ + ψ0 + u∗ (39)

˙̂
θ = −K−1

θ ψTBTT0x̃ (40)

The Lyapunov function VX

VX(x̃, t) =
1

2
x̃TT T

0

[
M(q) 0

0 K

]
T0x̃+

1

2
θ̃TKθθ̃; Kθ = KT

θ > 0 (41)

with the negative semidefinite derivative

V̇X = V̇ + V̇θ = −
1

2
x̃T (Q− STR−1S + T T

0 BR
−1BTT0)x̃ ≤ 0; ∀x̃ 6= 0 (42)

then assures that the self-optimizing adaptive control solution (39-40) is L2−stable
and uniformly globally stable in the sense of Lyapunov for constant parameters
θ. The solution reaches the the optimal solution for θ̃ = 0.

�

7. Simulated Examples

The following simulations demonstrate optimal control of the anthropomor-
phic five-link model (Fig. 3) in a case where only local feedback is available
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except for the Coriolis and gravity compensations. The following physical pa-
rameters were chosen




m1

m2

m3

m4

m5




=




10
10
10
10
30




[kg];




l1
l2
l3
l4
l5




=




0.4
0.4
0.4
0.4
1.0




[m] (43)

where mi, li denote the mass and length of segment i. The performance index
J (u) for the optimal control was chosen such that Q− STR−1S > 0.

J (u)=

∫ ∞

0

x̃T

[
90I5×5 324I5×5

324I5×5 1305I5×5

]
x̃+ uT

[
3I5×5 12I5×5

]
x̃+

1

9
uT I5×5u dt (44)

which results in the control law

τ = G(q) −
[
35.0I5×5 120.0I5×5

]
x̃ (45)

Three examples are given to demonstrate this methodology.

Example 1

Consider the anthropomorphic five-segment model depicted in Fig. 3. As-
sume that the support leg in contact with the ground at the origin of the co-
ordinate system Oxy. Let all initial angular positions be zero except q3(0) 6= 0.
This case simulates the five-link model starting to climb a step. The result is
shown in Fig. 4.

�

Example 2

This example shows how the five-link model rises from an initial bending
position at rest with the initial position coordinates q1(0) = q2(0) = q3(0) =
q4(0) = −q5(0), the result being shown in Fig. 5. As compared to Example 1,
there is little displacement of the common center of mass initially. As compared
to Example 1, the ground reaction shear force is therefore smaller.

�

Example 3

Assume that an additional load of 20 [kg] is attached at the center of mass
of segment 5. This situation simulates the presence of a back load on a human
climbing a step. The optimal control is now modified by the adaptation which
estimates the new segment weight and corrects the feedback and anti-gravity
actions. The result is shown in Fig. 6. Note that the adaptation has a fast
initial response with a progressively slower response as the error decrease.

�

Examples 1 and 2 show that the anthropomorphic model is capable of stable
posture and movement in the presence of antigravity action and local error
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Figure 4: An anthropomorphic five-link model climbing a step. The ground reaction forces
are a shear force Fy, and a normal force Fz. The torques at the hip, knee and ankle are
presented (left) and angular positions (right). All graphs vs. time [s].

feedback only. Example 3 shows that motor learning and adaptation is feasible
in this context. The mass of the torso (m5 = 30+20 [kg]) is also well estimated,
although a small bias may persist in cases where the control performance is
good. This is in agreement with Eq. (32) where the parameter errors θ̃ do not
appear on the right hand side.

8. Identification models

It is sometimes overlooked that quantitative modeling must be experimen-
tally verified not only qualitatively but also quantitatively. The explicit solution
to Eq. (23) and the associated control law supports the formulation of an iden-
tification model similar to Eq. (36). Let the torque equation be formulated in
terms of the uncertain parameters Θ as the linear estimation model

τ = φΘ + φ0 (46)

where φ, φ0 contain functions of data (q̈r, q̇r, qr, q̇, q) computable without refer-
ence to the uncertain parameters. It is an easy identification problem to find the
unknown Θ provided that observations τk, φk, φk0 of (46) at times k = 1, 2, . . .N
are available. The least-squares criterion based on N observations is
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Figure 5: An anthropomorphic five-link model rising from an initial bending position (q1(0) =
q3(0) = −q5(0)). The ground reaction forces are a shear force Fy, and a normal force Fz.
The torques at the hip, knee and ankle are presented (left) and angular positions (right). All
graphs vs. time [s].

JLS(Θ̂) =
1

N

N∑

k=1

‖τk − (φkΘ̂ + φk0)‖
2 =

1

2
(YN − ΦNΘ̂)T (YN − ΦNΘ̂) (47)

where

ΦN =




φ1

φ2

...
φN


 , YN =




τ1 − φ10

τ2 − φ20

...
τN − φN0


 , Θ̂ = (ΦT

NΦN )−1ΦT
NYN (48)

Θ̂ being the least-squares solution based on N observations and obtained by
completing the squares of (47), cf. [92]. This is immediately recognized as
a linear regression problem with a least-squares solution subject to statistical
hypothesis testing by standard methods of variance analysis (χ2−tests). This
shows that experimental verification of the proposed mathematical modeling is
feasible by standard methods.

Hence, the optimization weighting matrices as well as unknown physical or
physiologic parameters may be estimated from measurements of τ , q, q̇, qr, q̇r,
q̈r.
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Figure 6: An anthropomorphic five-link model climbing a step while the control law adapts to
an extra load (20 [kg]) on the torso of 30 [kg]. The ground reaction forces (GRF) are a shear
force Fy (lower left), and a normal force Fz (lower middle). The torques at the hip, knee
and ankle are presented (upper) and angular positions (middle) with adapting mass estimate
(lower right). All graphs vs. time [s].

9. Experiments

Forces and torques actuated by the feet were recorded with six degrees of
freedom (6DOF) by a force platform. Force-platform data were sampled at 50
[Hz] by a computer equipped with an AD converter and a customized program
controlled the vibratory and galvanic stimulation, and the sampling of force
platform data. The body movements at five anatomical landmarks were mea-
sured by a 3D-motion analysis system (Zebris Measuring System) at 50 [Hz].
The first marker (denoted Ankle) was attached to the subject’s to the ankle
bone (lateral distal fibula head); the second marker (Knee) to the knee (lateral
epicondyle of femur); the third (Hip) to the hip bone (Crista Iliaca); the fourth
(Shoulder) to the shoulder (Tuberculum Majus); the fifth marker (Ear) behind
the ear (Os Mastoideum); and the sixth marker on the forehead (Fig. 7). The
marker position data were sampled at 50 Hz and the measurement accuracy of
the 3D coordinates was 0.1 [mm].
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6 6

Figure 7: Experimental set-up with a subject stepping onto a force platform, measuring the
support forces and multi-segmented kinematics for experiments with horisontal and leaning
support surface and 6 [kg] extra weight.

Experimental support was limited to one subject only (body weight 65 [kg];
height 1.65 [m]). While the step response was recorded, the subject was in-
structed to take a step onto the force platform and resume stable stance on one
leg under condition of the i. a plane support surface; ii. leaning support surface
-25o; iii. leaning support surface -25o, the subject carrying an additional weight
6 [kg]—in all cases with eyes open.

10. Experimental Results

From a qualitative point of view, experimental results were uniformly in good
agreement with the behavior predicted by the mathematical model proposed
(Figs. 8-9] both in the force responses and the postural responses. Also note
the ankle torque steady-state shift providing compensating corrective torque
towards upright stance for a leaning support surface.

From a quantitative point of view, application of least-squares identification to
ankle torque dynamics using the identification model Eq. (33) gave a good fit
withthe estimated ankle stiffness 457.5 [Nm/rad] and damping 15 [Nm/(rad/s)]
compatible with optimality model and noisy data (Fig. 10).

11. Discussion

We have solved an optimal control problem of posture and locomotion dy-
namics with explicit solutions to the Hamilton-Jacobi equation. The optimal
solution explains asymptotically stable optimal control, providing both internal
model control (’inverse model’) and stabilizing feedback. Self-optimization pro-
viding globally stable adaptive control has been designed to solve the case of
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Figure 9: Multi-segmented position response of forehead, ear, shoulder, hip, knee, ankle
during step onto a plane support surface, leaning surface -25o; and leaning surface -25o with
additional weight 6 [kg] in spatial components x (left), y (middle), z (right).

uncertain parameters. The decomposition into an inverse model and optimal
feedback is obvious from Eqs. (25) and (32).

The optimal control is globally asymptotically stable, whereas the self-optimizing
adaptive control is globally stable in the sense of Lyapunov. The uniform sta-
bility in the sense of Lyapunov follows from the existence of a negative semidef-
inite Lyapunov function derivative as shown in Theorem 1. Finite initial con-
ditions and qr, q̇r ∈ L∞ mean that the initial value of the Lyapunov function
V (x̃(t0), t0) is bounded. A finite value of the Lyapunov function V implies a

finite magnitude of the tracking errors q̃, ˙̃q. The L∞−stability follows from the
fact that the Lyapunov function is finite and always decreases with time. The
asymptotic stability also implies that the optimal closed-loop system is stable
under persistent disturbances [31].

Whereas the optimal control algorithm presented here exhibits a certain sim-
ilarity to the linear quadratic control problem, it is modified to the nonlinear
biomechanical conditions of Eq. (1). The closed-loop properties may be effec-
tively determined from the weighting matrices Q, R and S of (A8). Whereas Eq.
(24) and the algebraic Riccati equation are similar, the solutions are very differ-
ent. The Riccati equation solution is positive definite but the present algorithm
does not in general provide a symmetric weighting matrix T0.

From a mechanical point of view there are several interesting aspects. The
proposed solutions contribute to the understanding of the close connections
between classical mechanics and optimization theory for motion control. The
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matrix K of (24), (27) represents a virtual stiffness around the desired position
qr whereas terms containing the inertia matrix M(q) represent kinetic energy.
The Hamiltonian H = T +U of analytical mechanics may be compared with the
Hamilton-Jacobi solution V (x̃, t) that represents an aggregate of kinetic energy
and the ‘potential energy’ of a spring action described by a stiffness matrix K.
The virtual spring action established by feedback control thus formally replaces
gravitation as the source of potential energy. The method offers a description in
any set of relevant coordinates, Cartesian space or configuration space. Associ-
ated optimization criteria in terms of kinetic energy are invariant to coordinate
transformations. Furthermore, a matrix T0 with T12 6= 0 renders the controlled
system dissipative—i.e., as the motion is not energy conservative, the system
is able to ‘absorb’ energy of initial conditions and disturbances. Whereas basi-
cally of mechanical nature, these properties are biologically relevant inasmuch
as energy expenditure issues are relevant in biology

There are several advantages to the analytic solution proposed in this paper, as
compared to earlier work [9], [18], [34], [98]. We avoid approximate solutions
as well as exact solutions based on approximate models which may exhibit
severe degradation of closed-loop control performance as compared to optimal
control. The reason is that all model based optimal control is contingent upon
the accuracy of the underlying model, i.e., the body segment parameters. A
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Figure 11: Least-squares estimates of ankle torque (Mx) fitted to angular coordinate and
angular velocity of center of mass as approximated by hip position measurement according to
model of Eq. (33). Estimates shown without and with gravity regressors, respectively.

small change of system parameters typically results in a severe degradation of
performance as compared to optimal conditions. Approximations involved in
the linearized or approximated models [18] as well as approximate solutions [85]
to the exact problem make from the point of view of parameter uncertainty such
optimal control error-prone in nonideal situations. The analytic solution of this
paper avoids such problems and is valid also for transient motion with velocities
and positions away from particular equilibrium points.

As many tasks of controlled motion must be solved in finite time, it could be
argued that the infinite time problem is less relevant for physiologic motion
control. However, the problem with an infinite-time optimization criterion may
be viewed as a finite-time problem with a performance optimization together
with an end point condition at t = tf on the closed-loop accuracy and stability.

V (x̃(t0), t0) =

∫ ∞

t0

L(x̃, u∗)dt =

∫ tf

t0

L(x̃, u∗)dt+ V (x̃(tf ), tf ) (49)

For finite-time optimization, V (x̃(tf ), tf ) has the interpretation of cost-to-go
value function at time t = tf [95]. A similar relation holds for the Lyapunov
function VX of Eq. (41). Notice that the Lagrangian L is positive so that
V (x̃(tf ), tf ) ≤ V (x̃(t0), t0). This makes the possible adaptation and learning
action applicable also as a model of finite-time operation with periodic or iter-
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ative motion. The self-optimizing adaptation of an optimal trajectory intended
for periodic motion may thus be made in a few repetitive trials.

Only body motion in the form of segmented and articulated rigid links has been
explicitly treated here. For example, considerable neural transmission time de-
lay may place a limit upon the applicability of the feedback model. Several mod-
els of the type (1) of various biomechanical complexity have been formulated
[32], [40], [97]. Elastic deformation and other structural flexibilities that can
be modelled by methods of analytical mechanics may be included in the equa-
tions (1) and thus in the optimal control solution. Kinematic constraints—i.e.,
foot-on-ground constraints, multiple contacts—constitute mathematical diffi-
culties in analytical mechanics, requiring constrained optimization or some pre-
calculation involving decomposition into constrained and unconstrained dynam-
ics [60, 89, 45]. This difficulty is inherent to analytic mechanics and Euler-
Lagrange equations which require canonical coordinates—i.e., one coordinate
for each mechanical degree of freedom [24]. One approach to constraint decom-
position of the foot-to-ground kinematic constraints is demonstrated in Eqs.
(A5.12-A5.14).

The mathematical description above involves reference trajectories qr corre-
sponding to intended or instructed motion, motor programs, preprogrammed
motion or reference trajectories that are planned by the systems as movement
evolves. There is a considerable body of literature on the existence of such ref-
erence trajectories and we restrict ourselves to recent contributions in this field.
The evidence of motor programs was reviewed by Grillner [27], and supraspinal
and spinal mechanisms were considered by Grillner and Dubuc [28]. Zattara and
Bouisset [103] support the idea of preprogrammed motion in the context of pos-
tural adjustment where anticipatory postural movements appear to counteract
the disturbing effects of the forthcoming voluntary motion. Anticipatory pos-
tural responses in human subjects were demonstrated by Marsden [69], Haas
and Diener [30]. Because of the reproducibility and specificity, the anticipa-
tory postural movements can be considered to be preprogrammed. Grillner and
Wallén [29] and Sanes and Jennings [84] treated the control programs under-
lying the motor behavior. Thorstensson et al. [94] demonstrated that trunk
movements are generated and controlled by specific patterns of muscle coor-
dination. Anticipatory EMG responses comprising early and late responses,
timing and amplitude modulation were analyzed by Lacquaniti and Maioli [62].
Shapovalova et al. [90] experimentally investigated the importance of the cau-
date nucleus in the neural processes preceding motion. Marsden [69] provided
evidence for the statement that patients with Parkinson’s disease are unable to
execute learnt motor strategies involving the selection, sequencing, and initia-
tion of motor programs. The functional role of substantia nigra in the initiation
and particularly the execution of movements was demonstrated by Viallet et

al. [96]. Hence, thorough biological experimental evidence exists for motor pro-
grams and preprogramming of motor behavior in such context as assumed in
the present paper.

The complexity of of the reference trajectory is an open question, and our model
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allows the specification and inclusion of qr or qr, q̇r or even qr, q̇r, q̈r. At least
five cases are included in the problem formulation presented:

• Motor programs with preformulated trajectories;

• Reference trajectories generated and planned as movement evolves;

• Goal determination as an end point condition only, or as a sequence of
points in position and/or velocity space;

• Goal determination as an end point condition only, to be accomplished at
a final time tf with an additional end point condition of stability;

• Motor planning (trajectory planning) to reach a given end point.

The algorithm provided in this paper may thus solve both the motor planning
and the feedback control problems of motion control.

Execution of the motor programs involved requires a sensory feedback of po-
sition and velocity obtainable from the visual, vestibular and somatosensory
subsystems. Moreover, it has been suggested that a “corollary discharge” exists
in motor programs [68]. This is the postulated internal feedback from motor to
sensory structures which indicates to the sensory systems that a limb is about to
be moved, in order to permit correct interpretation of the sensory consequences
of the movement. It is often claimed that such a system must exist, as otherwise
we could never be sure whether we had moved or whether the environment had
moved us. The interaction between the motor program and sensory feedback is
in the present paper modeled as a comparison between the intended motion qr
and the feedback information q that results in an error q̃ = q− qr. The present
‘error feedback’ is thus in harmony with ideas of “corollary discharge” although
other topographical organization principles are not precluded.

Previously, optimal allocation of forces in redundant biomechanics was stud-
ied with respect to task-posture decomposition [60, 89]; and coordination in
posture and locomotion [41, 40, 18, 19]. The coordination of muscular forces
may be considered either at the level of muscular activations or at the level of
joint torques. The relationship between joint torques and muscular action is
a research topic in its own right [8], [14]. It should be stressed that there are
many degrees of freedom to schedule muscles, a fact which is often described as
redundancy or static indeterminacy. The total muscular torque acting on the
knee with a certain knee angle is produced by not less than 12 muscles, some of
which are diarthric muscles. The force distribution of the n stabilizing forces τ
over the m individual muscles (m > n) can (formally) be uniquely solved as a
quadratic optimization problem as follows:

Assume that the optimal control τ ∈ R
n and the muscular forces of m muscles

are described by the vector F ∈ R
m where m > n. Let ρ ∈ R

n×m denote the
matrix of anatomical-biometrical data that describes the torque-force relation-
ship τ = ρF , i.e., the individual muscle action and the load sharing between
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different muscles as determined by the insertion of muscles and tendons at bone
segments (m > n). A quadratic optimization of the muscular forces F , i.e., the
minimization of FTF subject to the constraint τ = ρF is easily obtained by
completing the squares so that

min FTF = min(FT (I − ρT (ρρT )−1ρ)F + τT (ρρT )−1τ) = τT (ρρT )−1τ

subject to τ = ρF (50)

with the minimum obtained for the unique solution

F = F ∗ = ρT (ρρT )−1τ (51)

which is valid also for position-dependent torque-force relations ρ = ρ(q). (No-
tice that the matrix ρ is of full row rank n for all well posed problems so that
ρρT is invertible.) In particular, quadratic optimization to obtain the mini-
mum muscle forces that balance the gravitation forces G(q) may be obtained as
F = ρT (ρρT )−1G(q).

A similar static optimization problem has been treated with linear programming
for ad hoc determination of minimum forces [85]-[87]. The problem is statically
indeterminate (m > n), a circumstance which may cause some frustration in
engineering approaches to the evaluation of forces [85]-[87]. It is, however, very
difficult to motivate why and how any such restrictions should be imposed. From
the point of view of optimization of mechanical energy expenditure, stability
and coordination there is no reason to prefer a particular set of forces F to
another set of forces F that also satisfies τ = ρF . The scheduling of individual
muscles may also presumably depend on many non-mechanical factors such as
the metabolic state. We therefore avoid to suggest any unnecessary restrictions
of the solution space that would only limit the explanatory power of the model
presented.

Neuromuscular transmission, length and force relationships, and the correspon-
dence between EMG data and muscular forces [8] is a controversial subject, a
debate that we hesitate to enter here. By solving the coordination and con-
trol problem we support such research by reducing neuromuscular transmission
to ‘local research topics’. Several problems of muscular physiology may thus
be considered at the local level—e.g., inverse myodynamics, the indeterminacy
problem, local feedback, metabolic energy consumption, heat production [8].

The proposed solution is sufficient to explain many interesting features of pos-
ture control and coordination. The closed-loop properties may be effectively
determined over a large range of behaviors from the weighting matrices Q, R
and S of (19). Example 1 shows the coordination for climbing of a step based
on the information of velocity and position measurements. The control law
consists of gravity and Coriolis torque compensations and local error feedback
only (corresponding to a diagonal feedback matrix R−1(S + BTT0)). Several
hypotheses on the importance and sufficiency of local feedback for postural con-
trol are therefore supported with respect to modeling complexity, cf. Houk
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[43]. In our examples we reproduce ‘ankle and hip strategies’ of Nashner and
colleagues [77]. Example 3 demonstrates the adaptation of step climbing when
an additional back load of 20 [kg] is present. The presented model is there-
fore demonstrated to be of relevance also in the study of motor learning and
adaptation.

All model based optimal control rely on the accuracy of the underlying model,
i.e., the body segment parameters. A small change of system parameters typ-
ically results in a severe degradation of performance, as compared to optimal
conditions. It is therefore necessary to consider the problem of adaptation in
the context of optimal control, although adaptation is a difficult topic of re-
search [2], [6], [26], [35], [48], [97]-[100].. The adaptation included in this paper
is a gradient method with a modification to Lyapunov theory similar to that
reported in [78, 20, 51, 52]. The gradient method (40) is also similar to earlier
attempts to describe neural learning mechanisms, cf. the ’Hebb rule’ [35]. The
correspondence between the Hebb rule and gradient methods of adaptation has
been demonstrated, e.g., [5, p. 492], [102]. Adaptivity in neural mechanisms is
usually attributed to higher neural centra—e.g., the cerebellum, with a possible
involvement of gating mechanisms at a lower, spinal level. The computational
topology (Fig. 2) of the optimal control adaptation does not disagree with
known neural tract topography, cf. [77].

Experimental verification involves the formulation of adequate postural tests
with measurements of joint positions and joint velocities of the articulated and
segmental model, as well as of ground reaction forces. Johansson et al [50] have
reported on identification methodologies, though only ankle strategy dynamics
was considered. Statistical hypothesis testing based on the proposed linear
regression models (37- 40) is here straightforward. The analysis presented thus
supports experimental verification as put forward as a prequisite by Ito [46] and
others. Also note the ankle torque steady-state shift in Figs. 8-9 providing
compensating corrective torque towards upright stance for a leaning support
surface [80, 81, 15, 86].

12. Conclusions

We have solved an optimal control problem of posture and movement dy-
namics with explicit solutions to the Hamilton-Jacobi equation. The optimal
solution explains asymptotically stable optimal control, providing both internal
model control (’inverse model’) and stabilizing feedback. Self-optimization pro-
viding globally stable adaptive control has been designed to solve the case of
uncertain parameters. Partial experimental validation was made.
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Appendix 1: Proof of Lemma 1

12.1. The Hamilton-Jacobi equation

The Lagrangian is given by (3) and the lemma claims that the Hamilton-
Jacobi equation

−
∂V (x̃, t)

∂t
= min

u

(
(
∂V (x̃, t)

∂x̃
)T ˙̃x+ L(x̃, u)

)
(21′)

is satisfied for a function

V (x̃, t) =
1

2
x̃TT T

0

[
M(q) 0

0 K

]
T0x̃ (23)

The proof contains five steps:

1: A state space description

2: Verification that V = V (x̃, t)

3: Evaluation of partial derivatives of V ,

4: Derivation of the u that minimizes H of Eq. (21)

5: Verification that V solves Eq. (21).

12.2. A state-space description

The full error state space representation is found as

x̃(t) =
[
˙̃q
T
(t) q̃T (t)

]T

; x̃ ∈ R
2n (A1.1)

The error dynamics of the linked body segments may be obtained from (1), (2)
as a state-space description where the derivative of x̃ is

˙̃x(t) =

[
¨̃q(t)
˙̃q(t)

]
=

[
−M−1(q)C(q, q̇) 0n×n

In×n 0n×n

]
x̃(t)

+

[
−q̈r −M−1(q)(G(q) + C(q, q̇)q̇r)

0n×n

]
+

[
In×n

0n×n

]
M−1(q)τ (A1.2)

or with shorter notation

˙̃x(t) = A(q, q̇)x̃(t) +B0(q̈r, q̇r, q̇, q) +BM−1(q)τ (A1.3)

where τ is available for assignment of the control law.

˙̃x = T−1
0

[
−M(q)−1(1

2Ṁ(q, q̇) +N(q, q̇)) 0n×n

T−1
11 −T−1

11 T12

]
T0x̃+ T−1

0

[
M(q)−1

0n×n

]
u

(A1.3′)
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12.3. Verification that V = V (x̃, t)

First, it is necessary to verify that V , and thus that M(q) is a function of x̃
and time t only. Notice that the reference value qr(t) is by definition a function
of t only. It is then obvious that

M(q) = M(q̃ + qr(t)) = M(x̃, t) (A1.4)

The inertia matrix M(q) is thus a function of the error-state x̃ and the time t,
which implies that V = V (x̃, t). The time derivative of the inertia matrix can
be expressed as

dM(q)

dt
=
dM(q̃ + qr(t))

dt
=

n∑

k=1

∂M(q)

∂q̃k
˙̃qk +

n∑

k=1

∂M(q)

∂qrk

q̇rk
= Ṁ(q, q̇)

and

dM(q)

dt
=
dM(q̃ + qr(t))

dt
=
dM(x̃+ xr(t))

dt
=

2n∑

k=1

∂M(x̃, t)

∂x̃k

˙̃xk +
∂M(x̃, t)

∂t

(A1.5)
Second, partial derivatives of the function V need to be evaluated in order to
test the hypothesis that V solves the Hamilton-Jacobi equation. The partial
derivative of V with respect to time is

∂V (x̃, t)

∂t
=

1

2
x̃TT T

0

[
∂M(ex,t)

∂t
0n×n

0n×n 0n×n

]
T0x̃ (A1.6)

∂V (x̃, t)

∂t
= (

∂V (x̃, t)

∂qr
)T ∂qr(t)

∂t
= (

∂V (x̃, t)

∂qr
)T dqr(t)

dt
= (

∂V (x̃, t)

∂xr

)T dxr

dt
(A1.7)

The gradient of V with respect to the error-state x̃ is

∂V (x̃, t)

∂x̃
= T T

0

[
M(x̃, t) 0n×n

0n×n K

]
T0x̃+

1

2
x̃TT T

0

[
∂M(ex,t)

∂ex
0n×n

0n×n 0n×n

]
T0x̃ (A1.8)

Expression (A1.8) is a function of x̃ and t only and does not explicitly depend

on q̈, ¨̃q or u. This gives

(
∂V (x̃, t)

∂x̃
)T ˙̃x = x̃TT T

0

[
M(x̃, t) 0n×n

0n×n K

]
T0

˙̃x+
1

2

2n∑

k=1

x̃TT T
0

[
∂M(ex,t)

∂exk

˙̃xk 0n×n

0n×n 0n×n

]
T0x̃

(A1.9)
The state space equation from u to x̃ of (A1.2) is

˙̃x = T−1
0

[
−M(q)−1(1

2Ṁ(q, q̇) +N(q, q̇)) 0n×n

T−1
11 −T−1

11 T12

]
T0x̃+ T−1

0

[
M(q)−1

0n×n

]
u

(A1.10)
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Substitution of ˙̃x in (A1.9) gives

(
∂V (x̃, t)

∂x̃
)T ˙̃x =

1

2
x̃TT T

0

[
0n×n 0n×n

KT−1
11 −KT−1

11 T12

]
T0x̃− x̃TT T

0 BN(q, q̇)BTT0x̃+

+x̃TT T
0 Bu+

1

2
x̃TT T

0

[
−Ṁ(q, q̇) +

∑2n
k=1

∂M(ex,t)
∂exk

˙̃xk 0n×n

0n×n 0n×n

]
T0x̃ (A1.11)

The second term of (A1.11) disappears due to the anti-symmetric property (8-9)
of N(q, q̇). The last term of (A1.11) is not explicitly dependent on u, q̈ because
M(x̃, t) = M(q) is a function of q.

12.4. Derivation of the u minimizing the value function V

Bearing in mind that the Lagrangian is

L(x̃, u) =
1

2
x̃T (t)Qx̃(t) +

1

2
u(t)TRu(t) + uT (t)Sx̃(t) (3′)

a candidate of the Hamiltonian H (20) is the sum of Eqs. (A1.11) and (3). A
fourth step is now to evaluate how H depends on u ∈ R

n. The u = u∗ for
which H has its minimum value is obtained from the partial derivatives with
respect to u. Only the second terms of (A1.11) and (3) contribute to the partial
derivatives.

∂H

∂u
=

∂

∂u
((
∂V (x̃, t)

∂x̃
)T ˙̃x+ L(x̃, u)) = BTT0x̃+Ru+ Sx̃ (A1.12)

Extremals of the Hamiltonian with respect to u is found by setting the partial
derivatives ∂H/∂u equal to zero. The minimum is obtained for u = u∗

u∗ = −R−1(S +BTT0)x̃ (A1.13)

12.5. Verification that V solves the H.J. equation

A fifth step is now to verify that the suggested V satisfies (21). The time
derivative of V is composed of (A1.11) and (A1.6-7)

dV (x̃, t)

dt
=
∂V (x̃, t)

∂t
+ (

∂V (x̃, t)

∂x̃
)T ˙̃x

dV (x̃, t)

dt
= x̃TT T

0

[
M(q) 0n×n

0n×n K

]
T0

˙̃x+
1

2
x̃TT T

0

[
Ṁ(q, q̇) 0n×n

0n×n 0n×n

]
T0x̃ (A1.14)

Substitution of ˙̃x of (A1.10) into (A1.14) gives

dV (x̃, t)

dt
=

1

2
x̃T

[
0 KT

K 0

]
x̃+ x̃TT T

0 Bu (A1.15)

Application of u = u∗ (A1.13) to V̇ of (A1.15) gives

dV (x̃, t)

dt
=

1

2
x̃T

[
0 KT

K 0

]
x̃− x̃T (T T

0 BR
−1BTT0 + T T

0 BR
−1S)x̃ (A1.16)
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Application of u = u∗ on the Lagrangian of optimal control

L(x̃, u∗) =
1

2
x̃T (Q− STR−1S + T T

0 BR
−1BTT0)x̃ (A1.17)

The Hamilton-Jacobi equation is satisfied for u = u∗ if

0 =
∂V (x̃, t)

∂t
+ (

∂V (x̃, t)

∂x̃
)T ˙̃x+ L(x̃, u∗)

=
1

2
x̃T

[[
0 KT

K 0

]
+Q− (S +BTT0)

TR−1(S +BTT0)

]
x̃ = 0

It now follows that V (x̃, t) is a solution to the Hamilton-Jacobi equation, a
Hamilton’s principal function, for u = u∗ and matrices K, T0 solving the alge-
braic matrix equation

x̃T

[[
0 KT

K 0

]
+Q− (S +BTT0)

TR−1(S +BTT0)

]
x̃ = 0; ∀x̃ (24)

This proves Lemma 1.
�

Appendix 2: Proof of Theorem 1

From Lemma 1 it is known that

V (x̃(t), t) =
1

2
x̃TT T

0

[
M(q) 0

0 K

]
T0x̃ (23)

solves the Hamilton-Jacobi equation for K = KT , T0 solving the algebraic
matrix equation

x̃T

[[
0 K
K 0

]
+Q− (S +BTT0)

TR−1(S +BTT0)

]
x̃ = 0 (24)

where the optimal feedback control law u = u∗ minimizing J is

u∗(t) = −R−1(S +BTT0)x̃(t) (25)

Let the weighting matrix Q, R of the Lagrangian be factorized with Cholesky-
factorizations Q1, Q2, R1 of (27) so that and chooseT0,K according to Eqs.
(28-29)

T0 =

[
T11 T12

0 In×n

]
=

[
RT

1 Q1 − S1 RT
1 Q2 − S2

0 In×n

]

K =
1

2
(QT

1 Q2 +QT
2Q1) −

1

2
(QT

12 +Q12)
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Application of these factorizations and the conditions of (27) directly show that
K = KT > 0. The matrices K, T0 of (24) solve the algebraic matrix equation
of (21)

x̃T

[[
0 K
K 0

]
+Q− (S +BTT0)

TR−1(S +BTT0)

]
x̃ = 0

or with application of (24)

x̃T

[[
0 K
K 0

]
+

[
Q11 Q12

QT
12 Q22

]
−

[
QT

1Q1 QT
1Q2

QT
2Q1 QT

2Q2

]]
x̃ = 0 (A2.1)

The Hamilton-Jacobi equation (21) is satisfied because

0 =
∂V

∂t
+ min

u
H(x̃, u,

∂V

∂x̃
) =

∂V (x̃, t)

∂t
+ (

∂V (x̃, t)

∂x̃
)T ˙̃x+ L(x̃, u∗) =

=
1

2
x̃T

[[
0 K
K 0

]
+Q− (S +BTT0)

TR−1(S +BTT0)

]
x̃ = 0

Notice that V ≥ 0 for all positive definite K. The performance index may then
be evaluated as

∫ tf

t0

L(x̃, u∗)dt =

∫ tf

t0

−V̇ dt = V (x̃(t0), t0) − V (x̃(tf ), tf ) ≤ V (x̃(t0), t0)

(A2.3)
The optimality of the control follows from (A2.2) and it follows that x̃ ∈
L2(t0, tf ), ∀tf ≥ t0. The claim on L2−stability follows immediately from (A2.3).

From (16) and (24) follows that K = KT > 0 and the inertia matrix M(q) is
positive definite by definition (1). The quadratic function V (x̃, t) is a suitable
Lyapunov function candidate because it is positive, radially growing with ‖x̃‖
for all t ≥ t0. It is continuous, and has a unique minimum at the origin of the
error-space. The function V has a unique minimum at the origin.

It remains to show that V̇ < 0 for all ‖x̃‖ 6= 0. From the solution (28) of
the Hamilton-Jacobi equation, it follows that dV/dt + L = ∂V/∂t +H∗ = 0 is
constant for u = u∗ so that ∀t > 0

dV (x̃, t)

dt
= −L(x̃, u∗) = −

1

2
x̃T (T T

0 BR
−1BTT0 +Q− STR−1S)x̃ < 0; x̃ 6= 0.

(A2.4)
The time derivative dV/dt < 0 because Q > STR−1S according to assump-
tion A8. This implies that V is a Lyapunov function for a uniformly, globally
asymptotically stable system. The proposition of the theorem then follows di-
rectly from the properties of Lyapunov functions [23].

This finishes the proof.
�

32



Appendix 3: Proof of Theorem 2

The resulting effective control variable u in the case of uncertain parameters
can be computed from (30-31) as

u = u∗ + ψθ̃; u∗ = −R−1BTT0x̃ (A3.1)

where θ̃ denotes the vector of parameter errors θ̃ = θ̂− θ. This control law is no
longer optimal in the sense of Eq. (21) due to the term ψθ̃. Let the parameter

error θ̃ be included in a new state vector x̃ that suffices to describe the error
dynamics.

x̃ =

[
x̃

θ̃

]
(A3.2)

The following Lyapunov design of parameter adjustment can make the solu-
tion systematically tend toward the optimal solution. Introduce the following
Lyapunov function candidate VX

VX(x̃, t) = V (x̃, t)+Vθ(θ̃) =
1

2
x̃TT T

0

[
M(q) 0

0 K

]
T0x̃+

1

2
θ̃TKθθ̃; Kθ = KT

θ > 0

(A3.3)
where V is the solution (27) to the Hamilton-Jacobi equation and Vθ is a
quadratic functional of parameter errors. Moreover, VX is a function of the
full error state with a unique minimum at the origin of error state space. The
function VX is thus feasible as a Lyapunov function candidate for the adaptive
(sub)optimal system with the derivative

V̇X = V̇ + V̇θ = −
1

2
x̃T (Q− STR−1S + T T

0 BR
−1BTT0)x̃+ x̃TT T

0 Bψθ̃ + θ̃TKθ
˙̃
θ

(A3.3)
The following adaptation law

˙̂
θ = −K−1

θ ψTBTT0x̃ (A3.5)

and the control law (31) ensures that V̇X is equal to V̇ of (A2.4) for constant
parameters θ.

dVX(x̃, t)

dt
= −

1

2
x̃T (Q− STR−1S + T T

0 BR
−1BTT0)x̃ (A3.6)

This proves that the system is globally stable (in the sense of Lyapunov), and
adaptation eventually makes the control system optimal. Adaptation thus
makes the system work as a self-optimizing control system or an extremum
controller. The performance degradation due to the parameter errors can be
evaluated as

1

2

∫ ∞

t0

x̃T (Q−STR−1S+T T
0 BR

−1BTT0)x̃dt ≤ VX(x̃(t0), t0) = J (u∗)+Vθ(θ̃(t0))

(A3.7)
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The theorem is immediately verified by application of (35-36) under the condi-
tions of constant parameters θ and theorem 1. The solution reaches the optimal
solution for θ̃ = 0. The Lyapunov function derivative is negative semidefinite
w.r.t. x̃ and negative definite w.r.t. x̃.

Appendix 4: Stability with Respect to External Persistent Distur-

bances

In the case of external persistent disturbances, stability analysis has to be
extended from Lyapunov analysis to passivity analysis. Following [101] and
[39], a dynamical system is said to be dissipative if there exists a nonnegative
function V : R

n → R
+, called a storage function such that for all t0, tf , x ∈ R

n

and u ∈ U, y ∈ Y, tf ≥ t0 satisfying the inequality

V (x(t0)) +

∫ tf

t0

w(u, y)dt ≥ V (x(tf )) (A4.1)

where w(u, y) is a real-valued function called the supply rate—i.e., w : U ×
Y → R. Strict dissipativity holds if the inequality (12.5) is a strict inequality.
Moreover, the system is said to be passive if there is storage function V and
coefficients ǫ ≥ 0, δ ≥ 0, ρ ≥ 0 and supply rate w = uT z satifying

uT z ≥
∂V

∂x

dx

dt
+ ǫuTu+ δzT z + ρxTx, (A4.2)

The system is input strictly passive if ǫ > 0, output strictly passive if δ > 0 and
state strictly passive if ρ > 0 [101, 39].

Without much restriction, we specialize to disturbance entering as force distur-
bances F entering at a body point x = f(q) in Cartesian space and reflected
onto the articulated body-kinematic structure as the disturbance joint torques
ω = JT (q)F via the Jacobian matrix J(q) = ∂f(q)/∂q

M(q)q̈ + C(q, q̇)q̇ +G(q) = τ + ω, ω = JT (q)F (A4.3)

Using the value function of Eq. (23) as a tentative storage function, we find

dV (x̃, t)

dt
= −L(x̃, u) + x̃TToBω = −L(x̃, u) + z̃T

1 ω (A4.4)

From Eqs. (A1.10), we find

˙̃z1 = −M−1(q)(
1

2

dM(q)

dt
+N(q, q̇))z̃1 +M−1(q)ω

z̃T
1 M(q) ˙̃z1 = −z̃T

1 (
1

2

dM(q)

dt
+N(q, q̇)z̃1 + z̃T

1 ω
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By the skew-symmetric properties of N(q, q̇) , z̃T
1 N(q, q̇)z̃1 = 0, it follows that

the energy supply rate from ω to z̃1

w(ω, z̃1) = z̃T
1 ω∫ tf

t0

w(ω, z̃1)dt =

∫ tf

t0

z̃T
1 ωdt =

∫ tf

t0

1

2
z̃T
1

dM(q)

dt
z̃1 + z̃T

1 M(q) ˙̃z1dt

=

∫ tf

t0

d

dt
(
1

2
z̃T
1 M(q)z̃1)dt = [

1

2
z̃T
1 M(q)z̃1]

tf

t0

Let the supplied disturbance energy be denoted

Vω(t) =

∫ tf

t0

w(ω, z̃1)dt = [
1

2
z̃T
1 M(q)z̃1]

tf

t0
(A4.6)

The resultant dissipation energy balance is

V (x̃(tf ), tf ) − V (x̃(t0), t0)︸ ︷︷ ︸
Storage Function

= −

∫ tf

t0

L(z̃1, u)dt

︸ ︷︷ ︸
Dissipation Energy

+Vω(tf ) − Vω(t0)︸ ︷︷ ︸
Supplied Energy

(A4.7)

which shows that the optimal control system is stable and state strictly passive in
the mapping from the disturbance ω to control error z̃1 with strict dissipativity.
Moreover, the value function V (x̃, t) of the optimal control problem serves as a
storage function in passivity analysis.

Appendix 5: Equations for simulation of Examples 1-3

Consider the anthropomorfic five-link model described by the joint angular
coordinates

q =
[
q1 q2 q3 q4 q5

]T
∈ R

5 (A5.1)

A model where motion of the foot point (e.g., slipping) is possible in the anterior-
posterior direction requires the set of coordinates ζ of Cartesian coordinates and
joint space coordinates.

ζ =
[
qT y z

]T
∈ R

7 (A5.2)

where x and y denote the horisontal and vertical in Cartesian coordinates of
the position of the foot support. Introduce the following abbreviated notation
of trigonometric functions






ci = cos qi(t)

si = sin qi(t)

cij = cos(qi(t) − qj(t))

sij = sin(qi(t) − qj(t))

∀i, j ∈ {1, 2, . . . , 5} (A5.3)

Let mi, li, ri denote the mass of link i, the length of link i, and the distance
from the joint i to the center of gravity of link i, respectively. The coordinates
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Figure 12: An anthropomorphic five-link model

in Cartesian space of the center of gravity of link i are obtained by elementary
geometric considerations

{
y1 = −r1s1 + y

z1 = r1c1 + z
{
y2 = −l1s1 + r2s2 − l3s3 + l4s4 + y

z2 = l1c1 − r2c2 + l3c3 − l4c4 + z
{
y3 = −l1s1 − r3s3 + y

z3 = l1c1 + r3c3 + z
{
y4 = −l1s1 − l3s3 + r4s4 + y

z4 = l1c1 + l3c3 − r4c4 + z
{
y5 = −l1s1 − l3s3 − r5s5 + y

z5 = l1c1 + l3c3 + r5c5 + z

(A5.4)

with the corresponding velocities obtained as time derivatives

12.6. Kinetic and potential energy

The total kinetic energy as a sum the kinetic energy of each segment

T =
1

2

5∑

i=1

mi(ẏ
2
i + ż2

i ) =
1

2
ζTMζ(ζ)ζ (A5.5)
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where we decompose the inertia matrix Mζ(ζ) ∈ R
7×7 as follows

Mζ(ζ) =




M(q) My Mz

MT
y myy myz

MT
z mzy mzz



 =




m11 m12 m13 m14 m15 m1y m1z

m21 m22 m23 m24 m25 m2y m2z

m31 m32 m33 m34 m35 m3y m3z

m41 m42 m43 m44 m45 m4y m4z

m51 m52 m53 m54 m55 m5y m5z

my1 my2 my3 my4 my5 myy myz

mz1 mz2 mz3 mz4 mz5 mzy mzz




(A5.6)
with M(q) ∈ R

5×5, My,Mz ∈ R
5 and elements

m11 = J1 +m1r
2
1 + (m2 +m3 +m4 +m5)l

2
1

m12 = m21 = −m2l1r2c12

m13 = m31 = m3l1r3c13 + (m2 +m4 +m5)l1l3c13

m14 = m41 = −m4l1r4c14 −m2l1l4c14

m15 = m51 = m5l1r5c15

m22 = J2 +m2r
2
2

m23 = m32 = −m2l3r2c23

m24 = m42 = m2l4r2c24

m25 = m52 = 0

m33 = J3 +m3r
2
3 + (m2 +m4 +m5)l

2
3

m34 = m43 = −m2l3l4c34 −m4l3r4c34

m35 = m53 = m5l3r5c35

m44 = J4 +m4r
2
4 +m2l

2
4

m45 = m54 = 0

m55 = J5 +m5r
2
5

m1y = my1 = m1r1c1 − (m2 +m3 +m4 +m5)l1c1

m2y = my2 = m2r2c2

m3y = my3 = −m3r3c3 − (m2 +m4 +m5)l3c3

m4y = my4 = m2l4c4 +m4r4c4

m5y = my5 = −m5r5c5

m1z = mz1 = m1r1s1 − (m2 +m3 +m4 +m5)l1s1

m2z = mz2 = m2r2s2

m3z = mz3 = −m3r3s3 − (m2 +m4 +m5)l3s3

m4z = mz4 = m2l4s4 +m4r4s4

m5z = mz5 = −m5r5s5

myz = mzy = 0

myy = m1 +m2 +m3 +m4 +m5

mzz = m1 +m2 +m3 +m4 +m5
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(A5.7)

The potential energy Ui of each link i is



U1

U2

U3

U4

U5




=




m1g(z + r1c1)
m2g(z + l1c1 + l3c3 − l4c4 − r2c2)

m3g(z + l1c1 + r3c3)
m4g(z + l1c1 + l3c3 − r4c4)
m5g(z + l1c1 + l3c3 + r5c5)




(A5.8)

The total potential energy

U =

5∑

i=1

Ui = m1gr1c1 + (m2 +m3 +m4 +m5)gl1c1 −

− m2gr2c2 +

+ m3gr3c3 + (m2 +m4 +m5)gl3c3 −

− m2gl4c4 −m4gr4c4 +

+ m5gr5c5 +

+ (m1 +m2 +m3 +m4 +m5)gz

(A5.9)

12.7. The Euler-Lagrange motion equations

The gravitation torques according to (5-6) are

Gζ =
∂U

∂ζ
=




G(q)
Gy

Gz



 =




∂U
∂q
∂U
∂y
∂U
∂z



 =




−(m1gr1 + (m2 +m3 +m4 +m5)gl1)s1
m2gr2s2

−(m3gr3 + (m2 +m4 +m5)gl3)s3
(m2gl4 +m4gr4)s4

−m5gr5s5
0

(m1 +m2 +m3 +m4 +m5)g




(A5.10)
with G(q) ∈ R

5 is the gravitation-dependent torques at the joints i = 1, . . . , 5
and with the gravitation constant g = 9.81 [m/s2]. The gravitation forces in
Cartesian space at the foot support are denoted Gy, Gz, with horisontal and
vertical components. The Coriolis and centripetal forces can now be calculated
according to (1), (10) and the derivative of M(q)




C Cqy Cqz

Cyq cyy 0
Czq 0 czz



 =
1

2
Ṁ +N (A5.11)

The Euler-Lagrange equations (1) are thus



M My Mz

MT
y myy myz

MT
z mzy mzz








q̈
ÿ
z̈



 +




C Cqy Cqz

Cyq cyy 0
Czq 0 czz








q̇
ẏ
ż



 +




G
Gy

Gz



 =




τ
Fy

Fz



 (A5.12)
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In cases with no motion in y or z at the support surface—i.e., ẏ = ż = 0,
ÿ = z̈ = 0—gives equations of motion

τ = M(q)q̈ + C(q, q̇)q̇ +G(q) (A5.13) = (1′)

and the corresponding ground reaction forces with a horisontal shear force Fy

and a vertical force Fz as follows

[
Fy

Fz

]
=

[
MT

y q̈ + Cyq q̇
MT

z q̈ + Czq q̇ +Gz

]
(A5.14)

Elimination of q̈ of (A5.16) provides a relation between the joint torques and
the ground reaction forces

[
Fy

Fz

]
=

[
MT

y M
−1

MT
z M

−1

]
τ +

[
−MT

y M
−1C + Cyq

−MT
z M

−1C + Czq

]
+

[
−MT

y M
−1G

−MT
z M

−1G+Gz

]

(A5.15)
with the matrices My,Mz obtained from (A5.7)

My =




m1y

m2y

m3y

m4y

m5y




=




m1r1c1 − (m2 +m3 +m4 +m5)l1c1
m2r2c2

−m3r3c3 − (m2 +m4 +m5)l3c3
m4r4c4 +m2l4c4

−m5r5c5




(A5.16)

Mz =




m1z

m2z

m3z

m4z

m5z




=




m1r1s1 − (m2 +m3 +m4 +m5)l1s1
m2r2s2

−m3r3s3 − (m2 +m4 +m5)l3s3
m4r4s4 +m2l4s4

−m5r5s5




(A5.17)

and the matrices Cyq, Czq

Cyq =




−m1r1s1q̇1 + (m2 +m3 +m4 +m5)l1s1q̇1
−m2r2s2q̇2

m3r3s3q̇3 + (m2 +m4 +m5)l3s3q̇3
−m2l4s4q̇4 −m4r4s4q̇4

m5r5s5q̇5




(A5.18)

Czq =




m1r1c1q̇1 − (m2 +m3 +m4 +m5)l1c1q̇1
m2r2c2q̇2

−m3r3c3q̇3 − (m2 +m4 +m5)l3c3q̇3
m2l4c4q̇4 +m4r4c4q̇4

−m5r5c5q̇5




(A5.19)
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12.8. Conditions of simulation

Initial conditions of Examples 1, 2, and 3




left shank
right shank
left thigh

right thigh
torso




:




q1(0)
q2(0)
q3(0)
q4(0)
q5(0)




=




5.73
5.00
5.73
5.00
5.73



,




5.73
5.00
5.73
5.00
−5.73



, and




5.73
5.00
5.73
5.00
5.73




[deg]

(A5.20)
Weights and moments of inertia




m1

m2

m3

m4

m5




=




10
10
10
10
30




[kg];




J1

J2

J3

J4

J5




=




0.2
0.2
0.2
0.2
3




[kg · m2] (A5.21)

Geometrical data



l1
l2
l3
l4
l5




=




0.40
0.40
0.40
0.40
1.00




[m];




r1
r2
r3
r4
r5




=




0.20
0.20
0.20
0.20
0.50




[m] (A5.22)

12.9. Optimal control

The optimization criterion J (u) for the optimal control was chosen such
that Q− STR−1S > 0.

J (u) =

∫ ∞

0

x̃T

[
90I5×5 324I5×5

324I5×5 1305I5×5

]
x̃+ uT

[
3I5×5 12I5×5

]
x̃+

1

9
uT I5×5udt

(44)
which results in the control law

τ = G(q) −
[
35.0I5×5 120.0I5×5

]
x̃ (45′)

or with more detail, cf. (A5.9)




τ1
τ2
τ3
τ4
τ5




=




−(m1gr1 + (m2 +m3 +m4 +m5)gl1)s1
m2gr2s2

−(m3gr3 + (m2 +m4 +m5)gl3)s3
(m2gl4 +m4gr4)s4

−m5gr5s5



− 35.0




q̇1
q̇2
q̇3
q̇4
q̇5



− 120.0




q1
q2
q3
q4
q5




(A5.23)
As compared to the complexity of the equations of motion, the control law
is very simple with only anti-gravitation forces and feedback of position and
velocity.
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12.10. Adaptive control

An unknown value of m5 due to the back load suggests that m5 should be
replaced by an estimate θ̂ and that (A5.23) should be replaced by the adaptive
control law

τ =




−gl1s1
0

−gl3s3
0

−gr5s5



θ̂+




−(m1gr1 + (m2 +m3 +m4)gl1)s1
m2gr2s2

−(m3gr3 + (m2 +m4)gl3)s3)
(m2gl4 +m4gr4)s4

0



−35.0




q̇1
q̇2
q̇3
q̇4
q̇5



−120.0




q1
q2
q3
q4
q5




(A5.24)

where θ̂ (i.e. the estimated m5) adapts according to (34) which gives

˙̂
θ = −K−1

θ

[
−gl1s1 0 −gl3s3 0 −gr5s5

]
(
35.0

9.0




q̇1
q̇2
q̇3
q̇4
q̇5




+
120.0

9.0




q1
q2
q3
q4
q5



)

(A5.28)
with values in the simulated examples chosen as Kθ = 0.006 and with an initial
value θ(0) = 10.

Acknowledgement

We wish to thank Dr. John Allum for drawing our attention to this area of
research. We would like to express our gratitude to Prof Thomas Mergner for
the Neuro-Robotics Symposium, Freiburg, 20-22 July 2008.

References

[1] G.C. Agarwal and G.L. Gottlieb. (1985). Mathematical modeling and simu-
lation of the postural control loop—Part III:, CRC Critical Review Biomed. Eng.,,
12:2, 49-93.

[2] J.S. Albus. (1970). A theory of cerebellar function, Mathematical Biosciences,
10, pp. 25-61.

[3] J. H. J. Allum and B. R. Bloem and M. G. Carpenter and F. Honegger.
(2001). Differential Diagnosis of Proprioceptive and Vestibular Deficits Using
Dynamic Support-Surface Posturography, Gait and Posture, 14, pp. 217-226.

[4] D.J. Andersson, M.F. Reschke, J.E. Homick, and S.A. Werness. (1986).
Dynamic posture analysis of Spacelab-1 crew members, Exp Brain Res, 1986, 64,
380-391.

[5] V.I. Arnold. (1978). Mathematical methods of classical mechanics, Springer
Verlag.

41
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[92] T. Söderström and P. Stoica. (1989). System Identification, Prentice Hall
Int., 1989, p.62.

[93] K. Tahboub, T. Mergner. (2007). Biological and Engineering Approaches to
Human Postural Control. Integrated Computer-Aided Engineering, Vol 14, pp.15-
31

[94] A. Thorstensson, L. Oddsson, and H. Carlsson. (1985). Motor control of
voluntary trunk movements in standing, Acta Physiol Scand, 125, 309-321.

[95] E. Todorov. (2004). Optimality Principles in Sensorimotor Control, Nature

Neuroscience, 7 (9), pp. 907-915

[96] F. Viallet, E. Trouche, D. Beaubaton, A. Nieoullon, and E. Legallet.
(1983)., Motor impairment after unilateral electrolytic lesions of the substantia
nigra in baboons: behavioral data with quantitative and kinematic analysis of a
pointing movement, Brain Res, 279, 193-206.
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