Skip to main content

Lund University Publications

LUND UNIVERSITY LIBRARIES

Immobilization of tissue iron on calcareous soil: differences between calcicole and calcifuge plants

Zohlen, Angelika LU and Tyler, Germund LU (2000) In Oikos 89(1). p.95-106
Abstract
Deficiency of P and sometimes of micronutrients; especially Fe, is of importance to the calcicole-calcifuge behaviour of plants. Calcifuge species are unable to solubilize these elements or keep them metabolically active in sufficient amounts on calcareous soils. To demonstrate if calcicole, calcifuge and 'soil indifferent' species differ in Fe nutrition dynamics, samples of such species were transplanted on a slightly acid silicate soil (pH BaCl2 ca 4.0) and on a calcareous soil (pH BaCl2 ca 7.2). Plants were grown in a computer-controlled greenhouse at a soil moisture content of 50-60% water holding capacity and with additional light (ca 160 mu E s(-1) m(-2), 12 h d(-1)) if ambient light was < 120 mu E s(-1) m(-2). The calcifuge... (More)
Deficiency of P and sometimes of micronutrients; especially Fe, is of importance to the calcicole-calcifuge behaviour of plants. Calcifuge species are unable to solubilize these elements or keep them metabolically active in sufficient amounts on calcareous soils. To demonstrate if calcicole, calcifuge and 'soil indifferent' species differ in Fe nutrition dynamics, samples of such species were transplanted on a slightly acid silicate soil (pH BaCl2 ca 4.0) and on a calcareous soil (pH BaCl2 ca 7.2). Plants were grown in a computer-controlled greenhouse at a soil moisture content of 50-60% water holding capacity and with additional light (ca 160 mu E s(-1) m(-2), 12 h d(-1)) if ambient light was < 120 mu E s(-1) m(-2). The calcifuge species developed chlorosis when grown on the calcareous soil, whereas the other species did not. Calcareous-soil grown plants had less 1,10-phenanthroline extractable Fe in their leaf tissues than the silicate-grown plants whereas total leaf Fe showed more species specific properties. The ratio of 1;10-phenanthroline extractable to total Fe in the leaves was significantly lower in the calcifuges than in the calcicoles when grown on the calcareous soil. 'Soil indifferent' species did not differ much from the calcicoles. Root Fe, fractioned as DCB extractable 'plaque' on the root surface and Fe remaining in the root after DCB extraction, showed no distinct pattern of DCB-Fe related to the different categories, but remaining root Fe tended to be lower in the calcifuges compared to the two other categories. Leaf colour estimated by a colour scale correlated well with chlorophyll a + b content measured in the leaves of two calcifuges. Leaf P concentrations did not differ between the different categories but were more species dependent. We conclude that chlorosis in calcifuge species is related to an immobilization of Fe in physiologically less active forms in the tissue, if plants are forced to grow on a calcareous soil, whereas calcicole and 'soil indifferent' species are able to retain a much higher share of their leaf Fe in metabolically active form. This probably decreases the vitality and may exclude calcifuge plants from calcareous soil. We consider this property, previously almost unconsidered in an ecological context, as important to the calcifuge-calcicole behaviour of plants. (Less)
Please use this url to cite or link to this publication:
author
and
organization
publishing date
type
Contribution to journal
publication status
published
subject
in
Oikos
volume
89
issue
1
pages
95 - 106
publisher
Wiley-Blackwell
external identifiers
  • scopus:0034108770
ISSN
1600-0706
DOI
10.1034/j.1600-0706.2000.890110.x
language
English
LU publication?
yes
additional info
The information about affiliations in this record was updated in December 2015. The record was previously connected to the following departments: Plant Ecology and Systematics (Closed 2011) (011004000)
id
000d3a98-ae46-42be-acfa-394898e50dff (old id 147355)
date added to LUP
2016-04-04 08:36:41
date last changed
2022-01-29 03:42:58
@article{000d3a98-ae46-42be-acfa-394898e50dff,
  abstract     = {{Deficiency of P and sometimes of micronutrients; especially Fe, is of importance to the calcicole-calcifuge behaviour of plants. Calcifuge species are unable to solubilize these elements or keep them metabolically active in sufficient amounts on calcareous soils. To demonstrate if calcicole, calcifuge and 'soil indifferent' species differ in Fe nutrition dynamics, samples of such species were transplanted on a slightly acid silicate soil (pH BaCl2 ca 4.0) and on a calcareous soil (pH BaCl2 ca 7.2). Plants were grown in a computer-controlled greenhouse at a soil moisture content of 50-60% water holding capacity and with additional light (ca 160 mu E s(-1) m(-2), 12 h d(-1)) if ambient light was &lt; 120 mu E s(-1) m(-2). The calcifuge species developed chlorosis when grown on the calcareous soil, whereas the other species did not. Calcareous-soil grown plants had less 1,10-phenanthroline extractable Fe in their leaf tissues than the silicate-grown plants whereas total leaf Fe showed more species specific properties. The ratio of 1;10-phenanthroline extractable to total Fe in the leaves was significantly lower in the calcifuges than in the calcicoles when grown on the calcareous soil. 'Soil indifferent' species did not differ much from the calcicoles. Root Fe, fractioned as DCB extractable 'plaque' on the root surface and Fe remaining in the root after DCB extraction, showed no distinct pattern of DCB-Fe related to the different categories, but remaining root Fe tended to be lower in the calcifuges compared to the two other categories. Leaf colour estimated by a colour scale correlated well with chlorophyll a + b content measured in the leaves of two calcifuges. Leaf P concentrations did not differ between the different categories but were more species dependent. We conclude that chlorosis in calcifuge species is related to an immobilization of Fe in physiologically less active forms in the tissue, if plants are forced to grow on a calcareous soil, whereas calcicole and 'soil indifferent' species are able to retain a much higher share of their leaf Fe in metabolically active form. This probably decreases the vitality and may exclude calcifuge plants from calcareous soil. We consider this property, previously almost unconsidered in an ecological context, as important to the calcifuge-calcicole behaviour of plants.}},
  author       = {{Zohlen, Angelika and Tyler, Germund}},
  issn         = {{1600-0706}},
  language     = {{eng}},
  number       = {{1}},
  pages        = {{95--106}},
  publisher    = {{Wiley-Blackwell}},
  series       = {{Oikos}},
  title        = {{Immobilization of tissue iron on calcareous soil: differences between calcicole and calcifuge plants}},
  url          = {{http://dx.doi.org/10.1034/j.1600-0706.2000.890110.x}},
  doi          = {{10.1034/j.1600-0706.2000.890110.x}},
  volume       = {{89}},
  year         = {{2000}},
}