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Abstract. In conservation biology it is necessary to make management decisions for
endangered and threatened species under severe uncertainty. Failure to acknowledge and
treat uncertainty can lead to poor decisions. To illustrate the importance of considering
uncertainty, we reanalyze a decision problem for the Sumatran rhino, Dicerorhinus su-
matrensis, using information-gap theory to propagate uncertainties and to rank management
options. Rather than requiring information about the extent of parameter uncertainty at the
outset, information-gap theory addresses the question of how much uncertainty can be
tolerated before our decision would change. It assesses the robustness of decisions in the
face of severe uncertainty. We show that different management decisions may result when
uncertainty in utilities and probabilities are considered in decision-making problems. We
highlight the importance of a full assessment of uncertainty in conservation management
decisions to avoid, as much as possible, undesirable outcomes.

Key words: conservation management; decision theory; Dicerorhinus sumatrensis; information
gap; robustness of decisions; Sumatran rhino; uncertainty.

INTRODUCTION

Conservation biologists make management decisions
for endangered and threatened species under severe un-
certainty. Although frameworks for formal decision-
making (Jeffrey 1983, 1992, Resnik 1987, Simon 1959)
have been applied in conservation contexts (e.g., Ma-
guire 1986, Maguire and Boiney 1994, Ralls and Star-
field 1995, Possingham 1996, 1997), the full suite of
uncertainty is rarely considered (Regan et al. 2002).
Failure to acknowledge and treat the sources of un-
certainty can lead to poor management decisions.

Decision tables and trees are simple frameworks for
formal decision-making that involve identifying three
main components: acts, states, and outcomes (Resnik
1987). The acts refer to the decision alternatives, the
states refer to the relevant possible states of the system,
and the outcomes refer to what will occur if an act is
implemented in a given state (usually represented in
terms of a utility, or value). This framework applies to
static problems, where it is assumed that the state of
the system does not change substantially through time.

For decision-making under uncertainty, the usual
procedure is to assign probabilities to each of the rel-
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evant states and utilities to each of the outcomes. The
approach usually taken is to maximize expected utility.

Probabilities can be interpreted in different ways.
Probabilities assigned to the states may represent the
chance that the system is in that state. Although the
state in which a system exists is uncertain, the prob-
ability that the system is in that state is assumed to be
known with certainty. Alternatively, probabilities may
be estimates of the degree to which each factor con-
tributes to an effect.

It is extremely difficult, if not impossible, to assign
state probabilities and utilities with any degree of cer-
tainty in conservation applications. A management de-
cision that assumes that probabilities and utilities are
exact, when in fact they are uncertain, can result in
management outcomes with unexpected or undesirable
results. For example, Maguire et al. (1987) used a de-
cision tree to choose between management actions to
conserve the Sumatran rhino, Dicerorhinus sumatren-
sis. Captive breeding gave the maximum expected util-
ity. When implemented, it failed to increase population
numbers. The capture of wild animals was substantially
detrimental to at least some populations (Rabinowitz
1995). This management action may have failed be-
cause (1) not all the relevant states of the system were
specified; (2) the relevant states were not mutually ex-
clusive; (3) the states were not static; (4) the proba-
bilities and utilities were incorrect; and/or (5) the prob-
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abilities and utilities were correct, but the system
turned out to be in a state with a relatively low utility.
To rule out (4), a treatment of uncertainty in the input
parameters (probabilities and utilities) is necessary.

The purpose of this paper is to demonstrate the in-
sights that arise when uncertainty in utilities and prob-
abilities are considered explicitly in decision-making
problems using information-gap theory. To illustrate
the importance of considering uncertainty, we reana-
lyze the decision problem explored by Maguire et al.
(1987), using the theory to propagate uncertainties and
to rank management options. Rather than requiring in-
formation about the extent of parameter uncertainty at
the outset, information-gap theory addresses the ques-
tion of how much uncertainty is permissible in the sys-
tem before our decision would change. It assesses the
robustness of decisions in the face of severe uncer-
tainty.

GENERAL INFORMATION-GAP METHODOLOGY

Information-gap theory was invented by Ben-Haim
(2001) to assist decision-making when there are severe
knowledge gaps and when probabilistic models of un-
certainty are unreliable, inappropriate, or unavailable.
Information-gap (henceforth referred to as info-gap)
methodology requires three main elements: a mathe-
matical process model, a performance requirement, and
a model for uncertainty.

A process model is a mathematical representation of
a system or concept. It summarizes what the analyst
believes to be true and important about the system.
Process models may describe population dynamics,
economic utility, groundwater plumes, stream flows, or
the transport and fate of toxic substances. For instance,
a process model here could be the expected utility

n

EV[a ] 5 p v (1)Oj i i j
i51

where EV refers to the expected utility of the jth act,
a1 to am represent the m acts under consideration, p1 to
pn represent the probabilities of the n possible states
of the system, and vij represent the utilities associated
with the outcome of the state–act pairs. Eq. 1 is the
model that we assume best describes the decision-mak-
ing process.

The performance requirement of a decision is as-
sessed by the measure of performance. A measure of
performance may be the chance of population decline,
the concentration of a contaminant, the density of algal
cells in a freshwater stream, or the size of a managed
fish population. The performance measure is usually a
value (or values) computed using the process model.
The objective may be to reduce the measure, as in the
case of extinction risk, or to increase it, as in the case
of population size in fisheries management. Perfor-
mance measures may include multiple attributes. For
instance, we may want to reduce the exposure of hu-

mans to a contaminant in a stream and increase the
expected population sizes of game fish caught from the
stream. Here, the performance measure is

EV $ EV .C (2)

That is, we require the expected utility (from Eq. 1) to
be no less than a critical threshold EVC.

The model for uncertainty describes what is un-
known about the parameters in the process model. An
info-gap model is an unbounded family of nested sets
of possibilities. In the case of the process models under
consideration here, the corresponding info-gap models
are denoted as the sets Up(a, p̃) and Uv(a,ṽ), where the
subscripts p and v refer to the info-gap models for
probability and utility, respectively, a is the uncertainty
parameter, and p̃ and ṽ are vectors of the best estimates
p̃i, i 5 1, . . . , n and ṽij, i 5 1, . . . , n; j 5 1, . . . , m.
We identify p̃i as the nominal model of the probability
that the system is in state i. Likewise, we can identify
ṽij as the nominal model of the utility of the outcome
associated with act j if the system is in state i, and vij

as the actual utility (however, see the Discussion for
issues with the notion of actual utilities). In general,
elements of the set Uv(a, ṽ) can be scalar, functions,
or vectors (as in the current example).

For the sake of simplicity, we will assume that un-
certainty in the probabilities and utilities may be rep-
resented by intervals of unknown size around each (al-
ternative models of uncertainty are available; see Ben-
Haim [2001] for details). An interval model of uncer-
tainty is expressed as a set of values vij (for utilities)
or pi (for probabilities) whose fractional deviation from
the respective nominal values ṽij and p̃i is no greater
than a. Note however that the value of a, the horizon
of uncertainty, is not known. The information-gap mod-
el for utility uncertainty, then, is the family of nested
intervals:

zv 2 ṽ zi j i j
# a.

ṽij

This implies that, at the horizon of uncertainty a, the
vij is in the interval

(1 2 a)ṽ # v # (1 1 a)ṽ .ij ij ij

In this model of uncertainty, vij varies from its nominal
value, ṽij, by no more than a fraction a. The horizon
of uncertainty, a, is unknown and unbounded.

For any given value of a, U(a, ṽ) is a set of possible
values or models of the actual v. As a increases, the
set U(a, ṽ) becomes more inclusive. This imbues a
with the notion of an ‘‘horizon of uncertainty.’’ Hence
info-gap models are summarized as a family of nested
sets, U(a, ṽ), a $ 0, rather than a single set, of possible
values of the uncertain entity (Ben-Haim 2001). When
a 5 0, then ṽ is the only possible value in the absence
of uncertainty and U(0, ṽ) 5 {ṽ}. It follows that if there
is no uncertainty, the nominal model is the actual mod-
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el. These cases are rare, and many would argue that
they are nonexistent (e.g., Box 1976).

The model for uncertainty in the probabilities, p, is
similar. There are additional constraints that the p’s
must be positive and normalized to sum to 1. To bound
the p values, we may express them as fractions of the
nominal value in a manner similar to the bounds on
the utilities:

z p 2 p̃ zi i
# a

p̃i

which implies that, at the horizon of uncertainty a, the
ith probability is in the interval

(1 2 a)p̃ # p # (1 1 a)p̃ .i i i

Uncertainties for both utilities and probabilities are de-
fined to have identical relative uncertainties. To keep
the p values nonnegative and their sum normalized, we
define the info-gap model for probabilities as

U (a, p̃)p

n

5 p: 1 5 p ;O i5 i51

max[0, (1 2 a)p̃ ] # p # min[1, (1 1 a)p̃ ],i i i

i 5 1, . . . , n a $ 0. (3)6
Similarly, the info-gap model for uncertain utilities is
defined as

U (a, ṽ)v

5 {v: max[0, (1 2 a)ṽ ] # v # min[1, (1 1 a)ṽ ],i j i j i j

i 5 1, . . . , n, j 5 1, . . . , m} a $ 0. (4)

Here the constraint of a normalized sum is not nec-
essary. As we will discuss, we restrict ourselves to
utilities between 0 and 1 in this example because they
are defined as probabilities of persistence, although in
theory they can take any value.

There are many forms of info-gap models, each suit-
ed to a different type of prior information about un-
certainty (Ben-Haim 2001). For instance, the info-gap
model used in this paper can be modified to represent
prior information about correlations between the un-
certain parameters, or to reflect asymmetric intervals
of variation. Different info-gap model structures can
represent uncertain, transiently varying functions, or
uncertain functions that vary monotonically, but with
unknown slope, and so on.

In all cases, the info-gap model helps the decision-
maker to address the basic question of robustness: how
wrong can the models and data be, without jeopardizing
the quality of the outcome? A policy that is highly
immune to errors in the models and data is preferred
over a policy that is vulnerable to error.

Although this phrasing of uncertainty looks similar
to standard sensitivity analysis, there are critical dif-
ferences. Most important among them is that the ho-
rizon of uncertainty, a, is unknown and unbounded. In
the types of sensitivity analyses that are usually per-
formed in ecological and conservation applications, pa-
rameters are perturbed and the corresponding change
in model outputs is noted. These types of sensitivity
analyses amount to a stability analysis, i.e., they tell
us how stable the model results are around the input
parameter values, and are uninformative about the ex-
tent of uncertainty in the results or the input parameters.
Furthermore, they are only valid for the range of pa-
rameter values that the perturbation encompasses. Oth-
er methods address these problems by assigning inter-
vals to values to incorporate the full suite of possible
values that these parameters might take (Walley 1991,
Moore 1966), but they too require knowledge of bounds
on parameters, within which the true value must lie.
Info-gap modeling approaches the issue of uncertainty
from the opposite direction. The power and novelty of
the info-gap approach is in the ability to explore the
sensitivity of the decision to a wide range of different
types of parameter, functional, and structural errors and
uncertainties simultaneously, given that we do not
know the extent of uncertainty in the system at the
outset. We illustrate this approach in the current paper
with a specific conservation decision problem.

With a process model, a performance requirement,
and an info-gap model, information-gap theory now
allows us to evaluate robustness (immunity from error,
avoiding unacceptably bad outcomes) and opportunity
(chances of windfall, gains that exceed our expecta-
tions). The decision-maker can trade robustness for
performance. Thus, it recognizes implicitly that un-
certainty can be pernicious or propitious (Ben-Haim
2001), although in this application, we explore only
the former.

Info-gap theory takes the position that the best strat-
egy is the one that satisfies us with an outcome that is
both ‘‘good enough’’ and that makes us as immune as
possible from an unacceptable outcome. That is, we
choose a strategy that maximizes the reliability of an
adequate outcome. Let EVC be a critical value of the
expected utility below which we regard performance
as unacceptable. We would like the value of the ex-
pected utility to be as large as possible, but it must be
no less than EVC. EVC thus represents a minimum as-
piration, and for greater generality, there is no need to
choose it a priori; we will return to it.

The process model, performance requirement, and
uncertainty model provide a system of equations that
may be solved for estimates of robustness. The robust-
ness function for action aj is formulated as follows:

â(a , EV ) 5 max a: min EV[a ] $ EV . (5)j C j C[ ]v∈U (a,ṽ)v
p∈U (a, p̃)p

Eq. 5 states that the robustness function for act ajâ
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TABLE 1. Decision table (utilities and probabilities) for three management options and four states. Utilities are the prob-
abilities that the population will persist for 30 years under the alternative management scenarios and in the relevant states.

States, Si (cause of decline)
Probability of
each state, pi

Utilities

Option 1 (a1)
(translocation),

ni1

Option 2 (a2)
(new reserve),

ni2

Option 3 (a3)
(captive breeding),

ni3

Poaching 0.1 0.3 0.25 0.9
Loss of habitat (timber, dams) 0.3 0.1 0.2 0.2
Demographic accidents 0.5 0.05 0.09 0.01
Disease 0.1 0.1 0.1 0.4

Expected utilities p n 5 0.095O i i1
i

p n 5 0.14O i i2
i

p n 5 0.195O i i3
i

and critical threshold EVC, is equal to the maximum
value of a, such that the minimum expected value
EV[aj], given uncertainty in the utilities vij and prob-
abilities pi, is greater than or equal to the critical thresh-
old. For general EVC, this will result in a function with
variable EVC. The robustness function is the maxi-â
mum level of uncertainty a that guarantees an expected
utility, EV, no less than the critical threshold EVC. The
robustness of action aj is the greatest horizon of un-
certainty a up to which all probabilities and utilities
result in expected utility no worse than EVC.

The goal is not to maximize expected utility, but to
maximize the reliability of an acceptable outcome. This
is an important distinction between info-gap analysis
and standard decision theory. Because the robustness
decreases as the demanded value of EVC increases, it
is necessary to trade one off against the other. Con-
sequently, the action that is recommended by the info-
gap analysis, for specified demanded utility EVC, is that
which maximizes the robustness at that value of EVC.
We will see this explicitly in the example.

APPLICATION TO SUMATRAN RHINO CASE STUDY

The Sumatran rhinoceros (Dicerorhinus sumatren-
sis) is listed as ‘‘critically endangered’’ by the IUCN
(2004). In the mid-1980s, the species was reduced to
a few small subpopulations in Sabah, Sumatra, Kali-
mantan, Thailand, Malaysia, Burma, and Java. Unpro-
tected habitat was threatened by several human activ-
ities, including timber harvesting and dam develop-
ment. Maguire et al. (1987) evaluated management op-
tions with a decision tree in which alternatives were
ranked according to maximum expected utility. Utili-
ties were defined in terms of

v 5 1 2 P (Ext)ij ij (6)

where Pij(Ext) is the probability of extinction of pop-
ulations within a 30-year time frame under each man-
agement alternative aj and state Si with probability pi.
This is a convenient choice of utility in the conser-
vation of threatened and endangered populations be-
cause it can be calculated using stochastic population
models, thereby infusing some biological basis and ob-
jectivity into the value of outcomes. Maguire et al.

(1987) also estimated the costs (in dollars) of imple-
menting each alternative in a separate decision anal-
ysis, which we will not follow here.

For the sake of illustration, we outline a sub-tree
based loosely on the analysis of Maguire et al. (1987).
It considers four potential causes of the loss of the
population: poaching, loss of habitat, demographic ac-
cidents, and disease (Table 1). These are the relevant
states of the world. Note that here we are assuming
that no other relevant states of the world exist and that
all states are mutually exclusive. In fact, the Sumatran
rhino is most likely affected by all of these processes
simultaneously. For illustration, we assume that only
single threats are important.

The three management options that we consider from
the original suite of alternatives in Maguire et al. (1987)
are: captive breeding, translocation, and a new reserve.
The utilities resulting from each option are selected as
the probabilities that the population will persist for the
next 30 years, i.e., the values resulting from Eq. 4. The
Maguire et al. (1987) decision analysis differs in a
number of respects; for instance, they reported prob-
abilities of extinction for a range of scenarios not in-
cluded here, and they did not consider demographic
accidents explicitly as a potential cause of loss. We
stress that we are not attempting to replace or supercede
their decision analysis. We merely wish to use it as an
illustration of how info-gap decision theory can be ap-
plied to conservation contexts.

Table 1 displays the decision table for the reduced
decision problem. The values pi in the second column
of Table 1 are the probabilities that the population is
threatened by the process specified. We assigned values
for these probabilities based on our interpretation of
the literature. In many conservation applications, this
is not too far from the norm. Subjective judgment is
used extensively to assess threats and their likely im-
pacts on populations (Andelman et al. 2001). The util-
ities in Table 1 have been assigned subjectively for the
purpose of illustration. In practice, the utilities could
be generated using stochastic population models, his-
torical records, experience with other related species,
or by using the subjective judgment of experts (Ma-
guire et al. 1987).
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FIG. 1. Robustness curves (aj, EVC) vs. expected utility, for the three management options in Table 1. The graph showsâ
the expected utility gained per action, for each horizon of uncertainty . The horizontal axis denotes the maximum uncertaintyâ
allowed to guarantee the given expected utility. The greater the uncertainty tolerated in the system, the lower the expected
utility becomes. Three alternative aspirations, EVC 5 0.28, 0.12, and 0.07, are emphasized.

The main objective of conservation management of
endangered species is to minimize the probability of
population decline or extinction, or conversely, to max-
imize the probability of population persistence. Table
1 provides estimates of the response of a Sumatran
rhino population to the range of management options
considered here. According to standard decision the-
ory, the best action is the one that maximizes expected
utility, in this case option 3 (captive breeding). In all
cases, substantial uncertainty is associated with these
assessments, which motivates the info-gap analysis.

Incorporating uncertainty using the info-gap model

Using the info-gap models of uncertainty in the prob-
abilities and utilities (Eqs. 3 and 4), we wish to deter-
mine the greatest horizon of uncertainty, , withinâ
which all of the outcomes of a given action result in
an adequate performance (that is, they result in ex-
pected utilities greater than a critical threshold EVC).
As previously discussed, we express the robustness of
an action as the maximum uncertainty up to which we
always reach the performance aspiration. Combining
Eqs. 2 and 5, the robustness of action aj, given per-
formance aspiration EVC, is

n

â(a , EV ) 5 max a: min v p $ EV . (7)Oj C i j i C[ ]v∈U (a,ṽ) i51v
p∈U (a, p̃)p

The robustness (aj, EVC) of action aj, with aspirationâ
EVC, is the greatest horizon of uncertainty a up to
which all utilities v (in Uv( , ṽ)) and all probabilitiesâ
p (in Up(a, p̃)) result in expected utilities no worse than

EVC. Large robustness implies that attainment of the
required expected utility, EVC, can be depended on,
whereas low robustness means that reaching EVC can-
not be relied upon. Hence the robustness function de-
termines a preference ranking for the management al-
ternatives. The action that maximizes robustness, for
a given critical threshold EVC, is defined as the best
action, in contrast to a strategy that simply maximizes
the outcome.

RESULTS

We used the data in Table 1 and the info-gap model
previously outlined (Eqs. 5 and 6) to evaluate the ro-
bustness formula (Eq. 7). Fig. 1 displays robustness
curves for the three alternatives under consideration.
They show the expected utilities corresponding to each
alternative for all values of (aj, EVC) between 0 andâ
1.0. We see that at (aj, EVC) 5 0 (i.e., when it isâ
assumed that there is no uncertainty in the utilities or
probabilities), the original expected utilities are ob-
tained and captive breeding gives the maximum ex-
pected utility. However, as increases, the expectedâ
utilities for all alternatives decrease and their ranking
alters. We see that although captive breeding would be
chosen as the alternative with the maximum expected
utility for very low values of , as increases to ;0.15,â â
it is overtaken by the act ‘‘new reserve’’ as the alter-
native with the greatest expected utility. As increasesâ
even further, beyond 0.4, captive breeding becomes the
alternative with the lowest expected utility of the three
considered. This indicates that the act ‘‘captive breed-
ing’’ is not as robust to uncertainty in the parameters



1476 HELEN M. REGAN ET AL. Ecological Applications
Vol. 15, No. 4

p and v as the other two alternatives. The act ‘‘new
reserve’’ has the greatest robustness to uncertainty, be-
cause it consistently has the greatest expected utility
for values . 0.15.â

The values of in Fig. 1 and Eq. 7 have a specificâ
interpretation. For instance, a value of 5 0.5 meansâ
that all of the parameters (utilities vij and probabilities
pi) can vary from their nominal values (ṽij and p̃i) frac-
tionally by as much as 0.5, without causing the ex-
pected utility to fall below the critical value EVC.

Fig. 1 also emphasizes three values of the critical
value EVC. If we are prepared to accept only expected
utility values no less than EVC 5 0.07, then we should
choose the act ‘‘new reserve’’ as the one with the great-
est robustness to uncertainty, with an approximate val-
ue of 5 0.34. Option 2 (new reserve) is preferableâ
over most of the range of uncertainty. If our aspirations
are less modest and the critical threshold is set to EVC

5 0.12, then we should accept the act ‘‘captive breed-
ing.’’ In fact, the acts ‘‘captive breeding’’ and ‘‘new
reserve’’ are the only options that have any chance of
delivering an outcome that we can live with. However,
we must recognize that our robustness to uncertainty
is rather low. Finally, if the critical threshold is set to
values EVC $ 0.2, then none of the alternatives is ac-
ceptable because they do not invoke an expected utility
that meets or exceeds the aspiration. In this case, we
may decide to lower our aspirations and choose the
alternative with the maximum expected utility, i.e.,
captive breeding, with a very low tolerance to uncer-
tainty, or introduce other management actions. Deci-
sions based on maximum expected utilities at 5 0â
are only reliable if we can ensure that there is no un-
certainty associated with the probabilities of the states
or the utilities of the outcomes.

Thus we see that the higher the aspiration, the lower
the immunity to uncertainty. This is a general property
of info-gap decision theory: robustness to uncertainty
decreases as aspirations increase.

DISCUSSION

Decision-making usually involves trade-offs. In this
analysis, we highlight the trade-off between immunity
to uncertainty and aspirations. Very demanding aspi-
rations become more vulnerable to uncertainty. In the
extreme, decisions based on maximum expected utility
(the default in most applications of standard decision
theory) are maximally vulnerable to uncertainty. Stan-
dard decision theory is not realistically risk averse be-
cause it ignores uncertainty in the utilities and prob-
abilities. This is a consequence of assuming that there
exists no uncertainty in the constituent parameters,
when no such guarantees can be made.

In conservation applications, where a precautionary
approach to uncertainty is usually advised, it is crucial
to represent uncertainty in all parameters because this
can have a substantial effect on the outcomes, as seen
in the example presented here. Two distinct issues arise.

First, whose utilities do we wish to enhance? The util-
ities of the agency charged with financing the recovery
action may be very different from those of the con-
servation manager, from those of the political party in
power, and from those of broader society. The second
issue is that even once it is agreed whose utilities we
wish to promote, how are they to be measured? Do we
measure them in terms of probability of persistence,
expected minimum population size, or financial loss or
gain? These two issues do not have obvious resolutions
(Colyvan et al. 2001). Info-gap decision-making goes
some way toward recognizing and assessing the im-
pacts of uncertainty on the anticipated outcomes of
decisions. For instance, once a utility measure has been
chosen, info-gap decision theory can provide the range
of utility values reliably achievable with a selected ac-
tion.

Info-gap decision theory provides a platform ex-
tending decision theory into a broad range of conser-
vation decision problems. For instance, it may be ap-
plied to decisions related to translocation strategies
(Haight et al. 2000), probabilistic risk assessments of
invasive species (Johnson et al. 2001), species man-
agement (Peterman and Anderson 1999), reserve de-
sign, and habitat management (Haight et al. 2002). In
all of these contexts, it will inform us of the action that
gives a satisfactory outcome, and that provides the
greatest immunity against parameter and model uncer-
tainty. This will improve flexibility in decision-making
under severe uncertainty and will foster more reliable
conservation management decisions.
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