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Characterizing population fluctuations and their causes is a major theme in population ecology. The
debate is on the relative merits of density-dependent and density-independent effects. One paradigm
(revived by the research on global warming and its relation to long-term population data) states that
fluctuations in population densities can often be accounted for by external noise. Several empirical
models have been suggested to support this view. We followed this by assuming a given population
skeleton dynamics (Ricker dynamics and second-order autoregressive dynamics) topped off with noise
composed of low- and high-frequency components. Our aim was to determine to what extent the
modulated population dynamics correlate with the noise signal. High correlations (with time-lag —1)
were observed with both model categories in the region of stable dynamics, but not in the region of
periodic or complex dynamics. This finding is not very sensitive to low-frequency noise. High correlations
throughout the entire range of dynamics are only achievable when the impact of the noise is very high.
Fitted parameter values of skeleton dynamics modulated with noise are prone to err substantially. This
casts doubt as to what degree the underlying dynamics are any more recognizable after being modulated

by the external noise.
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1. INTRODUCTION

The core of population ecology is in gaining an under-
standing of the factors causing fluctuations in population
density. Since Andrewartha & Birch (1954) there have
existed various views on the relative merits of density-
dependent and -independent processes in being respon-
sible for population fluctuations (Murray 1993; Turchin
1995, 1999). For example, research on game animal
dynamics abounds with suggestions that short-term popu-
lation fluctuations to a degree find their explanation in
weather and climate factors (Siivonen 1956, 1957; Arditi
1979; Slagsvold & Grasaas 1979; Schroder et al. 1982
Eiberle & Matter 1984, 1985a,b; Steen et al. 1988;
Swensson ef al. 1994). This in fact dates back to the specu-
lated causes of the dynamics of the snowshoe hare and the
Canada lynx (Elton 1924; Sinclair ez al. 1993).

The rationale in this study was to hunt for weather and
climate variables that correlate with long-term data on
population dynamics. This is because of a temptation to
find biologically rational explanations for the effect of
almost any weather-derived variable on population fluc-
tuations via mortality and reproduction, the key elements
of population persistence. The origin of the idea 1s in the
climatic control theory (Bodeheimer 1938; Andrewartha
& Birch 1954), which states that populations are strongly
influenced by weather and are thus regulated by these
factors.

Despite repeatedly articulated caveats (Royama 1977,
1992; see Lindstrom (1998) for a detailed review of the
topic), now and then the climatic control paradigm arises.
Recent concern about global warming of the climate

*Author for correspondence (esa.ranta@helsinki.fi).

Proc. R. Soc. Lond. B (2000) 267, 18511856 1851

Received 10 March 2000 Accepted 26 April 2000

(Ropelewski & Jones 1987; Hurrell 1995; Trenberth &
Hoar 1996; Dai et al. 1998) has revived the approach of
correlating observed ecological time-series with climate
indices such as the North Atlantic Oscillation (NAO),
North Pacific Index (NP), El Nifio Southern Oscillation
(ENSO) or Palmer Drought Severity Indices (SOI). The
aim 1s to correlate, with or without time-lags, one of the
global climate indices, e.g. annual mean, winter season,
moving monthly average or monthly values, with extant
long-term population data. Most often this has been done
with the NAO and, for a great variety of taxa, statisti-
cally significant correlations (or closely so) have been
reported. These mostly deal with aquatic organisms, e.g.
North Atlantic phytoplankton density (Reid 1978), toxic
plankton algae on the Swedish west coast (Belgrano et al.
1999), the dynamics of two calanoid copepod species in
the North-East Atlantic (Fromentin & Planque 1996),
oceanic macrobenthos (Kréncke et al. 1998; Tunberg &
Nelson 1998), annual landing statistics of the European
herring and sardines (Alheit & Hagen 1997) and extent of
the geographical range of distribution of the North Amer-
ican Atlantic salmon during the sea phase (Iriedland et
al. 1993). There are also some examples from terrestrial
ecosystems: flowering phenology and reproductive traits
in some plant species (Schmitt 1983; Galen & Stanton
1991), the population dynamics of moose and white-tailed
deer (Post & Stenseth 1999) and red deer (Forchhammer
et al. 1998), breeding biology of migratory birds in the
UK (Forchhammer et al. 1998) and sexual dimorphism in
red deer (Post et al. 1999).

Our above list of references 1s by no means exhaustive;
it is just to indicate that the hunt for statistical associa-
tions between population data and climatic fluctuations is
intensive. Contrary to the empirical search for statistical
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signs of association between population data and external
fluctuations we will tread a different path. We have
selected an approach whereby both the dynamics of the
focal population as well as the external modulating signal
are known. The task is straightforward. Using basic time-
series tools we will seek to determine whether the
modulated population data and the modulating signal are
associated in any way. In order to accomplish this, we
shall make use of a variety of renewal models accounting
for the skeleton of the long-term dynamics of populations.
The external process modulating the dynamics was split
into low-frequency (occurring at irregular intervals) and
high-frequency components (occurring annually). These
two components together comprise the noise modulating
the skeleton dynamics of populations.

2. POPULATION RENEWAL AND ENVIRONMENTAL
FORCING

In our approach, we obtain the skeleton of the popula-

tion dynamics, which the noise modulates. In order to
achieve this, we denote the population size (X,,,) at time
t+1 as a function of its former size, which is affected by
the high-frequency (H) and low-frequency (L) compo-
nents of the noise:
Xo=f(X,...H,...L,,...). (1)
The notation ... refers to the possible existence of longer
than first-order time-lags. For practical convenience we
let the modulating noise be AM,=H,L,. Thus, we are
seeking p(X,;,M, ) by using the cross-correlation tech-
nique with various time-lags (e.g. Box et al. 1994).

In order to obtain the low-frequency component of the
noise we need two parameters, i.e. the probability of
occurrence (p), which i1s drawn from uniform random
numbers (0 < p=1), and its intensity p,; thus, we have

(e.g. Ranta et al. 1997)

ut:{ﬂifﬁ(t><[3> 0<15<1_ (2)

1 otherwise

Here, [i is drawn from uniform random numbers ranging
froml —wg tol + wg, where 0 < w < 1. The high-frequency
component 1is likewise drawn from uniform random
numbers ranging from 1 —w; tol +w;; herealso0 < w < 1.
Thus, L=1, H=1 and M = 1. With high-frequency
noise py was always unity, whereas with low-frequency
noise p; varied (below).

In order to implement the population renewal process
into equation (1) we decided to use two different models.
This was to ensure that the results obtained were general
enough and not just anomalies of any particular class of
population models. We selected the Ricker model as it
yields dynamics characterized by the single parameter 7,
the population growth rate. In addition, the behaviour of
Ricker dynamics is well understood (May 1981). As a
second model for a surrogate of population dynamics we
used second-order autoregressive processes [AR(2)]. It is
known that AR(2) models display a rich ensemble of
dynamic behaviour, from stable dynamics via cyclic
dynamics to more complex dynamics (Royama 1992; Box
et al. 1994). Thus, for the f(X, ) term we have the
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following two equations for Ricker and AR (2) dynamics,
respectively:

X = Xyexp[r(l — X)), (3)
and
X =X, + X + 6+, (4)

The parameter 7 in equation (3) is the growth rate (here
1 <r < 3.5) (figure la) and the two autoregressive para-
meters in equation (4) were taken to be —2 < ¢, <2 and
—1 <@, <. The term ¢ i1s normally distributed with
mean 0 and variance 1. For the AR(2) process to hold,
the following two additional conditions have to be met
(e.g. Box et al. 1994): ¢, + ¢, <1l and ¢, —¢, <1. In order
to implement the noise M and modulate the dynamics of
the populations we write equations (3) and (4) as

Xz+l :f<Xz>X171> x M, <5>

(the delayed density dependence on X,_, is for the AR (2)
process only). The long-term mean of the noise is 1.0,
while its range greatly depends on the w; and wj para-
meters of the low- and high-frequency components.

We used the growth rate 7 as the bifurcation parameter
for the Ricker model and applied all feasible combina-
tions of ¢, and ¢, for the AR(2) model. The simulations
were initiated by drawing a random number from a
uniform distribution between 0.1 and 0.5 for X(1) and, in
the case of the AR (2) model, for X(2) as well. Altogether
100 time-units were allowed to elapse in order to remove
the transient phase. The next 500 time-units were used to
score p(X,M,_;) using the cross-correlation coefficient.
We shall report the results of 100 replicated runs for each
parameter combination.

There is obviously an unlimited choice of values of p;,
P wy and wy for the noise M. We decided upon the
following. We set p; =0.2, w;=0.5 and wy=0.2 for the
basic explorations. Based on the results obtained we
selected a few examples of differing population dynamics
and made a more thorough search while allowing p; to
assume values of 0.5 and 0.1 while both w; and w; ranged
from 0.05 to 0.9. For this exercise we set 7 to 1.85, 2.6 and
3.0 for the Ricker equation, while the AR(2) coefficients
o and ¢, were taken to be (i) 0 and 0.25, (i) —1.25 and
—0.75, and (iii) 1.25 and —0.75.

Finally, we took the noise-modulated population data
and estimated the model parameter values for the Ricker
dynamics, which were generated using r=1.85, 2.6 and
3.0. We decided to restrict ourselves to the Ricker
dynamics as the growth rate had such readily interpre-
table implications (figure la). Again, in order to reduce
the number of combinations p;, was set to 0.5, while the
amplitudes for both the low- and high-frequency distur-
bances were drawn from a uniform distribution ranging
from 0.05 to 0.9. Here, we let the length of the sampled
time-series vary from 20 to 500 time-units. We found a
reason for this final task as little is known about the char-
acters of the modulating external noise affecting natural
populations. In addition, the extant time-series from real
populations are frequently rather short.
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Figure 1. (@) Bifurcation diagram for the Ricker dynamics.
(b) Cross-correlation (means of 100 replicated runs) with the
Ricker dynamics and the noise; lags from 0 to —5 time-steps
are shown separately. (¢) Cross-correlations with lag —1 for
the Ricker dynamics and the external noise. The solid line
indicates the average over 100 replicated runs and the dotted
lines include 95% of all observed correlation coefficients. The
x-axis in all panels is the growth rate () of the Ricker equation.

3. RESULTS

Our results appear rather straightforward. In our
exploration, we first set the probability of occurrence of
the low-frequency noise to p; =0.2 and the two amplitude
parameters to w;=0.5 and wy=0.2. With the Ricker
dynamics, the highest correlations between the modulated
dynamics and the noise modulating the population
dynamics are, understandably, achieved with a lag of —1.
With increasing lag the cross-correlation coeflicients
decay rapidly (figure 15); this finding is also true for the
AR(2) dynamics. However, a far more interesting obser-
vation is that the highest correlations are associated with
stable dynamics. Once the Ricker dynamics approach
two-point periodicity the correlation rapidly goes down
(figure 1). Low correlation coefficients are found between
the modulated population dynamics and the noise in the
region of complex dynamics, while rather high correlations
of up to ca. r_; =0.4 can occasionally be encountered in
this region of the Ricker dynamics. However, small nega-
tive correlations are also just as likely (figure lc).
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Figure 2. (a) Cross-correlations (with lag —1) for the AR(2)
dynamics graphed against the feasible values of the
parameters ¢, and @,. The darker the shading the higher the
cross-correlation coefficient between the dynamics and the
modulating noise (means of 100 replicated runs). The white
contours indicate cross-correlations of r_; =0.2, 0.4, 0.6 and
0.8. The numbers (i)—(v1) indicate selected dynamics with ¢,
and ¢, values. (b) Graphed corresponding autocorrelation
functions with time-lags from 0 to 10. The parameter values
used for ) and ¢, are (i) —1.25 and —0.75, (ii) —1 and
—0.5, (iii) —0.75 and 0, (iv) 0 and 0.25, (v) 0.5 and —0.25
and (vi) 1.25 and —0.75.

The analysis of the AR(2) dynamics echoed the main
result of the Ricker dynamics. High correlations were
achievable in the region of simple dynamics (labelled (iv)
and (v) in figure 2a), but, contrary to this, with ¢, and ¢,
from the region of the parameter space yielding more
complex dynamics, the maximum achievable cross-
correlations were low, much less than 0.4 (figure 2).

The exploration with the Ricker and AR (2) dynamics
with the parameter values selected (figure 3) and more
versatile noise characterization confirmed what we found
with the limited exploration. High correlations with the
modulated population dynamics and modulating noise
are only found when the dynamics are stable or nearly
stable (figure 3a,d). Once the dynamics become periodic
or more complex, high cross-correlations disappear
(figure 3b,c,e,f ). The probability ( f;) of the occurrence of
the low-frequency noise appears not to play such an
important role in the emerging pattern of cross-
correlations provided it is high enough (figure 3). However,
once the low-frequency component is present (we experi-
mented with p; ranging from 0.5 to 0.05) slightly higher
cross-correlations are usually obtained, particularly in the
low-range values of the parameters w; and wy. In fact,
analyses of the extant time-series of the NAO and ENSO
have revealed the presence of low-frequency components in

the noise signal (e.g. Hurrell 1995; Trenberth & Hoar 1996).
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Figure 3. Cross-correlation (lag — 1) contour graphs (with the population dynamics and the noise) for (a—¢) the Ricker dynamics
and (d,e) the AR(2) dynamics against the amplitude component (w) of the low- (x-axis) and high-frequency (y-axis) components
of the noise. The parameter values used are indicated. The darker the shading, the higher the cross-correlation (means of 100
replicated runs). The white isoclines are drawn at 0.2 intervals, e.g. in (a) the lower one near the origin is the 0.6 correlation

and the islets of the upper corner indicate correlations of 0.8 or higher.

The conclusions of our explorations are unambiguous.
Noise-disturbed population dynamics and the disturbing
noise correlate with a lag of —1, but the correlation
wanes once the population dynamics become periodic or
more complex. In this region high cross-correlations are
occasionally achievable but only when the noise impact is
strong. However, with heavy noise reconstructing the
skeleton of the population dynamics becomes more diffi-
cult. This was exemplified by our attempt to reconstruct
the value of parameter r in the Ricker dynamics. With
noise modulating the dynamics the fitted parameter tends
to err. Not surprisingly, the shorter the available time-
series, the larger the error range (figure 4). For example,
when initially »=2.6 (four-point periodicity) the fitted
values based on the noisy dynamics can range from stable
dynamics to chaotic dynamics (figure 44). Alternatively,
r=1.85 (stable dynamics) can yield an impression of peri-
odic dynamics when modulated with the external noise
or, when r=3.0 (complex dynamics), the parameter
fitting can result in either periodic or complex dynamics
(figure 4¢).

Proc. R. Soc. Lond. B (2000)

4. DISCUSSION

We studied whether data on variable population
dynamics can be correlated to environmental time-series,
which were interpreted here as external noise signals
affecting the quality of population dynamics. While
acknowledging the number of studies attempting to corre-
late population dynamics to environmental changes, the
current null expectation seems to be that the environment
acts as a driving force in population dynamics, even such
that its qualitative properties are qualitatively transported
to these dynamics. According to our major findings, a
correlation with a time-lag of —1 may be observed
between noise-disturbed population dynamics and the
disturbing noise when the population growth rate is low.
However, the correlation disappears rapidly with
increasing growth rate, indicating that complex dynamics
tend to mask the effects of environmental noise on popu-
lation dynamics.

Our results appear to be highly relevant when assessing
the strength of climatic forces in population dynamics
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Figure 4. Parameter fit for the skeleton of the Ricker
dynamics in a noisy world graphed against the length of the
sampled time-series. For implementing of the noise, see the
text. The range limited by the solid lines with dots includes
95% of all fitted values. For this kind of dynamics these values
result in the Ricker dynamics referred to in figure la. The
expected parameter value is inserted and indicated with the
broken line.

because species differ widely in their growth rates. Conse-
quently, we may suggest that slowly growing species such
as mammals (Leirs et al. 1997; Post et al. 1997, Grenfell et
al. 1998; Lima et al. 1999), fish (Iriedland et al. 1993;
Dippner 1997) and birds (Forchhammer et al. 1998) are
likely to respond to climatic variability in a straightfor-
ward way, whereas rapidly multiplying organisms, usually
small-bodied invertebrates and micro-organisms, should
predominantly show weaker correlations with environ-
mental forces (but see Iromentin & Planque 1996;
Kroncke et al. 1998; Reid et al. 1998; Tunberg & Nelson
1998; Belgrano et al. 1999). However, it is possible that
many rapidly multiplying organisms may have a rela-
tively weak ability for buffering environmental changes
due to, for example, a shorter life span, smaller body size
and limited control of movement. Moreover, indirect
climatic forces mediated by other species in the food web
can also blur the effect of the growth rate (Ives & Jansen
1998; Ripa et al. 1998).

A further finding is that increasing the strength of the
noise signal strengthens the correlation between popula-
tion dynamics and noise. However, once external noise

Proc. R. Soc. Lond. B (2000)

and population dynamics appear to correlate well due to
the strong amplitude of external forces, the underlying
dynamics are modulated by the noise such that the
skeleton of the population dynamics is weakly recogniz-
able. Consequently, the intrinsic growth rate and the level
of external noise control the driving forces jointly in
population dynamics. Thus, we suggest that studies may
result in biased conclusions about the relative roles of the
density-dependent and -independent causes of population
fluctuations, even when a correct model is used in
analysing the data.
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