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Resource Allocation and Disturbance Rejection in
Web Servers using SLAs and Virtualized Servers

Martin Ansbjerg Kjær, Maria Kihl, and Anders Robertsson

Abstract—Resource management in IT–enterprises gain more
and more attention due to high operation costs. For instance,
web sites are subject to very changing traffic–loads over the
year, over the day, or even over the minute. Online adaption
to the changing environment is one way to reduce losses in the
operation. Control systems based on feedback provide methods
for such adaption, but is in nature slow, since changes in the
environment has to propagate through the system before being
compensated. Therefore, feed–forward systems can be introduced
that has shown to improve the transient performance. However,
earlier proposed feed–forward systems have been based on off-
line estimation. In this article we show that off–line estimations
can be problematic in online applications. Therefore, we propose
a method where parameters are estimated online, and thus also
adapts to the changing environment. We compare our solution
to two other control strategies proposed in the literature, which
are based on off-line estimation of certain parameters. We
evaluate the controllers with both discrete-event simulations and
experiments in our testbed. The investigations show the strength
of our proposed control system.

Index Terms—Web server, resource management, virtualiza-
tion, response–time control, feed–forward, online estimation,
prediction, disturbance rejection.

I. INTRODUCTION

RESOURCE management of computer systems has gained
much attention in the last years, since poorly managed

resources can degrade the performance of a computer system
severely. Control theory offers a range of structures, tools
and analysis methods for adjusting systems to the given en-
vironment, which might change over time. Therefore, control
theory is very useful when designing resource management
procedures for computing systems [1].

Several types of resource–management mechanisms have
been proposed and evaluated in the literature. In larger
computer systems, load balancing is performed in order to
distribute the need for resources uniformly over a number of
resource units (Computers, CPUs, memory, etc.), thus avoiding
that some units are overloaded while others are idle [2], [3].
During overload periods, when more resources are requested
than are available, admission control mechanisms reduce the
amount of work by blocking some of the requests [4]–[6].
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In the last years, the field of power and energy management
have become important, since large server systems are used to
house the server infrastructure needed to support many Internet
services. These server system, also called data centers, have
high electricity–costs, and performance–optimization mecha-
nisms may cut these costs, thereby improving both the profit
(electricity costs money) and the environmental impact (the
use of electricity generally has a negative impact on the
environment) [7]. In this case, the resources are usually not
the restricting factor, instead control systems can be used to
optimize the system so that the resource capacity can be re-
duced, thereby saving energy. The objective of these resource
optimization mechanisms is to minimize the resources while
keeping the service level objectives, for example, the average
response–times below a threshold. Dynamic voltage scaling
(DVS) is one example of resource optimization. Here, the
CPU–resources are minimized in order to reduce the power
consumption [8], [9]. For Internet applications, virtualized
server systems can be used to divide physical resources
into a number of separated platforms where different web
applications are allowed to operate without affecting one
another. Dynamic resource allocation between the virtualized
platforms serves as a new and easier way to perform resource
optimization on web server systems [10], [11]. Usually, the
proposed mechanisms are evaluated while assuming that each
server and application operate independently of other servers
and applications, however, there are some very recent work
on distributed optimization schemes [12], [13].

When designing resource optimization schemes, tools from
control theory are widely used. Feedback control can be ap-
plied, where response times of departed requests are compared
to a reference set by the operator, and some parameters (admis-
sion probability, dedicated CPU–resources, CPU–voltage, or
othear) are changed over time until the average response time
matches the reference. Also, feed–forward methods can com-
pensate for the stochastic variations (disturbances). However,
feed–forward methods require exact knowledge of how the
disturbance affects the response time in order to compensate
for the change. A combination of feed–forward and feedback
often form a strong pair, where the feed–forward part reacts
fast to the (measurable) changes, and the feedback part handles
whatever small faulty compensation the feed–forward might
do [5], [11], [14], [15].

In the specific case where the CPU resources are used
as actuation method (dynamic voltage scaling, virtualized
schemes, or others), the feed–forward is often based on
some queuing model of the web server system. However, in
order to be accurate, a queuing model assumes knowledge
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Tier 1 Tier N

Requests

Fig. 1. A virtualized server environment hosting web applications.

of both the arrival rate and the processing time needed to
complete a request. The arrival rate is usually easily measured
online, however the processing time may be harder to measure
accurately. Usually, only an average value is needed, but even
obtaining this is not trivial. In many cases, see e.g. [5], [14],
[15], the average processing–time for a request is estimated
off–line by sending requests at a very low rate. The estimate
obtained by this method is then applied in the feed–forward,
by assuming that it is still adequate even when the system is
online.

However, our investigations show that this is not always a
sound method, since the processing times can change under
operation due to changes in the work load (it is actually a sec-
ond disturbance in the control terminology). This means that
if the model depends on off–line estimates of the processing
time, the performance of the control system can be degraded.

In this article, we propose a control method for optimizing
the CPU usage in a virtualized server environment. The
method combines feedback control of the response times
with feed–forward control of the disturbances. However, our
method is not requiring an off-line estimation of the process-
ing times. Instead, the processing time estimate is adjusted
online in order to match the estimated response time to the
measured response time. We show both by simulation and
by experiments that our method outperforms similar proposed
resource optimization strategies suggested in the literature.

The work is based on previously presented material, which
was validated by simulations only [16], [17]. The work in this
paper is also validated experimentally.

The remaining of the paper is organized as follows: Sec-
tion II describes the system under consideration. A control–
theoretic approach to modeling is taken in Section IV, and an
estimation scheme is developed. Also in Section IV, a control–
method based on the estimation scheme is presented along
with two controllers from the literature, used for comparison.
Verifications of our proposed controller by simulations are
presented in Section V. The set–up of a test–laboratory is de-
scribed in Section VI, and experimental results are presented in
Section VII. Finally, discussions and conclusions are presented
in sections VIII and IX.

II. SYSTEM DESCRIPTION

The target system in this article is a general distributed
computer–system hosting various web applications, see Fig. 1.

Two examples of such systems are web hotels hosting sev-
eral web–sites, and enterprise data–centers containing busi-
ness critical applications. The system has 𝑁 tiers, and on
each physical server there are virtual containers hosting the
applications. Similar systems have been investigated in for
example [8], [9], [12], [18]. In this article, we assume that
the bottleneck is a CPU intensive tier, which, for example,
processes dynamic application scripts. Therefore, our analysis
is focused on only this tier.

New requests will arrive according to some stochastic
process that may change over time. Each request can be treated
independently of other requests. The physical resource of the
computer system, in our case the CPU capacity, is shared
among the applications using a virtualized server environment.
The processing time of the request, 𝑤, is a representation of
the amount of work a request needs from the CPU in order to
be processed. The processing time is defined entirely by the
nature of the request, and it is not affectable by the control
module. In this article, the processing time is measured in
seconds. The processing time could also be measured in clock
cycles; see for example [8].

Each application has a Service-level agreement (SLA),
defining the QoS that the application is guaranteed from the
computer system. Clients send requests to be processed by the
application. Each request requires some resource capacity (in
our case CPU capacity) from the physical system. In order
to fulfill the SLA, each application is guaranteed a certain
share of the total CPU capacity. Since the traffic situation may
change over time, the CPU allocation mechanism should be
dynamic using some optimization criteria.

In this article we have two general assumptions about
the system, which also have been used in other papers, for
example [8], [11], [12]. The first assumption is that there is
a load balancing mechanism, which distributes the workload
among the physical servers. Therefore, all servers behave
equal and independent of each other, which means that the
CPU allocation mechanism can operate on only one server.
The second assumption is that the total CPU capacity is large
enough to respect the demand of each of the applications.
With this assumption resource allocation and management
will be the focus rather than overload control. Also, with
this assumption the resource allocation of each application
can be controlled independent of other applications using
the virtualized server environment. Therefore, with these two
assumptions only one server and application are used in the
analysis in the remaining of this paper.

An application will have a reserved share 𝑝𝑟 (0 < 𝑝𝑟 <
1) of the total CPU capacity. Non–allocated CPU capacity,
1−𝑝𝑟, is considered as profit–generating, since the spare CPU
capacity can be used for other purposes, such as secondary
tasks (not further specified) or to save electric power by DVS.
Therefore, our work has the same control objective as several
other papers [11], [14], [15], that is to minimize the amount
of CPU capacity that is given to each application in order
to save running costs, at the same time as the SLAs for all
applications are fulfilled.

In our work, the SLAs contain the average response time
for each request, meaning that an application should have
a sufficient share of the CPU capacity so that its clients
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experience an acceptable response time from the system. In
a more sophisticated SLA one could include a cost for the
system operator if the variance of the response times is too
high. However, since our focus is on the technical aspects of
the system rather than the business aspects, we will not be
investigate or discuss the SLA design any further.

III. METRICS FOR QUALITY

In this article, three metrics are chosen to show the quantita-
tive behavior of the system. None of them are able to describe
the total quality of the system, so an acceptable performance
of the system yields a trade–off between several metrics.

The average response time, 𝑇 , is a prime metric for the end
user, and thus also for the application–operator. For the user
this metric should preferably be as small as possibly, but for
the computer–system operator it should be balanced with the
cost of running the computer–system. This balance is defined
in the SLA, which is translated into control terminology as
the response–time reference 𝑇𝑟𝑒𝑓 . 𝑇 can be regarded as the
response time of a single request or as an average over a
sample interval.

The variation cost of the response time, 𝑉𝑇 , is a metric for
how individual clients are affected by the computer–system. If
𝑉𝑇 is large, some clients will experience large response times,
which is undesirable. Therefore, a low 𝑉𝑇 is preferable, even
though it is not stated as a specific SLA. 𝑉𝑇 is defined for a
stationary sequence by

𝑉𝑇 =
1

𝑁

𝑁∑
𝑘=1

(𝑇 − 𝑇𝑘)2 , 𝑇 =
1

𝑁

𝑁∑
𝑘=1

𝑇𝑘

where 𝑁 is sufficiently large, and 𝑇𝑘 is the newest response–
time corresponding to the discrete–time index 𝑘. 𝑉𝑇 is only
used for long steady–state scenarios, where the system can be
considered as stationary.

The Loss of capacity, 𝑞, is the difference between the
reserved share of CPU capacity, 𝑝𝑟, and the share of CPU
capacity actually used by the application, denoted 𝑝𝑎. Since
the system is sampled, 𝑝𝑟 is constant during each sample. This
metric is relevant for the computer–system operator, since it
represents an operational cost which does not generate any
income. It is of high interest to keep this metric to a minimum.

For steady state cases, these three metrics are evaluated as
time–averages over sufficiently long, possibly down–sampled,
sequences, ensuring that the 95%–confidence interval for the
response time does not exceed 10% of the mean value, and
the size of the 95%–confidence interval for 𝑞 does not exceed
0.01 (i.e, 1% of the CPU capacity). The confidence intervals
are measures of the accuracy of the average values, compared
to the real expected values according to standard statistical
methods; see e.g. [19].

In the transient investigations, accurate results cannot be
obtained by long sequences. Here, several experiments are
averaged over the transient period to remove statistic fluctua-

tions:

𝐽𝑇 (𝑀) =
1

𝑀

𝑀∑
𝑖=1

1

𝑡𝑡

∑
𝑘∈𝑡𝑡

(𝑇𝑟𝑒𝑓 − 𝑇𝑘,𝑖)2 (1)

𝐽𝑞(𝑀) =
1

𝑀

𝑀∑
𝑖=1

1

𝑡𝑡

∑
𝑘∈𝑡𝑡

(𝑞𝑘,𝑖)
2 (2)

which are averages over 𝑀 experiments over the transient
period 𝑡𝑡. The variables 𝑇𝑘,𝑖 and 𝑞𝑘,𝑖 represent the average
response–time and the average loss of capacity for the 𝑘𝑡ℎ

sample incident and the 𝑖𝑡ℎ experiment.

IV. CONTROL MODULE

The objective of the control module is to fulfill the SLA
of the application, that is to keep the average response–time
below a reference value, 𝑇𝑟𝑒𝑓 , at the same time as the reserved
share of CPU capacity for the application, 𝑝𝑟, is minimized.
In steady–state, this can be obtained by feedback–mechanisms
including integral effects (such as integral controllers and
step controllers), which are tuned conservatively to avoid
oscillations. However, when changes in the workload occurs,
this solution is far too slow and a more advanced adjustment
of the control signal is necessary. Therefore, it is an objective
to remove effects of load–changes as fast as possible.

From a control–theoretic perspective, the system has
one control–input, the reserved CPU share (𝑝𝑟), and two
disturbance–inputs, the arrival times of requests (denoted 𝑎)
and the processing times (𝑤). The control objective is to
alter 𝑝𝑟 in order to maintain the output, i.e the response time
(𝑇 ) close to the reference value 𝑇𝑟𝑒𝑓 , despite the behavior
of the two disturbances. The interaction between the control
module and the server system is illustrated in Fig. 2. We
assume that the arrival times of requests, 𝑎, the number of
requests in the server, 𝑁 , and the response times, 𝑇 , are
available for measurements. Also, we assume that the reserved
CPU share, 𝑝𝑟, can be set online at certain time intervals.
The controller will have a larger potential to handle changes
in the arrival rate than in the processing time distribution
since the controller has direct access to the behavior of the
arrivals through measurements. Changes in the processing
time distribution are much harder to detect since they are
seldom directly measurable, and often the changes will have
to propagate to the response times before being recognized.
The control module can be triggered both periodically and by
departure instances where a departure occurs when a request
is completed and a response is sent back to the client.

A. Prediction model

The control module is based on a prediction approach
similar to the one derived by Henriksson et al. [15] as
illustrated in Fig. 3. The server is modeled as a single–server
system where requests are placed in an infinite queue and
then processed in a First-In-First-Out fashion. We model the
time to process a job as being inversely proportional to the
reserved share of the CPU 𝑝𝑟. This means that the CPU is
the most dominant factor limiting the system, which is a main
assumption of this paper stated in Section II.
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Server system

Control module

Arrivals Departures

a N p T

Fig. 2. An illustration of the control system

�̂�/𝑝

𝑡𝑛𝑜𝑤

Accumulated jobs

Queuing time Processing time

Known Predicted

Time

𝑁

Fig. 3. Accumulated jobs in a single server queue.

Consider the case where a request leaves the server at time
𝑡𝑛𝑜𝑤, leaving 𝑁 remaining requests, as in Fig. 3. The area to
the left of 𝑡𝑛𝑜𝑤 represents the time that the present requests
have spent in the server, which is known due to measurements.
The area to the right of 𝑡𝑛𝑜𝑤 represents the unknown future,
which can only be predicted. By assuming that all requests
will have the same processing time, �̂�, and that 𝑝𝑟 remains
constant, a prediction of the average response time 𝑇 is given
by

𝑇 = 1/𝑁
∑
𝑖

(𝑡𝑛𝑜𝑤 − 𝑎𝑖) + �̂�(𝑁 + 1)/2𝑝𝑟 (3)

where 𝑎𝑖 is the arrival time of request 𝑖. The first term on the
right hand side of the equality sign represents the known area
of the figure, and the second term represents the prediction.
The arrival times and the processing times are treated as
disturbances, which only means that they are quantities not
affectable by the operator or by the computer system itself.
Of the disturbances, only the arrival times are measurable.

B. Proposed estimation scheme

The prediction model described in Section IV-A can be
useful for online adjustment of the CPU allocation parameter,
𝑝𝑟, but it relies on several measurements. The number of jobs
in the server 𝑁 and their arrival times 𝑎𝑖 are quantities often
registered by a real server. However, to accurately estimate
the average processing time, �̂� is not always trivial. In a
single server with a queue �̂� could be estimated by measuring
former service times, corrected with the current value of 𝑝𝑟.
However, more complex systems with for example several
protocol layers or for processor sharing systems, this approach
is not feasible as the time to process a request depends
on other factors in the system like the current number of
requests in the system. Therefore, to let the control strategy
rely on measurements of the processing times, will reduce the
applicability of the estimation. Therefore, we propose another
strategy.

In classic linear estimation–problems models are used to es-
timate non–measured quantities; see for example [20]. Often,
the measurable variables are compared to the estimated values,
and a feedback mechanism tries to minimize the estimation
error. In the following, we therefore, consider the response
times, 𝑇 , as a measurable output and the processing times, 𝑤,
as a state to be estimated.

In earlier work [16], [17] we proposed a redesign of the
response–time prediction presented by Henriksson et al. [15],
resembling the structure of a classical observer. In the re-
design, we proposed to use a PI controller to update the
estimate of �̂�. To stress that the estimator does not rely on
measurements of 𝑤, we impose an artificial variable, 𝑧, to act
as the input to the model. Our proposed estimator is then given
by

𝑇 =
1

𝑁

∑
𝑖

(𝑡𝑛𝑜𝑤 − 𝑎𝑖) + (𝑁 + 1)

2𝑝𝑟
𝑧 (4)

𝐼𝑘 = 𝐼𝑘−1 +
ℎ𝑘𝐾𝑝

𝐾𝑖
(𝑇𝑘 − 𝑇𝑘) + ℎ𝑘

𝐾𝑎
(𝑣𝑘−1 − 𝑧𝑘−1) (5)

𝑣𝑘 = 𝐾𝑝 (𝑇𝑘 − 𝑇𝑘) + 𝐼𝑘 (6)

𝑧 =

{
𝑣 𝑓𝑜𝑟 𝑣 > 0
0 𝑒𝑙𝑠𝑒

(7)

where 𝐾𝑖 and 𝐾𝑝 are controller parameters, and 𝐼 is the
integrated estimation–error. The parameters 𝐾𝑖 and 𝐾𝑝 are
chosen by engineering experience to balance the game of
fast convergence against the robustness towards instability.
The variable 𝑣 serves as an unlimited control signal, whereas
𝑧 is restricted to positive values. The estimation scheme is
illustrated in Fig. 4. The variable ℎ𝑘 is the time between the
previous and the current sampling. Using a varying sampling
period in the integrator has earlier been shown to be superior
to fixed sample–periods for some event based systems [21].
Integrator anti–windup is included as the last term in (5),
where 𝑧(𝑘) is the achieved control signal (𝑧 is not allowed to
be negative). The parameter 𝐾𝑎 determines the convergence
rate of the anti wind–up; see [20].

The intuition behind the prediction scheme is as follows.
For a given value of 𝑧, a prediction of the response time is
calculated based on measurements as in (4). If the model is not
accurate, the predicted response–time 𝑇 will deviate from the
measured response–time 𝑇 . Since measurements of the former
response–times are available, the control module is aware of
the accuracy of previous predicted response–times, which can
be used to alter the parameters of the estimator. The PI–
controller is known to remove steady–state errors efficiently
[22], [23], which is primarily what is needed here since wrong
queuing model assumptions often result in biased predictions.
The integral part of the PI–controller (represented by 𝐼 in (5)
and (6)) will gradually adjust the value of 𝑧 until an inaccurate
estimated response–time matches the measured response–time.
The value of 𝑧 has an interpretation as the processing times,
which cannot be negative. The anti–windup (the last term of
(5)) ensures stability of the integral part in the PI–controller
when this restriction is imposed to 𝑧 in (7). The initial choice
of 𝐼 is not essential as long as it resembles realistic values of
�̂�. A sound choice is to initiate 𝐼 to zero, and let the predictor
converge before the prediction signal is used (PI control is
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𝑇
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Fig. 4. Block diagram of predictor. The predictor can be interpreted as an
observer with state 𝑧.
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𝑇
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𝑇
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Fig. 5. Block diagram of the our proposed PFB controller.

used alone in the start–up phase).
Equations (5) and (6) form a general PI controller where

the term 𝑧𝑘−1 is exchanged with the relevant control signal.

C. Proposed Predictive Feedback Controller (PFB)

The server suffers from a significant time delay; a change
in 𝑝𝑟 will only propagate to measurements of the response
time (𝑇 ) after a certain time. In classic control theory, the
performance of systems with delays can be improved by
prediction techniques, such as the Smith predictor; see [23].
Therefore, we propose to use the predicted response time as
a proportional feedback–signal

𝑝𝑝 = −𝐾𝑝𝑓𝑏(𝑇𝑟𝑒𝑓 − 𝑇 ) . (8)

to respond to errors, which are not yet seen in the response
time signal. The prediction signal 𝑝𝑝 enters directly on the
control input 𝑝𝑟 as illustrated in Fig. 5, and the parameter
𝐾𝑝𝑓𝑏 is used to scale the influence of the prediction. In order to
handle model errors, a periodic PI–controller from the actual
response time is included. The controller is in the following
sections called the Predictive Feedback Controller (PFB).

It is an assumption that the reserved share of CPU capacity,
𝑝𝑟, only can be changed at some fixed time period, 𝑇𝑠.
However, the estimation is not restricted by the sampling
period. The estimation is updated for each departure ensuring
that the response time estimate, 𝑇 , and the state, 𝑧, always
incorporate the newest measurements.

The involved signals can be quite irregular, which can
lead to irregular estimation and poor control performance.

𝑝𝑟

Web Server
PI

controller

controller

𝑎 𝑤

𝑁

𝑇

Feed–forward

𝑇𝑟𝑒𝑓

𝑝𝑓𝑓

Fig. 6. Block diagram of a combined feedback, feed–forward setup.

therefore, filtering might be required. This issue will be
discussed for the individual implementations since filtering
depends highly on the specific measurements and memory
considerations.

D. Controllers for Comparison

We will in this article compare our prediction–based con-
troller with solutions proposed in [5], [14], [15], where
feed–forward and feedback are combined as illustrated in
Fig. 6. Like our proposed prediction–based controller, the
feed-forward uses measurements of the disturbances to change
the control signal, 𝑝𝑟, before a change in the disturbance
is seen in the response time, and a PI controller to remove
the remaining stationary errors. In order to evaluate our
proposed controller against other feed–forward strategies, the
all are used together with the same periodic PI–controller as
described above.

The controllers for comparison both assume that an estimate
of the average processing time is available. An often used
procedure to obtain this estimate is to measure the response
times at avery low arrival rate, so–called off-line estimation.
Assuming that only one request is present, the response
times can be used to estimate the processing times. This
estimate is then used online at higher arrival rates assuming
that the average processing time will remain unchanged.
Obviously, this method is not robust towards changes in the
workload. Alternatively, response times can be observed at
dedicated higher–load experiments. and an estimate of the
average processing time can be found by assuming some
particular queuing–model, as e.g. an M/M/1 model. This kind
of approach can also lead to inaccurate estimates since the
assumed model seldomly reflects the reality.

The first controller for comparison, denoted Inverse Predic-
tion Feed–Forward (IPPFF), is a slightly modified version of
the feed–forward presented in [15]. The feed–forward signal
𝑝𝑓𝑓 , which enters the control signal according to Fig. 6, is
found by rearranging (3) such that 𝑝𝑓𝑓 is the control signal
required in order to obtain the desired response time 𝑇𝑟𝑒𝑓 (that
is, 𝑇 is exchanged with the desired value 𝑇𝑟𝑒𝑓 ). Thereby, the
feed-forward is given by

𝑝𝑓𝑓 =
𝑁 + 1

2(𝑇𝑟𝑒𝑓 − 1
𝑁

∑
𝑖(𝑡𝑛𝑜𝑤 − 𝑎𝑖))

�̂� . (9)

In [15], the numerator yields 𝑁 and not 𝑁 + 1.
The second controller for comparison, denoted Queuing–

Theoretic Feed–Forward (QFF) has a feed–forward that is
based on the simplest queuing model, the M/M/1 system,
where requests arrive according to a Poisson process and
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the processing times have an exponential distribution. Similar
controllers have been proposed in, for example, [5], [14]. The
average response time of an M/M/1 system is given by ([24],
[25])

𝑇 = �̄�/(1− 𝜆𝑥) . (10)

where 𝜆 is the average arrival rate and �̄� is the average
processing time. In our case, 𝑥 = �̄�/𝑝𝑟 if 𝑝𝑟 is constant.
Assuming that �̄� is known (and exact) and 𝜆 is estimated by
some windowing mechanism (�̂�), a feed–forward signal can
be formed as

𝑝𝑓𝑓 = �̄� (1 + �̂� 𝑇𝑟𝑒𝑓 )/𝑇𝑟𝑒𝑓 (11)

which enters the control signal as illustrated in Fig. 6.

V. SIMULATIONS

The proposed PFB controller is mainly designed to improve
the transient performance at workload changes. However, it is
also expected to handle the short–term stochastic variations
observed in the steady–state situations similar to the others
controllers. To evaluate these scenarios, we performed sim-
ulations of a generalized server system with CPU resource
allocation. The simulation program was written in Java and
used an event-based simulation kernel.

Steady state and transient simulations were performed.
All steady–state results were evaluated after all transients
had been removed. Transient behavior was investigated after
convergence to steady state, and the simulations were allowed
to run for a sufficiently long time for the transient to settle.

A. Simulation model

The server system was modeled as a single server queue
with processor–sharing. New requests arrived with an average
arrival rate of 𝜆 requests per second. The requests had a
reserved share of 𝑝𝑟 of the CPU capacity. The average pro-
cessing time was 𝑤 seconds. Since the server used processor–
sharing, 𝑤 represents the service time if the request is the
only request processed in the system. When several requests
are processed at the same time, the CPU capacity is divided
equally among the requests.

Both the inter-arrival times and the processing times were
modeled as second order hyper-exponential distributions (𝐻2

distribution), in order to model a bursty system. An 𝐻2–
distributed variable 𝑥 is with probability 𝛽 a realization of
an exponentially distributed variable with expected value 𝑣1,
and with probability (1 − 𝛽) a realization of exponentially
distributed variable with expected value 𝑣2. We used the
parameters:

𝛽 = (𝐶2 − 1)/(𝐶2 + 161) (12)

𝑣1 = 0.1 �̄� , 𝑣2 = 𝑥(1− 𝛽)/(1− 10𝛽), (13)

where 𝐶2 and �̄� were the squared variance coefficient and
average value of the 𝐻2–distributed sequence, respectively.
The value of 𝐶2 was chosen to be equal for the inter–arrival
times and the processing–time distributions and 𝐶2 = 5 unless
stated differently.

The control parameters for the predictor was chosen as
𝐾𝑖 = 0.0005, 𝐾𝑝 = 0.000001, 𝐾𝑎 = 0.5. The parameters

for the periodic controller was chosen as 𝐾𝑝 = 1.4 ⋅ 10−5,
𝐾𝑖 = 0.0101, 𝐾𝑎 = 1010.1. The proportional gain of the
PFB controller was chosen as 𝐾𝑝𝑓𝑏 = 0.2. The parameters
have been found by running simulation–tests and adjusting
the parameters by hand.

The involved signals can be quite irregular, which can
lead to irregular estimation and poor control performance. All
the tested periodic PI–controllers use the comparison of the
reference and a filtered response time 𝑇 𝑝; 𝑇 𝑝

𝑘 = (𝑇 𝑝
𝑘−1+𝑇

𝑠
𝑘 )/2

where 𝑇 𝑠
𝑘 is the average response time of the jobs that departed

under the interval between sampling 𝑘 − 1 and 𝑘.
To update the estimator, the estimated response–time is

compared to a first order auto–regressive filtered measured
response–time with filter constant 𝛼 = 0.001. The auto–
regressive filter is implemented as

𝑇 𝑓
𝑖 = (1 − 𝛼)𝑇 𝑓

𝑖−1 + 𝛼𝑇𝑖 , (14)

where 𝑖 indicates the departing job number and 𝑇𝑖 is the
response time of job 𝑖.

The response time estimate can also be quite irregular. An
obvious idea is to apply a filter directly to the estimate 𝑇 .
This has an undesirable effect due to the nonlinear structure.
Linear filtering of the term 1/𝑝 would weight small values of
𝑝 and could lead to wrong estimates. Also, a linear filtering
of the term

∑
𝑖(𝑡𝑛𝑜𝑤 − 𝑎𝑖) would weight the jobs that have a

long service time over those having a short response time, thus
increasing the average estimate. The filtering must therefore
be placed with care. The best results have been obtained by
simply filtering 𝑁 ; 𝑁𝑓

𝑖 = 0.999𝑁𝑓
𝑖−1+0.001𝑁𝑖, which is an

event–based filter.
The IPFF controller is based on inverse prediction. That

is, any response time error is compensated in one update. A
similar idea is used in classical minimum–variance control,
which is known to have poor robustness properties; see [26].
In our case, the result is an undesirable irregular control signal
and some filtering is imposed. Applying a filter to the control
signal would drive the average control signal off due to the
nonlinearity of the fraction in (9). Therefore, the numerator
and denominator are filtered separately;

𝑃𝑖 = 0.999𝑃𝑖−1 + 0.001 (𝑁 + 1) �̄� (15)

𝑄𝑖 = 0.99𝑄𝑖−1 + 0.01
1

𝑁

∑
𝑖

(𝑡𝑛𝑜𝑤 − 𝑎𝑖) (16)

𝑝𝑖𝑝𝑓𝑓 = 𝑃𝑖/2(𝑇𝑟𝑒𝑓 −𝑄𝑖) (17)

B. Steady–State Simulations

The traffic load is often described by two quantities; the
average arrival rate (𝜆) and the nominal service rate (1/�̄�).
Often, the traffic is quantified by the offered load, 𝜌 = 𝜆𝑤.
Assuming a single server system, a low value of 𝜌 means
a lightly loaded system, whereas values close to one means
a heavily loaded system. If 𝜌 exceeds one, the system lacks
resources to serve incoming requests, which means that the
system is overloaded.

1) Performance when varying offered load: Fig. 7 illus-
trates the performance metrics when the arrival rate was
varied in a range corresponding to 𝜌 = 0.05− 0.90. In these
simulations, the off-line estimate of the average processing
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Fig. 7. Averaged steady state simulations for different arrival rates 𝜆. 𝐶2 =
5, �̄� = 0.01 𝑠, �̂� = 0.01 𝑠, 𝑇𝑠 = 1 𝑠, 𝑇𝑟𝑒𝑓 = 1.

time �̂�, used in the IPFF and QFF controllers, corresponded
exactly to the actual average processing time �̄�. The graph
indicates that all the controllers managed to keep the average
response time near the reference. However, small off–sets were
observed.

All controllers performed best when the offered load was
high as the loss of computational resources 𝑞 was small.
Our proposed PFB–controller estimated the average process-
ing time online, but showed no significant degradation in
performance. The QFF controller showed a higher variation–
cost 𝑉𝑇 , which indicates a less smooth response–time than the
other controllers.

2) Robustness to changes in the processing time: On a real
server system, e.g. used for web applications, it is unrealistic
that the average processing time 𝑤 will be constant during
longer periods since the workload is likely to be changed.
Therefore, a control system must be robust to changes in
the average processing time. Fig. 8 shows the performance
metrics when the average processing time was varied in a
range corresponding to 𝜌 = 0.14 − 0.875 (which means that
the off-line estimate of the processing time �̂� was inaccurate).

The results show that all the controllers managed to keep the
average response time near the reference. However, small off–
sets were observed. Also here, the QFF controller performed
rather poorly over the full range since it yields both a higher
loss of computational resources and also a large variation–
cost 𝑉𝑇 . Despite the inaccuracy of the off-line estimate of the
processing time, the IPFF controller performed well in steady
state because of the robustness of the PI controller.

More steady–state simulation results are presented in [17].
As the arrival rate becomes small, the number of measure-
ments available to perform a prediction decreases (the predic-
tions are performed with fixed time–periods). The variance
of the prediction increases and thereby generating a more
noisy control signal, leading to higher loss of computational
resources. How pronounced this problem is depends on the
given estimation scheme. This is observed in both Fig. 7 and 8.

C. Transient Simulations

One strong argument to use feedback in the control is
the robustness towards rapid changes in the environment.
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Fig. 8. Averaged steady–state simulations for different average processing
times �̄�. 𝐶2 = 5, 𝜆 = 70 𝑟𝑒𝑞/𝑠, �̂� = 0.01 𝑠, 𝑇𝑠 = 1 𝑠, 𝑇𝑟𝑒𝑓 = 1 𝑠.

Therefore, it is of high importance to also investigate the
transient behavior of the controlled system.

Fig. 10 illustrates how the two main metrics, the response
time and the loss of CPU bandwidth, behave under tran-
sients. Using cost–functions averaged over several simulations,
improves the accuracy of the results (smaller confidence–
intervals). Preferably, both cost–functions should be close to
zero to yield good performance. The two cost–functions are
not necessarily contradictory since the average response time
can be held constant, if the CPU bandwidth is allocated just
sufficiently and in time and thus minimizing the loss of CPU
capacity. However, the controllers might solve this problem
differently, which can be observed in the figure.

The top graph of Fig. 10 illustrates a situation where the
average processing time �̄� was suddenly doubled. In the
beginning of the simulation, the offered load was relatively low
with 𝜌 = 0.4 (𝜆 = 50 𝑟𝑒𝑞/𝑠, �̄� = 0.008 𝑠). At time 𝑡 = 1000
the average processing time was doubled (�̄� = 0.016 𝑠),
such that the system was exposed to high–load traffic with
𝜌 = 0.8. The off-line estimated processing time was chosen
to be �̂� = 0.01 to illustrate a slightly inaccurate estimate
within the tested range. It can be observed that the proposed
PFB–controller is superior to the other controllers in the case
of changes in the processing time �̄� as it yields a smaller
cost in the response–time error and a smaller cost in the loss
of CPU bandwidth. This behavior is expected as the PFB–
controller estimates the value of �̄� online, while the two other
controllers use off–line estimates.

The middle graph of Fig. 10 illustrates that the proposed
PFB–controller handles a change in the arrival rate better
than the IPFF controller. The QFF controller handles the
transient with slightly smaller response–time errors, but with
substantially larger loss of CPU bandwidth. This behavior can
be explained by the behavior also seen in Fig. 9, which shows a
clear over–allocation of CPU resources for the QFF–controller.
Initially, the system was here exposed to a low–load traffic
with 𝜌 = 0.35 (𝜆 = 50 𝑟𝑒𝑞/𝑠, �̄� = 0.007 𝑠). Again, the off-
line estimated processing–time was chosen to be �̂� = 0.01 to
illustrate an inaccurate estimate. At time 𝑡 = 1000 𝑠 the arrival
rate was doubled, so that the system was exposed to high–load
traffic, 𝜌 = 0.7. Fig. 9 also shows that the proposed PFB–
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controller can show a better performance in one metric but not in the other
(e.g. the QFF vs. the other controllers in the middle of the figure), but clear
improvements in both metrics can also be seen as in the top of the figure
where the PFB controller performs better than the others in both metrics.

controller handles the change in the arrival rate with a smaller
deviation in the response time but with a slower convergence.

The results presented in the bottom graph of Fig. 10 had
traffic variance coefficients 𝐶2=1.1, and shows that in the
case of lightly bursty traffic, the IPFF controller handles the
transient better than the proposed PFB controller. In this
situation, the inverse nature of the IPFF controller becomes
very beneficial because the model resembles the reality fairly
well. The PFB–controller does not rely on an inverted model,
but rather on a feedback mechanism, and does therefore not
improve as much from the lightly bursty traffic.

A general observation from Fig. 9 and Fig. 10 is that the
QFF controller responds poorly to changes. In the case of
increasing average processing times the feed–forward did not
do any difference since it only considered the arrival rate.
Therefore, the periodic PI–controller had to handle the change
resulting in a large deviation of both the response time and a
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Fig. 11. Linux based testbed with a web server, client computers and network.

large loss of computational resources. In the cases where the
arrival rate changed, the QFF feed–forward over–compensated
resulting in a large loss of computational resources.

However, for all high–burstiness simulations, our proposed
PFB controller showed superior transient response.

VI. TESTBED

In order to evaluate the controllers in a real system, we
developed a testbed and performed experiments. The testbed,
shown in Fig. 11 consisted of one server computer hosting
the application, 10 client computers generating traffic, and one
master computer to administrate the experiments. The client
computers were connected to the server by an 100 Mb Ethernet
switch. The master computer was connected through a local
Ethernet network. The server computer was a Pentium 4,
1 GB memory, 3 GHz PC, with a Linux Fedora 8 operating
system and modified kernel 2.6.25.4. Also, an Apache server,
version 2.2.8, configured by using the prefork module, was
installed on the server computer [27]. The client computers
were Athlon, 1.5 GHz PC with 2 GB memory, Linux Fedora 9
and kernel 2.6.26.3-29.

A. Configuration of the Apache Server

The Apache web–server was chosen mainly because it is
one of the most used web servers on the Internet. It has a mod-
ular architecture that allows a programmer to add functionality
without having to deal with the entire server code. Modules
are written and compiled in a structured manner, and they are
loaded into the Apache server at start–up. A more detailed
description of the Apache architecture and model structure is
found in e.g. [28].

1) Request handling procedure: Functionality can be added
to the Apache server by adding hooks into a chain of phases
in the request handling procedure. Fig. 12 roughly illustrates
how an Apache process’ life progresses. At initialization the
Apache runs through a number of initialization phases, where
a module can make hooks to add functionality.

After initialization, the process enters the request handling
circle. The request cycle is run through once for every request
the process handles. In Fig. 12 only three phases are indicated,
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Fig. 12. The Apache module structure. Dashed boxes indicate that the phase
is only utilized at the initialization and exit of the process; not necessarily
activated for each request. The full–line boxes indicate that the phase is
activated for each request. Round corners indicate that the module presented
in this paper adds a hook here.

but this phase consists of several entries for the programmer to
add hooks. The post config stage is reached when the header
of the new request has been read, and is thus the first place
in the request circle to add a hook. After the request has been
handled, and an answer has been returned to the client, the
logging phase is reached. Finally, the request has been fully
served, and the process is ready to serve a new request, if the
process is not forced to exit.

When exiting the request cycle, the process enters the exit
phase, where the module can release resources, connections,
or whatever the programmer desires.

2) Implemented functionality: The measurements and the
prediction algorithm was implemented as three hooks into the
Apache request–chain:

∙ post_config This hook enters the chain in a quite
early stage of the process life, where initiliation of
the process itself takes place. A shared memory area
dedicated to the prediction/control–functionality is im-
plemented here to allow communication between the
processes.

∙ post_read_request This hook enters the request–
chain when the request has been defined, and here all
information about incoming requests are updated. Most
importantly, the number of active jobs and the accumu-
lated arrival time are updated.

∙ log_transaction In this hook, the variables updated
in the post_config phase are updated again. Also, the pre-
dictor is implemented here. The location of the prediction
algorithm was chosen for two reasons. First, it is at this
stage that all parameters are known – the response time
is not known until the request has been finished. Second,
if the prediction should impose any overhead, it will not
add to the response time of the associated request, since
an answer has been returned to the client

To avoid problems where some parameters are updated
when a second process is reading them (and assume them to
be static), a locking mechanism is imposed using a semaphore.
During a request cycle, the shared memory is locked and
unlocked two times; when the parameters are updated in the
post_read_request stage, and when the parameters are updated
in the post_read_request stage.

B. Virtualization

Several methods to obtain virtualization are available. Since
our work only deals with virtualization of the CPU resources,

we have chosen an method that is provided by the Linux
2.6 kernel. The kernel provides functionality to group differ-
ent processes and perform scheduler–specific operations on
group–basis, and not only on process–basis. The project is
called Control Group, and is accessed through a virtual file–
system [29]. Virtualization can also be achieved with, for
example, the Xen–system that has proved suitable for online
adjustment of resources [10], [11].

We implemented Control Group functionality on the server
computer in the testbed. We used two features in Control
Group; the CPU–allocation subsystem and the Accounting
subsystem [30]. Processes are assigned to a cgroup by writing
the process–id into a cgroup–specific task–file, and the CPU–
resources of a cgroup is found by reading a cgroup–specific
accounting–file. The CPU–allocation subsystem schedules the
CPU–resources among the cgroups with processor–sharing.
The distribution of CPU-resources is determined by cgroup–
specific share–values written in cgroup–specific scheduler–
files. All administration of the scheduler is done with standard
open, close, read, and write file–operations. According to
measurements, not presented here, the access is done on the
scale of 0.2 ms, and the scheduler can be considered as
true processor–sharing and without dynamics down to a time
resolution of around 100 ms.

The Control Group implementation is illustrated in Fig. 13.
All idle processes were implemented as infinite while–loops,
in order to use all capacity given to them.

The Apache server is grouped with an idle process in a
CPU–allocation cgroup. The idle process, in the following
denoted loss–idle process, represents the loss of allocated CPU
capacity, since it will use all capacity allocated but not used
by the Apache.

In order to distinguish between the resources used by the
Apache server and the loss–idle process, these two are placed
in separate accounting cgroups.

An accounting cgroup and a CPU–allocation cgroup are
defined for the other applications on the server system, denoted
“secondary” in Fig. 13. These applications are assumed to use
the capacity that is not used by the target application.

All remaining processes (operating system processes, ad-
ministrating processes, and the controller) are collected in an
accounting cgroup and a CPU–allocation cgroup.

The loss–idle process and the control process were imple-
mented by using special requests to the Apache server and by
moving these processes to the relevant cgroups, as indicated
by the arrows.

The loss–idle process is implemented in the normal Apache
request–handling sequence. When the idle.start–file is
requested, an Apache log_transaction hook starts an
infinite while–loop. This special request responds with a
simple html answer, but never finishes the logging phase.
This means that the while loop will use a process as long as
the while loop exists. This does not cause any problems in the
normal use of the server, since Apache spawns new processes
when needed (in the case of prefork). The while loop is
governed by a lock implemented with a semaphore. When a
normal requests arrives, it checks if it is the only (normal)
request being served. If this is true, it locks the semaphore,
and the while loop stops. Likewise, when a normal request

Authorized licensed use limited to: IEEE Xplore. Downloaded on March 15,2010 at 05:38:33 EDT from IEEE Xplore.  Restrictions apply. 



KJAER et al.: RESOURCE ALLOCATION AND DISTURBANCE REJECTION IN WEB SERVERS USING SLAS AND VIRTUALIZED SERVERS 235

cgroup with CPU–allocation and accounting

cgroup with accounting

cgroup with CPU–allocation

Apache processes

Non–Apache processes

Basic

Server Secondary

Mother

Control Req Req Req Req Idle Idle

OS

Idle

Fig. 13. Schematic diagram of the processes and cgroups for the Apache
implementation.

finishes, it checks if it will leave the system empty for normal
requests, and if this is the case, it releases the semaphore.
When the loss–idle process is initiated, it first looks up its own
process–id and then moves itself from the Apache accounting–
cgroup to the special loss–cgroup for accounting by writing the
process–id to the relevant task–file. Tests, not presented here,
show that the occupation of the CPU shifts between the idle
process and the Apache process momentarily to an accuracy of
20 ms. It was not possible to test the process shifting with any
smaller time accuracy, since the non–ideal processor sharing
will be too significant to draw any conclusions.

The controller must have access to the measured vari-
ables, which was implemented in the Apache server. There-
fore, the controller is implemented as a special request
with similar structure as the loss–idle process. When the
periodicctrl.start–file is requested, the handling pro-
cess enters an infinite loop under the logging phase. For each
loop a control action (reading of relevant measurements and
variables, calculation of a new control signal, and setting the
relevant share–files) is performed, the loop sleeps for a
specified amount of time before waking up for a new sample.
Because the calculation of the control signal and the setting
of the actuator does not happen instantaneously, this delay is
measured and subtracted from the desired sampling interval to
obtain an accurate sleep–interval. Before the control process
enters the infinite loop, it moves itself to the basic cgroup,
both for CPU–allocation and for accounting.

C. Traffic Generation

Different solutions are available for generating workload for
web server systems, such as RUBiS [31] and SURGE [32]. In
this article, traffic was generated with the CRIS tool [33],
which is a java–based software tool developed in a large
research project related to crisis emergency management at
Lund University. The CRIS tool is based on real–life data
traces from Sweden’s largest news site. This means that both
the traffic model and the request distribution are based on real
data.

CRIS allows several clients (computers) to unite to generate
traffic with the specified distribution. Traffic–information files

TABLE I
AVERAGE PROCESSING TIMES, FOUND FROM LOW–RATE EXPERIMENTS

Popularity distribution 50%CPU 85%CPU
1 10.7 ms 14.1 ms
2 11.8 ms 14.9 ms

defining both the arrival times of requests and the requested
documents are uploaded to the clients prior to an experiment.
Therefore, the same traffic–information files can be used
for several experiments, providing an easy way to compare
different system implementations.

For the server, CRIS generates a number of PHP files. A
PHP request then generates a string of characters, which length
is fixed for the given file, but varies over the total amount of
PHP–files with a pre–defined distribution. Also, a distribution
on the document popularity is configured, which determines
the probability for each PHP–file to be requested.

D. Off-line estimation of average processing–time

The file–popularity distribution and the character distribu-
tion derived by the CRIS tool will, of course, influence the
distribution of the processing time. Since the controllers for
comparison, QFF and IPFF, needs an off-line estimate of the
average processing time, experiments with low arrival rates
(as in [5], [15]) were performed.

Four experiments were conducted; two different popularity
distributions (same as in later experiments) and two different
values of the CPU allocation parameter, 𝑝𝑟 (kept constant
during the experiment). The inter–arrival times were set to 1
second (deterministic distribution), which ensured that only
one job was present at a time, and thus, no queuing was
involved. 5000 requests were used for each experiment. A
necessary modeling assumption for the off-line estimations is
that the response time, 𝑇 , of a request is only dependent on
the processing time, 𝑤, and the CPU allocation parameter,
𝑝𝑟. This means that an estimate of the processing time for a
request, �̂�, can be calculated as

�̂� = 𝑇 ⋅ 𝑝𝑟 (18)

The estimations of the average processing time are listed
in Tab. I. The estimates should have been independent of the
CPU allocation parameter. However, as seen in the table, this
is not the case. This result indicates that other factors than
the actual CPU processing, such as I/O handling and memory
handling, affects the response time, and thus, the model is not
accurate. In control theory, model errors do not necessarily
yield poor performance due to the properties of feedback.
However, if feed–forward is used, model errors can degrade
the performance.

VII. EXPERIMENTS

In order to evaluate the controllers, we performed experi-
ments on the testbed. To avoid unnecessary delays caused by
file accessing, data for individual requests were not saved.
Instead, the relevant metrics were averaged over a sample
interval and saved after the control signal had been set. All
results presented here are based on such measurements. The
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Fig. 14. Experimentally steady–state results in the time–domain. 𝜆 = 50 /𝑠.
�̂� = 0.011 𝑠, 𝑇𝑠 = 1 𝑠, 𝑇𝑟𝑒𝑓 = 0.1 𝑠.

sample interval was 1 sec for all experiments. Also, 10% of the
CPU was reserved for the basic group (operating system and
controller), and the control signal was restricted to be in the
interval 1% - 89%. The average processing–time estimate was
set according to the off–line experiments to �̂� = 11 𝑚𝑠, which
corresponded approximately to the estimated processing time
of the initial traffic; see Tab. I. The control parameters for the
predictor were as for the simulations except for the parameter
𝐾𝑖 which was chosen as 𝐾𝑖 = 0.0001. The parameters for
the periodic PI–controller were chosen as 𝐾𝑝 = 5 ⋅ 10−5,
𝐾𝑖 = 3.0, 𝐾𝑎 = 10.0 except for the PFB controller, which
was implemented with 𝐾𝑝 = 40 ⋅10−5. The proportional gain
of the PFB–controller was chosen as 𝐾𝑝𝑓𝑏 = 0.003.

The periodic PI–controllers used the comparison of the
reference, and an average of the response times of the re-
quests departed during the last sampling interval. Compared
to the response time, the response time estimate already
incorporates some averaging. Therefore, the response time and
the response–time estimate were pre–filtered separately with
different filters, before being combined to an estimation error
for the predictor. All three filters were implemented as first–
order auto–regressive filters (the same structure as (14)). The
filter constant used for the response time and the response
time estimate were 𝛼 = 0.0005 and 𝛼 = 0.5, respectively.
The filter constant for the estimation error was 𝛼 = 0.01. The
feed–forward signal from the IPFF controller was filtered with
first–order auto–regressive filter with filter constant 𝛼 = 0.5.
Since the involved signals are very irregular, all time–domain
results are presented as 30 𝑠 averages.

As in Section V, the investigations are divided into steady–
state investigations and transient investigations. The steady–
state behavior illustrates how the controllers handles the short–
term stochastic variations, while the transient investigations
revels the controllers capability to handle larger changes in
the work load. The latter is the main focus of the paper.

A. Steady State Experiments

Fig. 14 shows results from a steady state experiment with
medium load (𝜆 = 50 /𝑠) after the transient period. The figure
shows a trend similar for other work loads; The queuing–
theory based controller (QFF) shows the worst capability to
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maintain a steady response time compared to the two other
controllers. It is also observed that the control signal of the
IPFF and the PFB controllers are more unsteady than that of
the QFF controller.

Fig. 15 shows the average results of a number of steady–
state experiments of different average arrival rates 𝜆. It shows
that all the controllers are capable of maintaining the average
response time near the reference (better than the simulations
indicated). The IPFF and the PFB controllers showed similar
capability to hold a steady average response time (similar
variation costs) at least for medium and high load. The
proposed PFB controller outperformed the other controllers
with regards to the loss of computationally resources at high
load, but had the worst performance at low/medium load.
These conclusions corresponds well with the observations
from the simulations.

The levels of the loss of computationally resources were
all an order of magnitude higher than the simulation results
with varying arrival rate (Fig. 7). This is expected to be due to
the different response time references; 1 𝑠 for the simulations
and 0.1 𝑠 for the experiments. When the response times are
smaller, fewer requests are being treated simultaneously, and
there is a higher risk for the system to be empty occasionally
and thus a higher loss of computationally resources.

B. Transient Experiments

The transient behavior of a controller shows how robust the
controller is to changes in the system, for example changes
in the arrival rate. Therefore, we performed two sets of ex-
periments with changing arrival rates. In the first experiment,
the system was initially exposed to a medium–load traffic
with 𝜆 = 50 𝑟𝑒𝑞/𝑠. After 150 𝑠, the arrival rate doubled,
such that the system was exposed to high–load traffic. In the
second experiment, the system was initially exposed to high–
load traffic, with 𝜆 = 100 𝑟𝑒𝑞/𝑠. After 150 𝑠, the arrival rate
decreased rapidly to 𝜆 = 50 𝑟𝑒𝑞/𝑠.

Fig. 16 and Fig. 17 show the results of the two sets of
experiments. As can be seen in the figures, the queuing based
predictor (QFF) performed rather badly. It over–reacted to
the changes, thus spending too much computational resources.
Also, the settling time in rather long. The inverse–prediction
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Fig. 16. Transient experiment–results with increasing arrival rate.
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Fig. 17. Transient experiment–results with decreasing arrival rate.

controller (IPFF) did not react immediately to the change,
but managed to recover relatively fast and with a relative small
increase in the response time. The feedback–based prediction–
controller (PFB) had the best performance. It reacted quickly
to the change, and kept the increase in the response time to a
minimum.

The results illustrated in Fig. 18 show a change in the
arrival rate 𝜆 from 50 𝑟𝑒𝑔/𝑠 to 100 𝑟𝑒𝑞/𝑠 when the response–
time reference was 1 𝑠. This operating condition stresses the
server severely. It also stresses the controller, since a small
change in the control signal 𝑝𝑟 will lead to large changes
in the response times. In control theory, this is expressed as
a higher gain, which can cause instability. Also, the system
tends to deviate more which can bring the controller outside
its range of operation. To solve this, the periodic controller
can be tuned with a higher gain to suppress the variations.
This, on the other hand, compromises the stability, since higher
gains often lead to instability. If the feed–forward can suppress
the variations well enough, a low–gain periodic controller
can be allowed, which can ensure stable operation. Testing
different controllers showed that it was not possible to find a
periodic PI–controller without feed-forward that could handle
the variations at 50 requests/second and remain stable for
100 requests/second. Using the IPFF and the PFB controllers
together with a slow periodic controller (𝐾𝑝 = 0.000004,
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Fig. 18. Experimentally steady–state results in the time–domain. 𝜆 = 50 /𝑠.
�̂� = 0.011 𝑠, 𝑇𝑠 = 1 𝑠, 𝑇𝑟𝑒𝑓 = 1 𝑠.

𝐾𝐼 = 0.2, 𝑘𝑝𝑓𝑏 = 0.0005) resulted in stable and well–
behaved systems, both under 50 requests/second and 100
requests/second. The QFF controller was tuned with a faster
PI controller (𝐾𝑝 = 0.0001, 𝐾𝐼 = 100.0, 𝑘𝑝𝑓𝑏 = 0.0005)
to insure operation at 50 requests/second. Even if the PI
controller was stable and managed to suppress the variations
when the feed-forward was not utilized, the system entered
a sever limit cycle (instability) when the feed–forward was
included (see Fig. 18). These oscillations cannot be explained
at the present time, but are expected to originate from a
internal feedback inherited from the design of Apache. This
is a topic of an ongoing research.

VIII. DISCUSSION

In all transient evaluations, both by simulations and by
experiments, the proposed PFB–controller showed superior
capability compared to the other controllers to suppress the
effect of the change of work load. The improvement compared
to the IPFF–controller was not as pronounced as compared to
the QFF–controller, which can be related to the more advanced
structure of both the PFB controller and the IPFF controller,
which both incorporate measurements of the number of jobs,
𝑁 . In the experimental results the PFB–controller was in
particular able to react faster to the change in arrival rate,
and thus avoid a large deviation in the response time and
furthermore return to a steady operation sooner.

A general trend in all the investigations was the poor
performance of the queuing–based controller (QFF). It is
based on a fixed, off–line estimated processing–time, and
only considers long–term averages in the feed–forward part.
Only with low arrival rate, where the stochastic of the traffic
became dominating, this controller performed similarly or a bit
better than the other controllers. The transient behavior clearly
indicates the problems of basing the feed–forward on off-line
estimations. In the presented results the average processing
time used in the feed–forward were over–estimated. Since
this estimate enters the feed–forward signal proportionally an
over–estimate can have a dramatic effect, as seen in all of
the transient simulations and experiments; see Figs. 9 and
16. A solution is to reduce the estimate of the processing
time manually, but then the procedure is no longer systematic,
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and if it is lowered too much, the desired effect of the
feed–forward diminishes. The simulations and the experiments
clearly indicates that a control structure, where the processing
time is not estimated off–line is clearly preferable.

Feedback is a power–full tool in order to optimize transient
responses, eliminate steady state errors and overcome model
errors, and is thus used in various applications from air–plain
auto–pilots to oil production plants. A concern of feedback
is the stability, since faulty designed feedback can lead to
instability. Stability is critical in many applications, and thus,
stability properties have been a major issue in control theory
for a long time, and association a controller with a formal
proof of stability has become the standard. The stability of
controllers are usually based on dynamical models which, to
some extent, describe the physical system under consideration.
In the case of response–time control such models do not
exist, due to the complicated nonlinear, stochastic, and event
driven nature of the queuing system. Attempts to find dynamic
models of the queue lengths of queuing systems have been
taken, and controllers with formal stability proofs have been
presented [6], [34], but no dynamic model describing the
response time has, to the knowledge of the authors, been
presented. Approaches have been taken to derive models
by system identification, but these methods assume that the
environment remains constant, which is not always the case.
Examples of such work are presented by Lu et al. and
Hellerstein et al. [22], [35]. A formal proof of stability of
the predictor (which becomes a dynamic system due to the PI
controller) or for the response–time PI–controller is therefore
not presented in this paper, just as no formal proofs are
posted for any other results on response–time control. Lacking
of formal stability proofs lead to conservative controllers
designed by trail–and error, which gives no guidelines to how
the controllers behave in other situations, and, until dynamic
models are available, the controller will have to be re–tuned
whenever applied to another system than that presented here.
Again, this is the situation for any controller scheme for
response time control.

Further research is needed in order for the control scheme to
be merged into more realistic setups. The filtering issues needs
to be simplified, and a structured way to determine the right
set of controller values must be found. Dynamic models of
the server would help this significantly since formal methods
for model–based control–design are available.

The unexplained oscillations observed with the QFF con-
troller at high response–time reference indicates that the
queuing–based feed–forward have some fundamental prob-
lems when the system are exposed high loads. These problems
have not been observed with the other controllers, but it can
not be guaranteed that these controllers does not become un-
stable under other conditions. However, the experiments with
high loads (Fig. 18) indicate that having a proper designed
feed–forward is important - even for steady–state operation.

IX. CONCLUSIONS

Resource management has become an important issue in
the design of Internet server systems. Optimization of the
allocated resources will both save running costs and decrease

the energy consumption. In this article, we have focused
on an information related web site, e.g a news site, hosted
in a virtualized server environment. We have investigated
the optimization of CPU capacity allocated to the web site
under changing work–loads, where the objective has been to
minimize the allocated capacity while respecting the SLA.

We have presented a controller structure for a processor
sharing system where the dedicated allocated share of CPU
capacity could be set at fixed time intervals. The controller
structure was tested both by discrete event–simulation and
by experiments on a testbed. The results of the simulations
and the experiments agreed on the qualitative behavior of
the controllers. The performance of proposed controller was
compared to two other controllers from the literature.

The most important difference between our proposed con-
troller and the compared controller, is that it does not require
an off-line estimation of the average processing time. This
means that our controller has a superior transient behavior
since it becomes very robust to changes in the system.
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