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Introduction

1 Compositions

An essential part of statistics is analysing measurements of various entities.
Normally these values make perfect sense; we may be interested in the number
of cars, the velocity of each car, or the weight of each car. There are however
situations when we are not interested in the absolute values of our measure-
ments, but the relative ones; the absolute values may not even be available to
us. The absolute amount of a certain oxide in a rock sample or the absolute
number of respondents who would vote for a certain party in a party prefer-
ence survey are seldom of interest, whereas the relative amount of a certain
oxide and the relative number of respondents are usually more interesting.
We often refer to these relative values as proportions. The proportions of all
the different outcomes must of course sum to 1 (or 100 %). A vector of these
proportions is known as a composition, or put more mathematically: a com-
position is a vector of positive components summing to a constant, usually
taken to be 1. As indicated above, compositions arise in many different areas;
the geochemical compositions of different rock specimens, the proportion of
expenditures on different commodity groups in household budgets, and the
party preferences in a party preference survey are all examples of compositions
from three different scientific areas.

The sample space of a composition is the simplex. Without loss of gener-
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ality we will always take the summation constant to be 1, and we define the
D-dimensional simplex S D as

S D =
{

(x1, . . . , xD)T ∈ RD
+ :

D∑
j=1

xj = 1
}
,

where R+ is the positive real space.
In this thesis we will refer to compositions with two components (or

parts), i.e. D = 2, as bicomponent, with three components, i.e. D = 3, as
tricomponent, and with more than two components, i.e. D > 2, as multicom-
ponent. Please note the difference between bicompositional referring to two
compositions and bicomponent referring to a composition with two compo-
nents. The two notions will be used together as in “a bicomponent bicompo-
sitional distribution,” i.e. a joint distribution of two compositions each with
two components.

2 A short historical review

Compositions have been studied almost as long as the subject of modern
statistics has existed. Pearson (1897) was the first to realize that if you divide
two independent random variates with a third random variate, independent
of the first two, the two quotients will be correlated. Pearson called this “spuri-
ous correlation” and warned researchers for this phenomenon. This “spurious
correlation” of course applies to compositions, since compositions are usu-
ally made up of a number of measurements divided by their sum; in fact for
compositions the denominator is not even independent of the measurements.
Since then it should have been known that compositions have to be treated
with care. During the following 60 years this was however usually not the
case.

In 1986 Aitchison published his pivotal book The Statistical Analysis of
Compositional Data (reprinted 2003). In this book he argues for the con-
cept of logratio transformations as a way to resolve the problems caused by
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the compositional summation constraint. Aitchison presented two logratio
transformations: the additive logratio transformation (ALR) and the centred
logratio transformation (CLR). Later Egozcue et al. (2003) introduced the
isometric logratio transformation (ILR). The ALR transformation consists
of the logarithms of the components, omitting one, divided by the omitted
reference component; the CLR transformation consists of the logarithms of
the components divided by the geometric mean of the components. The
ILR transformation is a much more complex transformation. If for exam-
ple x = (x1, x2, x3, x4)T ∈ S 4, then the resulting vectors of the different
transformations are the following:

alr(x) =

(
log

x1

x4
, log

x2

x4
, log

x3

x4

)T

clr(x) =

(
log

x1

g(x)
, log

x2

g(x)
, log

x3

g(x)
, log

x4

g(x)

)T

ilr(x) =

(
1√
2

log
x1

x2
,

1√
6

log
x1x2

x2
3
,

1√
12

log
x1x2x3

x3
4

)T

where g(x) = (x1 · · · xD)1/D, i.e. the geometric mean. The three transforma-
tions are related, see for instance Barceló-Vidal et al. (2007).

Aitchison and Egozcue (2005) distinguish four phases in the evolution of
compositional analysis, the first one being the phase until 1960s when the
complications with compositional data were ignored, and the second being
the phase from the 1960s until the 1980s when different ideas were tried to
resolve the problems of the multivariate methods not working for compo-
sitional data. The third phase is that when the logratio methodology gains
acceptance. The fourth phase started some ten years ago, with the realization
that the simplex is a Hilbert space (see e.g. Pawlowsky-Glahn and Egozcue,
2001, 2002). This has given rise to a “stay-in-the-simplex” approach. This
approach basically provides a way of modelling the operations done on the
logratio transformed data, then usually referred to as coordinates, in the sim-
plex.
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3 Compositional time series

The interest for bicompositional correlation resulting in this thesis originally
began as an interest in compositional time series (CTS), i.e. time series of
compositions. Compositional time series arise in many different situations,
for instance party preference surveys, labour force surveys or pollution mea-
surements.

Even though there have only been relatively few papers published on CTS,
there have been several approaches to CTS; these have been reviewed by Lar-
rosa (2005) and Aguilar Zuil et al. (2007).

The first to discuss and use an ALR approach to CTS seem to be Aitchi-
son (1986) and Brunsdon (1987), which were followed by Smith and Bruns-
don (1989) and Brunsdon and Smith (1998). In that approach the CTS is
transformed with an ALR, and the transformed series is then analysed with
standard models, e.g. VAR or VARMA. Bergman (2008) and Aguilar and
Barceló-Vidal (2008) have also used ILR to model the data. The choice of
logratio transformation is of course arbitrary.

There have also been some ideas on how to model the time series on
the simplex. Apart from Aitchison and Brunsdon, Billheimer and Guttorp
(1995) and Billheimer et al. (1997) have used autoregressive and conditional
autoregressive models. Barceló-Vidal et al. (2007) introduced a compositional
ARIMA model, defined using the “stay-in-the-simplex” approach.

As an illustration of CTS we present a figure from Bergman (2008), where
a time series from the Swedish labour force survey (AKU) was modelled. Fig-
ure 1 gives three views of the analysed time series; the top plot shows the time
series in a ternary time series plot (sometimes referred to as a “Toblerone
plot”), the middle plot shows the three components of the time series in
a standard time series plot, and the bottom plot shows a standard time se-
ries plot of the ILR-transformed time series. In all three plots the structural
change in the series due to the Swedish fiscal crisis during the early 1990s is
clearly visible, as well as a seasonal pattern.
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Figure 1 (Next page) Three views of a compositional time series. The top plot shows
the time series in a ternary time series plot, where the top corner of the Simplex
represents 100 % Unemployment, the bottom left corner 100 % Employment, and
the bottom right corner that 100 % of the population are Not belonging to the labour
force. The middle plot shows the three components of the time series in a standard
time series plot. (Note that the vertical axis has been cut and has different scales in
the different parts.) The bottom plot shows the ILR-transformed series. (The second
component of the transformed series is plotted with a dotted line.) In all three plots
the structural change in the series during the early 1990s is clearly visible, as well as
the seasonal pattern.

Source: Statistics Sweden

4 Correlation

Unlike the observations in cross-sectional data, the observations in time series
are usually not independent. A not entirely unintuitive starting point for
describing this dependence is to consider the concept of correlation. This
thesis tries to target the question: “How do we model, measure and compare
similarity or dissimilarity between two compositions?”

When hearing the word “correlation” most people would probability think
of the product moment correlation coefficient

r =
Cov(X ,Y )√
Var(X )Var(Y )

,

which measures the linear relationship between two variables. This is also
how correlation is defined in Encyclopedia of Statistical Sciences (Rodriguez,
1982). However, correlation does not have be restricted to linear relationships
or univariate variables. Dodge (2003) for instance states that it can be “used
broadly to mean some kind of statistical relation between variables.” This
wider approach includes correlation coefficients that need not measure linear
relationships, for instance the rank correlation coefficient Spearman’s rS . It is
this wider approach we will utilize. We thus consider correlation as a measure
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of similarity.
A good measure of correlation (or similarity) should also be able to com-

pare not just two observations of the same composition at different time
points, but also of two different compositions at the same time point. These
two compositions might not even have equal numbers of components. We
could for instance consider the correlation between some composition of the
labour force and some composition of the gross domestic product. In this
thesis we will however restrict our analysis to the correlation between two
observations of the same composition, but with the introduction of suitable
distributions, the result of this thesis is easily generalized to the above situa-
tions.

5 Bicompositions

In order to parametrically quantify the correlation between two compositions
one needs to consider the joint distribution of the compositions. As stated
above, the sample space of a D-component composition is the simplex S D.
The sample space of two compositions X, Y, defined on S D, is consequently
the Cartesian product S D × S D. This is however not a simplex, but a
manifold with two constraints, a bisimplex. We note that whereas the Carte-
sian product of two random vectors on the real space Rp will form a new
random vector on the real space Rp+p, this does not hold for two simplices:
S D ×S D 6= S D+D.

The Cartesian product of two D-component compositions could have
been denoted

Z = (Z1, . . . ,ZD,ZD+1, . . . ,ZD+D)T,

where
∑D

j=1 Zj =
∑D+D

j=D+1 Zj = 1. However, throughout this thesis we
choose to denote it

(X,Y) = (X1, . . . ,XD,Y1, . . . ,YD)T,
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to stress the fact that we regard it primarily as two compositions and not as
one bicomposition.

We will in this thesis base our modelling of correlation on an extension of
the Dirichlet distribution. Following Aitchison (1986), we define the Dirich-
let probability density function with parameter a = (a1, . . . , aD) ∈ RD

+ as

fX(x) =
G (a1 + · · ·+ aD)
G(a1) · · ·G(aD)

xa1−1
1 · · · xaD−1

D ,

where x = (x1, . . . , xD)T ∈ S D and G(·) is the Gamma function. We will
present a bicompositional generalization of the Dirichlet distribution, defined
on the Cartesian product of two simplices, i.e. a bisimplex. The notation
(X,Y) will also allow us to emphasize the relationship between the new dis-
tribution and the product of two Dirichlet distributions.

In accordance with the Dirichlet integral, the new distribution is defined
with respect to the Lebesgue measure. It remains as future work to reformu-
late it using the Aitchison (or simplicial) measure (Pawlowsky-Glahn, 2003)
along the lines of Mateu-Figueras and Pawlowsky-Glahn (2005).

6 Outline of the thesis

This thesis is based on four papers concerning bicompositions and modelling
the correlation between compositions. The contents of the papers are pre-
sented briefly below.

6.1 Paper I

We search the literature for distributions defined on the Cartesian product
S D ×S D, and find a few bivariate Beta distributions for the bicomponent
case, but no distributions defined on S D ×S D when D > 2.

We introduce a bicompositional Dirichlet distribution. The distribution
is defined on the Cartesian product S D ×S D and is based on the product
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of two Dirichlet distributions. The probability density function is

fX,Y(x, y) = A

 D∏
j=1

x
aj−1
j y

bj−1
j

(xTy
)g
,

where x = (x1, . . . , xD)T ∈ S D, y = (y1, . . . , yD)T ∈ S D, and aj, bj ∈ R+

(j = 1, . . . ,D). The parameter space of g depends on a and b; however, all
non-negative values are always included. The parameter g models the degree
of covariation between X and Y. When g = 0, the distribution is the product
of two independent Dirichlet distributions.

We prove that the distribution exists in the bicomponent case if and only
if g > −min(a1 +b2, a2 +b1) and at least for g ≥ 0 in the multicomponent
case. We also give expressions for the normalization constant A for all g in
the bicomponent case and for integers g in multicomponent case.

In the bicomponent case we present expressions for the cumulative distri-
bution function and the product moment. In both the bicomponent and the
multicomponent case, we derive expressions for the marginal probability den-
sity functions and the marginal moments, and for the conditional probability
density distribution and conditional moments.

6.2 Paper II

We consider two families of parametric models {f (x, y; j), j ∈ Ji} (i = 0, 1)
with J0 ⊂ J1 when modelling (X,Y) and assume that the true joint density
function is g(x, y). Kent (1983) defines the Fraser information as

F (j) =
∫

log f (x, y; j)g(x, y)dxdy

and the information gain as

G(j1 : j0) = 2{F (j1)− F (j0)},
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where ji is the parameter value that maximizes F (j) under the parameter
space Ji (i = 0, 1). Using G(j1 : j0), Kent (1983) proposes a general
measure of correlation, or joint correlation coefficient, between (X,Y) defined
as

r2
J = 1− exp{−G(j1 : j0)},

where X and Y are modelled as independent quantities under J0.
We use the bicompositional Dirichlet distribution presented in Paper I to

model two compositions X and Y. We let j = (a, b,g) and J0 = {j : g =
0}, while J1 is the unrestricted parameter space.

The joint correlation coefficient is calculated, utilizing that the bicom-
positional Dirichlet distribution constitutes an exponential family of distri-
butions, and it is presented graphically for a large number of bicomponent
bicompositional models. We note that r2

J as a function of g is not symmetric
around 0.

We also calculate the joint correlation coefficient for nine tricomponent
bicompositional models.

In the Appendices we present and examine expressions for the first deriva-
tive of the binomial coefficient

d
dr

(
r
n

)
,

and we also give a suggestion for numerical integration over S 3 ×S 3.

6.3 Paper III

We use the rejection method to generate random variates with a bicomposi-
tional Dirichlet density f . Given a dominating density g and a constant c ≥ 1
such that f (x, y) ≤ cg(x, y), and a random number U uniformly distributed
on the unit interval, a generated variate (x, y) is accepted if

U ≤ f (x, y)
cg(x, y)

,
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otherwise it is rejected and new (x, y) and U are generated until acceptance.
We hence need to find dominating densities g and constants c. We examine
three cases.

First we look at the (trivial) case when g = 0, i.e. the product of two
independent Dirichlet distributions. Dirichlet distributed variates are easily
generated using Gamma distributed variates, and thus we need not use the
rejection method.

Secondly we examine the case when g > 0. We use a bicompositional
Dirichlet distribution with g = 0, i.e. the product of two independent
Dirichlet distribution, as dominating density. We find that the random vari-
ate is accepted if U ≤ (xTy)g. Evidently, we need not calculate the normaliza-
tion constant A(a, b, g), and hence we can generate random numbers from
bicompositional Dirichlet distributions whose probability density functions
we cannot calculate. When g is very large, the method will be slow, as the
acceptance probability Pr{U ≤ (xTy)g} = (xTy)g will be very low. We note
that we can always use a uniform density as g , with c = maxx,y f (x, y). This
is though only applicable for non-negative integers g, since it is necessary to
calculate A(a, b, g).

Thirdly we examine the bicomponent case when g < 0. We partition
the sample space into four quadrants Q1-Q4, and choose a quadrant Qk
(k = 1, 2, 3, 4) randomly with probability∫∫

Qk
f (x, y)dxdy (k = 1, 2, 3, 4),

where f (x, y) is the bicomponent bicompositional Dirichlet probability den-
sity function viewed as a function of x and y. For each of the quadrants we
find a dominating density based on the product of two Dirichlet distributions
and a constant c, and generate a random variate using the rejection method. A
slight problem with the method is to find effective ways of generating random
Dirichlet distributed variates that are restricted to a particular quadrant.

We compare the efficiencies of the two suggestions for dominating densi-
ties, Dirichlet and uniform, with a Monte Carlo study.
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6.4 Paper IV

We present maximum likelihood estimates of the parameter j = (a, b, g)
of the bicompositional Dirichlet distribution presented in Paper I. Following
Kent (1983) we also present an estimator of the general measure of correla-
tion, or joint correlation coefficient, presented in Paper II, assuming that the
data follow a bicompositional Dirichlet distribution,

r̂2
J = 1− exp{−Ĝ(ĵ1 : ĵ0)},

where Ĝ(ĵ1 : ĵ0) is an estimator of the information gain when allowing for
dependence,

Ĝ(ĵ1 : ĵ0) =
2
n

(
n∑

k=1

log f (xk, yk; ĵ1)−
n∑

k=1

log f (xk, yk; ĵ0)

)
,

and ĵ1 and ĵ0 are the maximum likelihood estimates under the parameter
spaces J1 and J0, respectively.

We also present two confidence intervals for the joint correlation coeffi-
cient: one when G(j1 : j0) is large,[

1− exp

{
−Ĝ(ĵ1 : ĵ0) +

√
s2q2

1;a/n
}
,

1− exp

{
−Ĝ(ĵ1 : ĵ0)−

√
s2q2

1;a/n
}]

,

where s2 is the sample variance of 2 log{f (xj, yj ; ĵ1)/f (xj, yj ; ĵ0)} and q2
1;a is

the upper a quantile of the q2
1 distribution; and one when G(j1 : j0) is small,[

1− exp

{
−
k1;a/2(â)

n

}
, 1− exp

{
−
d1;a/2(â)

n

}]
,
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where k1;a/2 and d1;a/2 are non-centrality parameters of certain q2
1 distribu-

tions and â = nĜ(ĵ1 : ĵ0).
Using a Monte Carlo study, we compare the empirical confidence coeffi-

cients of the two intervals for a number of models. The random variates are
generated by means of the method described in Paper III. It is apparent for the
models that we have examined that the “small” confidence interval (based on
non-central q2-distributions) will produce the smaller intervals, yielding an
empirical confidence coefficient for almost all models of approximately 95 %,
when the nominal confidence coefficient is 95 %. The “large” confidence
intervals will in general be wider.

We also examine a bias correction, suggested by Kent (1983), of the in-
formation gain estimator. This correction involves the second derivative of
the binomial coefficient

d2

dr2

(
r
n

)
,

and an expression for this is given in the appendix of that paper. In our
examples, however, the suggested correction actually yields estimates that are
more biased than the uncorrected ones. We believe that this might be due to
numerical issues, as the correction involves a large number of infinite sums.
Due to this lack of improvement we have not used this bias correction in our
estimations.

As an example we have also estimated the general measure of correlation
for GDP data from the 50 U.S. states and District of Columbia. The estimate
of the general measure of correlation is

r̂2
J = 0.3027,

with a “small” confidence interval of

(0.0993, 0.5371)

thus indicating that composition of the government GDP in 1967 is corre-
lated with that in 1997.
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