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Abstract
A composition is a vector of positive components summing to a constant.

We consider the problem of describing the correlation between two compo-
sitions. Using a bicompositional Dirichlet distribution, we calculate a joint
correlation coefficient, based on the concept of information gain, between two
compositions. Numerical values of the joint correlation coefficient are calcu-
lated for compositions of two and three components.

Keywords: Binomial coefficient differentiation; Composition; Correlation;
Dirichlet distribution; Simplex

1 Introduction
A composition is a vector of positive components summing to a constant, usu-
ally taken to be 1. The components of a composition are what we usually
think of as proportions (at least when the vector sums to 1). Compositions
arise in many different areas; the geochemical compositions of different rock
specimens, the proportion of expenditures on different commodity groups in
household budgets, and the party preferences in a party preference survey are
all examples of compositions from three different scientific areas. For more
examples of compositions, see for instance Aitchison (2003).

The sample space of a composition is the simplex. Without loss of gen-
erality we will always take the summing constant to be 1, and we define the
D-dimensional simplex S D as

S D =
{

(x1, . . . , xD)T ∈ RD
+ :

D∑
j=1

xj = 1
}
,
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where R+ is the positive real space. The joint sample space of two compositions
is the Cartesian product of two simplices S D × S D. It should be noted that,
unlike the case for real spaces, S D × S D ̸= S D+D and that S D × S D is
not a even simplex, but a manifold with two constraints.

The compositional data analysis has previously been concerned with de-
scribing how the components of a composition correlate, i.e. the intra-compositional
dependence. The components of a composition are not independent due to the
summation constraint. A review of different independence concepts pertaining
to partitions of a composition is presented in (Aitchison, 2003, Chap. 10).

Correlation between compositions has however previously not been given
very much attention. We investigate the dependence between two composi-
tions, i.e. the inter-compositional dependence, using a measure of dependence
suggested in Kent (1983) based on the concept of information gain. We be-
lieve that a measure of inter-compositional dependence is needed in order to
describe, for instance, the spatial similiarity between two geochemical compo-
sitions measured at different locations, or the temporal similarity between party
preference surveys conducted at different times.

2 Information gain and Kent’s general mea-
sure of correlation
If we consider two families of parametric models {f (x, y; j), j ∈ Ji} (i =
0, 1) with J0 ⊂ J1 and the true joint density function is g(x, y), the Fraser
information is defined in Kent (1983) as

F (j) =
∫

log f (x, y; j)g(x, y)dxdy, (1)

that is, F (j) is the expected log-likelihood.
By choosing ji to maximize F (j) in the parameter space Ji, “ji is the the-

oretical analogue of the maximum likelihood estimate of j over the parameter
space Ji” (Kent, 1983). We will in the following partition j into two parts
j = (y, l), where y is the parameter of interest and l is a nuisance parameter.

If the model forms a canonical exponential family, that is

f (x, y; j) = exp{yTv(x, y) + lTw(x, y) − c(j)},

the Fraser information may be calculated as

F (ji) = ji
Tb(ji) − c(ji), (2)

where b(j) is the vector of partial derivatives of c(j) with respect to j.
If for J0 = {j : y = 0}, X and Y are modelled as independent, the

information gain of allowing for dependence between X and Y in the model is

G(j1 : j0) = 2{F (j1) − F (j0)}.
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Since F (ji) is the maximized expected log likelihood, G(j1 : j0) is the theoret-
ical analogue of −2 times the log likelihood ratio statistic.

A joint correlation coefficient between X and Y is proposed in Kent (1983)
by

r2
J = 1 − exp{−G(j1 : j0)}.

As is easily seen, 0 ≤ r2
J ≤ 1.

Independence between X and Y implies zero correlation if g(x, y) = f (x, y; j)
for some j, or “the model J1 forms a regular exponential family” Inaba and
Shirahata (1986).

3 The bicompositional Dirichlet distribution
In order to calculate a joint correlation coefficient between two compositions
a suitable distribution is needed. Unfortunately very few distributions with
dependence structures defined on S D × S D are available. One distribution
for modelling random vectors on S D × S D is proposed in Bergman (2009).
The proposed distribution, called the bicompositional Dirichlet distribution,
has the probability density function

f (x, y) = A

 D∏
j=1

x
aj−1
j y

bj−1
j

(
xTy

)g
, (3)

where x, y ∈ S D, aj, bj ∈ R+(j = 1, . . . ,D) and g ∈ R. Expressions
for the normalization constant A are given in Bergman (2009). If g = 0,
the probability density function (3) is equal to the product of two Dirichlet
probability density functions with parameters a and b respectively, and hence
X and Y are independent.

When X,Y ∈ S 2 we shall refer to this as the bicomponent case, and simi-
larly to S 3 as the tricomponent case and to S D(D > 2) as the multicomponent
case.

The bicompositional Dirichlet distribution forms a canonical exponential
family with parameters j = (g, ã, b̃)T, where

ãj = aj − 1,
b̃j = bj − 1.

We shall assume that the true density function g(x, y) is the bicompositional
Dirichlet probability density function (3) and that the two families of para-
metric models f (x, y; ji) also are bicompositional Dirichlet distributions. The
parameter of interest in these models is y = g. Denoting j1 = (g(1), ã(1), b̃

(1)
)T

and j0 = (g(0), ã(0), b̃
(0)

)T, it can be shown, through the information inequality,
that g(1) = g, ã(1) = ã, and b̃

(1)
= b̃, but when g(0) = 0, in general ã(0) ̸= ã

and b̃
(0) ̸= b̃.
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3.1 The bicomponent case
If we define

Sã =
i∑

j=0

(
i
j

)
(−1)i−jB(ã1 + j + 1; ã2 + i − j + 2), (4)

where B(a, b) is the Beta function, and Sb̃ in the same way as equation (4)

but with ã1 and ã2 replaced with b̃1 and b̃2, we may for the bicomponent
bicompositional Dirichlet distribution with parameters j = (g, ã1, ã2, b̃1, b̃2)T

derive the following expressions:

c(j) = log
{

2−g
∞∑

i=0

(
g

i

)
SãSb̃

}
, (5)

b(j) =

(
∂c
∂g

,
∂c
∂ã1

,
∂c
∂ã2

,
∂c

∂b̃1
,

∂c

∂b̃2

)T

. (6)

The partial derivatives of (5) in (6) are

∂c
∂g

=

∑∞
i=0

(
g
i

)′SãSb̃∑∞
i=0

(
g
i

)
SãSb̃

− log 2,

∂c
∂ã1

=

∑∞
i=0

(
g
i

)
Sb̃

{∑i
j=0

(i
j

)
(−1)i−jBij(ã)y(1)

ij (ã1, ã2)
}

∑∞
i=0

(
g
i

)
SãSb̃

,

∂c
∂ã2

=

∑∞
i=0

(
g
i

)
Sb̃

{∑i
j=0

(i
j

)
(−1)i−jBij(ã)y(2)

ij (ã1, ã2)
}

∑∞
i=0

(
g
i

)
SãSb̃

,

∂c

∂b̃1
=

∑∞
i=0

(
g
i

)
Sã

{∑i
j=0

(i
j

)
(−1)i−jBij(b̃)y(1)

ij (b̃1, b̃2)
}

∑∞
i=0

(
g
i

)
SãSb̃

,

∂c

∂b̃2
=

∑∞
i=0

(
g
i

)
Sã

{∑i
j=0

(i
j

)
(−1)i−jBij(b̃)y(2)

ij (b̃1, b̃2)
}

∑∞
i=0

(
g
i

)
SãSb̃

,

where (
g

i

)′
=

d
dg

(
g

i

)
, (7)

Bij(ã) = B(ã1 + j + 1; ã2 + i − j + 1), (8)

y(1)
ij (ã1, ã2) = y(ã1 + j + 1) − y(ã1 + ã2 + i + 2), (9)

y(2)
ij (ã1, ã2) = y(ã2 + i − j + 1) − y(ã1 + ã2 + i + 2). (10)

Analogous expressions of equations (8)-(10) for b̃1 and b̃2 are implied. The
function in equations (9) and (10) is the digamma function y(x) = d logG(x)/dx.
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Figure 1. The joint correlation coefficient r2
J calculated for g ranging from

−1.25 to 2.0 for the (a; b) parameter values (2.1, 2.4; 2.2, 2.3) (�), (2.1, 2.2;
3.6, 3.5) (N), (5.2, 2.0; 2.0, 2.0) (▽), (1.9, 6.4; 3.2, 2.1) (•) and (4.1, 2.4; 4.1,
2.4) (+).

Expressions for the derivative of the binomial coefficient (7) are discussed in
Appendix A.

If J0 = {j : g = 0}, the joint correlation coefficient r2
J may be calcu-

lated through the information gain as described earlier. However F (j0) requires
maximization, usually numerically, with respect to a(0) and b(0).

Figure 1 depicts the joint correlation coefficient r2
J , calculated for five dif-

ferent sets of a and b values and 49 of values of g ranging from −1.25 to 2.0.
As can be seen in the figure, the joint correlation coefficient depends primar-
ily on the value of g but also to some extent on the rest of the parameters. It
should be noted that the r2

J is not symmetric around 0; the rate at which r2
J

increases differs for negative and positive g and we note that the vertical order
of the five graphs in the figure are different for negative and positive g. The
small deviations in the curvature of the graphs, e.g. at −0.65, are due numerical
issues.

3.2 The tricomponent case
Since the normalization constant of the bicompositional Dirichlet distribution
in the multicomponent case hitherto is only calculated for non-negative inte-
gers g, we may only calculate the joint correlation coefficient for non-negative
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integers of g. This also disables us from using equation (2) in the calculations,
as differentiation with respect to g is not meaningful. We will instead utilize
the definition given in equation (1).

The Fraser information for the tricomponent bicompositional Dirichlet
distribution is the following:

F (ji) =
∫

log{f (x, y; ji)}g(x, y)dxdy

=

∫
log

{
Ax

a(i)
1 −1

1 x
a(i)

2 −1
2 x

a(i)
3 −1

3 y
b(i)

1 −1
1 y

b(i)
2 −1

2 y
b(i)

3 −1
3 (xTy)g

(i)
}

g(x, y)dxdy

= log A + (a(i)
1 − 1)

∫
log(x1)g(x, y)dxdy

+ · · ·

+ (b(i)
3 − 1)

∫
log(y3)g(x, y)dxdy

+ g(i)

∫
log(x1y1 + x2y2 + x3y3)g(x, y)dxdy

Thus F (ji) equals the sum of a constant, six log expectations, and the expec-
tation E{log(xTy)}. (For the sake of brevity we will use the notation a. =
a1 + · · ·+ aD for the rest of this section.)

Before proceeding, we note that the Dirichlet distribution with parameter
a belongs to the exponential family of distributions, with sufficient statistic
T(x) = (log x1, . . . , log xD)T and normalization constant

A(a) =
D∑

j=1

logG(aj) − logG(a.).

Since E{T(X)} = ∂A(a)/∂a for members of the exponential family, we con-
clude that the log expectation of a Dirichlet distribution with parameter a is

E{log(Xj)} = y(aj) − y(a.). (11)

Using the Multinomial Theorem and equation (11), we may calculate the
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seven first terms of F (ji) exactly. For example:∫
log(xj)g(x, y)dxdy

=

∫
log(xj)Axa1−1

1 xa2−1
2 xa3−1

3 yb1−1
1 yb2−1

2 yb3−1
3 (x1y1 + x2y2 + x3y3)gdxdy

=

∫
log(xj)

∑
ki≥0
k.=g

(
g

k

)
Axa1+k1−1

1 xa2+k2−1
2 xa3+k3−1

3 yb1+k1−1
1 yb2+k2−1

2 yb3+k3−1
3 dxdy

= A
∑
ki≥0
k.=g

(
g

k

)∫
log(xj)x

a1+k1−1
1 xa2+k2−1

2 xa3+k3−1
3 dx

∫
yb1+k1−1

1 yb2+k2−1
2 yb3+k3−1

3 dy

= A
∑
ki≥0
k.=g

(
g

k

)∏3
i=1 G(a1 + ki)
G(a. + g)

∏3
i=1 G(b1 + ki)
G(b. + g)

{
y(aj + kj) − y(a. + g)

}

In the above expression (
g

k

)
=

g!
k1!k2!k3!

and thus denotes the multinomial coefficient.
The integral

∫
log(yj)g(x, y)dxdy analogously yields the same result except

for the last factor, where aj and a. are replaced by bj and b. respectively.
The last term of F (j1) must be integrated numerically. (See Appendix B

for integration over S 3 ×S 3.) This is not the case for F (j0), as g(0) = 0, but
instead, in order to obtain j0, F (j) must be maximized with respect to a(0) and
b(0).

In Figure 2 the joint correlation coefficient is plotted for g ranging from −2
to 8 for bicomponent models with parameters a = (2.1, 2.4)T and b = (2.2,
2.3)T, and for tricomponent models with parameters a = (2.1, 2.4, 2.3)T and
b = (2.2, 2.3, 2.1)T. In this figure we see how the joint correlation coefficient
is leveling off towards 1 as g increases, something that is not really visible in
Figure 1.

A Differentiating binomial coefficients
We first define the binomial coefficient.

Definition 1. The binomial coefficient is defined as(
r
k

)
=

r(r − 1) · · · (r − (k − 1))
k!

(12)

where r is a real number and k is a non-negative integer.
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Figure 2. The joint correlation coefficient r2
J calculated for g ranging from −2

to 8 for bicomponent models with (a; b) parameter values (2.1, 2.4; 2.2, 2.3)
(◦) and tricomponent models with (a; b) parameter values (2.1, 2.4, 2.3; 2.2,
2.3, 2.1) (N).
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The binomial coefficient may also be expressed as(
r
k

)
=

G(r + 1)
k!G(r − k + 1)

. (13)

The derivative of equation (13) with respect to r is

d
dr

(
r
k

)
=

G(r + 1)
k!G(r − k + 1)

{y(r + 1) − y(r − k + 1)} (14)

where y(x) is the digamma function d logG(x)/dx. However, equation (14) is
not defined if r is an integer less than k. Hence the derivative of the binomial
coefficient must be based on the expression given in Definition 1.

Theorem 1. The derivative of the binomial coefficient with respect to r is

d
dr

(
r
k

)
=

1
k!

k−1∑
i=0

k−1∏
j=0

I (i, j)

where

I (i, j) =

{
1 (i = j),

r − j (i ̸= j).

Proof. Differentiating equation (12) with respect to r means differentiating the
nominator consisting of a product of k factors:

d
dr

k−1∏
i=0

(r − i) = 1 ·
k−1∏
i=1

(r − i) + (r − 0)
d
dr

k−1∏
i=1

(r − i)

= 1 · (r − 1) · · · (r − (k − 1))

+ (r − 0) · 1 · (r − 2) · · · (r − (k − 1))

+ · · ·
+ (r − 0)(r − 1) · · · (r − (k − 2)) · 1

The derivative is hence a sum of k terms, each consisting of the product r(r −
1) · · · (r − (k − 1)), where ith factor of the ith term is is replaced by 1. If we
define

f (r) = r(r − 1) · · · (r − (k − 1)),

we may write

f ′(r) =
k−1∑
i=0

k−1∏
j=0

I (i, j)

where

I (i, j) =

{
1 (i = j),

r − j (i ̸= j),
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(a) (b)

Figure 3. Two views of the S 3: (a) as seen in the normal coordinate system
and (b) as seen in the plane.

and hence
d
dr

(
r
k

)
=

f ′(r)
k!

.

B Integration over S 3 × S 3

The simplex S 3 is the triangle in the R3
+ where x + y + z = 1; it is depicted

in Figure 3(a). Obviously, this triangle lies in a plane and may be viewed that
way as shown in Figure 3(b). Integrating over S 3 in R3 is thus equivalent to
integrating over the triangle defined by

0 < u < 21/2,

0 < v <
(

3
2

)1/2 − 31/2
∣∣2−1/2 − u

∣∣ ,
in R2. Integration over S 3 × S 3 analogously becomes a quadruple inte-
gral. However, since the tricomponent bicompositional Dirichlet distribution
is defined on S 3 × S 3, the R2 × R2 coordinates must be transformed into
compositions to get the density. Using

x(s, t) =

 t
(

2
3

)1/2

s2−1/2 − t6−1/2

1 − s6−1/2 − t2−1/2

 , y(u, v) =

 v
(

2
3

)1/2

u2−1/2 − v6−1/2

1 − u6−1/2 − v2−1/2
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the integral of g(x, y) over S 3 × S 3 becomes

∫
g(x, y)dxdy =

∫ 21/2

s=0

∫ ( 3
2 )1/2−31/2|2−1/2−s|

t=0

∫ 21/2

u=0

∫ ( 3
2 )1/2−31/2|2−1/2−u|

v=0

g(x(s, t), y(u, v))dvdudtds.
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