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Abstract

A composition is a vector of positive components summing to a constant.
The sample space of a composition is the simplex and the sample space of two
compositions, a bicomposition, is a Cartesian product of two simplices. We
present a way of generating random variates from a bicompositional Dirich-
let distribution defined on the Cartesian product of two simplices using the
rejection method. We derive a general solution for finding a dominating den-
sity function and a rejection constant, and also compare this solution to using
a uniform dominating density function. Finally some examples of generated
bicompositional random variates, with varying number of components.

Keywords: bicompositional Dirichlet distribution; composition; Dirichlet dis-
tribution; random variate generation; rejection method; simplex

1 Introduction
A composition is a vector of positive components summing to a constant. The
components of a composition are what we usually think of as proportions (at
least when the vector sums to 1). Compositions arise in many different areas;
the geochemical compositions of different rock specimens, the proportion of
expenditures on different commodity groups in household budgets, and the
party preferences in a party preference survey are all examples of compositions
from three different scientific areas. For more examples of compositions, see
for instance Aitchison (2003).
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The sample space of a composition is the simplex. Without loss of gen-
erality we will always take the summing constant to be 1, and we define the
D-dimensional simplex S D as

S D =
{

x = (x1, . . . , xD)T ∈ RD
+ :

D∑
j=1

xj = 1
}
, (1)

where R+ is the positive real space. The joint sample space of two compositions
is the Cartesian product of two simplices S D × S D. It should be noted that,
unlike the case for real Cartesian product spaces, S D × S D ̸= S D+D and
that S D × S D is not even a simplex, but a manifold with two constraints.

2 The rejection method
Leydold (1998) notes that apart from the multinormal and Wishart distribu-
tions, papers on generating bivariate and multivariate random variates are rare
and most suggested general methods have disadvantages. The only universal al-
gorithm for generating multivariate random variates is the algorithm presented
by Leydold and Hörmann (1998), which is a generalisation of algorithms for
the univariate and bivariate case given in different versions by Gilks and Wild
(1992) and Hörmann (1995). However, Leydold (1998) concludes that this
algorithm is very slow and suggests an alternative algorithm which requires a
function of the density to be concave. The class of distributions that will be uti-
lized in this paper is very versatile and is therefore hard to find a function that
fulfils the requirements. Hence we will use the rejection method to construct a
specialized method for generating bicompositional random variates.

The following description of the rejection method of generating random
variates is based on Devroye (1986, pp. 40–44).

Let f be the density from which we wish to generate random variates. Let
c ≥ 1 be a constant and g be a density such that

f (z) ≤ cg(z) (2)

for all z. We now generate a random variate Z with density g and a random
number U uniformly distributed on the unit interval. We let

T = c
g(Z)
f (Z)

. (3)

The variate Z is accepted if UT ≤ 1, otherwise we reject Z and generate new
Z and U until acceptance.

We thus need to find a dominating density g and constant c, and preferably
such choices that will have high probabilities of acceptance and hence make the
random variate generation efficient.
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3 The bicompositional Dirichlet distribution
Bergman (2009) proposed a distribution, called the bicompositional Dirichlet
distribution, for modelling random vectors on S D × S D. The proposed
distribution has the probability density function

f (x, y) = A

 D∏
j=1

x
aj−1
j y

bj−1
j

(
xTy

)g
, (4)

where x, y ∈ S D, aj, bj ∈ R+(j = 1, . . . ,D) and g ∈ R. Expressions
for the normalisation constant A are given in Bergman (2009). If g = 0,
the probability density function (4) is equal to the product of two Dirichlet
probability density functions with parameters a = (a1, . . . , aD)T and b =
(b1, . . . , bD)T respectively, and hence X and Y are independent.

When X,Y ∈ S 2 we shall refer to this as the bicomponent case, and simi-
larly to S 3 as the tricomponent case, and to S D(D > 2) as the multicomponent
case.

4 Generating random bicompositions
Here, the bicomposition (X,Y) will take the role of Z in Section 2.

When g ≥ 0, we may use the product of two Dirichlet distributions as a
dominating density, since 0 < xTy < 1 and

A

 D∏
j=1

x
aj−1
j y

bj−1
j

 (xTy)g ≤ A

 D∏
j=1

x
aj−1
j y

bj−1
j

 .

Defining Ba = G(a1 + · · · + aD)/
∏D

j=1 G(aj) and analogously for Bb, the
inequality (2) becomes

A

 D∏
j=1

x
aj−1
j y

bj−1
j

 (xTy)g ≤ cBa

 D∏
j=1

x
aj−1
j

Bb

 D∏
j=1

y
aj−1
j

 , (5)

where the constant c is

c =
A

BaBb

. (6)

Generating a Dirichlet distributed random variate is easily done based on Gamma
distributed variates. (Devroye, 1986, pp. 593–596)

Using a product of two Dirichlet distributions as dominating density is
however not always very efficient, as (xTy)g will be close to 0 when g is large.
When g ≥ 0, and aj, bj > 1 (j = 1, . . . ,D), it is easily seen that the density
(4) will have an upper bound. We may therefore use an uniform density as g ,
with c = max f (x, y).
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Figure 1. The four quadrants Q1-Q4 of the sample space S 2 × S 2; the
horizontal axis represents x and the vertical axis represents y.

4.1 The bicomponent case
The bicomponent case is treated separately as x = (x, 1−x)T and y = (y, 1−y)T,
and the density hence may be viewed as a function of x and y.

Bergman (2009) showed that the bicomponent bicompositional Dirichlet
density exists if and only if g > −min(a1 + b2, a2 + b1). If g < 0, the
factor (xTy)g will tend to infinity when x is close to 0 and y is close to 1, or
when x is close to 1 and y is close to 0. We therefore divide the sample space
S 2 × S 2 into four quadrants, denoted Q1-Q4 counter-clockwise from the
origin. Figure 1 shows the S 2 × S 2 with the four quadrants.

To generate a random variate from a bicomponent bicompositional Dirich-
let distribution with parameters a, b and

−min(a2, b2) < g < 0,

we first randomly choose a quadrant with probability

pk =

∫∫
Qk

f (x, y)dxdy (k = 1, 2, 3, 4), (7)

where f (x, y) is the bicomponent bicompositional Dirichlet probability density
function (4) viewed as a function of x and y. Expressions for the cumulative
distribution function has been given by Bergman (2009), which may be used
in calculating pk. Depending on which quadrant is chosen, we then choose a
dominating density g and a constant c in the following manner.
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Q1 & Q3 In quadrants Q1 and Q3, xTy > 1/2 and we may hence use a
product of two Dirichlet (or equivalently Beta) distributions with parameters a
respectively b as g and a constant

c =
A

BaBb2g
. (8)

Q2 In quadrant Q2, xTy is bounded from below by (1 − x)/2, and hence

(xTy)g ≤ 2−g(1 − x)g

as g < 0. We therefore use a product of two Dirichlet distributions with
parameters (a1, a2 + g) respectively b as the density g and the constant c given
by

c =
A

B(a1,a2+g)Bb2g
. (9)

Q4 Analogously, in quadrant Q4, xTy > (1 − y)/2 and we hence use a
product of two Dirichlet distributions with parameters a respectively (b1, b2 +
g) as g and c given in (10).

c =
A

BaB(b1,b2+g)2g
(10)

We must though assure that the generated variates with density g are limited
to that particular quadrant.

5 Comparison of the two dominating densi-
ties
The efficiency of the generation process will usually depend on the choice of
dominating density. In most cases we have a possibility to choose between two
different dominating densities: a product of two independent Dirichlet densi-
ties or a uniform density. In general, the product of two Dirichlet distributions
will often be more efficient when g is close to 0, but may however be highly
inefficient when g is large.

To compare the efficiency of the two dominating densities we generated
25,000 random variates for each of the dominating densities from a number of
different bicomponent bicompositional Dirichlet distributions, and calculated
the average number of trials to generate one random variate. Table 1 shows the
results presented as the estimated probability of acceptance (the reciprocal of
the average number of trials) as well as the results for a distribution where only
a Dirichlet product is available as dominating density as the distribution den-
sity function does not have an upper bound. We note that the probability of
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Table 1. Comparisons of the estimated acceptance probabilities depending on
choice of dominating density. We clearly see that the product of two Dirichlet
densities can be very inefficient for large values of g, but also that it may be
much more efficient than a uniform density for some distributions.

Parameter values Dominating density
a1 a2 b1 b2 g Dirichlet Uniform

2.1 3.1 5.5 2.3 0.3 0.769 0.222
2.1 3.1 5.5 2.3 3.2 0.103 0.200
2.1 3.1 5.5 2.3 7.7 0.007 0.110
2.1 3.1 5.5 2.3 −1.2 0.208 0.208
2.1 3.1 0.7 2.3 3.2 0.185 NA
7.1 4.2 6.3 8.5 0.3 0.769 0.119
7.1 4.2 6.3 8.5 3.2 0.100 0.125
7.1 4.2 6.3 8.5 7.7 0.005 0.135
7.1 1.2 12.5 3.1 3.2 0.357 0.031

acceptance with a uniform density can be much (almost 30 times) larger than
the probability of acceptance with a with a Dirichlet density. On the other
hand we also see that there are distributions for which the probability of ac-
ceptance with a with a Dirichlet density is more than 10 times the probability
of acceptance with a uniform density. As an graphical illustration of the dif-
ferences between the distributions, 150 generated random variates from four of
the distributions in Table 1 are plotted for each of the two dominating densities
in Fig. 2 together with contour curves of the density.

The differences in efficiency between the two dominating densities is even
more obvious for the multicomponent bicompositional Dirichlet distribution
examples presented in Table 2. Here again, we generated 25,000 random vari-

Table 2. Comparisons of the estimated acceptance probabilities for some mul-
ticomponent bicompositional Dirichlet distributions.

Parameter values Dominating density
a b g Dirichlet Uniform

(2, 2, 2) (2, 2, 2) 1 0.333 0.145
(2, 2, 2) (2, 2, 2) 7 0.001 0.085

(2.1, 1.2, 3.2, 4.1, 2.8) (3.2, 2.2, 5.3, 1.8, 2.9) 1 0.204 < 0.001
(2.1, 1.2, 3.2, 4.1, 2.8) (3.2, 2.2, 5.3, 1.8, 2.9) 3 0.009 < 0.001
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Figure 2. 150 random variates generated from four different bi-
component bicompositional Dirichlet distributions with (a; b;g)
parameters (2.1, 3.1; 5.5, 2.3; 0.3) (a), (2.1, 3.1; 5.5, 2.3; 7.7) (b),
(2.1, 3.1; 5.5, 2.3; −1.2) (c), and (2.1, 3.1; 0.7, 2.3; 3.2) (d), using the
product of two Dirichlet densities (◦) and a uniform density (p) as dominating
density. Since the distribution in (d) does not have an upper bound, a uniform
density may not be utilized. As a reference, the contour curves of the true
densities are also drawn.
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ates, this time from four different multicomponent bicompositional Dirichlet
distributions using both of the two dominating densities. For the tricompo-
nent distributions, when g = 1, the Dirichlet density has a probability of
acceptance of more than twice that of the uniform density, but when g = 7
the probability of acceptance of the uniform density is more than 80 times that
of the the Dirichlet density. (Illustrations of random variates from the above
tricomponent distributions are available as Online Resources 1 and 2.) For the
two distributions with five components, we see that the Dirichlet density is
much more effective for both cases. This is in accordance with Devroye (1986,
p. 557), who notes that as the dimension D increases the rejection constant
often deteriorates quickly when using an uniform density.

6 Conclusions
The choice of the dominating density is evidently crucial to the efficiency of
this random variate generation. When g is close to 0 or the number of com-
ponents is large, a product of two Dirichlet density functions seems the most
efficient, otherwise a uniform density function (if possible) is recommended.
What is meant by close is however dependent of the other parameters (a, b),
so when in doubt, the recommendation would be to generate a small number
of variates with each dominating density and see which is the most efficient for
the particular parameter values in question. We note that the efficiency of the
method seems to degrade as the dimension (i.e. the number of components)
increases, and that further research is needed to find more efficient dominat-
ing densities for distributions with a large number of components and for large
gamma values.

It remains yet to find a way of generating random numbers for the bicom-
ponent case when −min(a1 + b2, a2 + b1) < g < −min(a2, b2) and the
density function does not have an upper bound.

The random variate generation might further be made more efficient for at
least the bicomponent case, by adopting the quadrant scheme also for positive
g; especially when the probability mass is concentrated in one or two of the
quadrants, which is often the case for large g, this might speed up the genera-
tion process considerably.
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