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Abstract

A passive system is one that cannot produce energy, a property that natu-

rally poses constraints on the system. A system on convolution form is fully

described by its transfer function, and the class of Herglotz functions, holo-

morphic functions mapping the open upper half plane to the closed upper half

plane, is closely related to the transfer functions of passive systems. Following

a well-known representation theorem, Herglotz functions can be represented by

means of positive measures on the real line. This fact is exploited in this paper

in order to rigorously prove a set of integral identities for Herglotz functions

that relate weighted integrals of the function to its asymptotic expansions at

the origin and in�nity.

The integral identities are the core of a general approach introduced here to

derive sum rules and physical limitations on various passive physical systems.

Although similar approaches have previously been applied to a wide range

of speci�c applications, this paper is the �rst to deliver a general procedure

together with the necessary proofs. This procedure is described thoroughly,

and exempli�ed with examples from electromagnetic theory.

1 Introduction

The concept of passivity is fundamental in many applications. Intuitively, a pas-
sive system is one that does not in itself produce energy (if the system does not
consume energy either, it is called lossless); hence the energy-content of the output
signal is limited to that of the input. Passivity poses severe constraints, or physical
limitations, on a system. The aim of this paper is to investigate these constraints.
In particular, a general approach to derive sum rules and physical limitations is
presented along with the necessary proofs.

A system on convolution form is fully described by its impulse response, w. The
convolution form is intimately related to the assumptions of linearity, continuity and
time-translational invariance. With the added assumptions of causality and passiv-
ity, the Fourier transform of w is related to a Herglotz function [22, 27] (sometimes
referred to as a Nevanlinna [17], Pick [8], or R-function [20]). The Laplace transform
and the related function class of positive real (PR) functions are commonly preferred
by some authors [37, 39, 41].

As holomorphic mappings between half-planes, Herglotz functions are closely re-
lated to positive harmonic functions and the Hardy space H∞(C+) via the Cayley
transform [9, 25]. Herglotz functions appear in literature concerning continued frac-
tions and the problem of moments [1, 18, 31], but also within functional analysis and
spectral theory for self-adjoint operators [2, 17]. There is a powerful representation
theorem for Herglotz functions, relating them to positive measures on R. Under
certain assumptions on a Herglotz function h it is possible to derive a set of integral
identities, relating weighted integrals of h over in�nite intervals to its expansion
coe�cients at the origin and in�nity.

The integral identities can be used to derive sum rules for various physical sys-
tems, e�ectively relating dynamic behaviour to static and/or high-frequency proper-
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ties. This is very bene�cial, since static properties are often easier to determine than
dynamical behaviour. The representation in itself can also provide information on
a system in the form of dispersion relations; consider e.g., the Kramers-Kronig rela-
tions [22, 24] discussed in Example 5.4. One way to take advantage of the sum rules
is to derive constraints, or physical limitations, by considering �nite frequency inter-
vals. In essence, the physical limitations indicate what can and cannot be expected
from a system.

Some previous examples of sum rules and physical limitations within electromag-
netic theory are in the analysis of matching networks [10], temporal dispersion for
metamaterials [12], broadband electromagnetic interaction with objects [33], band-
width and directivity for antennas of certain sizes [14], extra ordinary transmission
through sub-wavelength apertures [15], radar absorbers [29], high-impedance sur-
faces [4] and frequency selective surfaces [16]. The physical limitations can be very
helpful, both from a theoretical point of view where one wishes to understand what
factors limit the performance, but also from a designer view-point where the physi-
cal limitations can signal if there is room for improvement or not. As the examples
show, similar methods to the one presented in this paper have been widely used to
derive sum rules for systems on convolution form. For many causal systems, Titch-
marsh's theorem can be used to derive dispersion relations in the form of a Hilbert
transform pair [21, 22, 27]. However, some more assumptions are needed in order to
obtain sum rules, see e.g., [22] and references therein. If, for instance, the transfer
function is rational, the Cauchy integral formula may be used, see e.g., [10, 34].

This paper presents an approach to derive sum rules and physical limitations
under the assumption that the system under consideration is causal and passive.
There does not seem to be a previous account on such an approach. At the core
are the integral identities for Herglotz functions, which are proved rigorously in this
paper. Many physical systems obey passivity, and so the results presented here
are applicable to a wide range of problems. The paper is divided into a number of
distinct parts: First, the class of Herglotz functions along with some of its important
properties are reviewed in order to pave the way for the integral identities. After this
section there is a discussion about passive systems and their connection to Herglotz
functions. The proof of the integral identities comes next, and after that follow some
examples which serve to illuminate the theory. Last come some concluding remarks.

2 Herglotz functions and integral identities

The aim of this section is to introduce the class of Herglotz functions and recall
some well known properties of this class. This naturally leads to the introduction of
the integral identities, presented in the end of the section. Start with the de�nition
of a Herglotz function:

De�nition 2.1. A Herglotz function is de�ned as a holomorphic function h : C+ →
C+ ∪ R where C+ = {z : Im z > 0}.

There is a powerful representation theorem for the set of Herglotz functions H
due to Nevanlinna [26], presented in the following form by Cauer [6] (see also [2]):
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Theorem 2.1. A necessary and su�cient condition for a function h to be a Herglotz
function is that

h(z) = βz + α +

∫
R

(
1

ξ − z
− ξ

1 + ξ2

)
dµ(ξ), Im z > 0, (2.1)

where β ≥ 0, α ∈ R and µ is a positive Borel measure such that
∫

R dµ(ξ)/(1 + ξ2) <
∞.1

Note the resemblance of (2.1) to the Hilbert transform [21, 25]. The proof of the
representation theorem is not included here (it can be found in [2]), but in order to
make it believable, (2.1) is cast into the slightly di�erent form

h(z) = βz + α +

∫
R

1 + ξz

ξ − z
dν(ξ), Im z > 0, (2.2)

where dν(ξ) = dµ(ξ)/(1+ξ2) is a positive and �nite measure. The function F (ξ, z) =
(1+ξz)/(ξ−z) is a Herglotz function in z for all ξ ∈ R∪{∞}, and sums of Herglotz
functions are Herglotz functions. The constant β may be interpreted as ν({∞}) (the
point mass of ν at the point∞ of the extended real line R∪{∞}), since F (ξ, z)→ z
as |ξ| → ∞. A real constant α may also be added to a Herglotz function, so the
function given by (2.2) is a Herglotz function. That (2.1) exhausts the set H follows
e.g., from a representation theorem for positive harmonic functions on the unit disk
due to Herglotz [19]. This representation theorem relies on the Riesz representation
theorem for continuous, linear functionals on a compact metric space. Note that the
only way in which a Herglotz function can be real-valued in C+ is if h ≡ α for some
α ∈ R.

From the representation (2.1) it follows that h(z)/z → β, as z→̂∞, where z→̂∞
is a short-hand notation for |z| → ∞ in the Stoltz domain θ ≤ arg z ≤ π − θ for
any θ ∈ (0, π/2] (see Appendix A.1). Hence it makes sense to consider Herglotz
functions with the asymptotic expansion

h(z) =
m=1∑

1−2M

bmz
m + o(z1−2M), as z→̂∞, (2.3)

where bm ∈ R. Since b1 = β, this expansion is always possible for some integer
M ≥ 0. It will simplify notation to de�ne bm = 0 for m > 1. The representation
also implies that zh(z)→ −µ({0}), as z→̂0 (once more, see Appendix A.1), and so
an asymptotic expansion

h(z) =
2N−1∑
n=−1

anz
n + o(z2N−1), as z→̂0, (2.4)

1The following notation is adopted throughout this paper (cf., [3, 30]): If µ is a positive measure
on the Borel subsets E of R and E ∈ E , denote µ(E) =

∫
E

dµ(ξ). The measure is referred to as
µ or dµ. The Lebesgue integral of f with respect to µ is denoted

∫
R f(ξ) dµ(ξ) whenever f is a

complex-valued measurable function on R. The positive measure that maps E to
∫

E
u(ξ) dµ(ξ) for

some non-negative measurable function u on R is denoted udµ.
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where a−1 = −µ({0}) and all an are real, is available for some integer N ≥ 0. The
coe�cients an are de�ned to be zero for n < −1. It will turn out that it su�ces to
consider the asymptotic expansions along the imaginary axis, i.e., for arg z = π/2
(see Lemma 4.2).

At the core of the approach presented in this paper to derive sum rules for passive
systems are the integral identities

lim
ε→0+

lim
y→0+

1

π

∫
ε<|x|<ε−1

Imh(x+ iy)

xp
dx = ap−1− bp−1, p = 2− 2M, 3− 2M, . . . , 2N.

(2.5)
Throughout this paper i denotes the imaginary unit (i2 = −1), and x = Re z and
y = Im z are implicit. Note that the origin is no more special than any other point
on the real line; a Herglotz function shifted to the left or right is still a Herglotz
function. Compositions of Herglotz functions with each other yields new Herglotz
functions (barring the trivial case when h ≡ α), a property that may be exploited
to determine a family of sum rules. See the examples 5.1 and 5.4.

One more point deserves a discussion here: In physical applications it is often
desirable to interpret the left-hand side of (2.5) as an integral over the real line. In
that case the integral must be interpreted in the distributional sense; the generalized
function h(x) = limy→0+ h(x+iy), where the right hand side is interpreted as a limit
of distributions, is a distribution of slow growth. In a discussion following Lemma 4.1
it is shown that, for almost all x ∈ R, the limit limy→0+ Imh(x+iy) exists as a �nite
number. The left-hand side of (2.5) is precisely the integral over the �nite part of
the limit plus possible contributions from singularities in {x : 0 < |x| < ∞}, cf.,
(4.3), Example 5.1 and Example 5.2.

In some special cases the integral identities follow directly from the Cauchy inte-
gral formula [10, 34]. This requires some extra assumptions, e.g., that the Herglotz
function is the restriction to C+ of a rational function. Alternative approaches to
obtain integral identities from the Hilbert transform under di�erent assumptions is
discussed by King [22].

3 Sum rules for passive systems

The integral identities (2.5) o�er an approach to construct sum rules and associated
physical limitations on various systems. The �rst step is to ensure that the system
can be modelled with a Herglotz function. Secondly, the asymptotic expansions (2.3)
and (2.4), here referred to as the high- and low-frequency asymptotic expansions,
have to be determined. This step commonly uses physical arguments, and is speci�c
to each application. Finally, the integrals in (2.5) are bounded to construct the
physical limitations.

Herglotz functions appear in the context of linear, time translational invariant,
continuous, causal and passive systems, see e.g., the paper [39] by Youla et. al., [40]
and [41] by Zemanian, and [37] by Wohlers and Beltrami. These treatises are in
the context of distributions, while a study in a more general setting is given in [42]
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and references therein. A short summary of some important results are given in this
section. See also the book [27] by Nussenzveig.

Let D′ denote the space of distributions of one variable, and let D′0 denote dis-
tributions with compact support [41]. Consider an operator R : D(R) ⊆ D′ → D′.
It is a convolution operator if and only if it is linear, time translational invariant,
and continuous [41, Theorem 5.8-2]:

u(t) = Rv(t) = w ∗ v(t), (3.1)

where t denotes time, ∗ denotes temporal convolution and w ∈ D′ is the impulse
response. The exact de�nitions of linearity, time translational invariance and conti-
nuity can be found in [41]. The output signal u is given by (3.1) at least for all input
signals v ∈ D′ so that convolution with w is de�ned in the sense of Theorems 5.4-1
and 5.7-1 in [41]. Since w ∈ D′, u = w ∗ v at least for all v ∈ D′0. If, for example, w
is in S ′, then u = w ∗ v for all v ∈ S. Here S ′ denotes distributions of slow growth
and S denotes smooth functions of rapid descent [41].

The operator is causal if w is not supported in t < 0, i.e., suppw ⊆ [0,∞).
The last crucial property of the operator is that of passivity, which is considered in
two di�erent forms. The terminology is borrowed from electric circuit theory. Let v
correspond to the electric voltage over some port, and let u correspond to the current
into said port. Assume that the voltage and current are almost time-harmonic with
an amplitude varying over a timescale much larger than the dominating frequency,
so that u and v are complex valued distributions. The power absorbed by the system
at the time t is Reu∗(t)v(t) (if u and v are regular functions), where the superscript
∗ denotes the complex conjugate. The operator R de�ned by u = Rv is called the
admittance operator. If instead the input signal is q = (v + u)/2 and the output is
r =Wq = (v − u)/2, the corresponding operator W is the scattering operator, and
the absorbed power is |q(t)|2 − |r(t)|2. Let D denote the space of smooth functions
with compact support and make the following de�nition [37, 41, 42]:

De�nition 3.1. Let R be a convolution operator with input v and output u = Rv.
De�ne the energy expressions

eadm(T ) = Re

∫ T

−∞
u∗(t)v(t) dt

and

escat(T ) =

∫ T

−∞
|v(t)|2 − |u(t)|2 dt.

The operator is admittance-passive (scatter-passive) if eadm(T ) (escat(T )) is non-
negative for all T ∈ R and v ∈ D.

Note that admittance-passive might as well have been called impedance-passive,
if the electric current was assumed to be input and the voltage output in the example
from which the name stems.

An operator which is admittance-passive or scatter-passive is called passive in
this paper. As it turns out, passivity implies causality for operators on convolution



6

form. Furthermore, in this case the impulse response w must be a distribution of
slow growth, i.e., w ∈ S ′ [37, 41], and thus (3.1) is de�ned for smooth input signals
of rapid descent, v ∈ S. Note that (3.1) is also de�ned for all input signals v with
support bounded on the left, since suppw ⊆ [0,∞) [41].

Since the impulse response is in S ′, its Fourier transform may be de�ned as

〈Fw,ϕ〉 = 〈w,Fϕ〉 , for all ϕ ∈ S,

where 〈f, ϕ〉 is the value in C that f ∈ S ′ assigns to ϕ ∈ S [41]. The Fourier
transform of ϕ is de�ned as

Fϕ(ω) =

∫
R
ϕ(t)eiωt dt.

The Fourier transform of w is the transfer function w̃ of the system, viz.,

w̃(ω) = Fw(ω). (3.2)

The convolution in (3.1) is mapped to multiplication if e.g., v ∈ D′0 or v ∈ S [41].
In that case the frequency domain system is modeled by

ũ(ω) = w̃(ω)ṽ(ω),

where ṽ = Fv and ũ = Fu are the input and output signals, respectively.
The transfer function w̃(ω) is in S ′ for real ω, but since the support of w is

bounded on the left the region of convergence for w̃ contains C+ and w̃ is holomor-
phic there. The Laplace transform is commonly used in system theory, generating
the corresponding transfer function w̃Laplace(s) = w̃(is). Scrutinising the transfer
function, the following theorem is proved (cf., Theorem 10.4-1 in [41], Theorem 2
in [37] and Theorems 7.4-3 and 8.12-1 in [42]):

Theorem 3.1. Let R = w∗ be a convolution operator and let w̃ be given by (3.2). If
R is admittance-passive, then Re w̃(ω) ≥ 0 for all ω ∈ C+. If R is scatter-passive,
then |w̃(ω)| ≤ 1 for all ω ∈ C+. In both cases w̃ is holomorphic in C+.

The converse statement to the theorem can also be made, i.e., that every transfer
function on one of the forms described in the theorem generates an admittance-
passive or scatter-passive operator, respectively [41, Theorem 10.6-1], [42, Theorems
7.5-1 and 8.12-1].

Evidently, the transfer function of an admittance-passive operator multiplied
with the imaginary unit is a Herglotz function, h = iw̃. For scatter-passive operators
a Herglotz function can be constructed from w̃ via the inverse Cayley transform
z 7→ (iz + i)/(1 − z). Alternatively, factorize w̃(ω) = H(ω)B(ω), where H(ω) is a
zero free holomorphic function such that |H(ω)| ≤ 1 for all ω ∈ C+ and

B(ω) =

(
ω − i

ω + i

)k ∏
ωn 6=i

|ω2
n + 1|
ω2
n + 1

ω − ωn
ω − ω∗n

(3.3)
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is a Blaschke product [9, 25]. Here the zeros ωn of w̃ are repeated according to
their multiplicity and k ≥ 0 is the order of the possible zero at ω = i. The conver-
gence factors |ω2

n + 1|/(ω2
n + 1) may be omitted if all |ωn| are bounded by the same

constant or if w̃ satis�es the symmetry (3.7) discussed below. Since w̃ belongs to
the Hardy space H∞(C+), this factorization is always possible due to a theorem of
F. Riesz [9, 25]. Moving on, the function H may be represented as H(ω) = eih(ω)

since it is holomorphic and zero-free on the simply connected domain C+. Here the
holomorphic function h must have a non-negative imaginary part. Note that the
converse to the factorization also holds; a function w̃ is holomorphic and bounded
in magnitude by one in C+ if and only if it is of the form

w̃(ω) = B(ω)eih(ω), (3.4)

where B is a Blaschke product given by (3.3) and h is a Herglotz function.
The formula (3.4) may be inverted:

h(ω) = −i log

(
w̃(ω)

B(ω)

)
,

if the logarithm is de�ned as

logH(z) = ln |H(z0)|+ i argH(z0) +

∫
γz

z0

dH/ dζ

H(ζ)
dζ. (3.5)

Here γzz0 is any piecewise C1 curve from z0 to z in C+. The left-hand side of (2.5)
takes the form

lim
ε→0+

lim
y→0+

∫
ε<|x|<ε−1

Imh(x+ iy)

xp
dx

= lim
ε→0+

lim
y→0+

∫
ε<|x|<ε−1

− ln |w̃(x+ iy)/B(x+ iy)|
xp

dx.

The modulus |B(z)| tends to 1 as z→̂x for almost all x ∈ R (the exceptions are
the x which are accumulation points of the zeros of w̃ [25]). If the origin is not an
accumulation point of the zeros of w̃, the low-frequency asymptotic expansion of h
is

h(ω) = −i log w̃(ω)− argB(0) + i
∞∑
m=1

ωm

m

∑
ωn

ω−mn − ω∗−mn , as ω→̂0. (3.6)

A similar argument may be applied to the high-frequency asymptotic expansion.
The asymptotic expansions of log w̃ must be found by physical arguments, see Ex-
ample 5.3.

For operators R mapping real input to real output, the impulse response w has
to be real. This implies the symmetry

w̃(ω) = w̃∗(−ω∗), (3.7)
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which is transferred to the Herglotz function as

h(ω) = −h∗(−ω∗) (3.8)

if it is de�ned by h = iw̃(ω) (for admittance-passive systems) or by the inverse
Cayley transform of ±w̃ (for scatter-passive systems). The Herglotz function h in
(3.4) must be of the form h = h1 + α, where h1(ω) = −h∗1(−ω∗), and α ∈ R is the
argument of eih(ω) for purely imaginary ω. The symmetry restricts the identities (2.5)
to even powers and simpli�es them to

lim
ε→0+

lim
y→0+

2

π

∫ ε−1

ε

Imh(x+ iy)

x2p̂
dx = a2p̂−1 − b2p̂−1, p̂ = 1−M, . . . , N. (3.9)

In general, the integral identities (2.5) for even p are the starting point to derive
constraints on the system as the non-negative integrand can be bounded by a �nite
frequency interval.

Summing up, there are two essentially equivalent ways to evaluate if a system
can be modeled with a Herglotz function and potentially be constrained according
to (2.5): First, just based on a priori knowledge of linearity, continuity and time-
translational invariance (i.e., the convolution form (3.1)) together with passivity.
This approach can often be applied directly to various physical systems. The second,
frequency domain case is often more involved and requires direct veri�cation that
h(ω) is holomorphic and Imh(ω) ≥ 0 for Imω > 0. Alternative characterizations in
the frequency domain are given in [37].

The high-frequency expansions (2.3) are sometimes hard to evaluate for physical
systems. The high-frequency behaviours of w̃(ω) and h(ω) are determined by the
behaviour of w(t) for arbitrarily short times. To see this, �rst assume that w is a
regular, integrable function. Then w̃ is de�ned as

w̃(ω) =

∫ ∞
0

w(t)eiωt dt =

∫ ε

0

w(t)eiωt dt+

∫ ∞
ε

w(t)eiωt dt.

The second term in the right hand side goes to zero as ω→̂∞ (but not as |ω| → ∞
on the real line) for any ε > 0. This veri�es the statement for w ∈ L1. For a general
w ∈ S ′, consider the equivalent de�nition of w̃(ω) for Imω > 0 [41]:

w̃(ω) =
〈
w(t), λ(t)eiωt

〉
=
〈
w(t), λ1(t)eiωt

〉
+
〈
w(t), λ2(t)eiωt

〉
.

Here λ(t) is a smooth function with support bounded on the left, and such that
λ(t) ≡ 1 for t ≥ 0. It is decomposed into two non-negative smooth functions,
λ = λ1 + λ2, where λ2 ≡ 0 for t ≤ ε for some ε > 0. The second term in the
right hand side vanishes as ω→̂∞. A similar argument may be carried out for the
low-frequency expansion (2.3), essentially relating it to the behaviour of w(t) for
arbitrarily large t.

4 Proof of the integral identities

The main theorem (Theorem 4.1) of this paper contains the integral identities (2.5).
For p = 2, 3, . . . , 2N they rely on two results: The �rst (Corollary 4.1) states that
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the left-hand side of (2.5) is equal to moments of the measure dµ(ξ). The second
(Lemma 4.2) relates the convergence and explicit value of these moments to the
expansion (2.4). A change of variables in the left-hand side of (2.5) enables a proof
for p = 2− 2M, 3− 2M, . . . , 1.

A Herglotz function h(z) is in general not de�ned pointwise for Im z = 0, but
integrals of the type limy→0+

∫
R ϕ(x) Imh(x + iy) dx are well de�ned under certain

conditions on ϕ. The following lemma gives such su�cient conditions. They are
stronger than needed, but weak enough to lead to the needed Corollary 4.1.

This is a well known result, see e.g., Lemma S1.2.1 in [20] and Theorem 11.9
in [25]. The lemma and proof are included here for clarity.

Lemma 4.1. Let h denote a Herglotz function. Suppose that the function ϕ : R→ R
is piecewise C1, and that there is a constant D ≥ 0 such that |ϕ(x)| ≤ D/(1 + x2)
for all x ∈ R. Then it follows that

lim
y→0+

1

π

∫
R
ϕ(x) Imh(x+ iy) dx =

∫
R
ϕ̌(ξ) dµ(ξ), (4.1)

where µ(ξ) is the measure in the representation (2.1) of h, and

ϕ̌(ξ) =

{
ϕ(ξ), if ϕ is continuous at ξ
ϕ(ξ−)+ϕ(ξ+)

2
, otherwise.

(4.2)

Here ϕ(ξ±) = limζ→ξ± ϕ(ζ).

The proof can be found in Appendix A.2. It is readily shown that the limit
may be replaced by any non-tangential limit, i.e., the left-hand side of (4.1) may be
replaced by limu→̂0

∫
R ϕ(x) Imh(x+ u) dx.

Note that the lemma is in some sense an inversion formula; whereas the represen-
tation (2.1) gives the Herglotz function h from the measure µ, (4.1) makes possible
the retrieval of µ when h is known. In fact, the lemma is the Stieltjes inversion
formula in a di�erent form [1, 20, 31]. The inversion is clari�ed by decomposing
the measure as µ = µa + µs, where µa is absolutely continuous with respect to the
Lebesgue measure dξ and µs is singular in the same sense [3]. Recall that E denotes
the set of Borel subsets of R. Then

µa(E) =

∫
E

µ′a(ξ) dξ, for all E ∈ E ,

where the Radon-Nikodym derivative µ′a of µa with respect to dx is a �nite, locally
integrable function, for almost all x ∈ R uniquely de�ned as [3]

µ′a(x) = lim
s→0

µa([x− s, x+ s])

2s
.

�Almost all� is with respect to dx. Furthermore [25],

lim
s→0

µs([x− s, x+ s])

2s
= 0, for almost all x ∈ R.
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Hence Lemma 4.1 implies that

lim
z→̂x

1

π
Imh(z) = lim

s→0

µ([x− s, x+ s])

2s
, for almost all x ∈ R.

See also [20].
In physical applications it is often desirable to move the limit inside the integral

in the left-hand side of (4.1). Clearly, this is possible if µ = µa. Otherwise, set
g(x) = limy→0+ Imh(x+ iy), whenever the limit exists �nitely, to get

lim
y→0+

1

π

∫
R
ϕ(x) Imh(x+ iy) dx =

1

π

∫
R
ϕ(x)g(x) dx+

∫
R
ϕ̌(ξ) dµs(ξ), (4.3)

where the second term on the right hand side represents contributions from singu-
larities on the real line. Equivalently, the left-hand side of (4.1) may be interpreted
as an integral over the real line in the distributional sense.

The �rst result needed for the main theorem is this corollary to Lemma 4.1:

Corollary 4.1. For all Herglotz functions h given by (2.1) it holds that

lim
ε→0+

lim
ε̆→0+

lim
y→0+

1

π

∫ −ε
−ε̆−1

Imh(x+ iy)

xp
dx+ lim

ε→0+
lim
ε̆→0+

lim
y→0+

1

π

∫ ε̆−1

ε

Imh(x+ iy)

xp
dx

=

∫
R

dµ0(ξ)

ξp
, p = 0,±1,±2, . . .

Here µ0 = µ− µ({0})δ0, i.e., the measure in the representation (2.1) with the point
mass in the origin removed. The terms in the left-hand side are not necessarily �nite.
The right-hand side is not de�ned in the case the left-hand side equals −∞+∞.

The proof can be found in Appendix A.3.
Before presenting the second result needed for the main theorem, it is noted that

h may be decomposed as

h(z) = βz + α− µ({0})
z

+

∫
R

(
1

ξ − z
− ξ

1 + ξ2

)
dµ0(ξ), (4.4)

where once again µ0 = µ − µ({0})δ0. This decomposition follows directly from the
fact that zh(z)→ −µ({0}) as z→̂0.

Lemma 4.2. Let h be a Herglotz function given by (2.1) and N ≥ 0 an integer.
Then the following statements are equivalent:

1. The function h has the asymptotic expansion (2.4), i.e.,

h(z) =
2N−1∑
n=−1

anz
n + o(z2N−1), as |z| → 0,

for z in the Stoltz domain θ ≤ arg z ≤ π − θ for any θ ∈ (0, π/2]. Here all an
are real.
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2. Statement 1 is true for θ = π/2.

3. The measure µ0 = µ− µ({0})δ0 satis�es∫
R

dµ0(ξ)

ξ2N(1 + ξ2)
<∞.

The expansion coe�cients in (2.4) equal:

a0 = α +

∫
R

dµ0(ξ)

ξ(1 + ξ2)
, (4.5)

ap−1 = δp,2β +

∫
R

dµ0(ξ)

ξp
, p = 2, 3, . . . , 2N, (4.6)

where δi,j denotes the Kronecker delta.

A similar result is a well-known theorem due to Hamburger and Nevanlinna [1,
Theorem 3.2.1], [31, Theorem 2.2]. See also Lemma 6.1 in [17]. Note that the
case N = 0 is trivial, since then all three statements are true for all Herglotz
functions. The proof for N ≥ 1 can be found in Appendix A.4. The convergence
of
∫

R dµ0(ξ)/(|ξ2N+1|(1 + ξ2)) does guarantee an expansion with real coe�cients up
to o(z2N), but the converse is not true. A counterexample for N = 0 is given by
the measure dµ0(ξ) = µ′0(ξ) dξ where µ′0(ξ) = −(ln |ξ|)−1 when ξ < 1 and µ′0(ξ) = 0
otherwise.

The integral identities for p = 2, 3, . . . 2N follow directly from Corollary 4.1 and
Lemma 4.2 (recall that b1 = β and that bp−1 = 0 for p = 3, 4, . . .). To prove
the identities for p = 2− 2M, 3− 2M, . . . , 1, consider the Herglotz function h̆(z) =
h(−1/z). With obvious notation, its high- and low-frequency asymptotic expansions
are related to those of h as b̆n = (−1)na−n and ăn = (−1)nb−n. Evidently, M̆ = N
and N̆ = M applies. Following (4.4), h̆ admits the representation

h̆(z) =
−β
z

+ α + µ({0})z +

∫
R

1 + ξz−1

1 + ξ2
dν0(ξ), Im z > 0,

where dν0(ξ) = dµ0(ξ)/(1 + ξ2). It would be desirable to make a change of variables
ξ 7→ −1/ξ in the integral. Therefore, consider the continuous bijection j : R\{0} →
R\{0} de�ned by jξ = −1/ξ. It is its own inverse, i.e., j2ξ = ξ. Furthermore, it
maps Borel sets to Borel sets, which makes the following a valid de�nition:

De�nition 4.1. Let j : R\{0} → R\{0} be the mapping that takes ξ to −1/ξ.
Let E(R\{0}) be the Borel sets of R\{0} and M(R\{0}) be the set of measures on
E(R\{0}). De�ne the mapping J : M(R\{0})→ M(R\{0}) through

Jσ(E) = σ(jE),

for all σ ∈ M(R\{0}) and E ∈ E(R\{0}).
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From this de�nition it is clear that J2σ = σ and moreover∫
R\{0}

f(ξ) dσ(ξ) =

∫
R\{0}

f(jξ) d (Jσ)(ξ)

for all measurable functions f on R\{0}, since it holds if f is a simple measurable
function [30]. The representation of h̆ can now be rewritten:

h̆(z) =
−β
z

+ α + µ({0})z +

∫
R

1− ξz
1 + ξ2

d (Jν0)(ξ), Im z > 0.

The function h̆ is thus represented by the measure dν̆0 = d (Jν0), or equivalently
dµ̆0 = ξ2 d (Jµ0). Therefore

lim
y→0+

1

π

∫ ε̆−1

ε

Imh(x+ iy)

xp
dx =

∫
R
ϕ̌p,ε,ε̆(ξ) dµ0(ξ) =

∫
R
ϕ̌p,ε,ε̆(−1/ξ)

dµ̆0(ξ)

ξ2

= lim
y→0+

(−1)p
1

π

∫ −ε̆
−ε−1

Im h̆(x+ iy)

x2−p dx, for p = 0,±1,±2, . . . and 0 < ε < ε̆−1,

(4.7)

and likewise for the corresponding integral over (−ε̆−1,−ε). Here ϕ̌p,ε,ε̆ is given by
(A.2) and (4.2). The proof of the integral identities (2.5) for p = 2−2M, 3−2M, . . . , 0
have now been returned to the case p = 2, 3, . . . , 2N . Here at last is the sought for
theorem:

Theorem 4.1 (Main Theorem). Let h be a Herglotz function. Then it has the
asymptotic expansions (2.3) and (2.4) if and only if the corresponding left-hand
sides in (2.5) are absolutely convergent. In this case the integral identities (2.5)
apply.

The integrals in the left-hand side of (2.5) may be taken over the set {x : ε <
|x| < ∞} when p = 2, 3, . . . , 2N and {x : 0 < |x| < ε−1} when p = 2 − 2M, 3 −
2M, . . . , 0, see Appendix A.3. In this case there is an extra term −δp,0 a−1 in the
right-hand side. This fact is used in the examples below to obtain neater expressions.

Proof. The theorem for p = 2, 3, . . . 2N follows directly from Corollary 4.1 and
Lemma 4.2. For p = 2 − 2M, 3 − 2M, . . . , 0 it also requires (4.7) and the relation
between the asymptotic expansions of h and h̆.

The case p = 1 is special as it requires both high- and low-frequency expansions.
Assume that the asymptotic expansions (2.3) and (2.4) are valid for N = M = 1
and use equation (4.5) for h and h̆:

a0 − b0 = (a0 − α)− (ă0 − ᾰ) =

∫
R

dµ0(ξ)

ξ(1 + ξ2)
−
∫

R

dµ̆0(ξ)

ξ(1 + ξ2)

=

∫
R

dµ0(ξ)

ξ(1 + ξ2)
−
∫

R

ξ dµ0(ξ)

1 + ξ2
=

∫
R

dµ0(ξ)

ξ

= lim
ε→0+

lim
ε̆→0+

lim
y→0+

∫
ε<|x|<ε̆−1

Imh(x+ iy)

x
dx.
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Here all integrals are absolutely convergent. If on the other hand the left-hand sides
of (2.5) are absolutely convergent for p = 0, 1, 2, then the asymptotic expansions
(2.3) and (2.4) clearly hold for N = 1 and M = 1, respectively.

5 Examples

5.1 Elementary Herglotz functions

Examples of elementary Herglotz functions are

βz, C,
−β
z
,
√
z, log(z), i log(1− iz),

with β ≥ 0, ImC ≥ 0, and appropriate branch cuts for √ and log.
Herglotz functions are related to the unit ball of the Hardy space H∞(C+) via

the Cayley transform. An example is eiz which shows that

he(z) =
ieiz + i

1− eiz

is a Herglotz function. Therefore tan z = −1/he(2z) is a Herglotz function as well.
It satis�es the symmetry (3.8) and its asymptotic expansions are tan z = i + o(1),
as z→̂∞, and

tan z = z +
z3

3
+

2z5

15
+ . . . , as z → 0,

respectively. Note that the integer-order terms in the low-frequency asymptotic
expansion are in�nite in number since tan z is holomorphic in a neighbourhood of
the origin. Thus there are identities (3.9) for p̂ = 1, 2, . . .:

lim
ε→0+

lim
y→0

2

π

∫ ∞
ε

Im tan(x+ iy)

x2p̂
dx =


1 for p̂ = 1

1/3 for p̂ = 2

2/15 for p̂ = 3
...

On the real axis except for x = nπ, where n = 0,±1,±2, . . ., tan(x) is C∞ and
Im tan(x) = 0. It is not locally integrable around x = nπ, where tan z has simple
poles. There is an essential singularity at ∞, and the limit as x→∞ of tan(x)/x2p̂

is not de�ned for any p̂. This is thus an illustration of a case where it is di�cult to
use Cauchy integrals or Hilbert transform techniques to derive integral identities of
the form (2.5).

If h1 and h2 are Herglotz functions, then so is the composition h2 ◦ h1 (unless
h1 ≡ α ∈ R). This may be used to derive families of integral identities. Continue
the example with h1 = tan z and construct the new Herglotz function

i log(1− i tan z) =

{
z +O(1), as z → 0

O(1), as z→̂∞,
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yielding an identity of the type (3.9):

lim
ε→0+

lim
y→0+

2

π

∫ ∞
ε

ln |1− i tan(x+ iy)|
x2

dx = 1.

It is also illustrative to consider a case with odd weighting factors in (2.5). The
function ln(1 + tan(z)) has the asymptotic expansions

ln(1 + tan(z)) =

{
z − z2/2 + 2z3/3 + . . . , as z → 0

O(1), as z→̂∞.

This gives the (2.5)-identities

lim
ε→0+

lim
y→0+

1

π

∫
|x|>ε

arg(1 + tan(x+ iy))

xp
dx =


1 for p = 2

−1/2 for p = 3

2/3 for p = 4
...

where it is observed that the negative part of the integrand dominates for p = 3.
There are other manipulations of Herglotz functions that generate new Herglotz
functions as well, e.g., h1 + h2 and

√
h1h2.

5.2 Lossless resonance circuit

Consider a parallel resonance circuit consisting of a lumped inductance, L, and a
lumped capacitance, C, see Figure 1. This is an example of an admittance-passive
system, where the impedance Z(s) = sL/(1+s2LC) is the Laplace-transfer function
of the system in which the electric current over Z is the input and the voltage is the
output. Therefore the transfer function given by (3.2) multiplied by i is a Herglotz
function:

h(ω) = iZ(−iω) = −ω
2
0L

2

(
1

ω − ω0

+
1

ω + ω0

)
=


√

L
C

∑∞
n=0

ω2n+1

ω2n+1
0

, as ω → 0

−
√

L
C

∑∞
n=0

ω2n+1
0

ω2n+1 , as ω →∞,

where ω0 = 1/
√
LC is the resonance frequency of the LC circuit. In general,

the imaginary part of h(ω) = iZ(−iω) corresponds to the power absorbed by the
impedance Z.

Use of the identities (3.9) gives the sum rules

lim
ε→0+

lim
ω′′→0+

2

π

∫ ε−1

ε

Imh(ω′ + iω′′)

ω′2p
dω′ =

√
L

C
ω−2p+1

0 , for p = 0,±1,±2, . . . (5.1)

Note that on the real axis Imh(ω′) = 0 for ω′ 6= ±ω0. All of the contribution to
the integral comes from the singularity, which becomes clear if the left-hand side
of (5.1) is calculated explicitly. A physical interpretation is that even though the
circuit is lossless for any frequency ω′ 6= ω0, input signals of frequency ω′ = ω0 are
�trapped� in its resonance and thus absorbed by Z.
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Figure 1: The lossless resonance circuit of Example 5.2.

Figure 2: The voltage waves traveling along the transmission line has the ampli-
tudes v(t) and u(t), respectively, measured by the load.

5.3 Re�ection coe�cient (Fano's matching equations revis-
ited)

Consider a transmission line ended in a load impedance. The transmission line is
assumed to be distortionless, i.e., its characteristic impedance is not a function of
frequency. Normalise so that the characteristic impedance of the transmission line is
1 and the lumped impedance is Z(s), where s = −iω denotes the Laplace parameter.
The load impedance is assumed to be realisable with a �nite number of linear passive
elements (but otherwise arbitrary), so Z is a rational function.

The re�ection coe�cient ρ(s) = (Z(s) − 1)/(Z(s) + 1) is of interest, since it
determines the power rejected by the load. It is the Laplace-transfer function of
the system where the input v and output u are the amplitudes of the voltage waves
travelling along the transmission line toward or from the load, respectively. See
Figure 2. The Fourier transfer function is w̃(ω) = ρ(−iω), satisfying (3.7). This is
clearly a scatter-passive system, so w̃(ω) is holomorphic and bounded in magnitude
by one in C+.

Assume the asymptotic expansion

−i log(w̃(ω)) = arg w̃(0) + c1ω + c3ω
3 + . . .+ c2N−1ω

2N−1 + o(ω2N−1), as ω → 0,
(5.2)

where arg w̃(0) = limω→̂0 arg w̃(ω) and all ci are real. This is the case e.g., if
the impedance Z can be represented as a lossless network terminated in another
impedance, Z2 (cf., Figure 3), and the network has a transmission zero of order N
at ω = 0 [10]. The low-frequency asymptotic expansion of the Herglotz-function in
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Figure 3: The matching problem as described in [10].

(3.4) is

h(ω) = arg w̃(0) + c1ω + c3ω
3 + . . .+ c2N−1ω

2N−1 + o(ω2N−1)

− argB(0)− 2
∞∑

m=1,3,...

ωm

m

∑
ωn

Imω−mn , as ω → 0,

according to (3.6). In this case only odd terms appear in the sum originating from
the Blaschke product due to the symmetry (3.7). The high-frequency asymptotic
expansion of h is o(ω) since w̃ is a rational function. This implies the (3.9)-identities

lim
ε→0+

lim
ω′′→0+

2

π

∫ ∞
ε

− ln |w̃(ω′ + iω′′)|
ω′2p̂

dω′

= c2p̂−1 −
2

2p̂− 1

∑
ωn

Imω1−2p̂
n , for p̂ = 1, 2, . . . , N.

If ρ has no zeros at the imaginary axis, the limit as ω′′ → 0+ may be moved inside the
integral. These are the original Fano matching equations, derived with the Cauchy
integral formula in [10]. In said paper they are used to derive the best possible
match of a source to a load over an open frequency interval, and how the lossless
matching network should be constructed to obtain this best match. See Figure 3.
When ρ is not a rational function (consider e.g., the scattering of electromagnetic
waves by a permittive object), the Cauchy integral formula-approach falls short.
Theorem 4.1 guarantees integral identities as long as asymptotic expansions of the
type (5.2) are valid as ω→̂0 and/or ω→̂∞, respectively. It should be mentioned
that Fano's results have been treated more generally also in e.g., [5].

5.4 Kramers-Kronig relations and ε near-zero materials

Suppose there is an isotropic constitutive relation on convolution form relating the
electric �eld E = Eê to the electric displacement D = Dê [24]:

D(t) = ε0χ ∗ E(t). (5.3)

The permittivity of free space is denoted ε0, and a possible instantaneous response is
included in χ(t) as a term ε∞δ(t), where ε∞ ≥ 0. Let the input be v(t) = ε0E(t) and
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the output be u(t) = ∂D/∂t. The impulse response of this system is w(t) = ∂χ/∂t.
The system is admittance-passive if the material is passive, since that means that
the energy expression [24]

e(T ) =

∫ T

−∞
E(t)

∂D

∂t
dt

is non-negative for all E ∈ D and T ∈ R. The Herglotz function given by h = iw̃
is h(ω) = ωε(ω), where ε(ω) = Fχ(ω). It satis�es the symmetry (3.8), since w(t) is
assumed to be real.

Lemma 4.1 may be applied to the representation (2.1), since |1/(ξ− z)− ξ/(1 +
ξ2)| ≤ Dz/(1 + ξ2) for any �xed z ∈ C+. This gives

ωε(ω) = ωε∞+ lim
ψ→0+

1

π

∫
R

[
1

ξ − ω
− ξ

1 + ξ2

][
ψRe ε(ξ+iψ)+ξ Im ε(ξ+iψ)

]
dξ, (5.4)

for Imω > 0. This is one of the two Kramers-Kronig relations [22, 24] in a general
form, where no assumptions other than those of convolution form and passivity has
been made for the constitutive relation in the time-domain. It may be simpli�ed if
ε(ω′) = limω′′→0+ ε(ω′+iω′′) is su�ciently well-behaved. Here the notation ω′ = Reω
and ω′′ = Imω has been used. If for instance ε(ω′) is a continuous and bounded
function, the limit may be moved inside the integral in (5.4):

ωε(ω) = ωε∞ +
1

π

∫
R

[
1

ξ − ω
− ξ

1 + ξ2

]
ξ Im ε(ξ) dξ, Imω > 0.

Assuming that Im ε(ω′) = O(1/ω′) as ω′ → ±∞ and employing the fact that Im ε(ω′)
is odd gives (after division with ω)

ε(ω) = ε∞ +
1

π

∫
R

1

ξ − ω
Im ε(ξ) dξ, Imω > 0.

Letting ω′′ → 0 and using the distributional limit limω′′→0(ξ − ω′ − iω′′)−1 = P(ξ −
ω′)−1 + iπδ(ξ − ω′), where P is the Cauchy principal value, yields

ε(ω′) = ε∞ + lim
ε→0

1

π

∫
|ξ−ω′|>ε

Im ε(ξ)

ξ − ω′
dξ + i Im ε(ω′).

The real part of this equation is the Kramers-Kronig relation (5.4) as presented in
e.g., [24]:

Re ε(ω′) = ε∞ + lim
ε→0

1

π

∫
|ξ−ω′|>ε

Im ε(ξ)

ξ − ω′
dξ.

The assumption that ε(ω′) is continuous rules out the possibility of static conduc-
tivity, which however can be included with a small modi�cation of the arguments.
Assuming that h(ω) = ωε(0) + o(ω), as ω→̂0, there is a sum rule of the type (3.9)
for p̂ = 1 (also presented in e.g., [24]):

lim
ε→0+

2

π

∫ ∞
ε

Im ε(ω′)

ω′
dω′ = ε(0)− ε∞.
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It shows that the losses are related to the di�erence between the static and instanta-
neous responses of the medium. The Kramers-Kronig relations and their connection
to Herglotz functions are also discussed in [22, 27, 36, 38].

In applications such as high-impedance surfaces and waveguides, it is desirable to
have so called ε near-zero materials [32], i.e., materials with ε(ω′) ≈ 0 in a frequency
interval around some center frequency ω0. De�ne the Herglotz function

h1(ω) =
ω

ω0

ε(ω) =

{
o(ω−1), as ω→̂0
ω
ω0
ε∞ + o(ω), as ω→̂∞.

(5.5)

Compositions of Herglotz functions may be used to derive limitations di�erent from
those that h1 would produce on its own. In the present case the area of interest is
the frequency region where h1(ω) ≈ 0. A promising function is

h∆(z) =
1

π

∫ ∆

−∆

1

ξ − z
dξ =

1

π
ln
z −∆

z + ∆
=

{
i + o(1), as ω → 0
−2∆
πz

+ o(z−1), as ω →∞,
(5.6)

designed such that Imh∆(z) ≈ 1 for Im z ≈ 0 and |Re z| ≤ ∆, see Figure 4. Here
the logarithm has its branch cut along the negative imaginary axis. The asymptotic
expansions of the composition are

h∆(h1(ω)) =

{
O(1), as ω→̂0
−2ω0∆
ωπε∞

+ o(ω−1), as ω→̂∞,

yielding the following sum rule for p̂ = 0:

lim
ε→0+

lim
ω′′→0+

∫ ε−1

0

Imh∆(h1(ω′ + iω′′)) dω′

= lim
ε→0+

lim
ω′′→0+

∫ ε−1

0

arg

(
(ω′ + iω′′)ε∞ −∆ω0

(ω′ + iω′′)ε∞ −∆ω0

)
dω′ =

ω0∆

ε∞
. (5.7)

An illustration of limω′′→0 Imh∆(h1(ω′+iω′′)) for a permittivity function ε described
by a Drude model can be found in Figure 5.

Let the frequency interval be B = [ω0(1−BF/2), ω0(1+BF/2)], where BF denotes
the fractional bandwidth. Assume that h1(ω′) = limω′′→0+ h1(ω′+iω′′) exists �nitely
in this interval and let ∆ = supω′∈B |h1(ω′)|. Then infω′∈B limω′′→0+ Imh∆(h1(ω′ +
iω′′)) ≥ 1/2 which yields the bound

sup
ω′∈B
|h1(ω′)| ≥ BF

2
ε∞

or

sup
ω′∈B
|ε(ω′)| ≥ BF

2 +BF

ε∞.

This shows that ε near-zero materials are dispersive and that the deviation from
zero is proportional to the fractional bandwidth when BF � 1.
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Figure 4: The function h∆(x + iy) given by (5.6) illustrated by its limit as y → 0
to the left and the contours of Imh∆(x+ iy) to the right.
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Figure 5: The left �gure depicts the real and imaginary part of h1(ω′) =
limω′′→0 h1(ω′ + iω′′), where h1 is given by (5.5) and the permittivity is described
by the Drude model ε(ω) = 1 − (ω/ω0 (ω/ω0 − 0.01i))−1. The right �gure depicts
the integrand Imh∆(h1(ω′)) = limω′′→0 Imh∆(h1(ω′ + iω′′)) in (5.7) for this choice
of ε(ω) and ∆ = 1/2.

5.5 Extinction cross section

This example revisits a set of sum rules for the extinction cross sections of certain
passive scattering objects. The sum rules were �rst presented for linearly polarized
waves in [33], and later generalized to elliptical polarizations in [13]. A time-domain
approach to derive them was adopted in [11]. Here they are reviewed in the special
case of a spherically symmetric scatterer; the material properties of the scatterer
considered is only dependent on the distance r from the origin in the center of the
sphere. Furthermore, the isotropic constitutive relation for the electric �ux density
in the object is on convolution form as described in (5.3), and the material is passive.
For simplicity, the sphere is assumed to be non-magnetic and surrounded by free
space.

Let a plane electromagnetic wave, propagating in the k̂-direction, impinge on
the sphere. The electric �eld of such a plane wave in the time domain is Ei(t, r) =
E0(t − r · k̂/c). Here r denotes the spatial coordinate, k̂ is of unit length, and c
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denotes the speed of light in free space. The electric �eld in the frequency domain
may be written Ẽi(k) = eir·kk̂Ẽ0(k), where the wavenumber k = ω/c is used instead
of the angular frequency ω.

The extinction cross section σe(k) is a measure of the amount of energy in the
incoming wave that is scattered or absorbed when the wave interacts with the sphere:

ee(∞) =
c

2πη0

∫ ∞
−∞

σe(k)|Ẽi(k)|2 dk.

Here η0 is the wave impedance of free space. The extinct energy, and hence also
the extinction cross section, must be non-negative when the material of the sphere
is passive. In fact, σe(k) is given by the imaginary part of a Herglotz function h(k)
due to the optical theorem [11, 13, 33]:

σe(k) = Imh(k).

In turn, the Herglotz function is given by

h(k) =
4π

k
S̃(k; 0),

where S̃(k; 0) describes the scattered �eld in the forward direction. This Herglotz
function satis�es the symmetry (3.8).

For most materials, it can be argued that h(k) = O(1) as k→̂∞ [11, 33]. If the
sphere is coated with metal (or some other material with static conductivity), then
the low-frequency behaviour of h(k) is described by

h(k) = 4πa3k +O(k2), as k → 0,

where a is the outer radius. Note that the dominating term does not depend on the
type of metal used. Consequently, the following sum rule applies for the extinction
cross section of a sphere coated with metal:

lim
ε→0+

lim
k′′→0+

∫ ∞
ε

σe(k
′ + ik′′)

k′2
dk′ = 2π2a3.

Alternatively, express the extinction cross section as a function of the wavelength,
λ = 2π/k:

lim
ε→0+

lim
λ′′→0+

∫ ε−1

0

σe,λ(λ
′ − iλ′′) dλ′ = 4π3a3. (5.8)

To exemplify the sum rule (5.8), consider the spherical nanoshells depicted in
Figure 6. A nanoshell is a dielectric core covered by a thin coat of metal, used
for instance for biomedical imaging or treatment of tumours. Depending on the
application, the core radius, shell thickness, and materials are varied to make the
nanoshells scatter or absorb di�erent parts of the visible light and near-infrared
(NIR) spectra. In [7, 28], the nanoshells are spherical cores of silicon dioxide (SiO2)
covered with gold. The radius of the core is typically around 60 nm, and the gold
shell is 5 − 20 nm thick. The extinction cross sections for four such spheres are
plotted in Figure 6. Following the sum rule (5.8), the integrated extinction for any
nanoshells is 4π3a3. This is con�rmed by a numerical integration.
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Figure 6: The normalised extinction cross section for four nanoshells, consisting
of spherical silicon dioxide (SiO2) cores with coats of gold. The outer radius is
a = 75 nm and the shell thicknesses is d = 5, 10, 15 and 20 nm, respectively. The
extinction cross section σe was calculated from a closed form expression, using a
Matlab-script for a Lorentz-Drude model for gold by Ung et al. [35]. The silicon
dioxide core is modeled as being lossless with a constant complex permittivity ε(ω) ≡
2.25, which is a good model at least for wavelengths 0.4�1.1µm [23]. Following the
sum rule (5.8), the integrated extinction for all four nanoshells is 4π3a3, which is
con�rmed by a numerical integration.

6 Conclusions

Many physical systems are modeled as a rule that assigns an output signal to every
input signal. It is often natural to let the space of admissible input signals be some
subset of the space of distributions, since generalized functions such as the delta
function should be allowed. Under the general assumptions of linearity, continuity
and time-translational invariance, such a system is on convolution form, and thus
fully described by its impulse response. The assumption of passivity (and thereby
causality, as described in Section 3), imply that the transfer function is related to
a Herglotz function [37, 39, 41]. In many areas it is convenient to analyse systems
in the frequency domain, where the transfer function plays the role of the impulse
response.

A set of integral identities for Herglotz functions is presented and proved in this
paper, showing that weighted integrals of Herglotz functions over in�nite intervals
are determined by their high- and low-frequency asymptotic expansions. The iden-
tities rely on a well-known representation theorem for Herglotz functions [2], and
furthermore makes use of results from the classical problem of moments [1, 31].

The integral identities make possible a general approach to derive sum rules for
passive systems. The �rst step is to use the assumptions listed above to assure
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that the transfer function is related to a Hergloz function, h. Secondly, the low-
and/or high-frequency asymptotic expansions of h must be determined. Finally,
physical limitations may be derived by considering �nite frequency intervals. The
sum rules e�ectively relate dynamic behaviour to static and/or high frequency prop-
erties, which must be found by physical arguments. However, since static properties
are often easier to determine than dynamical behaviour in various applications, this
is bene�cial. The physical limitations indicate what can and cannot be expected
from certain physical systems.

Sum rules, or more general dispersion relations, and physical limitations, have
been widely used in e.g., electromagnetic theory. Two famous examples are the
Kramers-Kronig relations for the frequency dependence of the electric permittiv-
ity [22, 24], discussed in Example 5.4, and Fano's matching equations [10], considered
in Example 5.3. There are more recent examples as well, see e.g., [4, 12, 14�16, 29, 33].

For many causal systems on convolution form, dispersion relations in the form of
a Hilbert transform pair follow from Titchmarsh's theorem [21, 22, 27]. Sometimes,
sum rules can be derived from the dispersion relations [22]. Many previous papers
use the Cauchy integral formula, see e.g., [10, 34]. This approach demands e.g.,
that the transfer function w̃ is rational. The present paper seems to be the �rst to
describe and rigorously prove a general approach to obtain sum rules for systems on
convolution form under the assumption of passivity. It should be stressed that since
the di�erent approaches works under di�erent assumptions, they are complementary
rather than in competition. One advantage of the Herglotz function-approach pre-
sented in this paper is that a wide range of physical systems obey passivity. Another
advantage is that it gives an insight into how compositions of Herglotz functions may
be used to derive new physical limitations, see Example 5.4.
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Appendix A Proofs

A.1 Calculation of the limits limz→̂∞ h(z)/z and limz→̂0 zh(z)

For all z in the Stoltz domain θ ≤ arg z ≤ π − θ, |ξ − z| is greater than or equal to
both |z| sin θ and |ξ| sin θ. See Figure 7. Thus

|1 + ξz|
|z(ξ − z)|

≤ 1 + 1/|z|2

sin θ
,
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Figure 7: The Stoltz domain, {z : θ ≤ arg z ≤ π − θ} for some θ ∈ (0, π/2].

and (2.2) implies that

lim
z→̂∞

h(z)

z
= β + lim

z→̂∞

∫
R

1 + ξz

z(ξ − z)
dν(ξ) = β,

where Theorem A.2 has been used to move the limit inside the integral. Likewise,
|z(1 + ξz)|/|ξ − z| ≤ (1 + |z|2)/ sin θ, which together with Theorem A.2 gives

lim
z→̂0

zh(z) = lim
z→̂0

∫
R

z(1 + ξz)

ξ − z
dν(ξ) = −ν({0}) = −µ({0}).

A.2 Proof of Lemma 4.1

The left-hand side of (4.1) is

lim
y→0+

∫
R
ϕ(x)

(
βy +

∫
R

y

(x− ξ)2 + y2
dµ(ξ)

)
dx

= lim
y→0+

∫
R

∫
R
ϕ(x)

y

(x− ξ)2 + y2
dx dµ(ξ).

Here Fubini's Theorem [30, pp. 164�165] has been used to change the order of
integration.

Theorem A.2 is used to show that the order of the limit and the integrals may
be interchanged. First set

fy(ξ) =

∫
R
ϕ(x)

y

(x− ξ)2 + y2
dx.

To �nd an integrable majorant g ∈ L1(µ) such that |fy(ξ)| ≤ g(ξ) for all ξ ∈ R and
y ≥ 0, handle the cases |ξ| < 2 and |ξ| ≥ 2 separately. For |ξ| < 2, the boundedness
of ϕ guarantees that

|fy(ξ)| ≤
∫

R
D

y

(x− ξ)2 + y2
dx = Dπ.
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For |ξ| ≥ 2, divide the integral into |x− ξ| < 1 and |x− ξ| ≥ 1:∣∣∣∣∫
|x−ξ|<1

ϕ(x)
y

(x− ξ)2 + y2
dx

∣∣∣∣ ≤ 2D

ξ2 + 1

∫
R

y

(x− ξ)2 + y2
dx =

2πD

ξ2 + 1

and∣∣∣∣∫
|x−ξ|≥1

ϕ(x)
y

(x− ξ)2 + y2
dx

∣∣∣∣ ≤ ∫
|x−ξ|≥1

D

1 + x2

y

(x− ξ)2
dx

= Dy

[
ξ

(ξ2 + 1)2
ln

∣∣∣∣(ξ − 1)2 + 1

(ξ + 1)2 + 1

∣∣∣∣+
2

1 + ξ2
+

ξ2 − 1

(ξ2 + 1)2

π

2

]
≤ D1y

ξ2 + 1
.

Summing up, for all y less than some arbitrary constant there is a constant D2 ≥ 0
such that

|fy(ξ)| ≤ g(ξ) =
D2

ξ2 + 1
,

which is an integrable majorant. Since limy→0+ fy(ξ) exists for all ξ ∈ R (shown
below), the conditions of Theorem A.2 are ful�lled, and the limit may be moved
inside the �rst integral.

Now let
fy,ξ(x) = (ϕ(x)− ϕ(ξ))

y

(x− ξ)2 + y2
.

First suppose that ξ is not a point of discontinuity for ϕ(ξ), so that there is some
K > 0 such that ϕ(x) is continuous for x ∈ [ξ − K, ξ + K]. The constant K may
be chosen so that ϕ is continuously di�erentiable in said interval, except possibly at
the point x = ξ. For x ∈ [ξ −K, ξ +K],

|fy,ξ(x)| ≤ max
|ζ−ξ|≤K

|ϕ′(ζ)||x− ξ| y

(x− ξ)2 + y2
≤ D3,

for some constant D3 ≥ 0. Here it has been used that |ϕ′(x)| is bounded in [ξ −
K, ξ +K], and that |sy/(s2 + y2)| is bounded. An integrable majorant for fy,ξ(x) is

|fy,ξ(x)| ≤ gξ(x) =

{
D3, for |x− ξ| ≤ K

2D
(x−ξ)2 , otherwise, for all y ≤ 1.

Furthermore, the limit limy→0+ fy,ξ(x) exists and is zero for all x ∈ R. Thus Theo-
rem A.2 applies and states that

lim
y→0+

∫
R

(ϕ(x)− ϕ(ξ))
y

(x− ξ)2 + y2
dx = 0,

which is equivalent to

lim
y→0+

∫
R
ϕ(x)

y

(x− ξ)2 + y2
dx = πϕ(ξ).

This proves the lemma for continuous ϕ.
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Now suppose that ξ is a point where ϕ(ξ) has a discontinuity. Divide ϕ(x) into
two parts:

ϕ(x) =
1

2
(ϕ(x) + ϕ(2ξ − x))︸ ︷︷ ︸

ϕeven(x)

+
1

2
(ϕ(x)− ϕ(2ξ − x))︸ ︷︷ ︸

ϕodd(x)

,

where ϕeven is even in x with respect to an origin at the point x = ξ, and likewise
ϕodd is odd in the same sense. Therefore∫

R
ϕodd(x)

y

(x− ξ)2 + y2
dx = 0, for all y ≥ 0. (A.1)

Since the discontinuities of ϕ are isolated points, ϕeven is continuous in a neigh-
bourhood of ξ and continuously di�erentiable except possibly at the point x = ξ.
Furthermore, ϕeven(ξ) = ϕ̌(ξ). The same reasoning as for continuous ϕ results in

lim
y→0+

∫
R
ϕeven(x)

y

(x− ξ)2 + y2
dx = πϕ̌(ξ).

Together with (A.1) this concludes the proof of the lemma for ϕ that are not con-
tinuous everywhere.

A.3 Proof of Corollary 4.1

Let p = 0,±1,±2, . . . and set

ϕp,ε,ε̆(x) =


0, x < ε
x−p, ε < x < ε̆−1

0, x > ε̆−1.
(A.2)

This function satis�es the conditions of Lemma 4.1 for each �xed pair ε > 0, ε̆ > 0.
Thus

lim
y→0+

1

π

∫ ε̆−1

ε

Imh(x+ iy)

xp
dx =

∫
R
ϕ̌p,ε,ε̆(ξ) dµ(ξ),

where ϕ̌p,ε,ε̆(ξ) is given by (4.2). The function ϕ̌p,ε,ε̆ is monotonically increasing as
ε→ 0+ and/or ε̆→ 0+. The limit is:

lim
ε→0+

lim
ε̆→0+

ϕ̌p,ε,ε̆(ξ) =

{
0, ξ ≤ 0
ξ−p, ξ > 0.

Implement Theorem A.1 to get

lim
ε→0+

lim
ε̆→0+

∫
R
ϕ̌p,ε,ε̆(ξ) dµ(ξ) =

∫
ξ>0

dµ(ξ)

ξp
, p = 0,±1,±2, . . .

The integral over (−ε̆−1,−ε) is treated in the same manner. This proves the lemma,
seeing that ∫

ξ<0

dµ(ξ)

ξp
+

∫
ξ>0

dµ(ξ)

ξp
=

∫
R

dµ0(ξ)

ξp
,
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unless the left-hand side is −∞+∞. In this case the right-hand side is not de�ned.
For p = 2, 3, . . ., the order of the limits ε̆ → 0+ and y → 0+ may be inter-

changed. Likewise, for p = 0,−1,−2, . . . the order of the limits ε→ 0+ and y → 0+

may be interchanged. In that case there is an extra term δp,0 µ({0}) in the right-
hand side. This is readily proved by considering the functions limε̆→0+ ϕp,ε,ε̆(x) and
limε→0+ ϕp,ε,ε̆(x), respectively.

A.4 Proof of Lemma 4.2

Evidently, statement 1 always implies 2. Here it will be shown that 2 implies 3 and
that 3 implies 1. Start with the case N = 1 and assume that 3 holds. Consider the
Herglotz function h0(z) = h(z) + µ{0}/z, represented by the measure µ0. Set

a0 = lim
z→̂0

h0(z) = α + lim
z→̂0

∫
R

1 + ξz

(ξ − z)(1 + ξ2)
dµ0(ξ) = α +

∫
R

1

ξ(1 + ξ2)
dµ0(ξ).

Here Theorem A.2 could be used to move the limit under the integral sign, since for
z restricted to the Stoltz domain θ ≤ arg z ≤ π − θ it holds that |ξ − z| ≥ |ξ| sin θ
(see Appendix A.1) and

∫
R ξ
−2 dµ0(ξ) is �nite by assumption. Use this expression

for a0:

lim
z→̂0

h0(z)− a0

z
= β + lim

z→̂0

∫
R

dµ0(ξ)

(ξ − z)ξ
= β +

∫
R

dµ0(ξ)

ξ2
= a1,

where Theorem A.2 was used once more. Summing up, statement 1 is true.
Now assume that statement 2 is valid (still N = 1), i.e.,

h0(iy) = a0 + a1iy + o(y), as y → 0+,

where a0, a1 ∈ R. From this condition it follows that

lim
y→0+

h0(iy)− h∗0(iy)

2iy
= lim

y→0+

(
a1 +

o(y)

iy

)
= a1.

But on the other hand,

lim
y→0+

h0(iy)− h∗0(iy)

2iy
= β + lim

y→0+

∫
R

dµ0(ξ)

ξ2 + y2
= β +

∫
R

dµ0(ξ)

ξ2
.

The exchange of the limit and integral is motivated by Theorem A.1. Ergo,∫
R

dµ0(ξ)

ξ2
= a1 − β <∞,

and thus statement 3 is true.
The equivalence of the statements for all N = 0, 1, 2, . . . is proved by induction.

For this reason, suppose that the equivalence has been proven for some N ≥ 1, and
that statement 3 holds for N + 1:∫

R

dµ0(ξ)

ξ2N+2
<∞.
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Consider the function

h1(z) =
h0(z)− a0 − a1z

z2
.

This function may be expressed as:

h1(z) =
1

z2

[
βz + α +

∫
R

(
1

ξ − z
− ξ

1 + ξ2

)
dµ0(ξ)

−
(
α +

∫
R

dµ0(ξ)

ξ(1 + ξ2)

)
− z

(
β +

∫
R

dµ0(ξ)

ξ2

)]
=

∫
R

dµ1(ξ)

ξ − z
,

where dµ1(ξ) = dµ0(ξ)/ξ2. Hence h1 is a Herglotz function, and furthermore∫
R

dµ1(ξ)

ξ2N
<∞,

so h1 has the asymptotic expansion

h1(z) =
2N−1∑
n=0

an+2z
n + o(z2N−1) as z→̂0,

where all an are real. This proves statement 1 for N + 1.
On the other hand, assume that statement 2 holds for N + 1, where N ≥ 1.

Consider the function h1 once more. The induction assumption ensures that∫
R

dµ1(ξ)

ξ2N
=

∫
R

dµ0(ξ)

ξ2N+2
<∞,

which proves that statement 3 is true for N + 1.
Finally, note that from the representation of h1 it is clear that

a3 =

∫
R

dµ1(ξ)

ξ2
=

∫
R

dµ0(ξ)

ξ4
.

Furthermore,

a2 = lim
z→̂0

h1(z) =

∫
R

dµ1(ξ)

ξ
=

∫
R

dµ0(ξ)

ξ3
.

This procedure may be continued for a4, a5, . . . , a2N−1 to prove (4.6), concluding the
proof of the lemma.

A.5 Auxiliary theorems

The following theorem can be found in e.g., [30], page 21:

Theorem A.1 (Lebesgue's Monotone Convergence Theorem). Let {fn} be a se-
quence of real-valued measurable functions on X, and suppose that

0 ≤ f1(x) ≤ f2(x) ≤ . . . ≤ ∞, for all x ∈ X



28

and
fn(x)→ f(x), as n→∞ for all x ∈ X.

Then f is measurable, and

lim
n→∞

∫
X

fn(x) dµ(x) =

∫
X

f(x) dµ(x).

The next theorem is also available in e.g., [30], page 26:

Theorem A.2 (Lebesgue's Dominated Convergence Theorem). Suppose {fn} is a
sequence of complex-valued measurable functions on X such that

f(x) = lim
n→∞

fn(x)

exists for every x ∈ X. If there is a function g ∈ L1(µ) such that

|fn(x)| ≤ g(x), for all n = 1, 2, . . . and x ∈ X,

then f ∈ L1(µ),

lim
n→∞

∫
X

|fn(x)− f(x)| dµ(x) = 0

and

lim
n→∞

∫
X

fn(x) dµ(x) =

∫
X

f(x) dµ(x).
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