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Abstract

A constitutive model of thermo-mechanically coupled finite strain plasticity considering
martensitic phase transformation is presented. The model is formulated within a thermo-
dynamic framework, giving a physically sound format where the thermodynamic mechan-
ical and chemical forces that drive the phase transformation are conveniently identifiable.
The phase fraction is treated through an internal variable approach and the first law of
thermodynamics allows a consistent treatment of the internal heat generation due to dis-
sipation of inelastic work. The model is calibrated against experimental data on a Ni-Cr
steel of AISI304-type, allowing illustrative simulations to be performed. It becomes clear
that the thermal effects considered in the present formulation have a significant impact
on the material behavior. This is seen, not least, in the effects found on forming limit
diagrams, also considered in the present paper.

Keywords: Phase transformation, thermo-mechanical processes, finite strain plasticity,
AISI304, forming limit diagram, FLD

1 Introduction

Phase transformations in metals have a major impact on vital engineering aspects of the
material behavior such as ductility, strength and formability. In addition, materials under-
going microstructural changes in terms of diffusionless austenite-martensite transformation
have in recent years gained increasing interest in relation to shape memory alloys (SMA:s)
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and alloys prone to transformation-induced plasticity (TRIP steels). The present work fo-
cuses on such diffusionless transformation of an austenitic parent phase into a martensitic.
This process was considered already in 1965 by Greenwood and Johnson (1965) who iden-
tified a plastic straining in the weaker austenite phase due to the volume increase of the
growing, relatively harder, martensite phase. This plastic straining, which may occur even
though the externally applied load is in itself insufficient to induce plastic deformation in the
material, has subsequently become known as the Greenwood-Johnson effect. Apart from
this volumetric deformation, it was also shown by Magee (1969) that an externally applied
stress may initiate the formation of selected martensite variants (24 martensite variants are
geometrically possible based on the austenitic fcc lattice), resulting in an orientation along
preferred directions, a phenomena known as the Magee effect. The martensite formation
will thus involve both deviatoric and volumetric deformation components in contrast to
the isochoric plastic deformation.

During inelastic deformation of the material, internal heat generation will occur due to
dissipation from the plastic slip process and also due to dissipation related to the phase
transformation. The martensitic phase transformation is strongly influenced by the ther-
mal conditions. The austenite phase retained at room temperature is metastable and a
lowering of the temperature below the M temperature can result in spontaneous trans-
formation of austenite into martensite as the thermally activated transformation driving
force becomes sufficiently large. If the temperature on the other hand is further increased
above room temperature, the austenite phase becomes increasingly stable and it is possible
to identify a temperature My, above which no transformation can be induced by plastic
deformation. The kinetics of the temperature dependent martensitic transformation was
considered in the early model of Olson and Cohen (1975). This model was later modified
by e.g. Stringfellow et al. (1992) to include the effects of the stress state on the transfor-
mation kinetics. These earlier models often use an explicit formulation of the growth of the
martensitic phase, based on the number of martensite nucleation sites in the microstruc-
ture and the probability of nucleation at those sites. Several models of later date have also
been published, of which the works of Leblond et al. (1986a,b); Fischer et al. (1998); Petit-
Grostabussiat et al. (2004); Turteltaub and Suiker (2005); Mohr and Jacquemin (2008);
Wolff et al. (2008); Geijselaers and Perdahcioglu (2009); Lee et al. (2009); Mahnken et al.
(2009) could be mentioned. These models consider phenomenological forms of martensite
evolution, coaxial with the applied stress and proportional to the transformation rate. In
other model approaches, the microscopic transformation strain is established in a micro
region of the material and some homogenization procedure is then employed to obtain the
macroscopic transformation strain. Models formulated in this way are presented by e.g.
Levitas (1998); Fischer et al. (2000); Levitas et al. (2002). Thermo-mechanically coupled
models, including martensitic phase transformation, are discussed by e.g. Christ and Reese
(2009) and Rengarajan et al. (1998) in relation to shape memory alloys and by Silva et al.
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(2004) in relation to quenching.

The present thermo-mechanically coupled constitutive model of martensitic phase trans-
formation is closely related to the isothermal formulation presented in Hallberg et al. (2007).
In this previous paper, a coherent model of finite strain Jo-plasticity and phase transfor-
mation was established using a transformation potential function based on both the second
and third invariant of the deviatoric stress tensor. The model was presented together with
calibration details, integration of the constitutive relations, formulation of the algorithmic
tangent stiffness tensor and numerical simulation examples. The present model is an exten-
sion of the previous work, including thermal effects such as the internal heat generation due
to the dissipation of internal inelastic work and heat released during phase transformation.
As it appears, this consistent treatment of the thermal effects and the temperature influ-
ence on the evolution of a martensitic phase in the austenitic parent phase, gives important
additions to the previous model with significant impact on the material behavior.

Starting with a section on the finite strain kinematics, the present constitutive model is
then formulated within a thermodynamic framework using the first and second law. This
allows identification of the thermodynamic mechanical and chemical forces, driving the
phase transformation towards a lowering of the Gibbs energy in the material microstructure.
Using a continuum-mechanical formulation, the present model is suitable for large-scale
simulations of processes where the austenitic material is influenced by martensite formation.
This is shown by illustrative numerical simulation examples, following a calibration of the
model against experimental data on a Ni-Cr steel of AISI304-type. In addition, since
austenitic stainless steels are important in sheet metal forming operations such as deep-
drawing, the effects of martensite evolution on forming limit diagrams of such a material
is studied. Some concluding remarks then finishes the paper.

2 Kinematics

The motion of a particle is described by a nonlinear function ¢ = (X, %), which maps
the position of particles in the reference configuration X at time ¢ to their corresponding
position in the current configuration . The deformation gradient, defined as F = Ox¢
maps line segments in the neighborhood of X from the reference configuration to the
current configuration. The deformation gradient will also provide a relation between the
densities in the different configurations, J = po/p = det(F'), where p and p, are the
densities in the current and reference configuration, respectively, and where det (-) denotes
the determinant. To separate reversible deformation from irreversible, a multiplicative
split of the deformation gradient is adopted, cf. Kroner (1959) and Lee and Liu (1967),
according to

F=FF" (1)
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where the reversible part, F", includes elastic deformation as well as thermal volumetric
deformation. The irreversible part, F*, includes plastic deformation due to slip and defor-
mations due to phase transformation. The velocity gradient, | = FF™! is split into one
part belonging to the recoverable deformation and one part belonging to the irreversible
deformation, i.e

=0 +1" where I'=FF~' and [*=FF Fr1p—! (2)

For coupled thermo-mechanical problems, the use of a thermodynamical framework pro-
vides a base for the balances laws, i.e. the equations of motion and the heat equation.
One of the benefits of this approach is that the coupling between the balance laws and the
constitutive equations, for instance in terms of the heat generation, appears naturally. The
Helmholtz energy is used to describe the energy stored in the material microstructure and
it is dependent on state variables such as the absolute temperature 6. These state variables
are quantities that define the elastic part of the deformation and also variables related to
the deformation hardening and the phase fraction. The quantities which define the me-
chanical state of the body, including the phase fraction, are collected in a set A. Without
yet specifying the specific expression for the Helmholtz energy, this function is assumed to
appear as ) = (A, ). The first law of thermodynamics, which ensures energy balance,
can with the Helmholtz energy function be reformulated as the heat equation. Following
Hakansson et al. (2005) the heat equation takes the following form

2
000A

where Dyeen is the mechanical part of the dissipation, which is given by the constitutive

pocé = Drech + por + po CA— Jdiv(q) (3)

model, and where (-) : (-) denotes tensorial contraction over two indices. A fixed Cartesian
base is used for all tensorial quantities throughout the present work. Also found in (3), r
is a heat source and q is the heat flux. In addition, div (-) denotes the divergence operator.
The specific heat, ¢, is also introduced as ¢ = —6%. The mechanical dissipation originates
from the dissipation inequality which follows from the second law of thermodynamics. The
dissipation inequality can be expressed as
o . J0Oo
D=71:d—py=—A———2>0 4
oA 6ox ~ @)
where 7 is the Kirchhoff stress tensor and d the rate of deformation tensor, i.e. d = sym(1).
Note that the notation sym (-) was introduced here to indicate the symmetrical part of a
tensorial quantity. The dissipation can be conceptually split into two parts where the
mechanical component
oy

Dmech:T:d_pOa—A'A (5)
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act as a heat source in the heat equation (3) and is determined from the choice of the

constitutive model, cf. Ristinmaa et al. (2007). The second component is the thermal
J 99
T 9ox

—kg—g, as the constitutive law for the heat flux. Here, the parameter k£ denotes the heat

conduction. The heat equation in (3) together with the equations of motion

dissipation Derm = which is always positive due to the use of Fourier’s law, q =

div(e) —b=0 (6)

serves as the base for the coupled finite element equations in the thermo-mechanical prob-
lem. In (6), the Cauchy stress tensor is denoted by o = 7/J and b represents the body
force vector.

3 Constitutive model

The present constitutive model is formulated to capture material mechanisms such as the
plastic flow due to slip by dislocation movements, changes in the crystallographic structure
due to diffusionless phase transformation driven by mechanical and thermal loading, as well
as heat generation due to the just mentioned mechanisms. The temperature dependence
of the material properties are also considered in the model. The material consists of two
different phases, austenite and martensite, with the volume fraction of martensite being
denoted by z, i.e. when z = 1 the material consists purely of martensite and when z = 0
only austenite is present. The general form of the Helmholtz energy function is a mixture
between the two phases, i.e. ¥ = (1 — 2)1, + 2z, where the subscripts a and m denote
the austenite phase and the martensite phase, respectively. The elastic behavior of the two
phases can be regarded as equal and it is also assumed that the hardening in the phases is
the same. This reasoning results in the following form of the Helmholtz energy function

potb = ot + pot™ + (1 — 2)potb "™ + zpoh ™ (7)

where the function is split into one part, ¥", which corresponds to the elastic and thermal
expansion behavior, and one part, ¥, which includes the plastic hardening. The last two
terms, Y™ and ™ are the chemical energies of the respective phases, cf. Fischer
et al. (1994). This internally stored energy is different for the two phases and it will
influence the heat generation during phase transformation as well as the transformation
itself. In the previous section it was assumed that the Helmholtz energy was a function of
the temperature and the variable set A. As in Hallberg et al. (2007), the Helmholtz energy
function is here chosen to be a function on the form ¢ = (b, J", k,0, z), where b =
(J)"2BF*F'" is the isochoric — denoted by a subscript i — reversible left Cauchy-Green
deformation tensor and J" = det(F") the reversible Jacobian. In addition,  is an internal
variable related to the isotropic hardening. The reversible part of the Helmholtz energy is
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chosen in order to obtain a Neo-Hookean elastic behavior controlled by a generalized shear
modulus G and a corresponding bulk modulus K, i.e.
1

—(J?=1)—In(J)| + %G [tr (B]) — 3] — 30K <Jr + i) Af (8)

1
r:_K
Py =K |3 9 Jr

where tr(-) was introduced to denote the trace of a tensorial quantity. The last term
in (8) specifies the thermal expansion controlled by the thermal expansion coefficient «
and the difference between the current temperature and an initial temperature €., i.e.
A0 = 0 — 0. The plastic hardening is included in the irreversible part of the energy
function through

. 1
po™ = SHA? (9)
In the chemical part of the Helmholtz energy, the specific heat ¢, and the entropy sy are
included, parameters which are different for austenite and martensite as indicated by the
superscripts a and m. The specific form of the chemical energy components, a form also
used by e.g. Fu et al. (1993), are taken as

6
p0¢;}1em (9) = —pOSS (9 — 00) + poC; |:(9 — 90) —0In 0—0:| (10)
and
0
pow;}llem (9) = —pOSgl (9 — 90) + pngl |i(9 — (90) —f@ln 9—} (11)
0

where 6 is a reference temperature. By using the arguments of Coleman and Gurtin (1967)
the mechanical dissipation can now, employing the specified format of the Helmholtz energy
function, be expressed as

Dmech =T: Sym(lir) — Rk — QZ (12)
where it is used that
o

o, oY _
abrb ) R_pO% and Q—Pog (13)

The Kirchhoff stress tensor can with (8) and (13) be retrieved as

T = 2po
r,dev 1 2 3 T 1
T = Gb} +§K(J —1)1—5(1}( T+ o | Adl (14)

where (-)9 denotes the deviatoric part of a tensorial quantity and where 1 is the second
order identity tensor. It is assumed that the evolution of the irreversible deformation due to
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plastic slip and the one due to phase transformation can take place independently of each
other. It is then possible to split the irreversible velocity gradient into two components,
giving I'" = IP + I, where the superscript p denotes the component related to plastic slip
and accordingly a superscript tr denotes the component related to phase transformation.
At this stage it is also reasonable to assume that I* appears with a format given by the
rate of the phase transformation multiplied by a tensor function that can be dependent
on various quantities such as the stress state, the temperature and so on. Thus, I can be
expressed as

I" =1° + h(T,K,2,0)% (15)

Several authors, e.g. Levitas et al. (1998); Ganghoffer and Simonsson (1998); Fischer et al.
(2000), formulate the deformation related to phase transformation based on a microme-
chanical reasoning. In the present macroscopic model, however, a different approach is
taken. Instead of establishing the deformation gradient related to phase transformation,
the evolution law for the transformation velocity gradient I is derived, as shown below.
The multiplicative decomposition of the deformation gradient in the present macroscopic
model, cf. (1), includes a homogenized change of the crystal lattices due to phase transfor-
mation and due to plastic slip. It is, however, the elastic part of the deformation gradient
that give rise to the stresses in the material. The use of a transformation potential function
and related aspects of model kinematics are discussed in detail in the preceding paper by
the authors, cf. Hallberg et al. (2007).

The split of I according to (15) results in a mechanical dissipation that can be sepa-
rated into one part belonging to the slip deformation and one part belonging to the phase
transformation, i.e. (12) can be reformulated as

Diech = T:sym(l’) — Rk + (T7:h — Q)2 (16)

A yield surface of von Mises type is used to determine the onset of plastic deformation due
to slip. In comparison with a “standard” elasto-plastic model, the yield surface does not
define the elastic region since the irreversible deformation due to phase transformation can
occur independently of the plastic deformation. The von Mises yield surface, with isotropic
hardening, is here expressed as

fZO‘eﬂr—O'y(R,Z,e) =0 (17)
where the effective stress is defined as g = ( %Tdev : Tdev)l/ 2. The current yield stress is
assumed to have the format

oy(R, z,0) = 0y(z,0) + R(k) (18)

The initial yield stress, oy, for austenite and martensite, respectively, are vastly different,
the yield stress of the martensite phase being several times higher than that for the austenite
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phase. Thus, the constitutive model on the continuum level must predict a homogenized
behavior of a material containing an arbitrary fraction of martensite. Mixture laws for
the yield stresses of the phases are discussed by e.g. Leblond et al. (1986b) and Petit-
Grostabussiat et al. (2004). In the present model it is assumed that the homogenized yield
stress of the material can be described by a relation of the form

oy (2,0) =m (2)p(0) (19)

where p(#) is a temperature-dependent function and where m(z) is a function of the volume
fraction of martensite with m(0) = 1. The situation m = 1 corresponds to p(f) = 03,(0),
the initial yield stress of the austenitic phase. The forms of the functions m and p are
specified later on, in relation to the calibration of the model.
The non-associated evolution laws for x and I” are based on the following potential
function
1 R?
g(t,R,2,0) = f(T,R,2,0) + = — (20)
2Ry
where R, is a material parameter related to the saturation level of the deformation hard-
ening. The potential function (20) leads to the evolution laws being defined as

Jg

87‘ dev

sym (I?) = A (21)

and

N
OR

K= (22)
where A is a plastic multiplier. These evolution laws, together with the form of the com-
ponent '™ of the Helmholtz energy function stated in (9), result in an exponential form of
hardening.

Transformation of the austenitic phase into martensite can occur independently of the
plastic deformation. The transformation is modeled as an irreversible process and reversed
transformation, for instance due to heat treatments, is not considered. The transforma-
tion is driven by a thermodynamic force, F', conjugated to Z, which can be found in the
mechanical dissipation (16). This thermodynamic force is defined as

F = Fmech + Fchem (23)

where the mechanical component of the driving force is denoted by Fca, = 7 : h and where
the corresponding chemical driving force is denoted by Fyenm = —@, cf. also (13). On a
micromechanical level, austenitic micro-regions change their lattice structure into that of
martensite when the thermodynamic force acting on the region exceeds a certain threshold
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value, cf. Fischer (1990). On a macroscale, the homogenized condition for transformation
results in a transformation surface similar to a plastic yield surface, i.e.

h=F — Fyms(2,0) =0 (24)

where the threshold Fi,.,s due to the homogenization is similar to a hardening, however
dependent on z. The specific form of F},..s is chosen in connection with the calibration of
the model. The explicit form of transformation condition is to a large extent described by
h, found in (15). In the present model, h is chosen in the same way as in Hallberg et al.
(2007), where an associated form of the evolution law for I'" is used, giving
oh
I" = th = i— 25

th=io- (25)
The format of the transformation condition h also follows the formulation given in Hallberg
et al. (2007), i.e.

~ 1
h=K (565 + 55]1) —Q — Fians(2,0) =0 (26)
where
1/2
_ J3
Oeff = 3J2 + 3bF (27)

dev ~dev dev)

The Js-invariant in (27) is defined as J3 = ttr(79vr9Vr4e) Additional material param-

eters are introduced in (26) and (27) through K, § and b. The values of these parameters
are determined during the calibration of the model. The parameter b controls the shape
of the transformation surface in the deviatoric plane. If b is chosen as 0, the circular von
Mises surface is obtained, but to better reflect the Magee effect a non-circular surface is
used.

In Olson and Cohen (1972), two conceptually different phase transformation processes
are identified as “stress-assisted” and “strain-induced” transformation, respectively. The
present model incorporates both of these processes since phase transformation and plastic-
ity may occur independently of each other in the model, each being defined in stress-space
by a transformation surface and a yield surface, respectively. This allows strain-induced
and stress-assisted phase transformation to be phenomenologically captured. It is noted
that at stresses below the yield stress of austenite, phase transformation can take place
in the model and result in “stress-assisted” transformation. Correspondingly, at stresses
above the yield limit of austenite, phase transformation takes place together with plastic
straining, giving “strain-induced” transformation. In addition, the temperature dependence
of the model results in a formulation that allows phase transformation at low temperatures

DOI: 10.1016/j.ijsolstr.2010.02.019 9
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without plastic deformation and also, at higher temperatures, increasing stress is required
to drive the transformation and hence increasing plastic deformation is present during the
phase transformation. The fact that phase transformation and plastic slip can occur inde-
pendently of each other can be further illustrated by defining a domain P(z, #) related to
plasticity according to

P(z,0) ={(r,R) | f (7, R, 2,0) < 0} (28)

where f is the yield function. The boundary of P(z,0), i.e. f = 0, constitutes the yield
surface. Note that, in contrast to classical plasticity, P(z, ) does not define a purely elastic
region in the present model, since phase transition is permitted to take place within P(z, ).

In a corresponding manner, a domain 7 () related to phase transformation can also be
defined as

T(0) = {(F,2) [ h(F,2,0) < 0} (29)

where h is the transformation potential function. With the two domains defined by (28)
and (29), respectively, a purely elastic domain can also be defined as

E=PNT (30)

It is concluded that phase transition can take place within P also when no plastic strains
develop. It can also be concluded that a plastic response can occur within the domain 7
also when no transformation strains are developed.

4 Numerical examples

The calibration of the model is done in order to capture the characteristics of an austenitic
Ni-Cr steel (AISI304). The choice of material parameters are based on the work described
in Hallberg et al. (2007). A few alterations have been made here, however, in order to
include the temperature dependence into the model. The elastic properties of the model
are given by K = 167 GPa, G = 77 GPa and the thermal expansion coefficient is set to
a =1 x107° 1/K. The initial yield stress of the austenite phase, cf. (19), is for simplicity
assumed to vary linearly with temperature according to

o2,(8) = 690 — 1.250 MPa (31)

yO0

an approximation valid in the temperature interval between 213 and 313 K, and considered
here. In Hallberg et al. (2007), it was found that the z-dependence of the initial yield stress
of the dual phase material, cf. (19), could be captured by a relation on the form

m(z) =1+ 0.81 [exp(1.64z) — 1] (32)

DOI: 10.1016/j.ijsolstr.2010.02.019 10
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Mixture laws on this format have been previously used also by e.g. Ludwigson and Berger
(1969); Ramirez et al. (1992). In addition, the parameters related to the hardening are set
to R = 1250 MPa and H = 2350 MPa.

The shape of the transformation surface in the deviatoric plane is in (27) determined
by the parameter b = 0.35 while the hydrostatic behavior is controlled by the parameter
0 = 0.29. These parameters are found from the micro-mechanical analysis described in
Hallberg et al. (2007).

The procedure for calibrating the transformation threshold function Fi .y in (24) follows
Hallberg et al. (2007). In the present case the resulting Fi,.,s function is slightly modified
due to the temperature dependence and is chosen as

Ftr%(zje) =c1+ 2 (0) [1 — exp(—c32)] [1 — caIn(1 — 2)] (33)

with the following parameters

214

which were obtained through numerical optimization, giving the appearance of the trans-

0 13.3
c1 = 1246 MPa, ¢y (0) = 198 + (—) MPa, ¢3 =295, ¢4 =27

formation threshold function as shown in Fig. 1. It should be noted that the present
calibration of Fi;., is only valid within the considered temperature range of 213-313 K.
Considering (33) and Fig. 1a, it can be noted that the z-dependence of Fi,,,s involves two
terms. The exponential term describes the behavior at low values of z while the second,
logarithmic, term dictates the behavior at higher values of z. This formulation also ensures
that the volume fraction of martensite is kept in the interval of 0 to 1. The temperature
dependence of the transformation threshold is given by the coefficient ¢ in (33). In Fig. 1b,
this temperature dependence is illustrated for fixed levels of martensite content. At lower
temperatures the function is relatively constant, while Fi,.,s will increase with increas-
ing temperature to restrict the progression of phase transformation under such thermal
conditions. The parameter K , entering the transformation potential function (26), is set
to 0.185. For the specification of the parameters in (10) and (11), the choice made by
Berveiller and Fischer (1997) is used. In the formulation of the model only the difference
between s} and s is used, giving s§ — si* = 0.106 J/kgK with a reference temperature of
6y = 440 K. Expression (7) together with (10) and (11) result in a global specific heat given
by ¢ = (1 — z)c} + 2zc}'. The parameters are set to ¢ = 450 J/kgK and ¢} = 415 J /kgK.

Other parameters also required in the coupled thermo-mechanical analysis are the mass
density py = 7800 kg/m? and the heat conductivity k = 45 W/mK.

4.1 Uniaxial tension

To illustrate the calibration of the model, uniaxial tensile test have been simulated at

1

a strain rate of 1 s7". The results can be seen in Fig. 2. Isothermal conditions were
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Figure 1: (a) Transformation threshold function Fi,.,s as a function of the volume fraction
of martensite for constant temperatures, shown by: o — 213 K, x — 233 K, 0 - 293 K
and ¢ — 313 K. (b) Transformation threshold function Fi,.,s as a function of the absolute
temperature. The constant martensite fractions are o — 0.6, x — 0.4, o— 0.2 and ¢ — 0.01.
The experimental data is taken from Onyuna (2003).

defined in the simulations to allow comparison with the material response reported from
experimental measurements on an austenitic steel of AISI304-type, cf. Onyuna (2003). The

a) b)
1600 1
—- 1400
% 0.8f
@2 0.6
I
= N
wn
>y 0.4r
=
]
E
O 0.2
y%
20 1 1 1 1 1 1 0 n T 1 1 1
0 01 02 03 04 05 06 07 0o 01 02 03 04 05 06 07
Logarithmic strain Logarithmic strain

Figure 2: (a) Mechanical response in uniaxial tension. The experimental data is taken from
Onyuna (2003). (b) The volume fraction of martensite as a function of the logarithmic
strain. The initial temperatures are o — 213 K, x — 233 K, o— 293 K and ¢ — 313 K.

temperature evolution due to dissipation from plastic deformation and due to heat released
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during phase transformation will influence the progress of phase transformation and the
mechanical response to a large extent. To be able to trace the effects of the temperature
evolution, simulations of the material response in thermo-mechanically coupled uniaxial
tensile tests were also conducted. The results are presented in Figs. 3 and 4. Fig. 3 also
shows some experimental results from tensile testing of SUS304 stainless steel conducted
at room temperature, taken from Talonen et al. (2005), verifying the magnitude of the
simulated temperature increase. The simulations have different initial temperatures and
thermo-mechanically coupled conditions are assumed. Compared to the isothermal analyses
in Fig. 2, it can be clearly seen in Fig. 4b how the evolving temperature reduces the growth
of a martensitic phase.
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Figure 3: Temperature evolution in thermo-mechanically coupled simulations of uniaxial
tensile tests at different initial temperatures. Thermo-mechanically coupled conditions are
assumed. Solid line — 213 K, dashed line — 233 K, dash-dotted line — 293 K and dotted
line — 313 K. The circles represent experimental data obtained at room temperature, taken
from Talonen et al. (2005).

4.2 Forming limit diagram

The forming limit diagram (FLD) is a tool often encountered in relation to sheet metal
forming. The diagram is used to predict the risk that a given strain state will trigger
localized deformation, possibly leading to subsequent fracture or locally inadequate sheet
thickness. The FLD can in this way be used to evaluate the formability of a certain
material. Here, the forming limit diagrams are calculated for both isothermal and adiabatic
conditions, using the present model. The FLD for a biaxially loaded plate is based on the
formation of a shear band in the plate, cf. Fig. 5. To determine the onset of shear
band formation, the method given by Marciniak and Kuczynski (1967) is used. To fulfill
deformation compatibility and stress equilibrium along the edge of the shear band, the
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Figure 4: Results from thermo-mechanically coupled uniaxial tensile tests simulated at
different initial temperatures. Thermo-mechanically coupled conditions are assumed. (a)
Mechanical response. (b) Volume fraction of martensite. Solid lines — 213 K, dashed lines
— 233 K, dash-dotted lines — 293 K and dotted lines — 313 K.

Band of
reduced
thickness, h®

Figure 5: Illustration of quantities used in the FLD calculations. A plate of thickness h
is loaded in the plane. The plate contains an initial inhomogeneity in the form of a band
with reduced thickness h’. This band is oriented an angle & from the principal axes z; and
x5 of the plate.

following relations must be fulfilled
Fby = Fop + damg (34)
and

MaPYgh® = mg Pagh (35)

DOI: 10.1016/j.ijsolstr.2010.02.019 14



International Journal of Solids and Structures 2010, 47(11-12), 1580-1591

Quantities inside the shear band are denoted by a superscript b. Plane stress is assumed
and Greek indices are used to indicate that the relations above hold in the plane, i.e. the
indices take on the values 1 and 2. The orientation of the shear band in the reference
configuration is defined by m = [cos(§) sin(§)], where ¢ is the angle of the shear band, cf.
Fig. 5. The first Piola-Kirchhoff stress tensor is denoted by P = 7F~7 while h and h" are
the thicknesses of the plate outside of, and inside, the shear band. The relation hP/h is
typically chosen in the range of 0.99 to 0.999. To obtain the FLD, the initiation of shear
band formation is determined for a spectrum of different relations between the logarithmic
strains in the 11 and 22 directions. In the algorithm for finding the initiation of the
shear band, the material is proportionally loaded with a specific ratio between these strain
components. In each load step, equation (35) is solved with the additional requirements set
by (34). In the non-linear system of equations (35) that arise in each load step, everything
is known except the first Piola-Kirchhoff stress tensor in the shear band, Polfﬁ, which is
given by the deformation gradient in the shear band, F 5,@7 and coherent internal variables.
Thus, the unknown quantities to be solved for are d,. The material is loaded until the ratio
between the rate of effective plastic strain inside and outside of the shear band, respectively,
exceeds a factor of 10. For a given relation between the logarithmic strains in the 11 and
22 directions, the angle & of the shear band is not known in advance. To find the correct
angle, (35) is solved for a wide range of angles and the value of £ that is the first to trigger
localization is chosen as the direction of the shear band.

To be able to compare how the FLD changes under varying conditions, a study is per-
formed based on four different initial temperatures; 213 K, 233 K, 293 K and 313 K. Each
of these analyses are conducted under both adiabatic as well as isothermal conditions,
where in the latter case, any heat generation is excluded. The results from these analyses
are shown in Fig. 6 and Fig. 7. Together with the FLD:s, the fraction of martensite z,
is shown by figures in the middle rows and the corresponding temperature rise is shown
in the bottom row figures. The fractions of martensite and the temperature histories are
taken from the final state, i.e. at the onset of shear band formation when the interruption
criterion is met. In Figs. 6 and 7, the dash-dotted lines show the strain paths followed
during the simulated deep-drawing process discussed below. The highest formability is
found for the isothermal analysis with an initial temperature of 293 K. This may seem sur-
prising since the hardening of the material, due to the high rate of phase transformation, is
considerably more pronounced for the lower temperatures, cf. Fig. 2. This phenomenon is,
however, related to the effect discussed in Hallberg et al. (2007), where the microstructural
transformation into the stiffer martensite phase stabilizes the localization and thereby de-
lays it. For the lower temperatures, nearly all transformation takes place well before any
initialization of shear bands has occurred, while for the higher temperatures and especially
at 293 K, transformation still takes place after the onset of localization. From Figs. 6 and
7, it is also obvious that this stabilizing effect is restricted by the internal heat genera-
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tion. The temperature rise leads to a decrease both in the rate of phase transformation
and also of the yield stress, giving thermal softening. The decrease in the rate of phase
transformation is clearly seen in the middle row figures. It can be noted that the volume
fraction of martensite as seen in the middle-row graphs of Figs. 6 and 7 correspond well
to the uniaxial simulation results shown in Fig. 4b. Accordingly, the temperature levels
in the bottom-row graphs of Figs. 6 and 7 reflect well the heat generation in the uniaxial
case, cf. Fig. 3.

4.3 Deep-drawing process

A fully thermo-mechanically coupled cup deep-drawing process, as illustrated in Fig. 8, is
considered. A metal sheet of initial thickness 1 mm and initial diameter 152 mm is used
and the punch velocity is set to v = 10 mm/s. The geometrical parameters in Fig. 8 are
set to dy=60 mm, ;=6 mm, do=65 mm and r,=6 mm, respectively. A Coulomb friction
coefficient of 0.1 is used at all contacting surfaces except between the punch and the plate
where a value of 0.15 is used. The present model is implemented as a user subroutine in
Abaqus Standard and is solved as a fully coupled system. The metal sheet is discretized
using thermo-mechanically coupled four-node, bi-linear and axisymmetric elements of type
CAXA4T. The thickness of the sheet is discretized using 16 elements while 800 elements are
used in the radial direction.

Fig. 9 shows the punch force versus punch displacement obtained from simulations, con-
ducted at four different initial temperatures under isothermal as well as thermo-mechanically
coupled conditions. As expected, the isothermal simulations allow more martensite to be
formed since no temperature increase is present to reduce the extent of the phase trans-
formation, cf. Figs. 10 and 11. The occurrence of martensite again helps in stabilizing
the localization region of the material, thereby delaying the progression of localized defor-
mation. Note that the strain paths followed in the localization region of the plate during
the deep-drawing process are plotted with dash-dotted lines in the FLD-graphs in Figs. 6
and 7, showing a good agreement between the deep-drawing simulations and the FLD-
calculations. Circles indicate the strain state at which localization is initiated in the cup
material. These strain paths are obtained by using the logarithmic strains in the drawing
direction and in the circumferential direction of the cup. As the direction of the localiza-
tion is known, a simple criterion for detecting the onset of localization in the finite element
simulations is used. This criterion is taken as the difference between the rates of the log-
arithmic strain in the drawing direction and in the circumferential direction being greater
than 5.5. This value is chosen since it gives a good agreement between the isothermal
FLD curves and the isothermal deep-drawing simulations. Initiation of localization by this
criterion is shown by circles in the graphs of Fig. 9. It can be noted that the strain states
at initiation of localized deformation for the thermo-mechanically coupled deep-drawing
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simulations appear between the FLD-curves corresponding to adiabatic and isothermal
conditions, respectively. This is to be expected since heat conduction will limit the tem-
perature increase — as compared to the adiabatic situation — in the region of localized
deformation and thereby allow some additional martensite to form and postpone further
localization there. The exact locations of the localization points, as shown by circles in
Figs. 6 and 7, are to some extent influenced by the chosen mesh discretization and also
by the number of solution steps taken during the simulations. The precise strain state at
initial localization is, however, expected to occur close to the strain states indicated.

The thermo-mechanically coupled simulations involve less martensite due to the sub-
stantial temperature increase. The effect of this reduced phase transformation is clearly
seen in Fig. 9 where localization occurs much earlier in the thermo-mechanically coupled
simulations as compared to the isothermal simulations. Comparing the graphs in Fig. 9
it can be noted that a maximum formability of the material is obtained for isothermal
conditions at an initial temperature of 293 K, consistent with the conclusions drawn from
the FLD calculations. Under thermo-mechanically coupled conditions, the most beneficial
initial temperature for forming is less obvious. A maximum drawing-depth of 31.0 mm be-
fore localization — when considering heat generation — is obtained for an initial temperature
of 313 K. This depth is, however, only slightly greater than the 30-30.3 mm achieved at
the other three initial temperatures studied. The fact that the maximum drawing-depth,
i.e. the maximum formability, is relatively unaffected by the initial temperature during
the thermo-mechanically coupled simulations is reflected by the results in the FLD-graphs
seen in Figs. 6 and 7. The FLD-lines corresponding to the adiabatic case lie at almost the
same strain level, irrespective of the initial temperature.

The volume fractions of martensite under isothermal conditions are illustrated in Fig. 10
and for the thermo-mechanically coupled case in Fig. 11. The temperature increase ob-
tained from the thermo-mechanically coupled simulations are shown in Fig. 12. The last
deformation state shown in each of these figures correspond to the localization criterion
described previously, i.e. the same states as are shown by circles in Figs. 6, 7 and 9. The
deep-drawing results presented in Figs. 10, 11 and 12 further illustrates the influence of in-
teracting phase transformation and heat generation on the formability of the sheet material.
The maximum formability obtained for a temperature of 293 K and under isothermal con-
ditions is clearly shown in Fig. 10c. Correspondingly, the situation at thermo-mechanically
coupled conditions where no clearly distinguishable temperature for maximum formabil-
ity can be found, is shown by the illustrations in Fig. 11. Comparing Figs. 11 and 12, a
substantial heat generation can be noted in the localization region, reducing the progres-
sion of phase transformation and thereby also reducing the stabilizing effect of martensite
formation on the localization region. Note that the temperature increase at the onset of
localization in the thermo-mechanically coupled deep-drawing simulations is higher than
that found in the FLD diagrams in Figs. 6 and 7. The reason for this is that localization
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occur at a later state — i.e. at larger strains — in the thermo-mechanically coupled case,
allowing more heat to be generated. The strong influence of temperature on the phase
transformation and thereby also on the formability of the sheet can be utilized in practical
applications for obtaining optimal formability. This can be achieved by controlling the
temperature distribution in the forming tools, allowing some control over the martensite
distribution in the final product. This is, however, not reflected in the present simulations
since no heat conduction between the plate and the tools is included.

5 Concluding remarks

A constitutive model of thermo-mechanically coupled finite strain plasticity influenced by
martensitic phase transformation is presented. The model is formulated within a thermo-
dynamic framework, giving a physically sound format where the thermodynamic forces,
driving the phase transformation based on a lowering of the Gibbs energy, are conveniently
identifiable. The model is calibrated against a common Ni-Cr steel of AISI304-type, al-
lowing illustrative simulations to be performed. It becomes clear that the thermal effects
considered in the present formulation have much impact on the material behavior. This is
seen, not least, in the impact found on forming limit diagrams, an important engineering
tool in sheet metal forming and considered in the present work.
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Figure 6: The left and right columns represents analyses with an initial temperature of
213 K and 233 K, respectively. The figures in the top row are the forming limit diagrams.
The figures in the middle row shows the fraction of martensite at the onset of shear band
formation and the bottom row figures show the temperature change at shear band initiation.
Solid lines represent results from adiabatic simulations and dashed lines correspond to
isothermal simulations. Similar results for the initial temperatures 293 K and 313 K are
shown in Fig. 7. Dash-dotted lines show the strain paths traced in the localization region
of the plate during the simulations of cup deep-drawing processes, also considered in the

present work.
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Figure 7: Fig. 6 continued. The left and right columns represents analysis with an initial

temperature of 293 K and 313 K, respectively.
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Figure 8: Geometry of the deep-drawing setup.

Initial temperature 213 K Initial temperature 233 K

w
o
o

w
o
o

N
al
o
N
al
o

-
|
1
|

N
o
o
N
o
o

=
o
o

Punch force [kN]
\\
Punch force [kN]

a1
o
a1
o

(=]
(=]

10 20 30 40 50 60 10 20 30 40 50 60

Drawing depth [mm] Drawing depth [mm]

o
o

Initial temperature 293 K Initial temperature 313 K

w
o
o

w
o
o

. 250 . 250
< Z
=% 200} = 500)

3 3

8 150 ieemm 8 5 150
£ PP ! £ e
e = == = =z == v‘

S 100t ~ S 100t < ‘

£ £

50 50
o ‘ ‘ ‘ ‘ ‘ o ‘ ‘ ‘ ‘ ‘
0 10 20 30 40 50 60 0 10 20 30 40 50 60
Drawing depth [mm|] Drawing depth [mm|]

Figure 9: Punch force versus drawing depth at four different initial temperatures. Solid
lines show results from thermo-mechanically coupled simulations and dashed lines represent
results from isothermal simulations. Circles show the point where localized deformation is
initiated.

DOI: 10.1016/j.ijsolstr.2010.02.019 24



International Journal of Solids and Structures 2010, 47(11-12), 1580-1591

Localization region ) . .
Localization region

Localization region )

Localization region

Figure 10: Results from isothermal deep-drawing simulations showing the volume fraction
of martensite in the material. (a) Temperature 213 K, drawing-depths 10.0, 25.0 and
43.0 mm. (b) Temperature 233 K, drawing-depths 10.0, 25.0 and 50.1 mm. (c¢) Temperature
293 K, drawing-depths 10.0, 25.0 and 52.6 mm. (d) Temperature 313 K, drawing-depths
10.0, 25.0 and 36.0 mm.
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Figure 11: Results from thermo-mechanically coupled deep-drawing simulations showing
the volume fraction of martensite in the material. (a) Initial temperature 213 K, drawing-
depths 10.0, 25.0 and 30.3 mm. (b) Initial temperature 233 K, drawing-depths 10.0, 25.0
and 30.0 mm. (c) Initial temperature 293 K, drawing-depths 10.0, 25.0 and 30.3 mm. (d)
Initial temperature 313 K, drawing-depths 10.0, 25.0 and 31.0 mm.
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Figure 12: Results from thermo-mechanically coupled deep-drawing simulations showing
the temperature increase in the material. (a) Initial temperature 213 K, drawing-depths
10.0, 25.0 and 30.3 mm. (b) Initial temperature 233 K, drawing-depths 10.0, 25.0 and
30.0 mm. (c) Initial temperature 293 K, drawing-depths 10.0, 25.0 and 30.3 mm. (d)
Initial temperature 313 K, drawing-depths 10.0, 25.0 and 31.0 mm.
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