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Abstract

A constitutive model of thermo-mechanically coupled finite strain plasticity considering

martensitic phase transformation is presented. The model is formulated within a thermo-

dynamic framework, giving a physically sound format where the thermodynamic mechan-

ical and chemical forces that drive the phase transformation are conveniently identifiable.

The phase fraction is treated through an internal variable approach and the first law of

thermodynamics allows a consistent treatment of the internal heat generation due to dis-

sipation of inelastic work. The model is calibrated against experimental data on a Ni-Cr

steel of AISI304-type, allowing illustrative simulations to be performed. It becomes clear

that the thermal effects considered in the present formulation have a significant impact

on the material behavior. This is seen, not least, in the effects found on forming limit

diagrams, also considered in the present paper.

Keywords: Phase transformation, thermo-mechanical processes, finite strain plasticity,

AISI304, forming limit diagram, FLD

1 Introduction

Phase transformations in metals have a major impact on vital engineering aspects of the

material behavior such as ductility, strength and formability. In addition, materials under-

going microstructural changes in terms of diffusionless austenite-martensite transformation

have in recent years gained increasing interest in relation to shape memory alloys (SMA:s)
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and alloys prone to transformation-induced plasticity (TRIP steels). The present work fo-

cuses on such diffusionless transformation of an austenitic parent phase into a martensitic.

This process was considered already in 1965 by Greenwood and Johnson (1965) who iden-

tified a plastic straining in the weaker austenite phase due to the volume increase of the

growing, relatively harder, martensite phase. This plastic straining, which may occur even

though the externally applied load is in itself insufficient to induce plastic deformation in the

material, has subsequently become known as the Greenwood-Johnson effect. Apart from

this volumetric deformation, it was also shown by Magee (1969) that an externally applied

stress may initiate the formation of selected martensite variants (24 martensite variants are

geometrically possible based on the austenitic fcc lattice), resulting in an orientation along

preferred directions, a phenomena known as the Magee effect. The martensite formation

will thus involve both deviatoric and volumetric deformation components in contrast to

the isochoric plastic deformation.

During inelastic deformation of the material, internal heat generation will occur due to

dissipation from the plastic slip process and also due to dissipation related to the phase

transformation. The martensitic phase transformation is strongly influenced by the ther-

mal conditions. The austenite phase retained at room temperature is metastable and a

lowering of the temperature below the Ms temperature can result in spontaneous trans-

formation of austenite into martensite as the thermally activated transformation driving

force becomes sufficiently large. If the temperature on the other hand is further increased

above room temperature, the austenite phase becomes increasingly stable and it is possible

to identify a temperature Md, above which no transformation can be induced by plastic

deformation. The kinetics of the temperature dependent martensitic transformation was

considered in the early model of Olson and Cohen (1975). This model was later modified

by e.g. Stringfellow et al. (1992) to include the effects of the stress state on the transfor-

mation kinetics. These earlier models often use an explicit formulation of the growth of the

martensitic phase, based on the number of martensite nucleation sites in the microstruc-

ture and the probability of nucleation at those sites. Several models of later date have also

been published, of which the works of Leblond et al. (1986a,b); Fischer et al. (1998); Petit-

Grostabussiat et al. (2004); Turteltaub and Suiker (2005); Mohr and Jacquemin (2008);

Wolff et al. (2008); Geijselaers and Perdahcioglu (2009); Lee et al. (2009); Mahnken et al.

(2009) could be mentioned. These models consider phenomenological forms of martensite

evolution, coaxial with the applied stress and proportional to the transformation rate. In

other model approaches, the microscopic transformation strain is established in a micro

region of the material and some homogenization procedure is then employed to obtain the

macroscopic transformation strain. Models formulated in this way are presented by e.g.

Levitas (1998); Fischer et al. (2000); Levitas et al. (2002). Thermo-mechanically coupled

models, including martensitic phase transformation, are discussed by e.g. Christ and Reese

(2009) and Rengarajan et al. (1998) in relation to shape memory alloys and by Silva et al.
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(2004) in relation to quenching.

The present thermo-mechanically coupled constitutive model of martensitic phase trans-

formation is closely related to the isothermal formulation presented in Hallberg et al. (2007).

In this previous paper, a coherent model of finite strain J2-plasticity and phase transfor-

mation was established using a transformation potential function based on both the second

and third invariant of the deviatoric stress tensor. The model was presented together with

calibration details, integration of the constitutive relations, formulation of the algorithmic

tangent stiffness tensor and numerical simulation examples. The present model is an exten-

sion of the previous work, including thermal effects such as the internal heat generation due

to the dissipation of internal inelastic work and heat released during phase transformation.

As it appears, this consistent treatment of the thermal effects and the temperature influ-

ence on the evolution of a martensitic phase in the austenitic parent phase, gives important

additions to the previous model with significant impact on the material behavior.

Starting with a section on the finite strain kinematics, the present constitutive model is

then formulated within a thermodynamic framework using the first and second law. This

allows identification of the thermodynamic mechanical and chemical forces, driving the

phase transformation towards a lowering of the Gibbs energy in the material microstructure.

Using a continuum-mechanical formulation, the present model is suitable for large-scale

simulations of processes where the austenitic material is influenced by martensite formation.

This is shown by illustrative numerical simulation examples, following a calibration of the

model against experimental data on a Ni-Cr steel of AISI304-type. In addition, since

austenitic stainless steels are important in sheet metal forming operations such as deep-

drawing, the effects of martensite evolution on forming limit diagrams of such a material

is studied. Some concluding remarks then finishes the paper.

2 Kinematics

The motion of a particle is described by a nonlinear function ϕ = ϕ(X, t), which maps

the position of particles in the reference configuration X at time t to their corresponding

position in the current configuration x. The deformation gradient, defined as F = ∂Xϕ

maps line segments in the neighborhood of X from the reference configuration to the

current configuration. The deformation gradient will also provide a relation between the

densities in the different configurations, J = ρ0/ρ = det(F ), where ρ and ρ0 are the

densities in the current and reference configuration, respectively, and where det (·) denotes
the determinant. To separate reversible deformation from irreversible, a multiplicative

split of the deformation gradient is adopted, cf. Kröner (1959) and Lee and Liu (1967),

according to

F = F rF ir (1)
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where the reversible part, F r, includes elastic deformation as well as thermal volumetric

deformation. The irreversible part, F ir, includes plastic deformation due to slip and defor-

mations due to phase transformation. The velocity gradient, l = Ḟ F−1, is split into one

part belonging to the recoverable deformation and one part belonging to the irreversible

deformation, i.e

l = lr + lir where lr = Ḟ
r
F r−1 and lir = F rḞ

ir
F ir−1F r−1 (2)

For coupled thermo-mechanical problems, the use of a thermodynamical framework pro-

vides a base for the balances laws, i.e. the equations of motion and the heat equation.

One of the benefits of this approach is that the coupling between the balance laws and the

constitutive equations, for instance in terms of the heat generation, appears naturally. The

Helmholtz energy is used to describe the energy stored in the material microstructure and

it is dependent on state variables such as the absolute temperature θ. These state variables

are quantities that define the elastic part of the deformation and also variables related to

the deformation hardening and the phase fraction. The quantities which define the me-

chanical state of the body, including the phase fraction, are collected in a set A. Without

yet specifying the specific expression for the Helmholtz energy, this function is assumed to

appear as ψ = ψ(A, θ). The first law of thermodynamics, which ensures energy balance,

can with the Helmholtz energy function be reformulated as the heat equation. Following

H̊akansson et al. (2005) the heat equation takes the following form

ρ0cθ̇ = Dmech + ρ0r + ρ0
∂2ψ

∂θ∂A
: Ȧ− Jdiv(q) (3)

where Dmech is the mechanical part of the dissipation, which is given by the constitutive

model, and where (·) : (·) denotes tensorial contraction over two indices. A fixed Cartesian

base is used for all tensorial quantities throughout the present work. Also found in (3), r

is a heat source and q is the heat flux. In addition, div (·) denotes the divergence operator.
The specific heat, c, is also introduced as c = −θ ∂2ψ

∂θ2
. The mechanical dissipation originates

from the dissipation inequality which follows from the second law of thermodynamics. The

dissipation inequality can be expressed as

D = τ :d− ρ0
∂ψ

∂A
: Ȧ− J

θ

∂θ

∂x
≥ 0 (4)

where τ is the Kirchhoff stress tensor and d the rate of deformation tensor, i.e. d = sym(l).

Note that the notation sym (·) was introduced here to indicate the symmetrical part of a

tensorial quantity. The dissipation can be conceptually split into two parts where the

mechanical component

Dmech = τ :d− ρ0
∂ψ

∂A
: Ȧ (5)
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act as a heat source in the heat equation (3) and is determined from the choice of the

constitutive model, cf. Ristinmaa et al. (2007). The second component is the thermal

dissipation Dtherm = −J
θ
∂θ
∂x which is always positive due to the use of Fourier’s law, q =

−k ∂θ
∂x , as the constitutive law for the heat flux. Here, the parameter k denotes the heat

conduction. The heat equation in (3) together with the equations of motion

div(σ)− b = 0 (6)

serves as the base for the coupled finite element equations in the thermo-mechanical prob-

lem. In (6), the Cauchy stress tensor is denoted by σ = τ/J and b represents the body

force vector.

3 Constitutive model

The present constitutive model is formulated to capture material mechanisms such as the

plastic flow due to slip by dislocation movements, changes in the crystallographic structure

due to diffusionless phase transformation driven by mechanical and thermal loading, as well

as heat generation due to the just mentioned mechanisms. The temperature dependence

of the material properties are also considered in the model. The material consists of two

different phases, austenite and martensite, with the volume fraction of martensite being

denoted by z, i.e. when z = 1 the material consists purely of martensite and when z = 0

only austenite is present. The general form of the Helmholtz energy function is a mixture

between the two phases, i.e. ψ = (1 − z)ψa + zψm, where the subscripts a and m denote

the austenite phase and the martensite phase, respectively. The elastic behavior of the two

phases can be regarded as equal and it is also assumed that the hardening in the phases is

the same. This reasoning results in the following form of the Helmholtz energy function

ρ0ψ = ρ0ψ
r + ρ0ψ

ir + (1− z)ρ0ψ
chem
a + zρ0ψ

chem
m (7)

where the function is split into one part, ψr, which corresponds to the elastic and thermal

expansion behavior, and one part, ψir, which includes the plastic hardening. The last two

terms, ψchem
a and ψchem

m , are the chemical energies of the respective phases, cf. Fischer

et al. (1994). This internally stored energy is different for the two phases and it will

influence the heat generation during phase transformation as well as the transformation

itself. In the previous section it was assumed that the Helmholtz energy was a function of

the temperature and the variable set A. As in Hallberg et al. (2007), the Helmholtz energy

function is here chosen to be a function on the form ψ = ψ(bri , J
r, κ, θ, z), where bri =

(J r)−2/3F rF rT is the isochoric – denoted by a subscript i – reversible left Cauchy-Green

deformation tensor and J r = det(F r) the reversible Jacobian. In addition, κ is an internal

variable related to the isotropic hardening. The reversible part of the Helmholtz energy is
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chosen in order to obtain a Neo-Hookean elastic behavior controlled by a generalized shear

modulus G and a corresponding bulk modulus K, i.e.

ρ0ψ
r =

1

2
K

[
1

2

(
J r2 − 1

)
− ln (J r)

]
+

1

2
G [tr (bri )− 3]− 3

2
αK

(
J r +

1

J r

)
Δθ (8)

where tr (·) was introduced to denote the trace of a tensorial quantity. The last term

in (8) specifies the thermal expansion controlled by the thermal expansion coefficient α

and the difference between the current temperature and an initial temperature θinit, i.e.

Δθ = θ − θinit. The plastic hardening is included in the irreversible part of the energy

function through

ρ0ψ
ir =

1

2
Hκ2 (9)

In the chemical part of the Helmholtz energy, the specific heat cp and the entropy s0 are

included, parameters which are different for austenite and martensite as indicated by the

superscripts a and m. The specific form of the chemical energy components, a form also

used by e.g. Fu et al. (1993), are taken as

ρ0ψ
chem
a (θ) = −ρ0sa0 (θ − θ0) + ρ0c

a
p

[
(θ − θ0)− θ ln

θ

θ0

]
(10)

and

ρ0ψ
chem
m (θ) = −ρ0sm0 (θ − θ0) + ρ0c

m
p

[
(θ − θ0)− θ ln

θ

θ0

]
(11)

where θ0 is a reference temperature. By using the arguments of Coleman and Gurtin (1967)

the mechanical dissipation can now, employing the specified format of the Helmholtz energy

function, be expressed as

Dmech = τ : sym(lir)− Rκ̇−Qż (12)

where it is used that

τ = 2ρ0
∂ψ

∂br
br, R = ρ0

∂ψ

∂κ
and Q = ρ0

∂ψ

∂z
(13)

The Kirchhoff stress tensor can with (8) and (13) be retrieved as

τ = Gbr,devi +
1

2
K
(
J r2 − 1

)
1− 3

2
αK

(
J r +

1

J r

)
Δθ1 (14)

where (·)dev denotes the deviatoric part of a tensorial quantity and where 1 is the second

order identity tensor. It is assumed that the evolution of the irreversible deformation due to

DOI: 10.1016/j.ijsolstr.2010.02.019 6
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plastic slip and the one due to phase transformation can take place independently of each

other. It is then possible to split the irreversible velocity gradient into two components,

giving lir = lp + ltr, where the superscript p denotes the component related to plastic slip

and accordingly a superscript tr denotes the component related to phase transformation.

At this stage it is also reasonable to assume that ltr appears with a format given by the

rate of the phase transformation multiplied by a tensor function that can be dependent

on various quantities such as the stress state, the temperature and so on. Thus, lir can be

expressed as

lir = lp + h(τ , κ, z, θ)ż (15)

Several authors, e.g. Levitas et al. (1998); Ganghoffer and Simonsson (1998); Fischer et al.

(2000), formulate the deformation related to phase transformation based on a microme-

chanical reasoning. In the present macroscopic model, however, a different approach is

taken. Instead of establishing the deformation gradient related to phase transformation,

the evolution law for the transformation velocity gradient lir is derived, as shown below.

The multiplicative decomposition of the deformation gradient in the present macroscopic

model, cf. (1), includes a homogenized change of the crystal lattices due to phase transfor-

mation and due to plastic slip. It is, however, the elastic part of the deformation gradient

that give rise to the stresses in the material. The use of a transformation potential function

and related aspects of model kinematics are discussed in detail in the preceding paper by

the authors, cf. Hallberg et al. (2007).

The split of lir according to (15) results in a mechanical dissipation that can be sepa-

rated into one part belonging to the slip deformation and one part belonging to the phase

transformation, i.e. (12) can be reformulated as

Dmech = τ : sym(lp)− Rκ̇+ (τ :h−Q)ż (16)

A yield surface of von Mises type is used to determine the onset of plastic deformation due

to slip. In comparison with a “standard” elasto-plastic model, the yield surface does not

define the elastic region since the irreversible deformation due to phase transformation can

occur independently of the plastic deformation. The von Mises yield surface, with isotropic

hardening, is here expressed as

f = σeff − σy(R, z, θ) = 0 (17)

where the effective stress is defined as σeff = (3
2
τ dev : τ dev)1/2. The current yield stress is

assumed to have the format

σy(R, z, θ) = σy0(z, θ) +R(κ) (18)

The initial yield stress, σy0, for austenite and martensite, respectively, are vastly different,

the yield stress of the martensite phase being several times higher than that for the austenite

DOI: 10.1016/j.ijsolstr.2010.02.019 7
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phase. Thus, the constitutive model on the continuum level must predict a homogenized

behavior of a material containing an arbitrary fraction of martensite. Mixture laws for

the yield stresses of the phases are discussed by e.g. Leblond et al. (1986b) and Petit-

Grostabussiat et al. (2004). In the present model it is assumed that the homogenized yield

stress of the material can be described by a relation of the form

σy0 (z, θ) = m (z) p (θ) (19)

where p(θ) is a temperature-dependent function and wherem(z) is a function of the volume

fraction of martensite with m(0) = 1. The situation m = 1 corresponds to p(θ) = σa
y0(θ),

the initial yield stress of the austenitic phase. The forms of the functions m and p are

specified later on, in relation to the calibration of the model.

The non-associated evolution laws for κ and lp are based on the following potential

function

g(τ , R, z, θ) = f(τ , R, z, θ) +
1

2

R2

R∞
(20)

where R∞ is a material parameter related to the saturation level of the deformation hard-

ening. The potential function (20) leads to the evolution laws being defined as

sym (lp) = λ
∂g

∂τ dev
(21)

and

κ̇ = −λ ∂g
∂R

(22)

where λ is a plastic multiplier. These evolution laws, together with the form of the com-

ponent ψir of the Helmholtz energy function stated in (9), result in an exponential form of

hardening.

Transformation of the austenitic phase into martensite can occur independently of the

plastic deformation. The transformation is modeled as an irreversible process and reversed

transformation, for instance due to heat treatments, is not considered. The transforma-

tion is driven by a thermodynamic force, F , conjugated to ż, which can be found in the

mechanical dissipation (16). This thermodynamic force is defined as

F = Fmech + Fchem (23)

where the mechanical component of the driving force is denoted by Fmech = τ :h and where

the corresponding chemical driving force is denoted by Fchem = −Q, cf. also (13). On a

micromechanical level, austenitic micro-regions change their lattice structure into that of

martensite when the thermodynamic force acting on the region exceeds a certain threshold

DOI: 10.1016/j.ijsolstr.2010.02.019 8
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value, cf. Fischer (1990). On a macroscale, the homogenized condition for transformation

results in a transformation surface similar to a plastic yield surface, i.e.

h = F − Ftrans(z, θ) = 0 (24)

where the threshold Ftrans due to the homogenization is similar to a hardening, however

dependent on z. The specific form of Ftrans is chosen in connection with the calibration of

the model. The explicit form of transformation condition is to a large extent described by

h, found in (15). In the present model, h is chosen in the same way as in Hallberg et al.

(2007), where an associated form of the evolution law for ltr is used, giving

ltr = żh = ż
∂h

∂τ
(25)

The format of the transformation condition h also follows the formulation given in Hallberg

et al. (2007), i.e.

h = K̃

(
σ̄eff +

1

3
δI1

)
−Q− Ftrans(z, θ) = 0 (26)

where

σ̄eff =

(
3J2 + 3b

J3

J
1/2
2

)1/2

(27)

The J3-invariant in (27) is defined as J3 =
1
3
tr(τ devτ devτ dev). Additional material param-

eters are introduced in (26) and (27) through K̃, δ and b. The values of these parameters

are determined during the calibration of the model. The parameter b controls the shape

of the transformation surface in the deviatoric plane. If b is chosen as 0, the circular von

Mises surface is obtained, but to better reflect the Magee effect a non-circular surface is

used.

In Olson and Cohen (1972), two conceptually different phase transformation processes

are identified as “stress-assisted” and “strain-induced” transformation, respectively. The

present model incorporates both of these processes since phase transformation and plastic-

ity may occur independently of each other in the model, each being defined in stress-space

by a transformation surface and a yield surface, respectively. This allows strain-induced

and stress-assisted phase transformation to be phenomenologically captured. It is noted

that at stresses below the yield stress of austenite, phase transformation can take place

in the model and result in “stress-assisted” transformation. Correspondingly, at stresses

above the yield limit of austenite, phase transformation takes place together with plastic

straining, giving“strain-induced”transformation. In addition, the temperature dependence

of the model results in a formulation that allows phase transformation at low temperatures

DOI: 10.1016/j.ijsolstr.2010.02.019 9
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without plastic deformation and also, at higher temperatures, increasing stress is required

to drive the transformation and hence increasing plastic deformation is present during the

phase transformation. The fact that phase transformation and plastic slip can occur inde-

pendently of each other can be further illustrated by defining a domain P(z, θ) related to

plasticity according to

P(z, θ) = {(τ , R) | f (τ , R, z, θ) ≤ 0} (28)

where f is the yield function. The boundary of P(z, θ), i.e. f = 0, constitutes the yield

surface. Note that, in contrast to classical plasticity, P(z, θ) does not define a purely elastic

region in the present model, since phase transition is permitted to take place within P(z, θ).

In a corresponding manner, a domain T (θ) related to phase transformation can also be

defined as

T (θ) = {(F, z) | h (F, z, θ) ≤ 0} (29)

where h is the transformation potential function. With the two domains defined by (28)

and (29), respectively, a purely elastic domain can also be defined as

E = P ∩ T (30)

It is concluded that phase transition can take place within P also when no plastic strains

develop. It can also be concluded that a plastic response can occur within the domain T
also when no transformation strains are developed.

4 Numerical examples

The calibration of the model is done in order to capture the characteristics of an austenitic

Ni-Cr steel (AISI304). The choice of material parameters are based on the work described

in Hallberg et al. (2007). A few alterations have been made here, however, in order to

include the temperature dependence into the model. The elastic properties of the model

are given by K = 167 GPa, G = 77 GPa and the thermal expansion coefficient is set to

α = 1× 10−5 1/K. The initial yield stress of the austenite phase, cf. (19), is for simplicity

assumed to vary linearly with temperature according to

σa
y0(θ) = 690− 1.25θ MPa (31)

an approximation valid in the temperature interval between 213 and 313 K, and considered

here. In Hallberg et al. (2007), it was found that the z-dependence of the initial yield stress

of the dual phase material, cf. (19), could be captured by a relation on the form

m(z) = 1 + 0.81 [exp(1.64z)− 1] (32)

DOI: 10.1016/j.ijsolstr.2010.02.019 10
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Mixture laws on this format have been previously used also by e.g. Ludwigson and Berger

(1969); Ramirez et al. (1992). In addition, the parameters related to the hardening are set

to R∞ = 1250 MPa and H = 2350 MPa.

The shape of the transformation surface in the deviatoric plane is in (27) determined

by the parameter b = 0.35 while the hydrostatic behavior is controlled by the parameter

δ = 0.29. These parameters are found from the micro-mechanical analysis described in

Hallberg et al. (2007).

The procedure for calibrating the transformation threshold function Ftrans in (24) follows

Hallberg et al. (2007). In the present case the resulting Ftrans function is slightly modified

due to the temperature dependence and is chosen as

Ftrans(z, θ)

K̃
= c1 + c2 (θ) [1− exp(−c3z)] [1− c4 ln(1− z)] (33)

with the following parameters

c1 = 1246 MPa, c2 (θ) = 198 +

(
θ

214

)13.3

MPa, c3 = 29.5, c4 = 2.7

which were obtained through numerical optimization, giving the appearance of the trans-

formation threshold function as shown in Fig. 1. It should be noted that the present

calibration of Ftrans is only valid within the considered temperature range of 213-313 K.

Considering (33) and Fig. 1a, it can be noted that the z-dependence of Ftrans involves two

terms. The exponential term describes the behavior at low values of z while the second,

logarithmic, term dictates the behavior at higher values of z. This formulation also ensures

that the volume fraction of martensite is kept in the interval of 0 to 1. The temperature

dependence of the transformation threshold is given by the coefficient c2 in (33). In Fig. 1b,

this temperature dependence is illustrated for fixed levels of martensite content. At lower

temperatures the function is relatively constant, while Ftrans will increase with increas-

ing temperature to restrict the progression of phase transformation under such thermal

conditions. The parameter K̃, entering the transformation potential function (26), is set

to 0.185. For the specification of the parameters in (10) and (11), the choice made by

Berveiller and Fischer (1997) is used. In the formulation of the model only the difference

between sa0 and sm0 is used, giving sa0 − sm0 = 0.106 J/kgK with a reference temperature of

θ0 = 440 K. Expression (7) together with (10) and (11) result in a global specific heat given

by c = (1− z)cap + zcmp . The parameters are set to cap = 450 J/kgK and cmp = 415 J/kgK.

Other parameters also required in the coupled thermo-mechanical analysis are the mass

density ρ0 = 7800 kg/m3 and the heat conductivity k = 45 W/mK.

4.1 Uniaxial tension

To illustrate the calibration of the model, uniaxial tensile test have been simulated at

a strain rate of 1 s−1. The results can be seen in Fig. 2. Isothermal conditions were
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Figure 1: (a) Transformation threshold function Ftrans as a function of the volume fraction
of martensite for constant temperatures, shown by: ◦ – 213 K, × – 233 K, � – 293 K
and � – 313 K. (b) Transformation threshold function Ftrans as a function of the absolute
temperature. The constant martensite fractions are ◦ – 0.6, × – 0.4, � – 0.2 and � – 0.01.
The experimental data is taken from Onyuna (2003).

defined in the simulations to allow comparison with the material response reported from

experimental measurements on an austenitic steel of AISI304-type, cf. Onyuna (2003). The
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Figure 2: (a) Mechanical response in uniaxial tension. The experimental data is taken from
Onyuna (2003). (b) The volume fraction of martensite as a function of the logarithmic
strain. The initial temperatures are ◦ – 213 K, × – 233 K, � – 293 K and � – 313 K.

temperature evolution due to dissipation from plastic deformation and due to heat released
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during phase transformation will influence the progress of phase transformation and the

mechanical response to a large extent. To be able to trace the effects of the temperature

evolution, simulations of the material response in thermo-mechanically coupled uniaxial

tensile tests were also conducted. The results are presented in Figs. 3 and 4. Fig. 3 also

shows some experimental results from tensile testing of SUS304 stainless steel conducted

at room temperature, taken from Talonen et al. (2005), verifying the magnitude of the

simulated temperature increase. The simulations have different initial temperatures and

thermo-mechanically coupled conditions are assumed. Compared to the isothermal analyses

in Fig. 2, it can be clearly seen in Fig. 4b how the evolving temperature reduces the growth

of a martensitic phase.
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Figure 3: Temperature evolution in thermo-mechanically coupled simulations of uniaxial
tensile tests at different initial temperatures. Thermo-mechanically coupled conditions are
assumed. Solid line – 213 K, dashed line – 233 K, dash-dotted line – 293 K and dotted
line – 313 K. The circles represent experimental data obtained at room temperature, taken
from Talonen et al. (2005).

4.2 Forming limit diagram

The forming limit diagram (FLD) is a tool often encountered in relation to sheet metal

forming. The diagram is used to predict the risk that a given strain state will trigger

localized deformation, possibly leading to subsequent fracture or locally inadequate sheet

thickness. The FLD can in this way be used to evaluate the formability of a certain

material. Here, the forming limit diagrams are calculated for both isothermal and adiabatic

conditions, using the present model. The FLD for a biaxially loaded plate is based on the

formation of a shear band in the plate, cf. Fig. 5. To determine the onset of shear

band formation, the method given by Marciniak and Kuczynski (1967) is used. To fulfill

deformation compatibility and stress equilibrium along the edge of the shear band, the
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Figure 4: Results from thermo-mechanically coupled uniaxial tensile tests simulated at
different initial temperatures. Thermo-mechanically coupled conditions are assumed. (a)
Mechanical response. (b) Volume fraction of martensite. Solid lines – 213 K, dashed lines
– 233 K, dash-dotted lines – 293 K and dotted lines – 313 K.

ξ
x1

x2

Band of
reduced
thickness, hb

Figure 5: Illustration of quantities used in the FLD calculations. A plate of thickness h
is loaded in the plane. The plate contains an initial inhomogeneity in the form of a band
with reduced thickness hb. This band is oriented an angle ξ from the principal axes x1 and
x2 of the plate.

following relations must be fulfilled

F b
αβ = Fαβ + dαmβ (34)

and

mαP
b
αβh

b = mαPαβh (35)
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Quantities inside the shear band are denoted by a superscript b. Plane stress is assumed

and Greek indices are used to indicate that the relations above hold in the plane, i.e. the

indices take on the values 1 and 2. The orientation of the shear band in the reference

configuration is defined by m = [cos(ξ) sin(ξ)], where ξ is the angle of the shear band, cf.

Fig. 5. The first Piola-Kirchhoff stress tensor is denoted by P = τF −T while h and hb are

the thicknesses of the plate outside of, and inside, the shear band. The relation hb/h is

typically chosen in the range of 0.99 to 0.999. To obtain the FLD, the initiation of shear

band formation is determined for a spectrum of different relations between the logarithmic

strains in the 11 and 22 directions. In the algorithm for finding the initiation of the

shear band, the material is proportionally loaded with a specific ratio between these strain

components. In each load step, equation (35) is solved with the additional requirements set

by (34). In the non-linear system of equations (35) that arise in each load step, everything

is known except the first Piola-Kirchhoff stress tensor in the shear band, P b
αβ, which is

given by the deformation gradient in the shear band, F b
αβ , and coherent internal variables.

Thus, the unknown quantities to be solved for are dα. The material is loaded until the ratio

between the rate of effective plastic strain inside and outside of the shear band, respectively,

exceeds a factor of 10. For a given relation between the logarithmic strains in the 11 and

22 directions, the angle ξ of the shear band is not known in advance. To find the correct

angle, (35) is solved for a wide range of angles and the value of ξ that is the first to trigger

localization is chosen as the direction of the shear band.

To be able to compare how the FLD changes under varying conditions, a study is per-

formed based on four different initial temperatures; 213 K, 233 K, 293 K and 313 K. Each

of these analyses are conducted under both adiabatic as well as isothermal conditions,

where in the latter case, any heat generation is excluded. The results from these analyses

are shown in Fig. 6 and Fig. 7. Together with the FLD:s, the fraction of martensite z,

is shown by figures in the middle rows and the corresponding temperature rise is shown

in the bottom row figures. The fractions of martensite and the temperature histories are

taken from the final state, i.e. at the onset of shear band formation when the interruption

criterion is met. In Figs. 6 and 7, the dash-dotted lines show the strain paths followed

during the simulated deep-drawing process discussed below. The highest formability is

found for the isothermal analysis with an initial temperature of 293 K. This may seem sur-

prising since the hardening of the material, due to the high rate of phase transformation, is

considerably more pronounced for the lower temperatures, cf. Fig. 2. This phenomenon is,

however, related to the effect discussed in Hallberg et al. (2007), where the microstructural

transformation into the stiffer martensite phase stabilizes the localization and thereby de-

lays it. For the lower temperatures, nearly all transformation takes place well before any

initialization of shear bands has occurred, while for the higher temperatures and especially

at 293 K, transformation still takes place after the onset of localization. From Figs. 6 and

7, it is also obvious that this stabilizing effect is restricted by the internal heat genera-
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tion. The temperature rise leads to a decrease both in the rate of phase transformation

and also of the yield stress, giving thermal softening. The decrease in the rate of phase

transformation is clearly seen in the middle row figures. It can be noted that the volume

fraction of martensite as seen in the middle-row graphs of Figs. 6 and 7 correspond well

to the uniaxial simulation results shown in Fig. 4b. Accordingly, the temperature levels

in the bottom-row graphs of Figs. 6 and 7 reflect well the heat generation in the uniaxial

case, cf. Fig. 3.

4.3 Deep-drawing process

A fully thermo-mechanically coupled cup deep-drawing process, as illustrated in Fig. 8, is

considered. A metal sheet of initial thickness 1 mm and initial diameter 152 mm is used

and the punch velocity is set to v = 10 mm/s. The geometrical parameters in Fig. 8 are

set to d1=60 mm, r1=6 mm, d2=65 mm and r2=6 mm, respectively. A Coulomb friction

coefficient of 0.1 is used at all contacting surfaces except between the punch and the plate

where a value of 0.15 is used. The present model is implemented as a user subroutine in

Abaqus Standard and is solved as a fully coupled system. The metal sheet is discretized

using thermo-mechanically coupled four-node, bi-linear and axisymmetric elements of type

CAX4T. The thickness of the sheet is discretized using 16 elements while 800 elements are

used in the radial direction.

Fig. 9 shows the punch force versus punch displacement obtained from simulations, con-

ducted at four different initial temperatures under isothermal as well as thermo-mechanically

coupled conditions. As expected, the isothermal simulations allow more martensite to be

formed since no temperature increase is present to reduce the extent of the phase trans-

formation, cf. Figs. 10 and 11. The occurrence of martensite again helps in stabilizing

the localization region of the material, thereby delaying the progression of localized defor-

mation. Note that the strain paths followed in the localization region of the plate during

the deep-drawing process are plotted with dash-dotted lines in the FLD-graphs in Figs. 6

and 7, showing a good agreement between the deep-drawing simulations and the FLD-

calculations. Circles indicate the strain state at which localization is initiated in the cup

material. These strain paths are obtained by using the logarithmic strains in the drawing

direction and in the circumferential direction of the cup. As the direction of the localiza-

tion is known, a simple criterion for detecting the onset of localization in the finite element

simulations is used. This criterion is taken as the difference between the rates of the log-

arithmic strain in the drawing direction and in the circumferential direction being greater

than 5.5. This value is chosen since it gives a good agreement between the isothermal

FLD curves and the isothermal deep-drawing simulations. Initiation of localization by this

criterion is shown by circles in the graphs of Fig. 9. It can be noted that the strain states

at initiation of localized deformation for the thermo-mechanically coupled deep-drawing
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simulations appear between the FLD-curves corresponding to adiabatic and isothermal

conditions, respectively. This is to be expected since heat conduction will limit the tem-

perature increase – as compared to the adiabatic situation – in the region of localized

deformation and thereby allow some additional martensite to form and postpone further

localization there. The exact locations of the localization points, as shown by circles in

Figs. 6 and 7, are to some extent influenced by the chosen mesh discretization and also

by the number of solution steps taken during the simulations. The precise strain state at

initial localization is, however, expected to occur close to the strain states indicated.

The thermo-mechanically coupled simulations involve less martensite due to the sub-

stantial temperature increase. The effect of this reduced phase transformation is clearly

seen in Fig. 9 where localization occurs much earlier in the thermo-mechanically coupled

simulations as compared to the isothermal simulations. Comparing the graphs in Fig. 9

it can be noted that a maximum formability of the material is obtained for isothermal

conditions at an initial temperature of 293 K, consistent with the conclusions drawn from

the FLD calculations. Under thermo-mechanically coupled conditions, the most beneficial

initial temperature for forming is less obvious. A maximum drawing-depth of 31.0 mm be-

fore localization – when considering heat generation – is obtained for an initial temperature

of 313 K. This depth is, however, only slightly greater than the 30-30.3 mm achieved at

the other three initial temperatures studied. The fact that the maximum drawing-depth,

i.e. the maximum formability, is relatively unaffected by the initial temperature during

the thermo-mechanically coupled simulations is reflected by the results in the FLD-graphs

seen in Figs. 6 and 7. The FLD-lines corresponding to the adiabatic case lie at almost the

same strain level, irrespective of the initial temperature.

The volume fractions of martensite under isothermal conditions are illustrated in Fig. 10

and for the thermo-mechanically coupled case in Fig. 11. The temperature increase ob-

tained from the thermo-mechanically coupled simulations are shown in Fig. 12. The last

deformation state shown in each of these figures correspond to the localization criterion

described previously, i.e. the same states as are shown by circles in Figs. 6, 7 and 9. The

deep-drawing results presented in Figs. 10, 11 and 12 further illustrates the influence of in-

teracting phase transformation and heat generation on the formability of the sheet material.

The maximum formability obtained for a temperature of 293 K and under isothermal con-

ditions is clearly shown in Fig. 10c. Correspondingly, the situation at thermo-mechanically

coupled conditions where no clearly distinguishable temperature for maximum formabil-

ity can be found, is shown by the illustrations in Fig. 11. Comparing Figs. 11 and 12, a

substantial heat generation can be noted in the localization region, reducing the progres-

sion of phase transformation and thereby also reducing the stabilizing effect of martensite

formation on the localization region. Note that the temperature increase at the onset of

localization in the thermo-mechanically coupled deep-drawing simulations is higher than

that found in the FLD diagrams in Figs. 6 and 7. The reason for this is that localization
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occur at a later state – i.e. at larger strains – in the thermo-mechanically coupled case,

allowing more heat to be generated. The strong influence of temperature on the phase

transformation and thereby also on the formability of the sheet can be utilized in practical

applications for obtaining optimal formability. This can be achieved by controlling the

temperature distribution in the forming tools, allowing some control over the martensite

distribution in the final product. This is, however, not reflected in the present simulations

since no heat conduction between the plate and the tools is included.

5 Concluding remarks

A constitutive model of thermo-mechanically coupled finite strain plasticity influenced by

martensitic phase transformation is presented. The model is formulated within a thermo-

dynamic framework, giving a physically sound format where the thermodynamic forces,

driving the phase transformation based on a lowering of the Gibbs energy, are conveniently

identifiable. The model is calibrated against a common Ni-Cr steel of AISI304-type, al-

lowing illustrative simulations to be performed. It becomes clear that the thermal effects

considered in the present formulation have much impact on the material behavior. This is

seen, not least, in the impact found on forming limit diagrams, an important engineering

tool in sheet metal forming and considered in the present work.
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Figure 6: The left and right columns represents analyses with an initial temperature of
213 K and 233 K, respectively. The figures in the top row are the forming limit diagrams.
The figures in the middle row shows the fraction of martensite at the onset of shear band
formation and the bottom row figures show the temperature change at shear band initiation.
Solid lines represent results from adiabatic simulations and dashed lines correspond to
isothermal simulations. Similar results for the initial temperatures 293 K and 313 K are
shown in Fig. 7. Dash-dotted lines show the strain paths traced in the localization region
of the plate during the simulations of cup deep-drawing processes, also considered in the
present work.
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Figure 7: Fig. 6 continued. The left and right columns represents analysis with an initial
temperature of 293 K and 313 K, respectively.
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Figure 8: Geometry of the deep-drawing setup.
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Figure 9: Punch force versus drawing depth at four different initial temperatures. Solid
lines show results from thermo-mechanically coupled simulations and dashed lines represent
results from isothermal simulations. Circles show the point where localized deformation is
initiated.
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Figure 10: Results from isothermal deep-drawing simulations showing the volume fraction
of martensite in the material. (a) Temperature 213 K, drawing-depths 10.0, 25.0 and
43.0 mm. (b) Temperature 233 K, drawing-depths 10.0, 25.0 and 50.1 mm. (c) Temperature
293 K, drawing-depths 10.0, 25.0 and 52.6 mm. (d) Temperature 313 K, drawing-depths
10.0, 25.0 and 36.0 mm.
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Figure 11: Results from thermo-mechanically coupled deep-drawing simulations showing
the volume fraction of martensite in the material. (a) Initial temperature 213 K, drawing-
depths 10.0, 25.0 and 30.3 mm. (b) Initial temperature 233 K, drawing-depths 10.0, 25.0
and 30.0 mm. (c) Initial temperature 293 K, drawing-depths 10.0, 25.0 and 30.3 mm. (d)
Initial temperature 313 K, drawing-depths 10.0, 25.0 and 31.0 mm.
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Figure 12: Results from thermo-mechanically coupled deep-drawing simulations showing
the temperature increase in the material. (a) Initial temperature 213 K, drawing-depths
10.0, 25.0 and 30.3 mm. (b) Initial temperature 233 K, drawing-depths 10.0, 25.0 and
30.0 mm. (c) Initial temperature 293 K, drawing-depths 10.0, 25.0 and 30.3 mm. (d)
Initial temperature 313 K, drawing-depths 10.0, 25.0 and 31.0 mm.
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