
LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

An empirical evaluation of regression testing based on fix-cache recommendations

Engström, Emelie; Runeson, Per; Wikstrand, Greger

Published in:
[Host publication title missing]

DOI:
10.1109/ICST.2010.40

2010

Link to publication

Citation for published version (APA):
Engström, E., Runeson, P., & Wikstrand, G. (2010). An empirical evaluation of regression testing based on fix-
cache recommendations. In [Host publication title missing] IEEE - Institute of Electrical and Electronics
Engineers Inc.. https://doi.org/10.1109/ICST.2010.40

Total number of authors:
3

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.
 • Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

Download date: 17. May. 2025

https://doi.org/10.1109/ICST.2010.40
https://portal.research.lu.se/en/publications/6807a281-ada8-4ef8-aecb-5cfdb0d6839e
https://doi.org/10.1109/ICST.2010.40

An Empirical Evaluation of Regression Testing
Based on Fix-cache Recommendations

Emelie Engström
Software Engineering Research Group

Dept. of Comp. Science, Lund University
Lund, Sweden

emelie.engstrom@cs.lth.se

Per Runeson
Software Engineering Research Group

Dept. of Comp. Science, Lund University
Lund, Sweden

per.runeson@cs.lth.se

Greger Wikstrand
KnowIT YAHM Sweden AB

Lund, Sweden
gwikstrand@ieee.org

Abstract—Background: The fix-cache approach to regression
test selection was proposed to identify the most fault-prone files
and corresponding test cases through analysis of fixed defect
reports. Aim: The study aims at evaluating the efficiency of
this approach, compared to the previous regression test selection
strategy in a major corporation, developing embedded systems.
Method: We launched a post-hoc case study applying the fix-cache
selection method during six iterations of development of a multi-
million LOC product. The test case execution was monitored
through the test management and defect reporting systems of
the company. Results: From the observations, we conclude that
the fix-cache method is more efficient in four iterations. The
difference is statistically significant at α = 0.05. Conclusions:
The new method is significantly more efficient in our case study.
The study will be replicated in an environment with better control
of the test execution.

I. INTRODUCTION

Regression testing is a resource consuming activity in
software development. This is particularly true for iterative
development approaches, where features are added to existing
software in an iterative fashion. Regression testing is per-
formed to ensure that previously functioning software is not
corrupted by the changes. Studies indicate that 80% of testing
cost is regression testing and more than 50% of software
maintenance cost is related to testing [3].

Several techniques for regression test selection are proposed
and evaluated. Engström et al. recently reviewed the literature
in the field [4] and concluded that most of the proposed
regression test selection techniques are not feasible to scale up
to testing of large complex real time systems. Industry practice
on regression testing is mostly based on experience alone,
and not on systematic approaches. There is an urgent need
to decrease regression testing cost and increase test efficiency
in industry.

A pragmatic approach to regression testing is proposed
by Wikstrand et al. [12]. The basic idea is to link test
cases to source files based on information from the test
management and defect reporting systems. Test cases are then
prioritized with respect to how fault prone their linked files
are, if changed. A cache, as proposed by Kim et al. [7],
is used to monitor which files are fault-prone and fixed in
recent iterations. The fault prediction effectiveness of the fix-
cache method has been shown to be good [12]. However, the

efficiency of the regression testing based on these recommen-
dations has not been evaluated earlier.

In this paper we report on the first empirical evaluation of
test suite efficiency of the fix-cache method. In an industrial
setting we compare the efficiency between the traditional
manually selected test suites and the test suites recommended
by the fix-cache tool. Our results indicate that the tool based
selection generates more efficient test suites.

The paper is structured as follows. In Section II we briefly
present the regression test selection method under study as
well as related work. Section III presents the design and
execution of the evaluation case study. In Section IV we
analyze the validity of the study and we discuss the results
and future work in Section V.

II. BACKGROUND AND RELATED WORK

The regression test selection algorithm being evaluated in
this paper was first described by Wikstrand et al. [12]. The
algorithm is based on three processes: identifying fault prone
source files, linking test cases to source files, and recommend-
ing test cases. The company where the study was performed,
has a defect report management system, where affected files
are recorded when a defect report is closed. This was crucial to
the effectivness of the described algorithm. The three processes
are described below.

a) Identifying fault prone files: When defect reports are
closed, the corresponding updated files are marked as hits in
a fix-cache as proposed by Kim et al. [7]. As recommended
in the original paper, the cache size was fixed at 20% of the
total number of files. To maintain the size, files were removed
from the cache using a least recently used logic.

b) Linking test cases: Also when defect reports are
closed, they are traced back to the originating system test
case (if any) and marked correspondingly. The test case is thus
linked through the closed defect reports to the files which were
changed as a result of the fault that was detected when the test
case failed.

c) Recommending test cases: When a new test campaign
is about to be conducted, the changes on a file level to the
product, compared to the previous test iteration, are obtained
from the source management system. If a file is both in the
fix-cache and has one or more linked test cases, the linked

test cases are recommended for execution. References to the
linking defect reports are given as a rationale to aid the test
leader in deciding whether to follow the recommendation.

Wikstrand et al. reported on the precision of the fix-cache.
The hit rate, i.e. the number of files with fixes which were
already in the cache, of the cache on a week-by-week basis
was found to be 50-80% [12], less than the 73-95% reported
by Kim et al. [7], although in the same magnitude.

Sheriff et al. [11] published a study on a similar approach,
although with a focus on clusters of files that tend to be
changed together. They evaluated the test case selection and
found that the methodology proposed test cases, additional
to those based on pure file changes, in 50 % of the cases.
However, it is not clear from the evaluation whether these test
cases actually found more faults or not.

Engström et al. published a comprehensive systematic re-
view of all empirical evaluations of regression test selection
techniques [4]. They conclude that only 4 out of 15 case
studies are conducted in a large scale context, i.e. larger than
100 000 LOC, and no more than 1 out of 21 experiments is
conducted on large scale artifacts. Software size is not the only
criterion for making a study realistic, but the observation calls
for more industry evaluations of regression testing methods.

Several studies investigate relationships between fault-
proneness and various software metrics, among those lines
of code is the most straightforward and most investigated [2].
However, the relation is shown to be logarithmic [8], indicating
that smaller classes cause relatively more problems than larger
ones. In this study, we only use the characteristic of observed
fault proneness as a predictor for future fault proneness.

III. EMPIRICAL EVALUATION

A. Research question and method

The aim of the study was primarily to evaluate the efficiency
of the fix-cache approach to regression test selection, com-
pared to the previously used regression test selection strategy
in a major corporation, developing embedded systems. We
refer to efficiency as the number of found faults per selected
test case. Our research question is hence:

• Is the fix-cache regression test selection method more
efficient than the previously applied experience-based
method?

Methods for empirical evaluations include experiments [13]
and case studies [10]. Studies of real industrial size are hard
to conduct with the level of control required for a formal
experiment. Case studies are less controlled, but offer on the
other hand a broader spectrum of data to observe. For our
evaluation, we have chosen to conduct a case study, in which
the data collection and analysis is mostly post hoc.

B. Case study setting and results

The case under study is a development project at ST-
Ericsson in Lund, Sweden. ST-Ericsson develops platform
software and hardware designs for embedded mobile devices.
The part of the product under study comprises several million

Fig. 1. Fault detection efficiency for each iteration.

TABLE I
NUMBER OF TEST CASES FOR EACH ITERATION. RTC = RECOMMENDED
TEST CASES; XRTC = EXECUTED RECOMMENDED TEST CASES; TXTC =

TOTAL EXECUTED TEST CASES

Iteration 1 2 3 4 5 6
RTC 27 41 99 1 11 78

XRTC 13 12 71 1 5 47
TXTC 552 480 1301 906 1203 1317

lines of code. It is developed at multiple sites across three
continents.

Each week, new increments and fault fixes to a number
of the modules in the product are delivered to the main
development branch for system and regression testing. In
this study, the focus has been on regression test cases from
a limited area of system test. The test area in question is
representative of the product and tests a cross section of
modules and requirements, but we are not able to report any
more details about the selected modules for confidentiality
reasons.

The fix-cache regression test selection approach was applied
during six iterations of regression testing. A list of recom-
mended test cases, based on the method, was delivered to the
test department and later followed up by monitoring the test
management and defect management databases. Due to lack
of control in the case study, not all recommended test cases
were executed. We discuss the implications of this in Section
III-C. The actual number of test cases selected and executed
are presented in Table I, as is the total number of executed test
cases, based on the ordinary selection method, which mainly is
based on fixed test case priorities and test planning heuristics.

We evaluated the fault detection efficiency, defined as:

Effdet = # faults found
test cases executed

The efficiency for each of the six iterations is reported in
Figure 1. Since only one test case was selected in iteration

TABLE II
NUMBER OF FAILED TESTS FOR EACH ITERATION. XRTC = EXECUTED
RECOMMENDED TEST CASES; TXTC = TOTAL EXECUTED TEST CASES

Iteration 1 2 3 4 5 6
XRTC 5 5 30 0 2 7
TXTC 78 56 232 271 170 261

TABLE III
SENSITIVITY ANALYSIS USING EFFICIENCY DATA FOR THE DIFFERENT
APPROACHES OVER ITERATIONS 1- 6, COUNTING ITERATION 4 AS AN

OUTLIER.

Approach 1 2 3 4 5 6
eff worst case 0.19 0.12 0.30 N/A 0.18 0,09
eff best case 0.70 0.83 0.59 N/A 0.73 0.49
eff as TXTC 0.26 0.20 0.35 N/A 0.26 0.17
eff as XRTC 0.38 0.42 0.42 N/A 0.40 0.15

eff TXTC 0.14 0.12 0.18 0.30 0.14 0.20

4, we consider this iteration being an outlier and it is hence
excluded from the subsequent analysis. There are probably
factors out of the study control that confuse the picture, since
the efficiency of the experience-based method is 0.30 for
iteration 4, compared to 0.12-0.18 for the other iterations (see
Table III last row).

The underlying data on selected number of test cases and
failed tests are reported in Tables I and II respectively. We
analyzed the difference between the efficiency of the two
approaches using a t-test. There is a significant difference
between the two at a 5% significance level (t = −3.7033, df =
4.629, p = 0.01602).

C. Sensitivity analysis

Since all the recommended test cases were not executed,
as reported in Table I, there is a major threat to the validity
of the study that the results are an effect of the properties of
the executed set of test cases, rather than the test selection
method as such. In order to validate the results, we conducted
a sensitivity analysis, calculating theoretical boundaries for the
efficiency.

For the sensitivity analysis, the set of Recommended Test
Cases are denoted RTC in Figure 2. The Total number of
eXecuted Test Cases (TXTC) does not cover all RTC, and
hence only the eXecuted share of the Recommended Test
Cases (XRTC) subset of RTC is executed. We draw our main
conclusions based on XRTC only as we do not know the prop-
erties of the set of non-eXecuted share of the Recommended
Test Cases (nXRTC).

The worst case, i.e. with the lowest efficiency, would be if
the test cases of nXRTC all would pass. The best efficiency
case would be if all nXRTC fail, although this is not a realistic
case. Two further alternative scenarios are a) if the nXRTC
are as efficient as the TXTC subset, and b) if the nXRTC are
as efficient as the XRTC subset. In the latter case, the RTC
efficiency would be exactly the same as the XRTC efficiency,
reported above.

These four alternative scenarios are presented in Figure
3 and the data is tabulated in Table III, using the previ-
ously used approach as a reference (eff TXTC). The worst
case is not significantly better than the traditional approach
(t = −0.5393, df = 5.246, p = 0.6118) while the other two
approaches are (eff best case: t = −8.3817, df = 4.483, p =
0.0006645; eff as TXTC: t = −2.7125, df = 5.661, p =
0.0371).

Fig. 2. Diagram relating the sets of test cases to each other. RTC =
recommended test cases; nXRTC= non-executed recommended test cases;
XRTC = executed recommended test cases; TXTC = total executed test cases

Fig. 3. Sensitivity analysis for iterations 1-3, 5 and 6 - share of test cases
detecting defects vs. iterations.

We conclude from the scenario analysis that the efficiency
of the fix-cache test case selection method is not due to the
incomplete execution of test cases, but the inherent properties
of the method itself.

D. Checking assumptions

The fix-cache selection method is based on assumptions
concerning fault churn and fault location. We checked whether
these are fulfilled in the studied environment, although with
different data sets than the above study.

Fault churn: The fix-cache algorithm is based on the
assumption that the faults are not evenly distributed over
software modules, and that this distribution is changing over
time i.e. there is a fault churn. A Pareto-like distribution of
faults over modules is statically identified in several studies,
e.g. [1], [5], while the dynamic behavior is not studied before,
i.e. whether different modules are fault-prone at different
occasions.

The assumption was tested by studying post-hoc which
modules would have been included in the fix-cache, based on
comparing the most fault prone modules in two time periods.

Among modules with at least one fix, the top 20% with the
most fixes were selected in each of a three-month period. The
share of modules common to the top 20% in the two periods
was 66%. A repeated measures ANOVA was conducted on
all modules with fixes, with the number of fixes in each of
the three-month periods as the dependent variable. The test
indicated that the fault distributions were different in the two
time periods (p < .003), hence the assumption is supported.

Fault location: The other basic assumption is that test
cases find faults in the same fault location, which sets the up-
per limit for the method’s effectiveness. To test this assumption
we analyzed whether test cases, which have failed more than
once, lead to fixes in the same modules.

We observed a small number of test cases where fails lead
to more than one defect report, causing fixes in the software.
27% of these test cases lead to fixes in the same modules,
while the remaining 73% of the test cases lead to fixes in
different modules each time. We consider the assumption
weakly supported by the studied test cases.

IV. THREATS TO VALIDITY

We analyze threats to the validity of the study and report
countermeasures taken to reduce them. The definitions follow
Wohlin et al. [13].

Conclusion validity is concerned with the statistical analyses
underpinning the conclusions. The statistical analyses use the
robust t-test and in the checking of assumptions, ANOVA. In
the sensitivity analysis, we repeat the t-test for each variant,
but towards the same reference. Hence, the error rate problem
is not apparent.

Internal validity is about the risk for other factors impacting
on the relation between what is manipulated and the outcome.
The limitation here is that the original set of test cases as
well as the small share of selected test cases may not be
representative. However, the sensitivity analysis indicates that
the conclusions are robust.

Construct validity is concerned with the alignment between
what is measured and what is the underlying construct. The
test case efficiency measure is only one view of a good re-
gression test selection procedure. The overall defect detection
effectiveness is even more important, i.e. the share of defects
detected by different test case selection methods. The available
data in this case did not allow us to perform such an analysis.
Two assumptions for the method was analyzed in Section
III-D and found supported and weakly supported, respectively,
although on a small number of test cases.

External validity is related to generalizability of the results.
We have no indications that this environment is unique, but
the method should of course be evaluated and tailored to
other environments before launching it widely. Its underlying
assumptions of Pareto distributed faults is verified by other
research, e.g. [1], [5], [6] but the dynamic variation over time
is not verified in those studies.

V. DISCUSSION AND FUTURE WORK
The fix-cache regression test selection technique is a simple,

but apparently efficient technique for test case selection. It

makes use of information that already is collected and stored
in different databases. Setting it into use involves mainly
connecting these databases together.

Our empirical evaluation indicates that the technique is more
efficient than the previously used technique. The set of test
cases that were selected and executed found significantly more
defects per test case than the previously used approach did.

Still, there are many questions remaining open. One major
question is whether the defect detection effectiveness is better
as well. The technique selected a small set of test cases, so the
number of faults found is very small compared to the number
selected by the manual method.

The size of the cache is a factor that impacts on the number
of selected test cases. Future evaluations include varying the
cache size, and evaluating the efficiency for various sizes
of the cache. They should also include data collection to
enable analysis of effectiveness measures such as precision and
inclusiveness [9]. Other pragmatic strategies, such as random
selection of a given percentage should also be applied as a
reference.

Replications in other companies and settings are also en-
couraged to increase the knowledge of the fix-cache regression
test selection method.

REFERENCES

[1] C. Andersson and P. Runeson. A replicated quantitative analysis of
fault distributions in complex software systems. IEEE Transactions on
Software Engineering, 33(5):273, 2007.

[2] V. R. Basili and B. T. Perricone. Software errors and complexity:
An empirical investigation. Communications of the ACM, 27(1):42–53,
1984.

[3] P. K. Chittimalli and M. J. Harrold. Recomputing coverage information
to assist regression testing. IEEE Transactions on Software Engineering,
35(4):452–469, 2009.

[4] E. Engström, P. Runeson, and M. Skoglund. A systematic review
on regression test selection techniques. Information and Software
Technology, 52(1):14–30, 2010.

[5] N. E. Fenton and N. Ohlsson. Quantitative analysis of faults and
failures in a complex software system. IEEE Transactions on Software
Engineering, 26(8):797–814, 2000.

[6] M. Hamill and K. Goseva-Popstojanova. Common trends in software
fault and failure data. IEEE Transactions on Software Engineering,
35(4):484–496, 2009.

[7] S. Kim, T. Zimmermann, E. Whitehead, and A. Zeller. Predicting
faults from cached history. 29th International Conference on Software
Engineering (ICSE’07), pages 489–498, 2007.

[8] A. Koru, D. Zhang, K. El Emam, and H. Liu. An investigation into
the functional form of the size-defect relationship for software modules.
IEEE Transactions on Software Engineering, 35(2):293–304, 2009.

[9] G. Rothermel and M. Harrold. Analyzing regression test selection
techniques. IEEE Transactions on Software Engineering, 22(8):529–
551, 1996.

[10] P. Runeson and M. Höst. Guidelines for conducting and reporting case
study research in software engineering. Empirical Software Engineering,
14(2):131–164, 2009.

[11] M. Sherriff, M. Lake, and L. Williams. Prioritization of regression tests
using singular value decomposition with empirical change records. The
18th IEEE International Symposium on Software Reliability (ISSRE ’07),
pages 81–90, 2007.

[12] G. Wikstrand, R. Feldt, J. Gorantla, W. Zhe, and C. White. Dynamic
regression test selection based on a file cache an industrial evaluation.
International Conference on Software Testing Verification and Validation
(ICST ’09), pages 299–302, 2009.

[13] C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, B. Regnell, and
A. Wesslén. Experimentation in Software Engineering: an introduction.
Kluwer, 2000.

