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The large, level-dependent g factors in an InSb nanowire quantum dot allow for the occurrence of a

variety of level crossings in the dot. While we observe the standard conductance enhancement in the

Coulomb blockade region for aligned levels with different spins due to the Kondo effect, a vanishing of the

conductance is found at the alignment of levels with equal spins. This conductance suppression appears as

a canyon cutting through the web of direct tunneling lines and an enclosed Coulomb blockade region. In

the center of the Coulomb blockade region, we observe the predicted correlation-induced resonance. Our

findings are supported by numerical and analytical calculations.

DOI: 10.1103/PhysRevLett.104.186804 PACS numbers: 73.63.Kv, 73.22.Lp, 73.23.Hk, 73.63.Nm

Because of their small size the properties of nanosys-
tems are dominated by discrete quantum levels. These
levels can be tuned by the means of, e.g., applying a
magnetic field. At level crossings a variety of physical
features can arise from electron coherence between the
levels as well as correlations with contacts. These can be
conveniently probed by transport measurements, see, e.g.,
Refs. [1–3], where generically conductance peaks can be
associated with the presence of electronic states at the
Fermi level. While most experimental work is done on
GaAs-based systems where the individual levels are ap-
proximately spin degenerate due to the small electron g
factor, less results exist at the crossing of spin-resolved
levels. Such a level crossing is particularly interesting if
both levels are slightly below the Fermi energy, so that
there is one electron in the system while a second electron
is blocked to enter due to Coulomb repulsion. In this
Coulomb blockade region the conductance is typically
small. At very low temperatures, however, the Kondo
effect provides a strong conductance enhancement at de-
generacy of levels with opposite spins as observed in
Refs. [4–6]. For the case of degeneracy of levels with equal
spins, much less is known. Here, recent theoretical calcu-
lations [7–9] showed a vanishing conductance at the point
of electron-hole symmetry in the middle of the Coulomb
blockade region together with the correlation-induced
resonance, at slight detuning between the levels.

In this Letter, we present detailed measurements on InSb
quantum dots realized by electrically contacting epitax-
ially grown InSb nanowires. These devices exhibit giant,
strongly level-dependent electron g factors [10], which
allow for a clear observation of several spin-resolved level
crossings at relatively weak magnetic fields, and we can
directly compare the results of transport measurements at
crossings of levels with equal and different spins. For the
case of equal spins we are able to verify the predicted
correlation-induced resonance [7] in the center of the
Coulomb blockade region. Furthermore, our data show

that this effect is a part of a larger scenario where con-
ductance suppression appears as a line in the parameter
space of detuning and gate voltage. These findings are
supported by numerical and analytical calculations based
on a two-level, equal-spin, interacting model, which fully
confirm the observed scenario.
The InSb nanowire dot devices investigated here are

fabricated from InSb segments of InAs=InSb heterostruc-
ture nanowires where the InAs segments are used as seed
nanowires to favor nucleation of InSb [10–12]. Figure 1(a)
shows a scanning electron microscope (SEM) image of a
fabricated device, where the dot is formed between two
150-nm-wide Ti=Au contacts with a distance of 100 nm in
an InSb nanowire with a diameter of 65 nm. All measure-
ments are performed in a 3He cryostat at 300 mK.
Figure 1(b) shows a gray-scale plot of the conductance

G as a function of the magnetic field B and the backgate
voltage Vbg applied to the Si substrate of a fabricated

device. The spin state of the last filled electron in each
energy level is indicated by an arrow in the figure. Here
negative values of the g factor are assumed [13]. From the
magnetic field evolutions of the conductance peaks, we can
evaluate the electron g factors for the dot levels (following
Refs. [14,15]) and find that the values of these g factors are
giant, with the absolute value reaching about 60, and
strongly level dependent [12]. A large difference between
the electron g factors in the dot allows for the crossings of
the spin-up state of the fifth level with both the spin-down
and the spin-up state of the fourth level as B is increased.
Figure 1(c) shows a schematic for the scenario of such
single-particle level crossings without taking level interac-
tion and the effect of Coulomb charging into account.
The transport measurements in Fig. 1(b) display several

clear signatures of both the conventional spin-1=2 Kondo
and the integer-spin Kondo-like effects which manifest
themselves as conductance enhancements in the
Coulomb blockade regions in the InSb quantum dot. For
example, a weak but visible conductance ridge is observed
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at zero magnetic field inside the N ¼ 7 Coulomb blockade
region. A line plot of the conductance as a function of the
magnetic field along cut A is shown in Fig. 1(d). Here one
can easily identify a conductance peak at zero magnetic
field. This peak occurs at the standard spin-degeneracy
point of level 4 of the quantum dot at B ¼ 0 as indicated
by label A in the schematic shown in Fig. 1(c) and can be
attributed to the conventional spin-1=2 Kondo effect [4,5].

In addition to the spin-1=2 Kondo effect we see clear
signatures of integer-spin Kondo-like correlations [6,16].
One such example is provided by the clear high-
conductance ridge in the N ¼ 8 Coulomb blockade region
at B� 1:5 T [see Fig. 1(b)]. The corresponding line plot
along cut B is shown in Fig. 1(e), where a conductance
peak is clearly observed. This peak occurs at the degener-
acy of levels 4 and 5 with opposite spins as indicated by
label B in the schematic shown in Fig. 1(c). An additional,
though weaker, integer-spin Kondo-like conductance en-
hancement is observed in the N ¼ 6 Coulomb blockade

region at B � 3 T. Such integer-spin Kondo-like conduc-
tance enhancements appear at the transition from a spin
singlet to the Sz ¼ 1 state of an S ¼ 1 spin triplet as the
magnetic field increases. Note that the other states of the
S ¼ 1 triplet are significantly higher in energy due to the
large g factors. Thus, more complex phenomena such as
the two-stage Kondo effect [17,18] are not observed here.
Both the spin-1=2 and the integer-spin Kondo-like en-
hancements of the conductance in the Coulomb blockade
region occur when there are two degenerate states of differ-
ent spins.
We now focus on the N ¼ 7 Coulomb blockade region

at magnetic fields of B� 2 T [Fig. 1(b)] where the fourth
and the fifth level with the same spin cross as indicated by
label C in the schematic shown in Fig. 1(c). Here we
observe a clear suppression of the conductance within the
cotunneling background in the Coulomb blockade region.
Moreover, the direct tunneling lines are also broken at the
crossing points at the corners of the Coulomb blockade
region. This scenario is shown in detail in Fig. 2(a). The
bright region of the conductance suppression resembles a
canyon which connects the upper Sz ¼ 1 and N ¼ 8
Coulomb blockade region with the lower Sz ¼ 0 and N ¼
6 region while cutting through both the direct tunneling
lines and the Sz ¼ 1=2 and N ¼ 7 blockade region. As
shown in Figs. 2(b)–2(f) for different gate voltages, the
conductance drops to zero at the bottom of the canyon. In
addition, the conductance in the middle of the Coulomb
blockade region [Fig. 2(d)] shows a clear enhancement on
both sides of the conductance suppression. This is the
correlation-induced resonance, which was predicted for a
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FIG. 1 (color online). (a) SEM image of a fabricated InSb
nanowire quantum-dot device. (b) Conductance in gray scale
measured at a source-drain bias of Vsd ¼ 0:5 mV. (c) Schematic
for the evolution of the single-particle levels 4 and 5 with mag-
netic field (neglecting the level interaction and Coulomb charg-
ing). Letters A, B, and C mark the three single-particle level de-
generate points investigated in this work. (d) Conductance along
line cut A in (b) showing a conventional spin-1=2 Kondo peak at
B ¼ 0. (e) Conductance along line cut B showing an integer-spin
Kondo-like conductance enhancement at B � 1:5 T.
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FIG. 2 (color online). Details of the conductance suppression.
(a) Enlarged section of Fig. 1(b). (b)–(f) Conductance plots
along line cuts C1-C5 (at backgate voltages of 848, 822, 762,
708, and 690 mV) of (a), respectively.

PRL 104, 186804 (2010) P HY S I CA L R EV I EW LE T T E R S
week ending
7 MAY 2010

186804-2



similar, strongly correlated quantum-dot system near the
electron-hole symmetry point [7].

This canyon of conductance suppression is the main
finding of our Letter. We note that the presence of giant,
strongly level-dependent g factors in our InSb nanowire
dot is crucial to create the degeneracy between the two
spin-up levels at a moderate magnetic field. Furthermore,
the quadratic shifts of the levels with magnetic field differ
strongly for levels 4 and 5, which has helped to create this
desired degeneracy point. Intuitively, the phenomenon of
the conductance suppression can be understood as a result
of (i) the strong modification of the dot states by correla-
tions with the contacts and (ii) the consequent (destructive)
interference between the two paths through the dot asso-
ciated with the two modified states. This is straightfor-
wardly seen in the lower and upper direct tunneling
regions; see the Breit-Wigner results below. However, in
the Coulomb blockade region, strong correlations between
contacts and the dots states exist, which can result in
vanishing conductance at the electron-hole symmetry point
at zero temperature and zero bias [7–9]. The observed
canyon of conductance suppression connects both scenar-
ios and suggests that the combination of correlations and
interference is required for a full understanding.

In the following we show theoretically that a crossing
between two levels with equal spins indeed provides a
canyon of conductance suppression that cuts through
both the Coulomb blockade and direct tunneling regions.

Our Hamiltonian ĤD þ ĤC combines the terms describing
the quantum dot and its coupling to the left (L) and right
(R) lead which read (similar to Refs. [7–9])

Ĥ D ¼ E4"a
y
4"a4" þ E5"a

y
5"a5" þUay4"a4"a

y
5"a5"; (1)

Ĥ C ¼ X

k;‘¼L=R

t‘ðkÞc‘"ðkÞðay4" þ x‘a
y
5"Þ þ H:c:

þ X

k;‘¼L=R

E‘ðkÞcy‘"ðkÞc‘"ðkÞ; (2)

where ai" (a
y
i") and c‘" (c

y
‘") are the annihilation (creation)

operators of electrons in the dot and leads, respectively. We
define �‘4ðEÞ ¼ 2�

P
kjt‘ðkÞj2�½E‘ðkÞ � E�, which is as-

sumed to be constant, and �‘5 ¼ jx‘j2�‘4. Fitting to the
conductance peaks [12], we obtain U ¼ 5 meV, �L4 ¼
0:3 meV, �R4 ¼ 0:1 meV, �L5 ¼ 1 meV, �R5 ¼
0:4 meV, and the level energies of E4" ¼ 2 meV�
ðB=T � 2Þ � Eg �U=2 and E5" ¼ �2:5 meV� ðB=T �
2Þ � Eg �U=2. Here, the gate level energy Eg corre-

sponds to the backgate voltage by Eg ¼ eðVbg �
767 mVÞ=22. (This choice of Eg provides electron-hole

symmetry around B ¼ 2 T at Eg ¼ 0.) As motivated be-

low, we use xL < 0 and xR > 0, which might reflect a
parity difference between the fourth and fifth quantum
orbital states. The occupations of the left and right leads

are given by Fermi functions with the electrochemical
potentials of �eVsd=2, respectively.
For Eg & �U=2, at most one of the two levels is occu-

pied and Coulomb interaction plays no role. In such a non-
interacting system, the transmission TðEÞ can be calculated
with Green’s functions (GF), see, e.g., Ref. [19] where a
similar system was treated. The finite bias conductance

reads G ¼ ðe=hVsdÞ
ReVsd=2
�eVsd=2

dETðEÞ for zero temperature,

see the black solid line in Fig. 3(a), which agrees well with
the data (crosses) from Fig. 2(f). Figure 3(b) shows that the
experimental canyon of conductance suppression is repro-
duced very well by the GF model in its range of validity,
Eg & �U=2. Here the vanishing conductance can be at-

tributed to interference between the transmission through
both levels. The Breit-Wigner formula provides

TðEÞ ¼ �L4�R4

��������
1

E� E4" þ ið�L4 þ �R4Þ=2
þ xLxR

E� E5" þ ið�L5 þ �R5Þ=2
��������

2

: (3)

We find the vanishing of Tð0Þ at xLxRE4" � �E5" assuming

�Li þ �Ri � Ei". For our parameters this provides Eg þ
U=2 � 3:7 meV� ðB=T � 2Þ in good agreement with the
numerical findings and the experimental data shown in
Fig. 3(b). This justifies our choice of xLxR < 0.
In the Coulomb blockade region (�U=2<Eg < U=2)

the current is carried by cotunneling events. Here we apply
the second-order von Neumann (2vN) approach [20],

which treats all interactions in ĤD exactly. Correlated
transitions between the leads and the dot states are included
in second order describing cotunneling [21] and interfer-
ence [22]. For Eg ¼ �3:5 meV, the results agree excel-

lently with the experimental data; see Fig. 3(a). The 2vN is

31
0

0.2

0.4

0.6

0.8

Exp, 690 mV
GF transm.
T(0) from BW
2vN, kBT = 26 µeV 
2vN, kBT = 0.2 meV

G
(e

2 /
h)

B (T)
2

Eg = -3.5 meV

1 2 3
−8

−6

−4

−2

0

 

B (T)

E
g
(m

eV
)

(b)(a) Exp.

2vN

FIG. 3 (color online). Conductance where interaction is of
minor importance. (a) Experimental data (crosses) for Vbg ¼
690 mV together with calculated results using the noninteracting
Green’s function (GF) model with Vsd ¼ 0:5 mV (black solid
line) and the Breit-Wigner (BW) formula of Eq. (3) (black
dashed line). Corresponding 2vN results, including interactions,
are given in thin orange lines for two temperatures.
(b) Conductance from the GF model in its region of validity,
together with the positions of the minimal conductance from the
experiment (red dots) and the 2vN model (blue crosses).
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only reliable above TK [20], which we estimate to be
kBTK � 0:1 meV [12], and we attribute the occurrence of
some slightly negative conductivities to the improper treat-
ment of higher-order processes. In order to reduce these
problems we use the increased temperature of kBT ¼
0:2 meV in the following. The results of the calculation
are given in Fig. 4(a) and show the canyon of conductance
suppression in good agreement with the experiment.

The calculated conductance shows an approximate sym-
metry around the electron-hole symmetry point (full sym-
metry is restored by reversing the bias). In contrast, the
experimental data are more asymmetric, which indicates a
gate voltage dependence of system parameters. Figure 4(b)
shows that the conductance suppression persists for a finite
interlevel coupling described by an additional term

�ay5"a4" þ H:c: to ĤD in Eq. (1), while its width increases.

Comparing with experimental data,� � 0:4 meV fits bet-
ter at Vbg ¼ 762 mV. Even higher values of � seem

appropriate for larger Vbg (not shown), while � � 0 fits

well for Vbg ¼ 690 mV (see Fig. 3). This indicates that the

interlevel coupling depends on the backgate voltage in our
dot and vanishes accidentally around Vbg � 700 mV.

Finally, Fig. 4(c) shows that the vanishing of the current
persists for higher biases. In the high-bias limit with infi-
nite U this corresponds to the situation discussed in
Ref. [23], where the current vanishes exactly at level de-
generacy, independently of the couplings unless xL ¼ xR.

In conclusion, we have observed that the crossing of
quantum levels with equal spins in the presence of
Coulomb repulsion manifests as a canyon of vanishing
conductance cutting through the direct tunneling lines
and the enclosed Coulomb blockade region. This scenario

is well covered by the 2vN approach based on a two-level,
equal-spin, interacting model. Furthermore, our experi-
mental data confirm the predicted correlation-induced
resonances close to the electron-hole symmetry point.
Our results show that a full understanding of the interplay
between strong correlations and interference is required to
describe the entire behavior of the conductance of the
system at degeneracy of levels with equal spins.
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