
LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

Using Coding Techniques to Analyze Weak Feedback Polynomials

Hell, Martin

Published in:
Proceedings

2010

Link to publication

Citation for published version (APA):
Hell, M. (2010). Using Coding Techniques to Analyze Weak Feedback Polynomials. In Proceedings (pp. 2523-
2527)

Total number of authors:
1

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.
 • Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

https://portal.research.lu.se/en/publications/a3187f5e-3ab9-480b-9b45-5e06d613d07d

Using Coding Techniques to Analyze Weak
Feedback Polynomials

Martin Hell
Department of Electrical and Information Technology

Lund University, Sweden
E-mail: martin.hell@eit.lth.se

Abstract—We consider a class of weak feedback polynomials
for LFSRs in the nonlinear combiner. When feedback taps are
located in small groups, a distinguishing attack can sometimes
be improved considerably, compared to the common attack that
uses low weight multiples. This class of weak polynomials was
introduced in 2004 and the main property of the attack is that
the noise variables are represented as vectors. We analyze the
complexity of the attack using coding theory. We show that the
groups of polynomials can be seen as generator polynomials of
a convolutional code. Then, the problem of finding the attack
complexity is equivalent to finding the minimum row distance
of the corresponding generator matrix. A modified version of
BEAST is used to search all encoders of memory up to 13.
Moreover, we give a tight upper bound on the required size
of the vectors in the attack.

I. INTRODUCTION

One of the most common building blocks in stream ciphers
is the Linear Feedback Shift Register (LFSR). Two important
design ideas based on LFSRs are the nonlinear combiner and
the nonlinear filter generator. As an example, the E0 stream
cipher used in Bluetooth is based on the linear combiner, but
adds some extra memory for increased security. In this paper
we focus on the nonlinear combiner. It is well known that
LFSRs with feedback polynomials of low weight should be
avoided in stream ciphers. An attack exploiting low weight
feedback polynomials is the fast correlation attack, proposed
by Meier and Staffelbach [1]. Such polynomials provide a low
weight parity check equation which can be exploited together
with a bias in the output function.

Due to the fast correlation attack, low weight feedback
polynomials can be considered weak in the context of stream
cipher design. Much research has been put into the fast
correlation attack and several improvements have been found,
resulting in the fact that this attack is one of the most important
cryptanalytic attacks on stream ciphers. In 2004, Englund,
Hell and Johansson introduced a new class of weak feedback
polynomials [2]. These polynomials were not necessarily of
low weight, but instead had their feedback taps located in
small groups, possibly very far apart. Each group can be
represented by a polynomial, gi(x), with the first tap in
a group being the constant term in gi(x). In 2008, Hell
and Brynielsson [3] analyzed this attack further and showed
that the Walsh transform could be used to efficiently find
the complexity and the required vector length in the attack.
However, the complexity of the algorithm limited the results

to relatively modest vector lengths. An exhaustive search for
all combinations of two groups, g0(x) and g1(x) with degree
at most 8 was performed for all vector lengths up to 25. In
this paper we consider the same problem, but from a coding
theory point of view. We show that the polynomials gi(x) can
be seen as generator polynomials for a convolutional code.
Doing this, the problem of finding the best attack complexity is
equivalent to the problem of finding the minimum row distance
of the corresponding generator matrix. If the generator matrix
is noncatastrophic, this in turn is equivalent to finding the free
distance of the code. There are several well known algorithms
dedicated to the problem of finding free distances and the
currently most efficient is the Bidirectional Efficient Algorithm
for Searching code Trees (BEAST) [4]. It is designed to find
the weight spectrum of a code. We slightly modify BEAST
to work also with catastrophic generator matrices and use it
to exhaustively search all combinations of two groups, g0(x)
and g1(x) with degree at most 13. With our approach there is
practically no limitation on the size of the vectors, as there was
in previous work. Moreover, we theoretically derive the largest
possible vector length required in an attack for a given degree
of gi(x), and also show the exact number of combinations
requiring this vector length.

The paper is organized as follows. In Section II we give
some preliminaries. In Section III we look at the previous
work that is relevant to our analysis. The relation to coding
theory is given in Section IV and in Section V we present
the row distance search using our modified variant of BEAST.
The theoretical results are given in Section VI and our results
are concluded in Section VII.

II. PRELIMINARIES

Consider the fast correlation attack [1]. The ideas behind
this attack, originally given as a key recovery attack on a non-
linear combiner, can easily be turned into a distinguishing at-
tack on the same nonlinear combiner. The nonlinear combiner
uses a set of T LFSRs, preferably with primitive feedback
polynomials, and a nonlinear Boolean output function. We
denote the ith LFSR by Ri and its size by Li. The output
of Ri at time t is denoted xi(t).

Let z(t) be the keystream bit at time t. The correlation
attack [5] relies on the fact that there is always a subset of the

shift registers such that

Pr(z(t) = xi1(t)⊕ xi2(t)⊕ . . .⊕ xib
(t)) =

1
2
(1 + ε), (1)

with nonzero ε. The size b of this subset depends on the
correlation immunity of the Boolean function [6].

The characteristic polynomial f(x) of the sequence s(t) =
xi1(t)⊕ . . .⊕ xib

(t) is given by

f(x) = lcm(fi1(x), fi2(x), . . . , fib
(x)), (2)

= c0 + c1x+ c2x
2 + . . . cLx

L, (3)

where fij
is the characteristic polynomial of the sequence

generated by Rij
and lcm is the least common multiple. If

the polynomials are primitive, (2) is reduced to the product
of the involved polynomials and the degree of f(x) is L =∑b

j=1 Lij
. In the fast correlation attack, low weight multiples

of f(x) are searched, giving us a parity check equation of low
weight that holds with probability 6= 0.5. In the remainder,
we will assume that the set of LFSRs has been replaced by
one LFSR according to (2) and for clarity of presentation we
will from now on use the notation st to denote the value of
sequence s at time instance t.

Hypothesis testing is a central component in a distinguishing
attack. It can be used to decide if an observed collection of
samples are drawn from a biased distribution, here called the
cipher distribution PC , or from a uniform distribution P0.
For an overview of hypothesis testing we refer to [7]. Its
application to cryptanalysis is treated in e.g., [8], [9]. We will
use the Kullback-Leibler distance

D(PC‖P0) =
∑

x

PrPC
(x) log

PrPC
(x)

PrP0(x)
, (4)

also known as divergence or relative entropy, between two
distributions to measure the efficiency of the attack. The
number of samples needed in the hypothesis test is in the
order of O(1/D(PC‖P0)).

III. PREVIOUS WORK

In this section we review the results given in [2] and [3].
Consider Eq. (1). Replace the LFSRs used in the nonlinear
combiner by f(x) as given by (2). Then, we can write
zt = st ⊕ et, where et is the noise introduced by the
approximation (1). We see that

Pr(et = 0) =
1
2
(1 + ε), (5)

assuming that the Boolean output function is balanced. The
polynomial f(x) defines the recurrence

L⊕
i=0

cist+i = 0, t ≥ 0, (6)

and we can write
L⊕

i=0

cizt+i =
L⊕

i=0

cist+i ⊕
L⊕

i=0

ciet+i =
L⊕

i=0

ciet+i. (7)

We will throughout the paper assume that all noise variables ei

are independent. Then, according to the Piling-up Lemma [10],

Pr

(
L⊕

i=0

cizt+i = 0

)
= Pr

(
L⊕

i=0

ciet+i = 0

)
=

1
2
(1 + εw),

(8)
where w is the Hamming weight of (c0, c1, . . . , cL). This
results in a distinguishing attack requiring O(L + 1/ε2w)
keystream bits. L is the distance between the first and last
keystream bit in each sample and 1/ε2 is a common rule of
thumb widely used in cryptanalysis to approximate the number
of samples needed to detect the bias ε in (5). The complexity
of the attack is highly dependent on the weight w of f(x) and
thus, it is usually favourable to consider low weight multiples
of f(x) instead. This attack will be referred to as the basic
attack. The idea proposed in [2] was to generalize this attack
and consider the case when f(x) can be written as

f(x) = g0(x)+xM1g1(x)+xM2g2(x)+ . . .+xM`g`(x), (9)

where gi(x) are polynomials of small degree (≤ k) and M1 <
M2 < . . . < M`. It is also possible to consider multiples
of this form. The details concerning these multiples will not
be addressed in this paper, but can be found in [2], [3]. The
polynomial (9) corresponds to an LFSR with taps placed in
small groups. Each group has taps at most k shift register cells
apart and groups are located far away from each other.

Now, consider the variable Qi,

Qi = g0 · e[i, i+ k]⊕ . . .⊕ g` · e[M` + i,M` + i+ k] (10)

where e[i, j] = (ei, . . . , ej)T and gi = (gi,0, gi,1, . . . , gi,k),
gi,j is the jth coefficient in the polynomial gi(x). The main
observation here is that even though consecutive noise vari-
ables ei are independent, variables Qi close together will be
dependent. The reason is that the same noise variable will be
used in Qi’s close together. Hence, we can consider the noise
vector of length N given by

Ei = (QN ·i, QN ·i+1, . . . , QN ·(i+1)−1). (11)

Ei can also be written as

Ei =
⊕̀
j=0

G(j)
N · (eN ·i+Mj , . . . , eN ·(i+1)+Mj+k−1)T , (12)

where ⊕ denotes bitwise xor of binary vectors, M0 = 0 and
G(j)

N is the size N × (N + k) matrix

G(j)
N =

gj,0 gj,1 . . . gj,k

gj,0 gj,1 . . . gj,k

.
gj,0 gj,1 . . . gj,k

 .

(13)
The efficiency of the distinguishing attack depends on the
distribution of Ei. The different gi(x) are assumed to be far
apart so their contribution to the total noise vector can be
computed independently. In [2], different combinations of gi’s
were tested and it was noted that for some combinations, the

number of keystream bits needed in the distinguishing attack
was significantly lower than in the basic binary attack.

Further analysis, based on the Walsh transform of proba-
bility distributions, were done in [3]. First, consider only one
polynomial g0(x) and introduce the size N+k random variable
vector X = (x0, x1, . . . , xN+k−1)T where xi are independent
binary random variables corresponding to the noise introduced
by the linear approximation of the Boolean output function.
Thus, we have Pr(xi = 0) = 1

2 (1 + ε). Further, the size
N random variable vector Y = (y0, y1, . . . , yN−1)T is given
by Y = G(0)

N X and the number of samples needed in the
distinguisher is in the order of 1/D(Y ‖P0). We can write

D(PY ‖P0) =
1

2 ln 2

∑
ω 6=0

WPY
(ω)2, (14)

where

WPY
(ω) = Pr(ωG(0)

N X = 0)−Pr(ωG(0)
N X = 1) = ε‖ωG

(0)
N ‖1 ,
(15)

Note that since ε is small, the sum in (14) will be dominated
by the term with smallest ‖ωG(0)

N ‖1 (Hamming weight).
Combining (14) and (15) and generalizing this to several
(`+ 1) polynomials, we get the relative entropy

D(PY ‖P0) ≈
1

2 ln 2
ε
2·minω

(∑`
i=0 ‖ωG

(i)
N ‖1

)
. (16)

Thus, the complexity of the attack depends on the smallest
sum of the Hamming weights ‖ωG(i)

N ‖1.

IV. RELATION TO CODING THEORY

In this section we show that the efficiency of the attack is
closely related to coding theory. In particular, the number of
keystream bits needed in the distinguisher is related to the min-
imum distance of a linear, zero-tail terminated convolutional
code.

For a thorough overview of coding theory we refer to [11]
and [12].

Denote the information sequence by u = u0, u1, . . . and the
code sequence by v = v0, v1, Then the code sequence is
given by v = uG where G is the generator matrix.

Consider the matrix G(j) given by (13). This matrix can
be seen as a generator matrix for a rate R = 1 linear
convolutional code truncated after its first N rows. Similarly, a
zero-tail terminated generator matrix for a rate R = 1/c linear
convolutional code can be constructed as

GN =

G0 G1 . . . Gk

G0 G1 . . . Gk

.
G0 G1 . . . Gk

 , (17)

where each Gj is a 1 × (` + 1) matrix corresponding to the
jth coefficient of the `+ 1 polynomials gi(x), 0 ≤ i ≤ `,

Gj = (g0,j g1,j . . . g`,j). (18)

Let u[0,n] = u0, u1, . . . , un. The jth order row distance of a
generator matrix is defined as the minimum Hamming weight

of a codeword resulting from j + 1 information symbols
u[0,j] 6= 0, followed by the sequence forcing the state to the
zero state. This can be written as

dr
j = min

u[0,j] 6=0
{u[0,j]Gj+1}. (19)

Comparing this to (16), we see that the number of samples in
our distinguisher is related to the row distance of the generator
matrix. In particular, when using vectors of length N , the
efficiency of the distinguisher is related to the row distance
of order N − 1. For vectors of length N we have

D(PY ‖P0) ≈
1

2 ln 2
ε2·d

r
N−1 . (20)

It is easy to see that

dr
j ≥ dr

j+1, (21)

since the sequence u[0,j+1] 6= 0 can be chosen as 0u[0,j] 6= 0
which will give the same Hamming weight in the code
sequence as the sequence u[0,j]. The free distance of a code
is defined as the minimum Hamming distance between two
differing codewords,

dfree = min
v 6=v′
{dH(v,v′)}. (22)

The free distance is upper bounded by the row distance and
for noncatastrophic generator matrices we have

lim
j→∞

dr
j = dfree. (23)

Since the row distance is a monotonically decreasing function
that approaches the free distance of the code, this metric is
very useful when searching for codes with optimum (largest)
free distance. Since dr

j can be found very efficiently for small
j, it can serve as a rejection rule for candidate encoders. For
a catastrophic generator matrix we have

lim
j→∞

dr
j ≥ dfree. (24)

This is due to the fact that codewords in a convolutional code
are of infinite length and the trellis can enter a loop with only
zeros in the output. Thus, it will not merge with the all-zero
codeword. When computing the row distance we need to, by
definition, return to the all-zero state. Catastrophic generator
matrices are not interesting in error control coding since a
finite number of errors in the estimated codeword can result
in an infinite number of errors in the estimated information
sequence.

In our attack, the 1 × (` + 1) matrix G0 consists of only
ones. This corresponds to the fact that the constant term is 1
in our polynomials gi(x). From this it also follows that dr

j > `
for all choices of j. Combining this with (21) it is clear that
dr

j becomes stationary as j increases. In coding this value is
denoted dr

∞. Since j + 1 corresponds to the length N of the
vectors in our attack, and the vectors should be chosen to be
the smallest size which gives the best attack, we are interested
in the value ĵ such that

ĵ
.= min

j≥0
{j} : dr

j = dr
∞. (25)

Assuming that we start and end in the all-zero state, a possible
interpretation for noncatastrophic encoding matrices in coding
theory could be that ĵ + 1 is the smallest length of an
information sequence such that there are two codewords with
Hamming distance dfree.

The vector length N = j+1 when j is chosen to fulfill (25)
will be denoted Nopt reflecting the fact that it is the optimal
choice for the vector length in the attack.

V. COMPUTING THE ROW DISTANCE

In this section we discuss algorithms that can be used to
find dr

j in general, and, more importantly in our attack, dr
ĵ
.

The most straight forward algorithm is to recursively search
the tree resulting from the state transitions in the convolutional
encoder. By leaving the all-zero state, we search for the path
leading back to the all-zero state with smallest Hamming
weight. This weight is equivalent to the smallest Hamming
weight of all codewords. A recursive search will first compute
dr
0. For each leaf in the tree we check if the accumulated

Hamming weight is larger than or equal to dr
0. If this is

the case, that path is abandoned. Since the corresponding
generator matrix might be catastrophic, it is possible to end
up in an infinite loop and never return to the all-zero state. By
saving the states corresponding to the visited nodes as long
as the output weight is zero, we can easily check if we are in
such a loop.

A more efficient algorithm is BEAST [4]. It was proposed in
2004, as an efficient algorithm to compute the weight spectra
for convolutional codes. The minimum nonzero value of the
weight spectrum corresponds to the free distance of the code,
assuming a noncatastrophic generator matrix. The algorithm
is similar to the straight forward algorithm given above, but
additionally takes advantage of the fact that we know which
state to return to, i.e., the all-zero state. Assume that we want
to find the number of codewords of weight α. Then the end
state of all forward paths in the tree with Hamming weight
α/2 are saved in a list. A similar list is constructed for all
backward paths of weight α/2 and then the two lists are
combined. Naturally, for a rate 1/c code, we have to compute
c forward lists and c backward lists and combine the lists
that will result in codewords of Hamming weight α. The
BEAST algorithm is currently the fastest known algorithm to
find dfree of a convolutional code. In [4], BEAST is described
for noncatastrophic encoding matrices and a similar change
as described above to detect loops of weight zero has to be
implemented in order to apply it to our situation. Also, the
algorithm has been modified to save ĵ when dr

ĵ
has been

computed.
Using our slightly modified version of BEAST, we have

computed the minimum row distance dr
ĵ

and ĵ for all possible
combinations of two polynomials of degrees k0 and k1, 1 ≤
k0, k1 ≤ 13.

We examine two main problems related to the current attack:
• What is the number of samples needed in the distin-

guisher?

Fig. 1. The number of polynomial combinations with given dr
ĵ

.

Fig. 2. The number of polynomial combinations requiring a given vector
length N .

• Which vector length is needed in order to get the most
efficient attack in terms of number of samples needed in
the distinguisher?

Our new analysis allows us to answer the first question, not
only for vector lengths N < 30 as previously done [3], but
for the optimal vector length. Furthermore, the second question
can now be answered with the optimal vector length, not the
optimal with the restriction N < 30.

Fig. 1 is a histogram that shows the number of polynomial
combinations that results in a given dr

ĵ
.

Since dr
ĵ

immediately tells us the number of samples needed
in the distinguisher, this graph gives a rough idea on what
performance we can expect from our attack. Note that the
largest free distance for a convolutional code with memory 13
is known to be 16. The two encoders in Fig. 1 with dr

ĵ
= 17

both corresponds to catastrophic encoding matrices.
Fig. 2 is a histogram showing the number of polynomial

combinations that require a given vector length N = ĵ + 1 in
order to mount the best attack.

We see that even though most combinations require a
modest value of N , some combinations require a very high

value, the largest being N = 4084. As with the free distance
of a convolutional code, it is difficult to predict the efficiency
of the attack, as well as the required vector length, by just
looking at two arbitrary polynomials. However, for very large
vector length it is possible to derive theoretical results.

VI. THEORETICAL RESULTS

In this section we give a tight bound on the vector length
given the maximum degree of the involved polynomials gi(x).
We give expressions for the number of polynomial combina-
tions with maximum vector length and also characterize the
form of these polynomials. Further, we show that for any
degree k > 3 on the involved polynomials, there will always
be combinations of weight > 6 that result in dr

ĵ
= 6, i.e., a

very efficient attack compared to the basic attack.
In the sequel, the following property will be used.
Property 1: In a rate 1/2 encoder, if g1(x) = (1+x)g0(x),

then the output sequence generated by g1(x) in the encoder is
the derivative of the sequence generated by g0(x),

v
(1)
i = v

(0)
i ⊕ v(0)

i−1. (26)

Note that v(0)
−1 = 0 since we start in the all-zero state.

Now, assume that the polynomial g0(x) is primitive, and
g1(x) = (1 + x)g0(x). Thus, the degree of g1(x) = k, which
is also the memory order of the encoder, and the degree of
g0(x) = k−1. Let k > 3 and the input sequence to the encoder
be the m-sequence with characteristic polynomial being the
reciprocal of g0(x), followed by two trailing zeros. Moreover,
the sequence is chosen such that it ends with k−2 zeros. This
necessarily means that it starts with a one. If the encoder starts
in the all-zero state, v(0)

0 = 1. Then v(0)
1 = 0, . . . , v(0)

2k−1−2
=

0 because of the chosen input sequence. Since the sequence
ended with k − 2 zeros, we have to input 2 extra zeros in
order to force the encoder back to the all-zero state. Thus,
v
(0)

2k−1−1
= 1 and v(0)

2k−1 = 0 since the last memory cell is not
used by g0(x). Combining this with Property 1 we get

v(0) = 1 00000 . . . 00︸ ︷︷ ︸
2k−1−2

10

v(1) = 11 0000 . . . 00︸ ︷︷ ︸
2k−1−3

11.

From this it follows that the minimum row distance in this case
is 6. The optimal vector length is the number of rows in the
generator matrix (17). We know that the number of columns is
N+k and this equals the number of output symbols, 2k−1+1.
Hence,

N = 2k−1 − (k − 1). (27)

Since g0(x) is primitive, this is a tight upper bound on the
vector length for polynomials of degree ≤ k. (Note that this
analysis holds also for k = 3, with g0(x) = 1 + x + x2 and
g1(x) = 1 + x3, but the total weight is here 5 meaning that
the basic attack will be better.) Based on the analysis we give
the following proposition.

Proposition 1: If g0(x) is primitive and g1(x) = (1 +
x)g0(x). Then the optimal vector length in our attack is given

by Nopt = 2k−1 − (k− 1). The minimum row distance of the
corresponding encoder is dr

Nopt−1 = 6. Moreover, the number
of samples needed in the attack is in the order of ε−12.

For any given degree k > 3 of g1(x), the number of
polynomial combinations with this property is given by the
number of primitive polynomials of degree k − 1, i.e.,

ϕ(2k−1 − 1)
k − 1

, (28)

where ϕ(·) is the totient function.
This analysis explains the largest vector length N = 4084 in

Fig. 2. With k = 13 we have ϕ(4095)/12 = 144 polynomial
combinations that require a vector length Nopt = 212 − 12 =
4084. There are no two polynomials with degree ≤ k requiring
a larger vector length for the best attack.

VII. CONCLUSION

We have shown a relation between a distinguishing attack
based on weak polynomials and coding theory. The relation
allows the use of efficient algorithms for weight spectra to
be used to compute the complexity of the attack. Moreover,
the optimal vector length used in the attack can be found
very efficiently and we show that for any degree k of the
polynomials gi(x), there are always very efficient attacks.
It is crucial that these polynomials are avoided in nonlinear
combiners.

REFERENCES

[1] W. Meier and O. Staffelbach, “Fast correlation attacks on certain stream
ciphers,” Journal of Cryptology, vol. 1, no. 3, pp. 159–176, 1989.

[2] H. Englund, M. Hell, and T. Johansson, “Correlation attacks using a
new class of weak feedback polynomials.” in Fast Software Encryption
2004, ser. Lecture Notes in Computer Science, B. Roy and W. Meier,
Eds., vol. 3017. Springer-Verlag, 2004, pp. 127–142.

[3] M. Hell and L. Brynielsson, “Another look at weak feedback poly-
nomials in the nonlinear combiner,” in International Symposium on
Information Theory—ISIT 2009. IEEE, 2009.

[4] I. Bocharova, M. Handlery, R. Johannesson, and B. Kudryashov, “A
BEAST for prowling in trees,” IEEE Transactions on Information
Theory, vol. 50, no. 6, pp. 1295–1302, June 2004.

[5] T. Siegenthaler, “Decrypting a class of stream ciphers using ciphertext
only,” IEEE Transactions on Computers, vol. 34, pp. 81–85, 1985.

[6] ——, “Correlation-immunity of nonlinear combining functions for
cryptographic applications,” IEEE Transactions on Information Theory,
vol. 30, pp. 776–780, 1984.

[7] T. Cover and J. Thomas, Elements of Information Theory, ser. Wiley
series in Telecommunication. Wiley, 1991.

[8] T. Baignères, P. Junod, and S. Vaudenay, “How far can we go beyond
linear cryptanalysis?” in Advances in Cryptology—ASIACRYPT 2004,
ser. Lecture Notes in Computer Science, vol. 3329. Springer-Verlag,
2004, pp. 432–450.

[9] M. Hell, T. Johansson, and L. Brynielsson, “An overview of distin-
guishing attacks on stream ciphers,” Cryptography and Communications,
2008.

[10] M. Matsui, “Linear cryptanalysis method for DES cipher,” in Advances
in Cryptology—EUROCRYPT’93, ser. Lecture Notes in Computer Sci-
ence, T. Helleseth, Ed., vol. 765. Springer-Verlag, 1994, pp. 386–397.

[11] R. Johannesson and K. Zigangirov, Fundamentals of Convolutional
Coding, ser. IEEE Series on Digital and Mobile Communication. IEEE
Press, 1999.

[12] S. Lin and D. J. Costello, Error Control Coding, Second Edition.
Prentice-Hall, Inc., 2004.

