
LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

Flexible application development and high-performance motion control based on
external sensing and reconfiguration of ABB industrial robot controllers

Blomdell, Anders; Dressler, Isolde; Nilsson, Klas; Robertsson, Anders

2010

Link to publication

Citation for published version (APA):
Blomdell, A., Dressler, I., Nilsson, K., & Robertsson, A. (2010). Flexible application development and high-
performance motion control based on external sensing and reconfiguration of ABB industrial robot controllers.
62-66. Paper presented at IEEE International Conference on Robotics and Automation, 2010, Anchorage,
Alaska, United States.

Total number of authors:
4

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.
 • Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

Download date: 17. May. 2025

https://portal.research.lu.se/en/publications/1bd87fa1-d136-4a06-a4e7-661ae1daecc2


Flexible Application Development and

High-performance Motion Control Based on External Sensing and

Reconfiguration of ABB Industrial Robot Controllers

Anders Blomdell, Isolde Dressler, Klas Nilsson and Anders Robertsson

Abstract—New robot applications increasingly require exter-
nal sensing to accomplish robustness and performance despite
the variations and uncertainties that come with the increas-
ing demands on flexibility for manufacturing of customized
products. The demands on productivity then require high
performance, which for well known feedback-control reasons
means short response times from external process event to
reaction on the robot motor control. The need for high-
performance sensor interfaces connected to the motion control
without excessive buffering and computations has therefore
gained increasing attention over the last decade.

Apart from high sampling frequencies and short latencies,
there are also engineering aspects to consider. Control engi-
neering tools should be possible to utilize, additional computing
power is better connected via real-time Ethernet connections,
and all interfaces should check compatibility without sacrificing
performance. Furthermore, all that should preferably coexist
with the original system, superimposing the effects on external
sensing while still maintaining safety and consistency of data.
The reason is that the original control software is model based
and built on millions of lines of C-code, and tested beyond the
possibilities of a research lab.

Such a system has been accomplished for control and
application development using ABB robots. A short description
of the system is given, and its use for application/control
development is exemplified. User specific feedback control can
be done easily with short sampling periods and less than 1ms
of latency from sensing to motor reaction.

I. INTRODUCTION

As explained in [1], most robot control systems of today

support some type of user IOs connected on local networks

or buses. A crucial issue is the achievable bandwidth for

the control loops with the external feedback. For many

applications the effect of the bandwidth limitations only show

up as longer duty cycles, whereas for some applications,

like contact force control between the robot and the environ-

ment/workpiece, stability problems and severe performance

degradation may result [2],[3],[4].

From a control perspective of robotics research, direct

access to the driving torques of the manipulator and fast

feedback is very valuable, or even crucial for algorithm

evaluation and implementation of high-performance control

schemes. This made early robot systems like PUMA 560

Anders Blomdell, Isolde Dressler, and Anders Robertsson are with the
Department of Automatic Control, LTH, Lund University, SE-22100 Lund,
Sweden, mailto:anders.robertsson@control.lth.se

Klas Nilsson is with the Department of Computer
Science, LTH, Lund University, SE-22100 Lund, Sweden,
mailto:klas.nilsson@cs.lth.se

popular. Unfortunately, this kind of low-level access is not

present in commercial robot control systems of today.

For demanding new applications we both need to close

fast feedback loops at a low level, and to do so in a

consistent way, supporting supervision and coordination with

the application oriented programming on higher hierarchical

levels. Therefore, alternative ways to obtain high-bandwidth

control based on external sensors, which maintain the exist-

ing supervision and coordination functionality, are necessary

[5], [6].

II. NETWORK COMMUNICATION

In a research lab with rapid application development

control modules are often changed without properly changing

all dependent modules. Therefore it has been considered

important to connect the different parts of experiments in

such a way that changes interfaces are detected and precludes

operation with incompatible versions of software.

To handle this versioning, we use a binary protocol

(LabComm) [7] where a data source starts with a one-time

transmission of an indexed list with the layout of all possible

subsequent samples. This list is then used by the data sink to

verify that all possible samples has a layout which is identical

to that of the data source. All data actually sent is then pre-

fixed by the proper index into this list, followed by a binary

representation of the sample data. LabComm is capable of

sending samples consisting of primitive types as well as fixed

and variable size arrays and arbitrarily nested structures. In

contrast to C, LabComm supports variable sized arrays and

in contrast to Java it supports multidimensional arrays (Java

only supports arrays of arrays).

Data which is to be sent by LabComm is described by a

simple Data Description Language, which is used to generate

the proper marshalling/demarshalling code for a number of

languages (currently C, Java, Python and C#).

Part of a description file could look like

sample float fswitch;

sample float fromFile[3];

sample float heidenhain;

where sample refers to a snapshot of an object (“an instance

of an instance of a type”, in contrast to remote objects).

An important design feature of the LabComm protocol, is

that only one-way communication is needed, which means

that it is possible to store a LabComm data stream to a file

for later interpretation. This is furthermore used for general

62



data logging and logging can be implemented in separate log

program (or used by an online data viewer) and need thus

not be integrated with the other applications.

To guarantee that each sensor data network package arrives

on time to the low-level motion control, each communication

node obeys a data bandwidth limitation that we refer to as

throttling [8].

A. Orcinus/ORCA

Built on top of the LabComm protocol we have a two-

way protocol nicknamed ORCA1 that divides samples into

the four classes inputs, outputs, parameters and log signals.

Parameters can be gains or tuning parameters in the low-level

controller which can be changed via an operator interface.

III. SIMULINK→ RTW→ ORCA

Due to historical reasons, we use Matlab/Simulink Real

Time Workshop (RTW) for code-generation for our robot

controllers, but unfortunately the code generated by these

tools is not very well suited for direct integration with

other software, since the model input/output structure is only

exposed as C-code structs with name-mangled fields. In order

to remedy this flaw, we have developed a tool rtw�orca

that uses an undocumented temporary file (modelname.rtw)

and the .lc-files given as build parameters to generate a main

program that properly handles marshalling/demarshalling of

LabComm data as well as running the code generated by

RTW in an orderly manner. Since we use signal names in

the Simulink model and match them with the declarations in

the .lc-files, we get a reasonably good typechecking of the

data sent to and from the generated code.

As an example, we can look at the internal position

reference signal generated by the ABB controller. This is fed

into a shared memory ORCA connection which is described

by a .lc-file containing the following lines:

typedef struct {

...

double posRef;

float velRef;

...

} irb2ext_joint;

sample irb2ext_joint irb2ext[6];

If we want to use the vector of posRef signals, we just

put an input signal named irb2ext[i].posRef in the

Simulink diagram (if we had wanted the second element

of the vector, we could have used irb2ext[2].posRef

instead). When the rtw2orca-tool then parses the fol-

lowing from the totally undocumented .rtw file (internal

representation from MathWorks):

1Since other platforms also use that name, our original platform name
ORCA (Open Robot Control Architecture) has been replaced by the Latin
first name of the orca animal; Orcinus. ORCA is still used for symbols and
in names of tools, as for the protocol in this case. Orcinus stands for Open
Robot Control using Integrated Networked Ubiquitous Sensing.

ExternalInput {

BlockName "<Root>/irb2ext[i].posRef"

Identifier "irb2extiposRef"

TID 0

CGTypeIdx 14

VarGroupIdx [4, 13]

}

the tool infers that the Simulink diagram contains an input

named irb2ext[i].posRef and uses this together with

the .lc file to generate the following C-code:

for (i = 0 ; i < 6 ; i++) {

(*U).irb2extiposRef[i] =

controller->v_irb2ext.a[i].posRef;

}

and hence a name-matched connection with less dependence

on Simulink/RTW versions is accomplished.

Before we had the rtw2orca-tool, all Simulink models

had a common structure, where inputs and outputs were

coupled to (almost) arbitrary signal names, which was both

hard to understand and maintain, and hence very error prone.

IV. USAGE OF THE EXTENDED CONTROL AND SENSOR

INTERFACE

Before an experiment can be carried out, the controller

needs to be implemented in Matlab/Simulink and eventu-

ally, drive routines need to be programmed for additional

input/output signals of the controller, i.e. signals other than

the standard input/output exchanged with the ABB IRC 5

controller.

For the Simulink controller, any commonly used blocks

are supported by the Matlab RTW C-code generation. S-

functions or embedded Matlab code blocks can be used

for implementing complex relations, e.g. forward or in-

verse kinematic functions. Whenever possible, the controller

should be tested in simulations (with a model of the robot)

before applying it to the real robot. Parameters (e.g. a

switch parameter to turn the controller on or to start an

experiment) can be changed from the user interface during

the experiment if they are declared as inline parameter in the

Matlab/Simulink RTW options. Any signal in the controller

block diagram can be logged by ticking it as test point.

After making sure that the LabComm files required for the

inputs/outputs are available, the Simulink controller can be

translated to C-code using Matlab RTW and downloaded to

the G4 Power PC.

If input or output signals have been added to the Simulink

controller, a driver routine is needed to receive/send the data

using the LabComm protocol. Typically, additional inputs are

added to read data from an external sensor.

Fig. 3 shows the overall structure of the extended control

system and sensor interface. Ongoing work withing the

EU-FP7 project ROSETTA aims at further developing this

architecture to a network based extension with even faster

update rates in the low-level control architecture.

63



Fig. 1. Extension of industrial robot controller with sensor interface and support for external computations and synchronization, using a Motorola PPC-G4
PrPMC-800 processor board mounted on an Alpha-Data PMC-to-PCI carrier board with a local PCI bus.

 addpath /opt/robot/matlab/;

% addpath /opt/robot/matlab/irb/mex/;

addpath /home/robot/project/extctrl/irc5/simulink

addpath ’/opt/matlab/matlab−R2008a/toolbox/fixedpoint/fixedpoint’

%GTP mex files

addpath /home/f04jfr/Documents/mex/mex_GTP_L1

addpath /home/f04jfr/Documents/mex

addpath /home/f04jfr/Documents/

DOF=6; h=0.004; samptimeS4C=h; samptimeIRC5 = h;

K_fz=1/50;

f_activate=0;

A = 0.01; % 1 cm circle

w = 1; % circle frequency

max_track_speed=0.001;

track_speed = 0.01;

T = 2*A/max_track_speed;

K=1;

% convert motor rad to [mm mm mm deg detg ?]

motor2arm_conv=diag([1000/400 1000/400 1000/400 180/(pi*80) 180/(pi*80) 1]);

arm2motor_conv = diag([400/1000 400/1000 400/1000  (pi*80)/180 (pi*80)/180 1])

disp(’init done’)

fswitch

11

ext2irb[i].to_test_signal_viewer[j]

10

ext2irb[i].trqDis

9

ext2irb[i].trqFfw

8

ext2irb[i].trqRef

7

ext2irb[i].accRef

6

ext2irb[i].velRef

5

ext2irb[i].posRef

4

ext2irb[i].parKi

3

ext2irb[i].parKv

2

ext2irb[i].parKp

1

conv [m rad] to [mm deg]

400* u

Terminator9

Terminator8

Terminator7

Terminator6

Terminator5

Terminator4

Terminator3

Terminator2

Terminator12

Terminator11

Terminator10

Terminator1

Terminator

Saturation

Product

Integer Delay1
 −1

Z   

Integer Delay

 −125

Z   

Ground

Fcn

f(u)

Discrete−Time

Integrator

K Ts

z−1

Discrete Derivative

K (z−1)

Ts z

Discrete

Transfer Fcn

filtnum{1}(z)

filtden{1}(z)

f_activate

Add5

Add4

Add3

Add2

Add1

Add

heidenhain

22

fromFile[i]

21

irb2ext[i].trq_ffw_grav

20

irb2ext[i].trqDis

19

irb2ext[i].trqFfw

18

irb2ext[i].trqRef

17

irb2ext[i].accRef

16

irb2ext[i].velRef

15

irb2ext[i].posRef

14

irb2ext[i].trqRef_flt

13

irb2ext[i].trqRaw

12

irb2ext[i].velOut

11

irb2ext[i].velFlt

10

irb2ext[i].velRaw

9

irb2ext[i].posFlt

8

irb2ext[i].posRaw_fb

7

irb2ext[i].posRaw_abs

6

irb2ext[i].parTrqMax

5

irb2ext[i].parTrqMin

4

irb2ext[i].parKi

3

irb2ext[i].parKv

2

irb2ext[i].parKp

1

testf

timesig sinesig posRefaddtimesat

ILCposref1

testvalin

ILCposref2

ILCposref3

Fig. 2. Example: Simulink model for iterative learning control (ILC): The model contains the standard input and output signals from and to the IRC5
system and an input from an external linear encoder (heidenhain). The reference signal is generated from the user interface input f activate, and
the correction terms are read from a file, generated by the ILC-algorithm.

64



Fig. 5. The prototype of a Gantry-Tau PKM at the Robotics Lab at LTH,
Lund University; A camera and a high resolution linear encoder along the
rail is used to measure the cart motion on the arm-side.

The opcom user interface (Fig. 4) communicates with

the G4 Power PC and the IRC 5 system. The opcom

interface is implemented as a finite state machine (FSM).

The Simulink controller can be loaded from it (load and

unload state). In the submit state, is starts to receive the

data the IRC 5 main controller sends to the axis controllers,

but only when activating obtain, the axis controller receives

the modified data from the Simulink controller instead of the

data from the main controller. The communication with drive

routines or the logging routine is started separately from a

PC. In principle, each drive routine as well as the opcom

interface can run on a different PC which has the appropriate

hardware.

The controller should be tested in the submit state before

running the experiment to ensure that the controller is stable

and safe to use.

V. APPLICATION EXAMPLE: ITERATIVE LEARNING

CONTROL

Below, the presented controller extension is illustrated

by the application of iterative learning control (ILC) for a

parallel kinematic robot, see Fig. 5.

Even if this does not fully reflect the possibility to add

complex controllers including e.g., stateflow diagrams for

mode changes it captures the main communication flow and

relates to the described modularity of the system.

The robot is to “learn” a specific motion by decreasing the

deviation from the reference trajectory with every iteration in

which the movement is performed. The position references of

the robot joints are updated with a correcting term calculated

from the deviation from the reference trajectory between the

iterations.

Figure 2 shows the Matlab/Simulink implementation for

iterative learning control. There are several features neces-

sary for that purpose:

0 0.5 1 1.5 2 2.5 3 3.5
−0.2

−0.1

0

0.1

0.2

u
k

0 0.5 1 1.5 2 2.5 3 3.5
−0.2

−0.1

0

0.1

0.2

e
k

time [s]

 

 

k=0
k=1
k=2

Fig. 6. ILC-experiments: Sequences of signals added to position reference
(upper) and position error (lower) for each iteration k = 0�1�2. Note that
already after one iteration the tracking error is significantly reduced.

• The position and velocity references of the joints should

be updated with the reference trajectory (still without

the correction terms).

• The updated correction terms for the current iteration

should be added to the reference values sent to the robot

system.

• Additional sensors, in this example a linear encoder, to

measure position at the arm side, can be included.

• It should be possible for the user to manually start an

ILC experiment in a synchronized way via a switch or

similar.

The switch (f activate) is implemented as a parameter

that can be changed and the experiment thus started from the

opcom user interface. The reference trajectory and correction

terms are synchronized with this parameter.

For the reference trajectory, here a filtered sine signal was

chosen. The synchronization with the f activate switch

is here done by integrating f activate, which is set to 1

to start the experiment. This creates a time signals t which

is fed into a sin(t) block. A saturation block on the time

signal terminates the sine after an appropriate number of

cycles. A more flexible way would be to read the reference

from a file, as described below for the correction terms.

After calculating the correction terms, they are written

to a file. A C-program was written that uses the Lab-

Comm protocol to connect to the orca client. It receives the

f activate/ f switch signal, and when it switches to

1, it opens the specified file and starts to send the correction

values to the orca client with the same sampling interval it

receives f activate from the orca client.

Any additional sensor, such as the high-resolution linear

encoder (1 μm) in this example, can communicate with

the orca client in a similar way. A C-program sets up the

connection and sends the measurement data to the orca

client. To ensure equal sampling intervals, the sending can

be synchronized with data received from the orca client.

Finally, Fig. 6 shows details of the ILC experiments.

65



Sensor 1

Sensor N

Axis

submit

Simulink

obtain

Linux PC

Controller

ABB controller cabinet

ABB controller G4 Power PC

Controller
Main

Controller

Ethernet
RS232

RS232
Opcom

InterfaceUser
FSM

Linux PC

Logging
Routine

LabComm/Orca
Sensor

Linux PC

Driver

. . .

Fig. 3. Structure of the extended ABB IRC 5 control system.

Fig. 4. Screenshot of Opcom interface: Connection to IRC 5 (top left), G4 Power PC (top right), parameter interface (bottom left) and controller interface
(bottom right).

REFERENCES

[1] A. Blomdell, G. Bolmsjo, T. Brogardh, P. Cederberg, M. Isaksson,
R. Johansson, M. Haage, K. Nilsson, M. Olsson, T. Olsson, A. Roberts-
son, and J. Wang, “Extending an industrial robot controller: implemen-
tation and applications of a fast open sensor interface,” IEEE Robotics

& Automation Magazine, vol. 12, no. 3, pp. 85–94, 2005.
[2] B. Siciliano and L. Villani, Robot Force Control. Kluwer Academic

Publishers, 1999.
[3] D. Gorinevsky, A. Formalsky, and A. Schneider, Force Control of

Robotic Systems. CRC Press, 1997.
[4] T. Yoshikawa, “Force control of robot manipulators,” in Proceedings of

IEEE Int. Conf. on Robotics and Automation, April 2000, pp. 220–226.
[5] A. Robertsson, T. Olsson, R. Johansson, A. Blomdell, K. Nilsson,

M. Haage, B. Lauwers, H. de Baerdemaeker, T. Brogårdh, and H. Brant-
mark, “Implementation of industrial robot force control - case study:
High power stub grinding and deburring,” in Proc. 2006 IEEE/RSJ In-

ternational Conference on Intelligent Robots and Systems (IROS2006),
Beijing, China, Oct. 2006, pp. 2743-2748.

[6] T. Olsson, M. Haage, H. Kihlman, R. Johansson, K. Nilsson,
A. Robertsson, M. Björkman, R. Isaksson, G. Ossbahr, and T. Brogårdh,
“Cost-efficient drilling using industrial robots with high-bandwidth
force feedback,” Robotics and Computer-Integrated Manufacturing,
vol. 26, pp. 24–38, Jan. 2010.

[7] LabComm, http://torvalds.cs.lth.se/moin/LabComm.

[8] A. Martinsson, “Scheduling of real-time traffic in a switched ethernet
network,” Department of Automatic Control, Lund University, Sweden,
Master’s Thesis ISRN LUTFD2/TFRT--5683--SE, Mar. 2002.

66


