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the case, problem (15) is equivalent to problem (17). We further note
that the inequality in (29) is equivalent to

X � Xopt + (Z � Zopt) ~X
y
22(Z � Zopt)

T
;

(Z � Zopt) I � ~X22
~Xy
22 = 0:

Both in the case of trace and log-determinant, the functionf(X) is
concave on the cone of positive–definite matrices. This implies that
the optimal value ofX; Z areX = Xopt, Z = Zopt, as claimed.
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On Kalman–Yakubovich–Popov Lemma for Stabilizable
Systems

Joaquín Collado, Rogelio Lozano, and Rolf Johansson

Abstract—The Kalman–Yakubovich–Popov (KYP) Lemma has been a
cornerstone in System Theory and Network Analysis and Synthesis. It re-
lates an analytic property of a square transfer matrix in the frequency do-
main to a set of algebraic equations involving parameters of a minimal re-
alization in time domain. This note proves that the KYP lemma is also valid
for realizations which are stabilizable and observable.

Index Terms—Nonminimal realization, positive-real functions.

I. INTRODUCTION

Given a square transfer matrixZ(s), the Kalman–
Yakubovich–Popov (KYP) Lemma relates an analytic property
of a square transfer matrix in the frequency domain to a set of
algebraic equations involving parameters of a minimal realization in
time domain. See the original references [7], [18], and [13], [20].
Further important developments were given in [3], [12]. The lemma
was generalized to the multivariable case in [2]. Extensions and
clarifications appeared on [5], [16], and [10]. Clear presentations and
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relationships with other related results appeared in [17] and [8].
A novel proof based on convexity properties and linear algebra
appeared recently in [14]. Based on this classical result, the following
question with respect to minimality arises: is the KYP lemma valid
for nonminimal realizations? This note addresses this question and
gives a positive answer, i.e., the KYP lemma is valid for realizations
which are stabilizable and observable. This extension has important
applications in control systems theory and in the stability analysis
of adaptive output feedback systems [6]. Some comments have
appeared in the literature with respect to this relaxation. Meyer
[11] made early comments on the minimality issue. A method for
construction of Lyapunov functions for a positive real nonminimal
systems was proposed in [6]. In a recent survey paper, the authors
stated that the KYP lemma is valid for stabilizable realizations.
However, they did not provide details of the proof. The objective of
this note is to clarify and establish that the KYP lemma holds also
for stabilizable and observable realizations.

II. PRELIMINARIES

Let us consider a linear time-invariantm-inputsm-outputs transfer
matrixZ(s) with a minimal realization given by

�

x =Ax +Bu

y =Cx+Du (1)

wherex 2 Rn; u; y 2 Rm, m � n, andA; B; C; D are matrices
of the corresponding dimensions. Let us denote the realization ofZ(s)
given in (1) by

�Z(s) =(A; B; C; D)

or

�Z(s) =
A B

C D
:

In order to avoid trivialities, let us make the following assumption.
General Assumption:The transfer matrixZ(s) = C(sI �

A)�1B +D is such thatZ(s) + ZT (�s) has normal rankm, i.e., its
rank ism almost everywhere in the complex plane.

The following are standard definitions of positive-real (PR) and
strictly positive-real (SPR) systems, see [3] and [12].

Definition 1: The transfer matrixZ(s) is said to be PR if: i) All
elements ofZ(s) are analytical in Re[s] > 0; and ii)Z(s)+ZT (�s) �
0 for all Re[s] > 0; Z(s) is said to be SPR ifZ(s� ") is PR for some
" > 0.

The following lemma give us a general procedure to generate un-
controllableequivalentrealizations from two minimal realizations of a
given transfer matrixZ(s). The uncontrollable modes should be sim-
ilar and the augmented matrices should be related by a change of coor-
dinates as explained next.

Lemma 2: Let �i(Ai; Bi; Ci; Di) for i = 1; 2 be two minimal
realizations ofZ(s), i.e.,Z(s) = Ci(sI�Ai)

�1Bi+Di for i = 1; 2.
Now, define the augmented systems

Ai :=
Ai 0

0 A0i
Bi :=

Bi

0

Ci := [Ci C0i ] Di := [Di]

(2)

where the dimensions ofA01 andA02 are the same, moreover, there
exist a nonsingular matrixT0 such thatA01 = T0A02T

�1
0 andC01 =

C02T
�1
0 . Then,�i(Ai; Bi; Ci; Di) for i = 1; 2 are twoequivalent

realizations ofZ(s).
Proof: Simple algebraic manipulations.

As a dual result, we can generate unobservable augmented realiza-
tions ofZ(s) as established in the following corollary.

Corollary 3: Let�i(Ai; Bi; Ci; Di) for i = 1; 2 be two minimal
realizations ofZ(s), i.e.,Z(s) = Ci(sI�Ai)

�1Bi+Di for i = 1; 2.
Now, define the augmented systems

Ai =
Ai 0

0 A0i
Bi =

Bi

Bi0

Ci = [Ci 0 ] Di = [Di]

(3)

where the dimensions ofA01 andA02 are the same, moreover, there
exist a nonsingular matrixT0 such thatA01 = T0A02T

�1
0 andB01 =

T0B02. Then�i(Ai; Bi; Ci; Di) for i = 1; 2 are twoequivalent
realizations ofZ(s).

Remark 1: Note also that if the eigenvalues ofAi andA0i are
different then the pair(Ci; Ai) is observable if and only if the
pair (C0i; A0i) is observable; and under the same conditions, the
pair (Ai; Bi) is controllable if and only if the pair(A0i; B0i) is
controllable. The proof can be obtained by using the Popov–Bele-
vitch–Hautus test [15].

III. RELAXED KYP LEMMA

Following the nomenclature of Khalil [8], we may postulate our main
result as follows.

Theorem 4: LetZ(s) = C(sI�A)�1B+D be am�m transfer
matrix is such thatZ(s) + ZT (�s) has normal rankm, whereA is
Hurwitz, (A; B) is stabilizable, and(C; A) is observable. Assume
that if there are multiple eigenvalues, then all of them are controllable
modes or all of them are uncontrollable modes. Then,Z(s) is SPR if
and only if there exist a positive definite symmetric matrixP , matrices
W andL, and a positive constant� such that

PA+ATP = �LTL� �P

PB = CT
� LTW

WTW = D +DT :

(4)

Remark 2: The assumption thatZ(s) + ZT (�s) has normal rank
m is in order to avoid redundances in inputs and/or outputs. The as-
sumption that the intersection of the set of controllable modes with the
set of uncontrollable modes is empty, is used only in thenecessarypart
of the proof given below.

Proof: Sufficiency:
Let � 2 (0; �=2) then from (4)

P (A + �I) + (A+ �I)TP = �LTL� (�� 2�)P (5)

which implies that(A+�I) is Hurwitz and, thus,Z(s��) is analytic
in Re[s] � 0. Define now for simplicity

�(s) := (sI �A)�1:

Therefore

Z(s� �) + ZT (�s� �)

= D +DT + C�(s� �)B +BT�T (�s� �)CT

= WTW + BTP +WTL �(s� �)B

+BT�T (�s� �) PB + LTW

= WTW +WTL�(s� �)B +BT�T (�s� �)LTW

+BTP�(s� �)B +BT�T (�s� �)PB

= WTW +WTL�(s� �)B +BT�T (�s� �)LTW
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+BT�T (�s� �) �
�T

(�s� �)P + P�
�1

(s� �)

� �(s� �)B

= WTW +WTL�(s� �)B +BT�T (�s� �)LTW

+BT�T (�s� �)

� �(s+ �)I �AT P + P (s� �)I �A

� �(s� �)B

= WTW +WTL�(s� �)B +BT�T (�s� �)LTW

+BT�T (�s� �) �2�P � ATP � PA �(s� �)B

= WTW +WTL�(s� �)B +BT�T (�s� �)LTW

+BT�T (�s� �) LTL+ (� � 2�)P �(s� �)B

= WTW +WTL�(s� �)B +BT�T (�s� �)LTW

+BT�T (�s� �)LTL�(s� �)B + (�� 2�)BT�T

� (�s� �)P�(s� �)B

= WT +BT�T (�s� �)LT W + L�(s� �)B

+ (�� 2�)BT�T (�s� �)P�(s� �)B:

From the above, it follows thatZ(j!��)+ZT (�j!��) � 0 8!
andZ(s) is SPR.

Necessity:
Assume thatZ(s) 2 SPR. Let�(A; B; C; D) be a stabilizable and

observable realization ofZ(s) and�(A; B; C; D) a minimal realiza-
tion ofZ(s). Given that the controllable and uncontrollable modes are
different we can consider that the matrixA is block diagonal and, there-
fore,Z(s) can be written as

Z(s) = [C C0 ]

C

sI �A 0

0 sI � A0

�1

[sI�A]

B

0

B

+ D

D

(6)

where the eigenvalues ofA0 correspond to the uncontrollable modes.
As stated in the preliminaries, the condition�(A) \ �(A0) = ;

[where �(T ) means the spectrum of the square matrixT ] means
that the pairs(C; A) and (C0; A0) are observable if and only if
(C; A) = ([C C0]; [

A 0
0 A

]) is observable.
We have to prove that�(A; B; C; D) satisfies the KYP equations

(4).
Note thatA; A0 are both Hurwitz. Indeed,A is stable because

�(A; B; C; D) is a minimal realization ofZ(s) which is SPR.A0 is
stable because the system is stabilizable. Thus9� > 0: Z(s � �) 2
PR andZ(s� �) 2 PR8� 2 [0; �]. Choose now� sufficiently small
such thatU(s): = Z(s � (�=2)) 2 SPR, then the following matrices
are Hurwitz:

A� = A +
�

2
I 2 R(n+n )�(n+n )

A� = A +
�

2
I 2 Rn�n

A0� = A0 +
�

2
I 2 Rn �n :

(7)

Note that A� is also block diagonal having block elements
A� and A0� and the eigenvalues ofA� and A0� are different.
Let ��(A�; B; C; D) be a minimal realization ofU(s) and

��(A�; B; C; D) an observable and stabilizable realization ofU(s).
Therefore

U(s) = C(sI � A�)
�1B +D = C(sI �A�)

�1B +D: (8)

Note that the controllability of the pair(A�; B) follows from the
controllability of(A; B). SinceA0� is Hurwitz, it follows that(A�; B)
is stabilizable.

From the spectral factorization lemma for SPR transfer matrices
[19], [8, Lemma A.11, p. 691], or [2], there exists anm � m stable
transfer matrixV (s) such that

U(s) + UT (�s) = V T (�s)V (s): (9)

Remark 3: Here, the assumption thatZ(s) + ZT (�s) has normal
rankm is used implicitly, otherwise the matrixV (s) would be of di-
mensions(r �m), wherer is the normal rank ofZ(s) + ZT (�s).

Let �V (F; G; H; J) be a minimal realization ofV (s), F is
Hurwitz becauseV (s) is stable; a minimal realization ofV T (�s)
is �V (�FT ; HT ; �GT ; JT ). Now, the series connection
V T (�s)V (s) has realization (see [9, p. 15] for the formula of a
cascade interconnection)

�V (�s)V (s)

�
F 0

HTH �FT
;

G

HTJ
; [ JTH �GT ]; [JTJ ] : (10)

Although we will not require the minimality of�V (�s)V (s)

in the sequel, it can be proved to follow from the minimality of
�V (F; G; H; J), see [8] or [1].

Let us now define a nonminimal realization ofV (s) obtained from
�V (F; G; H; J) as follows:

F =
F 0

0 F0
; G =

G

0
; H = [H H0 ]; J = J (11)

and such thatF0 is similar toA0� and the pair(H0; F0) is observable,
i.e.,9 T0 nonsingular such that

F0 = T0A0�T
�1
0 : (12)

This constraint will be clarified later on. Since�(F0) \ �(F ) = ;,
then the pair

(H; F ) = [H H0 ];
F 0

0 F0
(13)

is observable. Thus, the nonminimal realization�V (F ; G; H; J) of
V (s) is observable and stabilizable.

Now, a nonminimal realization ofV T (�s)V (s) based on
�V (F ; G; H; J)

�V (�s)V (s)

�
F 0

HTH �F T
;

G

HTJ
; [ JTH �GT ]; [JTJ ] (14)

is (see [9, p. 15])

�V (�s)V (s)

=

F 0 0 0 G

0 F0 0 0 0

HTH HTH0 �FT 0 HTJ

HT

0 H HT

0 H0 0 �FT

0 HT

0 J

JTH JTH0 �GT 0 JTJ

:

(15)

From the diagonal structure of the above realization, it could be con-
cluded that the eigenvalues ofF0 correspond to uncontrollable modes
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and the eigenvalues of (�F0T ) correspond to a unobservable modes.
A constructive proof is given below.

Since the pair(H; F ) is observable andF is stable, there exists a
positive–definite matrix

K = KT =
K r

rT K0
> 0 (16)

solution of the Lyapunov equation

KF + F TK = �HTH: (17)

This explains why we imposed the constraint that(H0; F0) should
be observable. Otherwise, there will not exist a positive definite solu-
tion for (17).

Define

T :=
I 0

K I
; T

�1
=

I 0

�K I

and use it as a change of coordinates for the nonminimal realization
�V (�s)V (s) above to obtain

�V (�s)V (s)

=

F 0 0 0

0 F0 0 0

0 0 �FT 0

0 0 0 �FT

0

G

0

(JH +GTK)T

JH+GTK �GT 0 JTJ

:

(18)

Now, it is clear that the eigenvalues ofF0 correspond to uncontrol-
lable modes and the eigenvalues of(�F0

T ) correspond to unobserv-
able modes.

From (8), a nonminimal realization ofU(s) is ��(A�; B;
C; D). Thus, a nonminimal realization forUT (�s) is ��

(�AT

� ; C
T ; �BT ; DT ). Using the results in the preliminaries,

a nonminimal realization ofU(s) + UT (�s) is

�U(s)+U (�s)

�
A� 0

0 �AT

�

;
B

CT
; C �BT ; D +DT : (19)

Using (9) we conclude that the stable (unstable) parts of the realiza-
tions ofU(s) + UT (�s) andV T (�s)V (s) are identical. Therefore,
in view of the block diagonal structure of the system and considering
only the stable part, we have

F =
F 0

0 F0
= RA�R

�1 = R
A� 0

0 A0�
R�1

G =
G

0
= RB = R

B

0

JH +GTK = CR�1 = [C C0 ]R
�1

JTJ = D +DT :

(20)

The above relationships imposes that the uncontrollable parts of the
realizations ofU(s) andV (s) should be similar. This is why we im-
posed thatF0 is similar toA0� in the construction of the nonminimal
realization ofV (s).

From the Lyapunov equation (17), and usingF = RA�R
�1 in (20),

we get

KF + F TK = �HTH

KRA�R
�1 +R�TAT

� R
TK = �HTH

RTKRA� + AT

� R
TKR = �RTHTHR

PA� +AT

� P = �LTL

(21)

where we have used the definitionsP := RTKR; L := HR. Intro-
ducing (7), we get the first equation of (4).

From the second equation of (20), we haveG = RB. From the third
equation in (20) and usingW = J , we get

JH +GTK = CR�1

JTHR+GTR�TRTKR = C

WTL+BTP = C

PB = CT � LTW

(22)

which is the second equation of (4).
Finally, from the last equation of (20), we get the last equation of (4)

sinceW = J .

IV. EXAMPLES

Next, we will consider two examples to illustrate the result.

1) Let a nonminimal realization ofZ(s) = (1=(s + 1)) + ((s +
2)=(s + 2)) be

�

�

x =
�1 0

0 �2 x+

1

�
0

u � 6= 0

y = [� � ]x+ [1]u � 6= 0.

(23)

Note that the system realization is stabilizable and observable
for all � 6= 0. The KYP equations (4) for� = 0:2 give us

ATP + PA = �LTL� 0:2P (24)

give us

�1:8P1 �2:8P2
�2:8P2 �3:8P3 = � l21 l1l2

l1l2 l22
(25)

BTP +WTL = C =
1

�
0

P1 P2
P2 P3

+
p
2[ l1 l2 ] = [� � ]

with solutionsL ' [0:5765� 0:6172�] and

P ' 0:1847�2 0:1271��

0:1271�� 0:1003�2
> 0

for all �; � different from zero.
2) Let the nonminimal realization of

Z(s) =
(s+ a)

(s+ a)(s+ b)

for somea > 0; b > 0 andb 6= a be

�

�

x =
�a 0

0 �b x +
0
1

�

u � 6= 0

y = [ � � ]x + [0]u � 6= 0

(26)

it is easy to verify that for all� < min(a; b)

P =

(a+ b� �)2�2

(2b� �)(2a� �)
��

�� �2
> 0

for all a > 0; b > 0; � 6= 0; � 6= 0

L =
(a+ b� �)p

2b� �
�

p
2b� ��

satisfy the equations of the KYP Lemma.

V. CONCLUSION

We have removed the minimality assumption in the
Kalman–Yakubovich–Popov lemma, and proven that the lemma is
still valid for stabilizable and observable realizations provided that the
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set of controllable modes and the set of uncontrollable modes do not
intersect. Some examples illustrate the result.

REFERENCES

[1] B. D. O. Anderson, “An algebraic solution to the spectral factorization
problem,”IEEE Trans. Automat. Contr., vol. AC-12, pp. 410–414, Aug.
1967.

[2] , “A system theory criterion for positive real matrices,”SIAM J.
Control, vol. 5, pp. 171–182, 1967.

[3] B. D. O. Anderson and S. Vongpanitlerd,Network Analysis and Syn-
thesis. Englewood Cliffs, NJ: Prentice-Hall, 1973.

[4] N. E. Barabanov, A. Kh. Gelig, G. A. Leonov, A. L. Likhtarnikov, A. S.
Matveev, V. B. Smirnova, and A. L. Fradkov, “The frequency theorem
(Kalman–Yakubovich lemma) in control theory,”Automat. Rem. Con-
trol, vol. 57, pp. 1377–1407, 1996.

[5] P. Ioannou and G. Tao, “Frequency domain conditions for strictly
positive real functions,”IEEE Trans. Automat. Contr., vol. AC-32, pp.
53–54, Jan. 1987.

[6] R. Johansson and A. Robertsson, “Stability analysis of adaptive output
feedback systems,” in37th IEEE Conf. Decision Control, Tampa, FL,
1998, pp. 4008–4009.

[7] R. E. Kalman, “Lyapunov functions for the problem of Lur’e in auto-
matic control,” inProc. Nat. Acad. Sci., vol. 49, 1963, pp. 201–205.

[8] H. K. Khalil, Nonlinear Systems, 2nd ed. Upper Saddle River, NJ:
Prentice-Hall, 1996.

[9] H. Kimura,Chain-Scattering Approach to H -Control. Boston, MA:
Birkhäuser, 1997.

[10] R. Lozano and S. M. Joshi, “Strictly positive real transfer functions revis-
ited,” IEEE Trans. Automat. Contr., vol. 35, pp. 1243–1245, Nov. 1990.

[11] K. R. Meyer, “On the existence of Lyapunov functions for the problem
of Lur’e,” SIAM J. Control, vol. 3, no. 3, 1966.

[12] K. S. Narendra and J. H. Taylor,Frequency Domain Criteria for Absolute
Stability. New York: Academic, 1973.

[13] V. M. Popov, “Absolute stability of nonlinear systems of automatic con-
trol,” Automat. Rem. Control, vol. 22, pp. 857–875, 1962.

[14] A. Rantzer, “On the Kalman–Yakubovich–Popov lemma,”Syst. Control
Lett., vol. 28, pp. 7–10, 1996.

[15] W. Rugh,Linear Systems, 2nd ed. Upper Saddle River, NJ: Prentice-
Hall, 1996.

[16] G. Tao and P. Ioannou, “Strictly positive real matrices and the Lef-
schetz–Kalman–Yakubovich lemma,”IEEE Trans. Automat. Contr.,
vol. 33, pp. 1183–1185, Dec. 1988.

[17] M. Vidyasagar, Nonlinear Systems Analysis, 2nd ed. Englewood
Cliffs, NJ: Prentice-Hall, 1993.

[18] V. A. Yakubovich, “Solution of certain matrix inequalities in the stability
theory of nonlinear control systems” (in English),Soviet. Math. Dokl.,
vol. 3, pp. 620–623, 1962.

[19] D. C. Youla, “On the factorization of rational matrices,”IEEE Trans.
Inform. Theory, vol. IT-7, pp. 172–189, July 1961.

[20] V. M. Popov, “Absolute stability of nonlinear systems of automatic con-
trol,” in Frequency-Response Methods in Control Systems, A. G. J. Mac-
Farlane, Ed. New York: IEEE Press, 1979, pp. 163–181.

Asymptotic Behavior of Nonlinear Networked Control
Systems

Gregory C. Walsh, Octavian Beldiman, and Linda G. Bushnell

Abstract—The defining characteristic of a networked control system
(NCS) is having a feedback loop that passes through a local area computer
network. Our two-step design approach includes using standard control
methodologies and choosing the network protocol and bandwidth in order
to ensure important closed-loop properties are preserved when a computer
network is inserted into the feedback loop. For sufficiently high data
rates, global exponential stability is preserved. Simulations are included
to demonstrate the theoretical result.

Index Terms—Asynchronous packets, networked control systems.

I. INTRODUCTION

Using a (local area) networked control architecture has many ad-
vantages over a traditional point-to-point design including low cost of
installation, ease of maintenance, lower cost, and greater flexibility [3],
[4]. For these reasons the networked control architecture is already used
in many applications, particularly where weight and volume are of con-
sideration, for example in automobiles [2] and aircraft [5], [6]. The in-
troduction of a computer network in the feedback loop unfortunately
invalidates the traditional analytic stability and performance guaran-
tees that control design typically produces. In this note, we reconnect
the analysis of the control design to the networked control context, and
provide guarantees of stability and certain levels of asymptotic perfor-
mance to the control systems employing networked feedback loops.

We focus on a multiple-input–multiple-output (MIMO) nonlinear
plant with a nonlinear controller connected by a communication net-
work. A block diagram of this system is presented in Fig. 1.

We assume that the controller is designed without regard to the net-
work, meaning that if the input to the controller is connected directly
to the output of the plant the system would be globally (or locally) ex-
ponentially stable. We provide conditions under which these stability
properties are preserved when the communication network is inserted
into the loop between the outputs of the plant and the controller input.
Each output, or group of outputs, is assumed to be monitored by a smart
sensor with a network interface. Specifically, in the laboratory we us
a Controller Area Network (CAN-II) operating at 1 Mb/sec because
CAN-II is commonly used in automobiles and manufacturing plants.
Each smart sensor must compete with the others for access to the net-
work. The resulting communication constraint is the primary focus of
this note, hence propagation delays, communication errors and obser-
vation noise will not be treated.

The general system consists of the time-varying plant, the
time-varying controller, and the network. We denote the plant
dynamics by _xp(t) = fp(t; xp(t); up(t)), y(t) = gp(t; xp(t)),
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