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Abstract

Basic tools to solve an inverse scattering problem for anisotropic media are de-

veloped. A transient electromagnetic �eld impinges upon a slab of anisotropic

dispersive medium. The scattering kernels map the incident �eld to the scat-

tered �elds. The inverse scattering problem is to reconstruct the components

of the matrix susceptibility kernel from knowledge of the scattering kernels.

The method is based on the imbedding and Green functions equations. These

equations are generalized to allow for an incident �eld at arbitrary angle from

one side of the slab and the mirror image �eld incident from the other side of

the slab. Mirror image invariance is investigated for a homogeneous slab. An

inverse scattering problem for a homogeneous mirror image invariant medium

is presented and solved numerically using re�ection data from one side of the

slab only.

1 Introduction

Electromagnetic wave propagation and scattering problems in strati�ed anisotropic
media have been treated by many authors in the last decades. For some funda-
mental developments in the optical regime see, e.g. Refs [2, 19, 22]. More recent
developments may be found in, e.g. Refs [6, 7, 20, 23, 25]. There is also some work
carried out for inhomogeneous media at �xed frequency [10, 17]. However, in recent
years there has been an intensi�ed interest in studying scattering problems using
time-domain techniques. In Ref. [21] both the direct and the inverse scattering prob-
lem for a strati�ed dielectric (non-dispersive) anisotropic slab were discussed and in
Ref. [8] the direct scattering problem for the strati�ed dispersive anisotropic slab was
solved. The objective of this paper is to establish the basic tools to solve an inverse
scattering problem for a slab of dispersive anisotropic medium using time-domain
techniques.

The scattering problem is that of an incident electromagnetic plane wave im-
pinging obliquely on an anisotropic, source-free, dispersive, strati�ed slab of �nite
or in�nite thickness. Outside the slab there is vacuum and, furthermore, there are
no phase velocity mismatches at the boundaries of the slab. The incident �eld gives
rise to a re�ected and a transmitted �eld. Now, if the electromagnetic properties of
the slab are known, the scattered �elds can be calculated. This is the direct scat-
tering problem and it was addressed and solved in Ref. [8]. The inverse scattering
problem is the reverse problem, i.e., to reconstruct the electromagnetic properties
of the slab from scattering data.

The electromagnetic properties of the slab are represented by a 3 × 3 dyadic
susceptibility kernel χ. Hence, the medium is characterized by 9 scalar susceptibility
kernels in the most general case. In a cartesian coordinatesystem with z-axis normal
to the planes of strati�cation and to the boundaries of the slab and y-axis in the
plane of the incident wave, the susceptibility dyadic kernel is represented by the
3× 3 matrix
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χ(z, t) =

χ11 χ12 χ13

χ21 χ22 χ23

χ31 χ32 χ33

 (z, t)

The generic output of the direct scattering problem, and the input of the inverse
scattering problem, is the scattering kernels. These kernels map the incident �eld
to the scattered, re�ected and transmitted �elds, respectively. The main objective
of this study is therefore to develop equations that relate the scattering kernels to
the susceptibility kernels in such a way that the inverse problem can be solved. To
do this a wave splitting technique is used (see Refs [1, 5, 8, 14, 24]). In vacuum the
wave splitting is a decomposition of the electromagnetic �eld into its right- and
left-moving parts. The split �elds are used in an imbedding method, �rst used in
Ref. [1], and a Green functions method (see Ref. [11]). These methods have been
used and further developed in Refs [5, 13, 14, 18].

In this study the imbedding and Green functions methods are generalized to
allow for incident �elds from both sides of the slab. Speci�cally, a scattering exper-
iment and its mirror image are studied. These two experiments complement each
other in the solution of the general inverse scattering problem (to be addressed in a
subsequent paper). However, there are media (mirror image invariant) where scat-
tering data from mirror image scattering experiments are just the mirror images of
each other. For homogeneous media and arbitrary angle of incidence, the slab is
mirror image invariant if

χ(t) =

χ11 χ12 0
χ21 χ22 0
0 0 χ33

 (t)

Such media are treated in, e.g. Refs [16, 20].
To reconstruct the �ve susceptibility kernels of a mirror image invariant medium

an algorithm using only re�ection data from one side of the slab has been con-
structed. This algorithm uses re�ection data from one experiment at normal inci-
dence and one at oblique incidence (for simplicity the angle π

3
has been chosen).

Synthetic direct scattering data are calculated with the Green functions method
and the inverse algorithm uses the imbedding equation for the re�ection kernel. In
this way any bias to a speci�c method in solving the inverse scattering problem is
avoided. Finally, some illustrating numerical examples are presented in Section 9.

Dyadics (b) and vectors (b or a unit-vector b̂) are displayed italic. Matrices (b)
are displayed roman boldface. The symbol ∗ is a shorthand notation for convolution.
If a dyadic is convolved with a vector an additional scalar product is understood.
For example

χ(r, ·) ∗E(r, ·)(t) =

∫ t

−∞
χ(r, t− t′) ·E(r, t′)dt′

A ∗-product of matrices denotes an additional ordinary matrix product etc. Both the
notation (x, y, z) and (1, 2, 3) are used to label the axes of a right-handed cartesian
coordinate system throughout the paper.
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Figure 1: The geometry of the scattering problem.

2 Coordinate system independent equations

To investigate the inverse scattering problem for an anisotropic slab, and to study
its underlying symmetries, it is advantageous to formulate the �eld equations in a
coordinate system independent form. This is performed by introducing a dyadic
notation. Consider an incident plane wave along k̂ and an anisotropic slab with
strati�cation along n̂ (see Fig. 1). The Maxwell equations, in a source-free region,
are 

∇×E(r, t) = −∂B(r, t)

∂t

∇×H(r, t) =
∂D(r, t)

∂t

The following constitutive relations with time convolutions are adopted (see
Refs [8, 9]) {

D(r, t) = ε0
(
E(r, t) + χ(r, ·) ∗E(r, ·)(t)

)
B(r, t) = µ0H(r, t)

where ε0, µ0 are the permittivity and permeability of vacuum, respectively. The
phase velocity, c0 and the wave impedance η0 of vacuum are

c0 =
1

√
ε0µ0

η0 =

√
µ0

ε0

The dispersive properties of the medium are modelled by the 3 × 3 susceptibility
dyadic χ.

All vectors are decomposed in components normal and parallel to the planes of
strati�cation (normal vector n̂).
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k̂ = k‖ + knn̂

E = E‖ + Enn̂

H = H‖ +Hnn̂

The dyadic χ is decomposed in a similar fashion [15]

χ = χ‖ + n̂a+ bn̂+ n̂cn̂ (2.1)

where the dyadic χ‖ and the vectors a and b are perpendicular to n̂ and c is a scalar,
do not confuse with c0. The explicit forms are obtained from the decomposition of

the unit dyadic I = −(n̂× I)(n̂× I) + n̂n̂

χ‖ = (n̂× I)[(n̂× I)χ(I × n̂)](I × n̂)

a = −[n̂ · χ(I × n̂)](I × n̂)

b = −(n̂× I)[(n̂× I)χ · n̂]

c = n̂ · χ · n̂

(2.2)

Due to the strati�cation of the slab and the plane wave form of the incoming
wave, the �elds can be written as

E(r, t) = E(r · n̂, t−
r · k‖
c0

)

H(r, t) = H(r · n̂, t−
r · k‖
c0

)

This implies that the �elds at (r, t) are identical to the �elds at an earlier time

t− r·k‖
c0

at the point (r · n̂)n̂. Hence, two independent coordinates

n = r · n̂ s = t−
r · k‖
c0

are introduced.
The problem can be formulated with the parallel �elds only. In order to eliminate

the normal components of the �elds, study the normal components of the Maxwell
equations. An integration with respect to s yields{

0 = k‖ ×E‖ − η0Hnn̂

0 = k‖ × η0H‖ + n̂En + n̂a ∗E‖ + c ∗ Enn̂
(2.3)

The �rst equation gives Hn(n, s) directly and the second can be solved for En(n, s)
since it is a Volterra equation of the second kind in En. Hence, for each c there is a
resolvent L such that{

c+ L+ c ∗ L = 0

En = (1 + L∗)
[
k‖ · (n̂× η0H‖)− a ∗E‖

] (2.4)
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In the parallel components of the Maxwell equations both parallel and normal
components of the �elds appear. Elimination of the normal �eld-components gives
the following PDE for the parallel �eld-components

c0∂n

(
E‖

n̂× η0H‖

)
=

(
0 I2 − k‖k‖

I2 − (k‖ × n̂)(k‖ × n̂) 0

)
∂s

(
E‖

n̂× η0H‖

)

+

(
Dee −Dem

Dme Dmm

)
∗ ∂s

(
E‖

n̂× η0H‖

) (2.5)

where

Dee = k‖(1 + L∗)a

Dem = k‖Lk‖

Dme = χ‖ − b ∗ (1 + L∗)a

Dmm = b(1 + ∗L)k‖

The dyadic I2 = I − n̂n̂ is the 2 × 2 unit dyadic perpendicular to n̂. The �rst
term, on the right hand side in the above PDE, comes from the vacuum part of the
constitutive relations and the second one is due to the dispersion part.

3 Wave splitting

The wave splitting transformation, introduced in this section, is a transformation
of the dependent variables and it makes the pricipal part of (2.5) diagonal (cf.
Ref. [24]). In this case the wave splitting transformation is

(
E+

E−

)
= P

(
E‖

n̂× η0H‖

)
where (cf. Ref. [8])

P =
1

2

(
I2 −Γ

I2 Γ

)
P
−1

=

(
I2 I2

−Γ
−1

Γ
−1

)
and

Γ =
I2 − k‖k‖
|kn|

Γ
−1

=
I2 − (k‖ × n̂)(k‖ × n̂)

|kn|
This transformation implies that the PDE (2.5) transforms into
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v∂n

(
E+

E−

)
=

[(
−I2 0

0 I2

)
+

(
∆11 ∆12

∆21 ∆22

)
∗

]
∂s

(
E+

E−

)
(3.1)

The phase velocity, of the �elds, along n̂ is v = c0
|kn| . The ∆ dyadics are given by

∆11

−∆12

∆21

∆22

 =


−1 1 1 1
1 −1 1 1
1 1 −1 1
1 1 1 −1




∆me

∆ee

∆mm

∆em

 (3.2)

where

∆me =
1

2|kn|
Γ
[
χ‖ − b ∗ (1 + L∗)a

]
∆ee =

1

2|kn|
k‖(1 + L∗)a

∆mm =
1

2|kn|2
Γb(1 + ∗L)k‖

∆em =
k‖k‖
2|kn|2

L

(3.3)

The Equation (3.1) has certain analogy to the 4 × 4 matrix approach for �xed

frequency [2, 17]. In the absence of a slab all the ∆ dyadics vanish identically andE±

become �elds moving in the±n̂-directions, respectively. Note thatE± are transverse
electromagnetic �elds and not pure electric �elds as the notation suggests. However,
the sum of E+ and E− is always the total transverse electric �eld. The total E-
and H-�elds may be calculated by use of (2.3) and (2.4), which give the normal
components of these �elds.

4 Mirror image scattering problems

The equations derived in the previous section do not depend on the sign of the
normal component, kn, of k̂. Only the parallel component k‖ and the absolute value
of the normal component |kn| enter. Hence, the equations describe two scattering
experiments with incident �elds along

k̂± = k‖ ± |kn|n̂

respectively. Ignoring the slab, the scattering experiments are mirror images of each
other, see Fig. 2. Both experiments are useful in the solution of the inverse scattering
problem for the general homogeneous medium (reconstruction of 9 functions). This
problem will be addressed in a subsequent paper. To see the underlying symmetries
of the scattering problem, scattering from both sides of the slab are considered in
the following.
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Figure 2: The geometry of the mirror image scattering experiments with incident
�elds along k̂±. The scattering experiments are labeled L and R for left and right
respectively.

A �xed right-handed cartesian coordinate system with z-axis along n̂ and y-axis
in the plane of incidence is introduced. The slab of the anisotropic medium extends
from z = 0 to z = d. The explicit coordinate representation of the susceptibility
dyadic is

χ‖ = x̂χ11x̂+ x̂χ12ŷ + ŷχ21x̂+ ŷχ22ŷ

a = χ31x̂+ χ32ŷ

b = x̂χ13 + ŷχ23

c = χ33

which yields the following matrix representations, see also Ref. [8],
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∆me =
1

2 cos θ
Γ

[
χ‖ −

(
χ13 ∗ (1 + L∗)χ31 χ13 ∗ (1 + L∗)χ32

χ23 ∗ (1 + L∗)χ31 χ23 ∗ (1 + L∗)χ32

)]
∆ee =

tan θ

2 cos θ
Γ(1 + L∗)

(
0 0
χ31 χ32

)
∆mm =

tan θ

2 cos θ
Γ(1 + L∗)

(
0 χ13

0 χ23

)
∆em =

tan2 θ

2 cos θ
Γ

(
0 0
0 L

)
Γ =

(
1

cos θ
0

0 cos θ

)
The incident waves propagate along k̂± = sin θŷ ± cos θẑ. Note that the repre-

sentation of the dispersive properties of the slab is the same for an incident �eld
along k̂+ or k̂−.

5 Wave fronts

The underlying PDE (3.1) for the �elds E±, is hyperbolic and supports singular
solutions. Any �nite jump discontinuity in E± propagates along the characteristics
s ∓ z/v = ξ±, respectively. These discontinuities, or wave fronts, are treated by
introducing wave front matrices Q±. An extensive investigation of these matrices
may be found in Ref. [8]. The basic relations are

[
E±(z2, ξ± + z2/v)

]+
− = Q±(z1, z2)

[
E±(z1, ξ± + z1/v)

]+
− (5.1)

where [ ]+− denotes a jump discontinuity with respect to the second argument, e.g.
the wave front matrix Q+(z1, z2) propagates a �nite jump discontinuity in E+ from
the spatial coordinate z1 to z2 with speed v. The wave front matrices are determined
by the medium in the slab and explicitly they are

Q±(z1, z2) = S exp

(
−
∫ ‡∈
‡∞

a±(‡′)d‡′
)

where

a+(z) = −1

v
∆11(z, 0

+)

a−(z) = −1

v
∆22(z, 0

+)

and S is a spatial ordering operator (see Ref. [8]).
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6 Scattering operators

For a given medium the generic output of a scattering problem is the re�ection and
transmission kernels. These kernels are independent of the excitation and depend
only on the properties of the medium. Equations to calculate these kernels are
constructed in this section. From these equations both the direct problem and
the inverse problem may be solved. Two ways of computing the scattering kernels
are employed; the imbedding and Green functions methods, see Ref. [8]. These
methods are now further generalized to include incident �elds from both sides of
the slab, corresponding to incident �elds along k̂±. This generalization is crucial for
the solution of the inverse scattering problem for the general anisotropic medium.
For comparison, both mirror image scattering problems are treated simultaneously.
Scattering kernels corresponding to an incoming wave along k̂+ are labeled L (for
left) and for an incoming wave along k̂− the index R (for right) is used. For a
detailed investigation of these equations in the case of scattering from the left see
Ref. [8].

6.1 The imbedding method

The imbedding method uses the idea of studying a one parameter family of related
problems. Each problem corresponds to a subsection of the physical slab [0, d]. For
scattering from the left, the subsection is [z, d], and for scattering from the right [0, z]
is used. As the parameter z varies from one endpoint to the other the scattering
problem varies from a trivial one, where no slab is present, to the full scattering
problem. This technique has been implemented in various applications during the
last decade (see Refs [1, 4, 5, 8, 14, 21]). The scattering operators for the subslabs,
with kernels RL,R and TL,R, are de�ned as

E−(z, s) = RL(z, ·) ∗E+(z, ·)(s)
E+(d, s+ (d− z)/v) = Q+(z, d)

{
E+(z, s) + TL(z, ·) ∗E+(z, ·)(s)

}
E+(z, s) = RR(z, ·) ∗E−(z, ·)(s)
E−(0, s+ z/v) = Q−(z, 0)

{
E−(z, s) + TR(z, ·) ∗E−(z, ·)(s)

} (6.1)

The kernels are de�ned in the region z ∈ (0, d) and s > 0. Due to causality, all
scattering kernels are identically zero for s < 0. In the de�nitions of the transmis-
sion operators the Q± matrices describe right and left going wave fronts propagat-
ing through the subslab at velocity v, see Equation (5.1). The physical scattering
kernels, corresponding to the scattering operators for the physical slab [0, d], are
RL(0, s), TL(0, s), RR(d, s) and TR(d, s).

Combined use of the de�nitions above and Equation (3.1) result in the imbedding
equations (see Refs [8, 12]).
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(v∂z − 2∂s)RL = ∂s∆21 + ∂s {∆22 ∗RL −RL ∗∆11 −RL ∗∆12 ∗RL}
v∂zTL = −∂s∆11 − va+TL − ∂s {(I + TL∗)∆12 ∗RL + TL ∗∆11}

(v∂z + 2∂s)RR = ∂s∆12 + ∂s {∆11 ∗RR −RR ∗∆22 −RR ∗∆21 ∗RR}
v∂zTR = −∂s∆22 − va−TR − ∂s {(I + TR∗)∆21 ∗RR + TR ∗∆22}

(6.2)

The initial values are

RL(z, 0+) =− 1

2
∆21(z, 0

+)

TL(z, 0+) =
1

v

∫ d

z

Q+(z′, z)
{
∂s∆11(z

′, 0+)

− 1

2
∆12(z

′, 0+)∆21(z
′, 0+)

}
Q+(z, z′) dz′

RR(z, 0+) =
1

2
∆12(z, 0

+)

TR(z, 0+) =
1

v

∫ z

0

Q−(z′, z)
{
− ∂s∆22(z

′, 0+)

− 1

2
∆21(z

′, 0+)∆12(z
′, 0+)

}
Q−(z, z′) dz′

For the re�ection kernels �nite jump discontinuities appear along the characteristics
s = 2(d− z)/v and s = 2z/v. They are

[RL(z, 2(d− z)/v)]+− =
1

2
Q−(d, z)∆21(d, 0

+)Q+(z, d)

[RR(z, 2z/v)]+− = −1

2
Q+(0, z)∆12(0, 0

+)Q−(z, 0)

and the boundary values, corresponding to no scattering when the slab vanishes, are

RL(d, s) = 0

TL(d, s) = 0

RR(0, s) = 0

TR(0, s) = 0

6.2 The Green functions method

An analogous set of equations can be derived using matrix-valued Green functions.
In the Green functions method, the external incident �elds E+(0, s) or E−(d, s),
for incidence from the left and from the right, respectively, are mapped to the split
internal �elds E±(z, s) in the slab (see Ref. [11]). The 2 × 2 matrix-valued Green
functions, G±L(z, s) and G±R(z, s), are de�ned by
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E+(z, s+ z/v) = Q+(0, z)E+(0, s) + G+
L(z, ·) ∗Q+(0, z)E+(0, ·)(s)

E−(z, s+ z/v) = G−L(z, ·) ∗Q+(0, z)E+(0, ·)(s)
E+(z, s+ (d− z)/v) = G+

R(z, ·) ∗Q−(d, z)E−(d, ·)(s)
E−(z, s+ (d− z)/v) = Q−(d, z)E−(d, s) + G−R(z, ·) ∗Q−(d, z)E−(d, ·)(s)

(6.3)

The Green functions are de�ned in the domain z ∈ (0, d) and s > 0. Due to
causality, all the Green functions vanish identically for s < 0. In these de�nitions
the incident �elds are �rst propagated, by the wave front matrices Q± see (5.1), to
the coordinate z inside the slab. From (3.1) and the de�nitions above, the Green
functions equations are derived. The result is (cf. Ref. [8])

v∂zG
+
L = G+

Lva
+ + ∂s

{
∆11 + ∆11 ∗G+

L + ∆12 ∗G−L
}

(v∂z − 2∂s)G
−
L = G−Lva

+ + ∂s
{
∆21 + ∆21 ∗G+

L + ∆22 ∗G−L
}

(v∂z + 2∂s)G
+
R = G+

Rva
− + ∂s

{
∆12 + ∆11 ∗G+

R + ∆12 ∗G−R
}

v∂zG
−
R = G−Rva

− + ∂s
{
∆22 + ∆21 ∗G+

R + ∆22 ∗G−R
}

The initial values are

G−L(z, 0+) =− 1

2
∆21(z, 0

+)

G+
L(z, 0+) =

1

v

∫ z

0

Q+(z′, z)
{
∂s∆11(z

′, 0+)

− 1

2
∆12(z

′, 0+)∆21(z
′, 0+)

}
Q+(z, z′) dz′

G+
R(z, 0+) =

1

2
∆12(z, 0

+)

G−R(z, 0+) =
1

v

∫ d

z

Q−(z′, z)
{
− ∂s∆22(z

′, 0+)

− 1

2
∆21(z

′, 0+)∆12(z
′, 0+)

}
Q−(z, z′) dz′

Re�ected �elds are generated by G−L and G+
R (cf. imbedding re�ection kernels)

and for these Green functions jump discontinuities appear along s = 2(d− z)/v and
s = 2z/v. They are

[
G−L(z, 2(d− z)/v)

]+
− =

1

2
Q−(d, z)∆21(d, 0

+)Q+(z, d)[
G+
R(z, 2z/v)

]+
− = −1

2
Q+(0, z)∆12(0, 0

+)Q−(z, 0)

In consistency with the de�nitions of the Green functions, the boundary values
are
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G+
L(0, s) = 0

G−L(d, s) = 0

G+
R(0, s) = 0

G−R(d, s) = 0

(6.4)

6.3 Relations between scattering kernels

The imbedding kernels de�ned in (6.1) are related to the Green functions de�ned
in (6.3). These relations can be found by combined use of the de�nitions (6.1) and
(6.3). The result is

G−L(z, s) = RL(z, s) + RL(z, ·) ∗G+
L(z, ·)(s)

Q+(d, z)G+
L(d, s)Q+(z, d) = G+

L(z, s) + TL(z, s) + TL(z, ·) ∗G+
L(z, ·)(s)

G+
R(z, s) = RR(z, s) + RR(z, ·) ∗G−R(z, ·)(s)

Q−(0, z)G−R(0, s)Q−(z, 0) = G−R(z, s) + TR(z, s) + TR(z, ·) ∗G−R(z, ·)(s)

Speci�cally, let z = 0 and z = d in these equations. The boundary values corre-
sponding to the physical slab [0, d] are then derived using (6.4).

G−L(0, s) = RL(0, s)

G+
L(d, s) = Q+(0, d)TL(0, s)Q+(d, 0)

G+
R(d, s) = RR(d, s)

G−R(0, s) = Q−(d, 0)TR(d, s)Q−(0, d)

7 Mirror image invariance

The equations for scattering from the left (k̂ = k̂+) are connected to the equations
for the mirror image situation (k̂ = k̂−). To see the connection, a spatial re�ection
in the plane z = d/2 is performed

z → d− z
∆L(z, s)→∆R(d− z, s)

± → ∓
L→ R

(7.1)

Here
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∆L(z, s) =

(
∆11(z, s) ∆12(z, s)
∆21(z, s) ∆22(z, s)

)
∆R(z, s) = −

(
∆22(z, s) ∆21(z, s)
∆12(z, s) ∆11(z, s)

)
The scattering kernels are determined by the ∆kl matrices which in turn are deter-
mined by the medium. If this dependence is written out explicitly the mirror image
transformation (7.1) states

RL(z, s) = R [∆L(z, s)]

RR(d− z, s) = R [∆R(d− z, s)]
TL(z, s) = T [∆L(z, s)]

TR(d− z, s) = T [∆R(d− z, s)]
G+
L(z, s) = G∞ [∆L(z, s)]

G−R(d− z, s) = G∞ [∆R(d− z, s)]
G−L(z, s) = G∈ [∆L(z, s)]

G+
R(d− z, s) = G∈ [∆R(d− z, s)]

where R, T , G∞ and G∈ are the fundamental maps of the direct problem. Hence,
in the imbedding case there are only two di�erent fundamental maps R and T with
two di�erent inputs resulting in four di�erent scattering kernels RL,R and TL,R. If
∆L(z, s) = ∆R(d − z, s) then the scattering kernels for scattering from the right
are just mirror images (with respect to the symmetry plane z = d

2
) of the scattering

kernels for scattering from the left. Hence, in this case, the mirror image scattering
experiment gives no new information about the medium.

To �nd conditions for mirror image invariant homogeneous media it is relevant to
study ∆L(s) = ∆R(s) which implies ∆11 = −∆22 and ∆12 = −∆21. Equation (3.2)
then implies that ∆ee,mm are both zero. If this is the case the medium is mirror image
invariant for any angle of incidence. Due to the unique solubility of the resolvent
equation (2.4), the result, in terms of the susceptibility matrix components, is

χ31(t) ≡ χ32(t) ≡ χ13(t) ≡ χ23(t) ≡ 0

For normal incidence any homogeneous anisotropic medium, of the class treated
in this paper, is mirror image invariant. This is so since k‖ = 0 implies ∆ee ≡
∆mm ≡∆em ≡ 0.

The above analysis leads to a class of media with mirror image invariant scat-
tering properties. This class is exactly the same as the class of media with mirror
image invariant susceptibility dyadics. To see this, it is relevant to study the compo-
nents χ‖, a, b and c of the decomposition (2.1) under the transformation n̂→ −n̂.
Equation (2.2) implies that the image (the components in the decomposition) of the
susceptibility dyadic χ is invariant only if both a and b are zero. Equation (3.3)

then implies the above result (∆ee ≡ ∆mm ≡ 0).



14

8 The inverse scattering problem

The physical scattering kernels for a mirror image invariant homogeneous medium
satisfy

RL(0, s) = RR(d, s)

TL(0, s) = TR(d, s)

Thus, incident �elds from the right give no new information about the medium. The
inverse scattering problem is to reconstruct the �ve susceptibility kernels χ11(s),
χ12(s), χ21(s), χ22(s) and χ33(s). This can be done from either re�ection and trans-
mission data at oblique incidence or from re�ection data from two experiments (one
at normal incidence and one at oblique incidence). The latter case has the advan-
tage that it is enough to make measurements on one side of the slab. Hence, in
the following only scattering from the left is considered and therefore the L- and
R-indices are not written out.

For the �rst round trip (vs < 2d) the equations become particularly simple. Due
to causality, the scattering e�ects from the right boundary z = d can not in�uence
the re�ection data at z = 0 and the imbedding equation for the re�ection kernel
becomes z independent. An integration with respect to time of the remaining terms
yields

2R + ∆+ + ∆− ∗R + R ∗∆− + R ∗∆+ ∗R = 0 (8.1)

where ∆± = ∆me±∆em. For normal incidence ∆em ≡ 0 which yields (cf. Ref. [8])

2R + ∆me + ∆me ∗R + R ∗∆me + R ∗∆me ∗R = 0 (8.2)

This is a system of Volterra equations of the second kind in ∆me and hence the
inverse problem is well posed. Solution of this equation yields the kernels χ11(s),
χ12(s), χ21(s) and χ22(s). The remaining kernel χ33(s) may then be reconstructed
from a scattering experiment at oblique incidence. Inserting the known susceptibility
kernels in (8.1) and taking the 22-component a linear Volterra equation of the second
kind for the resolvent L is obtained.

f − 2R22 ∗ f +R22 ∗ f ∗R22 + 2R22 + g22

+ g2i ∗Ri2 +R2i ∗ gi2 +R2i ∗ gij ∗Rj2 = 0

f =
1

2

∣∣∣∣k‖kn
∣∣∣∣2 L = ∆em,22

gij = ∆me,ij

Here summation over repeated indices is understood. This is again a well posed
problem which determines the resolvent L. The resolvent equation (2.4) then �nally
gives χ33 for times less than one round trip (s ∈ [0, 2d/v]).
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Figure 3: The scattering problem in the zs-plane for normal and oblique incidence.
Diagonal lines indicate the characteristics of the equations for the re�ection kernels.

The other components of (8.1) give three Volterra equations of the �rst kind in
the resolvent L. Therefore, these equations are less suitable for the inverse scat-
tering problem. Since the resolvent is obtained from the 22-component equation,
these equations are in fact three constraints on the re�ection kernels Rij at oblique
incidence. Hence there are 8− 3 = 5 degrees of freedom which is one for each of the
unknown susceptibility kernels.

For times greater than the �rst round trip, the e�ect of the back edge z = d of
the slab cannot be neglected and thence the z-derivatives in the imbedding equation
must be regarded. At a general oblique incidence this yields an integrodi�erential
equation for the two matrices ∆± and at normal incidence a similar equation with
only ∆me is obtained, see (6.2). From normal incidence re�ection data, the matrix
∆me can be reconstructed and thus χ‖ is easily obtained. This is then transformed
to ∆me for a given oblique incidence. Using these data and re�ection data from the
oblique incidence experiment, the 22-component of ∆em matrix is obtained. Finally
χ33 can be calculated by use of the resolvent equation (2.4).

8.1 Algorithm and numerical implementation

The total inversion algorithm uses the scattering data R(0; 0, s) and R(θ; 0, s) corre-
sponding to a normal and an oblique incidence experiment. An additional argument
θ is introduced to distinguish re�ection data at di�erent angle of incidence. The al-
gorithm is:

1: Normal incidence data R(0; 0, s).

a) Reconstruct ∆me(0; s) for the �rst round trip s ∈ [0, 2d/c0] using (8.2).

b) Propagate R(0; 0, s) into region I. Use R(0; 0, 0) to calculate the �nite jump
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discontinuity along the characteristic s = 2(d− z)/c0 (solid diagonal line in Fig. 3)
and then calculate R(0; z, (2(d−z)/c0)

+). Di�erentiate ∆me(0; s) and use ∂s∆me(0; s)
and ∆me(0; 0) in region I+II.

c) Time-step j (starting with j = 1). Integrate the imbedding equation along
the characteristic s = 2(d− z)/c0 + j∆s (dotted line in Fig. 3) in region II+III. The
boundary value at z = d is used to generate R(0; z, s) on the characteristic inside
the slab where ∂s∆me(s) is known. At the left endpoint z = 0, s = 2d/c0 + j∆s
the re�ection data R(0; 0, 2d/c0 + j∆s) is known and ∂s∆me(0; 2d/c0 + j∆s) can be
calculated. Propagate ∂s∆me(0; 2d/c0 + j∆s) into region III and repeat step c) with
j → j + 1.

d) Reconstruct ∆me(0; s) in region III by integrating ∂s∆me(0; s).

2: Oblique incidence data R(θ; 0, s).

a) Transform ∆me(0; s) to �t oblique incidence

∆me(θ; s) =
1

cos θ
Γ(θ)∆me(0; s)

b) Use ∆me(θ; s) and R(θ; 0, s) to reconstruct the 22-component of ∆em(θ; s)
following steps analogous to 1:a-d above. Inside the slab, all four components of
the PDE are used to calculate R(θ; z, s) while at the left endpoint where ∆em(s) is
calculated only the 22-component is used. This gives the resolvent L(s).

c) Solve the resolvent equation (2.4) to get χ33(s). This closes the algorithm.

The PDE's are discretized using the trapezoidal rule for integrals. In region
II+III each PDE consists of two parts, see Eq. (6.2). The left hand side of (6.2)
is a total derivative along a characteristic and the right hand side is a total time-
derivative. In the above algorithm the right hand side is implemented by performing
a di�erentiation with respect to time and an integration along the characteristic.
This yields an equation in ∆±(0) and the time-derivatives ∂s∆

±(s). In region I
Eq. (8.1) holds and ∆±(s) are obtained directly. Therefore, the step from region
I into region II require numerical di�erentiation (a three point formula has been
implemented).

To avoid numerical di�erentiation, a di�erent method including an additional
integration of the PDE's along time s has also been implemented. However, this trick
introduces severe instabilities at other steps in the algorithm and in a comparison
between the methods the former one is much more stable. The numerical examples
presented in Section 9 use this former method.
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Figure 4: Reconstructions of the components of χ‖ in Example 1. The time scale
is given in units of d/c0 and the vertical axis in units of c0/d.

9 Numerical examples

In this section some numerical examples that illustrate the analysis are presented.
Only homogeneous mirror image invariant media are considered. This is a rather
wide class of media. However, the orientation of the symmetry axes of the medium
restricts the class. For a biaxial medium one of the optical axes must be along the
z-axis and the other one must lie in the xy-plane (see Ref. [3]). Another class of
mirror image invariant media are the gyrotropic media with an external magnetic
induction along the z-axis, see Refs [4, 18]. The time unit used in this section is d

c0
,

which correspond to half a round trip at normal incidence, and the frequency unit
is c0

d
.

Example 1

The �rst example is a biaxial homogeneous medium with
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Figure 5: The reconstruction of χ33 in Example 1. The time scale is given in units
of d/c0 and the vertical axis in units of c0/d.

χ(t) =

g1(t) cos2 φ+ g2(t) sin2 φ (g1(t)− g2(t)) cosφ sinφ 0
(g1(t)− g2(t)) cosφ sinφ g1(t) sin2 φ+ g2(t) cos2 φ 0

0 0 g3(t)


This medium is a diagonal biaxial medium rotated an angle φ around the z-axis.
Such a medium is the most general mirror image invariant biaxial medium. In this
particular example the rotation angle is chosen as φ = π

6
and the susceptibility

kernels g1,2,3(t) model a Debye-Lorentz material. Speci�cally, they are
g1(t) = e−.2t + .5e−.5t sin 10t+ .2e−.5t sin 25t

g2(t) = 1.5e−.2t + .7e−.5t sin 8t+ .3e−.5t sin 20t

g3(t) = 2e−.2t + .9e−.5t sin 6t+ .4e−.5t sin 15t

This medium is reciprocal since χ12(s) = χ21(s). The reconstructions of χ11, χ12,
χ22 and χ33 for the �rst round trip are depicted in Figures 4 and 5.
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Figure 6: Reconstructions of the components of χ‖ in Example 2. Due to reci-
procity χ12 = χ21. The time scale is given in units of d/c0 and the vertical axis in
units of c0/d.

Example 2

In the second example a single mode uniaxial Lorentz medium is illustrated. The
susceptibility matrix is

χ(t) =

g1(t) cos2 φ+ g(t) sin2 φ (g1(t)− g(t)) cosφ sinφ 0
(g1(t)− g(t)) cosφ sinφ g1(t) sin2 φ+ g(t) cos2 φ 0

0 0 g(t)


and the rotation angle φ = π/6. The two susceptibility functions are{

g1(t) = e−.2t sin 5t

g(t) = .5e−.2t sin 7t

In this example the kernels are reconstructed for three round trips. In round
trip coordinates (time unit = d/c0) this interval is [0, 6 cos θ]. The reconstruction
of χ33(s) uses oblique incidence data (θ = π/3) and is therefore terminated at
s = 3(d/c0). In Figs 6 and 7 reconstructions using clean data are depicted. To
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Figure 7: Reconstruction of χ33 in Example 2. The time scale is given in units of
d/c0 and the vertical axis in units of c0/d.

test the stability of the algorithm the direct scattering data have been corrupted
with uniform noise of 3% relative amplitude and then smoothed three times using
a �ve-point formula. Results are depicted in Figs 8 and 9.
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