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Sammanfattning

Syftet med den aktuella forskningen är att ge en bättre först̊aelse av förmaks-
flimmer, den vanligaste rytmrubbningen i hjärtat som drabbar s̊a många som
var tionde över 70 år. Mekanismerna för förmaksflimmer är l̊angt ifr̊an kart-
lagda, vilket bland annat leder till att behandlingen är standardiserad istället
för att den beror p̊a de mekanismer som styr varje enskild patients arytmi.
Under l̊ang tid har förmakens elektriska aktivitet betraktats som kaotisk, och
först p̊a senare tid har forskning kunnat visa att det g̊ar att urskilja vissa ut-
bredningsmönster. I denna avhandling har flera nya metoder för att analysera
utbredningen av den elektriska aktiviteten i hjärtat under förmaksflimmer tag-
its fram, vilka i framtiden kan möjliggöra mer effektiv behandling. Utöver dessa
metoder, som kräver signaler registrerade inifr̊an hjärtat, har även en metod
utvecklats för att analysera förmaksflimmer utifr̊an signaler registrerade p̊a
kroppsytan. Denna metod kan komma till användning vid diagnostik s̊aväl
som vid val av behandlingsform.

Förekomsten av förmaksflimmer skattas till 1–2 % av befolkningen, vilket
motsvarar mer än 100 000 personer i Sverige. Förmaksflimmer leder till att
hjärtats förmak sl̊ar snabbt och okontrollerat, vilket kan upplevas som en flad-
drande känsla i bröstet och medför besvär som försämrar livskvalitén för den
drabbade. Det är dock viktigt att framh̊alla att även om förmaksflimmer är en
sjukdom som förknippas med högre risk för stroke, s̊a kan de drabbade i stor
utsträckning fortsätta leva som vanligt l̊angt efter diagnosen. Beroende p̊a an-
dra sjukdomstillst̊and i eller med p̊averkan p̊a hjärtat utvecklas förmaksflimmer
under olika l̊ang tid fr̊an relativt korta attacker, som g̊ar över av sig själv, via
längre attacker som inte längre bryts av sig själv, till ih̊allande förmaksflimmer
s̊a att den normala rytmen inte längre kan återskapas.

I takt med att arytmin fortskrider sätts behandling in som innefattar
medicinering, elkonvertering, och i ett sent skede även kirurgiskt ingrepp, i
fall detta till̊ats av patientens allmänna tillst̊and. Det vanligaste kirurgiska
ingreppet är ablation under vilka katetrar förs in i förmaken för att med hjälp
av värmeenergi elektriskt isolera de delar av förmaken som tros driva flimret.
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vi Sammanfattning

I dagsläget genomförs ablationer oftast enligt en standardstrategi som
g̊ar ut p̊a att isolera det omr̊ade där forskning har visat att de flesta flim-
merattacker uppst̊ar. Det har dock visat sig att en del patienter återfaller
till förmaksflimmer efter ablation och därför kan upprepade ingrepp bli
nödvändiga. Ett sätt att förbättra effektiviteten är att utveckla metoder
som kan kvantifiera utbredningsmönstret och peka ut kritiska omr̊aden för
ablation. I denna avhandling har en metod utvecklats för detta syfte som ana-
lyserar de tidpunkter d̊a en elektrisk utbredningsv̊ag passerar vissa elektroder
p̊a katetrarna som spelar in signalerna i förmaken. Målet är att rekonstruera
den elektriska utbredningen genom att knyta samman tidpunkterna fr̊an olika
platser i förmaken till v̊agfronter. Att detektera tidpunkterna och framförallt
att bestämma vilka tidpunkter som tillhör till samma v̊agfront är utmaningen
i denna metod, vilket kan kompliceras ytterligare d̊a utbredningen är mer
oregelbunden. En mer avancerad strategi har därefter utvecklats som analy-
serar signalerna i sin helhet istället för att detektera tidpunkterna. Metoden
är baserad p̊a en princip som kallas Granger-kausalitet och som analyserar ut-
bredningsmönstret genom att bestämma orsakssambanden mellan signalerna.
I denna metod antas det finnas ett direkt samband mellan varje signal, ett
antagande som dock inte är realistiskt under förmaksflimmer där utbrednin-
gen av den elektriska aktiviteten är mindre organiserad och där kopplingarna
kan förmodas avta med stigande avst̊and. Det har därför även utvecklats en
förbättrad metod för analys av Granger-kausalitet där antagandet om glesa
kopplingar införlivats, vilket har lett till en markant förbättring av resultaten.

För att minska riskerna för patienten samt att sänka kostnaderna är det
ocks̊a intressant att utforska hur mycket information om utbredningsmönstret
som kan observeras i signaler inspelade p̊a kroppsytan. Eftersom inspel-
ningar p̊a kroppsytan avspeglar hela hjärtats elektriska aktivitet, är det of-
tast nödvändigt att i ett första steg utvinna den elektriska aktiviteten som
motsvarar förmaken. I ett nästa steg kan denna aktiviteten analyseras, t.ex.
med hänsyn till sin spatiella komplexitet. I denna avhandling presenteras en
metod för detta syfte, och resultaten antyder att det kan finnas ett samband
mellan spatiell komplexitet observerad p̊a kroppsytan och förmaksaktivitetens
organisationsgrad.



Abstract

This doctoral thesis is in the field of biomedical signal processing with focus
on methods for the analysis of atrial fibrillation (AF). Paper I of the present
thesis addresses the challenge of extracting spatial properties of AF from body
surface signals. Different parameters are extracted to estimate the preferred
direction of atrial activation and the complexity of the atrial activation pattern.
In addition, the relation of the spatial properties to AF organization, which
is quantified by AF frequency, is evaluated. While no significant correlation
between the preferred direction of atrial activation and AF frequency could be
observed, the complexity of the atrial activation pattern was found to increase
with AF frequency.

The remaining three papers deal with the analysis of the propagation of
the electrical activity in the atria during AF based on intracardiac signals.
In Paper II, a time-domain method to quantify propagation patterns along
a linear catheter based on the detected atrial activation times is developed.
Taking aspects on intra-atrial signal organization into account, the detected
activation times are combined into wavefronts, and parameters related to the
consistency of the wavefronts over time and the activation order along the
catheter are extracted. Furthermore, the potential relationship of the extracted
parameters to established measures from body surface signals is investigated.
While the degree of wavefront consistency was not reflected by the applied
body surface measures, AF frequency could distinguish between recordings
with different degrees of intra-atrial signal organization. This supports the role
of AF frequency as an organization measure of AF.

In Paper III, a novel method to analyze intracardiac propagation patterns
based on causality analysis in the frequency domain is introduced. In particu-
lar, the approach is based on the partial directed coherence (PDC), which eval-
uates directional coupling between multiple signals in the frequency domain.
The potential of the method is illustrated with simulation scenarios based on a
detailed ionic model of the human atrial cell as well as with real data recordings,
selected to present typical propagation mechanisms and recording situations in
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viii Abstract

atrial tachyarrhythmias. For simulated data, the PDC is correctly reflecting
the direction of coupling and thus the propagation between all recording sites.
For real data, clear propagation patterns are identified which agree with pre-
vious clinical observations. Thus, the results illustrate the ability of the novel
approach to identify propagation patterns from intracardiac signals during AF
which can provide important information about the underlying AF mecha-
nisms, potentially improving the planning and outcome of ablation. However,
spurious couplings over long distances can be observed when analyzing real
data comprised by a large number of simultaneously recorded signals, which
gives room for further improvement of the method.

The derivation of the PDC is entirely based on the fit of a multivariate
autoregressive (MVAR) model, commonly estimated by the least-squares (LS)
method. In Paper IV, the adaptive group least absolute selection and shrinkage
operator (LASSO) is introduced in order to avoid overfitting of the MVAR
model and to incorporate prior information such as sparsity of the solution.
The sparsity can be motivated by the observation that direct couplings over
longer distances are likely to be zero during AF; an information which has
been further incorporated by proposing distance-adaptive group LASSO. In
simulations, adaptive and distance-adaptive group LASSO are found to be
superior to LS estimation in terms of both detection and estimation accuracy.
In addition, the results of both simulations and real data analysis indicate
that further improvements can be achieved when the distance between the
recording sites is known or can be estimated. This further promotes the PDC
as a method for analysis of AF propagation patterns, which may contribute to
a better understanding of AF mechanisms as well as improved AF treatment.



Preface

This doctoral thesis comprises an introduction and four parts describing meth-
ods for characterizing atrial fibrillation both from the electrocardiogram (ECG)
and from intracardiac recordings. The parts are based on the following papers:

[1] U. Richter, M. Stridh, A. Bollmann, D. Husser and L. Sörnmo, “Spa-
tial Characteristics of Atrial Fibrillation Electrocardiograms”, Journal of

Electrocardiology, vol. 41, pp. 165–172, 2008.

[2] U. Richter, A. Bollmann, D. Husser and M. Stridh, “Right Atrial Organi-
zation and Wavefront Analysis in Atrial Fibrillation”, Medical & Biological

Engineering & Computing, vol. 47, pp. 1237–1246, 2009.

[3] U. Richter, L. Faes, A. Cristoforetti, M. Masè, F. Ravelli, M. Stridh and
L. Sörnmo, “A Novel Approach to Propagation Pattern Analysis in In-
tracardiac Atrial Fibrillation Signals”, Annals of Biomedical Engineering,
2010 (in press).

[4] U. Richter, L. Faes, F. Ravelli and L. Sörnmo, “Propagation Pattern Anal-
ysis in Intracardiac Atrial Fibrillation Signals Based on Sparse Modeling”,
2010, Manuscript.

The development, implementation, and evaluation of the signal processing al-
gorithms was in all presented papers conducted by the author of this thesis,
except for the simulation scenarios included in [3]. Support for the clinical
interpretation of the results was provided by experienced cardiologists. Parts
of the work have also been presented at conferences but are not included in the
thesis:

[5] U. Richter, M. Stridh, A. Bollmann, D. Husser and L. Sörnmo, “Spa-
tial Characteristics of Atrial Fibrillation Using the Surface ECG,” Proc.

Computers in Cardiology, vol. 34, pp. 273–276, 2007.
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[6] U. Richter, M. Stridh, D. Husser, D. S. Cannom, A. K. Bhandari, A. Boll-
mann and L. Sörnmo, “Wavefront Detection from Intra-Atrial Record-
ings,” Proc. Computers in Cardiology, vol. 34, pp. 97–100, 2007.

[7] U. Richter, A. Bollmann, D. Husser and M. Stridh, “Right Atrial Orga-
nization and Wavefront Analysis in Atrial Fibrillation”, Electrocardiology

2009 - Proc. 36th International Congress on Electrocardiology, pp. 271–
278, 2009.

[8] U. Richter, L. Faes, A. Cristoforetti, M. Masè, F. Ravelli, M. Stridh and
L. Sörnmo, “A Novel Approach to Investigating Propagation Patterns in
Endocardial Atrial Fibrillation Signals”, The 37th International Congress

on Electrocardiology, 2010.
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Chapter 1

Introduction

The present thesis deals with spatial characterization of the cardiac arrhythmia
atrial fibrillation (AF) using intracardiac as well as body surface signals. AF
is the most common sustained cardiac rhythm disturbance and has become an
extremely costly public health problem [1]. The prevalence of AF increases
with age, and besides a pronounced reduction of quality of life, AF is also
associated with an increased long-term risk of stroke and all-cause mortality.

Although much has already been learnt about the mechanisms of AF, they
still remain incompletely understood. In order to increase the success of ther-
apy in a majority of patients, a better understanding of the mechanisms of
AF initiation and perpetuation is of vital importance. In current clinical prac-
tice, surgical treatment of AF is mainly restricted to a standard procedure.
During this procedure, a certain region of tissue, which has been observed to
trigger AF, is destroyed in a controlled manner (“ablation therapy”). However,
recognizing that the mechanisms of AF may vary from patient to patient, an
individualized approach to ablation guidance is highly desirable. It has already
become apparent that such a development will not be possible without further
advancement of signal processing techniques, e.g., individualized ablation ther-
apy has been based on frequency analysis of intracardiac signals. In the future,
signal-guided approaches to ablation can be expected to gain further impor-
tance, requiring methods which can handle the strongly varying organization of
AF signals, as well as the increasing number of simultaneously recorded signals.

In order to reduce the amount of invasive procedures, and consequently
the cost of AF treatment, further research on the possibilities to assess the
underlying mechanisms of AF by means of non-invasive methods is important
to promote. Analysis of body surface signals during AF is particularly chal-
lenging, as the recordings are made distant from the actual signal source. As

3



4 Overview of the Research Field

a consequence, the spatial resolution which can be provided by body surface
recordings is limited, and opposed to intracardiac signals, the global electrical
activity of the heart is reflected. Furthermore, the validation of the results is
non-trivial, especially as detailed information about the actual spatial organi-
zation and propagation within the atria, ideally extracted from simultaneously
recorded intracardiac signals, is seldom available. It is not yet clear to what
extent body surface signal analysis can provide information relevant to the
complex mechanisms that underlie AF. However, successful signal processing
contributions based on body surface signals have already been made to, e.g.,
the prediction of termination or recurrence of AF, and the monitoring of anti-
arrhythmic drug effects.

Paper I addresses the challenge of extracting spatial properties of AF from
body surface signals by evaluating the potential relationship between the spa-
tial properties and AF organization. The remaining three papers of this thesis
deal with the problem of analyzing the propagation of the electrical activity in
the atria during AF based on intracardiac signals. In Paper II, a time-domain
method to quantify propagation patterns along a linear catheter is developed.
Parameters related to the consistency of the wavefronts over time and the ac-
tivation order along the catheter are extracted and their potential relationship
to established measures from body surface signals is investigated. In Paper III,
a novel method to analyze intracardiac propagation patterns based on causal-
ity analysis in the frequency domain is introduced. One of the advantages of
the method is that it can quantify the directional coupling and identify the
propagation pattern between the recording sites by employing a multivariate
approach that simultaneously evaluates all signals. The potential of the method
is further strengthened by several simulation scenarios of atrial activity prop-
agation, based on a detailed ionic model of the human atrial cell. However,
spurious couplings over long distances can be observed when analyzing real
data comprised by a large number of simultaneously recorded signals. Thus, in
Paper IV, an improvement of the method by incorporating prior information
on sparsity as well as the distances between the recording sites is proposed.

The following chapters of this thesis give an overview over the research
field, starting with a background on the heart and AF, as well as measurement
and simulation of cardiac electrical activity, in Chapter 2. Signal processing
techniques for AF analysis based on body surface and intracardiac signals are
reviewed in Chapters 3 and 4, respectively. Finally, a summary of the included
papers can be found in Chapter 5.



Chapter 2

Background on the Heart

and Atrial Fibrillation

2.1 Anatomy of the heart

The heart is a muscle that continuously pumps oxygenated blood from the
lungs to the tissue throughout the body, and transports the blood with carbon
dioxide away from the tissue towards the lungs. Figure 2.1 shows the anatomy
of the heart with the major blood vessels and the four chambers, of which two
lie in the left, and another two in the right side of the heart. The two sides of
the heart are divided by a muscular wall called septum. Each of the two sides
are further divided into an atrium, which is the upper chamber that receives
blood from the veins, and a ventricle, which is the lower chamber that pumps
blood into the arteries.

2.2 The heart during normal sinus rhythm

The activity of the heart can either be described as a series of mechanical
events, i.e., a sequence of muscle contractions and relaxations, or as a series of
electrical events. In electrical terms, the contraction and relaxation phases are
referred to as depolarization and repolarization, respectively. Each heartbeat
is triggered by an electrical impulse that starts in the sinoatrial (SA) node,
which is positioned in the right atrium (RA), see Fig. 2.1. The SA node sets
the rhythm of the heart, which is why normal heart rhythm is also called
sinus rhythm. The electrical activity spreads through the walls of the atria,
causing them to contract. The atrioventricular (AV) node, situated at the

5
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Figure 2.1: Anatomy of the heart. Reprinted with permission from [2].

center of the heart between the atria and ventricles, collects and slows the
electrical signal before it enters the ventricles, giving the atria time to contract
before the ventricles do. Surrounding the AV node there is insulation such
that the electrical impulse can only propagate further over the His bundle to
the rapidly conducting left and right bundle branches and from there to the
Purkinje fibers. These fibers conduct the electrical impulse to the muscular
walls of the ventricles, which contract and force the blood out of the heart to
the lungs and body. This completes the electrical cycle of one heartbeat.

2.3 The heart during atrial fibrillation

Atrial fibrillation is a supraventricular arrhythmia, i.e., an arrhythmia that has
its origin above the ventricles, such as in the atria. Instead of that every heart-
beat starts by a single electrical impulse from the SA node, several impulses
with varying origin spread throughout the atria and cause uncoordinated atrial
contractions. Although not all electrical impulses from the atria propagate fur-
ther through the AV node to the ventricles, the ventricular rhythm during AF
becomes rapid, “disorganized”, and irregular. These characteristics lead to in-
creased risk for formation of blood clots in the atria, which in turn leads to
increased long-term risk of stroke. The mortality rate of patients with AF is
about twice that of patients in normal sinus rhythm, although AF itself is not
generally considered life-threatening.

The underlying mechanisms of AF are still the subject of research, and
so far, three main theories on AF mechanisms have evolved. Moe’s multiple
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wavelet hypothesis [3] states that multiple wavelets are propagating on varying
routes throughout both atria, randomly activating the atrial tissue and thus
leading to the complex electrical patterns observable during AF. The second
theory emerged as Haissaguerre et al. observed that AF is often triggered by
a focal source [4–6]. Most often, such focal triggers were observed in the left
atrium (LA) close to the pulmonary veins (PVs), but other origins were also
found, such as the superior vena cava. The role of the LA as a trigger of AF
is further supported by studies revealing left-to-right atrial frequency gradi-
ents [7, 8]. The third mechanism is based on the presence of an appropriate
heterogeneous AF substrate, which allows that a focal trigger can result in
sustained high frequency reentrant AF drivers (rotors) [9]. This mechanism is
more likely to occur when AF is maintained for relatively long time periods,
which has been shown to result in a more complex arrhythmogenic substrate
due to atrial remodeling, i.e., the shortening of action potential duration as
well as refractory period [10].

2.4 Treatment of atrial fibrillation

Treatment of AF follows three main objectives [1]:

• heart rate control,

• prevention of thromboembolism, and

• correction of the rhythm disturbance.

Different factors influence the decision about which treatment to choose. Be-
sides the age of the patient and other underlying heart diseases being typical
for AF patients, the clinical type of AF must also be considered. Patients
with acute AF, i.e., in their first AF episode, are usually treated with imme-
diate cardioversion in order to restore sinus rhythm. In case AF terminates
spontaneously in less than 7 days, AF is designated as paroxysmal. The treat-
ment then focuses on the suppression of paroxysms, heart rate control during
paroxysms, and long-term maintenance of sinus rhythm. AF that is not self-
terminating and lasts longer than 7 days is referred to as persistent and is
treated with cardioversion. AF that is non-terminating even after attempted
cardioversion is referred to as permanent and is treated by heart rate control.

If pharmacological treatment for heart rate control fails, heart surgery may
be considered. The first surgical procedure for AF was the Maze procedure,
which required open heart surgery and was based on Moe’s multiple wavelet
hypothesis [11]. During this procedure a series of linear lesions was carried out
both in the right and left atrium in order to confine the electrical impulses to
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defined pathways towards the AV node. The Maze procedure was later replaced
by the rapidly advancing technique of radiofrequency catheter ablation, which
does not require open heart surgery. Following the findings of the LA as a driver
of AF, ablation of the RA was abandoned, and ablation of the LA became more
selective. As the majority of ectopic foci have been observed in the PVs, PV
isolation has become the standard ablation procedure. During the ablation,
the electrical signals from the PVs are under continuous observation, and a
termination of electrical activity indicates that isolation has been achieved.
The success rate of PV isolation in paroxysmal AF has been reported to be
from 38 to 70% after a single procedure and from 65 to 90% after repeated
procedures [10].

However, in the presence of persistent AF, PV isolation alone is less ef-
fective [10], as it is very likely that atrial remodeling has taken place. This
process leads to a more complex arrhythmogenic substrate, which may pro-
mote sustained AF by augmenting the number of AF drivers and shifting their
location away from the PVs. Thus, additional linear ablations or focal lesions
may be necessary in order to prevent AF from recurring. While PV isolation
is guided by the anatomy, these additional ablations are guided by the electro-
grams, which are employed in order to identify the arrhythmogenic substrate
or the additional ectopic foci. In that context, areas with complex fractionated
electrograms (CFAEs), i.e., electrograms with highly fractionated potentials or
with a very short cycle length (≤ 120 ms), have been reported to potentially
represent AF substrate sites and become target sites for AF ablation [12]. Al-
though this approach has gained much popularity and automatic CFAE map-
ping systems have been proposed [13,14], there are also studies questioning the
efficiency of CFAE ablation [15,16], indicating the need for further research in
this area.

2.5 Measuring cardiac electrical activity

Cardiac electrical activity can be measured on the body surface as well as from
inside the heart. While body surface signals reflect the global cardiac electrical
activity, i.e., the sum of the activity in the atria and ventricles, intracardiac
recordings allow the measurement of local cardiac electrical activity. In the
following, an overview of both types of measurements is given.
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Figure 2.2: The cardiac cycle in sinus rhythm as observed in the ECG.
Reprinted with permission from [2].

2.5.1 Body surface signals

The electrocardiogram

The cardiac cycle, as represented by the electrocardiogram (ECG), consists of
several characteristic waves which are shown in Fig. 2.2. During sinus rhythm,
the beginning of the cardiac cycle is denoted P wave, which reflects the de-
polarization of the atria. The subsequent depolarization of the ventricles is
denoted QRS complex, which at the same time masks the atrial repolarization.
At the end of the cardiac cycle the T wave occurs which reflects ventricular
repolarization.

In AF, coordinated depolarization of the atria no longer takes place. This
is reflected in the ECG by the replacement of the P waves by an undulating
baseline, i.e., f waves. ECG examples of sinus rhythm, atrial flutter, and AF
are displayed in Fig. 2.3. Similar to AF, atrial flutter is a supraventricular
arrhythmia. It is typically caused by a reentrant activation circuit involving
the entire RA. In the ECG, atrial flutter is characterized by so-called F waves,
which in contrast to the f waves during AF exhibit a more regular, sawtooth-
like appearance. The ventricular response is also regular, leading to that atrial
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Figure 2.3: ECG signals with sinus rhythm (upper panel), atrial flut-
ter (middle panel), and AF (lower panel). Reprinted with permission
from [2].

flutter is often described as an arrhythmia being more organized than AF.
The standard 12-lead ECG is the most common lead system for recordings

on the body surface and is defined by 10 electrode positions: one electrode
on each of the left arm, right arm, and left leg, six electrodes on the chest,
and one electrode which is used as ground, usually positioned on the right
leg. From these electrodes, the three bipolar limb leads I, II, and III, the
three augmented unipolar limb leads aVF, aVL, and aVR, as well as the six
precordial leads V1,. . . ,V6 are obtained. Because of its close proximity to the
RA, lead V1 is often thought of as reflecting mostly right atrial activity, which
has been confirmed by clinical studies that compared certain characteristics
of the ECG with simultaneously recorded intracardiac signals from both atria
[17,18]. In [18], the standard, but infrequently used, leads V7, V8, and V9 were
also recorded, and a high correlation was found between lead V9 and activity
from the LA.

In order to improve the analysis of atrial activity from the ECG, both body
surface potential mapping (BSPM) with a large number of electrodes on the
front as well as the back of the body [19, 20], and special lead systems such
as the atriocardiogram [21] have been proposed. However, it is yet to be seen
whether these systems will be used in clinical practice.
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Figure 2.4: A vectorcardiographic loop, corresponding to one heart
cycle, and its projection onto the three orthogonal planes. Reprinted
with permission from [2].

The vectorcardiogram

The basic idea behind the vectorcardiogram (VCG) is that the electrical activ-
ity of the heart at each time instant during the cardiac cycle can be summed
to a vector, which describes the size and direction of the electrical activity
in the three-dimensional (3-D) space. This vector is commonly referred to as
the equivalent dipole DE(t), which is composed by the three orthogonal com-
ponents DEx(t), DEy(t), and DEz(t). The VCG is a display of the equivalent
dipole on the body surface, and ideally, the three orthogonal components of the
VCG, i.e., the X, Y, and Z lead, are directly proportional to the corresponding
component of DE(t). When the X, Y, and Z leads are plotted at successive
time instants, a vector loop is constructed in the 3-D space, see Fig. 2.4. The
XY-, XZ-, and YZ-plane are also referred to as frontal, transverse, and sagittal
plane, respectively.

The Frank lead system, named after its inventor, is probably the best-known
system for orthogonal leads. It requires seven electrodes that are positioned on
the chest, back, neck, and left foot. However, as the standard 12-lead ECG is
more common in clinical practice, various approaches to synthesize the VCG
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Figure 2.5: 10 seconds of synthesized VCG signals during AF.

from the 12-lead ECG have been investigated [22–24]. The synthesis of leads
relies on the assumption that the voltage at any point of the body can be
approximated as a linear combination of the recorded 12 leads.

An example showing one second of VCG signals during AF, synthesized
with the inverse Dower matrix [25], is shown in Fig. 2.5. The inverse Dower
matrix was originally developed with focus on the QRS complex. Recently,
several studies have investigated the performance of the inverse Dower matrix
for analysis of P waves [26, 27] and atrial activity during AF [28]. While the
inverse Dower transform has been found useful for studying P wave morphology
[26], a new atrial-based transform matrix [27] as well as a new transform matrix
based on a new lead system [28] have been proposed.

2.5.2 Intracardiac signals

A complete intracardiac evaluation of supraventricular arrhythmias such as AF
is performed during electrophysiological (EP) studies, involving the use of mul-
tiple catheters with several recording electrodes as well as a programmable stim-
ulator [29]. The stimulator can be used for various purposes, e.g., to provoke
arrhythmia in case the patient had sinus rhythm at the onset of the procedure.
In order to navigate the catheter during the procedure, fluoroscopy equipment
is needed. Fortunately, the exposure to radiation is decreasing thanks to the
introduction of new 3-D mapping systems. One example is CARTO, which is
a non-fluoroscopic electromagnetic mapping system. The usual procedure is to
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insert several catheters into the heart through the vein in the patient’s groin,
which does not require anesthesia.

A variety of catheters are available, differing in the number of electrodes,
electrode spacing, and curves. One category of catheters are the deflectable
ones that facilitate positioning for mapping and can deliver radiofrequency
energy through their tips for ablation. Another category are the deflectable
catheters with multiple electrodes that allow simultaneous recording at multiple
sites, covering larger areas of the atrium. Examples are the Halo catheter
(Fig. 2.6(a) and (b)), which has its name from being formed like a “halo”, and
the basket catheter (Fig. 2.6(c)), which has up to 64 electrodes. The typical
distance between two electrodes on a catheter is 2–5 mm [30], and the electrical
potential measured between two electrodes is called a bipolar electrogram.

While the response to programmed stimulation can provide information on
the mechanisms of initiation of AF, mapping studies can provide insight into
the mechanisms of AF perpetuation. Mapping studies can be either epicardial
or endocardial. Epicardial mapping is performed during open heart surgery
by placing arrays which can contain several hundred electrodes on the outer
surface of the heart. In contrast, endocardial mapping is done on the inside of
the heart and can be further divided into contact and non-contact mapping.
During contact mapping, the electrodes of the catheter have direct contact
with the wall of the heart, while in non-contact mapping the electrodes of the
catheter are placed in the center of the heart chamber and act as antennas.
An example of a contact mapping catheter is the basket catheter. The large
number of electrodes makes it possible to study spatiotemporal organization
during AF as well as to evaluate the complexity or morphology of the signals
at multiple sites in the atrium.

Recordings of several intracardiac signals are shown for two examples in
Fig. 2.7. The time instant when an electrical impulse passes the tissue close
to an electrode, the cardiac cells rapidly depolarize, causing steep deflections
in the recording. Such a waveform is called an activation, and the time delay
between two subsequent activations defines the cycle length. While the example
in Fig. 2.7(a) exhibits distinct activations, e.g., in the catheter in the RA, it is
difficult to distinguish between single activations in the RA recording displayed
in Fig. 2.7(b).

2.6 Simulating atrial electrical activity

While simulation models for the atrial electrical activity originally were de-
veloped for healthy subjects, large efforts have recently been made to employ
these models for simulation of atrial arrhythmias. Such simulations can not
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(a) (b) (c)

Figure 2.6: (a) Complete Halo catheter including the plugs for the
measurement equipment and the steering handle. (b) Top of the Halo
catheter when formed as a “halo”, showing the electrode pairs. (c) Top
of a basket catheter.

(a) (b)

Figure 2.7: Two examples of intracardiac signals recorded with a Halo
catheter in the RA, a pulmonary vein catheter in the LA (PV1, PV2),
as well as a coronary sinus (CS) catheter.
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only contribute to better understanding of atrial arrhythmia mechanisms, but
can also help to validate research methods, evaluate therapeutic approaches,
or even aid diagnosis.

The simulation of atrial activity is a complex mathematical problem, which
is usually based on a bottom-up approach. After formulating a model for a
single atrial cell, the cells are coupled to form a tissue for which a propagation
model is defined. Next, a geometric model is constructed to reproduce, e.g.,
cardiac anatomy. Finally, a simulation scenario is set up and measurement
devices, such as catheter electrodes or ECG leads, are simulated.

2.6.1 Atrial cell models

The membrane of the cell is modeled as a capacitor connected in parallel with
variable resistances and batteries which represent ionic channels and driving
forces. The total ionic current Iion, given per unit area of membrane, is re-
sponsible for the temporal variations of the membrane potential Vm according
to [31]

Cm
∂Vm

∂t
= −Iion + Istim, (2.1)

where Cm is the membrane capacitance per unit area of membrane, and Istim

is an external stimulus used to trigger an action potential. For definition of
Iion in the human atrial cell, the Courtemanche–Nattel–Ramirez (CNR) model
[32] has received the most attention. It defines Iion as a sum of 12 separate
contributions, which represent the ionic and pump currents known to contribute
to the action potential in human atrial cells.

2.6.2 Propagation model

Cardiac tissue can be described as a collection of cells which are intercon-
nected to their neighbors through gap junctions. In order to assume continu-
ous homogenous propagation in the tissue, the intracellular medium, the cell
membranes, and the extracellular medium are homogenized so that the three
domains obtain the same continuous physical space Ωmyo (myocardium). Un-
der the further assumption that the conductivity tensor fields of the intra- and
extracellular media are identical apart from a constant factor, the propagation
can be described by the so-called monodomain equation [31]

Cm
∂Vtm

∂t
= Cm∇ ·D∇Vtm − Iion + Istim, (2.2)

where Vtm is the transmembrane potential and D is the diffusion tensor.
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The formulation of the monodomain equation is flexible enough to per-
mit the incorporation of information about substrate properties and changes
induced by therapy. For example, the diffusion tensor D, which models the
cell-to-cell coupling and thus determines the conductivity, is in most models
set to uniform. However, it can be altered in order to incorporate regions of
slow or high conduction, or to simulate ablation, where the tissue conductiv-
ity is set to zero at the ablation lines. Furthermore, the membrane kinetics
as modeled by Iion can be altered to, e.g., simulate drug therapy, but also to
create a substrate for arrhythmia [33]. The creation of such a substrate has
shown to have large impact on the dynamics of depolarization waves and spi-
rals, and on the occurrence of conduction blocks and reentry. Finally, device
therapy such as pacing or defibrillation can be simulated by applying a stimulus
current (Istim).

2.6.3 Geometric models

Simulations can be done in the isolated cell, 1-D cable, 2-D tissue, as well as
3-D models. In the latter, variations in the wall thickness are sometimes omit-
ted, and the 3-D model is implemented as a monolayer 2-D surface embedded
in 3-D space. The simplest 3-D model is the approximation of the geometry
of the atria as two spheres. In the next step, also landmarks of the topology,
i.e., holes corresponding to the insertion of veins and valves, can be included.
With the help of medical imaging modalities, e.g., magnetic resonance imag-
ing, it is already possible to generate more realistic and even patient-specific
geometries. Such realistic models can incorporate variations in wall thickness,
fast-conducting bundles, and inter-atrial connections.

For the solution of the monodomain equation, see Eq. (2.2), a spatial dis-
cretization of the atrial geometry and structures must be performed, e.g.,
through standard finite volume or finite element methods. In the cardiac con-
text, this has been described for triangular, cubic, and hexahedral meshes. A
detail of a triangular mesh is shown in Fig. 2.8(a), which illustrates how a
simulation of a reentry around an anatomical obstacle can be initiated on a
monolayer sphere with a diameter of 6 cm. The triangular mesh comprises ap-
proximately 125.000 nodes, resulting in a spatial resolution of about 300 µm.
In order to initiate the reentry, a point source and a temporary line of block are
placed on the sphere in addition to the anatomical obstacle. The simulation
is started by delivering a single electrical impulse from the point source, which
is situated in proximity to the anatomical obstacle and the line of block, see
Fig. 2.8 (b). The electrical activity is then propagating around the anatomical
obstacle and along the line of block as can be seen in Figs. 2.8(c) and (d). The
dimension of the sphere and the anatomical obstacle must be chosen such that
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(a) (b) 80 ms (c) 240 ms

(d) 400 ms (e) 500 ms (f) 760 ms

Figure 2.8: Illustration of a simulation with a reentry initiated around
an anatomical obstacle. (a) Sphere with the anatomical obstacle (large
circle), a line of block, and a point source (small circle). An enlarged
detail of the triangular mesh is also shown. (b)–(f) Snapshots of the
membrane voltage at subsequent time instants, see text for details.

the tissue close to the point source, where the propagation is started, is in repo-
larization when the propagation has reached around the anatomical obstacle.
The subsequent removal of the line of block then allows the establishment of a
self-sustained activation of the tissue, see Figs. 2.8(e) and (f).

2.6.4 Measurement of the atrial electrical activity

The solution of the monodomain equation can be employed to compute the
transmembrane current Itm (per unit area), which is needed to obtain the
unipolar electrograms [31]

φ(x, t) =
1

4πσe

∫

Ωmyo

Itm(y, t)

||x − y|| dy, (2.3)

where the vector x is the simulated location of the electrode close to the surface
of the tissue, t is the time, and σe is the extracellular conductivity. Extensions
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of Eq. (2.3) take the finite size of the torso as well as its inhomogenities due to
lungs and blood cavity into account, so that also the ECG can be computed [31].



Chapter 3

Signal Processing of Atrial

Fibrillation on the Body

Surface

3.1 Preprocessing

Body surface signals can be disturbed by various noise sources, leading to, e.g.,
baseline wander, powerline interference, and muscle noise [2]. The first two
disturbances can be handled by narrowband filters, while for the last, averaging
of the time-aligned heartbeats can be applied. However, atrial and ventricular
activity are not synchronized during AF, and therefore averaging of the time-
aligned heartbeats would not only remove the muscle noise, but also the atrial
activity. Thus, during the analysis of AF, ECG segments with excessive muscle
noise are often only detected and excluded from further analysis.

In the analysis of AF, atrial activity extraction most often follows noise
reduction. Linear filtering is an unsuitable approach for this problem, because
the atrial and ventricular activity overlap spectrally. Instead, approaches such
as average beat subtraction (ABS) [17], spatiotemporal QRST cancellation [34],
and principal as well as independent component analysis [35, 36] have been
employed for this purpose. A comparison of the performance of these methods
for atrial activity extraction can be found in [37]. In the following, ABS and
spatiotemporal QRST cancellation are shortly described in some more detail.

For both ABS and spatiotemporal QRST cancellation, information on the
occurrence time of each heartbeat is required. This is handled by a QRS de-
tector which must be able to adapt to sudden changes in QRS morphology and

19
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heart rhythm. The detector is also required to handle ectopic beats, i.e., beats
originating from other locations than the SA node. Usually, QRS detection is
followed by beat classification, which sorts the detected heartbeats into groups,
e.g., by clustering the beats according to their morphology.

During ABS, each ECG lead is processed separately. Following QRS de-
tection and beat classification, the ventricular activity is cancelled by calcu-
lating the average beat for each group and subtracting it from the individual
heartbeats in the corresponding group. When subtracting the average beat, it
is crucial to assure accurate temporal alignment. An erroneous alignment of
the average beat can lead to QRST residuals that complicate further analy-
sis. Spatiotemporal QRST cancellation is an extended form of ABS that uses
information from several leads for cancellation [34]. This accounts for varia-
tions in the orientation of the heart’s electrical axis, that are mainly due to
respiratory activity. The performance of spatiotemporal QRST cancellation
was studied and shown to be superior to ABS, i.e., it results in smaller QRST-
related residuals [37]. Figure 3.1 illustrates the performance of spatiotemporal
QRST cancellation on two examples.
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Figure 3.1: Two examples illustrating spatiotemporal QRST cancella-
tion. Upper panel: ECG signals with AF. Lower panel: Corresponding
extracted atrial activity (note that the amplitude scale is magnified).
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3.2 Time–frequency analysis

On the body surface, time–frequency analysis is usually applied following atrial
activity extraction. In order to track the frequency content of the atrial activity
over time, linear or quadratic time-frequency distributions may be applied [38–
40]. Typically, each spectrum of the distribution exhibits a distinct peak whose
location determines the AF frequency of the corresponding time segment. The
purpose of the method presented in [40] is to achieve a more robust estimation of
the AF frequency, as well as of the harmonics of the spectrum, when compared
to estimation based on the conventional power spectrum. This is achieved
by computing local power spectra from successive time segments, which after
frequency alignment are used to adaptively update a spectral profile. This
profile is then employed to determine the final estimates of AF frequency as well
as the exponential decay of the harmonics, which is a measure characterizing
the morphology of the atrial waveforms.

There has been an increased interest in tracking of the frequency content of
AF signals over time since the observation of atrial remodeling and its coupling
to the shortening of the atrial refractory period, which in turn can lead to local
differences in atrial cycle length. AF cycle lengths from the RA have been
shown to be especially well-represented by the inverse of the AF frequency in
lead V1 [17]. In another study, a similar observation was made for the less
frequently used standard posterior lead V9 and the LA, and also a significant
correlation between inter-atrial (LA to RA) and body surface (V9 to V1) fre-
quency gradients was found [18]. In clinical studies, AF frequency has been
used to identify suitable candidates for pharmacological cardioversion [41, 42].
Furthermore, AF frequency was found to predict AF recurrence after cardiover-
sion [43] as well as spontaneous AF termination [44].

3.3 Spatial analysis

The potential of the ECG to reveal information about the propagation within
the atria has been demonstrated, e.g., during sinus rhythm in patients with
paroxysmal AF [45]. The morphology of the P wave in each lead of the syn-
thesized VCG was categorized as either positive, negative, or biphasic. In the
vast majority of the patients, the category of the P wave allowed to draw cor-
rect conclusions about the left atrial breakthrough site and the corresponding
inter-atrial conduction route. Analysis of P wave morphology has also been
proposed for localizing the source of atrial ectopic beats which can trigger the
onset of paroxysmal AF [46, 47]. In both studies, the analysis was based on
previously recorded pacemaps, which contained P waves obtained during pac-
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ing at different sites within the LA and RA. However, during AF, the P wave
is replaced by continuous f waves, which due to the variety and complexity of
mechanisms that maintain AF can be strongly varying in morphology. Thus,
more advanced signal processing techniques are needed to evaluate whether
different AF mechanisms can be distinguished from the ECG.

Simulations have been proposed to assess the ability of the VCG to identify
underlying AF mechanisms [48]. The atrial activity was simulated with the
CNR model (see Sec. 2.6), using a thick-walled 3-D model of the atria based
on magnetic resonance images and resulting in the membrane potential Vm. A
compartmental torso model, which included atria, ventricles, and lungs, was
also derived from magnetic resonance images and used to compute body surface
potential maps of the atrial activity over the entire torso. The potentials at
the locations of the nine ECG electrodes of the standard 12-lead system were
then selected as simulated ECG signals.

The analysis was based on the equivalent dipole DE(t), which was calculated
by integrating the membrane potential Vm over the atrial surface, as well as
on the VCG, which served as an estimate of DE(t) on the body surface. The
VCG was synthesized from the simulated ECG signals with a transformation
matrix presented in [28]. For further analysis, the three orthogonal components
of the VCG were at each time instant projected onto a unit sphere, i.e., the
vector magnitude was normalized to one. This resulted in a scatter plot of the
vector directions on the sphere. It was hypothesized that the analysis of the
spatial distribution of these scatter plots should locate stable and single AF
sources such as micro-reentries, mother-rotors or ectopic foci, to the location
of peaks in this distribution. In contrast, the absence of such peaks should
indicate that the AF dynamic was complex, i.e., there were multiple AF sources
or no identifiable source at all. The spatial distributions were analyzed by
calculating the eigenvalues λ1 ≥ λ2 ≥ λ3 of the covariance matrix of the VCG,
where λ1 + λ2 + λ3 = 1 due to the previous normalization. Three extreme
distributions can be identified: a point distribution (λ1 = 1, λ2 = λ3 = 0), a
distribution along a circle around the unit sphere (λ1 = λ2 = 1/2, λ3 = 0), and
a uniform distribution (λ1 = λ2 = λ3 = 1/3).

During simulation of sinus rhythm and atrial flutter, a coherence between
the time course of the equivalent dipole DE(t) and the VCG was observed.
For AF, a number of simulations which were differing in the location of the
substrate that initiated AF on the atria, as well as the procedures for initiating
AF, were performed. It was found that the VCG during AF was much more
complex than during sinus rhythm or atrial flutter, however, it was possible to
employ the spatial distribution of the VCG for identifying the location of the
atrial substrate in simulations where stable and single AF sources were used.
In more complex simulations, such as multiple wavelet reentry, the spatial
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distribution became uniformly distributed.
A similar approach to spatial analysis of the atrial activity employing the

VCG, synthesized with the inverse Dower matrix, has been proposed and ap-
plied to both atrial flutter and AF data [49–51]. During atrial flutter, F waves
were isolated from the TQ-interval and averaged, leading to one average F wave
representing each recording. During AF, the atrial activity was also extracted
from the TQ-intervals, which were artificially prolonged to at least 2 s with the
help of pacing. In contrast to atrial flutter, AF analysis was applied separately
to each f wave.

Similar to [28], the approach is based on the eigenanalysis of the covariance
matrix of the VCG, which, however, was not normalized prior to the analysis.
In contrast to mainly evaluating the extracted eigenvalues, the analysis focuses
on the three eigenvectors v1, v2, and v3 associated with λ1 ≥ λ2 ≥ λ3. In de-
tail, the spatial analysis aims for obtaining the preferred direction of activation
by calculating the plane of best fit, which was defined as the 2-D projection
of the VCG that would produce a minimum mean-square error estimate when
compared with the original data. This was achieved by letting the eigenvectors
v1 and v2, which correspond to the directions in which the data exhibits the
largest variance, span the plane of fit, resulting in that the perpendicular axis
of the plane was defined by the third eigenvector v3. The orientation of the
plane of best fit relative to the frontal plane can then be described in terms of
the azimuth and elevation angles of v3. The azimuth angle ranged from −180
to 180 degrees, and was divided into 12 30-degree regions.

For isthmus-dependent atrial flutter, the majority of planes of best fit were
found to be consistent with the expected anatomical orientation of the reentrant
circuit parallel to the tricuspid valve [49]. For AF, it was found that 15 of 22
ECGs had at least 30% of the planes in a single 30-degree region of azimuth
angles, and were thus considered organized [50]. Of these 15 ECGs, 12 had the
largest number of planes with azimuth angles within 30 degrees of the sagittal
plane. These findings suggested to the authors that there may be a spectrum
of complexity of AF organization that can be extracted using vector analysis of
AF. Similar results were obtained in a follow-up study with a slightly modified
methodology [51], in which it was also found that the stability of the orientation
of the vector loops over time was higher in patients without a significant left-
to-right atrial frequency gradient.

Though the derived orientation of the planes of best fit gave physiologically
reasonable results, especially for the isthmus-dependent atrial flutter, the spa-
tial analysis of atrial loops on the basis of the inverse Dower transform has
been questioned [52]. In that study, the Frank orthogonal leads have been used
as gold standard, and another transform for synthesizing the VCG [27], espe-
cially developed for the P wave, was used for comparison. A difference in the
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orientation of the planes of best fit was found between the VCG loops based
on the Frank orthogonal leads and on the inverse Dower transform. However,
no significant improvement of the estimation was found when using the VCG
synthesized such that it was optimized for the analysis of atrial activity. Fur-
thermore, it was noted that the actual fit of the atrial loops to the plane of best
fit should be considered in the spatial analysis. This can be accomplished by
considering not only the eigenvectors, but also the eigenvalues in the analysis,
as proposed in [28, 53].

A different approach to quantifying the extent of intracardiac organization
by means of spatial analysis of the ECG was proposed in [54]. In that analysis,
the VCG was approximated by employing leads V5, aVF, and V1 as semi-
orthogonal X, Y, and Z leads. The method starts by manually choosing the
start and end time for a template, e.g., an F wave during atrial flutter, or an
f wave during AF, from 10-s recordings. The correlation between the template
and the remaining recording is then evaluated at successive time instants n in
each lead, resulting in three series of correlation values denoted rX(n), rY (n),
and rZ(n). Similar to the VCG, these correlation series can be plotted in
the XY, YZ, and XZ plane, which will appear as more or less clear loops
depending on the regularity of the correlation series. The intracardiac activity
was considered spatially coherent when the maximum correlation values of
rX(n), rY (n), and rZ(n) simultaneously exceeded a certain threshold for the
majority of loops. While isthmus-dependent atrial flutter was found to have
a pronounced spatial coherence, nonisthmus-dependent flutter and AF were
found to be spatially incoherent.

The authors claimed the analysis of atrial activity, employing the correla-
tion series rX(n), rY (n), and rZ(n), to be superior to the traditional VCG, as
loops constructed directly from the X, Y, and Z leads are dominated by the
large ventricular activity. In contrast, the correlation series can be expected to
have small values during ventricular activity, due to the poor correlation with
the atrial template, while larger correlation values are to be expected during
the atrial activity. However, VCG analysis of atrial activity can be improved
by, e.g., restricting the analysis to time segments with atrial activity only, or
employing QRST cancellation prior to the analysis. This would have the ad-
vantage to indeed allow the evaluation of spatial coherence of the atrial activity
over time, while strictly viewed, the proposed approach evaluates the spatial
similarity to one certain time segment, i.e., the template. As a consequence,
the analysis should be highly affected by the choice of the template, especially
during AF, where signal morphology can be rather variable.

Besides spatial analysis of the atrial activity based on the VCG, BSPM has
also been employed for this purpose. During, e.g., counterclockwise and clock-
wise typical atrial flutter, the spatial voltage distribution as captured by the
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body surface signals has been found to be directly related to the underlying
activation sequence, which could be assessed from simultaneously recorded in-
tracardiac signals [19]. Also, during AF, different activation patterns [20] and
a varying spatial complexity of the electrical activity recorded with BSPM [55]
has been observed, however, in both studies the results could not be com-
pared with the actual mechanisms of AF because of the lack of simultaneous
intracardiac recordings. In another approach, high-density BSPM was used to
estimate the electrograms on the surface of the heart by deriving the transfer
matrix that relates body surface to epicardial potentials [56]. The method has
been validated on a few cases of real data recordings, e.g., during atrial flutter.
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Chapter 4

Signal Processing of

Intracardiac Atrial

Fibrillation Signals

Although the mechanisms of AF are not yet completely understood, recent
progress indicates that future ablation treatment of AF will be tailored to the
individual patient in order to achieve optimal success rate [57]. Therefore,
methods are required which can improve the understanding of AF mechanisms
and accurately guide the ablation catheter to the atrial sites at which the
arrhythmia originates or which represent arrhythmia substrates. Methods for
propagation pattern analysis are thus of interest as they have the potential to
point out ectopic foci or identify reentrant activities.

Methodologically, the challenge of analyzing propagation patterns is to de-
termine the interrelationship between a larger number of signals. In the follow-
ing, multivariate approaches to propagation pattern analysis both in the time
and frequency domain will be discussed. Prior to that, a background will be
given on intracardiac AF signal processing as well as on bivariate measures,
which quantify the coupling between intracardiac AF signals.

4.1 Preprocessing

Narrowband filters are usually employed to remove disturbances like baseline
wander and powerline interference. In atrial recordings which are made close
to the ventricles, e.g., in the coronary sinus, ventricular far-field effects may

27
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Figure 4.1: Illustration of intracardiac signal preprocessing on (a) a
well and (b) a less organized electrogram. Both examples show the
original electrogram (A), the electrogram after bandpass filtering (B),
rectification (C), and lowpass filtering (D).

appear in addition to the local atrial activity. When such effects are detected,
a rather simple strategy is to introduce a blanking period of about 90 ms.
Another approach is similar to ABS, i.e., a template that reflects the average
ventricular activity is subtracted.

4.2 Activation detection

The highly varying morphology of intracardiac signals complicates the detec-
tion of the atrial activation times, on which many methods for intracardiac
signal analysis are based. Thus, a series of signal preprocessing steps, origi-
nally proposed for cross-correlation analysis [58], is usually employed prior to
activation detection. After bandpass filtering with a bandpass of 40–250 Hz,
the signal is rectified and lowpass filtered at 20 Hz. This process extracts a
time-varying waveform proportional to the high-frequency components in the
original electrogram, see Fig. 4.1. The exact values of the cut-off frequencies
as well as the implementation of the filters can vary somewhat from study to
study.

For activation detection, a threshold is commonly applied to the prepro-
cessed electrogram z(n). The threshold θi is set at the time instant of the last
detected activation, ni, and is held fixed until it is exceeded and a new activa-
tion is detected. It can be calculated based on the exponential average of the
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peak amplitudes of the previously detected activations [2],

θi = αµi, (4.1)

µi = µi−1 + β(z(ni) − µi−1), i ≥ 1, (4.2)

where µi is the exponential average, and z(ni) represents the peak amplitude
of the most recently detected activation. The parameter β defines the rate with
which the threshold can change, and should be chosen to a value between 0
and 1 such that stability is assured. The parameter α is typically chosen in the
interval 0.5–0.7 and determines the fraction of µi to be used in the threshold
computation. When the preprocessed signal exceeds θi, a new activation is
detected. The time instant of the first local maximum following the detection
serves as an estimate of the activation time.

In another approach, these time instants serve as preliminary estimates of
the activation times [59]. In order to arrive at the final estimates, the original
electrogram x(n) is processed by rectification and a moving average filter:

x̃(n) =

N/2−1
∑

i=0

|x(n− i)| −
N/2
∑

i=1

|x(n+ i)|, (4.3)

where N is chosen as the number of samples in a 90-ms interval. The activation
times are then estimated as the positive zero crossings in x̃(n) that are closest
to the preliminary activation times. This time instant may be interpreted as
the barycenter of each activation waveform, i.e., the time instant that divides
the activation waveform into two equal parts of local area. In order to avoid
erroneous detection of activation times, zero crossings for which the slope of
x̃(n) does not exceed a fixed threshold are discarded.

In order to prevent multiple detections of a single activation, an eye-closing
period in the range of 50 ms is usually introduced after each detected activation.
Furthermore, a look-back detection mode based on the mean time difference
between the detected activation times can be employed to find activations that
have been missed because of a low amplitude [2]. Two examples illustrating
activation detection are shown in Fig. 4.2.

Recently, a method based on wavelet decomposition has been proposed for
activation detection, particularly in unipolar electrograms [60]. An initial set of
activation times is obtained by matching the electrogram with a library of 128
templates. Then, wavelet decomposition is performed in order to decompose
the electrogram into a number of “near- and far-field” electrograms, and false-
positive detections caused by the far-field electrograms are removed. Following
this, multiple detections due to fractionation are identified and removed, and
finally, previously removed false-negative detections are added back to the ac-
tivation time list when the time between two subsequent detected activations
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Figure 4.2: Two examples illustrating activation detection. Upper
panel: Intracardiac AF signals with (a) regular and (b) irregular activa-
tions. Lower panel: Corresponding preprocessed signals with regularly
estimated activation times (filled triangle) and activations detected in
look-back detection mode (empty triangle). The thresholds are marked
with lines, where a dotted line marks a lowered threshold due to look-
back detection mode. Activation detection is done according to Eq. (4.2),
where α = 0.55 in normal and α = 0.35 in look-back detection mode,
β = 0.6, and the eye-closing period was set to 50 ms.

is too long. While certain steps in this approach, such as the reliability of
template matching, the division into near- and far-field electrograms, as well
as the variety of rules to handle false-negative and false-positive detections,
may be questionable, this study serves as a good illustration of the common
problems faced during activation detection in AF signals. Reliable detection
of activation times becomes increasingly difficult with decreasing signal orga-
nization, which comes with, e.g., strongly varying signal morphology, multiple
deflections, or continuous electrical activity. In order to quantify the reliability
of the detected activations, as well as further analysis based on the detected
activations, simultaneous analysis of AF organization may be helpful.

4.3 Frequency analysis

In recent years, the interest in frequency analysis of intracardiac signals has
increased especially since the identification of sites with high dominant fre-
quency (DF) has been proposed for ablation guidance [61]. Though being
termed “dominant” frequency, the DF is actually defined as the fundamental
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frequency of the power spectrum and does not necessarily correspond to the
largest frequency peak. In order to reduce the influence of signal morphol-
ogy on the analysis and to prevent that, e.g., one of the harmonic frequencies
is falsely detected as DF, preprocessing steps similar to those illustrated in
Fig. 4.1 should be applied prior to frequency analysis. The effect of the differ-
ent preprocessing steps on the power spectrum have been discussed in detail
in, e.g., [62]. In the same study, it has been shown for simulated signals that
the DF is well correlated to the mean atrial cycle length, however, certain de-
viations were observed when the amplitude and the cycle length of the atrial
activations varied over time. However, in another study, the estimation of the
the atrial cycle length was found to be more robust when it was based on
frequency analysis instead of on atrial activation detection [63].

In clinical studies, frequency analysis has been employed to, e.g., determine
the presence of left-to-right frequency gradients. Interestingly, it was found that
patients with paroxysmal AF usually have a significant left-to-right frequency
gradient, which no longer could be observed after PV ablation, whereas patients
with persistent AF have no significant left-to-right frequency gradient neither
before nor after PV ablation [64]. In another study, frequency analysis was
employed to determine time instants for successful cardioversion [65].

4.4 Measures of coupling between intracardiac

atrial fibrillation signals

The interest in quantifying AF organization has led to a diversity of measures
both in the time and frequency domain. Bivariate measures are of special inter-
est as they, to some extent, can provide information on the spatial organization
during AF.

A linear method for measuring the spatial organization in the time domain
was presented in [58]. A number of electrograms were simultaneously recorded
at equally spaced locations in the RA. After preprocessing, the cross-correlation
functions between all possible paired combinations of the signals were evalu-
ated. The degree of linear coupling was estimated as the absolute peak of the
cross-correlation function. It was found that the atrial activity remains well-
correlated and is independent of the distance between the recording sites during
sinus rhythm and atrial flutter. In contrast, the linear coupling was found to
decay monotonically with distance during AF, which is most likely due to that
the likelihood for two atrial sites to be activated by the same propagation
wavefront during AF decreases with increasing distance.

In the frequency domain, the magnitude-squared coherence (MSC) has been
employed to quantify the coupling between two signals x1(n) and x2(n) in terms
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of their phase consistency [66, 67]. The MSC is defined to

|C12(f)|2 =
|S12(f)|2
S1(f)S2(f)

, (4.4)

where S12(f) is the cross-power spectrum, and S1(f) and S2(f) are the power
spectra of x1(n) and x2(n), respectively. In the absence of noise, two linearly
related signals will have an MSC equal to one at all frequencies, while two ran-
dom, uncorrelated signals will have an MSC equal to zero. Also, the presence
of noise or non-linear coupling will reduce the MSC for similar signals.

An advantage of the MSC is that it allows to restrict the evaluation of the
degree of coupling to that range of frequencies which is relevant for the analysis.
In [67], the MSC was proposed for the analysis of the spatial organization during
various rhythms, such as sinus rhythm, atrial flutter, and AF. In detail, a large
electrode array was employed for epicardial recordings, and an electrode close
to the center of the array was chosen as reference. Coherence maps were built
by measuring the mean MSC in the 0–50 Hz range between every recording
site relative to the reference. Similar to the time domain approach employing
cross-correlation [58], strong coupling independent of the distance between the
recording sites was found during sinus rhythm and atrial flutter, while for
AF, a clear decay of the coupling with distance could be observed. It was
also pointed out that, especially during AF, the coherence maps were strongly
dependent on the choice of the reference. This reveals one of the disadvantages
of the coherence measure, which results from the ability to consider only two
signals at a time. Another disadvantage is that because of the symmetry of
the cross-spectrum, i.e., |S12(f)| = |S21(f)|, the MSC also becomes symmetric,
i.e., |C12(f)|2 = |C21(f)|2. Consequently, the MSC only allows analysis of the
strength, but not of the direction of the coupling between x1(n) and x2(n).

AF organization has also been quantified by the mean-square error in the
linear prediction between two electrograms, x1(n) and x2(n) [68]. The method
relates the two signals with two linear filters, H2←1 and H1←2, the former fil-
ter linearly predicting x2(n) from x1(n) and the latter filter linearly predicting
x1(n) from x2(n). For both filters, the mean-square prediction error was cal-
culated, and the smaller value was chosen to represent the “overall amount of
non-linearity” between the signals. However, while it is true that the presence
of non-linear coupling would prevent the prediction error of becoming zero,
a non-zero prediction error does not necessarily imply the actual presence of
non-linear coupling. Similar to the previously discussed linear methods based
on the cross-correlation function and the MSC, the usage of a linear predic-
tion method should first and foremost be able to provide a measure of linearity,
and thus conclusions about the degree of non-linearity must be drawn carefully.
Nevertheless, the derived measure was found to distinguish between fibrillatory
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and non-fibrillatory rhythms, as well as between different levels of organization
during AF. Again, the strength of the coupling was seen to decrease with in-
creasing distance between the recording sites. Potentially, the direction of the
coupling could be estimated to the direction in which the smaller prediction
error occurs. Furthermore, the estimated transfer function could be used for
estimation of the time delay.

Measures which indeed quantify the degree of non-linear coupling between
two atrial sites were developed based on a multivariate embedding proce-
dure [69]. The approach assumes that the underlying non-linear dynamics of
a system, both in time and space, can be reconstructed by taking m measured
points in a segment of the observed time series x(t) as state variables. Start-
ing by taking a sample x(ti) and then choosing another m − 1 samples, each
separated by a so-called embedding delay τ , a delay vector can be constructed
as

x(ti) = {x(ti − (m− 1)τ), · · · , x(ti − 2τ), x(ti − τ), x(ti)}, (4.5)

where τ is chosen as a multiple of the sampling period. This vector represents
the state of the system at time ti, and is also referred to as a point in the phase
space with embedding dimensionm. An illustration of the underlying dynamics
of the time series can be achieved by plotting two delay vectors x(ti − τ) and
x(ti) against each other in a so-called phase plot. While trajectories of sinus
rhythm show a cross-like structure in the phase plot, trajectories of AF show
a more complex structure, referred to as chaotic dynamics [70]. In order to
characterize such dynamics, the correlation integral has been introduced and
can be estimated according to the Grassberger–Procaccia method,

Cm(x, ǫ) =
1

N

N
∑

i=1

N
∑

j=i+W

u(ǫ− |x(ti) − x(tj)|), (4.6)

where N is the number of employed delay vectors and u(η) is the unit step
function defined as 0 for η ≤ 0 and 1 for η > 0. The correlation integral can
be interpreted as the average number of points x(tj) in the phase space which
are separated by a shorter distance than ǫ from a reference point x(ti). The
offset value W is based on the autocorrelation of x(t) chosen such that spurious
correlation is avoided. The correlation integral can then be employed to define
the correlation dimension,

CD,m(x, ǫ) =
d logCm(x, ǫ)

d log ǫ
, (4.7)

as well as the correlation entropy,

CE,m(x, ǫ) =
1

τ
ln

Cm(x, ǫ)

Cm+1(x, ǫ)
. (4.8)
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The correlation dimension estimates the average number of similar points in
the phase space when the maximally allowed distance ǫ for two points to be
similar goes to zero. The correlation entropy can be interpreted as a measure
of how fast the average number of similar points in the phase space for a
certain distance ǫ decreases with increasing embedding dimension m. Thus,
correlation dimension and correlation entropy can be interpreted as measures
of geometrical and dynamical complexity, respectively.

In order to evaluate the non-linear coupling between two electrograms x1(t)
and x2(t), the delay vectors x1(ti) and x2(ti) of the two separate systems as
well as the delay vectors q(ti) of the joint system were defined, where

q(ti) = {x1(ti − (m− 1)τ), · · · , x1(ti − 2τ), x1(ti − τ), x1(ti), (4.9)

x2(ti − (m− 1)τ), · · · , x2(ti − 2τ), x2(ti − τ), x2(ti)},

i.e., the joint system has the embedding dimension 2m. The measures inde-
pendence of complexity, IC , and independence of predictability, IP , were then
estimated as

IC =
|CD,m(q, ǫ) − CD,m(x1, ǫ)| + |CD,m(q, ǫ) − CD,m(x2, ǫ)|

CD,m(x1, ǫ) + CD,m(x2, ǫ)
, (4.10)

and

IP =
|CE,m(q, ǫ) − CE,m(x1, ǫ)| + |CE,m(q, ǫ) − CE,m(x2, ǫ)|

CE,m(x1, ǫ) + CE,m(x2, ǫ)
. (4.11)

Both indices vary between 0 and 1, where 0 refers to completely coupled systems
and 1 refers to independent systems. The degree of non-linear coupling was
found to decrease with AF organization, and the results for the measures IC
and IP were rather similar.

A similar non-linear coupling measure, based on the concept of Granger
causality, has been proposed in [71]. Granger causality, originally employed in
econometrics [72], is based on the simple idea that a cause cannot come after
the effect. Thus, if x1(t) affects x2(t), knowledge about past and present values
of x1(t) should improve the prediction of x2(t). In order to measure non-linear
Granger causality from x1(t) to x2(t), the test statistic

Q = I(q, x2(ti+1)) − I(x2, x2(ti+1)) (4.12)

was employed, where I(q, x2(ti+1)) is the generalized mutual information about
x2(ti+1) contained in the delay vectors x1(ti) and x2(ti) jointly,

I(q, x2(ti+1)) = lnCm({q, x2(ti+1)}, ǫ) − lnCm(q, ǫ) − lnCm(x2(ti+1), ǫ),
(4.13)
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and I(x2, x2(ti+1)) is the generalized mutual information about x2(ti+1) con-
tained in delay vector x2(ti) only,

I(x2, x2(ti+1)) = lnCm({x2, x2(ti+1)}, ǫ) − lnCm(x2, ǫ) − lnCm(x2(ti+1), ǫ).
(4.14)

With these definitions, the test statistic Q becomes zero when x1(n) does not
Granger cause x2(n), as then the past and present values of x1(n) do not
contain extra information on the future values of x2(n) and thus

I(q, x2(ti+1)) = I(x2, x2(ti+1)). (4.15)

In contrast, when x1(n) does Granger cause x2(n), the test statistic Q takes a
value larger than zero. The method was illustrated by characterizing changes
in the spatiotemporal activation pattern during pharmacological conversion of
AF in goats.

Coupling in pairs of electrograms has also been quantified using methods
based on the detected activation times. A measure of synchronization between
pairs of closely spaced atrial sites was proposed in [73]. The electrograms were
preprocessed and their activation times were detected as previously described.
Each detected activation from the first atrial site was paired to the closest acti-
vation from the second atrial site within a ±1 s window. Two atrial sites were
defined as synchronized if the delays between the detected activation pairs were
lower than, or equal to, the maximum time required for a propagation wavefront
to cover the distance between them, and if the temporal structure of the delays
over a certain period was statistically different from a random phenomenon.
The former requirement implies assumptions about both the conduction ve-
locity of the electrical impulse in the atrial tissue and the distance between
the two evaluated atrial sites, which may be a limitation of this method. The
experimental results showed a gradual decrease in synchronization from sinus
rhythm to atrial flutter and further to AF.

In a related approach, activation pairs from two adjacent atrial sites were
detected in a similar fashion, and the absolute value of the time delay be-
tween each activation pair was calculated [74]. A histogram of the delays was
constructed, and a measure of Shannon entropy was defined in order to quanti-
tatively describe the distributions. The results showed a significant decrease of
the synchronization with AF organization. By applying the method on record-
ings from a basket catheter in the RA, a spatial heterogeneity in the level of
synchronization could be observed.
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4.5 Propagation pattern analysis based on ac-

tivation times

Early studies on the propagation of the electrical activity during AF have
mostly been based on high-density epicardial mapping, in which large arrays
of electrodes, placed regularly in rows and columns, have been used [75,76]. A
common strategy has been to detect the activations, manually group the de-
tected activations into wavefronts, and analyze the corresponding propagation
patterns based on the drawings of subsequent activation maps, in which the
isochrone lines have been marked. In this way, qualitative conclusions about
the propagation pattern and its changes over time can been drawn. In addition
to the activation maps, Konings et al. proposed to compute a conduction ve-
locity map from the local activation times of four neighboring electrodes [75],
chosen such that the electrodes would be placed at the corners of a square.
This idea was developed further by Holm et al. [76], who employed the local
activation times of four neighboring electrodes to compute direction vectors.
Besides using the direction vectors to improve the conduction velocity esti-
mates, preferable activation patterns could be determined by time averaging of
the direction vectors for each set of four neighboring electrodes.

Unfortunately, the above approaches are difficult to apply to endocardial
recordings, as the number of electrodes on endocardial catheters is often lim-
ited. Also, the recording sites are seldom placed uniformly in rows and columns,
which makes propagation pattern analysis even more challenging. One ap-
proach dealing with the latter difficulty is based on estimation of the direction
and velocity of propagation using vector field analysis [77, 78]. The underly-
ing idea can be compared to the approach by Holm et al. [76], however, by
employing an interpolation procedure, the method becomes less dependent on
catheter geometry, and has the additional advantage of being based on an an-
alytical derivation of the velocity vector field and its divergence. In detail,
the activations in each of the N electrograms are detected, and all activations
belonging to the same activation wavefront are grouped together. As each acti-
vation wavefront is analyzed separately, the activation times from the N differ-
ent recording sites are in the following denoted independently of the activation
wavefront by ti, i = 1, . . . , N . Furthermore, the positions of the recording sites
in the 2-D space are specified by the coordinates (xi, yi), i = 1, . . . , N . Now,
a surface T (x, y), describing activation time as a function of position (x, y),
can be fitted to the points T (xi, yi) = ti with, e.g., radial basis functions. On
this surface, lines with identical activation times mark local isochrones. The
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gradient vector
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is always normal to the local isochrone and, thus, defines the direction of prop-
agation. The velocity vector can then be found as
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For further analysis, the divergence of the vector field is calculated,

∇ · v =
∂vx

∂x
+
∂vy

∂y
. (4.18)

The divergence is a signed scalar, which attains positive values in presence
of a source and negative values in presence of a sink in the vector field. In
simulations, divergence analysis could correctly identify, e.g., ectopic foci as
sources and wavefront collisions as sinks of the vector field [78].

Another approach to propagation pattern analysis has been proposed specif-
ically for recordings from circular mapping catheters, which are sometimes used
during EP studies and ablations [79]. As in the previous study, each activa-
tion wavefront is analyzed separately, and thus the activation times from the
N different recording sites are again denoted independently of the activation
wavefront by ti, i = 1, . . . , N . Furthermore, due to the circular nature of the
catheter, the positions of the recording sites are described by angles φi in the
range [0, 2π). Assuming that a plane activation wavefront travels across the
catheter, a cosine function can be fitted to the activation pattern in the N
recorded electrograms,

ti = to −A cos(φi − φ0), i = 1, . . . , N, (4.19)

where to is the time offset of the activation wavefront relative to the beginning
of the recording, A is a parameter related to how fast the activation wavefront
crosses the catheter, and φ0 describes the angle at which the earliest activation
occurs. From the estimate of φ0, it is possible to draw conclusions about
the direction of the activation wavefront, and the cosine amplitude A can be
employed together with an estimate of the catheter radius r to estimate the
conduction velocity to r/A. The method correctly identified the direction of
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activation wavefronts in simulations as well as in real data recordings during
sinus rhythm and pacing. A disadvantage of the method is that it can only be
employed when the propagation is organized, i.e., the recordings must first be
scanned for complete and plane activation wavefronts passing the catheter.

4.6 Propagation pattern analysis based on the

information flow in multivariate systems

The dependence on the detected activation times is a disadvantage since low AF
organization and high complexity of the propagation patterns make it difficult
to detect the activation times and decide which of these activations should be
assigned to the same activation wavefront. Thus, it is of interest to also explore
the propagation patterns during AF in the frequency domain.

One possibility is to employ frequency domain measures of Granger causal-
ity, which have been used to analyze the information flow in multivariate sys-
tems. In a linear framework, this concept is closely connected to multivariate
autoregressive (MVAR) modeling. In the following, details on MVAR modeling,
measuring causality in the time and frequency domain, as well as significance
testing of the derived measures are provided.

4.6.1 MVAR modeling

Each set of N simultaneous observations x(n) =
[

x1(n) · · · xN (n)
]T

, n =
1, . . . , T , is assumed to be adequately represented by an MVAR model of or-
der m

x(n) =

m
∑

k=1

Akx(n− k) + w(n), (4.20)

where each Ak is an N × N matrix comprising the AR coefficients aij(k),

i, j = 1, . . . , N , and w(n) =
[

w1(n) · · · wN (n)
]T

is a multivariate Gaussian
noise process ∼ N (0,Σw).

In practice, the model order m is typically unknown, and thus both the
MVAR coefficients and the optimal model order must be estimated. In addition,
it is also important to check the adequacy of the model assumptions.

MVAR model estimation

For the estimation of the MVAR coefficients, it is convenient to rewrite
Eq. (4.20) in matrix form

X = YB + W, (4.21)
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where

X =
[

x(1) x(2) · · · x(T )
]T

=
[

x1 x2 · · · xN

]

,

W =
[

w(1) w(2) · · · w(T )
]T
,

B =
[

A1 A2 · · · Am

]T
=
[

β1 β2 · · · βN

]

,

y(n) =











x(n)
x(n− 1)

...
x(n−m+ 1)











,

Y =
[

y(1) y(2) · · · y(T )
]T
.

The least-squares (LS) solution for the MVAR coefficients then becomes [80]

B̃ = arg min
B

||X − YB||2 (4.22)

= (YT Y)−1YT X, (4.23)

where ||·|| denotes the L2 norm. The MVAR coefficients contained in column βi

of matrix B, which are responsible for predicting xi(n), can also be estimated
separately,

β̃i = arg min
βi

||xi − Yβi||2, (4.24)

and thus index i can in the following be omitted for simplicity.
A common problem in LS estimation is the overfitting of the solution, es-

pecially when the ratio of available time samples and unknown parameters,
T/mN , becomes small. In order to avoid overfitting, constraints which restrict
the space of possible solutions can be put on Eq. (4.24). In ridge regression, the
constraint is defined to the L2 norm of the coefficients, i.e., the optimization
problem becomes

β̂ = arg min
β

||x − Yβ||2 subject to ||β||2 ≤ t, (4.25)

where t ≥ 0 is the upper bound of the constraint. Other constraints are based
on the L1 norm and typically variants of the least absolute selection and shrink-
age operator (LASSO) [81], which is defined to

β̂ = arg min
β

||x − Yβ||2 subject to ||β||1 ≤ t. (4.26)

In another LASSO variant, termed the adaptive group LASSO, the coefficients
in β are divided into L non-overlapping groups βl, l = 1, . . . , L, [82], yielding
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Figure 4.3: Space of possible solutions in a regression problem with
β =

[

β1 β2 β3

]

for (a) ridge regression, (b) LASSO, (c) group LASSO,
and (d) adaptive group LASSO, both with the two groups [β1, β2] and β3.

the optimization problem

β̂ = argmin
β

||x −
L
∑

l=1

Ylβl||2 subject to

L
∑

l=1

αl||βl|| ≤ t, (4.27)

where Yl consists of those columns of matrix Y that correspond to the coef-
ficients contained in βl, and αl are positive weighting factors. The adaptive
group LASSO is in fact the most general LASSO variant, which simplifies to
the ordinary group LASSO [83] when all weighting factors are identical, and
further to the ordinary LASSO when each unknown parameter is assigned to a
group of its own. Also the adaptive LASSO [84], with each unknown parameter
in a group of its own but with different weighting factors, can be derived from
Eq. (4.27).

Variants of the LASSO have become specifically popular, since they in
addition to avoid overfitting also yield sparse solutions. This is illustrated
in Fig. 4.3, where the space of possible solutions for different constraints is
shown for an example regression problem with three unknowns, i.e., β =
[

β1 β2 β3

]

. From Fig. 4.3(a) it becomes clear how the L2 norm in ridge
regression avoids overfitting, while it does not encourage sparse solutions in
which at least one parameter in β is estimated to exactly zero. This is in
contrast to regression with the LASSO, where sparse solutions are encouraged
by the singularities in the constraint, see Fig. 4.3(b). Similarly, when building
the two groups [β1, β2] and β3, the singularities in the constraint of the group
LASSO will encourage sparsity between the groups, as illustrated in Fig. 4.3(c).
Finally, when choosing differently large weighting factors α1 and α2 for the two
groups in the adaptive group LASSO, different amounts of shrinkage can be
put onto different groups, see Fig. 4.3(d).

While a closed form solution can be derived for ridge regression, this is
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not possible for the LASSO because of the constraint’s singularities. A large
number of algorithms, such as least angle regression selection (LARS) [85], have
been derived to solve the optimization problem for the LASSO variants. When
applying the (adaptive) group LASSO to the estimation of MVAR coefficients,
preferably all coefficients modeling the coupling from one recording site to
another should be grouped together, such that they can only be pruned jointly.

Model order selection

Model order selection is a bias versus variance trade-off, i.e., models with too
few parameters can be biased, while models with too many parameters can lead
to the identification of spurious effects [86]. There are different approaches to
model order selection, e.g., information-theoretic selection and Bayesian model
selection, represented by the Akaike information criterion (AIC) [87] and the
Bayesian information criterion (BIC) [88], respectively,

AIC(m) = ln(|Σw|) + 2
mN2

T
(4.28)

BIC(m) = ln(|Σw|) + ln(T )
mN2

T
. (4.29)

The optimal model order is the one for which the chosen criterion reaches its
minimum.

However, in real applications it may happen that these criteria do not reach
a distinct minimum, but have a steep decrease up to some model order m̃, above
which the decrease flattens markedly. In that case, model order m̃ is likely to
be a better choice than the higher model orders, but as the selection criterion
does not reach a minimum, some additional criteria may have to be specified.

Model checking

A range of diagnostic tests are available in order to check whether an MVAR
model adequately represents the observations x(n). The whiteness of the resid-
uals up to lag h can be checked with the Portmanteau test for autocorrela-
tion [80], which is designed for testing the null hypothesis

H0 : E(ŵ(n)ŵ(n− i)T ) = 0 i = 1, . . . , h > m (4.30)

against the alternative that at least one autocovariance and, hence, one auto-
correlation is nonzero. The Portmanteau test statistic has the form

Qh = T

h
∑

i=1

tr(ĈT
i Ĉ−1

0 ĈiĈ
−1
0 ), (4.31)
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where the covariance matrices of the residuals, Ĉi, are defined as

Ĉi =
1

T

T
∑

t=i+1

ŵ(t)ŵ(t− i)T . (4.32)

For large samples T and for large h, Q̄h has under H0 an approximate asymp-
totic χ2-distribution. In order to compensate for smaller sample sizes, a mod-
ified Portmanteau test statistic has been proposed,

Q̃h = T 2
h
∑

i=1

1

T − i
tr(ĈT

i Ĉ
−1
0 ĈiĈ

−1
0 ). (4.33)

Other model checking procedures include tests for nonnormality and structural
changes, as well as instantaneous effects [80].

4.6.2 Measuring causality in the time domain

Granger defined the observation x1(n) to be causal for observation x2(n) if the
former helps to improve the prediction of the latter [72], or, equivalently, x1(n)
is not causal for x2(n) if removing the past samples of x1(n) from the set of
prediction variables for x2(n) does not change the prediction. For a bivariate
MVAR model, i.e.,

[

x1(n)
x2(n)

]

=

m
∑

k=1

[

a11(k) a12(k)
a21(k) a22(k)

] [

x1(n− k)
x2(n− k)

]

+

[

w1(n)
w2(n)

]

, (4.34)

it can easily be shown that x1(n) does not Granger-cause x2(n) if and only if

a21(k) = 0, k = 1, . . . ,m. (4.35)

As many problems consist of more than two observations, extensions of the
definition of Granger causality to the multivariate case are desirable. One pos-
sibility is to directly apply the definition for the bivariate case from Eq. (4.35)
to the multivariate case, i.e., xj(n) does not Granger cause xi(n) if and only if

aij(k) = 0, k = 1, . . . ,m. (4.36)

However, in the multivariate case, past samples of xj(n) may still be helpful
to predict xi(n) more than two steps ahead, as xj(n) may have an impact on
a third observations xl(n), which in turn may affect xi(n). Because of the
possibility of such indirect causal paths, Eq. (4.36) defines only the absence of
direct Granger causality from xj(n) to xi(n). Tests for the absence of both
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direct and indirect Granger causality result in more complicated non-linear
restrictions for the MVAR coefficients [89].

Another concept related to Granger causality is that of instantaneous
causality, which can be defined such that x1(n) instantaneously causes x2(n)
if knowledge about x1(n) on the time instant which is to be predicted helps
to improve the prediction of x2(n) [89]. For a bivariate MVAR model, it can
be shown that instantaneous causality results in a correlation between the
residuals, i.e., x1(n) is not instantaneously causing x2(n) if and only if w1(n)
and w2(n) are uncorrelated. However, because of the symmetry of correlation,
additional information is needed to draw conclusions about the direction of
the instantaneous causality when a correlation between w1(n) and w2(n) is
present. Also in the multivariate case, instantaneous causality between two
observations will be indicated through a correlation between the corresponding
residuals.

4.6.3 Measuring causality in the frequency domain

While it is possible to test for Granger causality in the time domain by applying
statistical tests directly on the MVAR coefficients, many biomedical signals are
characterized in terms of their frequency properties. In brain signal analysis,
for example, the frequency bands of the alpha, beta, and gamma rhythm are
of special interest. During AF, information on the rhythm can be found in the
range of the DF. Thus, a frequency domain description of Granger causality is
desirable. The Fourier transform (FT) of Eq. (4.20) leads to

X(f) =

m
∑

k=1

AkX(f)e−j2πfk + W(f) (4.37)

=

(

IN×N −
m
∑

k=1

Ake
−j2πfk

)−1

W(f). (4.38)

Defining
Ā(f) = IN×N − A(f) (4.39)

with

A(f) =

m
∑

k=1

Ake
−j2πfk, (4.40)

Eq. (4.38) becomes

X(f) = Ā−1(f)W(f) = H(f)W(f), (4.41)
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where H(f) is the transfer matrix with elements Hij(f) and Ā(f) consists of
the elements Āij(f). These two matrices play a central role in the definition of
causality measures in the frequency domain, as is shown in the following.

Directed transfer function (DTF) and directed coherence (DC)

The power spectral density matrix becomes

S(f) = |X(f)|2 = H(f)ΣwHH(f), (4.42)

where the superscript H stands for the Hermitian transpose. The autospectra
can be found on the diagonal and are defined as

Sii(f) =

N
∑

j=1

Hij(f)






σ2

jjH
∗
ij(f) +

N
∑

k=1
k 6=i

σjkH
∗
ik(f)






. (4.43)

Assuming that w(n) is a multivariate white noise process, i.e., Σw is diagonal
(σjk = 0 for j 6= k), Eq. (4.43) simplifies to

Sii(f) =

N
∑

j=1

σ2
jj |Hij(f)|2, i.e., (4.44)

1 =

N
∑

j=1

σ2
jj |Hij(f)|2
Sii(f)

=

N
∑

j=1

|γi←j(f)|2 (4.45)

with

γi←j(f) =
σjjHij(f)
√

Sii(f)
=

σjjHij(f)
√

∑N
k=1 σ

2
kk|Hik(f)|2

(4.46)

being the definition of the DC from xj(n) to xi(n) [90]. As can be seen
from Eqs. (4.44) and (4.45), the DC is derived from a decomposition of the
power spectrum Sii(f), and is normalized such that the magnitude-squared
DC |γi←j(f)|2 expresses the fraction of Sii(f) due to xj(n), i.e., the normal-
ization is with respect to the destination.

Interestingly, it has been shown that the ordinary coherence Cij(f), see
Eq. (4.4), can be expressed as

Cij(f) = γH
i (f)γj(f), (4.47)

where γi(f) =
[

γi←1(f) . . . γi←N (f)
]T

, i.e., the DC can also be derived as a
decomposition of the ordinary coherence into a “feedforward” and a “feedback-
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ward” part [91]. As with the ordinary coherence, most often the magnitude-
square of the DC is of interest for interpretation, i.e.,

|γi←j(f)|2 =
σ2

jj |Hij(f)|2
∑N

k=1 σ
2
kk|Hik(f)|2

. (4.48)

By adding the additional restriction that all σ2
jj are set to 1, i.e., that Σw

becomes the identity matrix, Eq. (4.46) leads to the definition of the DTF from
xj(n) to xi(n) [92]:

γ̃i←j(f) =
Hij(f)

√

∑N
k=1 |Hik(f)|2

. (4.49)

which is normalized similar to the DC,

N
∑

j=1

|γ̃i←j(f)|2 = 1. (4.50)

As the DTF can be seen as a simplification of the DC, all the following com-
ments are valid for both measures, although the DTF may not be mentioned
explicitly.

The exact relationship between Granger causality and the DC is still a
subject for discussion. Only in the bivariate case it can be shown that, e.g., the
DC γ2←1(f) vanishes for all frequencies if and only if x1(n) does not Granger
cause x2(n), as

H(f) =
1

det Ā(f)

[

Ā22(f) −Ā12(f)
−Ā21(f) Ā11(f)

]

(4.51)

and Ā21(f) = 0 for all f if and only if a21(k) = 0 for all k. However, in the
multivariate case (N > 2), it is not possible to draw similar conclusions. For
illustration purposes, consider the case N = 4 with the simple propagation S1
→ S2 → S3 → S4, see Fig. 4.4(a). In that case, Ā(f) takes the form of a
bidiagonal matrix

Ā(f) =









Ā11 0 0 0
Ā21 Ā22 0 0
0 Ā32 Ā33 0
0 0 Ā43 Ā44









(f), (4.52)

which can be shown to have the following lower triangular matrix as inverse

H̄(f) =









Ā11 0 0 0
−Ā21 Ā22 0 0
Ā21Ā32 −Ā32 Ā22 0

−Ā21Ā32Ā43 Ā32Ā43 −Ā43 Ā44









(f). (4.53)
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Obviously, the presence and strength of direct Granger causality from S1 →
S2, S2 → S3, and S3 → S4 is correctly reflected by the transfer matrix, as
|H21(f)| = |Ā21(f)|, |H32(f)| = |Ā32(f)|, and |H43(f)| = |Ā43(f)|. However,
the absence of direct Granger causality from, e.g., S1 → S4, does not show in
the transfer matrix, where |H41(f)| becomes a multiplication of the elements of
Ā(f) on the causal path S1 → S2 → S3 → S4. Similar observations can be made
for |H31(f)| as well as |H42(f)|. Because of the multiplications of elements of
Ā(f) along the causal paths, the indirect couplings will in fact dominate the
couplings as detected by the DC. This is in the following illustrated in an
example with an MVAR model of dimension N = 4 and order m = 2, and with
causal coupling S1 → S2 → S3 → S4, adapted from [91],

x1(n) = 0.95
√

2x1(n− 1) − 0.9025x1(n− 2) + w1(n)

x2(n) = −0.5x1(n− 1) + w2(n)

x3(n) = 0.4x2(n− 2) + w3(n)

x4(n) = −0.5x3(n− 1) + 0.25
√

2x4(n− 1) + w4(n). (4.54)

The magnitude-squared DCs between all signals are shown in Fig. 4.4(b), and
the magnitude-squared coherence is shown for comparison in Fig. 4.4(c). Ob-
viously, the magnitude-squared coherence does neither allow conclusions about
the direction of the causal coupling, nor about whether the causal coupling is
direct or indirect. While the former problem is solved by the DC, the latter
problem still remains. However, Fig. 4.4(a) illustrates that this problem may as
well become an advantage when the aim is to identify the source of a process,
as a strong causal coupling from S1 to all other sites can easily be identified.
In fact, the DC has been employed for source identification in several studies
with EEG data, e.g., [93–95].

Partial directed coherence (PDC) and generalized PDC

The power spectral density from Eq. (4.42) can also be written as

S(f) = Ā−1(f)Σw(ĀH(f))−1. (4.55)

The inverse of S(f) then becomes

S−1(f) = ĀH(f)Σ−1
w Ā(f). (4.56)

Similar to the derivation of the DC from Eq. (4.42), two other measures of
causality can be derived with Eq. (4.56) serving as a starting point. These two
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Figure 4.4: Illustration of (a) the causal path, (b) the magnitude-
squared DC, and (c) the magnitude-squared coherence for the MVAR
model from Eq. (4.54).

measures are the generalized PDC

πi←j(f) =
1

σii
Āij(f)

√

∑N
l=1

1
σ2

ll

|Ālj(f)|2
(4.57)

and the PDC [91,96]

π̃i←j(f) =
Āij(f)

√

∑N
l=1 |Ālj(f)|2

. (4.58)

Both measures are normalized with respect to the source, i.e.,

N
∑

i=1

|πi←j(f)|2 = 1 (4.59)

and
N
∑

i=1

|π̃i←j(f)|2 = 1. (4.60)
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As the PDC can be seen as a simplication of the generalized PDC, the fol-
lowing comments are valid for both measures, although the PDC may not be
mentioned explicitly.

Unfortunately, the inverse power spectral density matrix S−1(f) from
Eq. (4.56) lacks a relevant physical interpretation, and thus the interpretation
of the derived measures is less straightforward than for the DC. Similar to
the DC, it has been shown that the generalized PDC can be derived as a
decomposition of another frequency domain measure. This measure is the
partial coherence κij(f), which describes the interaction between xi(n) and
xj(n) when the influence due to all other N − 2 observations is discarded.

By defining πi(f) =
[

π1←i(f) . . . πN←i(f)
]T

the partial coherence can be
expressed as [91]

κij(f) = πH
i (f)πj(f). (4.61)

However, the partial coherence is a measure not quite as frequently used as the
ordinary coherence when analyzing multivariate systems.

The simplest way to approach the generalized PDC is probably the fact
that |πi←j(f)|2 = 0 for all frequencies if and only if there is no direct Granger
causality from xj(n) to xi(n), as the absence of direct Granger causality is
equal to aij(k) = 0 for all k and thus also Āij(f) = 0 for all f . Hence, the gen-
eralized PDC can indeed be seen to reflect Granger causality in the frequency
domain. This is illustrated with the previously employed MVAR model from
Eq. (4.54), for which the magnitude-squared generalized PDC as well as the
magnitude-squared partial coherence are shown in Fig. 4.5. While the partial
coherence can be seen to reflect the direct causal couplings only, but not their
direction, the latter is overcome by the generalized PDC. However, a potential
disadvantage of the generalized PDC is that it is normalized with respect to the
source, and not with respect to the destination as the DC, compare Eqs. (4.45)
and (4.59). This normalization is less intuitive, as the strength of the cou-
pling should not depend on the number of other signals influenced by the same
source. Consequently, also the difference in the magnitude-squared generalized
PDC from two different sources to the same destination should be interpreted
with caution. Nevertheless, several publications underline the practical useful-
ness of the generalized PDC and the PDC for analyzing propagation paths in
experimental data, e.g., [97–99].

Related measures

For DC and DTF, it is often regarded as a disadvantage that the measures
reflect total causality instead of direct causality only. In order to highlight the
direct couplings, a directed DTF (dDTF) has been proposed, which is defined



Chapter 4. Signal Processing of Intracardiac Atrial Fibrillation Signals 49

0

1
S1

0

1
S2

0

1
S3

0

1
S4

S1 S2 S3 S4

Source

D
es

ti
n
at

io
n

(a) (b)

Figure 4.5: Illustration of (a) the magnitude-squared generalized PDC
and (b) the magnitude-squared partial coherence for the MVAR model
from Eq. (4.54).

as the product of the DTF and the partial coherence [100],

γ̌i←j(f) = κij(f)γ̃i←j(f). (4.62)

As both the DTF and the partial coherence are measures ranging from zero
to one, also the dDTF will have values in that range. However, because of
the product with κij(f), the dDTF from recording site j to recording site i
can in contrast to the DTF no longer be interpreted as a fraction of the power
spectrum of xi(n). Consequently, a comparison of the magnitude-squared val-
ues of the dDTF from different sources to the same destination should be less
straightforward.

In order to overcome the disadvantages of the PDC regarding the normaliza-
tion with respect to the source, a renormalized PDC has been proposed [101].
Its derivation is based on dividing Āij(f) into its real and imaginary part,

Vij(f) =

[

Re(Āij(f))
Im(Āij(f))

]

. (4.63)

When employing LS estimation to obtain the MVAR coefficients, it can be
shown that the corresponding estimate of Vij(f) is asymptotically normally
distributed with mean Vij(f) and covariance matrix ΣVij

(f)/T . This suggested
to the authors to define the renormalized PDC

π̌i←j(f) = VT
ij(f)Σ−1

Vij
(f)Vij(f), (4.64)
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which adapts to the varying uncertainties in the estimates of Vij(f). However,
though this renormalization may have certain statistical advantages, it does
not solve the underlying problem of how to compare the values of the PDC for
different sources. In fact, the renormalized PDC is normalized to neither the
source nor the destination.

The MVAR model, described by Eq. (4.20) is a strictly causal model, as
only time lags k > 0 are considered. In case instantaneous effects are present,
these can not be described by the MVAR coefficients. Instead, the instanta-
neous effects will be explained by correlations among the residuals w(n), and
consequently, the covariance matrix Σw will not be diagonal. This is, how-
ever, assumed when deriving both the DC and the generalized PDC. In order
to overcome this issue, an extended definition of the PDC that also considers
instantaneous effects has been proposed [102].

4.6.4 Significance testing

Significance testing can be described as a statistical hypothesis test with, e.g,
the null hypothesis

H0: xj(n) is not Granger-causing xi(n). (4.65)

In order to decide whether or not to reject H0, a discriminating statistic, e.g.,
the generalized PDC πi←j(f), is calculated from the observations x(n) and
compared to its distribution under H0. In some approaches, such as bootstrap-
ping or surrogate data, the distribution of the discriminant statistic under H0

is estimated by direct Monte Carlo simulation [103]. For that purpose, an en-
semble of bootstrap or surrogate data sets is generated such that each data set
shares given properties of x(n), e.g., the power spectrum, but is otherwise ran-
dom as specified by H0. The discriminant statistic is then calculated for each
dataset, and, e.g., the 95th percentile of the resulting distribution is chosen to
serve as the critical value based on which H0 can be rejected.

Recently, it has also been shown that asymptotic distributions of the DTF
and the PDC for H0 being γ̃i←j(f) = 0 and π̃i←j(f) = 0, respectively, can
be derived analytically, and thus an analytical significance threshold can be
defined for these measures [104,105].

Surrogate data

Surrogate data can be computed by a non-parametric procedure employing
phase randomization, which originally was proposed to test non-linearity [103].
This procedure results in that, under H0, there will be a total absence of
causal coupling between all surrogates, however, the surrogates will still have
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the same power spectral density as x(n). In detail, each observation xi(n) is
Fourier transformed, resulting in

Xi(f) = |Xi(f)|e∠Xi(f). (4.66)

The phases ∠Xi(f) are then substituted by white noise φi(f), which is indepen-
dently chosen for each f from the interval [0, 2π] and made anti-symmetric such
that φ(f) = −φ(−f). The inverse FT, denoted F−1, then gives the surrogates,

yi(n) = F−1
{

|Xi(f)|eφi(f)
}

, i = 1, . . . , N. (4.67)

As with bootstrapping, the repetition of this procedure generates an ensemble
of surrogate data sets.

The construction of the surrogate data such that causal coupling is absent
between all surrogates under H0 may lead to misleading significance thresholds,
especially when testing for the significance of one specific direct causal coupling
only. For this reason, a semi-parametric procedure for constructing causal
surrogate data has been proposed [106]. This procedure results in that only
one specific direct causal coupling is set to zero under H0, while the surrogates
will still have the same power spectral density as x(n). In detail, it is assumed
that an MVAR model has been fitted to x(n), resulting in estimates of the
MVAR coefficients Ak and the covariance matrix Σw. To test the significance
of the direct causal coupling from, e.g., xj(n) to xi(n), a new set of signals
x̌(n) is first computed,

x̌(n) =

m
∑

k=1

Ǎkx(n− k) + w̌(n), (4.68)

where w̌(n) ∼ N (0,Σw). The modified MVAR coefficients Ǎk are identical
to Ak except for ǎij(k) = 0 for all k, implying that there is no direct causal
coupling from x̌j(n) to x̌i(n). The surrogates are then defined to

yi(n) = F−1
{

|Xi(f)|e∠X̌i(f)
}

, i = 1, . . . , N, (4.69)

where X̌i(f) is the FT of x̌i(n). As the generalized PDC πi←j(f) reflects the
direct causal coupling from xj(n) to xi(n), these surrogates are particularly
suitable when the generalized PDC is the discriminating statistic. Appropriate
causal surrogates for the DC γi←j(f), which reflects direct as well as indirect
causal coupling from xj(n) to xi(n), have been proposed to be derived in a
similar fashion by defining Ǎk to be identical to Ak except for ǎil(k) = 0 for
all k and for all l, l 6= i, as well as ǎlj(k) = 0 for all k and for all l, l 6= j [106].
As previously, the repetition of these procedures can be used to generate an
ensemble of surrogate data sets.
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Theoretical significance thresholds

An analytical significance threshold for the PDC has been derived in [104].
Under H0, it is assumed that π̃i←j(f) = 0, i.e., |Āij(f)|2 = 0, see Eq. (4.57).
It can be found that the asymptotic distribution of

T

Cij(f)
|Aij(f)|2 (4.70)

is that of a weighted average of two independent χ2-distributed random vari-
ables each with one degree of freedom, where

Cij(f) = σ2
ii

m
∑

k,l=1

Hjj(k, l)(cos(kω) cos(lω) + sin(kω) sin(lω)), (4.71)

with Hjj(k, l) being an element of the inverse H = R−1 of the covariance
matrix R of x(n). Thus, H0 can be rejected at an α-significance level if

|Aij(f)|2 > Cij(f)

T
χ2

1,1−α, (4.72)

or equivalently,

|π̃i←j(f)|2 > Cij(f)

T
∑

l |Alj(f)|2χ
2
1,1−α. (4.73)

A similar derivation for an analytical significance threshold for the DTF can
be found in [105].

From a computational point of view, it is clearly an advantage to be able
to calculate theoretical significance thresholds, as the procedure of calculating
bootstrap or surrogate data sets and the discriminating statistic must be re-
peated a certain number of times which can be computationally demanding.
However, theoretical significance thresholds have the disadvantage of being
based on an asymptotic distribution, and a comparison between the perfor-
mance of theoretical versus bootstrap- or surrogate-based significance thresh-
olds, especially for sample sizes T ≪ ∞, has so far not been presented.



Chapter 5

Summary of Papers

Paper I: Spatial Characteristics of Atrial Fibril-

lation Electrocardiograms

The purpose of this work is to improve the knowledge about spatial properties
of AF extracted from the ECG, as well as to investigate their relation to AF
organization, which is evaluated in terms of AF frequency. Spatial analysis of
the ECG may provide means for non-invasive assessment of the mechanisms
underlying AF. In the present study, spatial analysis is done employing the
VCG, which is synthesized from the 12-lead ECG. A number of parameters are
extracted from the VCG data to quantify the spatial orientation and the spatial
extent, approximating the preferred direction of activation and the complexity
of the activation pattern, respectively.

This study uses a database containing 26 standard 12-lead ECG recordings
from patients with chronic AF. The ECGs were recorded during 5 min of which
60 s free of ectopic beats were selected for analysis. The orthogonal leads X,
Y, and Z were synthesized from the ECG using the inverse Dower transform.
The atrial activity is extracted using spatiotemporal QRST cancellation, thus
making continuous f wave analysis possible.

The 3-D vector loops, which can be constructed from VCG data, are often
displayed in the frontal (XY), transverse (XZ), or sagittal plane (YZ), see
Fig. 2.4. When evaluating the spatial orientation, a new plane called the plane
of best fit is calculated as the 2-D projection of the loops of the f waves that
produces the minimum mean square error with respect to their original 3-D
representation. This plane is determined from eigenanalysis of the covariance
matrix that results from the 3 × N data matrix containing the N samples of

53
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the three synthesized leads. Eigenanalysis is resulting in the three eigenvectors
v1, v2, and v3, which are associated with the eigenvalues λ1 ≥ λ2 ≥ λ3. The
eigenvector v1 defines the principal axis, i.e., the axis with the largest variance
among the data. The second eigenvector v2 spans the plane of best fit together

with the principal axis. The third eigenvector v3 =
[

v3x v3y v3z

]T
is the

perpendicular axis and defines the orientation of the plane of best fit, which is
expressed in terms of the azimuth and elevation angles

φAZ = arctan

(

v3z

v3x

)

, (5.1)

φEL =

∣

∣

∣

∣

∣

arctan

(

v3y
√

v2
3x + v2

3z

)∣

∣

∣

∣

∣

, (5.2)

where −90◦ < φAZ < 90◦ and 0 < φEL < 90◦. The azimuth angles −30◦ <
φAZ < 30◦ correspond to the sagittal plane, and 60◦ < φAZ < 90◦ and −90◦ <
φAZ < −60◦ correspond to the frontal plane.

The parameters planarity φPL and planar geometry φPG are introduced to
quantify the spatial extent of AF, and are calculated as

φPL = 1 − λ3

λ1 + λ2 + λ3
, (5.3)

φPG =
λ2

λ1
. (5.4)

Planarity is close to 1 when λ3 is much smaller than λ1 and λ2, i.e., when the
loops are essentially planar. Planar geometry is close to 1 when the loops are
essentially circular.

These spatial properties are, in each patient, obtained by applying the cal-
culation to the entire 60-s recordings and are referred to as “global” properties.
In addition, the temporal variability of the spatial parameters is calculated
from successive 1-s segments, which results in mean and standard deviation
(SD) values. Figure 5.1 illustrates the data of a single 1-s segment over time
in the frontal, transverse, and sagittal plane as well as in the resulting plane
of best fit, which is situated in the sagittal plane (φAZ = −23.3◦). The loops
have a planar and elliptic character (ψPL = 0.95, ψPG = 0.35).

For each recording, AF frequency is obtained from the location of the dom-
inant peak in the power spectrum of lead V1. The relation of the spatial
parameters to the AF frequency is expressed in their correlation r (Pearson
correlation coefficient) and the related p-value, where p < 0.05 was considered
statistically significant.

An overview over the global parameter values and their correlation to AF
frequency is shown in Table 5.1. The results of temporal variability analysis
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Figure 5.1: Example of a 1-s segment, containing approximately six
f waves. (a) The orthogonal leads X, Y, and Z after QRST cancellation.
(b) Frontal plane. (c) Transverse plane. (d) Sagittal plane. (e) Plane of
best fit.
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Table 5.1: Mean and standard deviation of the global parameters, and their
correlation r to AF frequency with the respective p-value.

mean ± SD r p

φAZ −12.6◦ ± 8.6◦ 0.021 0.92
φEL 36.4◦ ± 9.8◦ 0.239 0.24
ψPL 0.90 ± 0.04 −0.466 0.016
ψPG 0.60 ± 0.18 0.518 0.0068

Table 5.2: Mean and standard deviation of the parameters for the 1-s temporal
variability analysis, and their correlation r to AF frequency with the respective
p-value.

mean ± SD r p

φAZ −11.2◦ ± 8.0◦ −0.024 0.91
φEL 35.6◦ ± 8.7◦ 0.342 0.09

mean
ψPL 0.92 ± 0.03 −0.510 0.0024
ψPG 0.46 ± 0.09 0.520 0.0065

φAZ 17.7◦ ± 8.6◦ 0.300 0.14
φEL 10.3◦ ± 4.2◦ 0.383 0.053

SD
ψPL 0.03 ± 0.01 0.608 0.00099
ψPG 0.16 ± 0.03 0.543 0.0042

and the correlation of the parameter means and SDs to AF frequency are
shown in Table 5.2. The results show a concentration of the azimuth angles
to the sagittal view. The values of the global parameters are rather similar
to the mean values from temporal variability analysis. There is no significant
correlation between the global, mean, or SD values of azimuth and elevation
and the AF frequency. In contrast, both the global and the mean values of
planarity and planar geometry indicate a weak trend of the data to become
less planar and more circular with increasing AF frequency. The temporal
variability in planarity and planar geometry shows a weak trend indicating an
increase with AF frequency.

Paper II: Right Atrial Organization and Wave-

front Analysis in Atrial Fibrillation

This study addresses techniques to quantify propagation patterns in intracar-
diac AF signals based on the detected activation times. Knowledge about the
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propagation patterns during AF may help to better understand AF mecha-
nisms and be of use during ablation procedures. The approach is developed
for signals recorded with commonly used linear catheters, for which the de-
tected activations from adjacent electrograms are combined into wavefronts.
Parameters related to the consistency of the wavefronts over time and the acti-
vation order along the catheter are extracted and their potential relationships
to established measures from body surface signals are investigated.

The method was evaluated using a database of 26 recordings from patients
with AF who underwent catheter ablation. A Halo catheter was placed in the
RA, and the five adjacent bipolar electrograms showing the strongest atrial
activity were chosen for analysis. In addition, the 12-lead ECG was recorded
simultaneously. All recordings were of 10-s duration and sampled with 1 kHz.

Prior to wavefront analysis, intra-atrial signal organization and the fre-
quency dispersion between the electrograms are investigated based on time-
frequency analysis. The former aspect is important to guarantee reliable ac-
tivation detection, while the latter aspect is related to the observation that
large dispersion of the fibrillatory frequency may indicate that the recording
sites are influenced by different wavelets. Recordings with too low a degree of
intra-atrial signal organization or too large frequency dispersion between the
electrograms are not accepted for further analysis.

Wavefront detection is based on the assumption that two activations from
two recordings sites that are closely spaced in time, are likely to belong to
the same activation wavefront [73]. For activation detection, the intracardiac
signals are preprocessed using bandpass filtering, rectification, and lowpass
filtering, see Sec. 4.2. Threshold detection including a look-back detection
mode is applied, and the detected activations are combined into wavefronts
by successively processing the activations of two adjacent electrograms at a
time. For each recording, the time window during which two activations are
considered to belong to the same activation wavefront is chosen individually
and depends on the average fibrillatory frequency in the RA, fRA.

Wavefront characterization is based on statistics calculated from the distri-
bution of the time-aligned complete wavefronts, where complete wavefronts are
defined as wavefronts that contain one detected activation from each recording
site. In order to assure reliable statistics, the minimum number of complete
wavefronts required for wavefront characterization is set to half the number of
the expected wavefronts, which is approximated to the product between fRA

and the length of the recording. In recordings with consistent wavefronts, the
wavefront distribution will be narrow, while the opposite is true for recordings
with inconsistent wavefronts. This aspect is captured in the consistency pa-
rameter CQ̄, which is a measure that is defined based on the interquartile range
of the wavefront distribution. Furthermore, the median of the distribution of
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wavefronts can be interpreted as the propagation profile or the median wave-
front of the recording. It allows analysis of which recording site that in the
median has been activated first, and how the electrical activity propagated to
the other recording sites. The linearity of the propagation profile L is defined
as the quality of the fit of a line to the propagation profile, and is evaluated by
calculating r2 that can take values between 0 and 1.

The performance of wavefront detection, as well as the proceeding wavefront
characterization, is illustrated in the following by a representative example, for
which the electrograms and the detected wavefronts are shown in Fig. 5.2(a).
The time-aligned complete wavefronts and the corresponding statistics in form
of boxplots are shown in Figs. 5.2(b) and (c), respectively. The boxplots illus-
trate all measures that the parameters CQ̄ and L are based on, as the width of
the boxes correspond to the interquartile ranges Q̄i for each electrogram, and
the vertical line inside of each box corresponds to the median. In this example,
the wavefronts are highly consistent, as the boxes are narrow, and no outliers
exist. Furthermore, the first activation occurs consistently at the recording
site of H13. The activation wavefront then propagates in both directions along
the catheter. For this recording, CQ̄ yields the low value of 10 ms, indicat-
ing the consistency of the wavefronts, and L = 0.19, indicating a non-linear
propagation profile.

In addition to the analysis of the intracardiac signals, time-frequency analy-
sis was used to calculate the AF frequency f1 and the exponential decay of the
harmonic magnitudes γ1 from lead V1. AF frequency is a measure related to
AF organization, while the exponential decay is a coarse measure of waveform
morphology, e.g., large harmonics reflect a signal with sharp edges and result
in a small exponential decay and vice versa.

Intra-atrial signal organization divided the database into one group of nine
recordings, which had a too low degree of intra-atrial signal organization for
wavefront analysis, and a group of 17 recordings with a sufficient degree of
intra-atrial signal organization. For the latter group, wavefront detection was
performed for 7.9±1.5 s and resulted in 34±13 complete wavefronts per record-
ing. In 2 of these 17 recordings, the number of complete wavefronts did not
exceed Mmin, and thus wavefront characterization was performed in 15 record-
ings. Wavefront consistency CQ̄ yielded 15.1±5.6 ms and showed no significant
correlation to the body surface parameters f1 and γ1, which yielded 6.1±0.8 Hz
and 1.4±0.3, respectively, for the entire database. The linearity of the propa-
gation profile L yielded 0.74±0.31.

For AF frequency, a significant difference was found between the two groups
of recordings with a too low/sufficient degree of intra-atrial signal organization
(f1 = 6.6±1.0 Hz/5.8±0.5 Hz, p = 0.008). The significant difference remained
when the two recordings for which Mmin was not exceeded were removed from
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Figure 5.2: Example of a recording with consistent wavefronts and a
non-linear propagation profile. (a) The original electrograms with the
detected wavefronts. (b) The time-aligned complete wavefronts. (c)
Boxplots illustrating the statistics of the distribution of the time-aligned
complete wavefronts.

the group of recordings with a sufficient degree of intra-atrial signal organi-
zation (f1 = 6.6±1.0 Hz/5.8±0.5 Hz, p = 0.014). For the exponential decay,
a significant difference between the groups could only be found in the latter
case (γ1 = 1.5±0.3/1.4±0.3, p = 0.082 and γ1 = 1.5±0.3/1.3±0.3, p = 0.026,
respectively).

The present study showed that it is possible to detect wavefronts, reflect-
ing the propagation pattern of the electrical activity during AF along a one-
dimensional catheter when intra-atrial signal organization aspects are taken
into account. While the degree of wavefront consistency was not reflected by
the applied body surface measures, AF frequency calculated from lead V1 could
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distinguish between recordings with different degrees of intra-atrial signal or-
ganization.

Paper III: A Novel Approach to Propagation

Pattern Analysis in Intracardiac Atrial Fibrilla-

tion Signals

Similar to Paper II, the purpose of this study is to investigate propagation pat-
terns in intracardiac signals recorded during AF. In order to avoid certain diffi-
culties that come with atrial activation detection, an approach in the frequency
domain is employed. In particular, the approach is based on the generalized
PDC which evaluates directional coupling between multiple signals in the fre-
quency domain. The generalized PDC is evaluated at the dominant frequency
of AF signals and tested for significance using a surrogate data procedure specif-
ically designed to assess direct causality. Besides avoiding the need for atrial
activation detection, there are several other advantages compared to existing
methods: The approach quantifies the directional coupling and identifies the
propagation pattern between the recording sites by employing a multivariate
approach that simultaneously evaluates all signals. Furthermore, the method
can handle an increasing number of recorded signals and does not require any
knowledge on the relative positioning of the recording sites. Yet another ad-
vantage of the method is that the time delays between different recording sites
can be estimated.

The method’s potential is illustrated with two simulation scenarios based
on a detailed ionic model of the human atrial myocyte as well as with three
real data recordings, selected to present typical propagation mechanisms and
recording situations in atrial tachyarrhythmias. All recordings are of 5 s dura-
tion and sampled with 1 kHz. The preprocessing consists of bandpass filtering,
rectification, and lowpass filtering [58], as well as decimation of the sampling
rate to 100 Hz.

In order to obtain the generalized PDC, each set ofN simultaneous observa-

tions x(n) =
[

x1(n) · · · xN (n)
]T

is assumed to be represented by an MVAR
model of order m, for which the AR coefficient matrices Ak, k = 1, . . . ,m, are
estimated using the LS method, and the optimal model order m is determined
by the BIC. For reasons of convenience, the magnitude-squared generalized
PDC |πi←j(f)|2 is referred to as PDC in the following. Details on the method-
ology can be found in Sec. 4.6.

During AF, the PDC is of special interest in an interval centered around the
DF of the source xj(n), here assumed to represent the mean atrial fibrillatory
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cycle length at the corresponding recording site. Thus, the integrated PDC is
defined by [107]

Π2
ij =

1

2∆f

∫ f0+∆f

f0−∆f

|πi←j(f)|2df, (5.5)

where f0 is the DF, corresponding to the highest peak in the 3–12 Hz range
of the auto-spectrum of xj(n), denoted Sjj(f), and ∆f is set to 0.5 Hz. The
integral is normalized such that it, similar to the PDC, ranges from 0 to 1,
and thus represents the average coupling strength from xj(n) to xi(n) in the
frequency range of interest. The auto-spectra Sjj(f) are the diagonal elements
in the power spectral density matrix S(f) of the MVAR process, see Eq. (4.55).

The time delay from xj(n) to xi(n), denoted ∆ij , can be estimated from the
phase spectrum φij(f) of the corresponding cross-spectral density Sij(f) [108]
to

∆ij = arg max
δ

∫ f0+∆f

f0−∆f

Cij(f)

1 − Cij(f)
cos [φij(f) − 2πfδ]df, (5.6)

where Cij(f) is the magnitude-squared coherence spectrum, see Eq. (4.4). The
estimator in Eq. (5.6) evaluates the weighted goodness-of-fit of a line with
slope δ to the phase spectrum over the frequency range of interest. The delay
estimation is only computed when the corresponding integrated PDC is signif-
icant, which is assessed by means of a statistical approach based on surrogate
data testing [106].

One of the simulation scenarios is mimicking AF with a multiple wavelet
propagation and an ectopic focus, which is firing regularly with a period of
275 ms. As shown in Fig. 5.3(a), the result is a regular propagation in prox-
imity to the focus (site S1), which progressively deteriorates when entering the
area dominated by the multiple wavelet behavior (lower part of the sphere).
The simulated signals were obtained after the point source became active and
are displayed in Fig. 5.3(b). The corresponding results of the MVAR anal-
ysis (p = 5) are shown in Fig. 5.4. The estimated auto-spectra of the signals
are displayed on the diagonal, while the PDCs are shown together with their
corresponding significance thresholds on the off-diagonal. The direct coupling
of, e.g., the signal recorded at site S1 towards the other signals is reflected by
|πi←1(f)|2, i > 1, displayed in the first column. A significant direct coupling
from S1 is only identified towards S2, as only |π2←1(f)|2 exceeds its significance
threshold. Further evaluation of the PDCs shows that a significant direct cou-
pling can be observed from S1 → S2 → S3 → S4, while towards recording site
S5, no significant direct coupling is present. It can thus be concluded that there
is an activation wavefront which is passing S1, S2, S3, and S4, but which is
not propagating further towards S5. This well reflects the propagation of the
activation wavefront starting at the point source as well as the more chaotic
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Figure 5.3: Illustration of the AF simulation scenario: (a) Snapshots of
the membrane voltage with the electrode positions indicated (snapshots
are 120 ms apart). (b) The simulated electrograms.

propagation on the lower half of the sphere. The decreasing values of Π2
21,

Π2
32, and Π2

43, being equal to 0.59, 0.31, and 0.15, respectively, indicate the
decreasing relevance of the activation wavefront for the atrial activity at S1 to
S4. The delays ∆21, ∆32, and ∆43 are estimated to 51 ms, 48 ms, and 56 ms,
respectively.

The method was evaluated on both atrial flutter and fibrillation electro-
grams, recorded with different mapping modalities. The evaluation of the
propagation pattern during atrial flutter (N = 4 signals) evidenced the typical
sequential activation found during reentrant activity. The resulting propaga-
tion patterns during AF (N = 5/26 signals) provided more detailed information
about the underlying mechanisms of the arrhythmia. In both cases, the site
of earliest activation within the recording area was found to be in the high
septal RA, suggesting atrial impulses entering the RA from the LA through
the Bachmans bundle region. This agrees with the role of the LA as a driver
of AF as well as with previous findings about RA breakthrough sites.

In conclusion, a novel approach has been introduced to the characterization
of atrial propagation patterns during atrial tachyarrhythmias. The method’s
potential has been illustrated by deriving plausible propagation patterns for
both simulated and real data recordings, and thus the method may serve as
a support for the electrophysiologist when locating ablation sites. Moreover,
the possibility of quantifying the propagation pattern in terms of direction and
strength of the coupling as well as the propagation delay can be applied to
efficiently evaluate such patterns in existing databases.
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Figure 5.4: MVAR analysis applied to simulated AF signals. On the
diagonal: The auto-spectra of the signals for f ∈ [0, 25] Hz. Off-diagonal:
The PDCs |πi←j(f)|2 (solid line) and the corresponding significance
thresholds |π̃i←j(f)|2 (dashed line) for f ∈ [0, 25] Hz. The area be-
neath |πi←j(f)|2, f ∈ [f0 −∆f ,f0 + ∆f ], has been highlighted when Π2

ij

is significant.

Paper IV: Propagation Pattern Analysis in In-

tracardiac Atrial Fibrillation Signals Based on

Sparse Modeling

In Paper III, the PDC was introduced for estimating propagation patterns in
intracardiac AF signals. The derivation of the PDC is entirely based on the
coefficients of the MVAR model, which is commonly fitted to the multichannel
recordings employing LS estimation. The estimation of the MVAR coefficients
can be improved, e.g., with respect to overfitting, by considering methods that
put constraints onto the LS solution. Further improvements may be achieved
with constraints yielding sparse solutions, which stands in contrast to the as-
sumption of “full” connectivity during LS estimation, i.e., coupling between
all recording sites. The usage of sparse estimation methods in the context of
AF can be motivated by the observation that connectivity during AF may be
viewed as a priori sparse, as it is well-known that the coupling between the
recording sites during AF decreases with increasing distance.
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In order to improve the LS-based estimation of the MVAR coefficients,
and thus the PDC, sparse modeling employing the adaptive group LASSO is
proposed in Paper IV. Besides being superior to LS estimation regarding over-
fitting of the solution, the adaptive group LASSO is designed such that it yields
a sparse solution and allows functional grouping of the unknown parameters
which can only be pruned jointly. Thus, by grouping together those MVAR co-
efficients which model the coupling from one signal to another, a solution which
is sparse with respect to both the MVAR coefficients and the causal coupling
can be achieved. Furthermore, in the adaptive group LASSO different amounts
of shrinkage can be applied to different groups of parameters by choosing ap-
propriate weighting factors. This is taken advantage of by defining weighting
factors depending on the distances between the recording sites, which is an
information that is particularly relevant when analyzing AF recordings.

In more detail, the weighting factors αl which are employed in the adaptive
group LASSO constraint, see Eq. (4.27), are usually chosen to adapt to the data
by employing the LS solution β̃l of the MVAR coefficients in the corresponding
group,

αl = ||β̃l||−γ1 , (5.7)

where γ1 > 0. In the proposed distance-adaptive group LASSO, additional
prior knowledge is included in the estimation procedure by letting the weighting
factors also adapt to the distance, i.e.,

αl = α(dl)||β̃l||−γ1 , (5.8)

where dl is a measure of distance between the recording sites of the direct
coupling under evaluation, and α(dl) is here defined to be the Gaussian kernel
function,

α(dl) = exp

(

1

2

d2
l

γ2
2

)

(5.9)

where γ2 > 0. This choice of weights is such that the solution is more likely to
become sparse with respect to those groups of MVAR coefficients which model
direct couplings over longer distances.

In order to evaluate the impact of the different estimation methods for
the MVAR coefficients on the PDC, a number of simulations are carried out
for different samples sizes. The evaluation of the simulations is done with
respect to the accuracy in detecting the direct couplings as well as accuracy
in estimating the MVAR coefficients and derived measures. The adaptive and
distance-adaptive group LASSO both offer major improvements with respect
to detection and estimation accuracy when compared to LS estimation. While
these accuracies are rather similar for adaptive and distance-adaptive group
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LASSO when more samples are analyzed, improvements can be observed with
the distance-adaptive group LASSO for smaller sample sizes.

The method has also been evaluated on two 5-s segments of a recording of
paroxysmal AF, acquired with a basket catheter in the RA. A schematic repre-
sentation of the positions of the recording sites and the electrograms of the first
5-s segment are shown in Fig. 5.5(a) and (b), respectively. The corresponding
propagation pattern obtained from MVAR coefficients estimated with LS es-
timation as well as adaptive and distance-adaptive LASSO can be found in
Fig. 5.6. For LS estimation, a large number of significant direct couplings are
present also over longer distances, leading to difficulties in the identification of
the propagation pattern, see Fig. 5.6(a). The identification of the propagation
pattern is substantially simplified by the sparsity achieved with adaptive group
LASSO, see Fig. 5.6(b). It can be observed that this sparsity is mostly present
for direct couplings over longer distances, which is interesting as the adaptive
group LASSO does not make use of the distances between the recording sites.
When employing these distances in the distance-adaptive group LASSO, a fur-
ther increase in sparsity among the direct couplings over long distances can be
observed, see Fig. 5.6(c).

The directed graphs of both adaptive and distance-adaptive group LASSO
suggest a propagation originating from the low septal RA close by recording
sites EF3 and EF4. From there, the electrical activity propagates caudocra-
nially in the septal RA as well as transversely towards the anterior and pos-
terior RA. In the posterior/postero-lateral wall, craniocaudal propagation is
indicated, and finally, the propagation spreads towards the lateral RA from
both anterior and postero-lateral regions. This propagation pattern agrees
with previous clinical observations, and an RA breakthrough site close to the
coronary sinus ostium, usually superior or posterior to the orifice as also ob-
served in the present example, has been associated to AF originating in the
inferior LA or the inferior PV [109].

In conclusion, sparse modeling has been introduced for the estimation of
propagation patterns during AF. In simulations, it was indicated that addi-
tional prior information on the underlying topology in form of the distances
between the recording sites can, to some extent, compensate for the decrease
in performance which otherwise comes with decreasing sample size. Similar to
the simulations, large improvements are achieved for the real data recordings
by employing adaptive group LASSO instead of LS estimation. The results
also indicate that further improvements in the estimation of the propagation
pattern are possible when the distance between the recording sites is known or
can be estimated. This further promotes the PDC as a method for analysis of
AF propagation patterns, which may contribute to a better understanding of
AF mechanisms as well as improved AF treatment.
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Figure 5.5: (a) Schematic representation of the open RA with the
position of the bipolar recording sites on the intracardiac wall. The
eight splines of the basket catheter were positioned on the anterior, lat-
eral, posterior, and septal walls, as well as on intermediate positions.
(b) Original electrograms.
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Figure 5.6: Directed graphs illustrating the propagation pattern dur-
ing a 5-s segments of an AF recording based on (a) LS estimation, (b)
adaptive group LASSO, and (c) distance-adaptive group LASSO. In or-
der to simplify the interpretation, the directed graphs are restricted to
significant Π2

ij ≥ 0.05. The width of each arrow is proportional to the

size of the corresponding Π2
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[99] G. G. Supp, A. Schlögl, N. Trujillo-Barreto, M. M. Müller, and T. Gru-
ber, “Directed cortical information flow during human object recognition:
analyzing induced EEG gamma-band responses in brain’s source space,”
PLoS ONE, vol. 2, p. e684, 2007.



References 77

[100] A. Korzeniewska, M. Manczak, M. J. Kaminski, K. J. Blinowska, and
S. Kasicki, “Determination of information flow direction among brain
structures by a modified directed transfer function (dDTF) method,” J.

Neurosci. Meth., vol. 125, pp. 195–207, 2003.

[101] B. Schelter, J. Timmer, and M. Eichler, “Assessing the strength of di-
rected influences among neural signals using renormalized partial directed
coherence,” J. Neurosci. Meth., vol. 179, pp. 121–130, 2009.

[102] S. Erla, L. Faes, E. Tranquillini, D. Orrico, and G. Nollo, “Multivariate
autoregressive model with instantaneous effects to improve brain connec-
tivity estimation,” Int. J. Bioelectromagn., vol. 11, pp. 74–79, 2009.

[103] J. Theiler, S. Eubank, A. Longtin, B. Galdrikian, and J. D. Farmer,
“Testing for nonlinearity in time series: the method of surrogate data,”
Physica D: Nonlinear Phenomena, vol. 58, pp. 77–94, 1992.

[104] B. Schelter, M. Winterhalder, M. Eichler, M. Peifer, B. Hellwig,
B. Guschlbauer, C. Lucking, R. Dahlhaus, and J. Timmer, “Testing for
directed influences among neural signals using partial directed coher-
ence,” J. Neurosci. Meth., vol. 152, pp. 210–219, 2005.

[105] M. Eichler, “On the evaluation of information flow in multivariate sys-
tems by the directed transfer function,” Biol. Cybern., vol. 94, pp. 469–
483, 2006.

[106] L. Faes, A. Porta, and G. Nollo, “Testing frequency domain causality in
multivariate time series,” IEEE Trans. Biomed. Eng., vol. 57, pp. 1897–
1906, 2010.

[107] C. Wilke, L. Ding, and B. He, “Estimation of time-varying connectivity
patterns through the use of an adaptive directed transfer function,” IEEE

Trans. Biomed. Eng., vol. 55, pp. 2557–64, 2008.

[108] T. Müller, M. Lauk, M. Reinhard, A. Hetzel, C. H. Lücking, and J. Tim-
mer, “Estimation of delay times in biological systems,” Ann. Biomed.

Eng., vol. 31, pp. 1423–39, 2003.

[109] S. Saksena, N. D. Skadsberg, H. B. Rao, and A. Filipecki, “Biatrial and
three-dimensional mapping of spontaneous atrial arrhythmias in patients
with refractory atrial fibrillation,” J. Cardiovasc. Electrophysiol., vol. 16,
pp. 494–504, 2005.



78 Overview of the Research Field



Part II

Included Papers

79









Spatial Characteristics of

Atrial Fibrillation Electrocardiograms

Abstract

The present study investigates spatial properties of atrial fibrillation (AF) by ana-
lyzing VCG loops synthesized from 12-lead ECGs. Following atrial signal extraction,
the spatial properties are characterized through analysis of successive, fixed-length
signal segments and expressed in loop orientation, i.e., azimuth and elevation, as well
as in loop morphology, i.e., planarity and planar geometry. It is hypothesized that
more organized AF, expressed by a lower AF frequency, is associated with decreased
variability in loop morphology. AF frequency is determined using spectral analysis.

26 patients with chronic AF were analyzed using 60-s ECG recordings. Loop orien-

tation was similar when determined from either entire 60-s segments or 1-s segments.

For 1-s segments, the correlation between AF frequency and the parameters planarity

and planar geometry were 0.608 (p < 0.001) and 0.543 (p < 0.005), respectively. It

is concluded that the quantification of AF organization based on AF frequency and

spatial characteristics from the ECG is possible. The results suggested a relatively

weak coupling between loop morphology and AF frequency when determined from

the surface ECG.

c©2008. Reprinted, with permission, from

U. Richter, M. Stridh, A. Bollmann, D. Husser and L. Sörnmo,

“Spatial Characteristics of Atrial Fibrillation Electrocardiograms”,

in Journal of Electrocardiology, vol. 41, pp. 165–172, 2008.
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1 Introduction

The earlier perception of atrial fibrillation (AF) as a disease characterized by
random activation patterns has changed drastically during the last two decades
thanks to the analysis of invasive electrophysiological data. One common the-
ory explaining the mechanisms behind AF is the one in which multiple reentrant
wavelets circulate within the atria [1]. Using spatial information, Gerstenfeld
et al. were among the first to present evidence that atrial activation during
AF in humans is not entirely random [2]. Since then, several methods for an-
alyzing the activation patterns of AF, and quantifying its organization, have
been developed [3–5]. Recent research on invasive data focuses on frequency
mapping, where the dominant atrial cycle length (DACL) is determined from
various parts within the atria and coronary sinus using special catheters [6–8].

Methods analyzing AF from the surface ECG are less common, although it
is easily acquired in clinical routine. Since it reflects both atrial and ventricu-
lar activity, it is necessary to extract the atrial activity before analysis can be
performed. Several methods have been presented for that purpose [9–12], in-
cluding spatiotemporal QRST cancellation [13]. Following atrial signal extrac-
tion, spectral analysis is typically performed to determine the AF frequency
from the location of the dominant peak of the power spectrum [14, 15], see
also [16,17]. The AF frequency may be used to identify suitable candidates for
pharmacological cardioversion, and has been found particularly sensitive and
specific for prediction of AF termination following intravenous ibutilide (100 %
for ≤ 6.0 Hz or, equivalently, 360 fibrillations per minute, fpm) [15] or oral
flecainide [18]. Moreover, a low AF frequency was found to be predictive for
spontaneous AF termination [19].

One of the very few ECG-based approaches to spatial analysis of atrial ac-
tivity was recently presented by Ng et al. in which the preferred directions of
activation of AF [20], as well as of atrial flutter [21], were determined. Their
method employs the synthesized vectorcardiogram (VCG) to calculate the so-
called plane of best fit, i.e., the projection of the atrial loop on a plane. These
two studies required the availability of “pure” f waves, i.e., only f waves in-
between QRST complexes were analyzed, and, consequently, precluded contin-
uous analysis of spatial characteristics over time. Pure f waves were observed
with the help of pacing in patients undergoing ablation of the AV junction [20].
While spatial analysis may be based on successive, individual f waves, implying
that the onset and end of each individual f wave are to be delineated, such an
approach is difficult to implement when analyzing clinical ECGs due to the
occasional presence of low amplitude f waves and noise.

The present study investigates spatial AF properties by analyzing VCG
loops synthesized from the 12-lead ECG. During intervals with ventricular ac-
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tivity, the atrial signal is extracted using spatiotemporal QRST cancellation,
thus making continuous f wave analysis possible. Spatial properties are charac-
terized through joint analysis of several f wave loops being contained in succes-
sive fixed-length signal segments; accordingly, wave delineation is not required.
The spatial properties are not only expressed in terms of loop orientation (i.e.,
angles of azimuth and elevation), but also in morphologic terms such as pla-
narity and planar geometry of the loops and related temporal variability.

Several parameters have been suggested to characterize the degree of AF
organization from electrogram analysis [3–8], but only very few parameters for
noninvasive, ECG-based characterization of which the above-mentioned AF
frequency is the most studied. Since this parameter is related to atrial refrac-
toriness, it may be considered to reflect AF organization [22]. In the present
study, the significance of spatial (loop morphology) parameters is studied in
relation to AF frequency, hypothesizing that more organized AF, being ex-
pressed by a lower frequency, is associated with decreased variability in loop
morphology. Figure 1 offers a schematic illustration of the present approach.

Atrial organziation

during AF

Body surface

Invasive

AF frequency

Loop

morphology

Figure 1: The relation between atrial organization and loop morphology
is studied indirectly through AF frequency (dashed lines), as the latter
quantity can be estimated from the ECG. The solid line indicates the
well-established relation between atrial organization and AF frequency.
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2 Methods

Preprocessing

The orthogonal leads X, Y, and Z are synthesized from the 12-lead ECG using
the inverse Dower transformation; see, e.g., [23]. Atrial activity is extracted
through spatiotemporal QRST cancellation in which the beat averages of the
three leads are combined to better cancel the ventricular activity [13]. As
a result, variations in the electrical axis of the heart are accounted for in the
cancellation process. Before spatial analysis, the atrial signal is decimated from
1000 to 50 Hz since the information of interest is confined to frequencies below
25 Hz.

The spatial properties are characterized by parameters calculated from the
entire recording, resulting in “global” values. Spatial variability parameters are
calculated from successive fixed-length 1-s segments and expressed in terms of
mean and standard deviation.

AF frequency is obtained from the location of the dominant peak in the
power spectrum of lead V1.

Spatial Analysis

Orientation

The plane of best fit is defined as the two-dimensional projection of the loop
that produces the minimum mean-square error with respect to the original
loop. This plane is determined from eigenanalysis of the covariance matrix that
results from the 3 ×N data matrix with the samples of the three synthesized
leads; N denotes the number of samples of the segment. In the next step,
eigendecomposition of the covariance matrix is performed, resulting in the three
eigenvectors v1, v2, and v3 associated with the eigenvalues λ1 ≥ λ2 ≥ λ3.
The eigenvector v1 defines the principal axis, i.e., the axis with the largest
correlation among the data. The second eigenvector v2 spans the plane of best
fit together with the principal axis. The third eigenvector v3 = [v3x, v3y, v3z ]

T

is the perpendicular axis and defines the azimuth and elevation angles of the
plane of best fit (see Fig. 2):

φAZ = arctan

(

v3z

v3x

)

, (1)

φEL =

∣
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∣
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Figure 2: The definition of azimuth φAZ and elevation φEL.

where −90◦ < φAZ < 90◦ and 0 < φEL < 90◦. It should be noted that −30◦ <
φAZ < 30◦ corresponds to the sagittal plane, and that 60◦ < φAZ < 90◦ and
−90◦ < φAZ < −60◦ correspond to the frontal plane. The positive and negative
angles in between correspond to the right and left oblique view, respectively.

Planarity and Planar Geometry

Planarity is defined as

ψPL = 1 − λ3

λ1 + λ2 + λ3
, (3)

and is close to 1 when λ3 is much smaller than λ1 and λ2, i.e., when the loop
is essentially planar. Planar geometry is defined as

ψPG =
λ2

λ1
λ1 ≥ λ2, (4)

and is close to 1 when the loop is essentially circular.
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Figure 3 illustrates the data contained in a 1-s segment. The loops are
mostly in the frontal and left sagittal plane, whereas very little in the transverse
plane; and, consequently, the azimuth angle of the plane of best fit is in between
0◦ and −90◦ (φAZ = −23.3◦). The elevation angle φEL is 16.7◦. The loops are
quite planar (ψPL = 0.95), and have an elliptic appearance (ψPG = 0.35).

Statistical Analysis

The correlation between the means as well as the standard deviations (SD) and
the AF frequency are calculated, resulting in the correlation value r (Pearson
correlation coefficient) and related p-value. A p-value < 0.05 was considered
statistically significant.

3 Database

The database contains 26 12-lead ECG recordings from patients with chronic
AF. All recordings were acquired with equipment by Siemens-Elema AB, Swe-
den, using a sampling rate of 1 kHz and an amplitude resolution of 0.6 µV.
The ECGs were recorded during 5 minutes of which 60 s free of ectopic beats
were selected for analysis.

4 Results

The results are presented below for global analysis of the entire 60-s recordings
and for variability analysis using 1-s segments.

The AF frequency was estimated with the above described method for each
60-s recording. For the database, the AF frequencies ranged from 3.9 to 7.7 Hz
(6.4±1.0 Hz).

Global Analysis

Figure 4 displays loop orientation in terms of global azimuth and elevation
for the 26 patients. The azimuth angles are concentrated to the sagittal view:
φAZ ranges between −29.5◦ and +3.5◦. The elevation angles range between
+16.1◦ and +60.7◦ and thus spread over half the possible interval. Neither
global azimuth φAZ nor global elevation φEL are correlated with AF frequency
as reflected by the r-values close to zero in Table 1. Global planarity ψPL and
global planar geometry ψPG are displayed versus AF frequency in Figs. 5(a)
and (b), respectively. It can be observed that the nature of the data is relatively
planar since ψPL is between 0.79 and 0.97. The correlation of ψPL to the AF
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Figure 3: Example of a 1-s segment, containing approximately six
f waves. (a) The orthogonal leads X, Y, and Z after QRST cancella-
tion. (b) Frontal plane. (c) Transverse plane. (d) Sagittal plane. (e)
Plane of best fit.
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Figure 4: Plot over global azimuth and elevation of each 60 s recording
of the database.

Table 1: Means and standard deviations of the global parameters, and their
correlation r to AF frequency with the respective p-value.

mean ± SD r p

φAZ −12.6◦ ± 8.6◦ 0.021 0.92
φEL 36.4◦ ± 9.8◦ 0.239 0.24
ψPL 0.90 ± 0.04 −0.466 0.016
ψPG 0.60 ± 0.18 0.518 0.0068

frequency is r = −0.466 (p < 0.05) which indicates a weak trend of ψPL to
decrease with AF frequency. The parameter ψPG spreads out over nearly the
entire interval, ranging between 0.22 and 0.88. Its positive correlation value of
r = 0.518 (p < 0.05) to AF frequency suggests that the data becomes slightly
more circular as AF frequency increases.

Variability analysis using 1-s segments

The mean azimuth and elevation angles obtained in 1-s segments only differ
from the global values with 1.4◦ and 0.8◦, respectively, and planarity and planar
geometry with 0.02 and 0.14, respectively, see Tables 1 and 2. Thus, the results
are similar to those of the global parameters, see Table 2, i.e., no correlation
between AF frequency and azimuth or elevation, whereas AF frequency exhibits
negative correlation with ψPL (r = −0.510, p < 0.005) and positive with ψPG

(r = 0.520, p < 0.05).
The standard deviations of φAZ , φEL, ψPL, and ψPG are displayed versus
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Figure 5: Global (a) planarity and (b) planar geometry displayed as a
function of AF frequency.

Table 2: Means and standard deviations of the parameters for the 1-s vari-
ability analysis, and their correlation r to AF frequency with the respective
p-value.

mean ± SD r p

φAZ −11.2◦ ± 8.0◦ −0.024 0.91
φEL 35.6◦ ± 8.7◦ 0.342 0.09

mean
ψPL 0.92 ± 0.03 −0.510 0.0024
ψPG 0.46 ± 0.09 0.520 0.0065

φAZ 17.7◦ ± 8.6◦ 0.300 0.14
φEL 10.3◦ ± 4.2◦ 0.383 0.053

SD
ψPL 0.03 ± 0.01 0.608 0.00099
ψPG 0.16 ± 0.03 0.543 0.0042

AF frequency in Fig. 6. The standard deviation exhibits a weak trend to
increase with AF frequency for ψPL (r = 0.608, p < 0.005) and ψPG (r = 0.543,
p < 0.005), suggesting increased variability in waveform morphology. The
variability in orientation of the data did not change with AF frequency, see
Table 2.

5 Discussion

We have introduced the parameters planarity and planar geometry for char-
acterization of AF loops, previously used to analyze, e.g., the morphology of
T wave loops [24]. To our knowledge, it is the first time such spatial parame-
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Figure 6: Standard deviation of (a) azimuth, (b) elevation, (c) pla-
narity, and (d) planar geometry displayed as a function of AF frequency.
The fixed-length segment was 1 s.

ters are applied to atrial activity and compared to AF frequency. In contrast
to azimuth and elevation, which deal with spatial orientation of AF, these two
parameters characterize the spatial extent of AF.

The calculation of the plane of best fit has previously been performed on
pure atrial flutter and atrial fibrillation signals, recorded under special condi-
tions [20, 21]. Measuring the organization of AF non-invasively was viewed as
a means “to study the dynamics of AF in humans over long periods, assuming
atrial activity can be extracted from the signal”. The present paper advances
this aspect by combining our spatiotemporal method for QRST cancellation
with the calculation of the plane of best fit, offering the possibility to use the
method on ECGs recorded in clinical routine.
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Orientation

The distributions of global azimuth and elevation, obtained by applying the
method to the entire recordings, were very concentrated: the angles were lo-
cated exclusively in the sagittal view. As a side effect of the 1-s variability
analysis, the parameter means could be compared with their corresponding
global parameter values. The difference between mean azimuth and elevation
and their respective global values was negligible, i.e., the calculation of the
angles over 60 s is sufficient as it represents the overall spatial orientation of
the data; no additional information was added by analyzing shorter segments.
The analysis of the correlation between AF frequency and global and mean
angles, aiming to reveal trends of the parameters for lower and higher AF fre-
quencies, showed that there is no significant difference in orientation between
the recordings. This result seems reasonable, as organized and unorganized AF
are not known to persist on clearly distinguishable locations within the atria.
The 1-s variability analysis for azimuth and elevation showed that the standard
deviation of the angles over time was relatively low, i.e., the spatial orientation
of the data was relatively stable in the sagittal view.

Our results correspond to the findings in [20], where the plane of best fit
was calculated for pure f waves. It was shown that 15 of 22 analyzed ECGs
were highly organized, i.e., more than 30% of the azimuth values were situ-
ated in one 30-degree region (e.g., 0◦–30◦, 30◦–60◦), which corresponds to a
low standard deviation that we investigated in our variability analysis. In ad-
dition, 12 of those 15 ECGs were found to be organized close to the sagittal
plane. Furthermore, studies based on invasive data for evaluation of spatial
patterns during AF over time found them to be highly stable [25, 26], which
again corresponds to the low standard deviation found in this study. An area
of high synchronization was found in the lateral and anterolateral right atrium
during paroxysmal and idiopathic AF in [26, 27]. This finding supports our
observation of the general orientation of the data in the sagittal view.

A comparison of the present results with those of Ng et al. [20] should take
the differences in azimuth and elevation definition into account. First, Ng et
al. defined the azimuth angle from the positive Z-axis to the positive X-axis,
whereas the present definition is the opposite, i.e., from the positive X-axis to
the positive Z-axis. Furthermore, azimuth was defined from −180 to +180 de-
grees in order to specify whether the view is anterior or posterior [20]. However,
such a definition results in that every plane has two possible perpendicular di-
rections (anterior and posterior). In [20] it was decided to choose “the direction
in which the projection in that plane would have a primarily counterclockwise
loop”. Since a distinction between clockwise and counterclockwise has little
clinical implications for AF and is exceedingly difficult to determine automat-
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ically, such information was not part of our analysis. Finally, the calculation
of elevation did not originally include an absolute value, i.e., the angle could
take positive and negative values. The sign of the result does not, however,
permit a conclusion whether the view is superior or inferior, which is a math-
ematical limitation of the calculation. In our analysis, this limitation became
obvious through elevation angles which, during the course of a recording, tog-
gled between superior and inferior view for no obvious physiological reason,
underlining that a reliable distinction between superior and inferior view is not
possible. For this reason, and the fact that classification into superior and infe-
rior view is rarely considered in AF analysis, the distinction between clockwise
and counterclockwise was omitted.

Planarity and Planar Geometry

The global parameters show that the loops are generally two-dimensional, i.e.,
planarity is close to one for all recordings. Thanks to the variability analysis,
the parameter means could be compared to their respective global parameter
values. The difference was found to be negligible. Hence, AF frequency ex-
hibits a negative correlation for global as well as mean planarity. This can be
interpreted such that when AF is organized so that f waves are similar, which
is often the case for low AF frequencies, the loops are essentially contained in
a plane. When AF is unorganized and associated with higher AF frequencies,
the loop becomes less planar.

The global values of planar geometry are very scattered, although exhibit-
ing a positive correlation with AF frequency. Similar to planarity, the differ-
ence between global and mean planar geometry is negligible for 1-s segments.
A positive correlation remains for the mean values of planar geometry when
calculated for 1-s segments. The data has thus elliptic character at low AF
frequencies, whereas the data becomes more circular, i.e., the planar geometry
increases at higher AF frequencies which mostly represent unorganized AF.

The standard deviations of both planarity and planar geometry exhibited
a clearly positive correlation with AF frequency, implying that the wave mor-
phology is more stable for lower AF frequencies.

In an early stage of this study, segment length related to the dominant
atrial cycle length (DACL), i.e., the inverse of the AF frequency, was studied.
This was done in analogy to [20], and a segment length of 1.25·DACL was
chosen in order to ensure that each segment contained one complete f wave.
The results were largely similar to those of the 1-s segment analysis, with the
exception that there was no correlation of planarity and planar geometry to
AF frequency. This may be explained by the observation that the spatial ex-
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tent of about an f wave is generally two-dimensional and with elliptic character.

An important issue is to what extent spatial AF properties can be deter-
mined from the surface ECG, ultimately indicating whether a single wavelet
or multiple wavelets are circulating in the atria. The scope of present study
is more modest and is restricted to studying whether or not there is a rela-
tion between the spatial surface ECG properties and AF frequency. The issue
of spatial organization of AF in noninvasive recordings has previously been
addressed in, e.g., [28].

Limitations

The inverse Dower transformation has been used previously when analyzing
atrial activity [20]. Originally, this transformation was developed for analyzing
QRS- and T-loops. A study that visually compared QRS loops from the Frank
VCG and three different synthesized VCGs showed that the inverse Dower
transformation was the best synthesis method [29]. Another study which
compared eight different methods came to the same conclusion [30]. Similar
investigations related to the ability of the inverse Dower transformation to
preserve the atrial activity of the ECG have not been done yet. Such a study
is desirable if synthesized VCGs are to be employed for AF analysis.

Since the present database only contained 26 standard 12-lead ECG record-
ings with a length of 60 s each, it is necessary to perform further studies with
larger databases representing the range of AF frequencies more evenly. Fur-
thermore, it would be desirable to include simultaneously recorded invasive
data to better understand the relation between atrial organization and f wave
morphology, see Fig. 1.

6 Conclusions

Loop orientation expressed in terms of azimuth and elevation can be determined
from either global analysis (60 s) or the mean of segment-based analysis, both
types of analysis leading to similar results. Global analysis and the mean of
segment-based analysis showed increased planarity and decreased planar geom-
etry for lower AF frequencies, possibly related to higher similarity of successive
loops in more organized AF. Thus, quantification of AF organization from the
ECG based on AF frequency and spatial characteristics, as expressed by pla-
narity and planar geometry, is possible.
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S. Garrigue, Y. Takahashi, M. Rotter, F. Sacher, C. Scavée, R. Ploutz-
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Right Atrial Organization and

Wavefront Analysis

in Atrial Fibrillation

Abstract

The purpose of this study was to develop techniques to quantify the propagation pat-
tern of the electrical activation during atrial fibrillation (AF) along a one-dimensional
catheter. Taking intra-atrial signal organization aspects into account, the atrial acti-
vations are detected and combined into wavefronts. Parameters describing wavefront
consistency and activation order along the catheter are defined, and the relation-
ship of wavefront consistency to body surface parameters, namely AF frequency and
exponential decay, is investigated.

The database consisted of 26 10-s recordings from patients during drug-refractory
AF, in which 5 adjacent bipolar electrograms from a catheter in the right atrium were
recorded. The 12-lead ECG was recorded simultaneously.

The degree of wavefront consistency provided insights into the temporal variabil-

ity of the activation order, an aspect which was not reflected by the body surface

parameters. However, AF frequency was able to distinguish between recordings with

different degrees of intra-atrial signal organization (p = 0.008).
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1 Introduction

Atrial fibrillation is the most common arrhythmia in clinical practice and a
costly public health problem. The exact mechanisms leading to the induction
and perpetuation of AF are, however, still the subject of extensive research.
For a long time, Moe’s multiple wavelet hypothesis [1,2] has been the dominat-
ing theory explaining AF mechanisms. According to this theory, wavelets are
propagating along varying routes throughout both atria, randomly activating
the atrial tissue and leading to the complex electrical patterns observed during
AF. More recent studies support another theory about “drivers” in the atria
that trigger and sustain AF [3,4]. Whether these drivers are one or several foci
firing at a short cycle length [5], or one or several reentrant circuits with short
cycle length [6], remains uncertain. Often, such drivers have been observed
to originate in the left atrium close to the pulmonary veins, but other origins
have also been observed [7]. The role of the left atrium as a trigger of AF is
supported by studies revealing left-to-right atrial frequency gradients, where a
high frequency is considered to be closer to the source of the arrhythmia [8,9].

A number of approaches, either based on invasive or on body surface sig-
nals, have been presented for quantifying the organization of atrial activity
during AF. A common approach based on invasive signals is to quantify the
synchronization between pairs of adjacent electrograms. For this purpose, lin-
ear methods, e.g., evaluation of the cross-correlation [10] or the mean-square
error in the linear prediction between two electrograms [11], have been ap-
plied. Non-linear methods, e.g., using the cross-conditional entropy [12] or the
correlation dimension and correlation entropy [13], have also been considered.

Other invasive studies evaluate organization and synchronization using de-
tected activations instead of the signals themselves. By coupling the closest
detected activations from pairs of adjacent electrograms, a delay sequence can
be calculated. In order to evaluate the degree of synchronization, the size of the
delays [14] and the distribution of the delays [15] have been employed. The lat-
ter study is based on the observation that when two atrial sites are repeatedly
passed by a stable wavelet, the activations in both sites should be well syn-
chronized and the delay distribution should be narrow. In case the two sites
are passed by an unstable wavelet or more than one wavelet, the sites should
be less synchronized and thus the delay distribution should be wider and more
complex. The degree of synchronization showed significant differences for the
three common AF types defined in Wells’ classification [15, 16]. A non-linear
approach for detecting linear as well as non-linear coupling between two atrial
sites based on their detected activations was presented in [17].

Atrial fibrillation is also studied using the surface ECG, where in most ap-
proaches it is necessary to first extract the atrial activity [18, 19]. It has been
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shown that the atrial fibrillatory frequency can be determined non-invasively,
i.e., based on the extracted atrial activity, where the highest correlation has
been shown between the AF frequencies in surface lead V1 and the right atrial
electrograms [20]. A sequential method for robust estimation of the AF fre-
quency based on time-frequency analysis was presented in [21]. Additionally,
this work implemented a parameter characterizing the general shape of the
fibrillation waves and included quality evaluation of analyzed signal segments.
The ability of the AF frequency to, e.g., characterize effects of antiarrhythmic
drugs [22, 23] as well as to predict spontaneous termination of AF [24, 25] has
been documented.

The purpose of the present study is to develop techniques for quantifying
the electrical activation pattern during AF along a one-dimensional catheter
as well as to investigate the potential relationship of the extracted parameters
to established organization measures from body surface signals. The proposed
method for wavefront analysis, which is described in detail in Section 2.1, is
based on the detected activations in five adjacent bipolar electrograms. Close
activations in different electrograms are combined into wavefronts, which are
analyzed with respect to their consistency over time, resulting in the param-
eter wavefront consistency. Furthermore, a propagation profile, which reflects
the predominant activation order along the catheter, is calculated from the
wavefronts. In contrast to previous approaches that rely on analyzing the cou-
pled activations from one pair of electrograms at a time, our approach includes
activations from more than two electrograms, thus providing insight into the
propagation behavior along a larger part of the catheter. Measures of intra-
atrial signal organization which are based on time-frequency analysis are em-
ployed to assure the reliability of the analysis. In detail, the distinctness of a
harmonic spectrum and the fibrillatory frequency dispersion between the elec-
trograms are considered. The novel parameter wavefront consistency is related
to parameters calculated using body surface signals, the last-mentioned being
described in Section 2.2. For comparative purposes, cross-correlation analysis
between entire electrograms is also implemented, see Section 2.3.

2 Methods

2.1 Wavefront analysis

An overview of the proposed wavefront analysis is given in the block diagram
in Fig. 1. Initially, analysis of the intra-atrial signal organization and detection
of atrial activations are performed independently for each of the N recorded
electrograms. Based on the outcome of the intra-atrial signal organization
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Figure 1: Block diagram of the method for wavefront analysis. The de-
tected activations are selected for further analysis based on the outcome
of the signal organization block.

analysis, the detected activations are selected for wavefront detection. The
final step characterizes the detected wavefronts.

Intra-atrial signal organization

A decreasing intra-atrial signal organization is indicated by electrograms in
which it is difficult to distinguish between discrete activations. In addition,
a high dispersion of the atrial fibrillatory frequency between the electrograms
may be an indicator of that the recording sites are influenced by different
wavelets. In order to evaluate the degree of intra-atrial signal organization, a
logarithmic time-frequency distribution is employed, resulting in one spectrum
per second, see Section 2.2. The position of the dominant spectral peak in the
3 to 9 Hz range, as well as the ratio between the power of this peak including
its harmonics and the total spectral power, denoted by ρ, are calculated [26].
Furthermore, the standard deviation of the dominant frequencies between the
electrograms, denoted by σf , is calculated for each second.

Activation detection

For activation detection, the atrial signals are preprocessed using a standard
procedure including bandpass filtering (40–250 Hz, order 40, Kaiser window),
rectification, and lowpass filtering (FIR, 0–20 Hz, order 40, Kaiser window) [10].
Threshold detection is used to determine the positions of the activations. The
threshold starts at the time point of the previously detected activation and is
adapted to the amplitudes of preceding detections using exponential averag-
ing. For activation intervals that are longer than 1.5 times the median distance
between all detected activations, the threshold detection is repeated with a
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Figure 2: An example of activation detection with the original and
preprocessed electrogram (top and bottom, respectively). The detected
activations are marked with dots.

slightly lower threshold [27]. Additionally, a blanking period of 50 ms is intro-
duced after each detected activation in order to prevent multiple detections.
An example of the performance of the activation detection analysis is shown in
Fig. 2. In the following, the jth detected activation in the ith electrogram will
be denoted by ti,j .

Activation selection

The detected activations are selected for further analysis based on the outcome
of the intra-atrial signal organization analysis, which resulted in one spectrum
per second for each electrogram. In order for the activations during 1 s in an
electrogram to be selected, the standard deviation σf is required to be below
0.5 Hz, and the power ratio ρ must exceed 0.3. The latter requirement can
be interpreted as a verification of that the power spectrum has a distinct peak
at the dominating frequency as well as a distinct harmonic pattern. If less
than 3 consecutive seconds of a recording have fulfilled these criteria in all
electrograms, the entire recording is regarded to have a too low intra-atrial
signal organization for wavefront analysis.

Wavefront detection

The wavefront detection is based on coupling of the activations of two adjacent
electrograms at a time. The algorithm is initialized with a matrix W1 which
has one row for each electrogram and contains the M1 activation times of the
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first electrogram in the first row:

W1 =











t1,1 t1,2 · · · t1,M1

0 0 · · · 0
...

...
...

0 0 · · · 0











. (1)

The M2 activations of the second electrogram are then successively coupled to
the activations in the first electrogram according to the following general rule:
The jth activation of the ith electrogram is added at column k that yields

k = argmin
l

(|ti,j − ti−1,l| ≤ α), i > 1, (2)

i.e., ti,j is coupled to the closest activation ti−1,l within the range ti,j ± α.
This approach is based on the assumption that two activations from two close
recordings sites, that are closely spaced in time, are likely to belong to the
same activation wavefront [14]. The parameter α is for each recording chosen
individually as

α = 0.25
1

fRA
, (3)

where fRA is the average fibrillatory frequency in the right atrium, see Sec-
tion 2.2. This choice is based on the observation that the temporal distance
between two successive activations in one electrogram can be estimated as the
inverse of fRA, while the temporal distance between two activations in ad-
jacent electrograms that belong to the same activation wavefront should be
considerably shorter.

In case there is an activation in the first bipolar electrogram, e.g., t1,2,
which does not satisfy Eq. (2) for any of the t2,j, the corresponding place in
the second row of the matrix remains zero. In the opposite case when no t1,k

can be found for, e.g., t2,M2−1, a new column is inserted into the matrix,

W2 =















t1,1 t1,2 t1,3 t1,4 · · · 0 t1,M1

t2,1 0 t2,2 t2,3 · · · t2,M2−1 t2,M2

0 0 0 0 · · · 0 0
...

...
...

...
...

...
0 0 0 0 · · · 0 0















. (4)

The activations of the remaining electrograms are processed in a similar man-
ner, resulting in the matrix WN . In the present study, a wavefront is defined
as complete if it contains one activation from each bipolar electrogram, i.e.,
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column j in matrix WN is regarded as a complete wavefront when it contains
non-zero values only. A separate matrix W is defined as

W = [w1 w2 . . . wM ] , (5)

where each column wj contains the activations of one of the M complete wave-
fronts. In this matrix, each column has been centered around zero by subtract-
ing the corresponding mean.

Wavefront characterization

The wavefront characterization is based on statistics calculated from the matrix
W. In order to assure reliable statistics, a minimum number of complete
wavefronts, Mmin, is required. This number is set to half the number of the
expected wavefronts, i.e.,

Mmin = 0.5 T · fRA, (6)

where T is the length of the recording in seconds. For recordings in which M
exceeds this value, the quartiles of each row i of the matrix W are computed.
The first quartile of row i is denoted Q1,i and includes the lowest 25% of the
data. The second quartile of row i is denoted Q2,i and divides the data set in
half, i.e., the median. Similarly, the third quartile of row i is denoted Q3,i and
includes the highest 25% of the data. The difference between the upper and
lower quartile is called interquartile range, Q̄i = Q3,i −Q1,i.

The mean of all Q̄i defines the wavefront consistency, denoted by CQ̄. In
recordings with consistent wavefronts, CQ̄ will take small values, while it results
in larger values in recordings with inconsistent wavefronts.

Furthermore, the medians Q2,i can together be interpreted as the median
wavefront w̄ or the propagation profile. The propagation profile allows analysis
of which recording site that in the median has been activated first, and how
the electrical activity propagated to the other recording sites. The linearity of
the propagation profile, denoted L, is defined by the quality of the fit of a line
to w̄, and is evaluated by calculating r2 that can take values between 0 and 1.

2.2 Time-frequency analysis

In this paper, our previously presented method for characterization of atrial
signals [21] is used to analyze both the ECG and the intra-atrial recordings.
A brief description of the method follows together with a description of the
different preprocessing strategies which are needed for the ECG and intra-atrial
recordings, respectively.
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Preprocessing

All ECG signals are preprocessed in order to suppress baseline wander and
powerline interference. After beat detection and classification, spatiotempo-
ral QRST cancellation is performed [18]. The residual ECG is again baseline
filtered (< 2.5 Hz) for additional noise suppression. Finally, the signals are
decimated to 50 Hz.

Similar to the ECG signals, all intra-atrial signals are preprocessed by re-
moving baseline wander and powerline interference. Rectification, amplitude
compression using a hard limiter, and lowpass filtering (IIR, 0–25 Hz) are then
performed. As above, the signals are decimated to 50 Hz.

Method description

The atrial signal characterization is based on time-frequency analysis using a
logarithmic frequency scale. The signal is first divided into overlapping seg-
ments (2.56 s long). Short-time logarithmic Fourier analysis with a Hamming
window is performed for each segment, producing one spectrum per second.

The frequency estimation is performed by matching each new spectrum to
a so-called spectral profile, resulting in optimal frequency shift and amplitude
scaling. The spectral profile is initialized as the spectrum of the first few
seconds and is then continuously updated with a frequency-aligned version
of the present spectrum using exponential averaging. In this way, the entire
harmonic pattern is accounted for in the frequency estimation procedure and
a representation of the harmonic structure is contained in the spectral profile.
The usage of the logarithmic frequency scale is motivated by that it allows the
alignment of two harmonic spectra with different fundamentals. The method
produces an estimate of the average AF frequency f1 based on the surface ECG
lead V1. Furthermore, the exponential decay of the harmonic magnitudes, γ1, is
extracted from the spectral profile and serves as a coarse measure of waveform
morphology.

In contrast to body surface signals, intra-atrial signals have harmonic mag-
nitudes in the same range as that of the fundamental. In order to assure that
the fundamental of the spectral profile will be matched to the fundamental of
each spectrum, the method is slightly adjusted for intra-atrial signals by ap-
plying a linearly decreasing weighting function to each logarithmic spectrum.
From the intra-atrial signals, the average fibrillatory frequency in the right
atrium, fRA, is calculated as the temporal and spatial frequency average of all
intra-atrial signals.
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2.3 Cross-correlation analysis

Cross-correlation analysis is implemented for comparison to the propagation
profile w̄ which is calculated by the proposed wavefront characterization
method. The cross-correlation function is calculated between one reference
electrogram and all other electrograms [10]. The reference is chosen as the
middle electrogram in order to keep the spatial distance to the reference short
for all electrograms. The time-lag of the absolute peak in each function serves
as an estimate of the average delay between the activations of the two electro-
grams. For the reference electrogram itself, the average delay is set to zero.
The analysis thus results in one delay per electrogram, which are saved in the
vector w̄cc.

2.4 Statistical analysis

The correlation between different parameters is calculated using the Pearson
correlation coefficient r and related p-value. Furthermore, parameters in differ-
ent groups of patients are compared using the one-sided Kolmogorov-Smirnov
test. A p-value < 0.05 is considered statistically significant. All parameters are
given in mean ± standard deviation.

2.5 Database

The method was evaluated on a database of 26 recordings (24 male, 2 fe-
male) from patients with drug-refractory AF who underwent pulmonary vein
catheter ablation and presented in AF at the beginning of the procedure. The
mean age was 56±11 years, and AF duration was 2.7±3.5 months. Underlying
heart diseases were systemic hypertension (8 patients), coronary artery disease
(2 patients), and idiopathic dilated cardiomyopathy (2 patients), whereas 14
patients had lone AF. Oral anticoagulants were discontinued for 4 days, and
all antiarrhythmic drugs except for amiodarone 5 plasma half-lives, before the
procedure.

Electrophysiological atrial studies were performed using a dual decapolar
catheter (Cordis Webster Deflectable Halo) that was placed in the right atrium.
Ten bipolar electrodes (H1/H2, H3/H4, . . . , H19/H20, in the following denoted
by H1, H3, . . . , H19) were possible to measure, where the lower bipolar elec-
trodes at the distal end of the catheter were situated in the low lateral right
atrium, and H13 approximately recorded the atrial activity in the high septal
right atrium. In each patient, that combination of five adjacent bipolar electro-
grams that showed the strongest activity was chosen for analysis. These were
H5 to H13 in 18 patients, H7 to H15 in 3 patients, H9 to H17 in 4 patients, and



Right Atrial Organization and Wavefront Analysis in AF 113

H11 to H19 in one patient. During the ablation procedure, 12-lead ECG and
intra-atrial electrograms were recorded and stored using a commercial record-
ing system (Bard EP Lab System Duo, Billerica, USA). All recordings were of
10 seconds duration and sampled with 1 kHz.

3 Results

Examples of wavefront analysis

The performance of the proposed method is illustrated by three representa-
tive examples. The first example shows a recording with highly consistent
wavefronts over time and a non-linear propagation profile, see Fig. 3. The elec-
trograms H11 to H19 were chosen for analysis and are plotted together with the
complete detected wavefronts in Fig. 3(a). The frequency trends of all electro-
grams are plotted in Fig. 3(b). The electrograms show frequency trends that
slightly increase over the interval, with a small frequency dispersion between
the electrograms.

Figure 3(c) summarizes the statistics of the complete wavefronts such that
each boxplot belongs to one row of W and thus to activations of one electro-
gram. The vertical lines of the boxes are given (from left to right) by the lower
quartiles Q1,i, the medians Q2,i, and the upper quartiles Q3,i, i.e., the width
of the boxes themselves reflect the interquartile ranges Q̄i. Thus, Fig. 3(c)
illustrates all measures that the parameters CQ̄ and L are based on, including
the propagation profile w̄. In the current example, the wavefronts are highly
consistent, as the boxes are narrow, and no outliers exist. Furthermore, the
first activation occurs consistently at the recording site of H13. The activa-
tion wavefront then propagates in both directions along the catheter. For this
recording, CQ̄ yields the low value of 10 ms, indicating the consistency of the
wavefronts, and L = 0.19, indicating a non-linear propagation profile. For
comparison, the delay vector w̄cc calculated using cross-correlation analysis is
shown in Fig. 3(d).

Three seconds of the recorded electrograms H7 to H15 of the second ex-
ample are plotted together with the detected wavefronts from matrix W5 in
Fig. 4. The plots show that the activations of H7 and H9 occur regularly and
synchronized, which is also true for the activations of the electrograms H11,
H13, and H15. However, whether there is a coupling between these two groups
is difficult to determine because of the large delays between the activations in
H9 and H11. This is reflected by the wavefront detection, which did result
in only a few complete wavefronts, but mostly wavefronts that contain either
activations from H7 and H9 or from H11, H13, and H15. The number of com-
plete detected wavefronts M did not exceed Mmin, and therefore wavefront
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Figure 3: Example of a recording with highly consistent wavefronts and
a non-linear propagation profile. (a) The original electrograms with the
complete wavefronts. (b) Intra-atrial frequency trends. (c) Illustration
of the statistics of each row of W. (d) The delay vector w̄cc calculated
using cross-correlation analysis.
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Figure 4: Three seconds of the original electrograms with the de-
tected wavefronts in a recording in which electrogram groups H7/H9
and H11/H13/H15 seem not to be coupled.

characterization was not performed.
In the third example, the electrograms H9 to H17 were chosen for analysis,

see Fig. 5(a). During the displayed 3 s, the activation order of the wavefronts
is shifting, i.e., H17 is in the beginning activated last and at the end first. The
wavefront consistency parameter CQ̄ which is based on the entire recording
yields 18 ms and reflects this inconsistency of the activation order. The boxplots
in Fig. 5(b) show that the propagation profile w̄ of the entire recording reflects
the case when H17 is activated first and that the case when H17 is activated
last occurs less often. The linearity of the propagation profile L is 0.88. As a
comparison, Fig. 5(c) shows w̄cc calculated using cross-correlation analysis.

Database results

Intra-atrial signal organization divided the database into one group of 9 record-
ings, which had a too low degree of intra-atrial signal organization for wavefront
analysis, and a group of 17 recordings with a sufficient degree of intra-atrial
signal organization. In the latter group, 11 recordings consisted of the electro-
grams H5 to H13, three of H7 to H15, two of H9 to H17, and one of H11 to
H19. Wavefront detection was performed for 7.9±1.5 s for these 17 recordings
and resulted in 34±13 complete wavefronts per recording. In 2 of these 17
recordings, the number of complete wavefronts M did not exceed Mmin, and
thus wavefront characterization was performed in 15 recordings.
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Figure 5: (a) Three seconds of the original electrograms with the com-
plete wavefronts, illustrating a change in the activation order. (b) Illus-
tration of the statistics of each row of W based on the entire recording.
(c) The delay vector w̄cc calculated using cross-correlation analysis.

Figure 6 shows the distribution of the body surface parameters AF fre-
quency f1 (6.1±0.8 Hz) and exponential decay γ1 (1.4±0.3) for the entire
database. No significant correlation between these two parameters was found.
However, the plot shows that when compared to recordings with a sufficient de-
gree of intra-atrial signal organization, the majority of the recordings with a too
low degree of intra-atrial signal organization exhibit a higher AF frequency, a
higher exponential decay, or both. For AF frequency, a significant difference
was found between the two groups of recordings with a too low and a suffi-
cient degree of intra-atrial signal organization (f1 = 6.6±1.0 Hz/5.8±0.5 Hz,
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Figure 6: Distribution of exponential decay γ1 versus AF frequency f1.
Recordings with a too low degree of intra-atrial signal organization are
marked with a cross. Recordings with a sufficient degree of intra-atrial
signal organization are marked with a circle, which is filled if the number
of complete wavefronts M did exceed Mmin, and empty otherwise.

p = 0.008). The significant difference did also remain in the case when the
two recordings in which M did not exceed Mmin was removed from the group
of recordings with a sufficient degree of intra-atrial signal organization (f1 =
6.6±1.0 Hz/5.8±0.5 Hz, p = 0.014). For the exponential decay a signifi-
cant difference between the groups could only be found in the latter case
(γ1 = 1.5±0.3/1.4±0.3, p = 0.082 and γ1 = 1.5±0.3/1.3±0.3, p = 0.026,
respectively).

Wavefront characterization resulted in a wavefront consistency CQ̄ of
15.1±5.6 ms. Wavefront consistency was not reflected by the body surface
parameters, since no significant correlation was found between CQ̄ and f1 or
γ1, see also Fig. 7(a) and (b), respectively.

The linearity of the propagation profile L yielded 0.74±0.31. Furthermore,
the Euclidean norm between the propagation profile w̄ and the delay vector
w̄cc calculated using cross-correlation analysis was, after subtracting their re-
spective mean values, found to 7.8±5.9 ms.

4 Discussion

During ablation procedures it is of interest to obtain insights into the prop-
agation pattern of the electrical activity in the atrial area that is covered by
one or several catheters. In detail, the propagation pattern may be analyzed
in terms of the site where the first activation occurs, how the electrical activity
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Figure 7: (a) Distribution of CQ̄ versus AF frequency f1. (b) Distri-
bution of CQ̄ versus the exponential decay γ1. Recordings with a too
low degree of intra-atrial signal organization are marked with a cross
and assigned CQ̄ = 0. Recordings with a sufficient degree of intra-atrial
signal organization are marked with a circle, which is filled if the number
of complete wavefronts M did exceed Mmin, and empty otherwise. The
latter recordings are also assigned a CQ̄ value of 0.

propagates in the recorded area, and how consistent this propagation pattern
is, see, e.g., [28]. For this reason, the present approach takes the coupling of
the closest activations from two recording sites one step further: After succes-
sively applying the coupling of activations to pairs of adjacent electrograms, a
natural advancement is to further combine couples of activations that have one
activation in common into wavefronts. This approach is, to our knowledge, the
first that provides insight into the propagation pattern of the electrical activity
along a catheter, including its consistency over time.

In AF, activation detection becomes increasingly difficult with a decreasing
degree of organization in the intra-atrial signals. In order to evaluate the degree
of organization of the signals, a frequency domain measure has been employed.
This measure is similar to the one used in [26], where it was shown to be helpful
when determining the appropriate time for successful defibrillation. In order to
both determine the optimal defibrillation time and the optimal atrial site for
defibrillation, the continuous wavelet transform (CWT) has been proposed [29].
The CWT is applied to each signal, and the degree of organization is deter-
mined from a measure related to the number of CWT coefficients needed to
represent the signal. This approach, which was introduced to increase defib-
rillation efficiency, underlines similar to the discussions on ablation guidance
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the need for methods that are able to analyze AF signals both over time and
space. However, the approach based on the CWT concerns only one atrial sig-
nal at a time, and allows thus no conclusions about how the electrical activity
propagates within the atria.

In this paper, the wavefront detection problem has been reduced to a prob-
lem involving only two recording sites at a time by processing adjacent pairs
of electrograms, which accounts for the fact that the coupling between two
atrial sites decreases with distance [10]. Previous approaches that involve two
recording sites often couple the closest activations in time [14, 15, 30]. In the
present approach, the distance between two coupled activations was restricted
to a maximum that was individually calculated for each recording and based
on the average atrial fibrillatory frequency. For an atrial fibrillatory frequency
of, e.g., 6 Hz, this meant that the distance was restricted to about 42 ms. This
restriction was introduced in order to prevent the coupling of activations that
cannot clearly be assigned to each other, see, e.g., the activations in H9 and
H11 in Fig. 4.

The present approach naturally involves the atrial activity from a larger
part of the atrial tissue than approaches that are based on recordings from only
two atrial sites, thus increasing the likelihood that more than one propagating
wavelet is involved. During the analysis of intra-atrial signal organization,
a measure of the dispersion of the atrial fibrillatory frequency between the
electrograms was used to indicate whether multiple wavelets may be present
in the recording area. While the atrial fibrillatory frequency can be similar in
all electrograms, multiple wavelets may, however, still be involved. Figure 4(a)
suggests that this can manifest itself in groups of electrograms between which
a coupling of the activations seldom is found. Consequently, the number of
complete detected wavefronts may be much smaller than the expected number
that is calculated from the fibrillatory frequency and the length of the recording.
In the future when a larger number of electrograms is involved in the analysis,
the analysis of “incomplete” wavefronts should also be considered. However,
in the present study, recordings with a majority of incomplete wavefronts were
disregarded in wavefront characterization.

Wavefront consistency can be interpreted as the strength of coupling or syn-
chronization between the recording sites. For the case when only two recording
sites are involved in the analysis, different measures of the degree of synchro-
nization have been proposed [14, 15]. To apply similar synchronization mea-
sures to the delays between the activations within the detected wavefronts is,
however, not desirable as this would require the choice of a reference electro-
gram. Besides of that no delay distribution would be available for the reference
site, the results would also vary based on which site that is chosen as a ref-
erence. In order to avoid problems related to the choice of a reference, the
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present approach subtracts the mean from each detected wavefront, such that
all wavefronts become centered around zero. This approach results in one de-
lay distribution for each electrogram, each one being a stand-alone statistic
interpretable independently from the others. Cross-correlation analysis also
suffers from the disadvantage that a reference must be chosen. Furthermore,
it is based on complete signal segments, rather than on single detected atrial
activations that are coupled to wavefronts as in the present method. Conse-
quently, a parameter such as wavefront consistency that reflects the variation
of the wavefronts over time cannot be provided by cross-correlation analysis.

In the present study it was of interest to relate the results of the wavefront
analysis to established parameters calculated from body surface signals. The
wavefront consistency showed no significant correlation to the body surface
parameters. A possible explanation is that both AF frequency and exponential
decay are parameters that have been time averaged over the entire signal,
thus not reflecting changes in the electrical activation pattern over time as
the wavefront consistency does. However, the correlation between wavefront
consistency and the standard deviation in AF frequency, reflecting the variation
of the AF frequency over time, was neither significant.

The distribution of the parameters AF frequency and exponential decay
were also evaluated between the groups of recordings with a too low and a
sufficient degree of intra-atrial signal organization. AF frequency was found to
be significantly lower in the recordings with a sufficient degree of intra-atrial
signal organization compared to recordings with too low degree of intra-atrial
organziation, see Fig. 6. This finding agrees with other studies that relate a
lower AF frequency to a higher AF organization [31, 32].

The proposed method has been evaluated on a database consisting of record-
ings from a Halo catheter in the right atrium, where in each patient five adja-
cent bipolar electrograms were chosen. However, the method is not restricted
to this type of catheter or to recordings from the right atrium, but can easily
be adapted to other one-dimensional catheters, e.g., from the coronary sinus.
Being aware of the underlying anatomy and distance between the recording
sites, even electrograms from different catheters could be used as input to the
analysis. A limitation of the database is that the five bipolar electrograms ex-
tracted from the recording system are not identical in all recordings, but vary
between four combinations. It would be desirable to evaluate the method on a
database with more homogenous data as well as a larger number of recording
sites.
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5 Conclusions

The present study showed that it is possible to detect wavefronts, reflect-
ing the propagation pattern of the electrical activity during AF along a one-
dimensional catheter, when taking intra-atrial signal organization aspects into
account. Methods were provided in order to analyze the detected wavefronts
regarding their consistency over time as well as the activation order along the
catheter. The degree of wavefront consistency provided insights into the tem-
poral variability of the activation order, an aspect which was not reflected by
the body surface parameters AF frequency and exponential decay. However,
AF frequency was able to distinguish between recordings with different degrees
of intra-atrial signal organization.
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A Novel Approach

to Propagation Pattern Analysis in

Intracardiac Atrial Fibrillation Signals

Abstract

The purpose of this study is to investigate propagation patterns in intracardiac signals

recorded during atrial fibrillation (AF) using an approach based on partial directed

coherence (PDC), which evaluates directional coupling between multiple signals in the

frequency domain. The PDC is evaluated at the dominant frequency of AF signals

and tested for significance using a surrogate data procedure specifically designed to

assess causality. For significantly coupled sites, the approach allows also to estimate

the delay in propagation. The method’s potential is illustrated with two simulation

scenarios based on a detailed ionic model of the human atrial myocyte as well as

with real data recordings, selected to present typical propagation mechanisms and

recording situations in atrial tachyarrhythmias. In both simulation scenarios the

significant PDCs correctly reflect the direction of coupling and thus the propagation

between all recording sites. In the real data recordings, clear propagation patterns are

identified which agree with previous clinical observations. Thus, the results illustrate

the ability of the novel approach to identify propagation patterns from intracardiac

signals during AF, which can provide important information about the underlying AF

mechanisms, potentially improving the planning and outcome of arrhythmia ablation.
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“A Novel Approach to Propagation Pattern Analysis in Intracardiac Atrial Fibrilla-

tion Signals”,

in Annals of Biomedical Engineering, 2010 (in press).





Propagation Patterns in Intracardiac AF Signals 129

1 Introduction

The mechanisms leading to the induction and perpetuation of atrial fibrillation
(AF), which is the most common arrhythmia in clinical practice, are still the
subject of extensive research. The complex electrical pattern observed during
AF has been explained with multiple wavelets that propagate along varying
routes throughout the atria [1]. More recently, available data has also sup-
ported a ‘focal’ mechanism, according to which drivers or foci, mainly located
in the pulmonary veins, trigger and sustain the propagation of the electrical
activity in the atria [2–4]. These observations have led to increased interest
in methods that analyze the atrial activity at multiple intracardiac sites, e.g.,
for the purpose of guiding the ablation catheter to the atrial sites at which the
arrhythmia originates or which represent arrhythmia substrates. One approach
to such guidance is to identify and ablate atrial sites with complex fraction-
ated atrial electrograms [5]. Another approach is based on the identification of
dominant frequency (DF) sites [6]. Despite a large number of follow-up studies,
recent publications show that such approaches are still controversial [7,8], and
therefore further studies are needed to better understand the mechanisms of
AF.

With the advancement of catheter technology, catheters that cover major
parts of the atria and allow for simultaneous recording of a large number of
electrograms have become available. This advancement makes it possible to
perform spatiotemporal analysis of the mechanisms during AF, e.g., in order
to characterize the propagation patterns of the electrical activity. The chal-
lenge of such analysis is to determine the interrelationship among all signals. In
contrast, most approaches involve either individual signals or pairs of signals to
quantify the electrical activity in terms of “organization”. In the time domain,
the proposed organization measures are often related to signal morphology or
activation times [9, 10]. The approach of coupling activation times in adjacent
pairs of signals [10] has recently been extended to more than two signals such
that activation wavefronts can be detected [11]. While this may identify cer-
tain propagation patterns, a disadvantage of the method is its dependence on
activation detection which becomes increasingly difficult with decreasing AF
organization. Also, coupling of activations cannot be established in certain
cases. These issues may be solved using frequency domain methods not requir-
ing activation detection, such as the coherence function, which has been used to
quantify AF organization based on pairs of electrograms [12]. While the coher-
ence function can differentiate between non-fibrillatory rhythms, such as sinus
rhythm and atrial flutter, and fibrillatory rhythms, i.e., AF, two major disad-
vantages have become apparent. Firstly, the coherence function cannot identify
the direction of coupling between the signals, i.e., the direction in which the
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electrical activity propagates. Secondly, the coherence function is only defined
for pairs of signals. Thus, when more than two simultaneously recorded signals
are to be analyzed, the coherence function is either calculated for all possible
combinations of pairs of signals, or one particular signal has to be chosen as
a reference on which the results strongly depend. A method that overcomes
these disadvantages is therefore highly desirable.

Even though frequency domain methods quantifying the directional cou-
pling among multiple signals have not been tested in AF studies, they have been
developed in other fields, especially for the analysis of brain signals [13–15]. The
methods are based on the fit of a multivariate autoregressive (MVAR) model to
multichannel recordings, characterizing causal coupling between multiple sig-
nals. The spectral representation of the MVAR process can be employed to
derive functions reflecting the causal coupling in the frequency domain, an ex-
ample being the partial directed coherence (PDC) function which is obtained
from decomposing the partial coherence [14, 15].

In the present study, we propose the PDC for the analysis of the propaga-
tion of the electrical activity within the atria during AF. In order to make the
method suitable for intracardiac signals, a preprocessing procedure is performed
before MVAR model fitting. The proposed approach for propagation pattern
analysis offers several advantages compared to existing methods: Firstly, it
quantifies the directional coupling and identifies the underlying propagation
pattern between the recording sites by employing a multivariate approach that
simultaneously evaluates all signals. Secondly, the method can handle an in-
creasing number of recorded signals and does not require any knowledge on the
relative positioning of the recording sites. These aspects are of special interest
during electrophysiological studies performed, e.g., in connection to ablation
procedures, where it is desirable to map larger parts of the atria in order to
identify from which direction the electrical activity originates. Yet another
advantage of the method is that the time delays between different recording
sites can be estimated. Finally, the frequency domain implementation avoids
certain difficulties that come with atrial activation detection.

The potential of the method will be illustrated with two simulation sce-
narios, modeling various propagation mechanisms in play during atrial tach-
yarrhythmia such as atrial flutter and AF, and real data recordings of atrial
flutter and AF, acquired with either one- or two-dimensional catheters.
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2 Methods

2.1 Preprocessing

The preprocessing consists of bandpass filtering (finite impulse response (FIR),
40–250 Hz, order 40, Kaiser window), rectification, and lowpass filtering (FIR,
0–20 Hz, order 40, Kaiser window) [16]. After the filtering, the sampling rate
is decimated to 100 Hz, and the mean is subtracted from each electrogram.

In the time domain, the preprocessing results in signals with an amplitude
proportional to the high-frequency components (40–250 Hz), which correspond
to the rapid changes in amplitude characteristics of the activations. In the
frequency domain, the preprocessing results in spectra with a pronounced fun-
damental frequency [17]. Figure 1 illustrates how the preprocessing emphasizes
the rhythm in the signals as opposed to signal morphology by displaying five si-
multaneously recorded bipolar electrograms from the right atrium (RA) during
AF both before and after preprocessing.
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Figure 1: Preprocessing of five simultaneously recorded bipolar elec-
trograms from the RA during AF. The amplitude scale is in arbitrary
units. (a) Original electrograms. (b) Preprocessed electrograms.

2.2 Multivariate Autoregressive Modeling

Each set of N simultaneous observations x(n) = [x1(n) · · ·xN (n)]T , obtained
from different sites in the atria, is assumed to be represented by an MVAR
model of order m

x(n) =

m
∑

k=1

Akx(n− k) + w(n), (1)
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where each Ak is an N × N matrix comprising the AR coefficients aij(k),
i, j = 1, . . . , N , and w(n) = [w1(n) · · ·wN (n)]T is a multivariate white noise
process characterized by the diagonal covariance matrix Σw, in which each
diagonal element σ2

jj defines the variance of wj(n).
The PDC from xj(n) to xi(n) can be derived from factorization of the

partial coherence function [14, 15], and is given by

πij(f) =
1

σii
Āij(f)

√

∑N
k=1

1
σ2

kk

|Ākj(f)|2
, (2)

where Āij(f) is an element of the matrix Ā(f), which is based on the Fourier
transform (FT) of the MVAR process in Eq. (1),

Ā(f) = IN×N −
m
∑

k=1

Ake
−2πfk, (3)

where I is the unity matrix. The definition in Eq. (2) is that of the generalized
PDC [15], being especially useful in the case of widely different variances σ2

jj .
The denominator of the PDC serves as a normalization with respect to the
source, i.e., xj(n), such that

N
∑

i=1

|πij(f)|2 = 1 (4)

and
0 ≤ |πij(f)|2 ≤ 1. (5)

Given this normalization, the value of the magnitude-squared PDC |πij(f)|2
from j to i represents the strength of the direct coupling from xj(n) to xi(n)
at frequency f , viewed in relation to the direct coupling strength of xj(n) to
all other signals xk(n), k 6= i, at that frequency. For reasons of convenience,
the magnitude-squared PDC |πij(f)|2 is referred to as PDC in the following.

During AF, the PDC is of special interest in an interval centered around the
DF of the source xj(n), here assumed to represent the mean atrial fibrillatory
cycle length at the corresponding recording site. Thus, the integrated PDC is
defined by [18]

Π2
ij =

1

2∆f

∫ f0+∆f

f0−∆f

|πij(f)|2df, (6)

where f0 is the DF, corresponding to the highest peak in the 3–12 Hz range of
the auto-spectrum of xj(n), denoted Sjj(f), and ∆f is a parameter determining
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the width of the integration interval. The integral is normalized such that,
similar to the PDC, it ranges from 0 to 1, and thus represents the average
coupling from xj(n) to xi(n) in the frequency range of interest. In case no
obvious DF can be identified in signal xj(n), the corresponding Π2

ij is set to
zero for all i. The auto-spectra Sjj(f) are the diagonal elements in the power
spectral density matrix of the MVAR process, defined as

S(f) = Ā−1(f)Σw(Ā−1(f))H . (7)

The time delay from xj(n) to xi(n), denoted ∆ij , can be estimated from
the phase spectrum φij(f) of the corresponding cross-spectral density [19],

Sij(f) = |Sij(f)|eφij(f), (8)

which is obtained from Eq. (7). The delay ∆ij is equal to that value of δ which
maximizes the integral, i.e.,

∆ij = arg max
δ

∫ f0+∆f

f0−∆f

Cij(f)

1 − Cij(f)
cos [φij(f) − 2πfδ]df, (9)

where Cij(f) is the magnitude-squared coherence spectrum defined as

Cij(f) =
|Sij(f)|2

Sii(f)Sjj(f)
. (10)

The estimator in Eq. (9) evaluates the weighted goodness-of-fit of a line with
slope δ to the phase spectrum over the frequency range of interest. The de-
lay estimation is only computed when the corresponding integrated PDC is
significant, see Sec. 2.4.

2.3 Model Identification and Selection

The AR coefficient matrices Ak are estimated using the least-squares (LS)
method, and the optimal model order m is determined by the Bayesian in-
formation criterion (BIC) [20]. The best model order was searched for in the
range 1 to 15. The model order is chosen as that value of m for which the min-
imum is reached, or, in case the BIC does not reach a minimum, an additional
model selection criterion is defined where that value of m is chosen for which
the successive difference in BIC is smaller than 5% of the largest successive
difference.
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2.4 Surrogate Data Testing

The significance of the PDC |πij(f)|2 is assessed separately for each coupling
by means of a statistical approach based on surrogate data testing [21]. The
method of surrogate data relies on computing the index of interest, i.e., the
PDC |πij(f)|2, both on the original time series x(n) and on a set of surrogate

time series y(l)(n) = [y
(l)
1 (n) · · · y(l)

N (n)]T , l = 1, . . . ,M . The latter time series
lacks by construction the investigated property, i.e., there is no direct causal

coupling from y
(l)
j (n) to y

(l)
i (n). A statistical test is then applied to compare

the values of the index of interest for the original series and for the set of
surrogate series. The index is assumed to be significant if the original value
lies above a certain percentile of the distribution of values obtained from the
surrogates.

In detail, it is assumed that an MVAR model has been fitted to x(n),
resulting in estimates of Ak, k = 1, . . . ,m, and Σw. To test the significance of
the PDC, e.g., from xj(n) to xi(n), the M surrogates y(l)(n) are computed by
repeatedly applying the following procedure (the surrogate index l is omitted
hereafter for simplicity). First, a new set of signals x̌(n) is computed using
N independent noise realizations (∼ N (0,Σw)) as input to the MVAR model
defined by Ǎk = Ak, with ǎij(k) = 0, k = 1, . . . ,m, implying that there is
no direct coupling from x̌j(n) to x̌i(n). After calculating the FT of x(n) and

x̌(n), i.e., Xi(f) = |Xi(f)|e∠Xi(f) and X̌i(f) = |X̌i(f)|e∠X̌i(f), respectively,

i = 1, . . . , N , the FT of y(n) is defined as Yi(f) = |Xi(f)|e∠X̌i(f), such that
the absolute values of the FT of y(n) are identical to those of x(n) at each
frequency, while the phase is altered such that there is no direct coupling from
yj(n) to yi(n) at any frequency. Finally, the surrogate series y(n) is obtained
by computing the inverse FT of Yi(f), i = 1, . . . , N .

The significance threshold |π̃ij(f)|2 is then, at each frequency, defined as the
95th percentile of the PDCs calculated from the M surrogates, i.e., |πij(f)|2
of the original signals is considered to be significant (p < 0.05), if it exceeds
|π̃ij(f)|2. Similarly, the integrated PDC is calculated for each surrogate series,

and the 95th percentile defines the significance threshold Π̃2
ij : a significant

direct coupling is said to exist from xj(n) towards xi(n) if Π2
ij > Π̃2

ij .

3 Database

The database comprises simulated electrograms from two different simulation
scenarios as well as electrograms from patients with atrial flutter and AF
recorded with either one- or two-dimensional catheters.
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3.1 Simulation Model

Computer simulations were performed employing the Courtemanche–Ramirez–
Nattel (CRN) ionic model [22] in a monodomain formulation. The model, which
has been specifically developed for the human atrial action potential, computes
the cell transmembrane potential V by the reaction-diffusion equation

∂V

∂t
= ∇ · D∇V − Iion

Cm
+
Ist

Cm
, (11)

where Iion is the total ionic current, Ist is an external stimulus current, Cm

is the membrane capacitance, and D is the diffusion tensor. The total ionic
current Iion consists of 12 separate contributions, which represent the ionic and
pump currents and include reticular calcium handling. A detailed description
of the currents and their representation can be found in [22].

The ionic model was implemented on a simplified anatomy, represented by
a monolayer sphere with a diameter of 6 cm. The sphere was discretized into
a triangular mesh comprising approximately 125.000 nodes, which resulted in
a spatial resolution of about 300 µm. The diffusion tensor D was considered
uniform and isotropic. The partial differential equations of the CRN model
were solved by employing the forward non-standard Rush-Larsen integration
scheme [23] for the reaction part, while a finite volume method for an irregular
mesh [24], integrated with a standard forward Euler scheme, was used for
the diffusion part. The integration time step was fixed to 0.1 ms, which was
sufficiently small to guarantee the stability of both integration schemes.

Simulated bipolar electrograms corresponding to different simulation pat-
terns were obtained by applying the current source approximation [25]. Specif-
ically, the extracellular potential at spatial position y was computed according
to

ϕ(y) =

Nk
∑

k=1

Ik
m

||yk − y||Ωk, (12)

where the sum is extended to all the Nk nodes of the mesh, Ik
m is the trans-

membrane current per unit area at node k, yk is the position of node k, and
Ωk is the area corresponding to node k. In order to obtain bipolar electro-
grams, electrode pairs with an intra-electrode distance of 2 mm were placed
at a distance of 0.5 mm from the surface of the sphere. Bipolar electrograms
were computed as the difference between the extracellular signals recorded at
the corresponding electrode pair. For each simulation pattern, 5-s signals were
obtained with a sampling rate of 1 kHz and used for further validation of the
method.
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3.2 Simulation of Atrial Tachyarrhythmias

The first scenario is a simulation of atrial flutter, modeled as a reentry around
an anatomical obstacle with a diameter of 1.3 cm. The diffusion coefficient was
set to 0.3 cm2/s. In order to induce reentrant activity, a single electrical im-
pulse was delivered in proximity to the anatomical obstacle, while a temporary
unidirectional conduction block was present. The subsequent removal of the
block allowed the establishment of a self-sustained activation of the tissue. As
shown in Fig. 2(a), the reentrant wave activated first the tissue at recording site
S1, and subsequently passed by recording sites S2 to S5. The corresponding
signals, obtained after stabilization of the reentrant activity, are displayed in
Fig. 2(b).

The second scenario is a simulation of AF, mimicking multiple wavelet prop-
agation in the presence of a regularly firing ectopic focus. Sustained AF was
created starting from a configuration with two functional spiral reentries, which
were initiated by a single electrical impulse delivered adjacent to a temporary
line of block. Subsequently, the currents of the ionic model Ito, ICa,L, IKur , and
IKr (see [22] for definitions) were modified according to [25] in order to obtain
a restitution curve which caused repeated spiral breakups and the formation
of a multiple wavelet pattern. After 10 s of sustained AF, a point source firing
with a period of 275 ms became active at the upper pole of the sphere. The
diffusion coefficient was 0.2 cm2/s throughout the entire scenario. As shown in
Fig. 2(c), the result is a regular propagation in proximity to the focus (site S1),
which progressively deteriorates when entering the area dominated by the mul-
tiple wavelet behavior (lower part of the sphere). The simulated signals were
obtained after the point source became active and are displayed in Fig. 2(d).

3.3 Electrograms from Patients with Atrial Arrhythmias

The first case is a recording from a patient with atypical left atrial flutter.
Atrial bipolar electrograms were recorded with a decapolar catheter in the
coronary sinus (CS). Five-second electrograms corresponding to the equally
spaced bipolar electrodes CS1/2, CS5/6, CS9/10, and CS13/14 from distal
to proximal CS were extracted for analysis, see Fig. 3. In the following, the
electrograms from CS1/2 to CS13/14 are indexed by i = 1, . . . , 4.

Two other cases comprise AF signals acquired with different mapping
modalities, i.e., by a linear or a basket catheter, respectively. In the first
patient with persistent AF, electrograms were recorded using a dual decapolar
catheter (Cordis Webster Deflectable Halo) placed in the RA, with bipolar
electrodes recording the atrial activity from the low lateral (H1/H2) to the
septal wall (H19/20). H13/H14 recorded atrial activity in approximately the
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Figure 2: Illustration of the simulation scenarios: (a,c) Snapshots of
the membrane voltage with the electrode positions indicated (snapshots
are 120 ms apart) for the simulation of an anatomical reentry and the
simulation of AF, respectively. (b,d) The electrograms corresponding
to the simulation of an anatomical reentry and the simulation of AF,
respectively. See text for further details.

high septal wall. Five-second electrograms corresponding to the five bipoles
H11/12 to H19/20 in the septal wall, in the following indexed by i = 1, . . . , 5,
were chosen for further analysis, see Fig. 1(a).

In the second patient with paroxysmal AF, the electrophysiological study
was performed with a multielectrode basket catheter (Constellation catheter,
EP Technologies, Boston Scientific) in the RA. The basket catheter consisted
of eight splines, each carrying eight equally spaced electrodes (4 mm inter-
electrode distance). Thirty-two bipolar intracardiac electrograms were acquired
by coupling adjacent pairs of electrodes (CardioLab System, 30–500 Hz [Prucka
Engineering, Inc.]). In this patient, six electrodes had to be excluded because
of poor signal to noise quality. From the recording of the remaining 26 elec-
trodes, 5 s were chosen for analysis. A schematic representation of the recording
positions and the original electrograms, illustrating varying degrees of signal
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Figure 3: Electrograms from a patient with atrial flutter. (a) Original
electrograms. (b) Preprocessed electrograms.

organization, are shown in Figs. 4(a) and (b), respectively.
All electrograms were digitized at a sampling rate of 1 kHz.

4 Results

The results were obtained for f∆ set to 0.5 Hz, cf. Eqs. (6) and (9), and the
number of surrogates y(n) was chosen to M = 100.

4.1 Simulation Scenarios

Simulation of a Reentry Around an Anatomical Obstacle

The results from the MVAR analysis (p = 5) are presented in Fig. 5. The
estimated auto-spectra of the signals are displayed on the diagonal, exhibiting
a clear harmonic pattern for all signals. Off-diagonal, the PDCs are shown
together with their corresponding significance thresholds. The direct coupling
of, e.g., the signal recorded at site S1 towards the other signals is reflected by
|πi1(f)|2, i > 1, displayed in the first column. A significant direct coupling
from S1 is only identified towards S2, as only |π21(f)|2 exceeds its significance
threshold. As a consequence of the stable propagation pattern and the high
signal organization, a significant coupling can in fact be observed across the
entire frequency range. Of specific interest is |π21(f)|2 at those frequencies
for which S11(f) has the highest power, i.e., the highlighted frequency range
around the DF. The integrated PDC over this frequency range, Π2

21, yields
0.82. In terms of propagation, these observations lead to the conclusion that
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Figure 4: (a) Schematic representation of the open RA with the po-
sition of the bipolar recording sites on the intracardiac wall. The eight
splines of the basket catheter were positioned on the anterior, lateral,
posterior, and septal walls, as well as on intermediate positions. (b)
Original electrograms.

there is an activation wavefront propagating from S1 to S2. In case the wave-
front propagates further to any other recording site, this should be reflected by
|πi2(f)|2. In fact, only |π32(f)|2 exceeds its significance threshold (Π2

32 = 0.61),
indicating that the activation wavefront propagates from S2 to S3. The PDCs
|π43(f)|2 and |π54(f)|2 exceed their significance thresholds for the frequency
range of interest, and thus it can be concluded that the activation wavefront
propagates from S3 to S4 to S5. The corresponding integrated PDCs Π2

43 and
Π2

54 equal 0.82 and 0.66, respectively.
The delays ∆21, ∆32, ∆43, and ∆54 are equal to 27 ms, 51 ms, 52 ms, and

50 ms, respectively. For this particular case with well-organized propagation,
the delays can also be estimated by detecting the activations in all electrograms
and coupling the closest activations from adjacent recording sites [10]. The
delays, taken as the time difference within these activation pairs, yield 28±4 ms
(mean±std), 51±5 ms, 54±5 ms, and 50±3 ms, and thus ∆21, ∆32, ∆43, and
∆54 are within ±1 standard deviation of these values.
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Figure 5: MVAR analysis applied to simulated reentry signals. On
the diagonal: The auto-spectra of the signals for f ∈ [0, 25] Hz. Off-
diagonal: The PDCs |πij(f)|2 (solid line) and the corresponding signif-
icance thresholds |π̃ij(f)|2 (dashed line) for f ∈ [0, 25] Hz. The area
beneath |πij(f)|2, f ∈ [f0−∆f ,f0 +∆f ], has been highlighted when Π2

ij

is significant.

Simulation of AF

Figure 6 presents the results of the MVAR analysis (p = 5) applied to the sim-
ulation of AF. Compared to the previous case, the auto-spectra exhibit a less
pronounced but still discernible harmonic pattern. From the PDCs, a signifi-
cant direct coupling can be observed from S1 → S2 → S3 → S4. Furthermore,
no significant direct coupling is present towards recording site S5. It can thus
be concluded that there is an activation wavefront which is passing by S1, S2,
S3, and S4, but which is not propagating further towards S5. This reflects
well the propagation of the activation wavefront starting at the point source
as well as the more chaotic propagation on the lower half of the sphere, which
results in the absence of significant direct coupling from or towards S5. The
decreasing values of Π2

21, Π2
32, and Π2

43, being equal to 0.59, 0.31, and 0.15,
respectively, indicate the decreasing relevance of the activation wavefront for
the atrial activity at S1 to S4. The delays ∆21, ∆32, and ∆43 are estimated to
51 ms, 48 ms, and 56 ms, respectively.
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Figure 6: MVAR analysis applied to simulated AF signals, see Fig. 5
for details.

4.2 Recordings of Patients with Atrial Tachyarrhythmias

Atrial Flutter Data

The results of the MVAR analysis (p = 5) show that the auto-spectra are char-
acterized by harmonic patterns with decreasing power towards higher frequen-
cies, see Fig. 7. The significant integrated PDCs indicate a distal-to-proximal
propagation of the electrical activity along the catheter and reflect, because of
the anatomic position of the CS, the sequential activation of the left atrium
by the reentrant wavefront. In detail, the integrated PDCs corresponding to
the direct coupling from CS1/2 towards CS5/6, CS5/6 towards CS9/10, and
CS9/10 towards CS13/14 yield 0.82, 0.28, and 0.31, respectively. The corre-
sponding delays ∆ij yield 29 ms, 31 ms, and 38 ms, respectively, which suggests
a propagation along the catheter. Similar to the simulation of reentry, the de-
lays estimated from the detected activation times can be used for validation.
These delays yield 26±3 ms, 31±2 ms, and 40±7 ms.

AF Data: Linear Catheter Recording

The results from the MVAR analysis (p = 4) are shown in Fig. 8, where it
can be seen that the auto-spectra are characterized by a dominant peak and a
decreasing power towards higher frequencies. The significant integrated PDCs
indicate an activation wavefront propagating from an inner electrode of the
catheter (H13/14) to the remaining electrodes at both sides. Specifically, in
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Figure 7: MVAR analysis applied to atrial flutter data, see Fig. 5 for
details.

the high septal RA a propagation from H13/14 to both H11/12 (Π2
12 = 0.29)

and H15/16 (Π2
32 = 0.31) can be identified. From H15/16, the activation

wavefront is propagating further towards H17/18 (Π2
43 = 0.49) and H19/H20

(Π2
54 = 0.33). The delay from H13/14 towards H11/12 and H15/16 is estimated

to 25 ms and 19 ms, respectively. Furthermore, the delays from H15/16 towards
H17/18 and further towards H19/20 are estimated to 5 ms and 10 ms, respec-
tively. The large variation in propagation delay indicates that the wavefront is
probably not propagating exactly along the catheter.

AF Data: Two-Dimensional Catheter Recording

MVAR analysis (p = 4) was performed on all 26 available electrograms. In
order to simplify the interpretation, the significance thresholds Π̃2

ij are rede-
fined to the 99th percentile, such that significance is given with p ≤ 0.01. In
this way, 4.5% of the theoretically possible directed coupling paths between
the recording sites are found to be significant; Π2

ij ranges from 0.07 to 0.30
(0.15±0.06). The propagation pattern is illustrated by the directed graph in
Fig. 9(a). The analysis evidences an activation wavefront propagating from the
high septal region towards the lateral and septal walls in craniocaudal direc-
tion. In more detail, the larger values of Π2

ij indicate an impulse from the LA
entering the RA in the high septal region, nearby CD5 and EF1, from where
the propagation divides into two wavefronts. One wavefront propagates along
the superior RA towards the high lateral wall (AB1), which is subsequently
activated in craniocaudal direction. The second wavefront propagates along
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Figure 8: MVAR analysis applied to AF data recorded with a linear
catheter, see Fig. 5 for details.

the superior RA towards the high anterior wall (GH1), as well as from the mid
antero-septal to the anterior wall, where the two wavefronts meet again (GH3).
A similar directed graph illustrates the corresponding propagation delays in
Fig. 9(b), ranging from 2 ms to 87 ms (24±19 ms).

5 Discussion

A novel approach to the analysis of atrial propagation patterns is proposed and
evaluated on simulated as well as real data, representing typical propagation
mechanisms and recording situations. While the MVAR frequency domain de-
scription has been considered in brain signal analysis, see, e.g., [13–15], several
modifications have been made here to improve performance for intracardiac
signal analysis. While the spectra of the electrograms mainly reflect signal
morphology, the preprocessing emphasizes the rhythm, which results in spec-
tra characterized by a pronounced fundamental frequency corresponding to the
DF. As a result, not only are lower MVAR model orders needed to describe
the signals, but the interpretation of the PDC is simplified. Specifically, the
evaluation of the PDCs from intracardiac AF signals can be restricted to the
frequency range of interest centered around the DF, as implemented in Eq. (6).
In fact, the PDC integrated within this frequency range reflects the strength
of coupling between the rhythmic activities at the two considered atrial sites.
Significant PDC values outside this range, though being expected when the an-
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Figure 9: MVAR analysis applied to AF data recorded with a two-
dimensional catheter. Illustration of the results for 26 simultaneously
recorded electrograms from the RA. (a) A directed graph representing
the significant integrated PDCs Πij (p ≤ 0.01). The width of the arrows
is related to the size of the corresponding Πij . (b) A directed graph in
which the width of the arrows is related to the size of the corresponding
delay ∆ij .

alyzed signals exhibit harmonic patterns in the frequency domain, are of little
physiological interest and can thus be excluded from further analysis. Another
advancement in the present paper is the application of a recently proposed
surrogate data approach [21] which is especially well-suited for the PDC as it
preserves the causal coupling in all directions but the direction under evalua-
tion. Furthermore, the frequency domain representation of the MVAR model is
also employed to estimate the delays along directions with significant coupling,
facilitating the estimation of propagation delays. The delays are usually not of
interest in brain signal analysis, whereas they provide interesting insights on
AF propagation patterns through the estimation of atrial conduction times.

The PDC belongs to a class of causality measures which are frequency
domain representations of Granger causality [26]. According to this concept,
there is Granger causality from signal xj(n) to signal xi(n) if knowledge about
past values of xj(n) improves the prediction of xi(n). MVAR modeling has
become the most common tool to identify Granger causality, and from the
definition in Eq. (1), it can be seen that Granger causality from xj(n) to xi(n)
is reflected by certain aij(k) being different from zero. Measures such as the
PDC represent this concept in the frequency domain: Eq. (2) shows that the
absence of Granger causality from xj(n) to xi(n) results in a PDC which is zero
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for all frequencies. The link between causality in the time and frequency domain
makes the PDC a powerful tool as direct coupling from xj(n) to xi(n) can be
evaluated at a specific frequency. In the literature there are also other, widely
used frequency domain measures similar to the PDC, such as the Directed
Coherence (DC) [27]. In contrast to the PDC, the DC quantifies the presence
of both direct and indirect coupling, which results from the fact that DC and
PDC are defined as factors in the decomposition of the ordinary coherence
and the partial coherence, respectively [14]. This leads to different fields of
application for the two measures: while the PDC is especially suitable for
tracking the path of the direct information flow, the DC is advantageous when
the main interest is to identify the source of the information flow. In the present
paper, the analysis of propagation patterns of the electrical activity has been
prioritized over source identification.

The present study aims at demonstrating the potential of the method for
analysis of atrial arrhythmia mechanisms. For this purpose, two scenarios have
been simulated using the CNR model, which has proved to be particularly
useful for the simulation of human atrial arrhythmias and the reproduction of
realistic electrograms [25]. The results showed that the PDC well reflected the
known simulated patterns, thereby validating the use of the evaluated approach
in the analysis of atrial electrograms. This is an important result, as MVAR
modeling assumes that the signal is stationary over the analyzed time window
and that only linear coupling is present, while the propagation during AF can
change over time and the coupling is known to be both linear and non-linear,
see, e.g., [28]. During the simulation of AF with an ectopic focus, the propaga-
tion on the lower part of the sphere was disorganized, thus resulting in signals
in which non-linear and non-stationary features are likely to be predominant.
However, the results showed that the absence of a stable and coherent rhythm
is reflected by a low or non-significant PDC, while the couplings on the upper
part of the sphere, where the propagation was more organized, could still be
correctly identified.

Regarding the values of the PDC, it is important to consider the normal-
ization in Eq. (4), which states that the sum of the PDCs from one signal
to all other signals must be 1 at all frequencies. This normalization implies
that the PDC can have large values even at frequencies at which the power
of the source signal is low, see, e.g., Fig. 5. However, a large value at a fre-
quency at which the power spectrum is low is actually of little relevance. Thus,
when interpreting the PDC, it is important to consider both the significance
thresholds and the power spectra. The latter has been taken care of by inter-
preting the PDC at the DF, which, after the preprocessing, almost always has
the largest power. While a pronounced DF is not a prerequisite for finding a
significant causal coupling, it reflects the presence of a pronounced rhythm in
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the corresponding time signal, and thus a propagation as well as a significant
causal coupling leading towards or away from the corresponding recording site
becomes more likely. On the other hand, two sites having different rhythms,
reflected by different DFs, or a site with a less pronounced rhythm, reflected
by a less pronounced DF, are more likely to have low PDCs, indicating the
absence of propagation. The behavior of the method in such rare cases as a
2:1 conduction block, during which there is a regular propagation between two
sites though the corresponding DFs differ by a factor of two, would be highly
interesting to investigate.

In a recent study [29], Elvan et al. found that the DF during AF correlates
poorly with AF cycle length, and therefore recommended time domain analy-
sis of the electrogram. While their results would call in question the present
approach, being inherently frequency domain in nature, certain aspects of the
study by Elvan et al. have been the subject for discussion, including their
algorithms used for noise rejection, preprocessing and the determination of
dominant frequency [30, 31]. In another recent study, Grzeda et al. [32] found
that frequency domain analysis was more robust than time domain analysis in
detecting the average local activation rate.

The method was evaluated on both atrial flutter and fibrillation electro-
grams, recorded with different mapping modalities. The evaluation of the prop-
agation pattern during atrial flutter evidenced the typical sequential activation
found during reentrant activity. The propagation patterns evidenced during AF
provided more detailed information about the underlying mechanisms of the
arrhythmia. In both cases, the site of earliest activation within the recording
area was found to be in the high septal RA, suggesting atrial impulses entering
the RA from the left atrium through the Bachmans bundle region. This agrees
with the role of the LA as a driver of AF as well as with previous findings
about RA breakthrough sites [33, 34]. Moreover, RA activation observed in
paroxysmal AF, involving the earliest activation of the upper septal region and
a subsequent cranio-caudal spreading in both the lateral and septal RA, is in
agreement with previous clinical observations [33–35]. Interestingly, this spe-
cific RA activation pattern has been associated to the presence of a focal source
in the right upper pulmonary veins [35]. These results further emphasize the
potential of the method in extracting information about the underlying propa-
gation pattern, which has substantial value during electrophysiological studies,
especially when performed in connection to ablation procedures. Nevertheless,
additional validation is required before introducing the approach into clinical
practice. In future studies, it would thus be of interest to further evaluate
the method on a larger database recorded during atrial arrhythmia, which ide-
ally should also comprise recordings from the left atrium. The computational
time of the algorithm is compatible with practical utilization in electrophysiol-
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ogy; the most time consuming part being the significance test, which may take
several minutes. However, optimization and utilization of simpler algorithms,
such as phase randomization [21] or theoretical significance levels [36], should
be investigated.

In the example of paroxysmal AF recorded with a basket catheter weaker
direct couplings over longer distances are also observed, e.g., from AB1 to EF7.
From a physiological point of view, such couplings are less likely. Methodolog-
ically, they can arise from the fact that LS estimation tends to overfit the
MVAR model when the number of unknown MVAR coefficients, Np, exceeds
the sample size [37]. A possibility to improve the estimation of the MVAR co-
efficients and the corresponding propagation delays in such a case is to consider
estimation methods that encourage sparsity by putting constraints, such as the
L1-norm, on the LS estimation [37]. In addition, sparse estimation methods can
be motivated by the observation that connectivity during AF may be viewed
as a priori sparse, as it is well-known that coupling between the recording sites
during AF decreases with increasing distance. Currently, we are investigating
approaches to sparse MVAR model estimation, as well as the possibility to in-
corporate information about the distance between the recording sites into the
estimation, to improve the method when a larger number of signals is involved.

In the present study, the analysis is performed over 5-s time windows, thus
revealing propagation patterns which are stable over a larger number of activa-
tion wavefronts. This is in contrast to methods relying on activation detection,
which, provided that AF organization is sufficiently high, facilitate the de-
tection and characterization of individual activation wavefronts. In order to
improve time resolution and track temporal variations in the propagation pat-
tern, the time window should be shortened, and the MVAR model coefficients
estimated adaptively [18]. Furthermore, the analysis could be improved by a
modeling approach which is able to capture linear as well as non-linear cou-
pling. Tests performed in the present study to check the assumption that the
MVAR model is generated by a multivariate white noise process revealed that,
in some cases, minor correlation between the residuals exists. However, multi-
variate approaches to non-linear Granger causality have never been performed
in AF signal analysis. So far, the concept of non-linear Granger causality has
only been addressed briefly relative AF, employing a bivariate measure [38]; bi-
variate signal analysis is a common restriction of most approaches to non-linear
causality [39, 40]. Another disadvantage is that non-linear Granger causality
has a time domain representation only, thus missing the benefits of a frequency
domain representation which can be evaluated for a specific frequency range
such as the DF. Nevertheless, a multivariate approach to non-linear causality
could allow further exploration of the nature of the mechanisms underlying
propagation patterns during atrial arrhythmias.
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6 Conclusions

In the present paper, a novel approach has been introduced to the characteriza-
tion of atrial propagation patterns during atrial tachyarrhythmias. The method
can identify the underlying propagation mechanisms and serve as a support for
the electrophysiologist when locating ablation sites. Moreover, the possibility
of quantifying the propagation pattern in terms of direction and strength of the
coupling as well as the propagation delay can be applied to efficiently evaluate
such patterns in existing databases.
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152 PAPER III

“Estimating brain functional connectivity with sparse multivariate autore-
gression,” Phil. Trans. Roy. Soc. Lond. B Biol. Sci., vol. 360, pp. 969–981,
2005.

[38] B. P. T. Hoekstra, C. G. H. Diks, M. A. Allessie, and J. DeGoede, “Non-
linear time series analysis: methods and applications to atrial fibrillation,”
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Propagation Pattern Analysis

in Intracardiac Atrial Fibrillation

Signals Based on Sparse Modeling

Abstract

In the present study, sparse modeling is introduced for the estimation of propagation

patterns in intracardiac atrial fibrillation (AF) signals. The sparsity can be moti-

vated by the observation that direct couplings over longer distances are likely to be

zero during AF. The estimation of the propagation patterns is based on the partial di-

rected coherence (PDC), which evaluates the direct coupling between multiple signals

in the frequency domain and is derived from the fit of a multivariate autoregressive

(MVAR) model, commonly estimated by the least-squares (LS) method. In order to

avoid overfitting of the MVAR model and to incorporate prior information such as

sparsity and the distances between the recording sites, the adaptive group least ab-

solute selection and shrinkage operator (LASSO) is introduced, and furthermore, the

distance-adaptive group LASSO is proposed. In simulations, adaptive and distance-

adaptive group LASSO are found to be superior to LS estimation in terms of detecting

the direct couplings and estimating their corresponding strength through the PDC.

The method is also evaluated on an AF recording obtained with a two-dimensional

catheter, showing that the identification of the propagation pattern can be substan-

tially simplified by the sparsity coming with adaptive and distance-adaptive group

LASSO. This further promotes the PDC as a method for analysis of AF propagation

patterns, which may contribute to a better understanding of AF mechanisms as well

as improved AF treatment.
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1 Introduction

In current clinical practice, surgical treatment of atrial fibrillation (AF) is
mainly restricted to a standardized ablation procedure at the pulmonary veins.
Recent progress indicates however that future ablation treatment of AF will be
tailored to the individual patient in order to achieve optimal success rates [1–3].
Therefore, methods are required which can improve the understanding of AF
mechanisms and accurately guide the ablation catheter to the atrial sites at
which the arrhythmia originates or which represent arrhythmia substrates.
Methods for propagation pattern analysis are thus of interest as they have
the potential to point out ectopic foci or identify reentrant activities.

Time domain analysis of propagation patterns is usually based on activa-
tion detection and the grouping of detected activations into wavefronts [4–6].
An advantage of such methods is their potential to detect and analyze indi-
vidual wavefronts. However, it is problematic to detect activation times when
AF organization is low. In such cases, the high complexity of the propagation
patterns makes it difficult to decide which of the activations should be assigned
to the same activation wavefront. Frequency domain analysis of AF propaga-
tion patterns can, to some extent, overcome these disadvantages. Recently, our
group proposed the usage of the partial directed coherence (PDC) function for
propagation pattern analysis during AF [7]. The PDC quantifies the causal
coupling between multiple signals in the frequency domain, which previously
has been successfully employed for the analysis of brain signals [8, 9]. The
potential of the PDC when applied to intracardiac AF signals was illustrated
with both simulation scenarios and real data recordings, selected to present
typical propagation mechanisms and recording situations [7]. In the simulation
scenarios, the method could correctly identify the coupling direction and thus
the propagation between all recording sites. Furthermore, the identified prop-
agation patterns in the real data recordings were found to agree with previous
clinical observations.

The derivation of the PDC is based on the fit of a multivariate autore-
gressive (MVAR) model to multichannel recordings. In order to estimate the
MVAR coefficients, least-squares (LS) estimation is commonly employed. The
estimation of the MVAR coefficients can be improved, e.g., with respect to
overfitting, by considering methods that put constraints on the LS solution.
Further improvements may be achieved by considering constraints which also
encourage sparsity, which is in contrast to the assumption of “full” connectivity
during LS estimation, i.e., coupling between all recording sites. The usage of
sparse estimation methods in the context of AF can be justified by the ob-
servation that connectivity during AF may be viewed as a priori sparse, as
it is well-known that the coupling between the recording sites during AF de-
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creases with increasing distance. Thus, those MVAR coefficients which model
the coupling between distant recording sites are more likely to be zero.

Constraints based on the least absolute selection and shrinkage operator
(LASSO) [10] have been shown to be particularly effective for reducing the com-
plexity of models by shrinking certain coefficients to exactly zero. In the present
paper, the adaptive group LASSO [11] is proposed for improving the MVAR
modeling of atrial activity during AF. As the name suggests, this LASSO vari-
ant allows the construction of groups of the unknown parameters which can
be pruned jointly. Thus, MVAR coefficients which model the coupling from
one signal to another should be grouped together, leading to a solution which
is sparse with respect to both the MVAR coefficients and the causal coupling.
In the adaptive group LASSO, a different amount of shrinkage can be applied
to different groups of MVAR coefficients, which also opens for the possibility
to incorporate information on the distance between the recording sites into
the analysis. By achieving better estimates of the MVAR coefficients, errors
which may propagate from the estimated MVAR coefficients to the PDC can
be prevented.

In the following, the impact of MVAR modeling on the estimation of the
PDC when employing LS as well as adaptive and distance-adaptive group
LASSO will be evaluated based on simulations, in which the true MVAR
model is known, as well as on an AF recording acquired with a two-dimensional
catheter.

2 Methods

2.1 Multivariate Autoregressive Modeling

Each set of N simultaneous observations x(n) =
[

x1(n) · · · xN (n)
]T

, ob-
tained from different sites in the atria, is assumed to be represented by an
MVAR model of order m

x(n) =

m
∑

k=1

Akx(n− k) + w(n), n = 1, . . . , T, (1)

where each Ak is an N × N matrix comprising the AR coefficients aij(k),

i, j = 1, . . . , N , and w(n) =
[

w1(n) · · · wN (n)
]T

is a multivariate white
noise process characterized by the diagonal covariance matrix Σw, in which each
diagonal element σ2

jj defines the variance of wj(n). Furthermore, a measure
of the distance between the recording sites is stored in the symmetric N ×N
matrix D =

[

d1 · · · dN

]

.
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For the estimation of MVAR coefficients, it is convenient to rewrite Eq. (1)
in matrix form,

X = YB + W, (2)

where

X =
[

x(1) · · · x(T )
]T

=
[

x1 · · · xN

]

,

W =
[

w(1) · · · w(T )
]T
,

B =
[

A1 · · · Am

]T
=
[

β1 · · · βN

]

,

y(n) =







x(n)
...

x(n−m+ 1)






,

Y =
[

y(1) · · · y(T )
]T
.

Employing this notation, the LS solution for the MVAR coefficients becomes
[12]

B̃ = arg min
B

||X− YB||2 (3)

= (YT Y)−1YT X, (4)

where ||·|| denotes the L2 norm. The MVAR coefficients contained in column βi

of matrix B, responsible for predicting xi(n), can also be estimated separately,

β̃i = arg min
βi

||xi − Yβi||2. (5)

In order to achieve a sparse solution, certain constraints can be assigned
on Eq. (5) (in the following the index i will be omitted for simplicity unless
necessary). The adaptive group LASSO, in which the coefficients in β are
divided into L non-overlapping groups βl of corresponding sizes pl, l = 1, . . . , L,
is defined to [11]

β̂ = argmin
β

||x −
L
∑

l=1

Ylβl||2 subject to

L
∑

l=1

αl||βl|| ≤ t, (6)

where Yl is referred to as the l-th group of input variables and consists of those
columns of matrix Y that correspond to the coefficients contained in βl, the αl

are positive weighting factors, and t ≥ 0 is the upper bound of the constraint.
When applying the adaptive group LASSO to the estimation of MVAR coeffi-
cients with the goal to encourage sparse coupling, all coefficients which model
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the coupling from one recording site to another should be grouped together

such that they can only be pruned jointly, i.e., βl =
[

ail(1) · · · ail(m)
]T

,
l = 1, . . . , L. With this setting, the number of groups becomes equal to the
spatial dimension, i.e., L = N , and all groups become equally large, i.e., pl = m
for all l.

When the same amount of shrinkage is applied to each group, i.e., αl = α
for all l, Eq. (6) simplifies to the ordinary group LASSO [13]. However, it has
been shown theoretically that by allowing different amounts of shrinkage for
different groups, the true model can be identified consistently [11]. Weighting
factors adapting to the data by employing the LS solution have been proposed,

αl = ||β̃l||−γ1 , (7)

where γ1 > 0.
During AF, it is well-known that the coupling between recording sites de-

creases with increasing distance. Thus, additional prior knowledge can be in-
cluded in the estimation procedure by letting the weighting factors also adapt
to the distance, i.e.,

αl = α(dl)||β̃l||−γ1 , (8)

where dl is the l-th element of the distance vector di. For the choice of α(dl) =
1, Eq. (8) simplifies to Eq. (7) and thus the adaptive group LASSO. For the
distance-adaptive group LASSO, the Gaussian kernel function is employed,

α(dl) = exp

(

1

2

d2
l

γ2
2

)

(9)

where γ2 > 0.

2.2 Model Identification and Selection

In contrast to the LS solution, no closed-form solution can be derived for the
adaptive group LASSO. In the present study, the algorithm for least angle
regression selection (LARS) has been employed to solve the adaptive group
LASSO [13]. Prior to applying the LARS algorithm, each Yl must be or-
thonormalized, and the estimated coefficients must be transformed back to the
original scale afterwards. The LARS algorithm starts with all coefficients in
all groups being equal to zero, i.e., β̂l = 0 for l = 1, . . . , L. The algorithm
then finds the group of input variables Yl which is most correlated with the
residual, where the correlation is evaluated according to

1

α2
l

||YT
l r||2, (10)
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with r being the current residual. This group of input variables is the first
group to become “active”, however, the corresponding coefficients β̂l are not
set directly to their LS solution β̃l. Instead, the LARS algorithm takes only the
largest possible step in that direction until some other, yet inactive group Yl is
equally correlated to the current residual and added to the set of active groups.
In that way, the algorithm proceeds stepwise towards to the LS solution, making
one of the L groups active in each iteration step. Thus, the solution goes from
β̂ = 0 to β̂ = β̃ in maximum L iteration steps.

In order to select the appropriate iteration step, the Bayesian information
criterion (BIC) has been employed [11]

BIC = log

(

1

T
||x − Yβ̂||2

)

+ log T · ν
T
, (11)

where ν is the number of the degrees of freedom, defined as

ν =

L
∑

l=1

u(||β̂l||) +

L
∑

l=1

β̂l

β̃l

(pl − 1), (12)

and u(·) equals one for positive arguments and zero otherwise. The degrees of
freedom range from zero to the total number of unknown parameters,

∑

l pl,

which corresponds to the trivial solution β̂l = 0 and the LS solution β̂l = β̃l

for all l, respectively. The optimal iteration step is chosen as that step for
which the minimum BIC is reached.

For adaptive group LASSO, the optimal γ1 is searched for by grid search
and determined by the BIC [14]. For distance-adaptive group LASSO, the
optimal γ1 from adaptive group LASSO is employed, and the optimal γ2 is
similarly searched for by grid search and determined by the BIC. Finally, the
BIC is also employed to choose the best model order m.

2.3 Partial Directed Coherence

The PDC from xj(n) to xi(n) can be derived from factorization of the partial
coherence function [8, 9], and is given by

πij(f) =
1

σii
Āij(f)

√

∑N
k=1

1
σ2

kk

|Ākj(f)|2
, (13)

where Āij(f) is an element of the matrix Ā(f), which is based on the Fourier
transform of the MVAR process in Eq. (1),

Ā(f) = IN×N −
m
∑

k=1

Ake
−2πfk, (14)
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where I is the unity matrix. The definition in Eq. (13) is that of the generalized
PDC [9], being especially useful in the case of widely different variances σ2

jj .
The denominator of the PDC serves as a normalization with respect to the
source, i.e., xj(n), such that

N
∑

i=1

|πij(f)|2 = 1 (15)

and
0 ≤ |πij(f)|2 ≤ 1. (16)

Given this normalization, the value of the magnitude-squared PDC |πij(f)|2
from j to i represents the strength of the direct coupling from xj(n) to xi(n)
at frequency f , viewed in relation to the direct coupling strength of xj(n) to
all other signals xk(n), k 6= i, at that frequency. For reasons of convenience,
the magnitude-squared PDC |πij(f)|2 is referred to as PDC in the following.

During AF, the PDC is of special interest in an interval centered around the
dominant frequency (DF) of the source xj(n), here assumed to represent the
mean atrial fibrillatory cycle length at the corresponding recording site. Thus,
the integrated PDC is defined by [15]

Π2
ij =

1

2∆f

∫ f0+∆f

f0−∆f

|πij(f)|2df, (17)

where f0 is the DF, corresponding to the highest peak in the 3–12 Hz range
of the auto-spectrum of xj(n), denoted Sjj(f), and ∆f is a parameter deter-
mining the width of the integration interval. Similar to the PDC, the integral
is normalized such that it ranges from zero to one, and thus represents the
average coupling from xj(n) to xi(n) in the frequency range of interest. In case
no obvious DF can be identified in signal xj(n), the corresponding Π2

ij is set to
zero for all i. The auto-spectra Sjj(f) are the diagonal elements in the power
spectral density matrix of the MVAR process, defined as

S(f) = Ā−1(f)Σw(Ā−1(f))H . (18)

2.4 Surrogate Data Testing

Surrogate data testing is performed for the integrated PDC Π2
ij as previously

described in [7]. In general terms, the method of surrogate data testing relies
on computing Π2

ij both on the original time series x(n) and on a set of surrogate

time series y(l)(n) =
[

y
(l)
1 (n) · · · y

(l)
N (n)

]T

, l = 1, . . . ,M . Each time series
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y(l)(n) is computed specifically for the causal coupling under investigation, such

that there is no direct causal coupling from y
(l)
j (n) to y

(l)
i (n). A statistical test

is then applied to compare the values of the integrated PDC for the original
series and for the set of surrogate series. The integrated PDC calculated from
the original time series is assumed to be significant if its value lies above the
95th percentile of the distribution of corresponding values obtained from the
surrogate data sets.

2.5 Statistical analysis

The correlation between different parameters is calculated using the Pearson
correlation coefficient r and related p-value. A p-value < 0.05 is considered
statistically significant. All parameters are given in mean ± standard deviation.

3 Database

3.1 Simulations

In order to evaluate the impact of the different estimation methods for the
MVAR coefficients on the PDC, a number of simulations based on the follow-
ing MVAR simulation model with N observations were carried out. First, a
propagation pattern was imposed by defining an N × N binary connectivity
matrix C such that Cij = 1 if propagation from recording site j to i was al-
lowed, and Cij = 0 otherwise. The diagonal of C was set to one. Second, each
direct coupling from recording site j to i was assigned a probability [16]

Pij = exp

(

−
d2

ij

λ2

)

, (19)

i.e., the probability of a direct coupling was modeled to decrease with increasing
distance dij between the recording sites, where the decrease is controlled by
the choice of λ. Thus, direct coupling from recording site j to i was present
when the following conditions were both fulfilled,

Cij = 1 (20)

δij ≥ 1 − Pij , (21)

where δij was a uniformly distributed random variable, U(0, 1). Finally, the
MVAR coefficients corresponding to the present direct couplings were deter-
mined, using different techniques for MVAR coefficients aij(k) for which i = j
and i 6= j, respectively. The MVAR coefficients aij(k), i = j, were determined
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such that the resulting MVAR process had a narrowband characteristic similar
to the preprocessed AF signals. Assuming an even-valued model order m, the

poles p
(i)
k , k = 1, . . . ,m, of the univariate processes

xi(n) =
m
∑

k=1

aii(k)xi(n− k) + wi(n) i = 1, . . . , N (22)

were placed in complex conjugated pairs

p
(i)
l/2l =

r̃0
l
e±ιlφ̃0 l = 1, . . . ,m/2, (23)

where the radius r̃0 and the angle φ̃0 were chosen from U(0.5, 0.6) and
U(0.9φ0, 1.1φ0), respectively. For odd-valued model orders, an additional

real pole p
(i)
m ∼ U(0.1, 0.3) was added. The remaining MVAR coefficients

aij(k), i 6= j, were sampled from a normal distribution, N (0, 0.5). Stability of
the resulting MVAR model was ensured by evaluating the eigenvalues of the
equivalent MVAR model of order one,

A(1) =















A1 A2 · · · Am−1 Am

I 0 · · · 0 0
0 I · · · 0 0
...

. . .
...

0 0 · · · I 0















. (24)

i.e., the procedure was repeated until a stable MVAR model was found.
The simulation model was then implemented for the geometry of a sphere,

which was chosen in order to avoid boundary conditions. On the sphere,N = 16
recording sites were distributed along four lines of longitude, A to D, situated
at 0◦, 90◦, 180◦, and 270◦, respectively. Four evenly spaced bipolar electrodes
were placed at each longitude and denoted A1 to A4, . . . , D1 to D4. In the
following, these recording sites are indexed by i = 1, . . . , 16. The distances
between the recording sites were determined to

dij = arccos

(

qi · qj

||qi|| ||qj ||

)

rs, (25)

where qi =
[

qix qiy qiz
]T

is the position of the i-th recording site in Carte-
sian coordinates, and rs is the radius of the sphere which was set to 1.

The simulated propagation on the sphere was defined through the connec-
tivity matrix such that it had its origin at recording site A3, see Fig. 1(a). A
more unorganized region of propagation was defined at recording sites C1, C2,
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Figure 1: Projection of the sphere employed in the simulations together
with the positions of the recording sites and a directed graph illustrating
(a) the propagation pattern as imposed by the binary connectivity ma-
trix C, and (b) the direct couplings present in the simulations, with the
width of each arrow proportional to the size of the corresponding Π2

ij .

C3, D1, D2, and D3, while D4 was left isolated. Applying the second condition
in Eq. (21) for the presence of a direct coupling, together with λ = 1.5, re-
sulted in that 42 out of the N2 = 256 possible direct couplings were non-zero,
see Fig. 1(b). The corresponding MVAR coefficients were then sampled for
model order m = 3 and φ0 = π/4, for which a stable MVAR model usually
was found immediately. Furthermore, employing Σw = IN×N , the non-zero
integrated PDCs Π2

ij , which in the simulations were calculated by integrating
πij(f) over the entire frequency range, yielded 0.38 ± 0.29.

The performance of the different estimation methods for the MVAR coef-
ficients is evaluated with respect to two aspects, the first being related to the
detection of the present direct couplings. For that purpose, the following two
hypothesis are defined,

H0 : aij(k) = 0 k = 1, . . . ,m (26)

H1 : aij(k) 6= 0 for at least one k, (27)

where H0 and H1 correspond to the absence and the presence of direct coupling
from recording site j to i, respectively. The probability of false alarm is then
estimated by

PFA =
NFP

NFP +NTN
, (28)

where NFP is the number of false positive (FP) direct couplings, i.e., H1 is
decided though H0 is true, and NTN is the number of true negative (TN)
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direct couplings, i.e., H0 is decided and true. Similarly, the probability of
detection is estimated by

PD =
NTP

NTP +NFN
, (29)

where NTP is the number of true positive (TP) direct couplings, i.e., H1 is de-
cided and true, and NFN is the number of false negative (FN) direct couplings,
i.e., H0 is decided though H1 is true.

The second aspect is related to the estimation accuracy of the MVAR coeffi-
cients and its impact on derived measures. This aspect is evaluated employing
the normalized error function

ε(M) =
||M − M̂||2

||M||2 , (30)

which can be interpreted such that the error associated with the estimated
matrix M̂ is determined as a fraction of the norm of the corresponding known
matrix M. It is employed for both the MVAR coefficients, i.e., M = B, and
the integrated PDC, i.e., M = Π2, where

Π2 =







Π2
11 · · · Π2

1N
...

. . .
...

Π2
N1 . . . Π2

NN






. (31)

For the integrated PDC, the estimation accuracy is also evaluated separately
for TP and FP direct couplings through employing the matrices Π2

TP and Π2
FP ,

which consist of those elements of Π2 which correspond to TP and FP direct
couplings, respectively, and zeros otherwise.

In case the investigated property is a function of frequency, i.e., M(f), the
mean of ε(M(f)) over all frequencies f is used instead and denoted by εf (M).
This measure is used for frequency representation of the MVAR model, i.e.,
M(f) = Ā(f), as well as the PDC, i.e., M(f) = π2(f), where

π2(f) =







|π11(f)|2 · · · |π1N (f)|2
...

. . .
...

|πN1(f)|2 . . . |πNN (f)|2






. (32)

3.2 AF Recordings

The method is illustrated on a recording from a patient with paroxysmal
AF who underwent an electrophysiological study with a multielectrode bas-
ket catheter (Constellation catheter, EP Technologies, Boston Scientific) in the
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Figure 2: Schematic representation of the open RA with the position
of the bipolar recording sites on the intracardiac wall. The eight splines
of the basket catheter were positioned on the anterior, lateral, posterior,
and septal walls, as well as on intermediate positions.

right atrium (RA). The basket catheter had a diameter of 31 mm and con-
sisted of eight splines, A to H, each carrying eight evenly spaced electrodes
(4 mm inter-electrode distance). Thirty-two bipolar intracardiac electrograms
were acquired by coupling adjacent pairs of electrodes (CardioLab System, 30–
500 Hz [Prucka Engineering, Inc.]). In this patient, five electrograms had to be
excluded because of poor signal-to-noise ratio. The sampling rate was 1 kHz,
and two 5-s segments were chosen for analysis.

A schematic representation of the recording sites is shown in Fig. 2. To
approximate the distance between the recording sites, Eq. (25) was employed
with rs set to half the diameter of the basket catheter, i.e., 15.5 mm. It was
further assumed that the splines were approximately situated at the longitudes
at 0◦, 45◦, . . . , 315◦.

Prior to MVAR analysis, the electrograms were preprocessed with bandpass
filtering (finite impulse response (FIR), 40–250 Hz, order 40, Kaiser window),
rectification, and lowpass filtering (FIR, 0–20 Hz, order 40, Kaiser window) [17].
After filtering, the sampling rate was decimated to 100 Hz.
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4 Results

Based on the MVAR simulation model described in Sec. 3.1, Nsim = 20 simu-
lations were carried out for sample sizes T = 5mN , 3mN , and 2mN . For the
simulations, model order m = 3 was employed for estimation, while for the AF
recordings, the optimal model order was searched for in the range 1 to 15. The
number of surrogate time series for the AF recordings was M = 100, and the
results were obtained for f∆ set to 0.5 Hz, cf. Eq. (17).

4.1 Simulations

In LS estimation, none of the MVAR coefficients are estimated to exactly zero,
and thus all direct couplings exist. Consequently, both PFA and PD always
yield 1 in LS estimation, see Table 1. In the adaptive group LASSO, PFA

increases with decreasing sample size from 0.01±0.01 to 0.12±0.03, while there
is a smaller change in PD, i.e., from 1±0 to 0.99±0.01. For the distance-
adaptive group LASSO, similar values are obtained for PD as for the adaptive
group LASSO. However, in terms of PFA the distance-adaptive group LASSO
yields better results than the adaptive group LASSO especially for smaller
sample sizes.

Table 1: Simulation performance of LS estimation, adaptive group LASSO,
and distance-adaptive group LASSO in terms of PFA and PD.

Adaptive Distance-adaptive
LS

group LASSO group LASSO
T PFA PD PFA PD PFA PD

5mN 1±0 1±0 0.01±0.01 1±0 0.01±0.01 1±0
3mN 1±0 1±0 0.04±0.02 1±0.01 0.04±0.01 1±0.01
2mN 1±0 1±0 0.12±0.03 0.99±0.01 0.09±0.02 0.99±0.01

The normalized error functions for B, Ā(f), π2(f), and Π2 are displayed
in Fig. 3(a) to (d). The results are consistent in the sense that adaptive and
distance-adaptive group LASSO perform much better in estimating the MVAR
model as well as the PDC than does LS estimation for all three sample sizes T .
While the adaptive and distance-adaptive group LASSO perform rather similar
for larger sample sizes, i.e., T = 5mN and T = 3mN , knowledge about the
distance between the recording sites further improves the estimation for T =
2mN . The same trends can be seen in the normalized error functions for Π2

FP

and Π2
TP , which are displayed in Fig. 3(e) and (f), respectively.
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Figure 3: The normalized error function for (a) B, (b) Ā(f), (c) π2(f),
(d) Π2, (e) Π2

FP , and (f) Π2
TP for different sample sizes T . The perfor-

mance measures are for each T presented in groups with the order LS es-
timation, adaptive group LASSO, and distance-adaptive group LASSO.
The lines of the boxes correspond to (from top to bottom) the upper
quartile, the median, and the lower quartile.
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Figure 4: The original electrograms of an AF recording during two 5-s
segments, which are separated by 5 s.

4.2 AF Recordings

MVAR analysis was performed on all 27 available electrograms for two 5-s
segments, see Fig. 4. The estimated model order was consistently m = 4.
For the first time segment, the percentage of possible directed couplings be-
tween different recordings sites which are found to be significant decreases
slightly from 8.6% in LS estimation to 8% and 7.7% for adaptive and distance-
adaptive group LASSO, respectively. The corresponding Π2

ij range from 0.05
to 0.41 (0.11±0.06) in LS estimation, from 0.001 to 0.52 (0.12±0.11) in adap-
tive group LASSO, and from 0.0004 to 0.53 (0.15±0.13) in distance-adaptive
group LASSO. Similar results are obtained for the second time segment, where
the percentage of possible directed couplings between different recordings sites
decreases from 10% to 8.4% and 8.1%, and the corresponding Π2

ij range from
0.04 to 0.35 (0.11±0.07), from 0.004 to 0.69 (0.12±0.15), and from 0.001 to 0.71
(0.12±0.17) in LS estimation, adaptive group LASSO, and distance-adaptive
group LASSO, respectively.

The propagation patterns obtained from MVAR coefficients estimated with
LS estimation as well as adaptive and distance-adaptive LASSO are illustrated
for both time segments in the directed graphs in Fig. 5. For the first time
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segment, the propagation pattern derived from LS estimation is rather diffi-
cult to interpret, see Fig. 5(a). A large number of directed couplings can be
seen to originate in the low septal RA at recording site EF3, and a transverse
propagation from the septal towards both the anterior and posterior and from
there further to the lateral RA is indicated. A clearer manifestation of this
propagation pattern is provided by the directed graphs derived with adaptive
and distance-adaptive group LASSO, see Figs. 5(c) and (e), respectively. Both
directed graphs suggest a propagation originating from the low septal RA close
by recording sites EF3 and EF4. From there, the electrical activity propagates
caudocranially in the septal RA as well as transversely towards the anterior and
posterior RA. In the posterior/postero-lateral wall, craniocaudal propagation
is indicated, and finally, the propagation spreads towards the lateral RA from
both anterior and postero-lateral regions. For the second time segment, inter-
pretation of the propagation pattern is again difficult for the directed graph
derived from LS estimation, see Fig. 5(b). This is in contrast to the sparse
directed graphs derived from adaptive and distance-adaptive group LASSO,
see Fig. 5(d) and (f), respectively, which evidence a propagation similar to the
one during the first time segment. In addition, in the upper RA, a transverse
propagation spreading from the posterior wall is indicated.

5 Discussion

Successful estimation of the MVAR coefficients is crucial for successful esti-
mation of the PDC, since the calculation of the PDC is entirely derived from
the model coefficients. In order to avoid overfitting of the MVAR model and
to incorporate prior information such as sparsity of the solution, the adaptive
group LASSO is proposed. The adaptive group LASSO improves the estima-
tion of the MVAR coefficients by putting a constraint on the LS solution which
is defined as an intermediate between the L1 and L2 norm. While the L2 norm
is responsible for avoiding overfitting, which is in similarity to, e.g., ridge re-
gression, the singularities caused by the L1 norm are achieving the sparsity. As
a consequence of the sparse solution, the complexity of the estimation problem
is reduced by the lower number of parameters to be estimated.

The sparsity of the resulting solution can for the analysis of intracardiac AF
recordings be motivated by the observation that direct couplings over longer
distances are likely to be zero. This information has been further incorporated
in the definition of the weights αl in the distance-adaptive group LASSO. An
understanding of how the αl affect the solution of the LARS algorithm may
be achieved by considering Eq. (10), which defines the correlation between the
l-th group of input variables and the current residual. As the correlation is
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weighted with α−2
l , the weights can affect the order in which the groups of

input variables become active such that groups with a small or large αl will
presumably be added in an earlier or a later iteration step, respectively. Thus,
if the coupling can be assumed to decrease with distance, as is the case during
AF, αl should be chosen to increase with distance instead.

The Gaussian kernel function employed in Eq. (9) is one out of many possi-
bilities to calculate the weighting factors from the distance [18]. In that paper,
an algorithm for geographically weighted LASSO is presented. The formula-
tion of the problem is such that each input variable, e.g., some demographic
statistics, is collected at different locations. Weighted LS or weighted LASSO
can then be employed for local linear regression, i.e., the samples of each in-
put variable are weighted according to their location. In the present paper,
however, each input variable is collected at different time instants. Local lin-
ear regression could thus be employed for calculating the propagation pattern
close to a certain time instant, avoiding the need to explicitly restrict the sam-
ples of the input variables to some time window. Each input variable is also
associated with a certain location, i.e., recording site. Because of the formu-
lation of the problem, the distances between these locations can, however, not
easily be incorporated into local linear regression algorithms. Instead, linear
regression with constraints depending on the distances, such as the proposed
distance-adaptive group LASSO, should be employed.

Previously, other LASSO variants such as the ordinary LASSO and group
LASSO have been employed for MVAR estimation, e.g., when analyzing the
functional connectivity between different brain areas [16, 19] or within gene
networks [20]. In those studies, the main interest was the detection of directed
information flow based on tests applied directly to the MVAR coefficients. In
the present work, the accuracy of the estimated MVAR coefficients is also of
interest, as they are further used in the calculation of the PDC. Employing
a number of simulations, for which the true MVAR model was known, the
adaptive and distance-adaptive group LASSO were found to lead to major
improvements in both detection and estimation accuracy when compared to
LS estimation. While these accuracies were rather similar for adaptive and

Figure 5 (preceding page): Directed graphs illustrating the prop-
agation pattern during two 5-s segments of an AF recording based
on (a),(b) LS estimation, (c),(d) adaptive group LASSO, and (e),(f)
distance-adaptive group LASSO. In order to simplify the interpretation,
the directed graphs are restricted to significant Π2

ij ≥ 0.05. The width

of each arrow is proportional to the size of the corresponding Π2
ij .
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distance-adaptive group LASSO when more samples were analyzed, improve-
ments could be observed with the distance-adaptive group LASSO for smaller
sample sizes. This indicates that additional prior information on the underly-
ing topology can, to some extent, compensate for the decrease in performance
which otherwise comes with decreasing sample size.

The estimation accuracy for the integrated PDCs was also evaluated sepa-
rately for FP and TP direct couplings, see Fig. 3(e) and (f), respectively. The
purpose with this distinction is to point out the potential, but also the limita-
tions, of significance testing, which may be seen as a possibility to imply sparse
coupling subsequent to the computation of the PDC. In detail, significance
testing is potentially able to reduce errors in those integrated PDCs which are
associated with FP direct couplings, as non-significant integrated PDCs can be
put to zero. However, significance testing is not able to positively affect errors
associated with TP direct couplings. This is a consequence of that in contrast
to the integrated PDC, MVAR coefficients corresponding to non-significant di-
rect couplings cannot directly be put to zero, as this could lead to substantial
changes in the characteristics of the MVAR model. As these MVAR coeffi-
cients enter the calculation of the PDC through the normalization, they can
affect the outcome of the analysis even though they are not directly associated
with the direct coupling under evaluation. Thus, the importance to actively
encourage sparsity already during the estimation of the MVAR model is further
underlined.

The method has been evaluated on two 5-s segments of a recording during
paroxysmal AF in the RA. During AF, both the amount and the strength of
direct couplings are expected to decrease with increasing distance. However,
for LS estimation, a large number of significant direct couplings were present
also over longer distances, leading to difficulties in the identification of the
propagation pattern from the corresponding directed graphs. The interpre-
tation of the directed graphs, and thus the identification of the propagation
pattern, was substantially simplified by the sparsity achieved with adaptive
group LASSO. Compared to LS estimation, the directed graphs became sparse
mostly with respect to direct couplings over longer distances, which is interest-
ing as the adaptive group LASSO does not make use of the distances between
the recording sites. When employing these distances in the distance-adaptive
group LASSO, a further increase in sparsity among the direct couplings over
long distances could be observed. Thus, similar to the simulations, the largest
improvement was achieved by employing a sparse estimation method instead
of LS estimation. However, when the distance between the recording sites
is known or can be estimated, further improvements in the estimation of the
propagation pattern are possible.

During both 5-s segments, a propagation starting in the low septal RA
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was evidenced, suggesting atrial impulses entering the RA from the left atrium
(LA) at the coronary sinus ostium. This RA breakthrough site as well as the
subsequent propagation pattern agrees with clinical observations [21–23]. More
specifically, a RA breakthrough close to the coronary sinus ostium, usually
superior or posterior to the orifice as also observed in the present example, has
been associated to AF originating in the inferior LA or the inferior pulmonary
vein [21]. In a previous study, the analysis of a similar example, though based
on LS estimation, suggested a propagation pattern with a breakthrough site
in the high septal RA, typically associated to the presence of a focal source in
the right upper pulmonary veins [7]. These examples highlight the potential of
the PDC as a method for extracting information on the propagation patterns
during AF, which in the future may contribute to a better understanding of AF
mechanisms as well as an improvement of AF treatment, e.g., during ablations.

6 Conclusions

In the present paper, the estimation of propagation patterns in intracardiac AF
signals in terms of the PDC has been shown to be substantially improved when
prior information on sparsity as well as the distances between the recording
sites are incorporated in the underlying model. The method may serve as a
support for the electrophysiologist especially when a manual evaluation of the
recorded signals becomes difficult, e.g., due to the large amount of recorded
signals or the signal organization.
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