LUND UNIVERSITY

Improving regression testing transparency and efficiency with history-based prioritization — an

industrial case study

Engstrom, Emelie; Runeson, Per; Ljung, Andreas

Published in:
[Host publication title missing]

2011

Link to publication

Citation for published version (APA):

Engstrom, E., Runeson, P., & Ljung, A. (2011). Improving regression testing transparency and efficiency with
history-based prioritization — an industrial case study. In [Host publication title missing] (pp. 367-376). IEEE -

Institute of Electrical and Electronics Engineers Inc..

Total number of authors:

General rights

Unless other specific re-use rights are stated the following general rights apply:

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.

» Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.

* You may not further distribute the material or use it for any profit-making activity or commercial gain

* You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

https://portal.research.lu.se/en/publications/147aa503-f71d-474a-a7e0-f2a0d8fcbecc

Improving Regression Testing Transparency and Efficiency with History-Based
Prioritization — an Industrial Case Study

Emelie Engstrém*, Per Runeson*! and Andreas Ljung’
*Software Engineering Research Group
Dept. of Computer Science, Lund University, Sweden
(emelie.engstrom, per.runeson)@cs.lth.se
TSony Ericsson Mobile Communications, Sweden

Abstract—Background: History based regression testing was
proposed as a basis for automating regression test selection,
for the purpose of improving transparency and test efficiency,
at the function test level in a large scale software development
organization. Aim: The study aims at investigating the current
manual regression testing process as well as adopting, imple-
menting and evaluating the effect of the proposed method.
Method: A case study was launched including: identification of
important factors for prioritization and selection of test cases,
implementation of the method, and a quantitative and qualita-
tive evaluation. Results: 10 different factors, of which two are
history-based, are identified as important for selection. Most
of the information needed is available in the test management
and error reporting systems while some is embedded in the
process. Transparency is increased through a semi-automated
method. Our quantitative evaluation indicates a possibility to
improve efficiency, while the qualitative evaluation supports the
general principles of history-based testing but suggests changes
in implementation details.

Keywords-regression testing; history-based prioritization; re-
gression test selection; regression test prioritization; empirical
evaluation; industrial case study; function testing;

I. INTRODUCTION

Regression testing (RT) is retesting of previously working
software after a change to ensure that unchanged software
is still functioning as before the change. The concept of
regression testing has changed from being the final gate
check before delivery, to being a continuous activity during
iterative development. Regression testing is a resource con-
suming activity in most industrial projects. Studies indicate
that 80% of testing cost is regression testing and more
than 50% of software maintenance cost is related to testing
[1]. The need for effective strategies for regression testing
increases with the increasing use of iterative development
strategies and systematic reuse across software projects.

A common approach for RT in industry is to reuse a
selection of test cases designed by testers [2]. This selection
may be static (e.g. determined by the assessed risk and
importance of functionality) or dynamic based on impact
of changes. In many cases static and dynamic selections are
combined and achieved by prioritizing test cases, of which as
many are run as admitted by time and resource constraints.
As this procedure is based on individual’s experience and
judgment, it is not transparent enough to enable a consistent

assessment of the extent and quality of regression testing.
Second, there is no direct evaluation of its efficiency.

There is a gap between research and practice of RT. Even
though several systematic approaches for both prioritization
and selection of regression test cases are proposed and
evaluated in literature [3][4], these are not widely used in
industry [2]. This makes the RT highly dependent on people
with experience of the product. It is also likely that testers
add extra test cases to the scope just to be on the safe side,
and thus the testing gets unnecessary costly. There is a need
for systematic, transparent strategies for RT selection, which
are feasible for an industrial context.

Engstrom et al. recently reviewed the literature in the
field of RT selection techniques [3]. Only few empirical
evaluations of regression test selection techniques are carried
out in a real industrial context. Yoo and Harman conclude
in their recent review of RT minimization, selection and
prioritization that empirical studies aggregating the empirical
knowledge of RT is “still in the early stages” [4].

We here report on a case study, evaluating history-based
regression testing in an industrial setting as a means to
improve the transparency of RT selection and prioritization.
A prioritization equation proposed by Fazlalizadeh et al.
[5] was implemented and used at the function test level in
the company. The case study characterizes current practices,
proposes and implements an improvement, and evaluates the
effects. In this sense, the case study has similarities to action
research [6].

The case study is conducted at Sony Ericsson Mobile
Communications, a company developing mobile devices
with embedded real-time software in a domain which is very
competitive both regarding quality and innovation. The de-
velopment process is highly iterative, and the same software
basis is used in several product versions and variants, which
all need regression testing. Hence, transparent and efficient
RT is important for its contribution to high quality products,
efficient use of resources and the lead time for testing.

The paper is structured as follows: Section II overviews
related work. The context of our study is described in
Section III and the design of the study in Section IV. Results
are presented and analyzed in SectionV and a summary of
our conclusions is given in Section VI.

II. RELATED WORK

Regression testing is a field which is well researched,
relatively, within software engineering. Yoo and Harman
list 190 papers on RT in their review [4]. Engstrom et al.
identified 36 empirical studies, evaluating 28 techniques for
RT selection [3]. Less than a third of the studies comprise
industry scale contexts. Since the area is well reviewed
recently, we here only focus on the work closely related
to the topic under study, namely, empirical evaluations in
industry on regression test prioritization and selection.

A. Regression test prioritization and selection

The research on RT distinguishes between three classes
of techniques [4]: minimization, selection and prioritiza-
tion. Minimization techniques aim at reducing the test suite
by removing redundant and obsolete test cases. Selection
techniques aim at identifying a subset of a test suite that
is sufficient given a certain set of changes. Prioritization
techniques rank test cases in their predicted order of contri-
bution to e.g. fault detection rate. Test case selection may
be applied after test prioritization; a prioritized list of test
cases, combined with a cut-off criterion is a selected test
suite. Test prioritization can be used in conjunction with
test case selection to set the execution order within the
selected test suite. This will in turn ensure that if the session
is unexpectedly terminated the time spent testing will have
been more beneficial than if they were not prioritized [7].

B. Industrial evaluations

The share of industrial evaluations of regression test
techniques is low [3]. This is not unique for the RT field,
but rather general. Many studies are conducted on the same
set of artifacts (the Siemens and the Space programs) which
is good from a benchmarking perspective [8], but limits the
external validity, since the programs are rather small. Even
with industrial artifacts, offline studies tend to reduce the
complexity of the real task of test case selection in industry.
Published online studies include, for example, White and
Robinson [9], Orso et al. [10], Skoglund and Runeson [11],
and Engstrom et al. [12]. See the above mentioned RT
reviews for a more comprehensive list [3][4].

C. Factors considered for prioritization and selection

Most selection techniques are change-based [3], i.e. se-
lecting the test suite based on an analysis of the changes
from the most recently tested version. Change impact anal-
ysis may be conducted at different levels (e.g. statements,
modules or files) and based on different artifacts (e.g. code or
other system specifications such as UML) or project related
information such as error reports. In contrast, most prioritiza-
tion techniques are not depending on knowledge about mod-
ifications [4] but are instead based on supposed equivalents
for high fault detection rates (e.g early code coverage, test
suite coverage over a number of sessions or historical fault

detection effectiveness). Elbaum et al. investigate different
coverage criteria that may govern the prioritization [13]. Kim
and Porter emphasize the need to view RT as an ordered
sequence of test sessions, where the history of the test case
executions should be considered [14]. In practice, selection
and prioritization are often combined [2], i.e. test cases are
prioritized according to some criteria, selected based on
some other criteria, and delimited by resource constraints.
Engstrom et al. [12] evaluated a combined technique based
on fault proneness of files, originally presented by Kim
et al. [15]. Test cases that exercise fault prone files are
given higher priority, and selection is based on changed files
connected to test cases through fixed error reports. Kim and
Porter also conclude that if the test selection technique only
focuses on the parts of the program that have been changed
since the last testing session, it is a risk that a change, once
tested, is never retested, leaving only one chance to find a
defect. They proposed a technique that takes this risk into
account, and prioritizes test cases based on their history of
fault finding rate, its coverage and usage history [14]. Park et
al. expanded the model with costs for the execution of each
test case [16] and Fazlalizadeh et al. developed this model
further by combining the three aspects of Kim and Porter’s
model into one [5]. Srikanth et al. define a requirements-
based prioritization model [17]. It prioritizes test cases based
on four factors: customer-assigned priority on requirements,
requirement volatility, developer-perceived implementation
complexity, and fault proneness of requirements.

D. Black box regression testing

In our context, see Section III, only black box approaches
are applicable since the testers do not have full access to
the code, and our proposed improvements are based on the
ideas from Kim and Porter [14] and are implemented as
suggested by Fazlilzadeh et al. [5]. Srikanth et al. claim that
most of the test prioritization techniques are code coverage
based [17], which is confirmed for selection techniques in
the systematic review by Engstrom et al. [3]. Twenty-six
of the 28 identified selection techniques were depending on
source code access. The two non-code based techniques are
Orso’s based on metadata on test case to change information
[18], and Sajeev et al.’s UML based approach [19]. In the
prioritization area, Qu et al. present a method for prioritizing
test cases in a black box testing environment [20] as well
as Srikanth et al. [17] as mentioned above. These types of
methods require access to various inputs, such as the re-
quirements specifications, customer priority, implementation
complexity, fault proneness and other version information
metadata. This makes them harder to implement and also
research in an offline context.

ITII. CASE DESCRIPTION

At Sony Ericsson the software verification is carried
out at different levels by different departments, i.e. unit,

integration, system and acceptance test. The software is
divided into different functional areas and for each area
there is a group of developers and a group of testers. The
integration test is carried out at a test department by a test
group for each function. The testing at this level is performed
on temporary builds of the software or on the main software
branch, usually in a hardware prototype. The system test is
carried out by another test department and is performed on
the main branch. Finally a release candidate of the software
is sent for acceptance test to the carrier service providers.

The software development process is an incremental pro-
cess, where each component is developed and integrated in
small iterations. However, to ensure that the overall quality
of the software is maintained, after several iterations, a range
of regression test sessions are performed by each function
test group on an integrated system. For every new feature,
several new test cases are created based on the feature
requirements. All the test cases are written for black box
testing and are not connected to a specific part of the code.
The test cases are added to the test database which contains
all the test cases relevant to a specific product. The amount
of features increases in each project and therefore the total
amount of test cases available is too large to re-test all during
RT on a regular basis.

All test case descriptions and the execution data are stored
in a commercial tool, HP’s Quality Center (QC). QC is a
web based test database that supports essential aspects of
test management. The defect reports are stored in a defect
management system (DMS) and linked via an id number,
to the revealing test case in QC and also to other test cases
that are affected by the defect. Sony Ericsson uses QC as its
main test management tool. Test planning, test design and
test execution is performed in the QC environment. Each
executed test case should contain the following information:
Software version, hardware version, test status (Blocked,
Failed, N/A, No Run, Not Completed, Passed), execution
date and time, tester id and if the status is Failed a DMS
number from the defect report in the DMS.

IV. CASE STUDY DESIGN

The design of this case study is outlined below in line
with the guidelines by Runeson and Host [6].

A. Objective

The objective of the study is to improve regression testing
at function test level by adapting and implementing history-
based regression testing into the current context. In this
case improvements refer to increased transparency of the
test scope selection procedure as well as increased, or
at least maintained, test effectiveness. With an automated
selection procedure (history-based selection) both goals are
expected to be achieved. Thus we wanted to investigate
current practices in order to identify a proper level and type
of automation and evaluate the effects of implementing it.

B. Research questions

The research questions for the study are the following:

1) Which factors are considered when prioritizing and
selecting test cases for regression test?

2) Do history-based prioritization and selection of test
cases improve regression testing?

C. Case and unit of analysis

The case under study is the regression testing activities in
an iterative, incremental development process for complex,
large-scale software development. The unit of analysis in
the study is specifically regression testing carried out by
one function group at Sony Ericsson.

D. Procedure

The case study is carried out in several steps, starting with
A) exploratory semi-structured interviews with the purpose
of identifying important factors for test case prioritization
and selection, and comparing current practices and expert
opinions with literature on history-based testing. The next
step was to B) select and implement a suitable method.
The prioritization technique proposed by Fazlalizadeh et
al. [5] was implemented in two versions: one as close to
the original as admitted by the context and one including
extensions suggested in the exploratory part. The methods
were C) quantitatively evaluated with respect to their fault
detection efficiency and finally D) the testers’ opinions about
the implemented methods was collected and analyzed.

V. CASE STUDY REPORT
A. Exploring current practices

Semi-structured interviews were held with one test en-
gineer and one technical project leader in the function
test group. Areas discussed were the current process and
test selection strategy, problems and strengths with current
practices, their confidence in the selected suites, factors con-
sidered important for prioritization and their opinions about
history-based regression testing as proposed by Fazlalizadeh
et al. [5]. The main topics of the interviews are listed in
Table I.

In addition to the interviews, observations made by the
third author of this paper (after several months of active par-
ticipation in the work of the group) were taken into account.
The general description of the work practices is reported
as a case description in Section III. Experienced problems
with the current regression testing method, and thus the
expected benefits of automating selection and prioritization
of test cases, are discussed below. Factors identified in the
interviews which were considered important for regression
testing are presented in Tables II and III, and issues related to
the practical implementation of these factors are discussed in
Section V-B. Table II presents a list of factors for selection
of test cases. Other factors and properties were identified

Table II
FACTORS IDENTIFIED FROM THE INTERVIEW THAT SHOULD AFFECT THE TEST CASE PRIORITIZATION EQUATION (IN NO SPECIFIC ORDER). FACTORS
ADDED IN THE EXTENDED APPROACH ARE MARKED WITH AN ASTERISK (*)

Factor

Rationale

Historical effectiveness

The defect detection frequency of the test case during a period of time. This is a measure of the test case’s
effectiveness. If a test case often reveal defects it may indicate that it exercises parts of the software
where new defects often appear. A test case that detects a defect is linked to the defect report in the
defect management database.

Execution history

The number of executed regression test sessions since the latest execution of the test case.lt is important
to ensure that all test cases eventually are executed over a period of time in round Robin fashion. So the
number of sessions that has been executed without the test case should increases the test case’s priority
until it is executed in a regression test session.

Static priority*

The importance of the test case, for business priorities and for the overall functionality. This aspect should
be incorporated in order to ensure that some important basic test cases are given higher priority. This
property is set manually when the test case is created and should affect the priority in every selection.

Age*

FACTORS IDENTIFIED FROM THE INTERVIEW THAT WOULD MOTIVATE EXCLUSION OF TEST CASES. IMPLEMENTED FACTORS ARE MARKED WITH AN

Factor

The creation date of the test case. This aspect should be incorporated in order to ensure that new functions
are more thoroughly tested. The creation date may be used to determine which test cases are new.

Table III
ASTERISK (*)

Rationale

Cost

The cost of a test case. This property should be used to estimate the execution time for each test case.
An automated test case is assumed to consume less time and resources.

Focus of session*

The test case type (for example Duration test, Performance test, Certification).This property should be
used to exclude test cases that are marked for duration, performance and certification that should not be
executed in a regression test session with focus on functional tests.

Scope of session *

If the test case is written for a specific hardware that is not available in all products. This property
should be used to exclude test cases that are not applicable for the product about to be tested.

Redundant test cases

Current Status of the test case. This property should be used to exclude test cases revealing already

revealed defects.

Table I
QUESTIONS FOR THE INTERVIEWS OF THE TEST ENGINEER (TE) AND
TECHNICAL PROJECT LEADER (TPL).

Question TE | TPL
Define the development and test process. When is X
regression testing performed?

How do you select the test cases to be run during a
regression test?

How do you evaluate how much time each test case
will add to the whole test suite?

What differentiates the test cases from your point of
view?

Do you feel confident that the correct suite has been
selected every time?

What is the most important factor when running the
selected test suite: time/resources or quality?
Which properties of the executed test cases should
affect the prioritization equation in the test case
selection technique?

What do you think of the factors in the history-based | X X
method?

XXX X X X

that would motivate de-selection of certain test cases; these
are listed in Table III.

One of the problems with the current method is that it
depends on experienced testers with knowledge about the
system and the test cases. There is a risk that the selected
test suite is too extensive or too narrow; a tester with lack

of experience in the area could have trouble estimating the
required time and resources. Moreover, the selected test suite
may be inefficient and misleading, since it is just based on
judgment. The tester has to know which test cases, recently,
have been more prone to detect faults. Another problem is
that even an experienced tester could select an inefficient
test suite. The test cases are selected in a routinely manner
by just selecting the same test cases for every regression test
session, and since the selection is based on judgment, there
is no evidence that it is the most efficient test suite. Hence,
the following are the expected benefits of a tool supported
selection method:

« increased transparency

o improved cost estimations

« increased test efficiency

« increased confidence
These findings motivates tool support and are a basis for
decisions on how to implement and evaluate it. Increased
transparency is achieved with any kind of automation, since
no systematic method for regression testing is currently used.
If the use of a systematic method or implemented tool does
not decrease test efficiency or confidence we consider it
an improvement of the current situation. No data regarding
the execution cost for a test case or group of test cases
was available and thus this aspect could not be evaluated

within the scope of this case study. Test efficiency regards
the number of faults revealed per executed test case and is
evaluated in two ways in this case study: 1) by comparing
the efficiency of the execution order (prioritization) of test
cases in the suites and 2) by analyzing test suite selections
of the same magnitude as corresponding manually selected
suites. To reach and measure confidence in a method is in
itself non-transparent, since it deals with the gut feelings
of the testers. To some extent it relates to coverage. If a
method can be shown to include all important test cases,
the confidence in it is high. However, optimizing a method
to include important coverage aspects affect test efficiency
negatively, since it adds test cases to the selection without
respect to their probability of detecting faults.

B. Implementation of history-based testing

An analysis of the identified problems together with an
overview of the research on regression test case selection and
prioritization, led to the hypotheses that a semi-automatic
test case selection tool, based on a history-based test case
prioritization technique offers a solution for the problems in
this verification process. The hypothesis that history-based
regression test selection could improve the current situation
was a starting point for this case study and it was further
supported in the exploratory step. The technique proposed
by Fazlalizadeh et al. [5] was selected for implementation
because it covers some of the desired aspects identified in the
exploratory step. For information about other history-based
techniques see Section II.

However, the proposed equation could not be imple-
mented without adaptation since it requires information not
available within this environment. This implementation is
referred to as the Faz approach. An extended version was
implemented for evaluation as well, referred to as the ExtFaz
approach. The technique was extended with both selection
criteria and prioritization criteria.

1) The Faz approach: The strategy proposed by Fazlal-
izadeh et al. [5] is based on historical performance data and
incorporates three factors: historical effectiveness in fault
detection, each test case’s execution history in regression
test and the last priority assigned to the test case. Priorities
are calculated according to the following formula':

PRy = a* fo/eck + B % PRy_1 + 7 * hy,
0<=qa,8,y<=1k>=1

The equation consists of the following parts:

e Historical effectiveness (fex/ecr): is the number of
times the test case has failed and e.; is the number of
test case executions during k& number of test sessions.

o Execution history (hy): Each time a test case is not
executed, its execution history will be increased by

'In the original paper the PRy _1 on the right hand side of the equation
is actually presented as PRy but this is assumed to be a typing error.

one. Once the test case is executed, execution history
becomes 0 and the operation is repeated.

o Previous priority (PRy,_1): is the latest priority of the
test case. The initial priority, PRy, is defined as the
percentage of code coverage of the test case.

o Three weighting parameters (o, 5 and ~y): To balance
the effects of the factors, the parameters «, S and 7 can
be changed. The values are always between 0 and 1.

The prioritization equation described above includes two
of the desired factors listed in Table II: 1) the defect
detection frequency and 2) the number of regression test
sessions that has been executed since a test case was last
executed.

Most of the information needed to apply this equation
is available in the test management database. However,
information about code coverage is not available so the
initial prioritization had to be based on something else than
code coverage. We chose to use the static prioritization
assigned to each test case at creation. The PR, value is
selected so that it will add a proportional amount to the
total priority sum and the term (8 x PRy) will be between
0 and 1. The test cases are given the following PRy value:

0.4 if priority is 1
PRy =4 0.2 if priority is 2
0.1 if priority is 3

2) The ExtFaz approach: In an attempt to incorporate the
other desired factors, an extended version of the approach
was developed. Two more factors from Table II were added
as a basis for prioritization and selection of test cases: 1) the
static priority and 2) the age of a test case. PRy is here
used both as a value for the initial priority and for the
continuous calculated priority, giving more weight to static
priority when the test case is new. These two properties are
added separately to the priority value for each calculation.
The extended equation is defined as follows:

Clalculated Priorityy, = PRy, + Ny + I

where [}, is defined as PR, above, and

N, — 0.4 if current date — creation date < 3 months
Tl o0 if current date — creation date > 3 months

e Static priority: The test case’s original priority should
affect the calculated priority since the most important
test cases always should be given higher priority. The
value is chosen with the same relation between the
priorities as in PRy but with the same magnitude as
PR, which is between 0 and 1

o Age:The creation date of the test case reveals new test
cases and ensure that they are given higher priority. The
limit for how long a test case is defined as new is set
to 3 months. The value is chosen so that it is of the
same magnitude as PRy.

Table IV
NUMBER OF EXECUTED TEST CASES AND FAULTS FOUND FOR EACH
VERSION, USING THE ORIGINAL EXPERIENCE-BASED METHOD.

Version R1.0 RI.1 R1.2 R13 R14 RI1S5
Executed 350 351 450 436 436 435
Faults 4 7 5 8 13 8

The following factors were considered important but were
due to different reasons not possible to include:

o Redundant test cases: To avoid selecting a test case that
reveal a defect that has not been fixed yet the link to
the defect report should be checked. If the defect report
linked to the test case still is unresolved the test case
should have low priority. This link however could not
be set up during the development of the prototype tool.

e Cost: There is no data about how much time and
resources either of the types manual or automatic
test cases will consume, therefore this property is not
included into the equation.

A prototype tool was developed for the evaluation. All test
cases are stored in an SQL database on the Quality Center
server and the application collects data from the data base
with SQL queries. Both equations were implemented in one
tool with a user interface allowing for some choices: which
equation to use, the constraints on the session (i.e. number of
test cases), exclusion of certain types of test cases (e.g. per-
formance, duration or certification tests). The variant specific
test cases could also be excluded but this information is often
specified only in the test case’s description text and could not
be retrieved. However, in some cases this information could
be found in the name of the test cases and these test cases
are possible to exclude from the prioritization equation.

C. Comparative evaluation of strategies (Exp, Faz, ExtFaz)

The three strategies, 1) current experience based (Exp),
2) the proposed strategy [5] (Faz) and 3) the extended
version of the proposed strategy (ExtFaz) were compared
through a quasi-experiment [21]. Data were collected from
six recent consecutive regression test sessions of six consec-
utive software versions, and the effect of the prioritization
of execution order and selection with the tool were analyzed
and compared with the actual outcome of respective session.
Execution status (pass/fail) were known only for test cases
actually executed in the original sessions.

The total number of test cases in the pool is 2 114. The
numbers of executed test cases and the number of faults
found in each session are presented in Table IV and provides
raw data for the evaluations described in this section.

1) Evaluation of execution order: The manually selected
experience-based set of test cases (which is the total number
of executed test cases in Figure 3) was prioritized according
to the two proposed prioritization equations. The prioritized
suites were then compared with respect to their ability to
detect faults early. A metric introduced by Rothermel et

—
-
0,6 @ APFD_Faz
== 0PFD_ExtFa:
0.4 8= APFD_Exp
0,2 Pa—
0
fil0 fil.1 R1.2 1.3 Al.d HLS
Figure 1. APFD-values for each version.
1
[
0.8
0.6 —8— APFD_Eup
—8— /\PFD_Faz
0.4 =& APFD_ExtFaz
0.2
o
R1.0 fil.1l R1.2 A13 Al.4 RS
Figure 2. Worst case scenario on comparing APFD values.

al. [7] was used for this purpose: APFD, measuring the
weighted average of the percentage of faults detected over
the test session. A high value means that the total number
of detected faults becomes high early in the session. The
APFD for a test suite is given by:
TFi+TF+ .. +TF, 1
| J—
nm 2n
where T'Fy, is the rank of the test case, detecting the k:th
fault, n is the number of executed test cases and m is the
number of detected faults. See Rothermel et al. [7] for more
details.

The APFD values for each of the six sessions is reported
in Figure 1. Here the history-based techniques perform better
in all six sessions. This means that if the selected test cases
are executed in a prioritized order as recommended by the
tool, faults would be revealed earlier. However, since test
suites are executed in relatively short sessions, this is not
a very important improvement in itself. A more important
consequence is that if testing is interrupted and not all
test cases are executed, the prioritized order guarantees the
highest achieved fault detection efficiency at any time. Note
that this measure does not say anything about the effect of
the manual selections since the execution order is not a basis
for the manual selection.

The worst case scenario, with respect to our assumptions,
in comparing APFD values is reported in Figure 2. If the

APFD =1-—

Table V
SIZE CONSTRAINTS ON SELECTION (# TEST CASES) IN EACH VERSION
AND THE SHARE OF KNOWN VERDICTS (# SELECTED AND EXECUTED
TEST CASES) FOR EACH METHOD

Version R1.0 RI.I RI12 RI3 RI14 RI1S5

Selected 350 351 450 436 436 435

execFaz 279 95 173 64 86 75
execExtFaz 80 131 207 66 136 138

actual selection of test cases were safe (i.e. including all fault
revealing test cases) the pure history-based technique (Faz)
performs significantly worse than the other two approaches
in the first three sessions, and as good as the extended
version (ExtFaz) in the last three sessions, while the manual
approach would have very high APFD values in all sessions.
This is not very surprising since the assumption is that the
percentage rate reaches 100% within the selected scope.
The testers’ uncertainty regarding their selections indicates
however that this is very unlikely.

2) Evaluation of selection: For each session we also used
the tool for selecting a set of test cases recommended for
execution. The constraints for the selection was set to match
the size of the original selection. The selected suites were
then compared with respect to fault detection efficiency
defined as:

faults found
test cases executed

Effdet =

However, we only have access to execution data from the
originally executed test suite. Table V shows the size of
the selection as well as the number of known verdicts for
the two tool based selections (i.e. the number of executed
selected test cases, see Figure 3). Only the executed share of
the selected test cases are available for evaluation and some
assumptions about the non-executed selected test cases are
necessary. The extremes are of course that they are all false
positives (pass), or all true positives (fails). In Table VI the
number of faults detected are reported for the two methods.

In Figure 4 we report on the efficiency of the evaluated
methods as an effect of different assumptions and compare
with the actual efficiency for each version. In any case the ef-
ficiency is rather low, between 1 and 10%, and there is room

Total number of
executed test cases

Selected test cases

Executed
non-selected
test cases

Executed
selected
test cases

Non-executed
selected test
cases

Figure 3.

Diagram relating the sets of test cases to each other.

Table VI
NUMBER OF FAULTS FOUND FOR EACH VERSION BY THE TEST CASES
SELECTED BY EACH METHOD

Version R1.0 RI1.1 R1.2 RI3 RI14 RIS
Known faults 4 7 5 8 13 8
Faz 2 2 3 6 6 6
ExtFaz 2 2 2 7 7 6

—B— e _Fa:

—d— e _ExtFaz

—E— el _Far as_Exp
0,04

—o—uil_Exp
o0z

—&— o Faz worsl_cas

RL.O RL1 R1.2 RL3 fl4 R15%

Figure 4. Sensitivity analysis for each version, showing the efficiency for
the three approaches and two calculations based on different assumptions.

for improvements. The efficiency analysis of eff Faz and
eff_ExtFaz is based on executed and selected test cases only,
see Figure 3, and thus the assumption is that the efficiency
measured is representative for the non-executed test cases.
This analysis compares the two automated methods. The
two techniques only differ in efficiency for the last version.
For further comparisons the Faz technique represents the
tool, eff_Exp is based on the total number of executed test
cases. The eff Faz_as_Exp assumes that the non-executed
selected test cases is as efficient as in the manual case, while
eff_Faz_worst_case assumes that no defect is found by the
non-executed selected test cases.

We interpret this as the Faz method has a potential to
maintain or even improve the efficiency. The worst case
scenario may be worse than he manual method, but this
scenario is very unlikely.

The first three versions show no big differences indepen-
dent of the assumption while the last three versions widen
the range of possible efficiencies. This is natural, since there
is an embedded learning property of the the history-based
techniques.

D. Expert opinions about the resulting prioritization

A test suite, automatically selected with the ExtFaz pri-
oritization technique, was handed out to five testers in the
team. The test suite was presented in two different orders
in Excel sheets, one where the test cases were grouped by
function to allow the tester to easily review his/her part of
the test suite and one where the test cases were presented
in priority order to allow the testers to review the proposed
priority order. They were then given a form to fill out and
give their opinion about the test suite and the priority order

Table VII
EVALUATION FORM HANDED OUT TO THE TESTERS. THE STATEMENTS
WERE GRADED ON A FIVE STEP LIKERT SCALE : STRONGLY DISAGREE,
SLIGHTLY DISAGREE, DON’T KNOW, SLIGHTLY AGREE, STRONGLY
AGREE.

1. The automatically selected test case selection is equal to what
I would have selected for this session.

2. The automatically selected test case selection contains test
cases that are inappropriate (unnecessary).

3. The automatically selected test case selection is missing
important test cases.

4. The automatically selected test case selection would ensure
that the quality demands are met.

5. The automatically selected test case selection could be ex-
ecuted within the time and resource limit of an ordinary
regression test session.

6. The priority list matches my expectations, this is the same
way I would have prioritized the test cases (generally).

of the test cases. The form contained six statements see Table
VII and also had space for two open questions.

The testers were positive to automating the selection
of test cases and believed a history-based approach could
increase test efficiency. However, several problems with this
specific implementation were identified. Most of the testers
stated that the automatically selected test suite included
unnecessary test cases. A reason for this is lacking or out-
dated information in the test management database. Lack of
configuration information led to many non-relevant variant
specific test cases. The static priority is not updated as test
cases’ importance decrease. Another reason for including
unimportant test cases was incorrect assumptions in the
priority equation. Execution history was not a good surrogate
for fault detection capabilities nor was the age of a test case.

The link to the defect reports was requested by most of
the testers. It would solve some problems. For example,
blocked test cases (with open issues) could be excluded from
the test suite, and test cases which had been blocked in a
previous session should be considered as fault detecting in
that session. It is also relevant to consider the severity of the
detected faults. One tester noticed that test cases detecting
faults of low severity were given high priorities, since these
faults were not fixed and the test cases had not been selected
for execution since.

One tester asked for a possibility to prioritize between
different groups of functions, rather than individual functions
in order to reach a better coverage of function areas.

E. Threats to validity

This study comprises several steps, combining two re-
search methodologies: the exploratory case study and the
evaluative quasi-experiment. Threats to validity depend on
type of study and goals and are here analyzed from both
perspectives according to the following taxonomy [6], [21]:
construct validity, internal validity, external validity and
reliability.

1) construct validity: Construct validity refers to whether
the design of the study represents a fair investigation of
the research questions. There are several threats to validity
here: the selection of the case, the interpretation of questions
and answers in interviews, the use of proper metrics and
experimental setups for evaluation. Since the primary goal
of the study was to improve the current situation in this
context the selection of case is trivial. Our case represents a
non-trivial real life situation and could as such be regarded
as a typical case [6]. However, there are many variation
factors in a real life regression test situation [2] and it is not
possible to find a commonly accepted typical case. Thus we
do not claim to have a general solution.

The metrics used for comparing the techniques are ac-
cepted by the research community and have been used in
several previous studies for the same purposes [22], [7], [13].
There is however other views on what is a good selection
(e.g. high inclusiveness or precision [22]) or prioritization
(e.g. early code coverage) of test cases which we could not
analyze in this study due to limitations of available data.
Concerns about the experimental setup regard the fact that
only a subset of the test cases were executed and assigned an
execution status. Thus assumptions about the non-executed
test cases have to be made. Since the set of executed test
cases does not represent a randomized sample any such
assumption is biased. As a countermeasure to this threat, a
sensitivity analysis is conducted, where the effect of different
assumptions are reported and boundaries for worst cases are
identified.

2) internal validity: Internal validity refers to whether
the interpretation of the results is correct. This threat does
not apply to the exploratory part of the study since no
casual relationships are studied. Instead threats to internal
validity concerns the analysis of data in the evaluative part.
The implementation of the history-based testing is tailored
for this specific context. Thus we do not draw conclusions
about the specific technique selected for implementation but
rather about the general concept of history-based testing and
about the possibility of improving regression testing with
systematic automatable strategies. There may by unknown
factors behind the selections in the benchmarking regression
test sessions making the sets of actually executed test cases
bad representatives. Interviews before implementation and
experts’ opinions about the recommendations are counter-
measures to this threat.

3) external validity: External validity refers to whether
the findings are possible to generalize. Analytical general-
ization [6] is supported through a thorough description of
the case, see Section III. Statistical generalization is not
possible from a single case study but the concepts need to
be evaluated further in different contexts.

4) reliability: Reliability refers to whether the study is
conducted in a robust manner and can be repeated by other
researchers with the same results. There is a major threat in

the exploratory part of this study. Interviews are only semi-
structured and not recorded so it is possible that another
researcher would have identified a different list of important
prioritization factors. However the list proposed in this study
is further evaluated and thus validated within the scope
of this study. Another threat is the implementation of the
prototype tool. Validation of the implementation was made
by another researcher reviewing the code.

VI. CONCLUSION

In this paper we report on a case study of the implemen-
tation of history-based regression testing for the purpose
of improving transparency and test efficiency at function
test level in a large software development organization.
Current practices are investigated and a semi-automated tool,
combining the concepts of history-based regression testing in
literature with good practices in the current process as well
as practitioners’ opinions, are implemented. Three different
strategies, the current experienced based approach and two
systematic approaches are empirically compared through a
post hoc quasi experiment. The outcome of the tool is further
assessed through manual reviews made by the practitioners.

History-based prioritization do account for properties of
previous executions of test cases in order to increase test
efficiency of a test suite. Two such properties were initially
identified as important to incorporate into a tool by the
practitioners: historical effectiveness and execution history.
However, after implementation and evaluation of our tool,
execution history was discarded as a basis for prioritization
by the practitioners. The non-historical factors identified aim
at increasing confidence rather than efficiency of testing. A
history-based method proposed by Fazlalizadeh et al. [5] was
considered a good basis for prioritizing test cases, while not
covering all of the important factors. It is intuitive and the
historical data needed for analysis is available in the test
management system.

We conclude regarding the two research questions defined
in Section IV:

RQI. Which factors are considered when prioritizing and
selecting test cases for regression test? Following factors
are considered important and thus affect the manual prior-
itization and selection of regression test cases: Historical
effectiveness, Execution history, Age and Static priority of
a test case affect which priority a test case is given, while
Scope and Focus of the session as well as the session’s Time
and resource constraints is a basis for selection of test cases.
Test cases are prioritized not only individually but also with
respect to which function areas they belong to in order to
achieve a reasonable Coverage of function areas. Current
status (e.g. blocked or postponed) of a test case is considered
for filtering out invalid test cases while its Status in previous
sessions affects the current priority.

RQ?2. Do history-based prioritization and selection of test
cases improve regression testing? Transparency is improved

through automating as much as possible of the selection
procedure. Such automation should incorporate context spe-
cific factors as well as good principles accepted in research
literature. However details in proposed techniques are less
important since adaptation to the current process, available
tools and practices are inevitable. It is not possible to cover
every aspect of the selection procedure in a tool and thus
guidelines for how to use the tool are needed as well. The
tool may be more useful in some regression test sessions
than others (e.g. if for example the focus is on problem
areas). Even with a tool, the selected test suites should be
manually reviewed both for the purpose of identifying gaps
and gaining knowledge of important test cases.

Our quantitative evaluation shows that history-based pri-
oritization of an already selected test suite improves the
ability to detect faults early, which is good if a test session
is prematurely interrupted. More important is the efficiency
of a selection which is based on the total prioritization. Our
data does not admit an exact evaluation of this but indicates
an increase in fault detection efficiency, while a worst case
interpretation of available data shows a small decrease in
efficiency.

The history-based method was extended with components
accounting for two additional factors for which data was
available in the test management system, the age and static
prioritization of test cases. These extensions did increase the
testers’ confidence in the test suites but they did not affect
the efficiency of neither the prioritization nor the selection.

In summary, testers were positive to the general ideas
of history-based prioritization and of incorporating good
practices into a tool, but they were not satisfied with the de-
tails of this specific implementation. Many of the problems
encountered can be resolved by changes in the implementa-
tion. Some of the not implemented important factors could
be incorporated with a link to the error reporting system.
However, some shortcomings of the tool relate to outdated
or missing information in the test management database and
cannot be resolved as easily.

ACKNOWLEDGEMENTS

The work was partly funded by Vinnova under grant 2007-
03005 for the SWELL research shool, and partly by the
Swedish Research Council under grant 622-2007-8028 for
a senior researcher position in software engineering. The
authors are thankful to Bruno Einarsson, Roger Hassel and
Hares Mawlayi at Sony Ericsson for their support during the
project.

(1]

(2]

(3]

(4]

(5]

(6]

(71

8]

(9]

(10]

(11]

(12]

(13]

REFERENCES

P. K. Chittimalli and M. J. Harrold, “Recomputing coverage
information to assist regression testing,” IEEE Transactions
on Software Engineering, vol. 35, no. 4, pp. 452—469, 2009.

E. Engstrém and P. Runeson, “A qualitative survey of regres-
sion testing practices,” in The 11th International Conference
on Product Focused Software Development and Process Im-
provement, 2010, pp. 3-16.

E. Engstrom, P. Runeson, and M. Skoglund, “A systematic
review on regression test selection techniques,” Information
and Software Technology, vol. 52, no. 1, pp. 14-30, 2010.

S. Yoo and M. Harman, “Regression testing minimization,
selection and prioritization: a survey,” Software Testing,
Verification and Reliability, pp. n/a—n/a, 2010. [Online].
Available: http://dx.doi.org/10.1002/stvr.430

Y. Fazlalizadeh, A. Khalilian, M. Azgomi, and S. Parsa,
“Prioritizing test cases for resource constraint environments
using historical test case performance data,” 2009 2nd IEEE
International Conference on Computer Science and Informa-
tion Technology, pp. 190-195, 2009.

P. Runeson and M. Host, “Guidelines for conducting and
reporting case study research in software engineering,” Em-
pirical Software Engineering, vol. 14, no. 2, pp. 131-164,
20009.

G. Rothermel, R. H. Untch, C. Chu, and M. J. Harrold, “Pri-
oritizing test cases for regression testing,” IEEE Transactions
on Software Engineering, vol. 27, pp. 929-948, 2001.

P. Runeson, M. Skoglund, and E. Engstrom, “Test benchmarks
— what is the question?” in First Software Testing Benchmark
Workshop TESTBENCH’08 Co-located with ICST 2008 First
International Conference on Software Testing, Verification
and Validation, M. Roper, Ed., 2008.

L. White and B. Robinson, “Industrial real-time regression
testing and analysis using firewalls,” in Proceedings 20th
IEEE International Conference on Software Maintenance,
2004, pp. 18-27.

A. Orso, N. Shi, and M. J. Harrold, “Scaling regression
testing to large software systems,” in SIGSOFT '04/FSE-12:
Proceedings of the 12th ACM SIGSOFT twelfth international
symposium on Foundations of software engineering. New
York, NY, USA: ACM, 2004, pp. 241-251.

M. Skoglund and P. Runeson, “A case study of the class
firewall regression test selection technique on a large scale
distributed software system,” in International Symposium on
Empirical Software Engineering, 2005, pp. 72-81.

E. Engstrom, P. Runeson, and G. Wikstrand, “An empirical
evaluation of regression testing based on fix-cache recommen-
dations,” in Proceedings of the 3rd International Conference
on Software Testing Verification and Validation, 2010, pp. 75—
78.

S. Elbaum, G. Rothermel, S. Kanduri, and A. G. Malishevsky,
“Selecting a cost-effective test case prioritization technique,”
Software Quality Journal, vol. 12, no. 3, pp. 185-210, 2004.

[14]

[15]

[16]

[17]

[18]

[19]

(20]

(21]

[22]

J.-M. Kim and A. Porter, “A history-based test prioritization
technique for regression testing in resource constrained envi-
ronments,” in Proceedings of the 24rd International Confer-
ence on Software Engineering, 2002, pp. 119-129.

S. Kim, T. Zimmermann, E. J. Whitehead Jr., and A. Zeller,
“Predicting faults from cached history,” in ICSE ’07: Proceed-
ings of the 29th international conference on Software Engi-
neering. Washington, DC, USA: IEEE Computer Society,
2007, pp. 489-498.

H. Park, H. Ryu, and J. Baik, “Historical value-based ap-
proach for cost-cognizant test case prioritization to improve
the effectiveness of regression testing,” in Second Interna-
tional Conference on Secure System Integration and Reliabil-
ity Improvement, 2008, pp. 39—46.

H. Srikanth, L. Williams, and J. Osborne, “System test case
prioritization of new and regression test cases,” in Inferna-
tional Symposium on Empirical Software Engineering. 1os
Alamitos, CA, USA: IEEE Computer Society, 2005, pp. 62—
71.

A. Orso, H. Do, G. Rothermel, M. J. Harrold, and D. S.
Rosenblum, “Using component metadata to regression test
component-based software,” Software Testing, Verification
and Reliability, vol. 17, no. 2, pp. 61-94, 2007.

A. Sajeev and B. Wibowo, “Regression test selection based
on version changes of components,” in Tenth Asia-Pacific
Software Engineering Conference, 2003, pp. 78-85.

B. Qu, C. Nie, B. Xu, and X. Zhang, “Test case prioritization
for black box testing,” in Annual International Computer
Software and Applications Conference, vol. 1. Los Alamitos,
CA, USA: IEEE Computer Society, 2007, pp. 465-474.

C. Wohlin, P. Runeson, M. Host, M. C. Ohlsson, B. Regnell,
and A. Wesslén, Experimentation in Software Engineering:
An Introduction. Kluwer Academic Publishers, 2000.

G. Rothermel and M. J. Harrold, “Analyzing regression test
selection techniques,” IEEE Transactions on Software Engi-
neering, vol. 22, no. 8, pp. 529-552, 1996.

