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Abstract

The unique characteristics of the Chinese stock markets rtakfficult to assume a particu-
lar distribution for innovations in returns and the speaificn form of the volatility process when
modelling return volatility with the parametric GARCH fajnimodels. This paper therefore applies
a generalized additive nonparametric smoothing technig@examine the volatility of the Chinese
stock markets. The empirical results indicate that an asgtmoeffect of negative news exists in the
Chinese stock markets. Furthermore, compared with othenpetric and nonparametric models,
the generalized additive nonparametric model demonsteateetter performance for return volatil-
ity forecasts, particularly for the out-of-sample foreca¥he generalized additive honparametric
technique has the potential to be widely applied to otherrgimg stock markets that have similar

characteristics to the Chinese stock markets.
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1 Introduction

Chinese stock markets have grown rapidly since establishment of thel@h&tgck Exchange (SHSE)
in Decemben 989 and the Shenzhen Stock Exchange (SZSE) in A@dll. Specially, with the recent
boom in China’s economy, the China’s stock markets have been attractieigoamous amount of at-
tention from policy makers, investors, and acaderhithiese Chinese stock markets are interesting and
deserve attention also because they exemplify many unique characterigtiddftér from the western
well-developed western financial markets. One of the unique chardicteis that the Chinese stock
markets are the only equity markets covered by the International Finamp@r@ton that have com-
pletely segmented trading between domestic and foreign investors (searzhiiwok, 1998; Yang,
2003). The A- shares market is only open to Chinese domestic investdes ttwh B-shares market
was only open to foreign investors before Februzd91.2 Many studies (see Chui and Kwok, 1998;
Yang, 2003) address also the fact that the Chinese stock markets dhe ¢ttrolled by the govern-
ment and the markets are at most a partially privatized one in which the state imasitde shares in
varying amounts. The presence of market segmentation and heavygm@rerregulations give rise to
mispricing, information asymmetry, and make the market clearly imperfect anthjplete (Chan et al.,
2007). Further, the stock trading is still new to most domestic participantsA®t&res are dominated
by domestic individual investors who typically lack sufficient knowledge experience in investments
(China Securities and Futures Statistical Yearbook, 2004).

Given the unique characteristics of the markets and that the typical Chinveestor is more prone
to speculation and less sophisticated than those from more mature markeet &Iar2008), the Chi-
nese stock volatility behaves also differently from other markets. Thexettoe conventional volatility
models, such as GARCH family approaches, that heavily rely on volatilityifsgeon and known distri-
butions of the returns, might be insufficient to characterize the volatility o€thieese market. Bilman
and McNeil (2002) propose a nonparametric GARCH model (NP modelafter), in which the hid-
den volatility process is a function of lagged volatility and lagged value of thevaions from returns
and will be estimated by an iterative nonparametric algorithm. What makes thid mode attractive

comparing to the parametric GARCH family models is that it requires neither thefispgon of the

Two papers give a comprehensive review of the studies on the Chitemsemarkets, i.e., Wang et al. (2004) and Chan
et al. (2007).

2In order to increase mobility of B-share and to strengthen the foreig ifwrestment on capital market, with a view of
paving the way towards China accession to WTO, the Chinese govertfiftezhthe restriction of people in the territory of
China investing in B-shares on Februd#; 2001. Even after the rule changes, B-shares cannot exceed 25% of thehiates
of a company so that Chinese stock markets will not be over-influelmgddreign investment, and the domestic investor can
trade and own B shares only if they have foreign currency.



functional form of the hidden volatility process nor that of the distributiothefinnovations .

In this paper, we investigate the Chinese stock return volatility and the asymefédt® of shocks
on returns volatility by applying the NP model. Moreover, we contribute metlogitzlly to the liter-
ature by suggesting a Generalized Additive Model with the Nonparamepioagh (GAM NP model
hereafter) that applies the iterative estimation algorithm of the NP model to ther@eed Additive
Model of Hastie and Tibshirani (1990). The motivation for such an aljest is that our proposed
GAM NP model becomes computationally more efficient. Further, as will be slhothe Monte Carlo
simulation and the empirical investigation of this paper, this newly proposed GlRMnodel can de-
liver a more accurate volatility estimate and forecast than the NP model aahg@iaic GARCH family
models . Also novel in our approach is that we extend the news impact fronaeengle and Ng (1993)
to the nonparametric context, and use it to measure and examine the asymrfesticfeshocks.

Currently, the GARCH family models are the most used ones in the investigatithe @hinese
stock return volatility and the asymmetric effect of market news on the volatilityekample, Yeh and
Lee (2000) use the GJR model proposed by Glosten et al. (1993) to ex#milChinese stock markets
volatility from May 22, 1992 to August 27, 1996. They find that investors in China chase after gpod n
indicating that the impact of good news (positive unexpected returns)tarefvolatility is greater than
that of bad news (negative unexpected returns). By estimating both fRe@the EGARCH model,
Friedmann and Sanddorf-Kéhle (2002) report that bad news ireseasatility more than good news
in A-share indices and Composite indices, whereas good news incredatiity more than bad news
in B-share indices based on a sample beginning on May 22, 1992 andjendiBeptembet6, 1999.
The good news chasing investor phenomenon in China makes the Shandt@fienzhen stock markets
relatively unique and different from many other stock markets in the whsdd.et al. (2001) provide the
same result as Friedmann and Sanddorf-Kéhle (2002) with the EGARClélrand daily returns data
from December 12, 1990 to December 31, 1992. Zhang and Li (200&tigates the asymmetry effect
of bad news on the Chinese stock volatility with a partial adjustment prochsy.fihd that the leverage
effect begins to appear beginning in M&§96. Dividing the total sample into two periods, Huang and
Zhu (2004) produce results from the EGARCH and the GJR model shdhatighe leverage effect only
exists in the period between February 2001 and September 2003.

In view of the different findings from past research regarding therbeye effect of the Chinese stock

return volatility, we examine the Chinese stock markets volatility by using re@atftbom January 2,

The leverage effect refers to that volatility increases more after ainegfaan after a positive shock of the same magnitude
(see Black, 1976; Christie, 1982).



1997 to August 31, 2007. Several questions will be addressed in testigations: Do Chinese stock
markets volatilities asymmetrically react to shocks as in most mature stock marketsviroitld? Are
investors in the Chinese stock markets still chasing after good news? Diitiedain the Shanghai
and in the Shenzhen stock market react similarly to the market news ? Tlerans these questions
have important implications for market practitioners forecasting stock ieaurd volatility, and for risk
managers formulating optimal strategies for portfolio selection and risk mareage

The results from this paper suggest that the leverage effect exists @hthese stock markets, i.e.,
bad news affects the return volatility more than good news. However, impjfidtetNews Impact Curve
(NIC) from the NP GAM model, a limited amount of good news is needed to kexpntdrket calm.
Further, compared with the superior performance of the NP GAM model imtkample volatility es-
timation and out-of-sample forecast, the GJR and EGARCH models tend tcstreate the volatility
process in turbulent periods and yield larger estimation errors. Oultgesiggest that the GAM NP
model is a more appropriate tool to use in estimating the Chinese stock retutititydlzan the para-
metric GARCH models, i.e., the GJR and EGARCH models.

The rest of the paper is organized as follows. In section 2, we prédsei@AM NP model and the
model estimation algorithm. Section 3 performs the Monte Carlo simulation to evalegterfiormance
of the GAM NP model. Section 4 examines the asymmetric effects on the volatility withrtposed
GAM NP model and compares the performance of the GAM NP model with the Nfelnaod various

GARCH family models. Section 5 concludes.

2 Modelling time-varying volatility

In this section, we introduce the Generalized Additive Nonparametric (GANINodel and the model
estimation algorithm used for the Chinese stock markets volatility estimation. As wewalliate and
compare the performance of the GAM NP model with the parametric models, stentioduce the

parametric GARCH family models.

2.1 Parametric GARCH family models

The GARCH model of Bollerslev (1986) is the most widely used model for thetNity estimation since
it was first proposed in 1986. As pointed out by Bera and Higgins (1988st of the applied financial
works show that GARCH (1,1) provides a flexible and parsimonious appation to the conditional

variance dynamics and is capable of representing the majority of finameciaks The GARCH (1,1)



model is written as,

Ry=p+Xy, Xy=0y2, 2z ~N(0,1),

of =w+a X7+ Biojy, (1)
wherew > 0, oy, 8; >0, (aq + B;) < 1, andX,_; may be treated as a collective measure of news
about equity returns arriving to the market over the previous periods.

In the simple GARCH (1,1) approach good news and bad news, i.e. paaitiv@egative shocks,
have the same impact on the conditional variance. Many studies have dgigthce of asymmetry in
stock price behavior, i.e., negative surprises seem to increase volatiligythaor positive surprisésTo
allow asymmetric effects in the volatility, Glosten et al. (1993) add an additiormalitethe conditional

variance and formulate the so called GJR model. The GJR (1,1) is specifitbas,

Ry=p+X;, X;=o02, 2 ~N(0,1),
of =w+ Byo7 4 (o + 1 N ) XP (2)
wherew > 0,y > 0, (ay +7,) > 0,5, >0, (o; + 0.5v; + B;) < 1. N,_; is an indicator for negative
X1, thatis,N,_; = 1for X,_; <0,N,_, = 0for X;_, > 0. The structure of this model indicates that
a positiveX,_; contributesy, X? ; to o;, whereas a negativg, _, has a larger impact aty; +y) X2
with v; > 0. Therefore, if parametersg, is significantly positive, then negative innovations generate
more volatility than positive innovations of equal magnitude.

Another volatility model that accounts for the asymmetric impacts on the conditiariahce is the
Exponential GARCH model (EGARCH) proposed by Nelson (1991) olmrast to the previous model,
the EGARCH(1,1) is specified as,

|Xt 1| X 1\

Joti r””“r

Here the coefficient signifies the leverage effect of shocks on the volatility. The key advardathe

logo} = w + Bylogo;_; + ay{ 3)

EGARCH modelis that the positive restrictions are not needed to be impagkd wariance coefficients.

The coefficientsy need to be negative for evidence of asymmetric effects.

“This is the so called leverage effect



In this paper, we will leave the functional form of the variance processnspecified and attempt
to estimate it as an additive nonparametric mean. We show that the nonparanwtgtcan capture
the leverage effect from the negative news and outperform two ofattametric GARCH family models

most commonly considered.

2.2 The Generalized Additive nonparametric model

Compared with the parametric models, a nonparametric model enjoys adwotagkaxing the speci-
fication of the variance process and the assumption of innovations. @ngpkxis the NP model from

Blulman and McNeil (2002), which is written as follows,

R, =p+ Xy, Xy =042,

Ut2 = f(Xt_l,...,Xt_p,o-?_la"‘7o-t2—q)7 (4)

where the stationary stochastic procé€ss,; ¢ € Z} is adapted to the filtratiog F}; ¢ € Z} with
F, = o({X,; s < t}) (as-field filtration), and(z,; t € Z} is an i.i.d. innovation with zero mean
and unit variance and a finite fourth moment, ané assumed to be independent{df,; s < ¢}, and
f: R xR, — R, is a strictly positive valued functions, is the time varying volatility ana? is
the conditional variance df ar [X, | F,_;], where{l < k < max(p,q)}. Bulman and McNeil (2002)
have shown that the nonparametric functjocan be estimated by regressiig on the lagged variables
X,_, ando?_; using a nonparametric smoothing technique.

However, the proposed model cannot avoid the common problem of a multisiimneh nonpara-
metric smoothing, i.e., the "curse of dimensionalityn order to overcome this difficulty, Hastie and
Tibshirani (1990) propose the generalized additive model, which en#iidedependent variable to de-
pend on an additive predictor through a nonlinear function. We applyeherglized additive procedure

from Hastie and Tibshirani (1990) to the NP model which gives rise to thIG#® model as follows,

R, =p+ X, X, =02,

o7 = p+ f(X; 1)+ glo7 1), (5)

wheref : R — R, are the positive valued functions and satisfyifgx) = f(—x), e.9., f(z) =

5The curse of dimensionality is a common problem for nonparametric dgtimaf a multidimensional regression, i.e., the
optimal rate of convergence decreases with dimensionality (Linton amanvie, 2005). For the multidimensional smoothing,
efforts must be made in order to alleviate the problem (Héardle et al.,)2004



alz|,0 < a < 1, ¢ : R, — R, are the positive non-decreasing functions and satisfyieg) =
Bo,0 < B < 1.

We observe that the model in equation (5) can be written with the followingftranation:

Xt =p+ (X, 1) +9(o7 1)+ V,,

V= (n+ f(X;1) + g(o7 1)) (= — 1), (6)

It is obvious thatV} is a martingale difference series wif{V;| = E[V,|F,_;] = 0 andCov[V,,V,] =
Cov[V,, V,|F,_;] =0, fors < t.

From equation (6), it follows that,

EXZ|F_1] = p+ f(X;_1) + glof1) + V,

VarlVEF, ] = VarlVi|F, ] = (n+ f(X, 1) + g(071))*(Blz] - 1), ()

This suggests that we can estimate the conditional variance by a nonpacaemgtession proce-
dure of a generalized additive model. The regression procedurefisped according to the additive
structure ofr? by using the back-fitting algorithm, which was first introduced by FriedmahSinetzle
(1981) and generalized by Hastie and Tibshirani (1990). It is now alwidsed tool for iterative pro-
cedures for nonparametric estimation. We estimate the conditional variarthe ggneralized additive

model according to the following formula:

&7 :/Af""f(thl)"i_g(a’thl)' (8)

2.3 Estimation Algorithm
Assume we have a data sampl§?; 1 < ¢ < n} satisfying the process of (8),

1. In the first step, we calculate a first estimate of volatiiif)é; 1 <t < n as the initial estimation

by fitting the data with the GARCH (1,1) model by a maximum likelihood.

2. We regres§ X?; 2 <t < n} on the lagged return§X,_,; 2 <t < n} through a nonparametric
smoothing procedure with the back-fitting algorithm to obtain estimatgfglmff f,andg,, of g.

m is the current iteration.

SReaders who are interested in the justifications and proofs of this algonthrefarred to Biilman and McNeil (2002)



3. In the third step , we calculat®?,, = fi,, + fr (X 1m-1) + G (621 m_1); 2 <t < n}as

specified in §).

4. We proceed to increment the iteratiorand return to the second step until= M whereM is

the pre-specified total number of iterations.

5. Finally, we average the last k of such estimates to obtain the final smoatteeiity, &, r;,,,;, and
perform the final nonparametric regression with the back-fitting algorithredressingd X?; 2 <

t <n}against{X, ;; 2 <t <n}ands? , finat 10 get the final estimate§, of f andg,, of g.

3 Monte Carlo simulation

In the Monte Carlo simulation, a GARCH model with a leverage effect and aatdrGARCH model

are simulated and estimated in order to show that with an asymmetric effect, theNgAModel can
offer better estimates of the unobserved volatility than the NP model and pgaa@ARCH family
models. We generate = 1000 observations and 50 realizations for each random process. For the
nonparametric models, the number of iterations is set tb/be 8, and a final smoothing is performed

by averaging the last fou{ = 5) iterations according to the algorithm presented in the previous section.
The performance of each model is evaluated by using the mean of the ideares Error (MSE) and the
Mean of the Absolute Error (MAE) from each iteration. The MSE and theB\ie calculated according

to the formulas,

. 1 .
MSE(6,,,) = p— Z(thm —0,)%,
t=21

. I .
MAE(Us,m) = n — 20 Z |Ut,m - Jt’? (9)
t=21

wheregs, ,,, is the estimated volatility at time t from each iteration ands the true volatility at time.
The first twenty values are excluded from the calculation because the &stinfahe volatility at the

first few points may be unreliable.



3.1 The simulation results

The data are simulated from the variance process which follows a GAR@H dinreshold GARCH

(TGARCH) model specified as follows,

02=7+ 0102, + 0.66 X2 |, (10)

op =7 + 0.107 1 + (0.66 I{ysg) +0.2Iy<0y) X7 1, (11)

In the variance process of equation (11), the asymmetry effect of tiivyeoand negative shocks
from returns have been built into the ARCH effect, along the lines of modelgested by Glosten et al.
(1993) and Fornari and Mele (1997). We simulate the process giveqimgtion (11) witht distributed
residuals and estimate it with both Gaussian auiktributed errors. Figuré plots the true volatility
surfaces of process specified in equation (10) and equation (Epecatively. It can be easily seen
that if the true volatility is under the GARCH specification of process giveedpyation (10) (the left
plot), the volatility surface is very smooth. However, with the asymmetry efiégprocess given by
equation (11), there is a significant broken segment on the volatility surfachis case, we show that
the GAM NP model can smooth the segmented volatility surface quite well anddremitperforms
the parametric models. For purpose of comparison, we fit the simulatedsprgien by equation (11)

with the EGARCH , GJR and NP models, and compare their goodness-afHithe GAM NP model.
- Figure 1 about here -

In Figure2 we plot the estimated volatility surfaces of the eight iterations and the final smgath
the GAM NP model from one randomly chosen iteration. We can clearly ebsleat the smoothing has
been well performed already after the first iteration and the surfacbdesperfectly smoothed at the
final stage of smoothing. This indicates that the estimation algorithm is recguegressential features

of the volatility surface, and reassures that the smoothing method is conyerg
- Figure 2 about here -

Table1 reports the model performance comparison from the GARCH, EGARCR, @AM NP,
and NP models. Table 2 presents simulation results of the goodnessroftfittfe nonparametric mod-

els. It is evident from the tables that the MSE and the MAE of the nonparanmetdels are much



lower than the ones from the parametric GARCH models. For example, it capdmefrom Table 2
that the MSE and the MAE ar@555 and0.615 for the GARCH model with Gaussian errors before
smoothing. The MAE and the MAE start to decrease in each iteration and(ead (0.261) and).339
(0.405) at the final stage of smoothing for the GAM NP (NP) model. AlthougrB8ARCH and GJR
(TGARCH) models have partly captured the asymmetric effects, they camatoh the goodness-of-fit
of the nonparametric models. For example, it can be seen from Table 1 ¢hsiSE and MAE of the
EGARCH model with Gaussian errors are 0.3 and 0.43, respectively, thiaiteof the GJR model are
0.39 and0.507, respectively. More interestingly, the goodness-of-fit of the GAM NRlehdndicates
that the GAM NP model performs even better than the NP model, e.g. the MSE)difthe GAM
NP model is 4 % (1%) lower than that of the NP model. We also notice that theechbtbe distribu-
tion for the parametric GARCH models clearly matters. There is evidence theE GARCH and GJR
models witht distributed innovations perform better than the ones with Gaussian innasationthis

is not the case for nonparametric estimations. The NP and GAM NP modeisi@mearly identical
results with both Gaussian anérrors. Figure 3 plots the estimated volatility process compared with the
true volatility, which is an arbitrary selection of 100 observations from a sitedleealization of process
given by equation (11). The left hand plot shows the true volatility (solid eenpared with parametric
GARCH (1,1) estimates withinnovations ( dotted line) and the right hand plot shows the true volatility
(solid line) with the GAM NP estimate obtained after a final smooth (dotted line). ciesrly shown

in the figure that the GAM NP model yields volatility estimates which better match thevtiaglity
movements than the GARCH model. In particular, the sharp spikes obsémhedfartieth and ninetieth
observations of the true volatility can be well captured by the GAM NP modehdiuby the GARCH
model.

- Tables 1,2 and Figure 3 about here -

From the Monte Carlo simulation, we conclude that the GAM NP model providee amxurate
volatility estimation and captures more asymmetric effect of shocks comparegavdmetric GARCH

models and the NP model.
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4 The Chinese stock markets volatility

4.1 The data

The data used in this paper includes the daily closing prices of the two Chirigssry indices, namely
the Shanghai Stock Exchange Composite Index (SHCI) and the SeSiatek Exchange Component
Index (SZCI) from January 2, 1997 to August 31, 2007. The SH@uHished sinc&991 and includes
all Shanghai listed companies weighted by capital stocks. The SZCI is pathlEncel 995 and is a
value-weighted index of0 stocks listed on the Shenzhen Stock Exchange. As key market regulations
such as the raising/down limit, was not well established until the end of 199@hase to analyze the
data starting from January 2, 1997. The daily prices are downloadedHttp:www.sohu.com.

In order to assess and compare the predictive performance of the GRhddel with various
parametric models, the data is further divided into an in-sample group (&ooady2, 1997 to August
31,2006) and an out-of-sample group (from Septembe2(D6 to August 312007). The whole sample
has 2622 observations and the last 243 are used for out-of-samptadts. All data are converted to

their daily log returns, and multiplied bBy00 as follows,
ry = 100(log(P;) — log(P;_1)). (12)

In order to give some sensible comparisons, we calculate the realized vokdilihe proxy of the
true volatility for the out of the sample forecast. The realized volatility is extdsitten high frequency
data 6 minutes). This method has been extensively used in the literatline high frequency data are
obtained from the http://www.wstock.net.

Table3 provides the statistic summary of the returns of both indexes. It can bdlssdroth series
have their mean close to zero, exhibit high kurtosis and are negativeledkén particular, the skewness
in the Shanghai stock market is much higher than the Shenzhen stock méhestlarque-Bera test
further confirms that the return distributions are non-normal. The DiakieFtest suggests that they are
stationary time series.

Figure 4 plots the index price and returns of the SHCI and the SZCI. Tthenselargely mirror
each other and look very volatile. Both series also display strong volatilityeclng. These are typical
characteristics of financial time series. Further, there are sevelkd ped troughs in the return series.

The first peak occurred on Ma2, 1997, where the SHCI/SZCI hit a record high03.62/1500 points.

"See e.g., French et al. (1987), Day and Lewis (1992), Pagancie® (1990), and Andersen et al. (2001a,b)
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After going through a stable two-year period, it experienced a shatimddefore rising and reaching its
second peak on Jully, 1999. Thereafter the stock indices began to increase in a relatively stabierfash
reaching its third peak iB000 — 2001. It then declined again until the first half 2005. However, after
that the stock market began to rise rapidly and it continued to acceleratedgpuntil it reached another
historical high on Auguss1,2007. It can be seen, therefore, that the per20d5 to 2007 is the most
volatile period in the SHCI and SZCI.

- Table 3 and Figure 4 about here -

4.2 The in sample estimation results from various models

We first fit the series from January 02, 1997 to August 31, 2006 witlstdredard GARCH(1,1) model.
Considering the existence of the asymmetry effects in the Chinese stockspar&ealso fit the data with
the EGARCH and GJR models. For all these models, the innovations are assubeeboth Gaussian
and student-t distributed. The estimated parameters and Ljung-Box Q-stdtstic of the standardized
residuals are presented in TadleNote that all parameters of the conditional volatility are significant at
the 5% significance level. The coefficient of lagged variaficahows very high volatility persistence.
The sum ofa and 5 from the GARCH model are close g which supports the evidence of volatility
clustering. The P-values of Ljung-Box Q-statistic test at the2lagf standardized residual series from
all models fail to suggest the autocorrelation at a 5% significance levels dlhmodels appear to be
adequate in describing the linear dependence in the return and volatility.serie

In the Shanghai stock market, the estimated value of the leverage parameté¢ine EGARCH and
GJR models with Gaussiandistributed innovations is: -0.036 /-0.063 and 0.06 / 0.095, respectively.
In the Shenzhen stock market, the valueydbr these two models of Gaussiaiinovation is: 0.028
/-0.035 and 0.036 /0.055. All these parameters are significant at the 5%wiglvehe exception of
the~ from the EGARCH model with Gaussian errors in the Shenzhen market. ighiéicance of the
parameters indicates the existence of asymmetry effect in the Chinese stdaksnae., bad news
(negative shock) has a larger impact on return volatility than good newsstife shock). In particular,
the asymmetric effect is higher in the SHCI than in the SZCI. It is also worth goiat the leverage
effect estimated from models fitted withdistributed innovation is higher than the ones with normal
distributed innovations. The existence of the asymmetry effect as in othererstick markets in the

world may be a positive sign for market efficiency and completeness, andyitalso show that the

12



Chinese stock market is integrating with other world stock markets.

- Table 4 about here -

Next we use the proposed GAM NP technique to smooth the Chinese stotktydtarface based on
the volatility and innovations obtained from the GARCH(1,1) model. We evaluapeifermance by
calculating various loss functions and compare the results from the GAM Nelmdth the parametric
models. For reference, we also estimate the NP model from Bilman and M2R8@e#) and compare its

result with the newly proposed GAM NP model. We use three goodnelsrogasures.

1. The MSE1: the Mean Squared Error between the squared innovgtiand the squared estimated
volatility o7 . As X? = o2+V,, whereV, is the martingale series with zero mean, the mean squared
error between both can be a good indicator to illustrate the goodness obfiteuvdr, since this
assumption is the theoretical foundation underpinning our empirical studyintlicator alone is

not sufficient as a measure of goodness-of-fit.

2. The MSE2: the Mean Squared Error between estimated volatility and thedlatdity proxy,

A

o, = v/ (y, — §)?, wherey, is the daily return at time t angis the mean of),.

3. The MAE: the Mean Absolute Error between estimated volatility and the trlagility proxy,

6, = |(y, — 9)?|, wherey, is the daily return at time t anglis the mean ofj,.

The goodness of fit results of various models are presented in Jaltiés clear that the GARCH
model performs the worst according to all goodness-of-fit measG@apared with the GARCH model,
the EGARCH model improves the volatility estimation by capturing the leverageteff€or the GJR
model, it slightly improves the result from the GARCH estimation in the Shanghak¥schange
(SHSE), while in the Shenzhen Stock exchange (SZSE), it is even wiirdgan the GARCH model.
This is perhaps not surprising because the asymmetric effect in the t&mesiock market is not as
strong as in the Shanghai stock market. However, this may indicate that irhthesé stock markets,
the EGARCH model can capture more leverage effect than the GJR modeh Mtking at the GAM
NP model, we observe a significant improvement of the GAM NP model compétk the EGARCH
model with Gaussian errors with the improvement measured by the MSE1 B#oint the SHCI and
3% in the SZCI. In addition, all loss functions from the GAM NP model withstributions do not differ

from the ones with Gaussian distributions.
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Figure 5 plots the volatility for the in-sample period. The light gray lines are dtatility proxy
of 6, = v/(y, — 9)2, while the blue lines are the estimated volatility. The three volatility plots on the
left-hand side are for the GAM NP, EGARCH, and GJR models in the Shasgitk market. The right
plots are for the Shenzhen stock market. Again, it can be seen fromplués¢hat the GAM NP model
performs better than the EGARCH and the GJR models in capturing the riselemd¥ements of return

volatility.

- Table 5 and Figure 5 about here -

As argued previously, due to the high degree of regulations in the Chétede markets, the GAM
NP can provide a more appropriate tool for measuring the asymmetry effegturn volatility without
having to assume the functional form of the volatility process and the distriibafimnovations. There
are many emerging stock markets which attract investors from all over ttid.Winese markets may be
as imperfect and incomplete as in the Chinese stock markets. We believe tlaAM&IP model can

be an effective technique of capturing the leverage effect in thesestaak well.

4.3 Analyzing asymmetry via News Impact Curve

We have shown in the previous section that leverage effect exists in tineseéhstock markets when
analyzed through the EGARCH and GJR models. We now further examinsythrareetry effects from
the GAM NP model perspective. We use the News Impact Curve profmsé&shgle and Ng (1993)

to demonstrate the asymmetry of shocks estimated from the GAM NP model. Tkdmpact curve
(NIC) relates today’s returns to tomorrow’s volatility and works as a majdrfasaneasuring how new
information is incorporated in volatility estimates. Holding constant the informatadadd — 2 and
earlier, it displays the implied impact of the functional relationship betweeditonal variance at time

t and the shock term (error term) at time- 1. Engle and Ng (1993) define the NIC as the expected

conditional variance of the next period conditional on the currentlghgc
E(o}1le) (13)

For the NIC of the GAM NP model, we extend the original news impact curveemdmparametric
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context as follows,

o7 = f(X;_1) + glo), (14)

whereX,_, are the shocks from newg,andg are the estimated nonparametric functions from the GAM
NP model. The relationship between the shocks and the conditional volatilityrefahe described in
the nonparametric functions ¢t

- Figure 6 about here -

The News Impact Curves of the EGARCH, GJR, and GAM NP models in thadbla@aand Shenzhen
markets are plotted in Figure 6. The parameter values used for constrtiaingC of the EGARCH
and GJR models are from Tablethe nonparametric functionsandg are the estimated nonparametric
functions given by equation (5). It is obvious that all models suggesbiistence of asymmetric effects
in stock returns because the NICs of all models are not symmetric but dkdwgcally, negative news
drives volatility up more than good news. In these models, any news totlag dip volatility tomorrow.
For example, in the SHCI, the asymmetric effect is clearly shown with all sutigplaying a proximate
20 degree slope for "good news" and a 40 degree slope for "basl'né&¥le observe less asymmetric
effect of bad news relative to good news in the Shenzhen stock market.

The NIC of the EGARCH and the GJR model have their minimum shock§ at 0, which means
that no news is good news. In contrast to the parametric models, the NI€ GIAM NP model has its
minimum larger than zero, i.e. 0.5 in the SHSE and 1.5 in the SZSE. In this model|@his N right-
shifted asymmetric parabola. This phenomenon is consistent with the TGAR@EI MEC from Engle
and Ng (1993) and Christian (2007). This potentially suggests that, in theeg&hstock markets, the
minimum amount of good news is required for the markets to remain as calmsiklpoi this case, no
news implies a higher volatility than in the tranquil market period. This furthggssts that although the
model implies the existence of a leverage effect, the typical good newmghaehavior of the Chinese
stock investors found by Yeh and Lee (2000), has not changedofdhe reasons of Chinese investors’
good news chasing behavior explained by Yeh and Lee (2000) is tleatodine lack of institutional
investors, the trading values of the Shanghai and Shenzhen stocktsnamkeompletely generated by
individual investors who have no access to inside information and irrdlffogzt on noise as if it were
information that would give them an edge. In fact, due to the fact that tfxee€é stock markets are

still dominated by the local investors and lack institutional practitioners, theeSaimvestors are still
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potentially chasing good news. This typically reflects the investors behavi®henzhel. The fast
growing stock market and its development produce more noises, makingvistdrs more likely to
speculatively and impetuously chase "good news".

Given the fact that GAM NP better explains the volatility of the Chinese stocketgrwe can see
from the NIC that both the EAGRCH and the GJR model underestimate the volatitittion to the
extreme shocks (the GAM NP has the highest variance in both directionsvenes is larger than 2 and
smaller than -2), and overestimate the volatility reaction to normal shocks (teiadetween 2 and
-2). Further, the GAM NP model has the best performance to capturesynenaetric effect of shocks
because the slopes of the two sides of the NIC of the GAM NP model areteettes than the EGARCH
and the GJR models.

As a result, compared with the EGARCH and the GJR model, the GAM NP modgirosite us
with superior volatility estimates which capture the asymmetric effects of market. nEhe GAM NP
model is more flexible in reflecting the actual market's conditions as implied byewe impact curve.
The findings from this paper have important implications for portfolio selectisset pricing, and risk
management. For instance, as implied by the news impact curves, thererdfieaig differences in
the predicted volatility incorporated with asymmetric effects of market news iG#&d NP model and
other models. This may lead to a significant difference in current optioe,ppirtfolio selection, and
dynamic hedging strategies. Only the most appropriate model can providighushe best estimate of

return volatility.

4.4 Out-of-Sample forecast performances

To demonstrate the importance of our results and the application of the GAM MNPl ingpractice, we
calculate the 90% forecasted return intervals which are based on ombeag out-of-sample forecasts.
The out-of-sample period is from Septembe2006 to August31,2007. In addition to the previous
session used volatility proxy, the realized volatility, which is calculated fronsthenute high frequency
data, is also used. The realized volatility is calculate¢ias />, r%t, wherer, , are the log return
at timei and dayt. The return intervals are calculated accordingite= i =+ ¢,\/5, whereg, is the
percentage of the quantile oflistributed errorsji, 6 are the forecasted conditional mean and volatility.

The performance of the out-of-sample volatility forecasts of various madelsummarized in Table

8Wwithin the last 20 years, owing to China’s economic liberalization under thei@® of reformist leader Deng Xiaoping,
Shenzhen became China’s first, and arguably one of the most sfudc®secial Economic Zones, moving from a small village
to a major financial center and China’s second busiest port.
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6. It is clear from this table that among different models, the GAM NP moddbpes the best in
delivering the lowest forecast error. The reduction of the volatility dast error from the GAM NP
model is more significant compared to the one from the in- sample forecaabie 3. For example, in
the SHSE, the MSE (MAE) of the GAM NP model are% (7%) for the \/(y, — 9)2 proxy and11%
(9%) for the implied volatility proxy, which is lower than the one from the GARCH mo&ailarly, in
the SZSE, there are abdil reduction in the MSE and MAE for both volatility proxies. Compared with
the GJR model, the EGARCH model appears to be a better parametric modeluriramarket news
asymmetric effect in the out-of-sample forecast. We notice that the GJR imatkeiny cases performs
even worse than the GARCH model. The poor performance of the GJR rimothed out-of-sample
volatility forecast has also been reported by Wei (2002). The autlmwsthat the GJR model has the
highest forecast errors compared with a random walk model when eixantie Chinese stock markets
return volatility.

- Table 6 and Figure 7 about here -

The superior performance of the GAM NP model can be also seen frommd=iywhere we plot
the estimated volatility against the realized volatility. The grey line in the backdra@ithe realized
volatility, the blue line is the estimated volatility from the EGARCH and GJR models (wdtktributed
errors). By comparing the plots of the volatility between the fitted and proxhefolatility, we can
see that the estimated volatility series from the GAM NP model is more capablptaficg movements
of the volatility in the SHSE and the SZSE. The spikes in the volatility movements in bo#tetaare
better captured by the GAM NP model. For example, the spike on March 03,i&better captured by
the GAM NP model, while the EGARCH model underestimates and the GJR modektusates this
spike.

Figure 8 plots the 90% intervals of the forecasted returns based on dwadbed conditional mean
and the volatility from various models in the SHCI and the SZCI. Interestingdyirttervals built upon
the forecasted conditional mean and variance from various models diiffestthat much when the
market is relatively stable. When extreme events occur in the market, hovbetk of the EGARCH
and GJR models provide a much wider return interval than the GAM NP mods| dine most obvious
example is the sudden drop in the SHCI and SZCl index on February @7?2¢here the return from the

EGARCH and GJR models is overestimated in the upper bound and underedtimtite lower bound.

%In the absence of any sign of circumstances, the "Black Tuesdaye eathdumped the SHSE and the SZSE. The SHCI
and the SZCI declined by 8,84% and 9,29%, and hit the record of thedtiggily drop within the last ten years.
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It is worth noting that the lower bound of the interval is the 5% daily ValueiakR/aR) measure when
the initial value of the investment is Yuan. Hence, when the market becomes extremely volatile, the

VaR based on the parametric model is overestimated in both Shanghai ammh&hestock markets.

- Figure 8 about here -

This result is generally in line with the studies of Engle and Ng (1993), YehlLae (2000), and
Friedmann and Sanddorf-Kdhle (2002). In particular, Engle and 9§3)Lprovide evidence that the
predicted volatility by the EGARCH model is much higher than those predictethiey models. Yeh and
Lee (2000) argue that the application of the GJR model to daily Chinesasdéads to the overshooting
of estimated conditional variance in the periods of high volatility. FriedmanrSanddorf-Kéhle (2002)
examine the asymmetry by extending the news impact curve of Engle and Big) (bhe Conditional
News Impact Curve. The authors argue that the overshooting of thi#litylaredictions from the GJR
model is due to an acceleration of the news impact in the periods of high volathigy also found that
the EGARCH can overestimate volatility in a manner similar to the GJR model.

In summary, the GAM NP model performs much better than the parametric modeddnilsing the
volatility characteristics and capturing the rise and fall of the volatility in the Glarstock markets.
The forecasted returns generated by the GAM NP model are more sceuran compared with the
EGARCH and the GJR model, especially when the market is very volatile. Becha EGARCH and
GJR models tend to overestimate the volatility in turbulent periods and thereéldarger estimation
errors in general, they are not appropriate tools that can be used intaggith@ Chinese stock volatility

compared with the GAM NP model.

5 Conclusion

By using more recent data, this paper updates previous studies on €hkinek return volatility by ex-
amining the return volatility and the asymmetric effect of market news on the volatilitye Chinese
stock markets using a Generalized Additive Model with a Nonparametrioappr The back-fitting al-
gorithm from the Generalized Additive model of Hastie and Tibshirani Q) @applied to the nonpara-
metric smoothing technique from Bilman and McNeil (2002). Compared withahenpetric GARCH
models which are commonly used for capturing volatility asymmetry, the GAM Nféqmes much bet-

ter in capturing the asymmetry effect and in describing the characteristibe @hinese stock return
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volatility.

With respect to the asymmetric reaction of the predicted return volatility to gowes aed bad news,
we find that the return volatility strongly responses more to bad news in thee§€hstock markets in
our sample period. We extend the news impact curve to the nonparametrig seftinther examine the
asymmetry effect implied by the GAM NP model. Interestingly, the evidencedb@s¢he news impact
curve of the GAM NP model suggests that good news chasing behatloe Ghinese domestic investor
continues to exist. The markets behave in a manner that they expect a eentaint of good news in
order to keep them as calm as possible.

When all the models are employed to obtain the overnight out-of-sampleakirebe GAM NP
model yields the lowest forecast errors and outperforms the parametdelsnoy capturing the ob-
served spikes in the volatility of returns. On the other hand, the EGARCHIeEn@JR models tend to
overestimate the volatility and returns in the high volatility periods. The foredastarns are therefore
more accurate from the GAM NP model especially when the market is vertileolaVe recommend
the use of the GAM NP model in estimating and investigating the return volatility in thee€é stock

markets and other emerging stock markets which have similar features ofities€lstock markets.
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6 Tables

Table 1: Model performance comparison from simulation results

Normal Student-t
MSE MAE MSE MAE
GARCH 0.5554(0.0466) 0.6155(0.0201) 0.5553(0.0464) %B5(1.0201)
GJR 0.3901(0.0424) 0.5070(0.0272) 0.3896(0.0420) 0.(R0BB70)
EGARCH 0.3004(0.0445) 0.4295(0.0296) 0.2976(0.0378) 271840.0230)
NP  0.2614(0.0477) 0.4051(0.0373) 0.2614(0.0477) 0.4DBR73)
GAM NP 0.2215(0.0581) 0.3387(0.0459) 0.2215(0.0582) &783.0459)

Note: the Standard Errors of the MSE and MAE are in parentheses.
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Table 2: Simulation results from the GAM NP and the NP models

Normal

Student-t

Models

NP Regression

GAM NP Regression

NP Regression

GAM NP Bsigre

MSE

MAE

MSE

MAE

MSE

MAE

MSE

MAE

GARCH
Iteration 1
Iteration 2
Iteration 3
Iteration 4
Iteration 5
Iteration 6
Iteration 7
Iteration 8

Final

0.555 (0.047)
0.347 (0.043)
0.281 (0.045)
0.267 (0.045)
0.262 (0.044)
0.264 (0.046)
0.263 (0.047)
0.262 (0.048)
0.263 (0.048)
0.261 (0.048)

0.615 (0.020)
0.460 (0.027)
0.414 (0.032)
0.406 (0.034)
0.405 (0.033)
0.406 (0.035)
0.406 (0.037)
0.405 (0.037)
0.406 (0.037)
0.405 (0.037)

0.555 (0.047)
0.286 (0.048)
0.237 (0.053)
0.225 (0.056)
0.221 (0.055)
0.221 (0.058)
0.222 (0.058)
0.224 (0.061)
0.224 (0.060)
0.221 (0.058)

0.615 (@02 0.555 (0.046)

0.39330).
0.34940).
0.33944).
0.33844).
0.3304@).
0.3394®).
0.34014@).

0.3404(0).

0.347 (0.043)
0.281 (0.045)
0.267 (0.045)
0.262 (0.044)
0.264 (0.046)
0.263 (0.047)
0.262 (0.048)
0.263 (0.048)

0.339 (0.046.261 (0.048)

0.616 (0.020)
0.460 (0.027)
0.414 (0.032)
0.406 (0.034)
0.405 (0.033)
0.406 (0.035)
0.406 (0.037)
0.405 (0.037)
0.406 (0.037)
0.405 (0.037)

0.555 (0.046)
0.286 (0.048)
0.237 (0.053)
0.225 (0.056)
0.221 (0.055)
0.221 (0.057)
0.222 (0.058)
0.224 (0.061)
0.224 (0.060)
0.221 (0.058)

0.616 (0.020)
0.393 (0.031
0.349 (0.041
0.339 (0.043
0.338 (0.044
0.337 (0.045
0.339 (0.045
0.341 (0.049
0.340 (0.047
0.339 (0.046)

Note: the Standard Errors are in parentheses.



Table 3: Data description

Shanghai Composite Index  Shenzhen Component Index

(SHIC) (Szc

Size 2573 2573

Mean 0.068 0.067

Median 0.070 0.048

Min -9.334 -9.935

Max 9.401 9.530

Std. 1.576 1.738

Skewness -0.203 -0.090

Kurtosis 8.331 7.524
Jarque-Bera Test 3064.2(0.001) 2198.0(0.001)
Dickey-Fuller Test -50.972(0.001) -49.107(0.001)

Note: the P values are reported for the Jarque-Bera and Dickey-Fables in parentheses.
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Table 4: In-sample estimations of the GARCH, EGARCH, and GJR models

Shanghai Composite Index

Shenzhen Component Index

GARCH EGARCH GJR GARCH EGARCH GJR
Normal Student-t Normal Student-t Normal Student-Normal Student-t Normal Student-t Normal Student-t

m 0,000 0,014 -0,011 0,009 -0,018 0,004 -0,021 -0,029 0,040 -0,034 -0,034 -0,037
(0,021) (0,023) (0,024) (0,023) (0,025) (0,023) (0,026) (0,026) (0,029) (0,025) (0,028) (0,026)

w 0,095 0,093 0,038 0,027 0,082 0,090 0,067 0,097 0,080 0,027 0,062 0,093
(0,013) (0,023) (0,005) (0,009) (0,012) (0,022) (0,010) (0,024) (0,010) (0,009) (0,010) (0,024)

o 0,139 0,117 0,242 0,239 0,098 0,071 0,100 0,102 0,276 0,216 0,082 0,080
(0,011) (0,018) (0,018) (0,029) (0,011) (0,018) (0,007) (0,016) (0,018) (0,027) (0,008) (0,016)

B8 0,829 0,848 0,964 0,957 0,845 0,844 0,879 0,865 0,932 0,967 0,882 0,863
(0,013) (0,021) (0,006) (0,010) (0,012) (0,021) (0,007) (0,019) (0,009) (0,009) (0,007) (0,019)

¥ -0,036 -0,063 0,060 0,095 0,028) -0,035 0,036 0,055
(0,008) (0,016) (0,014) (0,028) (0,010) (0,014) (0,011) (0,024)

DoF 4,638 4,87 4,725 4,848 4,952 4,882
(0,455) (0,486) (0,458) (0,517) (0,539) (0,518)
Q(20) 24,32 24,43 24,91 25,48 25,12 25,53 27,29 27,17 26,10 27,55 28,28 28,97

Note: the Standard Errors are in parentheses.



Table 5: Goodness-of-fit for in-sample forecasts

SHCI SZClI
MSE1 MSE2 MAE MSE1 MSE2 MAE

Model Distribution

Normal 39.123 1.312 0.880 48.509 1.472 0.934

GARCH
Student-t 38.908 1.299 0.879 48380 1.461 0.935
EGARCH Normal 38.037 1.248 0.860 48.232 1.462 0.944
Student-t 37.883 1.242 0.858 47.956 1431 0.926
GIR Normal 38.884 1.301 0.875 48564 1.471 0.933
Student-t 38.787 1.295 0.874 48457 1.462 0.934
NP Normal 37.846 1.263 0.871 47.631 1.439 0.930
Student-t 37.851 1.263 0.871 47.817 1.438 0.929
GAM NP Normal 37.700 1.238 0.859 47.858 1.429 0.924

Student-t 37.708 1.238 0.859 47.874 1430 0.924
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Table 6:

Goodness-of-fit for out-of-sample forecasts

Shanghai Composite Index

Shenzhen Component Index

Model Distribution Benchmark I* Benchmark II**  Benchmark I*  Benchmark I1**
MSE MAE MSE MAE MSE MAE MSE MAE
Normal 2.13 1.129 0.596 0.58 2.602 1.257 0.731 0.653
GARCH
Stduent-t 2.088 1.114 0.587 0.58 2.559 1.241 0.709 0.642
Normal 2.026 1.087 0.573 0.55 2531 1.228 0.696 0.644
EGARCH
Stduent-t 1.983 1.064 0.577 0.55 2.49 1.218 0.683 0.62
IGR Normal 2.138 1.123 0.639 0.59 2.607 1.256 0.724 0.643
Stduent-t  2.12 1.109 0.625 0.59 2,563 1.238 0.744 0.655
NP Normal 1.905 1.047 0.515 0.53 2411 1.195 0.626 0.604
Stduent-t 1.903 1.045 0.517 0.53 2.403 1.192 0.628 0.604
GAM Normal 1.93 1.056 0.526 0.53 2.468 1.205 0.69 0.62
Stduent-t 1.928 1.055 0.528 0.53 2.472 1.207 0.692 0.619

Note: Benchmark I: use, =

Benchmark II: use realized volatilig; =

(y, — 9,)? as the true volatility proxy
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iteration 3
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Figure 3: Simulated volatility and true volatility
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(a) Parametric GARCH model
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Figure 4: Price and return for SHCI and SZClI
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SHCI:

Shanghai Composite Index, SZCl: Shenzhen Component Index
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Figure 5: The estimated volatility from in-sample volatility estimation and the true volatility
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The gray lines are volatility proxies, the blue lines aréneated volatilities.

Figure 6: News impact curves
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The X-axis represents the lagged market news, the Y-axissepts the volatility estimated by the models
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Figure 7: Out-of-Sample volatility forecast
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The light-gray lines are volatility proxies and the blueekinare realized volatilities.
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Figure 8: The 90 % conditional prediction interval
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