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Asymmetry Effects in Chinese Stock Markets Volatility: A
Generalized Additive Nonparametric Approach

Ai Jun Hou∗

Abstract

The unique characteristics of the Chinese stock markets make it difficult to assume a particu-

lar distribution for innovations in returns and the specification form of the volatility process when

modelling return volatility with the parametric GARCH family models. This paper therefore applies

a generalized additive nonparametric smoothing techniqueto examine the volatility of the Chinese

stock markets. The empirical results indicate that an asymmetric effect of negative news exists in the

Chinese stock markets. Furthermore, compared with other parametric and nonparametric models,

the generalized additive nonparametric model demonstrates a better performance for return volatil-

ity forecasts, particularly for the out-of-sample forecast. The generalized additive nonparametric

technique has the potential to be widely applied to other emerging stock markets that have similar

characteristics to the Chinese stock markets.
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1 Introduction

Chinese stock markets have grown rapidly since establishment of the Shanghai Stock Exchange (SHSE)

in December1989 and the Shenzhen Stock Exchange (SZSE) in April1991. Specially, with the recent

boom in China’s economy, the China’s stock markets have been attracting anenormous amount of at-

tention from policy makers, investors, and academics.1 These Chinese stock markets are interesting and

deserve attention also because they exemplify many unique characteristics that differ from the western

well-developed western financial markets. One of the unique characteristics is that the Chinese stock

markets are the only equity markets covered by the International Finance Corporation that have com-

pletely segmented trading between domestic and foreign investors (see Chuiand Kwok, 1998; Yang,

2003). The A- shares market is only open to Chinese domestic investors while the B-shares market

was only open to foreign investors before February2001.2 Many studies (see Chui and Kwok, 1998;

Yang, 2003) address also the fact that the Chinese stock markets are tightly controlled by the govern-

ment and the markets are at most a partially privatized one in which the state maintains state shares in

varying amounts. The presence of market segmentation and heavy government regulations give rise to

mispricing, information asymmetry, and make the market clearly imperfect and incomplete (Chan et al.,

2007). Further, the stock trading is still new to most domestic participants. TheA-shares are dominated

by domestic individual investors who typically lack sufficient knowledge and experience in investments

(China Securities and Futures Statistical Yearbook, 2004).

Given the unique characteristics of the markets and that the typical Chineseinvestor is more prone

to speculation and less sophisticated than those from more mature markets (Tanet al., 2008), the Chi-

nese stock volatility behaves also differently from other markets. Therefore, the conventional volatility

models, such as GARCH family approaches, that heavily rely on volatility specification and known distri-

butions of the returns, might be insufficient to characterize the volatility of theChinese market. Bülman

and McNeil (2002) propose a nonparametric GARCH model (NP model hereafter), in which the hid-

den volatility process is a function of lagged volatility and lagged value of the innovations from returns

and will be estimated by an iterative nonparametric algorithm. What makes this model more attractive

comparing to the parametric GARCH family models is that it requires neither the specification of the

1Two papers give a comprehensive review of the studies on the Chinesestock markets, i.e., Wang et al. (2004) and Chan
et al. (2007).

2In order to increase mobility of B-share and to strengthen the foreign fund investment on capital market, with a view of
paving the way towards China accession to WTO, the Chinese governmentlifted the restriction of people in the territory of
China investing in B-shares on February19, 2001. Even after the rule changes, B-shares cannot exceed 25% of the total shares
of a company so that Chinese stock markets will not be over-influencedby foreign investment, and the domestic investor can
trade and own B shares only if they have foreign currency.
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functional form of the hidden volatility process nor that of the distribution ofthe innovations .

In this paper, we investigate the Chinese stock return volatility and the asymmetriceffect3 of shocks

on returns volatility by applying the NP model. Moreover, we contribute methodologically to the liter-

ature by suggesting a Generalized Additive Model with the Nonparametric approach (GAM NP model

hereafter) that applies the iterative estimation algorithm of the NP model to the Generalized Additive

Model of Hastie and Tibshirani (1990). The motivation for such an adjustment is that our proposed

GAM NP model becomes computationally more efficient. Further, as will be shown in the Monte Carlo

simulation and the empirical investigation of this paper, this newly proposed GAMNP model can de-

liver a more accurate volatility estimate and forecast than the NP model and parametric GARCH family

models . Also novel in our approach is that we extend the news impact curvefrom Engle and Ng (1993)

to the nonparametric context, and use it to measure and examine the asymmetric effect of shocks.

Currently, the GARCH family models are the most used ones in the investigation ofthe Chinese

stock return volatility and the asymmetric effect of market news on the volatility. For example, Yeh and

Lee (2000) use the GJR model proposed by Glosten et al. (1993) to examine the Chinese stock markets

volatility from May 22, 1992 to August 27, 1996. They find that investors in China chase after good news

indicating that the impact of good news (positive unexpected returns) on future volatility is greater than

that of bad news (negative unexpected returns). By estimating both the GJR and the EGARCH model,

Friedmann and Sanddorf-Köhle (2002) report that bad news increases volatility more than good news

in A-share indices and Composite indices, whereas good news increasesvolatility more than bad news

in B-share indices based on a sample beginning on May 22, 1992 and ending on September16, 1999.

The good news chasing investor phenomenon in China makes the Shanghaiand Shenzhen stock markets

relatively unique and different from many other stock markets in the world.Lee et al. (2001) provide the

same result as Friedmann and Sanddorf-Köhle (2002) with the EGARCH model and daily returns data

from December 12, 1990 to December 31, 1992. Zhang and Li (2008) investigates the asymmetry effect

of bad news on the Chinese stock volatility with a partial adjustment process. They find that the leverage

effect begins to appear beginning in May1996. Dividing the total sample into two periods, Huang and

Zhu (2004) produce results from the EGARCH and the GJR model showingthat the leverage effect only

exists in the period between February 2001 and September 2003.

In view of the different findings from past research regarding the leverage effect of the Chinese stock

return volatility, we examine the Chinese stock markets volatility by using recent data from January 2,

3The leverage effect refers to that volatility increases more after a negative than after a positive shock of the same magnitude
(see Black, 1976; Christie, 1982).
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1997 to August 31, 2007. Several questions will be addressed in the investigations: Do Chinese stock

markets volatilities asymmetrically react to shocks as in most mature stock markets in the world? Are

investors in the Chinese stock markets still chasing after good news? Do volatilities in the Shanghai

and in the Shenzhen stock market react similarly to the market news ? The answers to these questions

have important implications for market practitioners forecasting stock returns and volatility, and for risk

managers formulating optimal strategies for portfolio selection and risk management.

The results from this paper suggest that the leverage effect exists in theChinese stock markets, i.e.,

bad news affects the return volatility more than good news. However, implied by the News Impact Curve

(NIC) from the NP GAM model, a limited amount of good news is needed to keep the market calm.

Further, compared with the superior performance of the NP GAM model in thein-sample volatility es-

timation and out-of-sample forecast, the GJR and EGARCH models tend to overestimate the volatility

process in turbulent periods and yield larger estimation errors. Our results suggest that the GAM NP

model is a more appropriate tool to use in estimating the Chinese stock return volatility than the para-

metric GARCH models, i.e., the GJR and EGARCH models.

The rest of the paper is organized as follows. In section 2, we presentthe GAM NP model and the

model estimation algorithm. Section 3 performs the Monte Carlo simulation to evaluate the performance

of the GAM NP model. Section 4 examines the asymmetric effects on the volatility with theproposed

GAM NP model and compares the performance of the GAM NP model with the NP model and various

GARCH family models. Section 5 concludes.

2 Modelling time-varying volatility

In this section, we introduce the Generalized Additive Nonparametric (GAM NP) model and the model

estimation algorithm used for the Chinese stock markets volatility estimation. As we willevaluate and

compare the performance of the GAM NP model with the parametric models, we first introduce the

parametric GARCH family models.

2.1 Parametric GARCH family models

The GARCH model of Bollerslev (1986) is the most widely used model for the volatility estimation since

it was first proposed in 1986. As pointed out by Bera and Higgins (1993), most of the applied financial

works show that GARCH (1,1) provides a flexible and parsimonious approximation to the conditional

variance dynamics and is capable of representing the majority of financial series. The GARCH (1,1)
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model is written as,

Rt = µ+Xt, Xt = σtzt, zt ∼ N(0, 1),

σ2
t = ω + α1X

2
t−1 + β1σ

2
t−1, (1)

whereω > 0, α1, β1 ≥ 0, (α1 + β1) < 1, andXt−1 may be treated as a collective measure of news

about equity returns arriving to the market over the previous periods.

In the simple GARCH (1,1) approach good news and bad news, i.e. positiveand negative shocks,

have the same impact on the conditional variance. Many studies have foundevidence of asymmetry in

stock price behavior, i.e., negative surprises seem to increase volatility more than positive surprises.4 To

allow asymmetric effects in the volatility, Glosten et al. (1993) add an additional term in the conditional

variance and formulate the so called GJR model. The GJR (1,1) is specified asfollows,

Rt = µ+Xt, Xt = σtzt, zt ∼ N(0, 1),

σ2
t = ω + β1σ

2
t−1 + (α1 + γ1Nt−1)X

2
t−1, (2)

whereω > 0, α1 ≥ 0, (α1 + γ1) ≥ 0, β1 ≥ 0, (α1 + 0.5γ1 + β1) < 1. Nt−1 is an indicator for negative

Xt−1, that is,Nt−1 = 1 for Xt−j < 0, Nt−1 = 0 for Xt−1 ≥ 0. The structure of this model indicates that

a positiveXt−1 contributesα1X
2
t−1 toσi, whereas a negativeXt−1 has a larger impact of(αj+γ1)X

2
t−1

with γ1 > 0. Therefore, if parametersγ1 is significantly positive, then negative innovations generate

more volatility than positive innovations of equal magnitude.

Another volatility model that accounts for the asymmetric impacts on the conditionalvariance is the

Exponential GARCH model (EGARCH) proposed by Nelson (1991). In contrast to the previous model,

the EGARCH(1,1) is specified as,

Rt = µ+Xt, Xt = σtzt, zt ∼ N(0, 1),

logσ2
t = ω + β1logσ

2
t−1 + α1{

|Xt−1|
√

σ2
t−1

− E[

∣

∣Xt−1

∣

∣

√

σ2
t−1

]}+ γt−1

Xt−1
√

σ2
t−1

. (3)

Here the coefficientγ signifies the leverage effect of shocks on the volatility. The key advantage of the

EGARCH model is that the positive restrictions are not needed to be imposed on the variance coefficients.

The coefficientsγ need to be negative for evidence of asymmetric effects.

4This is the so called leverage effect
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In this paper, we will leave the functional form of the variance process as unspecified and attempt

to estimate it as an additive nonparametric mean. We show that the nonparametricmodel can capture

the leverage effect from the negative news and outperform two of the parametric GARCH family models

most commonly considered.

2.2 The Generalized Additive nonparametric model

Compared with the parametric models, a nonparametric model enjoys advantages of relaxing the speci-

fication of the variance process and the assumption of innovations. One example is the NP model from

Bülman and McNeil (2002), which is written as follows,

Rt = µ+Xt, Xt = σtzt,

σ2
t = f(Xt−1, ..., Xt−p, σ

2
t−1, ..., σ

2
t−q), (4)

where the stationary stochastic process{Xt; t ∈ Z} is adapted to the filtration{Ft; t ∈ Z} with

Ft = σ({Xs; s < t}) ( a s-field filtration), and{zt; t ∈ Z} is an i.i.d. innovation with zero mean

and unit variance and a finite fourth moment, andzt is assumed to be independent of{Xs; s < t}, and

f : R × R+ 7−→ R+ is a strictly positive valued function.σt is the time varying volatility andσ2
t is

the conditional variance ofV ar [Xt | Ft−k], where{1 ≤ k ≤ max(p, q)}. Bülman and McNeil (2002)

have shown that the nonparametric functionf can be estimated by regressingX2
t on the lagged variables

Xt−1 andσ2
t−1 using a nonparametric smoothing technique.

However, the proposed model cannot avoid the common problem of a multidimensional nonpara-

metric smoothing, i.e., the "curse of dimensionality".5 In order to overcome this difficulty, Hastie and

Tibshirani (1990) propose the generalized additive model, which enables the dependent variable to de-

pend on an additive predictor through a nonlinear function. We apply the generalized additive procedure

from Hastie and Tibshirani (1990) to the NP model which gives rise to the GAM NP model as follows,

Rt = µ+Xt, Xt = σtzt,

σ2
t = µ+ f(Xt−1) + g(σ2

t−1), (5)

wheref : R 7−→ R+ are the positive valued functions and satisfyingf(x) = f(−x), e.g.,f(x) =

5The curse of dimensionality is a common problem for nonparametric estimation of a multidimensional regression, i.e., the
optimal rate of convergence decreases with dimensionality (Linton and Mammen, 2005). For the multidimensional smoothing,
efforts must be made in order to alleviate the problem (Härdle et al., 2004).
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α|x|, 0 < α < 1, g : R+ 7−→ R+ are the positive non-decreasing functions and satisfyingg(σ2) =

βσ, 0 < β < 1.

We observe that the model in equation (5) can be written with the following transformation:

X2
t = µ+ f(Xt−1) + g(σ2

t−1) + Vt,

Vt = (µ+ f(Xt−1) + g(σ2
t−1))(z

2
t − 1), (6)

It is obvious thatVt is a martingale difference series withE[Vt] = E[Vt|Ft−1] = 0 andCov[Vs, Vt] =

Cov[Vs, Vt|Ft−1] = 0, for s < t.

From equation (6), it follows that,

E[X2
t |Ft−1] = µ+ f(Xt−1) + g(σ2

t−1) + Vt,

V ar[V 2
t |Ft−1] = V ar[Vt|Ft−1] = (µ+ f(Xt−1) + g(σ2

t−1))
2(E[z4t ]− 1), (7)

This suggests that we can estimate the conditional variance by a nonparametric regression proce-

dure of a generalized additive model. The regression procedure is performed according to the additive

structure ofσ2 by using the back-fitting algorithm, which was first introduced by Friedman and Stuetzle

(1981) and generalized by Hastie and Tibshirani (1990). It is now a widely used tool for iterative pro-

cedures for nonparametric estimation. We estimate the conditional variance bythe generalized additive

model according to the following formula:

σ̂2
t = µ̂+ f̂(Xt−1) + ĝ(σ̂2

t−1). (8)

2.3 Estimation Algorithm

Assume we have a data sample{X2
t ; 1 ≤ t ≤ n} satisfying the process of (5),6

1. In the first step, we calculate a first estimate of volatilityσ2
t,0; 1 ≤ t ≤ n as the initial estimation

by fitting the data with the GARCH (1,1) model by a maximum likelihood.

2. We regress{X2
t ; 2 ≤ t ≤ n} on the lagged returns{Xt−1; 2 ≤ t ≤ n} through a nonparametric

smoothing procedure with the back-fitting algorithm to obtain estimates off̂m of f , andĝm of g.

m is the current iteration.

6Readers who are interested in the justifications and proofs of this algorithm are referred to Bülman and McNeil (2002)
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3. In the third step , we calculate{σ̂2
t,m = µ̂m + f̂m(Xt−1,m−1) + ĝm(σ̂2

t−1,m−1); 2 ≤ t ≤ n} as

specified in (8).

4. We proceed to increment the iterationm and return to the second step untilm = M whereM is

the pre-specified total number of iterations.

5. Finally, we average the last k of such estimates to obtain the final smoothed volatility, σ̂t,final, and

perform the final nonparametric regression with the back-fitting algorithm by regressing{X2
t ; 2 ≤

t ≤ n} against{Xt−1; 2 ≤ t ≤ n} andσ̂2
t−1,final to get the final estimateŝfm of f andĝm of g.

3 Monte Carlo simulation

In the Monte Carlo simulation, a GARCH model with a leverage effect and a standard GARCH model

are simulated and estimated in order to show that with an asymmetric effect, the GAMNP model can

offer better estimates of the unobserved volatility than the NP model and parametric GARCH family

models. We generaten = 1000 observations and 50 realizations for each random process. For the

nonparametric models, the number of iterations is set to beM = 8, and a final smoothing is performed

by averaging the last four (K = 5) iterations according to the algorithm presented in the previous section.

The performance of each model is evaluated by using the mean of the Mean Squared Error (MSE) and the

Mean of the Absolute Error (MAE) from each iteration. The MSE and the MAE are calculated according

to the formulas,

MSE(σ̂s,m) =
1

n− 20

n
∑

t=21

(σ̂t,m − σt)
2,

MAE(σ̂s,m) =
1

n− 20

n
∑

t=21

|σ̂t,m − σt|, (9)

whereσ̂t,m is the estimated volatility at time t from each iteration andσt is the true volatility at timet.

The first twenty values are excluded from the calculation because the estimates of the volatility at the

first few points may be unreliable.
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3.1 The simulation results

The data are simulated from the variance process which follows a GARCH and a Threshold GARCH

(TGARCH) model specified as follows,

σ2
t = 7 + 0.1 σ2

t−1 + 0.66 X2
t−1, (10)

σ2
t = 7 + 0.1 σ2

t−1 + (0.66 I{X>0} + 0.2I{X≤0})X
2
t−1, (11)

In the variance process of equation (11), the asymmetry effect of the positive and negative shocks

from returns have been built into the ARCH effect, along the lines of models suggested by Glosten et al.

(1993) and Fornari and Mele (1997). We simulate the process given byequation (11) witht distributed

residuals and estimate it with both Gaussian andt distributed errors. Figure1 plots the true volatility

surfaces of process specified in equation (10) and equation (11), respectively. It can be easily seen

that if the true volatility is under the GARCH specification of process given byequation (10) (the left

plot), the volatility surface is very smooth. However, with the asymmetry effectof process given by

equation (11), there is a significant broken segment on the volatility surface. In this case, we show that

the GAM NP model can smooth the segmented volatility surface quite well and therefore outperforms

the parametric models. For purpose of comparison, we fit the simulated process given by equation (11)

with the EGARCH , GJR and NP models, and compare their goodness-of-fit with the GAM NP model.

- Figure 1 about here -

In Figure2 we plot the estimated volatility surfaces of the eight iterations and the final smoothing of

the GAM NP model from one randomly chosen iteration. We can clearly observe that the smoothing has

been well performed already after the first iteration and the surface hasbeen perfectly smoothed at the

final stage of smoothing. This indicates that the estimation algorithm is recovering the essential features

of the volatility surface, and reassures that the smoothing method is converging.

- Figure 2 about here -

Table1 reports the model performance comparison from the GARCH, EGARCH, GJR , GAM NP,

and NP models. Table 2 presents simulation results of the goodness-of-fit from the nonparametric mod-

els. It is evident from the tables that the MSE and the MAE of the nonparametric models are much
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lower than the ones from the parametric GARCH models. For example, it can beseen from Table 2

that the MSE and the MAE are0.555 and0.615 for the GARCH model with Gaussian errors before

smoothing. The MAE and the MAE start to decrease in each iteration and reach 0.221 (0.261) and0.339

(0.405) at the final stage of smoothing for the GAM NP (NP) model. Although the EGARCH and GJR

(TGARCH) models have partly captured the asymmetric effects, they cannotmatch the goodness-of-fit

of the nonparametric models. For example, it can be seen from Table 1 that the MSE and MAE of the

EGARCH model with Gaussian errors are 0.3 and 0.43, respectively, whilethat of the GJR model are

0.39 and0.507, respectively. More interestingly, the goodness-of-fit of the GAM NP model indicates

that the GAM NP model performs even better than the NP model, e.g. the MSE (MAE) of the GAM

NP model is 4 % (1%) lower than that of the NP model. We also notice that the choice of the distribu-

tion for the parametric GARCH models clearly matters. There is evidence that theEGARCH and GJR

models witht distributed innovations perform better than the ones with Gaussian innovations, but this

is not the case for nonparametric estimations. The NP and GAM NP models provide nearly identical

results with both Gaussian andt errors. Figure 3 plots the estimated volatility process compared with the

true volatility, which is an arbitrary selection of 100 observations from a simulated realization of process

given by equation (11). The left hand plot shows the true volatility (solid line) compared with parametric

GARCH (1,1) estimates witht innovations ( dotted line) and the right hand plot shows the true volatility

(solid line) with the GAM NP estimate obtained after a final smooth (dotted line). It isclearly shown

in the figure that the GAM NP model yields volatility estimates which better match the truevolatility

movements than the GARCH model. In particular, the sharp spikes observed at the fortieth and ninetieth

observations of the true volatility can be well captured by the GAM NP model but not by the GARCH

model.

- Tables 1,2 and Figure 3 about here -

From the Monte Carlo simulation, we conclude that the GAM NP model provides more accurate

volatility estimation and captures more asymmetric effect of shocks compared withparametric GARCH

models and the NP model.
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4 The Chinese stock markets volatility

4.1 The data

The data used in this paper includes the daily closing prices of the two Chineseprimary indices, namely

the Shanghai Stock Exchange Composite Index (SHCI) and the Shenzhen Stock Exchange Component

Index (SZCI) from January 2, 1997 to August 31, 2007. The SHCI ispublished since1991 and includes

all Shanghai listed companies weighted by capital stocks. The SZCI is published since1995 and is a

value-weighted index of40 stocks listed on the Shenzhen Stock Exchange. As key market regulations

such as the raising/down limit, was not well established until the end of 1996, we chose to analyze the

data starting from January 2, 1997. The daily prices are downloaded from http:www.sohu.com.

In order to assess and compare the predictive performance of the GAM NP model with various

parametric models, the data is further divided into an in-sample group (from January2, 1997 to August

31, 2006) and an out-of-sample group (from September 1,2006 to August 31,2007). The whole sample

has 2622 observations and the last 243 are used for out-of-sample forecasts. All data are converted to

their daily log returns, and multiplied by100 as follows,

rt = 100(log(Pt)− log(Pt−1)). (12)

In order to give some sensible comparisons, we calculate the realized volatilityas the proxy of the

true volatility for the out of the sample forecast. The realized volatility is extracted from high frequency

data (5 minutes). This method has been extensively used in the literature.7 The high frequency data are

obtained from the http://www.wstock.net.

Table3 provides the statistic summary of the returns of both indexes. It can be seenthat both series

have their mean close to zero, exhibit high kurtosis and are negatively skewed. In particular, the skewness

in the Shanghai stock market is much higher than the Shenzhen stock market.The Jarque-Bera test

further confirms that the return distributions are non-normal. The Dicky-Fuller test suggests that they are

stationary time series.

Figure 4 plots the index price and returns of the SHCI and the SZCI. The returns largely mirror

each other and look very volatile. Both series also display strong volatility clustering. These are typical

characteristics of financial time series. Further, there are several peaks and troughs in the return series.

The first peak occurred on May12, 1997, where the SHCI/SZCI hit a record high6103.62/1500 points.

7See e.g., French et al. (1987), Day and Lewis (1992), Pagan and Schwert (1990), and Andersen et al. (2001a,b)
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After going through a stable two-year period, it experienced a sharp decline before rising and reaching its

second peak on July1, 1999. Thereafter the stock indices began to increase in a relatively stable fashion,

reaching its third peak in2000− 2001. It then declined again until the first half of2005. However, after

that the stock market began to rise rapidly and it continued to accelerate upwards until it reached another

historical high on August31, 2007. It can be seen, therefore, that the period2005 to 2007 is the most

volatile period in the SHCI and SZCI.

- Table 3 and Figure 4 about here -

4.2 The in sample estimation results from various models

We first fit the series from January 02, 1997 to August 31, 2006 with thestandard GARCH(1,1) model.

Considering the existence of the asymmetry effects in the Chinese stock markets, we also fit the data with

the EGARCH and GJR models. For all these models, the innovations are assumed to be both Gaussian

and student-t distributed. The estimated parameters and Ljung-Box Q-statistics tests of the standardized

residuals are presented in Table4. Note that all parameters of the conditional volatility are significant at

the 5% significance level. The coefficient of lagged varianceβ shows very high volatility persistence.

The sum ofα andβ from the GARCH model are close to1, which supports the evidence of volatility

clustering. The P-values of Ljung-Box Q-statistic test at the lag20 of standardized residual series from

all models fail to suggest the autocorrelation at a 5% significance level. Thus all models appear to be

adequate in describing the linear dependence in the return and volatility series.

In the Shanghai stock market, the estimated value of the leverage parametersγ of the EGARCH and

GJR models with Gaussian/t distributed innovations is: -0.036 /-0.063 and 0.06 / 0.095, respectively.

In the Shenzhen stock market, the value ofγ for these two models of Gaussian/t innovation is: 0.028

/-0.035 and 0.036 /0.055. All these parameters are significant at the 5% level with the exception of

theγ from the EGARCH model with Gaussian errors in the Shenzhen market. The significance of the

parameters indicates the existence of asymmetry effect in the Chinese stock markets, i.e., bad news

(negative shock) has a larger impact on return volatility than good news (positive shock). In particular,

the asymmetric effect is higher in the SHCI than in the SZCI. It is also worth noting that the leverage

effect estimated from models fitted witht distributed innovation is higher than the ones with normal

distributed innovations. The existence of the asymmetry effect as in other mature stock markets in the

world may be a positive sign for market efficiency and completeness, and itmay also show that the
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Chinese stock market is integrating with other world stock markets.

- Table 4 about here -

Next we use the proposed GAM NP technique to smooth the Chinese stock volatility surface based on

the volatility and innovations obtained from the GARCH(1,1) model. We evaluate itsperformance by

calculating various loss functions and compare the results from the GAM NP model with the parametric

models. For reference, we also estimate the NP model from Bülman and McNeil(2002) and compare its

result with the newly proposed GAM NP model. We use three goodness-of-fit measures.

1. The MSE1: the Mean Squared Error between the squared innovationX2
t and the squared estimated

volatility σ2
t . AsX2

t = σ2
t+Vt,whereVt is the martingale series with zero mean, the mean squared

error between both can be a good indicator to illustrate the goodness of fit. However, since this

assumption is the theoretical foundation underpinning our empirical study, this indicator alone is

not sufficient as a measure of goodness-of-fit.

2. The MSE2: the Mean Squared Error between estimated volatility and the truevolatility proxy,

σ̂t =
√

(yt − ȳ)2, whereyt is the daily return at time t and̄y is the mean ofyt.

3. The MAE: the Mean Absolute Error between estimated volatility and the true volatility proxy,

σ̂t = |(yt − ȳ)2|, whereyt is the daily return at time t and̄y is the mean ofyt.

The goodness of fit results of various models are presented in Table5. It is clear that the GARCH

model performs the worst according to all goodness-of-fit measures.Compared with the GARCH model,

the EGARCH model improves the volatility estimation by capturing the leverage effects. For the GJR

model, it slightly improves the result from the GARCH estimation in the Shanghai Stock Exchange

(SHSE), while in the Shenzhen Stock exchange (SZSE), it is even worseoff than the GARCH model.

This is perhaps not surprising because the asymmetric effect in the Shenzhen stock market is not as

strong as in the Shanghai stock market. However, this may indicate that in the Chinese stock markets,

the EGARCH model can capture more leverage effect than the GJR model. When looking at the GAM

NP model, we observe a significant improvement of the GAM NP model compared with the EGARCH

model with Gaussian errors with the improvement measured by the MSE1 about1% in the SHCI and

3% in the SZCI. In addition, all loss functions from the GAM NP model witht distributions do not differ

from the ones with Gaussian distributions.
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Figure 5 plots the volatility for the in-sample period. The light gray lines are the volatility proxy

of σ̂t =
√

(yt − ȳ)2, while the blue lines are the estimated volatility. The three volatility plots on the

left-hand side are for the GAM NP, EGARCH, and GJR models in the Shanghai stock market. The right

plots are for the Shenzhen stock market. Again, it can be seen from theseplots that the GAM NP model

performs better than the EGARCH and the GJR models in capturing the rise and fall movements of return

volatility.

- Table 5 and Figure 5 about here -

As argued previously, due to the high degree of regulations in the Chinesestock markets, the GAM

NP can provide a more appropriate tool for measuring the asymmetry effectin return volatility without

having to assume the functional form of the volatility process and the distribution of innovations. There

are many emerging stock markets which attract investors from all over the world. These markets may be

as imperfect and incomplete as in the Chinese stock markets. We believe that theGAM NP model can

be an effective technique of capturing the leverage effect in these markets as well.

4.3 Analyzing asymmetry via News Impact Curve

We have shown in the previous section that leverage effect exists in the Chinese stock markets when

analyzed through the EGARCH and GJR models. We now further examine the asymmetry effects from

the GAM NP model perspective. We use the News Impact Curve proposedby Engle and Ng (1993)

to demonstrate the asymmetry of shocks estimated from the GAM NP model. The news impact curve

(NIC) relates today’s returns to tomorrow’s volatility and works as a major tool for measuring how new

information is incorporated in volatility estimates. Holding constant the information datedt − 2 and

earlier, it displays the implied impact of the functional relationship between conditional variance at time

t and the shock term (error term) at timet − 1. Engle and Ng (1993) define the NIC as the expected

conditional variance of the next period conditional on the current shocks ǫt.

E(σ2
t+1|ǫt) (13)

For the NIC of the GAM NP model, we extend the original news impact curve to the nonparametric
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context as follows,

σ2
t = f(Xt−1) + g(σ), (14)

whereXt−1 are the shocks from news,f andg are the estimated nonparametric functions from the GAM

NP model. The relationship between the shocks and the conditional volatility is therefore described in

the nonparametric functions off .

- Figure 6 about here -

The News Impact Curves of the EGARCH, GJR, and GAM NP models in the Shanghai and Shenzhen

markets are plotted in Figure 6. The parameter values used for constructingthe NIC of the EGARCH

and GJR models are from Table4, the nonparametric functionsf andg are the estimated nonparametric

functions given by equation (5). It is obvious that all models suggest theexistence of asymmetric effects

in stock returns because the NICs of all models are not symmetric but skewed. Typically, negative news

drives volatility up more than good news. In these models, any news today drives up volatility tomorrow.

For example, in the SHCI, the asymmetric effect is clearly shown with all curves displaying a proximate

20 degree slope for "good news" and a 40 degree slope for "bad news". We observe less asymmetric

effect of bad news relative to good news in the Shenzhen stock market.

The NIC of the EGARCH and the GJR model have their minimum shocks atXt = 0, which means

that no news is good news. In contrast to the parametric models, the NIC of the GAM NP model has its

minimum larger than zero, i.e. 0.5 in the SHSE and 1.5 in the SZSE. In this model, the NIC is a right-

shifted asymmetric parabola. This phenomenon is consistent with the TGARCH model NIC from Engle

and Ng (1993) and Christian (2007). This potentially suggests that, in the Chinese stock markets, the

minimum amount of good news is required for the markets to remain as calm as possible. In this case, no

news implies a higher volatility than in the tranquil market period. This further suggests that although the

model implies the existence of a leverage effect, the typical good news chasing behavior of the Chinese

stock investors found by Yeh and Lee (2000), has not changed. Oneof the reasons of Chinese investors’

good news chasing behavior explained by Yeh and Lee (2000) is that due to the lack of institutional

investors, the trading values of the Shanghai and Shenzhen stock markets are completely generated by

individual investors who have no access to inside information and irrationally act on noise as if it were

information that would give them an edge. In fact, due to the fact that the Chinese stock markets are

still dominated by the local investors and lack institutional practitioners, the Chinese investors are still
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potentially chasing good news. This typically reflects the investors behaviorin Shenzhen.8 The fast

growing stock market and its development produce more noises, making the investors more likely to

speculatively and impetuously chase "good news".

Given the fact that GAM NP better explains the volatility of the Chinese stock markets, we can see

from the NIC that both the EAGRCH and the GJR model underestimate the volatility reaction to the

extreme shocks (the GAM NP has the highest variance in both directions when news is larger than 2 and

smaller than -2), and overestimate the volatility reaction to normal shocks (the news is between 2 and

-2). Further, the GAM NP model has the best performance to capture the asymmetric effect of shocks

because the slopes of the two sides of the NIC of the GAM NP model are both steeper than the EGARCH

and the GJR models.

As a result, compared with the EGARCH and the GJR model, the GAM NP model canprovide us

with superior volatility estimates which capture the asymmetric effects of market news. The GAM NP

model is more flexible in reflecting the actual market’s conditions as implied by the news impact curve.

The findings from this paper have important implications for portfolio selection, asset pricing, and risk

management. For instance, as implied by the news impact curves, there are significant differences in

the predicted volatility incorporated with asymmetric effects of market news in theGAM NP model and

other models. This may lead to a significant difference in current option price, portfolio selection, and

dynamic hedging strategies. Only the most appropriate model can provide uswith the best estimate of

return volatility.

4.4 Out-of-Sample forecast performances

To demonstrate the importance of our results and the application of the GAM NP model in practice, we

calculate the 90% forecasted return intervals which are based on one dayahead out-of-sample forecasts.

The out-of-sample period is from September1, 2006 to August31, 2007. In addition to the previous

session used volatility proxy, the realized volatility, which is calculated from the5-minute high frequency

data, is also used. The realized volatility is calculated asσ̂t =
√

∑n
i=1 r

2
i,t, whereri,t are the log return

at timei and dayt. The return intervals are calculated according tor̂t = µ̂ ± qk
√
σ̂, whereqk is the

percentage of the quantile oft distributed errors,̂µ, σ̂ are the forecasted conditional mean and volatility.

The performance of the out-of-sample volatility forecasts of various modelsare summarized in Table

8Within the last 20 years, owing to China’s economic liberalization under the policies of reformist leader Deng Xiaoping,
Shenzhen became China’s first, and arguably one of the most successful Special Economic Zones, moving from a small village
to a major financial center and China’s second busiest port.

16



6. It is clear from this table that among different models, the GAM NP model performs the best in

delivering the lowest forecast error. The reduction of the volatility forecast error from the GAM NP

model is more significant compared to the one from the in- sample forecast in Table 5. For example, in

the SHSE, the MSE (MAE) of the GAM NP model are10% (7%) for the
√

(yt − ŷ)2 proxy and11%

(9%) for the implied volatility proxy, which is lower than the one from the GARCH model.Similarly, in

the SZSE, there are about5% reduction in the MSE and MAE for both volatility proxies. Compared with

the GJR model, the EGARCH model appears to be a better parametric model in capturing market news

asymmetric effect in the out-of-sample forecast. We notice that the GJR modelin many cases performs

even worse than the GARCH model. The poor performance of the GJR modelin the out-of-sample

volatility forecast has also been reported by Wei (2002). The author shows that the GJR model has the

highest forecast errors compared with a random walk model when examining the Chinese stock markets

return volatility.

- Table 6 and Figure 7 about here -

The superior performance of the GAM NP model can be also seen from Figure 7 where we plot

the estimated volatility against the realized volatility. The grey line in the background is the realized

volatility, the blue line is the estimated volatility from the EGARCH and GJR models (witht distributed

errors). By comparing the plots of the volatility between the fitted and proxy ofthe volatility, we can

see that the estimated volatility series from the GAM NP model is more capable of capturing movements

of the volatility in the SHSE and the SZSE. The spikes in the volatility movements in both markets are

better captured by the GAM NP model. For example, the spike on March 03, 2007 is better captured by

the GAM NP model, while the EGARCH model underestimates and the GJR model overestimates this

spike.

Figure 8 plots the 90% intervals of the forecasted returns based on the forecasted conditional mean

and the volatility from various models in the SHCI and the SZCI. Interestingly, the intervals built upon

the forecasted conditional mean and variance from various models do notdiffer that much when the

market is relatively stable. When extreme events occur in the market, however, both of the EGARCH

and GJR models provide a much wider return interval than the GAM NP model does. The most obvious

example is the sudden drop in the SHCI and SZCI index on February 27, 20079 where the return from the

EGARCH and GJR models is overestimated in the upper bound and underestimated in the lower bound.

9In the absence of any sign of circumstances, the "Black Tuesday" came and dumped the SHSE and the SZSE. The SHCI
and the SZCI declined by 8,84% and 9,29%, and hit the record of the biggest daily drop within the last ten years.
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It is worth noting that the lower bound of the interval is the 5% daily Value-at-Risk (VaR) measure when

the initial value of the investment is1 Yuan. Hence, when the market becomes extremely volatile, the

VaR based on the parametric model is overestimated in both Shanghai and Shenzhen stock markets.

- Figure 8 about here -

This result is generally in line with the studies of Engle and Ng (1993), Yeh and Lee (2000), and

Friedmann and Sanddorf-Köhle (2002). In particular, Engle and Ng (1993) provide evidence that the

predicted volatility by the EGARCH model is much higher than those predicted by other models. Yeh and

Lee (2000) argue that the application of the GJR model to daily Chinese returns leads to the overshooting

of estimated conditional variance in the periods of high volatility. Friedmann andSanddorf-Köhle (2002)

examine the asymmetry by extending the news impact curve of Engle and Ng (1993) to the Conditional

News Impact Curve. The authors argue that the overshooting of the volatility predictions from the GJR

model is due to an acceleration of the news impact in the periods of high volatility.They also found that

the EGARCH can overestimate volatility in a manner similar to the GJR model.

In summary, the GAM NP model performs much better than the parametric model in describing the

volatility characteristics and capturing the rise and fall of the volatility in the Chinese stock markets.

The forecasted returns generated by the GAM NP model are more accurate when compared with the

EGARCH and the GJR model, especially when the market is very volatile. Because the EGARCH and

GJR models tend to overestimate the volatility in turbulent periods and therefore yield larger estimation

errors in general, they are not appropriate tools that can be used in estimating the Chinese stock volatility

compared with the GAM NP model.

5 Conclusion

By using more recent data, this paper updates previous studies on Chinese stock return volatility by ex-

amining the return volatility and the asymmetric effect of market news on the volatilityin the Chinese

stock markets using a Generalized Additive Model with a Nonparametric approach. The back-fitting al-

gorithm from the Generalized Additive model of Hastie and Tibshirani (1990) is applied to the nonpara-

metric smoothing technique from Bülman and McNeil (2002). Compared with the parametric GARCH

models which are commonly used for capturing volatility asymmetry, the GAM NP performs much bet-

ter in capturing the asymmetry effect and in describing the characteristics ofthe Chinese stock return
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volatility.

With respect to the asymmetric reaction of the predicted return volatility to good news and bad news,

we find that the return volatility strongly responses more to bad news in the Chinese stock markets in

our sample period. We extend the news impact curve to the nonparametric setting to further examine the

asymmetry effect implied by the GAM NP model. Interestingly, the evidence based on the news impact

curve of the GAM NP model suggests that good news chasing behavior ofthe Chinese domestic investor

continues to exist. The markets behave in a manner that they expect a certainamount of good news in

order to keep them as calm as possible.

When all the models are employed to obtain the overnight out-of-sample forecast, the GAM NP

model yields the lowest forecast errors and outperforms the parametric models by capturing the ob-

served spikes in the volatility of returns. On the other hand, the EGARCH andthe GJR models tend to

overestimate the volatility and returns in the high volatility periods. The forecasted returns are therefore

more accurate from the GAM NP model especially when the market is very volatile. We recommend

the use of the GAM NP model in estimating and investigating the return volatility in the Chinese stock

markets and other emerging stock markets which have similar features of the Chinese stock markets.
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6 Tables

Table 1: Model performance comparison from simulation results

Normal Student-t
MSE MAE MSE MAE

GARCH 0.5554(0.0466) 0.6155(0.0201) 0.5553(0.0464) 0.6155(0.0201)
GJR 0.3901(0.0424) 0.5070(0.0272) 0.3896(0.0420) 0.5066(0.0270)

EGARCH 0.3004(0.0445) 0.4295(0.0296) 0.2976(0.0378) 0.4273(0.0230)
NP 0.2614(0.0477) 0.4051(0.0373) 0.2614(0.0477) 0.4051(0.0373)

GAM NP 0.2215(0.0581) 0.3387(0.0459) 0.2215(0.0582) 0.3387(0.0459)

Note: the Standard Errors of the MSE and MAE are in parentheses.
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Table 2: Simulation results from the GAM NP and the NP models
Normal Student-t

Models NP Regression GAM NP Regression NP Regression GAM NP Regression
MSE MAE MSE MAE MSE MAE MSE MAE

GARCH 0.555 (0.047) 0.615 (0.020) 0.555 (0.047) 0.615 (0.020) 0.555 (0.046) 0.616 (0.020) 0.555 (0.046) 0.616 (0.020)
Iteration 1 0.347 (0.043) 0.460 (0.027) 0.286 (0.048) 0.393 (0.031) 0.347 (0.043) 0.460 (0.027) 0.286 (0.048) 0.393 (0.031)
Iteration 2 0.281 (0.045) 0.414 (0.032) 0.237 (0.053) 0.349 (0.041) 0.281 (0.045) 0.414 (0.032) 0.237 (0.053) 0.349 (0.041)
Iteration 3 0.267 (0.045) 0.406 (0.034) 0.225 (0.056) 0.339 (0.044) 0.267 (0.045) 0.406 (0.034) 0.225 (0.056) 0.339 (0.043)
Iteration 4 0.262 (0.044) 0.405 (0.033) 0.221 (0.055) 0.338 (0.044) 0.262 (0.044) 0.405 (0.033) 0.221 (0.055) 0.338 (0.044)
Iteration 5 0.264 (0.046) 0.406 (0.035) 0.221 (0.058) 0.337 (0.045) 0.264 (0.046) 0.406 (0.035) 0.221 (0.057) 0.337 (0.045)
Iteration 6 0.263 (0.047) 0.406 (0.037) 0.222 (0.058) 0.339 (0.045) 0.263 (0.047) 0.406 (0.037) 0.222 (0.058) 0.339 (0.045)
Iteration 7 0.262 (0.048) 0.405 (0.037) 0.224 (0.061) 0.341 (0.049) 0.262 (0.048) 0.405 (0.037) 0.224 (0.061) 0.341 (0.049)
Iteration 8 0.263 (0.048) 0.406 (0.037) 0.224 (0.060) 0.340 (0.047) 0.263 (0.048) 0.406 (0.037) 0.224 (0.060) 0.340 (0.047)

Final 0.261 (0.048) 0.405 (0.037) 0.221 (0.058) 0.339 (0.046) 0.261 (0.048) 0.405 (0.037) 0.221 (0.058) 0.339 (0.046)

Note: the Standard Errors are in parentheses.
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Table 3: Data description

Shanghai Composite Index Shenzhen Component Index
(SHIC) (SZCI)

Size 2573 2573
Mean 0.068 0.067

Median 0.070 0.048
Min -9.334 -9.935
Max 9.401 9.530
Std. 1.576 1.738

Skewness -0.203 -0.090
Kurtosis 8.331 7.524

Jarque-Bera Test 3064.2(0.001) 2198.0(0.001)
Dickey-Fuller Test -50.972(0.001) -49.107(0.001)

Note: the P values are reported for the Jarque-Bera and Dickey-FullerTests in parentheses.
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Table 4: In-sample estimations of the GARCH, EGARCH, and GJR models
Shanghai Composite Index Shenzhen Component Index

GARCH EGARCH GJR GARCH EGARCH GJR
Normal Student-t Normal Student-t Normal Student-tNormal Student-t Normal Student-t Normal Student-t

µ 0,000 0,014 -0,011 0,009 -0,018 0,004 -0,021 -0,029 0,040 -0,034 -0,034 -0,037
(0,021) (0,023) (0,024) (0,023) (0,025) (0,023) (0,026) (0,026) (0,029) (0,025) (0,028) (0,026)

ω 0,095 0,093 0,038 0,027 0,082 0,090 0,067 0,097 0,080 0,027 0,062 0,093
(0,013) (0,023) (0,005) (0,009) (0,012) (0,022) (0,010) (0,024) (0,010) (0,009) (0,010) (0,024)

α 0,139 0,117 0,242 0,239 0,098 0,077 0,100 0,102 0,276 0,216 0,082 0,080
(0,011) (0,018) (0,018) (0,029) (0,011) (0,018) (0,007) (0,016) (0,018) (0,027) (0,008) (0,016)

β 0,829 0,848 0,964 0,957 0,845 0,844 0,879 0,865 0,932 0,967 0,882 0,863
(0,013) (0,021) (0,006) (0,010) (0,012) (0,021) (0,007) (0,019) (0,009) (0,009) (0,007) (0,019)

γ -0,036 -0,063 0,060 0,095 0,028) -0,035 0,036 0,055
(0,008) (0,016) (0,014) (0,028) (0,010) (0,014) (0,011) (0,024)

DoF 4,638 4,87 4,725 4,848 4,952 4,882
(0,455) (0,486) (0,458) (0,517) (0,539) (0,518)

Q(20) 24,32 24,43 24,91 25,48 25,12 25,53 27,29 27,17 26,10 27,55 28,28 28,97

Note: the Standard Errors are in parentheses.
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Table 5: Goodness-of-fit for in-sample forecasts

Model Distribution
SHCI SZCI

MSE1 MSE2 MAE MSE1 MSE2 MAE

GARCH
Normal 39.123 1.312 0.880 48.509 1.472 0.934

Student-t 38.908 1.299 0.879 48.380 1.461 0.935

EGARCH
Normal 38.037 1.248 0.860 48.232 1.462 0.944

Student-t 37.883 1.242 0.858 47.956 1.431 0.926

GJR
Normal 38.884 1.301 0.875 48.564 1.471 0.933

Student-t 38.787 1.295 0.874 48.457 1.462 0.934

NP
Normal 37.846 1.263 0.871 47.631 1.439 0.930

Student-t 37.851 1.263 0.871 47.817 1.438 0.929

GAM NP
Normal 37.700 1.238 0.859 47.858 1.429 0.924

Student-t 37.708 1.238 0.859 47.874 1.430 0.924

26



Table 6: Goodness-of-fit for out-of-sample forecasts

Model Distribution

Shanghai Composite Index Shenzhen Component Index

Benchmark I* Benchmark II** Benchmark I* Benchmark II**

MSE MAE MSE MAE MSE MAE MSE MAE

GARCH
Normal 2.13 1.129 0.596 0.58 2.602 1.257 0.731 0.653

Stduent-t 2.088 1.114 0.587 0.58 2.559 1.241 0.709 0.642

EGARCH
Normal 2.026 1.087 0.573 0.55 2.531 1.228 0.696 0.644

Stduent-t 1.983 1.064 0.577 0.55 2.49 1.218 0.683 0.62

JGR
Normal 2.138 1.123 0.639 0.59 2.607 1.256 0.724 0.643

Stduent-t 2.12 1.109 0.625 0.59 2.563 1.238 0.744 0.655

NP
Normal 1.905 1.047 0.515 0.53 2.411 1.195 0.626 0.604

Stduent-t 1.903 1.045 0.517 0.53 2.403 1.192 0.628 0.604

GAM
Normal 1.93 1.056 0.526 0.53 2.468 1.205 0.69 0.62

Stduent-t 1.928 1.055 0.528 0.53 2.472 1.207 0.692 0.619

Note: Benchmark I: usêσ
t
=

√

(y
t
− ŷ

t
)2 as the true volatility proxy

Benchmark II: use realized volatility:σ̂
t
=

√

∑n
i=1

r2
i,t

as the true volatility proxy.
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7 Figures

Figure 1: Volatility surfaces from simulated processes
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Figure 2: Smoothed volatility surface from each iteration
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Figure 3: Simulated volatility and true volatility

(a) Parametric GARCH model (b) GAM NP model
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Figure 4: Price and return for SHCI and SZCI
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Figure 5: The estimated volatility from in-sample volatility estimation and the true volatility
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The gray lines are volatility proxies, the blue lines are estimated volatilities.

Figure 6: News impact curves
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The X-axis represents the lagged market news, the Y-axis represents the volatility estimated by the models
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Figure 7: Out-of-Sample volatility forecast
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The light-gray lines are volatility proxies and the blue lines are realized volatilities.
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Figure 8: The 90 % conditional prediction interval
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