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Abstract

This paper builds up a general wave splitting and imbedding theory for so-

lution of both direct and inverse problems associated with thermal processes.

It is done by using a full representation of the thermal phenomenon by virtue

of Cattaneo's law. This law by ensuring �nite thermal propagation speeds,

enables an imbedding equation to layer strip the medium; so allowing the so-

lution to the inverse problem of determination of a spatially varying di�usivity.

Theoretical results and numerical algorithms are developed and numerical ex-

periments are used to illustrate the e�ectiveness of the latter.

1 Introduction

It is usually considered that the heat conduction in a thermally conducting solid
is governed by the Fourier law, but then the resultant equation governing the dy-
namics of the heat �ow is a parabolic equation and consequently has the unphysical
property that the information propagates at in�nite speed. Cattaneo [3] resolved
this unphysical attribute by replacing Fourier's law by the more general one, since
named after him, which we shall utilise in the sequel.

Wave splitting and invariant imbedding techniques have been very successful in
their application to many inverse problems for hyperbolic equations. They have
also been successful when applied to elliptic problems [14], but they have not been
e�ective for parabolic equations. It has been shown by Vogel [17] layer stripping
techniques are not suitable for parabolic equations. This paper is the outcome of our
work towards the application of wave splitting and invariant imbedding techniques
to phenomena, that are generally considered parabolic in nature. We concentrate, in
the sequel, our ideas towards the evaluation of heat processes in solids through wave
splitting techniques when Cattaneo's law is utilised. The literature in heat waves
has grown considerably since Cattaneo, and an excellent review of the subject can
be found in the two papers by Joseph and Preziosi [6], [7].

At room temperatures the the relaxation time τ is of the order 10−13 seconds
and as the di�usivity in metallic conductors is of the order 10−5 m2/s this implies
that the wave speed is of the order of the speed of sound 0.5× 104 m/s. Therefore
technology to resolve the inverse problem over dimensions of the order 10−9m1 would
therefore require femto-second laser technology. This technology is currently avail-
able. Hyperbolic heat waves are more readily observed in super-cooled materials,
such as liquid helium II; this could mean that appropriate inverse problems can be
solved, so yielding further insight into such problems.

Perhaps the most meaningful application of our techniques, are to the solution of
parabolic inverse problems when the wave speed of an associated hyperbolic problem
is considered as a regularisation parameter. This approach will be considered in a
later paper.

1For reasons made apparent by equation (6.10) inverse problems can only be resolved over
dimensions of the order of the e-fold distance (de�ned after the aforementioned equation), which
is of the order of 10−9m for metallic conductors at room temperature.
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In Section 2 the prerequisite equations are developed. The wave splitting concept
and some of its properties for appropriate second order equations is examined in
Section 3 and this is extended to �rst order system equations in Section 4. In
Section 5 the wave splitting is used to transform the equations of Section 2. The
equations for the Green propagators are derived in Section 6 and this is followed by
the equations derived by imbedding through the re�ection kernel in Section 7. The
discretisation of the equations derived in the earlier sections is discussed in Section
8 and some numerical examples of solutions for both the direct and the inverse
problems are given in Section 9.

2 Preliminaries

When heat waves are important the equation connecting the heat �ux q, directed in
the x-coordinate direction, to the temperature T must at least have an extra thermal
inertia term added, when compared to Fourier's conduction law. The Cattaneo
equation for one-dimensional heat �ow in a heat conducting solid has such a term
and can be written as

τ
∂q

∂t
+ q = −k∂T

∂x
, (2.1)

where τ is a relaxation time and k is the thermal conductivity of the media. The
relaxation time depends on the mechanism of heat transport, and represents the time
lag needed to establish steady-state heat conduction in an element of volume when
a temperature gradient is suddenly applied to that element. The other equation
necessary to link temperature to the conduction heat �ux, any lateral loss heat �ux,
q`, and the internal rate of production of energy, r, is the conservation of internal
energy equation

∂(cvρT )

∂t
+
∂q

∂x
+ χT = r. (2.2)

Here cv is the speci�c heat at constant volume and ρ is the mass density of the
media. The lateral heat loss is assumed to be proportional to the temperature and
is given by the term χT 2. These linear equations can be written as the system

∂x

[
T
q

]
=

[
0 − τ

k
∂t − 1

k

−∂tcvρ− χ 0

] [
T
q

]
+

[
0
r

]
, (2.3)

where in what follows, unless stated to the contrary, all coe�cients in the partial
di�erential equation will be assumed to be independent of the dependent variables
but functions of the spatial variable x. The coe�cients will further be assumed to
be time independent; such an assumption holds for many materials (see [1] for an
approach necessary for time dependent parameters). Throughout this paper it is
assumed that the material parameters cv, ρ, k, and τ are continuously di�erentiable
and that χ is continuous in the region of interest. The parameters which are essential

2By including this term, which is ∂yq` = χT , where q` is the heat �ux in the lateral direction,
say y, the problem is no longer one-dimensional. Of course no heat problem can be truly one
dimensional, however if χ << 1 the problem can be approximately treated as if it were.
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to our discussion in this paper are the di�usivity κ2 = k/(cvρ), 3 the relaxation time
τ , and the thermal wave speed c, with c−2 = κ−2τ .

We note that this system cannot be written as a second order partial di�erential
equation; it is however possible to write it as such in two special cases, they are:

(i) τ ≡ constant � for the case where the dependent variable is the temperature

(ii) χ ≡ 0 � for the case where the dependent variable is the heat �ux.

These cases are now considered. If τ is dependent upon x then it is possible to
reduce the system into the following functional partial di�erential equation in T �
this is shown in Appendix A.

κ−2τ∂2t T + κ−2∂tT − ∂2xT + a(x)∂xT + ∂x(τ
−1)JJ∂xT

+ b(x)
(
1 + τ∂t

)
T =

1

k

(
τ∂tr + r), (2.4)

where
a(x) = ∂x ln(

τ

k
), b(x) =

χ

k
,

and the convolution integral operator

JJf =

∫ t

0

J(t− s)f(s) ds, and J(t) = e−t/τ . (2.5)

It is now seen that this functional equation reduces to a partial di�erential equation
when τ ≡ constant, so verifying item (i). We shall assume this is the case in the
sequel, as the more general case will be more easily analysed through the system
(2.3).

The other case occurs when q is considered as the dependent variable, and when
χ ≡ 0, then the system (2.3) can be reduced to

κ−2τ∂2t q + κ−2∂tq − ∂2xq + a(x)∂xq = a(x)r − ∂xr, (2.6)

where now
a(x) = ∂x ln(cvρ), b ≡ 0.

When χ 6= 0 the system (2.3) can be only reduced to a third order partial di�erential
equation, which could also be handled by the techniques used in the sequel, however
it is then preferable to use one of the other forms of equations we consider.

The equations (2.3), (2.4), and (2.6) with r ≡ 0, can now all be written in the
system form as

∂xu = Cu + Bu, (2.7)

where for the second order equations u denotes the appropriate dependent variable
and where u =

[
u ∂xu

]T
, and the matrices are

C =

[
0 1

κ−2(τ∂2t + ∂t) 0

]
, B =

[
0 0

b(x)(1 + τ∂t) a(x)

]
.

3For convenience it is expedient for us to de�ne di�usivity, κ as the square of the usual termi-
nology.
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Heat Processes Mass Transport
T � temperature c � mass concentration per unit volume
q � heat �ux q � mass �ux
cv � speci�c heat at constant volume 1
ρ � mass density ρ � mass density
κ2 = (cvρ)/k � thermal di�usivity κ2 � mass di�usivity
k � thermal conductivity ρ/κ2

Table 1: The correspondence between variables for heat and mass transport.

In the system (2.3) case the vector is u =
[
T q

]T
and the matrices

C =

[
0 − 1

k

(
1 + τ∂t

)
−cvρ∂t 0

]
, B =

[
0 0
−χ 0

]
.

We should note that similar systems of equations can be written for one-dimen-
sional mass transport processes where Cattaneo's law corresponds to a generalised
Fick's law for mass di�usion. All of the methods developed in this paper can be
also applied to such processes, with the appropriate translation of the dependent
variables and material parameters as shown in Table 1.

We shall examine the system in Section 4, but initial examination of the second
order equations is pro�table for our exposition.

In the next section our attention will be on the C matrix, where we will diago-
nalise this operator matrix; the B matrix contains only terms irrelevant to this. We
note that the C matrix has an extra di�usive derivative term, in the element C12,
the term − τ

k
∂t, when compared to the standard wave splitting for one dimensional

wave equations. We include this term in C because any physically realistic media
involving heat conduction must involve di�usion.

One feature of this investigation, is that for the inverse problem we assume that
the measurements are carried out in a di�usive medium � not an ideal non-di�usive
medium. Inverse problems similar to this have been examined by [5], [19]. However
our objective to include the highly dissipative case � that is the di�usive one � is
somewhat di�erent to theirs, and as such the wave splitting operators we chose have
a di�erent form. Note that when wave propagation is present, the term dissipative
and di�usive are the same.

The equations of this paper, besides also modelling heat and mass transport
through hyperbolic waves, also model electromagnetic wave propagation problems
in regions with dissipation; modelling such phenomenon as

• wave propagation at a termination of very lossy transmission lines

• radio wave propagation through very attenuating media

• microwave resistance heating
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3 Wave Splitting for Second Order Equations

It is now required to transform the equation (2.7) into a more convenient set of
dependent variables, we do this by the technique of wave splitting (see [4] for a
collection of articles). This transformation is motivated by formally diagonalising
the matrix C. The diagonalisation of the matrix C is less straightforward than when
the pure wave equation is involved; linear algebra may be invoked to motivate the
transformation in that case. In order to use linear algebra in it is necessary to �rst
utilise the Laplace transform so that the various operators can be interpreted as
pseudo-di�erential operators. Our notation for the transform variables is seen from
the de�nition of the Laplace transform

û(x, s) =

∫ ∞
0

e−stu(x, t) dt

Our objective is to diagonalise C, so it su�ces to at �rst just transform (2.7)
with the assumption B ≡ 0. On noting that all the initial conditions used in the
sequel will be of the form

u(x, 0) = D2u(x, 0) = 0, (3.1)

we obtain the transformed equation

∂xû(x, s) = Ĉû =

[
0 1

κ−2(τs2 + s) 0

]
û.

It is assumed that u is exponentially bounded in the t-variable. The eigenvalues of
this matrix are found as ±λ̂ where

λ̂(s) = κ−1
√
s(τs+ 1) (3.2)

where this is the Laplace transform representation of the pseudo-di�erential operator
square root

λ = Lt1/2 where Lt ≡ κ−2∂t
(
τ∂t + 1)

)
.

Use of the matrix of eigenvectors of Ĉ

P̂ =

[
1 1

−λ̂ λ̂

]
,

together with its inverse

P̂
−1

=
1

2

[
1 −λ̂−1

1 λ̂−1

]
,

will diagonalise Ĉ as

ĈP̂ = P̂Λ̂ or P̂
−1

ĈP̂ = Λ̂
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where

Λ̂ =

[
−λ̂ 0

0 λ̂

]
.

The matrices Λ, P and P−1 are all pseudo-di�erential operators and it is necessary
for us to �nd their representation in the time domain in order to proceed. We
examine them next.

First we examine the behaviour of the pseudo-di�erential operator de�ned by the
inverse Laplace transformation of λ̂−1(s)f̂(s). On �nding the inverse transformation
of λ̂−1(s) it is found this is given by the convolution operator κIK where

(
IKf
)
(t) =

∫ t

0

K(x, t− t′)f(t′) dt′

with
K(x, t) =

1√
τ
exp
(−t
2τ

)
I0(t/2τ).

So formally the operator

λ−1 = κIK = Lt−1/2 where Lt−1/2 ≡ κ(τ∂2t + ∂t
)−1/2

. (3.3)

Note that τ−1/2 has been kept in the de�nition of IK so that the e�ect of τ → 0 can
easily be determined. Throughout we use the assumption f(0) = 0 (compare (3.1)).

Integration of IK ◦ Ltf shows

IK ◦ Ltf = κ−1
(
τ 1/2∂t +

1

2
√
τ
(1− IL)

)
f(t), (3.4)

where (
ILf
)
(t) =

∫ t

0

L(x, t− t′)f(t′) dt′,

and

L(x, t) = exp
(−t
2τ

)I1(t/2τ)
t

. (3.5)

Now use of Liebnitz's rule on Lt ◦ IKf also yields the left-hand-side of (3.4), so
proving the commutation relationship

Lt ◦ IKf = IK ◦ Ltf, (3.6)

which appears in many wave splitting problems; in fact derivative operators up to
order two commute with IK, that is

∂tIKf = IK∂tf, ∂2t IKf = IK∂2t f,

provided also f ′(0) = 0. Motivated by the the commutation of pseudo-di�erential
operators under composition, we write for the square root operators

Lt1/2(f) = Lt−1/2 ◦ Lt(f) = Lt ◦ Lt−1/2(f). (3.7)
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Now Lt−1/2 = κIK, and also observe (3.3), so from (3.7) and (3.6) we have the
identi�cation Lt1/2 = κIKLt which also suggests that this is κ−1IK−1 hence it follows
from (3.4) that

IK−1f =
(
τ 1/2∂t +

1

2
√
τ
(1− IL)

)
f(t). (3.8)

To prove that this is IK−1, it is straightforward to show the inverse relation

IK ◦ IK−1f = f, IK−1 ◦ IKf = f,

is veri�ed from the identity (see [15], page 320, formula 13)∫ x

0

I1(x− y)
(x− y)

I0(y) dy = I1(x)

Furthermore, using Lt1/2 = κIKLt and integration by parts it can be shown that

IK−1f = ∂tIK ◦ (τ∂t + 1)f, (3.9)

or equivalently by using the commutation property (3.6). Looking at (3.6) one would
expect Lt = Lt1/2 ◦ Lt1/2 or

IK−1 ◦ IK−1 = Lt,
and this can be proven from (3.4).

The form of the operator IK−1 is critical in obtaining a form reducing to the
appropriate limit as τ → 0; representation (3.9) is the appropriate form. It is
interesting to note that the approach in Section 4 automatically produces the correct
form for the limiting procedure. The IK operator is smoothing, compact on L2, and
as such the inverse operator IK−1 is unbounded and ill-posed on L2, even though
existence of the operator has been proven by construction.

Theorem 3.1. The operators are injective and into on the spaces

IK : Hs 7→ Hs+i+1/2

IK−1 : Hs 7→ Hs−i−1/2

when τ = 0, i = 0 and when τ > 0, i = 1/2.

Proof. To prove the operators are injective it is only necessary to look at the image
of the zero function because the operators are linear; it follows trivially from their
explicit form they are injective. The mapping properties of the operators follows
directly from their Laplace transforms and the symbol mapping theorem [16], (pages
49 et. seq.).

It is necessary to look at the forms that the maps P and P−1 take as the pa-
rameters take various limits. Of major concern here, is the limiting forms of the
operators λ and λ−1 as τ → 0; when τ = 0, the model equations are parabolic. For
the readers convenience in Appendix B we list appropriate asymptotic forms. De�ne

IHf =

∫ t

0

H(t− s)f(s) ds,
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where
H(t) =

1√
πt
,

and IHf is related to the half derivative of f , that is IHf = ∂
−1/2
t f and with compo-

sition properties [13]
∂
1/2
t f = ∂tIHf = ∂t∂

−1/2
t f.

It is then possible to show
lim
τ→0

κIK = κIH,

and when representation (3.9) is used for IK−1

lim
τ→0

κ−1IK−1 = κ−1∂tIH.

Therefore in the limit of the hyperbolic equations becoming parabolic, the splitting
operators reduce to Vogel's [17] results. However as noted in the Introduction layer
stripping techniques are not suitable for the parabolic heat equation.

Now looking at the limit as κ−1 → 0, while keeping κ−1
√
τ → c−1 �xed, then the

equation becomes non-di�usive. Equivalent to this is to allow τ → ∞, while again
keeping c �xed. So that

lim
τ→∞

κIK = c∂−1t ,

and if the representation (3.8) is taken for IK−1 it is found that

lim
τ→∞

κ−1IK−1 = c−1∂t.

These are the standard splittings for the wave equation.
We collect the matrices, in the time domain, central to the later development

P =

 1 1

−κ−1IK−1 κ−1IK−1

 , P−1 =
1

2

1 −κIK
1 κIK

 .
4 Wave Splitting for System

On Laplace transforming the system (2.7), when C is appropriate for equation (2.3),
the Ĉ matrix is then found to be

Ĉ =

[
0 − τ

k
s− 1

k

−cvρs 0

]
,

and the eigenvalues of this matrix are identical to those for the Ĉ matrix of Section 3,
namely (3.2), except now the matrices of eigenvectors are

P̂ =

 1 1

kλ̂(τs+ 1)−1 −kλ̂(τs+ 1)−1

 , P̂
−1

=
1

2

1 1
k
(τs+ 1)λ̂−1

1 − 1
k
(τs+ 1)λ̂−1

 .
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The operators in these matrices need to be identi�ed in terms of those from the
last section, some manipulations of the transform equations then show

P =

 1 1

kκ−1ĨK
−1
−kκ−1ĨK

−1

 , P−1 =
1

2

1 k−1κĨK

1 −k−1κĨK

 ,
where ĨK

−1
= IK∂t and ĨK = IK ◦ (τ∂t+1). It is straightforward to show that ĨK has

the inverse ĨK
−1
.

In Section 5 the matrix P will be used to transform the problem through a linear
transformation like

u = Pv

where v is the new dependent variable. Examination of the dimensions of the
component maps of P then will show the following results. The map kκ−1ĨK

−1
,

at the plane x = constant, maps the temperature �eld onto the heat �ux, that is
it provides a trace transformation � the Dirichlet-to-Neumann map. Note also
the correspondence between these equations and the ones for the transmission line
equations (see for example [2]), with the elements kκ−1ĨK

−1
having the dimensions

of admittance q/T . These operators are not smoothing or di�erentiating, unless
τ = 0, and as such are easier operators to perform numerical calculations with.
This is typical behaviour for the system form of the equations.

Theorem 4.1. The operators are injective and into on the spaces

ĨK : Hs 7→ Hs+i

ĨK
−1

: Hs 7→ Hs−i

when τ = 0, i = 1/2, and when τ > 0, i = 0.

Proof. Injectivity follows from Theorem 3.1 and the mapping properties follows
from the symbols of the operators as in Theorem 3.1.

It is important to note the diagonal matrix Λ is the same as (5.4) so that the
principal part of the dynamics equation will be the same for system (2.3) and the
second order equations (2.4) and (2.6).

5 System Dynamics

Now on use of the diagonalising transformations

v± = P−1u (5.1)

the equation (2.7) converts to
∂xv

± = Av±, (5.2)
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Coe�cient Second order equations (2.4)a System (2.3)c

and (2.6)b

d(x) −1
2
∂x(ln c) = −1

2
∂x
(
ln( κ√

τ
)
)

1
2
∂x
(
ln( k

κ
√
τ
)
)
= 1

2
∂x
(
ln( k

cτ
)
)

e(x) −1
4
τ−1∂x(ln τ)

1
4
τ−1∂x(ln τ)

f(x) κχ
2k
ĨK = κχ

2k
IK ◦ (τ∂t + 1) κχ

2k
ĨK

g(x) 1
2
∂x
(
ln( τ

k
)
)
for (2.4) 0

1
2
∂x
(
ln(cvρ)

)
for (2.6)

a Note in this case ∂x ln τ = 0 for coe�cients d, e, and g.
b Note in this case χ = 0.
c Note the commutation property of JJ with ∂t has been used for coe�cient e.

Table 2: Identi�cation of parameters d, e, f , and g for hyperbolic heat waves.

with the new basis v± =
[
v+ v−

]T
, where {v+, v−} have the properties of right

and left moving waves; we shall discuss this point further.
(A − ∂x + ∂t) is the in�nitesimal generator of the Banach space valued vector

�ow �eld, with
A = Λ +D, (5.3)

Λ being the diagonal operator matrix

Λ =

[
−κ−1IK−1 0

0 κ−1IK−1

]
, (5.4)

and where the dynamics matrix D is

D = −P−1(∂xP) + P−1BP. (5.5)

For notational convenience we express the dynamics matrix as

D =

[
α β
γ δ

]
.

Then in terms of the material parameters the system dynamics are

P−1(∂xP) =

[
1 −1
−1 1

]
(d(x) + e(x)∂tJJ), (5.6)

with JJ is as in (2.5) and

P−1BP = f(x)

[
−1 −1
1 1

]
+ g(x)

[
1 −1
−1 1

]
. (5.7)



11

Coe�cient Second order equations (2.4) System (2.3)
and (2.6)a

d(x) −1
2
∂x(lnκ)

1
2
∂x
(
k
κ

)
e(x) 0 0

f(x) κχ
2k
IH κχ

2k
IH

g(x) −1
2
∂x ln(k) for (2.4) 0

1
2
∂x ln(cvρ) for (2.6)

a Note in this case χ = 0.

Table 3: Identi�cation of parameters d, e, f , and g for parabolic heat conduction.

The coe�cients in these equations for the various cases is shown in Table 4.
In the limiting case of parabolic heat �ow, then τ → 0, the system dynamics is

the same as in (5.3) but with the following replacements. The operator κ−1IK−1 in
(5.4) is replaced by κ−1∂tIH, and equations (5.6) and (5.7) hold except the material
coe�cients are given in Table 5.

If B ≡ 0 then A = Λ, and the system is decoupled into right and left moving
thermal waves, respectively denoted by v+ and v−. We now discuss the interpreta-
tion of the v±. For concreteness we just consider v+. Examination of the system
dynamics, when B ≡ 0 and the remaining parameters are homogeneous, shows the
right going wave must satisfy (

∂x + κ−1IK−1
)
v+ = 0. (5.8)

In the special case τ →∞, with c �xed, this becomes(
∂x + c−1∂t

)
v+ = 0,

which is satis�ed by solutions of the form v(c−1x − t), the well known right going
waves having Galilean translational invariance. When considering the more general
operator found in (5.8), we cannot expect this to exhibit such symmetry because the
wave will be attenuated as it moves to the right. However we still call right moving
waves those that satisfy (5.8). From the splitting (5.1) it follows

v+ =
1

2

(
T + k−1κĨKq

)
, (5.9)

for the equations derived from (2.3). Elementary calculations using the equations
(2.3) and (3.8) shows (5.9) does indeed satisfy (5.8). Similarly it can be shown (5.8)
is satis�ed by the equations for the second order equations (2.4) and (2.6). Similar
interpretations can be made for left-going waves.
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Figure 1: The slab geometry.

When the material properties are not homogeneous we cannot make this physical
interpretation for v±, however we shall still call such waves left and right moving
waves for convenience. It should be apparent the mathematics still makes sense in
that v± satisfy (5.2).

6 The Direct Problem and the Green Operators

The Green operators provide the mapping of the incident �eld at the boundary
of a slab of the propagation medium to an interior point. These operators were
�rst introduced by Krueger and Ochs [9], and because they satisfy linear functional
equations have been found to provide e�cient algorithms for solution of the direct
problem. They also provide a method of solution which is di�erent from the invariant
imbedding method. This enables veri�cation of the consistency of any numerical
solutions to be obtained by comparing solutions obtained by the two methods.

The thermal processes within the medium of the slab 0 < x < ` are described
by equations (2.7) and with a homogeneous medium outside this region the waves
are also described by the same equations, but with a constant wave speed

c(x) =

{
c(0) x < 0

c(`) x > `.

This condition ensures that the thermal wave is matched at the boundaries of the
slab [0, `]. If c has a jump discontinuity it is still possible to treat the problem
(see for example [8]), by our methods but we shall not consider such problems here.
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Note it is not necessary to make the assumption that κ is continuous through the
interfaces, but then it is required that

τ(x) =

{
κ(0)/c(0) x < 0

κ(`)/c(`) x > `.

However in any realistic thermal conduction process, the attenuation will often be
su�cient that for all intents the slab can be considered as semi-in�nite. This is
because the wave amplitude will be so small by the time the wave reaches the far
slab boundary, little will remain to be re�ected. With little loss of generality we
take χ identically zero outside of [0, `].

When considering the slab x ∈ [0, `] we can de�ne Green operators such that for
t > 0

v−(x, t+ ζ(x)) = G− ◦ v+(0, t), (6.1)

v+(x, t+ ζ(x)) = a(x)v+(0, t) + G+ ◦ v+(0, t), (6.2)

where a is the attenuation of a wave propagating from the interface x = 0 to a point
within the slab, x, and ζ(x) is the propagation time taken by a wave front to get
there. Causality requires that v±(x, t) = 0 for t ≤ ζ(x). It is seen that the positive
moving �eld at some point x > 0 consists of two parts. The �rst part is due to the
direct transmission of the incident �eld v+(0, t) with attenuation and time delay,
and the second part is due to scattering e�ects in the slab � this is provided by
G+ ◦v+(0, t). The other Green operator provides the mapping between the incident
right going wave v+(0, t) and a left going wave at x > 0.

The Green operators can be shown to be convolution operators of the form

(
G± ◦ f

)
(t) =

∫ t

0

G±(t− s)f(s) ds, (6.3)

by the Duhamel integral principle. Insertion of (6.1)�(6.3) in (5.2) shows that the
Green kernels satisfy the functional equations

∂xG
+ =

1

2κ
√
τ

(
aL+ L ∗G+ −G+

)
+ αG+ + βG−, (6.4)

∂xG
− − 2c−1∂tG

− =
1

2κ
√
τ

(
G− − L ∗G−

)
+ δG− + γG+, (6.5)

where L ∗ f denotes the time convolution operator with the kernel L given by (3.5),
namely

L ∗ f(x, t) =
∫ t

0

L(x, t− t′)f(t′) dt′.
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The system (6.4) and (6.5) has boundary and initial conditions

G+(0, t) = 0, (6.6)

G+(x, 0) =
a(x)

2

∫ x

0

( 1

4κτ 3/2
− γβc

)
ds (6.7)

G−(`, t) = 0,

G−(x, 0) +
1

2
cγa = 0, (6.8)

Here the multiplicative attenuation factor of the thermal wave propagating from
x = 0 to x is

a(x) = exp
(
−
∫ x

0

([
2κ(s)τ 1/2(s)

]−1 − α(s)) ds),
and ζ = ζ(x), the propagation time of a wavefront passing from x = 0 to x is

ζ(x) =

∫ x

0

c−1(s) ds. (6.9)

Thus solutions of the �rst order system of partial di�erential equations (6.4) and
(6.5) are continuous along the characteristic curves associated with the system, but
may be discontinuous across these curves. From (6.4) it is seen that the characteristic
traces are t = constant for G+, and as G+(0, t) is certainly continuous for all t > 0,
it follows G+ is continuous in the region {0 < x < `, 0 < t < ∞}. However
examination of (6.8) shows that any discontinuity in c or γ will be propagated along
the characteristic of (6.5). The conditions imposed on these functions in Section 2
ensure G−(x, 0) is continuous except possibly at x = ` where it has a discontinuity
of magnitude4

[G−](`, 0) =
1

2
c(`)γ(`)a(`),

in the direction of increasing t. This jump in G− will propagate along the character-
istic curves of G− and so the jump across the characteristic trace passing through
(`, 0) is

[G−]x =
1

2
c(`)γ(`)a(`) exp

[∫ x

`

( 1

2κ
√
τ
+ δ
)
ds

]
.

When the material parameters are homogeneous the systems (6.4)� (6.5) or (2.3),
or equivalently (2.4) or (2.6) can be solved exactly; see [11], (pages 856�869) for the
solution appropriate to the second order equations. The solution for the �eld u
within a semi-in�nite slab, where u stands for either the temperature T or �ux q
can be shown to be

u(x, t) = e
− x

2κ
√
τ u(0, t− c−1x) + x

2κ
√
τ

∫ t

c−1x

e−
s
2τ
I1
(

1
2τ

√
s2 − c−2x2

)
√
s2 − c−2x2

u(0, t− s) ds,

(6.10)

4Because of previous assumptions only γ has a jump at x = `.
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with boundary condition u(0, t) ≡ 0, t < 0. The �rst part of this solution on
the right-hand-side of (6.10) represents the hyperbolic wave that travels into the
medium undistorted but with attenuation. From this part of the solution it can
be seen that the distance into the medium, in which the leading edge of the wave
travelling twice this distance is attenuated by e−1, the so-called e-fold distance [19],
is xe = κ

√
τ . The e-fold distance appears directly in our equations (6.4)�(6.5)

with obvious interpretation. The second part of the solution represented by the
convolution integral is directly representative of the dissipative or di�usive term due
to the fact that the di�usivity is �nite. Further discussion on the interpretation of
this equation can be found in Section 9.

Comparison of (6.10) with equations (6.4)�(6.5) shows that, when the material
parameters are homogeneous, G− ≡ 0 and G+ is given by the kernel of the convo-
lutional term. G+ is entirely due to the �nite value of the di�usivity κ for this case
and can be considered as the parabolic part of the solution. The �rst term in (6.2)
can then be considered as the hyperbolic part.

7 The Inverse Problem and the Re�ection Operator

We now invoke invariant imbedding to obtain functional di�erential equations for
re�ection integral operator. To this end consider the problem of scattering from the
slab of thermal material of thickness [x, `]. By the Duhamel integral principle it is
possible to de�ne a re�ection operator IR, where this operator is an integral operator
mapping the thermal right propagating wave v+ into the left propagating wave v−.
The integral form of the re�ection operators is given by

v−(x, t) = IRv+ =

∫ t

0

R(x, t− s)v+(x, s) ds. (7.1)

We shall consider ` �xed and let the slab width [x, `] vary continuously between
0 and `; as such there is a homotopy map from the slab of zero thickness to one of
thickness [0, `] appropriate for the problem under consideration here. This idea will
convert a mixed initial/boundary value problem similar to that for the Green oper-
ators into a pure initial value problem. So the x in R(x, t) provides the continuous
homotopy.

Insertion of (7.1) into (5.2) will show this re�ection kernelR satis�es the following
integro-di�erential Riccati equation

∂xR− 2c−1∂tR =
1

κ
√
τ
[R ∗ L−R]− [α− δ]R−R ∗ βR, (7.2)

with initial condition
γ + 2c−1R(x, 0) = 0 (7.3)

This equation will enable the solution of the inverse problem by layer stripping.
It can of course also be used to solve the direct problem of �nding the re�ection of
a wave from the slab.
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8 Discretisation of the Functional Equations

It is usual to convert equations similar to the two previous sections to travel time
coordinates, prior to attempting numerical solution. However this is not necessary as
is shown in [10]. This is because the method of characteristics can still be employed
in a straightforward manner; as then, for the direct problem, the characteristic traces
can be conveniently integrated prior to attempting to solve the equations. On using
the notation of [2] a parametric equation for the characteristic trace of equation
(6.5) can be written as

t = τ−(s;x, t),

where (s; τ−(s;x, t)) 5 describes a curve in R2 passing through (x, t) and s being a
parameter on the x-axis. For equation (6.5) the characteristic traces are translates of
each other (as explained in Appendix C of [2] this corresponds to an area preserving
�ow). This can be seen in Figure 2, where τ+ is depicted. This is because the
wave speed does not depend upon t. It su�ces here then, to just consider the trace
passing through (`, 0). The characteristic trace corresponding to the case when the
sign in the principal part of (6.5) is positive is written as τ+(s;x, t), and it has
positive slope. The trace passing through (0, 0) can then be written as

t = τ+(s; 0, 0) = ζ̃(s),

where ζ̃ is given by

ζ̃ = 2

∫ x

0

c−1(s) ds, (8.1)

Note the relationship to (6.9).
Appropriate points on the characteristic traces may now be determined numeri-

cally. First de�ne the natural numbers i, j, N ∈ N, then a mesh {xi}Ni=0 with uniform
mesh interval h = `/N and x0 = 0, xi = xi−1 + h, 1 ≤ i ≤ N is established. The
non-uniform mesh points ti = ζ̃(xi) can then be evaluated by numerical quadra-
ture of (8.1) using the trapezoid rule. The time tN = T = ζ̃(xN), which is the
return travel time taken by a wavefront to travel from x = 0 to x = ` and back
again, is important for our subsequent development. Our algorithm is more eas-
ily implemented with a uniform t-mesh, however this can be done by �nding the
inverse function to ζ̃. We estimate this function by inverse interpolation of ζ̃(xi)
using a clamped cubic spline interpolation6 and then subsequent evaluation of the
resultant fourth order approximate to xi = ζ̃−1(ti), where now {ti}Ni=0 with p = T/N
and t0 = 0, ti = ti−1 + p, 1 ≤ i ≤ N is a uniform mesh on the t-axis; whereas
the mesh {xi}Ni=0 is now non-uniform. The non-uniform step size on the x-mesh is
hi−1 = xi − xi−1, 1 ≤ i ≤ N . The existence of the inverse function ζ̃−1 is assured

5There should not be any confusion with the symbol for the characteristic curves and that for
the relaxation time, τ(x), as the former has superscripts and three arguments.

6The end boundary conditions for the clamped spline are found by using cubic interpolants at
each of the endpoints x = 0 and x = `, and then using the �rst derivative of these interpolants to
estimate the end derivatives of ζ̃.
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Figure 2: Reconstruction of a characteristic trace by the inverse algorithm. Several
characteristic traces τ+(s;x, t) are shown together with the reconstructed values +
from the inverse algorithm discussed in Section 9 when N = 25 for slowness (9.1)
with A=-0.75.

by the inverse function theorem and our requirement that c > 0. Points on the char-
acteristic trace are then represented as {xi, ti}Ni=0 and integration of the functional
equations, for any problem in which c(x) is known, by the method of characteristics
is straightforward.

8.1 Green Function equations

For notational convenience we �rst rewrite (6.5) as

∂xG
− − 2c−1∂tG

− = F (2)(x,G+(x, t), G−(x, t)), (8.2)

where F (2) is the linear function of G± as expressed by the right-hand-side of (6.5).
For the direct problem all the material parameters are known, and it is desired to
evaluate the �eld within and outside the slab. Direct integration along a character-
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istic of equation (6.5), from (xi+1, tj−1) to (xi, tj) yields the result

G−(xi, tj)−G−(xi+1, tj−1)

= −
∫ xi

xi+1

F (2)(s,G+(s, τ−(s;xi+1, tj−1)), G
−(s, τ−(s;xi+1, tj−1))) ds. (8.3)

The characteristic traces for (6.4) are parallel to the x-axis and so this equation can
be integrated from (xi−1, tj) to (xi, tj) to obtain

G+(xi, tj)−G+(xi−1, tj) =

∫ xi

xi−1

F (1)(s,G+(s, tj), G
−(s, tj)) ds, (8.4)

where F (1) is the linear function of G± as expressed by the right-hand-side of (6.4).
Up to this point, these are exact results without approximations. Denote by

G±i,j = G±(xi, tj) = G±(xi, jp),

αi = α(xi), βi = β(xi), γi = γ(xi), δi = δ(xi),

κi = κ(xi), τi = τ(xi), ki = k(xi)

ai = a(xi) = exp

(
−
∫ xi

0

(
[2κ(s)τ 1/2(s)]−1 − α(s)

)
ds

)
,

(L ∗G±)i,j =
∫ tj

0

L(xi, tj − s)G±(xi, s) ds,

Li,j = L(xi, tj)

so that the column vector F for the di�erential system becomes

F
(1)
i,j = F (1)(xi, G

+(xi, tj), G
−(xi, tj))

=
1

2κi
√
τi

(
aiLi,j + (L ∗G+)i,j −G+

i,j

)
+ αiG

+
i,j + βiG

−
i,j

F
(2)
i,j = F (2)(xi, G

+(xi, tj), G
−(xi, tj))

=
1

2κi
√
τi

(
G−i,j − (L ∗G−)i,j

)
+ δiG

−
i,j + γiG

+
i,j

for i = 0, 1, 2, . . . , N and j = 0, 1, 2, . . . , N . We shall need both explicit and implicit
type algorithms which can readily be derived from the preceding two equations,
(8.3) and (8.4), by simply using the rectangular or trapezoidal quadrature rules, in
approximating the integrals for the right-hand-side in these equations, respectively.
The convolution terms in these equations are estimated by the trapezoidal rule as

(L ∗G)i,j = p

j∑
n=0

′′Li,j−nGi,n, (8.5)

where the double prime on the summation sign signi�es that the �rst and last term in
the summation is to be halved. The trapezoidal rule is also utilised in approximating
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the attenuation ai, with an algorithm similar to that presented later for the initial
value of G+ (Note the x-mesh is non-uniform and see equation (8.6)).

The explicit Euler characteristic rule is

G+
i,j = G+

i−1,j + hi−1F
(1)
i−1,j, i > 0, j > 0

G−i,j = G−i+1,j−1 − hiF
(2)
i+1,j−1, i ≥ 0, j > 0

and the implicit trapezoidal characteristic rule is

G+
i,j = G+

i−1,j +
hi−1
2

(F
(1)
i−1,j + F

(1)
i,j ), i > 0, j > 0

G−i,j = G−i+1,j−1 −
hi
2
(F

(2)
i+1,j−1 + F

(2)
i,j ), i ≥ 0, j > 0.

In wave splitting problems, investigators often utilise the linearity of the Green
function equations to solve explicitly the implicit equations. This complicates the
computer algorithm. Our algorithms use the conventional predictor-corrector ap-
proach by using �rst the explicit rule to estimate G±i,j and then to utilise the implicit
system in conventional �xed point iteration. Convergence is assured for su�ciently
small p, with only a few iterations. This approach, although simplifying the com-
putational algorithm has its disadvantages in the limit as the equations become
more closely to parabolic, that is if the relaxation parameter is very small. Then
the di�erential equations become sti�, and �xed point iteration is not appropriate
unless p is very small. With parabolic equations, the computational requirements
are generally that the equations are integrated to equilibrium as fast as possible;
this implies that p should not be small. However, with hyperbolic equations, the
wave propagation e�ects are important, and then small k values must be employed
to provide su�cient resolution of the wave details. As our main concern is with
wave e�ects in this paper we shall not consider this point further.

The computational cost of the convolutional terms (8.5) is high, when t is large,
so care needs to be taken in the iterative loop not to recalculate the full convolution.
The evaluation of the convolution terms can be performed in an e�cient manner
using the discrete Fourier transform, but we shall not consider this here. Exami-
nation of Figure 3 shows the geometric structure of the computational molecule for
the implicit rule and this illustrates that careful consideration of the computation
of the convolution terms can reduce the computational cost.

The initial values for the Green functions at x = 0 are

G−i,0 = −
1

2
ciγiai, 0 ≤ i ≤ N,

and by de�ning

gi =
ai
4
hi−1(fi + fi−1), with fi =

( 1

4κiτ
3/2
i

− γiβici
)
,

the remaining initial values are

G+
i,0 = G+

i−1,0 + gi, 1 ≤ i ≤ N, (8.6)
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Figure 3: De�nition of the mesh in the (x, t)-plane and the computational module of
the algorithm based upon the Green functions equations. (a) The explicit algorithm.
(b) The implicit algorithm.

where again the trapezoidal rule has been used to discretise (6.7). The boundary
values of the Green function at x = 0 are

G+
0,j = 0,

G−0,j = R0,j,

where the values of the discretised re�ection kernel R0,j = R(0, jp), 0 ≤ j ≤ N
are the sought quantities in the direct algorithm � as then the re�ected wave may
be calculated through (7.1). The algorithm starts from the lower left corner of
the mesh depicted in Figure 3, from the horizontal line t = 0, where the initial
values are known and the vertical line x = 0 where the boundary values are known,
and proceeds to higher j-values, on each line j = constant calculating the Green
functions from the left to the right. If the total �eld is required for a given incident
�eld equations (6.1) and (6.2) are used.

8.2 Re�ection kernel direct problem

For notational convenience we �rst rewrite (7.2) as

∂xR− 2c−1∂tR = F (x,R(x, t)), (8.7)

where F is a non-linear function of R, as expressed by the right-hand-side of (7.2).
For the direct problem, all the material parameters are known, and it is desired to
evaluate the re�ection kernel at x = 0. Direct integration along a characteristic of
equation (8.7), from (xi+1, tj−1) to (xi, tj) yields the result

R(xi, tj)−R(xi+1, tj−1) = −
∫ xi

xi+1

F (s, R(s, τ−(s;xi+1, tj−1))) ds. (8.8)
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Figure 4: De�nition of the mesh in the (x, t)-plane and the computational module of
the algorithm based upon the re�ection kernel equation. (a) The explicit algorithm.
(b) The implicit algorithm.

with
Fi,j =

1

κi
√
τi

(
(R ∗ L)i,j −Ri,j

)
− [αi − δi]Ri,j − βi(R ∗R)i,j

The equation (8.8) is now discretised, by similar methods to the last section, to yield
the explicit and implicit di�erence equations

Ri,j = Ri+1,j−1 − hiFi+1,j−1, i ≥ 0, j > 0, (8.9)

Ri,j = Ri+1,j−1 −
hi
2
(Fi+1,j−1 + Fi,j), i ≥ 0, j > 0, (8.10)

respectively. The R ∗ L kernel convolution term is treated as (8.5), but replacing G
by R, and the quadratic convolution term is discretised as

(R ∗R)i,j = p

j∑
n=0

′′Ri,j−nRi,n,

by the trapezoidal rule.
Figure 4 illustrates the geometry of the computational stencil. The initial values

of Ri,j are

Ri,0 = −
γici
2
, 0 ≤ i ≤ N. (8.11)

The values of the discretised re�ection kernel R0,j, 0 ≤ j ≤ N are the sought
quantities in the direct algorithm. The algorithm starts from the lower left corner
from the horizontal line t = 0, where the initial values are known and proceeds
to higher j-values, diagonally calculating the re�ection kernel from the left to the
right. As for the Green functions, the explicit and implicit algorithms are used in
predictor-corrector mode, with convergence assured for small enough p.
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8.3 Re�ection kernel inverse problem

The inverse algorithm is based on the discretised imbedding equation, see (8.9) and
(8.10), as is the direct problem, but because the equations will now be integrated in
the direction of increasing x the sign of the term which is multiplied by hi, in both
these equations, must be inverted, so giving

Ri,j = Ri+1,j−1 + hiFi+1,j−1, i > 0, j ≥ 1, (8.12)

Ri,j = Ri+1,j−1 +
hi
2
(Fi+1,j−1 + Fi,j), i > 0, j ≥ 1. (8.13)

In our original model described by equation (2.3) there are �ve material functions.
It is apparent only one of these functions can be reconstructed from the one given
measurement set, the re�ection kernel. We will therefore restrict our considerations
to only reconstructing the wave slowness. Then depending upon the problem, either
τ or κ can be recovered with the assumption that the other is known; that is only
one function can be recovered by our method. For simplicity in the sequel we make
the choice τ = constant , 0 < x < `, and assumed to be known. In our inverse
algorithm the discrete values of the re�ection kernel R are assumed to be known
from a scattering experiment, and the goal in the inverse algorithm is to retrieve the
slowness c−1i . The slowness is easily recovered once the values of R on the horizontal
line t = 0 have been calculated, as

ci = −2Ri,0/γi. (8.14)

The computations start from the initial value R0,j, 0 ≤ j ≤ N and proceeds
from the lower left corner in a diagonal direction down the characteristic traces to
the line t = 0; computing the value of ci from (8.14) when t = 0 � see Figure 4. It
remains for us to describe how the algorithm is implemented as the curved charac-
teristics are not known a priori because c(x) is initially unknown. This means that
when the method of characteristics is employed, the xi are also initially unknown.
The actual determination of the slowness is carried out in the integration step from
t1 = p to t0 = 0.

We describe the algorithm to determine xi, ci from (xi−1, t1), t1 = p, and all
other material parameters and values of Ri−1,p. Determination of Ri,j, 1 ≤ j ≤ n
when ci is known is similar to the direct algorithm except the integration is carried
out from left to right.

From the equation for ζ̃, equation (8.1)

ti − ti−1 = 2

∫ xi

xi−1

c−1(s) ds, (8.15)

the next value of x on the characteristic trace, xi can be estimated by use of either
the rectangular or trapezoidal quadrature rule approximants. Equations (5.5)�(5.7),
together with the fact that for the problem considered here e ≡ 0, implies

dc

dx
= 4R(x, 0) + c

d ln(k)

dx
(8.16)
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for the system (2.3). For both second order equations (2.4) and (2.6) the last term
is zero, as it is for the system case, if k 6= k(x). For simplicity we assume that this
is true in what follows. Use of the trapezoidal quadrature formula then yields the
discretised formula

ci = ci−1 + 2hi−1(Ri,0 +Ri−1,0). (8.17)

This means to solve the inverse problem at the ultimate integration step of equation
(8.13) from t = p to t = 0, there are three non-linear equations required to be
solved. These are (8.15), (8.16), and (8.13), so yielding on solution xi, ci, and Ri,0,
respectively. We solve this system by �xed point iteration, and again it is possible
to prove convergence of this method provided that p is su�ciently small. In order
to obtain rapid convergence we use an initial estimate of the solution obtained from
the an appropriate explicit form of discrete approximations to the aforementioned
equations. These can be straightforwardly shown to be given by (8.12), (8.17)
together with the explicit form of (8.15)

xi = xi−1 +
(ti − ti−1)ci−1

2
, or hi−1 =

pci
2
.

The �xed point iteration is carried out with the implicit form of these equations
which are (8.13)and (8.17) together with

xi = xi−1 +
(ti − ti−1)
(c−1i−1 + c−1i )

.

One �nal complication is that, as for the direct problem, equation (8.13) is also
solved by iteration.

9 Numerical Examples

The �eld generated inside a semi-in�nite homogeneous slab with a exponentially
decaying pulse7 that is incident upon the face x = 0 is �rst analysed. In Figure 5(a)
and (b) we show the total �eld at interior points that are twice and eight times the
e-fold distance, that is 2xe and 8xe, respectively. It can be observed that the wave
�eld takes a �nite time to reach the internal point. Note the non-causal solution
to the parabolic problem (τ = 0) has been superimposed on these �gures. The
convergence of the hyperbolic solution to this solution, after the initial transient
propagating pulse has past, can be easily observed. The time scale of the �gures
has been normalised by the time taken for the wavefront to travel a distance of xe;
which is τ . Observe that the �eld on the leading edge of the hyperbolic part of the
solution is attenuated by e−1, for the case when the �eld is evaluated at 2xe. Also
superimposed on these �gures are the component parts of the solution as discussed
in Section 6.

7The boundary condition taken for solution of the direct problems in this paper was taken as
u(0, t) = exp(−2.0t2), t > 0. Note the lack of dependence on τ , this has the e�ect of making the
boundary condition more slowly varying with respect to time when the relaxation time is smaller.
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Figure 5: The internal �eld, for the direct problem, at a point in a homogeneous
semi-in�nite region. (a) Fields at 2xe when κ = 0.1, τ = 0.1, � Total �eld, − · −
Parabolic part of total �eld, · · · Hyperbolic part of total �eld, −− Solution of non-
causal parabolic problem. (b) Fields at 8xe when κ = 0.1, τ = 0.1, � Total �eld,
− · − Parabolic part of total �eld, · · · Hyperbolic part of total �eld, −− Solution
of non-causal parabolic problem.

Figure 6 shows the total �eld at the point 2xe, but with a di�erent time scales
introduced by reducing the value of the relaxation time by two orders of magnitude.
It is observed that the �eld approaches that of the parabolic model, after the wave
front has reached the point, quite rapidly when τ << 1. Reference [12] predicts that
this convergence of the causal solution to non-causal one occurs typically in time
periods of O

(
τ
)
. It is important to note however, that the incident �eld, taken here,

is successively more slowly varying as τ decreases and that even for small values of
relaxation time if the incident pulse varies rapidly with respect to τ the solution of
the hyperbolic equation will deviate signi�cantly from that of the parabolic equation
until the transient wave e�ects have decayed. This means that around the arrival
time of the wave the solution will look like Figure 5. The numerical results depicted
in these �gures were computed with the Green function algorithm, and the results
could not be distinguished in these �gures from computations on the analytical
result (6.10).

The shape of the Figures 5�6 are independent of κ because this parameter
changes both the the e-fold depth xe and the wave speed.
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Figure 6: The internal �eld of the direct problem, at a point in a homogeneous
semi-in�nite region. (a) Fields at 2xe when κ = 0.1, τ = 0.01, � Total �eld, · · ·
Hyperbolic part of total �eld, −− Solution of non-causal parabolic problem. (b)
Fields at 2xe when κ = 0.1, τ = 0.001, � Total �eld, · · · Hyperbolic part of total
�eld, −− Solution of non-causal parabolic problem.

Figures 7�8 show the �eld inside a �nite slab with a spatially varying slowness

c−1(x) = 0.1
(
1 + A sin(2πx/(10xe)

)−1/2
, with A = 0.75. (9.1)

This slowness pro�le is utilised in numerical experiments later in this paper and is
illustrated in Figures 9�10. We note that the time is normalised as previously, but
now as the material parameters are spatially varying we chose the initial value of the
material parameters to de�ne an average e-fold distance, that is xe = κ(0)

√
τ(0).

This accounts for the fact, as observed from the �gures, that the wavefront reaches
the observation point in a time shorter than predicted if the medium was homoge-
neous. From these �gures note the smaller contribution from the hyperbolic part of
the traveling wave as the penetration depth gets larger. In �gure Figure 8(a) the
total �eld and u+ cannot be distinguished from each other to the scale of our �gure.

Comparison should be made with these �gures and Figure 5.
We generate the re�ection kernel required as the initial data to test the inverse

algorithm by one of the numerical algorithms developed in this paper for the direct
problem. To ensure that an inverse crime is not being committed, the re�ection
kernel is calculated at a greater number of points than required by the inverse
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Figure 7: The internal �eld of the direct problem with spatially varying slowness
in a slab of width ` = 10xe at a point 2xe when τ(0) = 0.1, xe = κ(0)

√
τ(0), and

κ(0) = 0.1
(
1 + 0.75 sin(2πx/(10xe))

)−1/2
. (a) � Total �eld, � · � u+, − − −− u−.

(b) � u+, � � parabolic part of u+, � · � hyperbolic part of u+.

imbedding algorithm, namely 4(N+1) points, but via the Green function technique,
and then a clamped cubic spline is �tted to this data. Finally the spline is used to
interpolate to the appropriate mesh of N + 1 points as required for initial data by
the imbedding method.

In Figures 9�10 we illustrate the e�ectiveness of our algorithm by showing an
exact slowness and the reconstructed slowness for one mesh size. It is seen that
di�usivity in a thermal model can be reconstructed provided that the �nite time of
propagation of a heat wave is taken into e�ect. Note that the slowness can even
be reconstructed as deep as ten e-fold distances inside the slab with small error,
although the error increases with distance into the slab. In �gure 2 the actual
characteristic traces and a reconstructed trace from our algorithm are displayed.

Numerical experiments indicate that our methods have a consistency error of
O
(
p2
)
and possess an even power asymptotic discretisation expansion. Techniques

similar to those used in [18] must be utilised to prove this however.
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Figure 8: The internal �eld of the direct problem with spatially varying slowness
in a slab of width ` = 10xe at a point 10xe when τ(0) = 0.1, xe = κ(0)

√
τ(0), and

κ(0) = 0.1
(
1 + 0.75 sin(2πx/(10xe))

)−1/2
. (a) � Total �eld, � · � u+, − − −− u−.

(b) � u+, � � parabolic part of u+, � · � hyperbolic part of u+.

10 Summary

This paper builds up a general wave splitting and imbedding theory for solution
of both direct and inverse problems associated with thermal processes. It is done
by using a full representation of the thermal phenomenon by virtue of Cattaneo's
law. This law by ensuring �nite thermal propagation speeds, enables an imbedding
equation to layer strip the medium; so allowing the solution of the inverse problem
of determination of a spatially varying di�usivity. Although this is important in
its own right for problems in which the hyperbolic nature of thermal waves must
be taken into account, it also has considerable impact on parabolic problems as
well. Our methods can be applied to parabolic problems, but then the wave speed
parameter can be thought of as a regularisation parameter. This application is left
to a later paper.
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Figure 9: The solution of the inverse problem; reconstruction of slowness (9.1) with
A = −0.75. (a) The re�ection kernel from which the slowness was reconstructed.
(b) The exact slowness � and the reconstructed slowness + when N = 25.
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Appendix A Derivation of equation (2.4)

We provide a note on the derivation of the second order functional di�erential equa-
tion (2.4). Integration of Cattaneo's equation (2.1) shows it can be written as

q = −k
τ
JJ∂xT,
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Figure 10: The solution of the inverse problem; reconstruction of slowness (9.1)
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and then conservation equation (2.2) can be rewritten as

cvρ∂tT − ∂x
(k
τ
JJ∂xT ) + q` = r.

Now to get a second order equation it is necessary to di�erentiate this equation with
respect to t, so yielding on also multiplying both sides by τ/k

κ−2τ∂2t T +
τ

k
∂tq` −

τ

k
∂x
(k
τ
∂xT

)
+
τ

k
∂x
(
τ−1

k

τ
JJ∂xT

)
=
τ

k
∂tr,

In this equation use has been made of the property of the exponential function
being its own derivative. Some manipulation then enables the last term on the
left-hand-side of this equation to be rewritten as

τ

k
∂x
(
τ−1

k

τ
JJ∂xT

)
=
[
(∂xτ

−1)JJ∂xT + κ−2∂tT +
1

k
q` −

1

k
r
]
,

and then (2.4) is found.
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Appendix B Asymptotic forms of the Operators

We list here the asymptotic forms of the various kernels in the text. On noting

In(ax) ≈
(
ax

2

)n(
1 +O

(
x2
))

for x << 1,

In(ax) ≈
eax√
2πax

(
1 +O

(
x−1
))

for x >> 1,

the following can be found

lim
τ→0

κK(t) = lim
τ→0

κ√
τ
e−t/(2τ)I0(t/(2τ))

= κh(t)
(
1 +O

(
τ
))

lim
τ→0

κ−1IK−1f(t) = lim
τ→0

κ−1∂tIK ◦ (τ∂t + 1)f(t)

= κ−1∂tIH ◦
(
1 +O

(
τ
))
f(t)

lim
τ→∞

κK(t) = lim
τ→∞

κ√
τ
e−t/(2τ)I0(t/(2τ))

= c
(
1 +O

(
τ−2
))

lim
τ→∞

κ−1K−1f(t) = lim
τ→∞

κ−1
√
τ
(
∂t +

1

2τ
(1 + IL)

)
f(t)

= c−1∂tf(t)

lim
τ→∞

L(t)/
√
τ = 0
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