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Abstract

The magnetization of a ferro- or ferri-magnetic material has been modeled with
the Landau-Lifshitz-Gilbert (LLG) equation. In this model demagnetization
e�ects are included. By applying a linearized small signal model of the LLG
equation, it was found that the material can be described by an e�ective
permeability and with the aid of a static external biasing �eld, the material
can be switched between a Lorentz-like material and a material that exhibits
a magnetic conductivity. Furthermore, the re�ection coe�cient for normally
impinging waves on a PEC covered with a ferro/ferri-magnetic material, biased
in the normal direction, is calculated. When the material is switched into the
resonance mode, we found that there will be two distinct resonance frequencies
in the re�ection coe�cient, one associated with the precession frequency of the
magnetization and one associated with the thickness of the layer. The former
of these resonance frequencies can be controlled by the bias �eld and for a bias
�eld strength close to the saturation magnetization, where the material starts
to exhibit a magnetic conductivity, one can achieve low re�ection (around -20
dB) for a quite large bandwidth (more than two decades).

1 Introduction

Along with more advanced technology and research progress, highly sophisticated
detection systems have been developed. Obviously, especially in military applica-
tions, there are occasions where detection is not desirable. As a result, interest has
been directed towards methods of reducing detectability, i.e., radar cross section
reduction (RCSR).

One of the most important methods to achieve RCSR is by manipulating the
shape of the object of interest, so called shaping. This procedure is described, for
instance, in [17]. Of course, there are other requirements than those in terms of
RCSR that determine the shape of an object(aerodynamic properties etc.), which
means that a shape optimized in terms of RCSR may not ful�ll additional require-
ments. Therefore, additional methods for RCSR are needed. One of them, also being
mentioned in [17], is the use of radar absorbing materials (RAM). By reducing the
energy re�ected back to the radar, radar absorbing materials prevents objects from
being detected. The absorption is achieved through dielectric and/or magnetic loss
mechanisms that convert electromagnetic energy into heat. Once again, additional
requirements than just RCSR are important when designing the RAM. It is often
desirable that the RAM is thin, light, durable, inexpensive, insensitive to corro-
sion and temperature etc. Also, it is important that a RAM absorbs well over a
wide range of frequencies. As one might expect, to meet all of these demands in a
single design is very di�cult and herein lies the challenge for the engineers. One
crucial point in the process of designing a RAM is, of course, to understand the loss
mechanisms of the materials used and how they should be modeled.

Radar absorbing materials based on dielectric structures and resistive sheets
have been in use for quite some time, and are reasonably well understood. Two of
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the oldest and simplest types of such absorbers are the Salisbury screens and the
Dallenbach layers.

The Salisbury screen is simply a resistive sheet at a distance of λ/4 above a
metal plate, where λ is the wavelength of the radar wave. At this distance the
electric �eld is maximal, and the energy is absorbed through ohmic losses. Due to
the requirement on the wavelength, this absorber is not broadband. The fractional
bandwidth at a -20 dB re�ectivity level is typically about 25% [17, p. 316].

The Dallenbach layer consists of a homogeneous lossy layer backed by a metal
plate. The ideal Dallenbach layer, where the material parameters are independent
of frequency, with purely dielectric loss has a fractional bandwidth around 20%
(at a -20 dB re�ectivity level) for a material thickness around λ/4 at the center
frequency [25, p. 621].

These two types of single layer absorbers have di�culties of achieving the band-
widths that are usually required in radar absorbing applications, which can be several
decades. By using resistive sheets sandwiched between multiple dielectric layers, the
bandwidth can be increased. This design, referred to as the Jaumann absorber, can
be viewed as a matching network between the wave impedance of air, 377Ω, and
the short circuit of the metal plate. However, by adding more layers, which have
a typical electrical length of λ/4 at some center frequency, the absorber occupies
a lot of space which may not be available. Also, the di�erent dielectric materials
often need to have a low permittivity, which is not necessarily compatible with the
demand for mechanical strength. Furthermore, the design may be very sensitive to
the material parameters in each layer.

Due to their inability to absorb power for low frequencies, materials based on
purely dielectric phenomena and electric losses are often considered unsuitable for a
broadband absorber design where the available physical space is limited. Therefore
it is of interest to investigate whether a material with magnetic losses can be used
for the purpose of obtaining thin absorbers that also copes with the broadband
requirement. Using magnetic materials as absorbers seems to be an area that is
not as well explored as its dielectric counterpart, although practical designs have
been in use for a long time. There is no lack of research on magnetism in general,
since it is a key component for digital memory technology such as hard disks, and
is also important for power transformers. The enormous �nancial impact of these
markets provides a lot of research in magnetism. However, in such applications the
engineers are usually more interested in obtaining small losses, whereas engineers
working with RCSR are interested in high losses. This research gap is important
to close in order to be able to manufacture composite materials with the desired
properties.

Absorbers consisting of ferrite material have been manufactured and analyzed
for some time [5, 13, 22, 26]. Recently, composites with ferromagnetic- or ferrite
inclusions in a background material have been considered as microwave absorbers
[10, 14, 21, 23, 32]. These articles treat isotropic materials and composites from an
experimental point of view where the main focus rather often is on the manufac-
turing process. The results reported are based on actual measurements on ferrites
or manufactured composites, where the permeability has been measured and from
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these measurements re�ection data from a Dallenbach layer is calculated. The fre-
quencies of interest in these measurements and calculations typically ranges from
0.1 − 20 GHz. At center frequencies of about 0.2-0.3 GHz, fractional bandwidths
(below -20 dB re�ectivity level) of 100-140% for a material thicknesses of a few mm
is reported [13, 22]. For center frequencies in the range 1 - 20 GHz the bandwidth is
usually smaller. There also exist analyses based on theoretical models of the mag-
netization [4, 28, 29]. Again, isotropic materials are considered and the frequency
range is about the same as mentioned above. A multilayer design is also analyzed
and an improved bandwidth is reported.

Furthermore, in [6, 24] biased ferrite materials for applications in microwave de-
vices are described. The gyrotropic and non reciprocal property of the biased ferrite
is used to construct devices such as gyrators, isolators and circulators. However,
for these applications, in di�erence to radar absorbing applications, small losses are
desirable. Finally, commercial products from at least two companies are available
on the web1. Besides military applications, they also list some interesting civilian
applications of magnetic microwaves absorbers, among others RFID: by applying
a magnetic surface under the RFID tag, it can be placed directly on an electric
conductor without the antenna being shortcircuited by the metal.

In this paper, we present a theoretical analysis where we use the Landau-Lifshitz-
Gilbert equation to model the dynamics of the magnetization in a biased ferromag-
netic/ferrite material. With this model, which includes demagnetization e�ects, the
permeability of the material is obtained and it is found that the material is gy-
rotropic. The re�ection from a perfect electric conductor (PEC) covered with a thin
layer (Dallenbach layer) of a magnetic material is studied. Due to the gyrotropic
nature of the material we have included the polarization of the impinging wave in
the analysis. The e�ects on the re�ection of variations in parameters such as satura-
tion magnetization, the damping factor and material thickness are examined. The
possibility of controlling the material properties with the aid of an external bias �eld
and how this will a�ect the absorbing properties of the material is also investigated.

2 Motivating example

At microwave frequencies, which are the frequencies of interest in radar applications,
the loss is due to e�ects on the atomic scale. In this frequency range, the major
contribution to the electric losses comes from the �nite conductivity of the material,
whereas for most magnetic absorbers, the main loss mechanism is magnetization
rotation within the domains. However, the engineers are often interested only in
the cumulative e�ects on a macroscopic level and therefore the loss mechanisms
are modeled by a phenomenological complex permittivity (ε) and permeability (µ),
which both may depend on frequency. Furthermore, this model assumes that the
material is linear, which often is the case for dielectric materials but usually not for
magnetic materials. Nevertheless, a simple linear model is usually a good starting
point for obtaining physical insight into the problem.

1http://www.eccosorb.com, http://www.cfe.com.tw.
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As a �rst step in analyzing a magnetic RAM, a simple Dallenbach layer is con-
sidered. Hence, the absorber consists of a single slab backed by a PEC where the
slab is then assumed to be a homogeneous lossy magnetic material. Not only is
the structure of this absorber simple but it is also one of the most common designs
for magnetic RAM. To keep things as basic as possible the material is furthermore
assumed to be linear, isotropic and frequency independent. The re�ection coe�-
cient for normally impinging time-harmonic waves on an isotropic slab of thickness
d backed by a PEC is [18, p. 119]

r =
r0 + rde

i2k0dn

1 + r0rdei2k0dn
(2.1)

where k0 = ω/c0 is the wave number in vacuum (c0 is the speed of light in vacuum),
the PEC is modeled by the re�ection coe�cient rd = −1, and

r0 =
η − 1

η + 1
, η =

√
µ

ε
, n =

√
εµ, ε = ε′ + iε′′ µ = µ′ + iµ′′ (2.2)

where ε and µ are the relative complex permittivity and permeability, respectively.
Introducing real and imaginary parts as r0 = r′0 + ir′′0 and n = n′ + in′′, we study
the expression(2.1) when k0d becomes small to �nd

r =
r0 − ei2k0dn

1− r0ei2k0dn
≈ r′0 + ir′′0 −(1 + i2k0d(n′ + in′′))

1−(r′0 + ir′′0)(1 + i2k0d(n′ + in′′))

=
r′0 − 1 + 2k0dn

′′ + i(r′′0 − 2k0dn
′)

1− r′0 + r′′02k0dn′ + r′02k0dn
′′ − i(r′′0 + r′02k0dn

′ − r′′02k0dn′′)
(2.3)

which gives the re�ectance

R = |r|2 ≈ [r′0 − 1 + 2k0dn
′′]2 + [r′′0 − 2k0dn

′]2

[1− r′0(1− 2k0dn′′) + r′′02k0dn′]
2 + [r′′0(1− 2k0dn′′) + r′02k0dn

′]2
(2.4)

First, as k0d approaches zero, one would expect that R→ 1, i.e., that the re�ectance
from a PEC is obtained. The same conclusion is also readily obtained from the
expression for the re�ectance above. Secondly, by examining the expression for the
re�ection coe�cient r0, one discovers a fundamental di�erence between electric and
magnetic losses, which appears in the imaginary part of r0. The re�ection coe�cient
r0 = (η − 1) /(η + 1) is restricted to the unit circle in the complex plane for all µ
and ε with µ′′ > 0 and ε′′ > 0. For dominantly electric losses we have r′′0 < 0, and
dominantly magnetic losses are characterized by r′′0 > 0. By dominantly electric
losses we mean materials that have the property tan δe = ε′′/ε′ > tan δm = µ′′/µ′,
and for dominantly magnetic losses the inequality is reversed. Depending on the
sign of r′′0 , we get di�erent behaviors of the term [r′′0 − 2k0dn

′]2 in (2.4) for small
k0d, that is, for thin absorbers. For magnetic losses, r′′0 > 0, this term decreases as
k0d increases, and from Figure 1, it is seen that in order to obtain low re�ectance
at small frequencies, magnetic losses are superior to electric losses. This conclusion
is also reached after studying Figures 8.12-8.14 in [17].
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Figure 1: Comparison of the in�uence of electric and magnetic losses on the re-
�ectance from a 1 mm thick isotropic slab backed by a PEC. The dashed line corre-
sponds to the case ε = 1 + 10i and µ = 1, and the solid line is ε = 1 and µ = 1 + 10i.
The dotted line is an example where µ = ε = 1 + 10i.

From the above analysis it is seen, in terms of thickness and bandwidth, that low
frequency performance of the magnetic material exceeds its electric analogue. The
fact that the magnetic �eld is maximal close to the PEC makes it e�cient to place
magnetic losses there. Thus, a magnetic layer can be very thin. With the material
parameters used in Figure 1 a re�ectance level below -20 dB is obtained in the
interval 4− 6 GHz, corresponding to a fractional bandwidth of (6− 4)/5 = 40%, for
a layer just 1 mm thick. This corresponds to a thickness less than 2% of the vacuum
wavelength at 5 GHz, which should be compared with the 25% fractional bandwidth
obtained with the Salisbury screen, having a thickness of λ/4 or 25% of the vacuum
wavelength. One should also bear in mind that the results in Figure 1 are based on
parameters picked at random and no attempt whatsoever has been made to optimize
the design, still a considerable amount of RCSR is achieved. Furthermore, as k0d
approaches zero and the magnetic layer becomes in�nitesimally thin (compared to
the wavelength), zero re�ection can be obtained [25, p. 616] provided that

ωµ0µ
′′d = η0 (2.5)

µ′′ � µ′ (2.6)

where η0 is the vacuum wave impedance.
Provided these requirements are ful�lled for all frequencies, one can, in theory,

construct vanishly thin absorbing layers with zero re�ection, at all frequencies. This
means that µ′′ must have a frequency dependence ∼ 1/ω. This is sometimes referred
to in literature as a magnetic Salisbury screen [17, 25].
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In this section we have considered materials with purely electric or magnetic
losses in order to get an introductory analysis and comparison of these losses and
how they a�ect the re�ectance for a simple Dallenbach layer. However, most mag-
netic materials available for use in RAM applications generally have both of these
loss properties, and are modeled with losses in both permittivity and permeability.
Being able to combine these two parameters gives additional possibilities to design
a broadband absorbing material. For instance, if one could �nd a material that has
the property that µ = ε over a wide range of frequencies, one could in theory devise
a broadband RAM for normal incidence. An example of this is shown in Figure
1. With this condition on the material parameters no re�ection will occur at the
interface between air and the layer (r0 in (2.1) is zero), but rather at the interface
between the layer and the PEC. Thus, all of the incident wave will be transmitted
into the absorber. If the layer is thick enough and has large enough losses, the re�ec-
tion at the PEC will be negligible. However, in reality few materials can accomplish
this.

For the results in Figure 1, µ and ε were assumed to be independent of frequency.
This is not the case in reality, since for both µ and ε the real and imaginary parts
are related via the Kramers-Kronig relations [11]. Also, it is seen from (2.5) that
a frequency dependent permeability is required. Thus, in order to �nd out if it is
possible to meet the requirements (2.5) and (2.6) for the ideal RAM with magnetic
losses and to analyze the absorbing properties of the material more accurately, it is
crucial to have a model that includes frequency dependent material parameters.

3 Microscopic origin and modeling of magnetic losses

The microscopic origin of magnetism is the spin and orbital momentum of the elec-
tron [15, 16], which can be described accurately only by means of quantum mechan-
ics. It is one of few phenomenon on quantum level that is observable by macroscopic
means. A nice review of concepts of the physical origin and mechanisms of losses in
magnetic materials is presented in [9]. The loss mechanisms are divided into three
traditional categories.

Hysteresis losses Due to irreversible �ux-change mechanisms, energy is dissi-
pated in the material. These irreversible processes manifest themselves through the
famous hysteresis loop for the magnetization curve. The main irreversible mecha-
nism responsible for the magnetic hysteresis loop is domain-wall motion, i.e. the
magnetic moments within the domain wall rotate as the wall moves to a new po-
sition. There are also instances where uniform rotation of the magnetic moments
in the domain (domain-rotation) can be important. However, since domain wall
motion experiences a relaxation e�ect, with a material-dependent frequency that is
usually on the order of a few tens to a few hundreds of megahertz, excitation at
microwave frequencies does not cause appreciable domain wall motion in magnetic
materials. Thus, hysteresis loss is often negligible in RAM applications.
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Eddy-current or dielectric losses An external time-varying magnetic �eld will
cause changes in the orientation of the individual atomic moments in the material,
i.e., there are �ux-changes. As a consequence, currents are induced in the material,
whose associated magnetic �elds oppose the domain-wall motion producing the �ux
change. These currents cause ohmic losses through the �nite conductivity.

Residual losses These losses are due to various relaxation processes. The precise
interaction mechanisms that are responsible for the magnetic-relaxation processes
are far from understood. However, its origin is from magnetic moments interacting
in a complicated way with themselves or with the lattice. Among the processes that
contribute to the residual losses are the resonance losses, and at high frequencies
they often dominate. The resonance phenomena are usually divided into two distinct
mechanisms; domain-wall resonance and ferromagnetic resonance.

The losses mentioned above are those attributed to ferro- and ferrimagnetic
materials. In contrast to paramagnetic materials where the magnetic moments of the
atoms are randomly oriented due to thermal agitation and an external magnetic �eld
is required to align the moments along a speci�c direction, ferro- and ferrimagnetic
materials exhibit domains where the moments are aligned even in the absence of an
external �eld. The magnetization in a domain is therefore given by

M = Nm (3.1)

where N is the number of magnetic moments per unit volume and m is the mag-
netic moment of the atoms. Due to the domain structure, the net magnetic moment
of a �nite sample of a ferromagnetic material is zero because the direction of the
magnetization in each domain is random, which means that the magnetization in
the di�erent domains cancel each other out. However, when a su�ciently strong
external dc magnetic �eld is applied and for an appropriate shape of the sample,
all the magnetic dipoles are aligned parallel to each other and the sample behaves
like a single domain. When this state is reached the sample is said to be magneti-
cally saturated and the net magnetization, called saturation magnetization, is then
given by (3.1). It should also be mentioned that the spontaneous magnetization in
the domain vanishes above a critical temperature Tc called the Curie temperature.
Above Tc the material behaves like a paramagnetic material. In Table 1 saturation
magnetization and Curie temperature for di�erent substances are presented.

It can be shown [6, 7, 24, 27] that the dynamics of the magnetization in a domain,
when interacting with a magnetic �eld is given by

∂M

∂t
= −γµ0M ×H (3.2)

where
γ = ge/2me = 1.759× 1011C/kg (3.3)

is the gyromagnetic ratio for the material, me and e represent the mass and charge
of the electron and the g-factor (spectroscopic splitting factor) is ∼= 2 for most ferro-
and ferrimagnetic materials used in microwave applications. >From this equation
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Substance Ms (·105 A/m) Curie temp.(in K)
Room temp. 0 K Tc

Fe 17.07 17.40 1043
Co 14.00 14.46 1388
Ni 4.85 5.10 627
Gd - 20.60 292
Dy - 29.20 88
MnAs 6.70 8.70 318
CrO2 5.15 - 386
NiOFe2O3 2.70 - 858
MgOFe2O3 1.10 - 713

Table 1: Saturation magnetization, Ms, and Curie temperature for ferromagnetic
crystals [16].

it is found that if H is a static �eld n̂H0, where n̂ is an arbitrary unit vector, then
the magnetization M precesses about the n̂ axis with an angular frequency

ω0 = γµ0H0 (3.4)

whereH0 is the magnitude of the dc magnetic �eld, the biasing �eld. Hence, equation
(3.2) describes a uniform precession of the magnetic moments in the domain, about
the biasing �eld. Furthermore, if a small time harmonic magnetic �eld H1 with
frequency equal to the precession frequency of the magnetization is superimposed
on H0, then it can be shown [27] that, in a small signal approximation regime, the
amplitude of the magnetization tends to grow and energy is transferred from the
magnetic �eld to the material in an e�cient way, i.e. we have a resonance condition.
In fact, with this approximation the precessional amplitude grows to in�nity in the
direction perpendicular to the static H-�eld. However, due to the loss mechanisms
described above, such singularities are damped out in a real magnetic material, and
the precession is �nite. Since these loss mechanisms are many and some of them
complicated and not very well understood, they are modeled by a phenomenological
damping term that is added to (3.2) in the following way

∂M

∂t
= −γµ0M ×H − Λ

|M |2
M ×(M ×H) (3.5)

where Λ has the dimension [time]−1 and is a (positive) phenomenological parameter
that represents all the losses. Due to its dimension, Λ is called the relaxation fre-
quency. This damping term, �rst proposed by Landau and Lifshitz [19] in 1935, is
in e�ect a resistive torque pulling back the magnetization toward the H-�eld and
thus preventing the precession to become in�nite.

Another form of the damping term was proposed by T. L. Gilbert [8]. He rea-
soned that the damping term should depend on the time derivative of the magneti-
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zation and suggested the model

∂M

∂t
= −γµ0M ×H + α

M

|M |
× ∂M

∂t
(3.6)

in which α is a dimensionless constant, called the damping factor. This equation is
often referred to as the Landau-Lifshitz-Gilbert equation(LLG). The damping factor
can be found from the resonance line halfwidth measurements [7, 24, 27] and it seems
that its largest value is of the order α ≈ 0.1, although some values as large as 0.4
or even 0.92 can be found in the literature [29, 31] .

The LLG-equation (3.6) and Landau-Lifshitz equation (3.5) are very similar in
mathematical structure. In fact, the LLG-equation can with a few straightforward
manipulations be transformed into a Landau-Lifshitz equation. However, there is
a substantial di�erence between the two equations. In the limit when the damping
goes to in�nity, λ → ∞ in (3.5) and α → ∞ in (3.6), the LL-equation and LLG-
equation give respectively:

∂M

∂t
→∞, ∂M

∂t
→ 0 (3.7)

The result, increased damping accompanied by faster motion obtained from the LL-
equation is somewhat counterintuitive and physically implausible. Because of this
behavior, it is argued [8, 12, 20] that the LLG model is to prefer.

From the LL- and LLG equation it is seen that the magnitude of the magneti-
zation is preserved. Since the right hand side is orthogonal to M , we have

M · ∂M
∂t

=
1

2

∂ |M |2

∂t
= 0 ⇒ |M | = Ms (3.8)

where the constant Ms is the saturation magnetization. Hence, only the orientation
of the magnetization can change, not the magnitude.

Equations (3.5) and (3.6) do not take into account several interactions present in
real ferro- and ferrimagnetic materials. In order to incorporate these interactions, the
magnetic �eld,H , is replaced by an e�ective magnetic �eld,He�, that includes other
torque-producing contributions besides the external magnetic �eld. The e�ective
magnetic �eld can be modeled in the following way [3, 8, 27]

He� = H +Han +Hex +Hme (3.9)

where the di�erent terms are: 1) the classical magnetic �eld, H , appearing in
Maxwell's equations 2) the crystal anisotropy �eld Han = −Nc ·M due to magne-
tocrystalline anisotropy of a ferro- or ferrimagnetic material, 3) the exchange �eld
Hex = λex∇2M due to non-uniform exchange interaction of the precessing spins
4) the magnetoelastic �eld Hme due to interaction between the magnetization and
the mechanical strain of the lattice. The anisotropy tensor Nc is assumed to be
known, as well as the exchange constant λex. For a uniaxial crystal with axis n̂, the
anisotropy tensor becomes Nc = Ncn̂n̂. The case Nc < 0 is termed easy axis, and
the case Nc > 0 is termed easy plane. Due to [1, eq. (2.21)], Nc can be computed
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Shape Nd

Sphere

1/3 0 0
0 1/3 0
0 0 1/3


Thin plate (normal in z-direction)

0 0 0
0 0 0
0 0 1


Thin rod (in z-direction)

1/2 0 0
0 1/2 0
0 0 0


Table 2: Demagnetization tensors for di�erent shapes.

as Nc = −2K1/(µ0M
2
s ), where K1 is the uniaxial magnetocrystalline anisotropy

constant as given in [1, p. 137]. The exchange length of the material, de�ned by
lex =

√
λex, is also given for di�erent materials in [1, p. 137]. From this, it is seen

that the exchange length is in the order of 3�10 nm.

4 Small amplitude approximation

In RAM applications it is reasonable to assume that the magnetic �eld H can be
divided into two parts, H = H0 +H1. In this decomposition H0 is a strong static
�eld and H1 is a weak, time-harmonic �eld due to an incoming radar wave, i.e.,
|H1| � |H0|. Therefore it is convenient to represent the magnetization by a static
part M 0 and a time-harmonic part M 1 as M = M 0 +M 1, where |M 1| � |M 0|.
The static �eld M 0 is the magnetization induced by the static H0-�eld whereas
M 1 is the magnetization induced by the small perturbation H1. The static part
of the magnetization satis�es |M 0| = Ms, and we can represent the zeroth order
magnetization by

M 0 = Msm0, |m0| = 1 (4.1)

If we ignore the exchange �eld and the magnetoelastic �elds in (3.9), the e�ective
�eld is

He� = H0 −NcM 0 +H1 −NcM 1 = He�,0 +He�,1 (4.2)

where He�,0 = H0−NcM 0 is the static e�ective �eld and He�,1 = H1−NcM 1 is
the time varying e�ective �eld.

For the special case of a spheroidal particle immersed in a homogeneous external
bias �eld He

0, the particle is uniformly magnetized, and the total classical �eld
within the particle can be shown to be

H0 = He
0 −NdM 0 (4.3)

where Nd is the demagnetization tensor for the particle and in Table 2 some de-
magnetization tensors are shown for di�erent extremes of spheroidal particles [30].
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Hence, the static part of the e�ective �eld becomes

He�,0 = He
0 −(Nd + Nc)M 0 = He

0 −NM 0 (4.4)

and the time varying e�ective �eld is

He�,1 = H1 −NcM 1 (4.5)

At this point we choose to neglect the anisotropy of the crystal. This can be justi�ed
for certain ferromagnetic uniaxial crystals where the value of Nc is of the order 10−2,
i.e., a rather small number. This leaves us with the following expression for the
e�ective �eld

He� = He
0 −NdM 0 +H1 = H0 +H1 (4.6)

Substituting this e�ective �eld into the LLG equation (3.6) results in

∂(M 0 +M 1)

∂t
= −γµ0[(M 0 +M 1)× (H0 +H1)]

+ α
(M 0 +M 1)

Ms

× ∂(M 0 +M 1)

∂t
(4.7)

Since M 0 corresponds to a static solution, i.e., ∂M0

∂t
= 0, the zeroth order term

gives

M 0 ×H0 = M 0 ×(He
0 −NdM 0) = 0

⇒He
0 −NdM 0 = βM 0

⇒m0 =(βI + Nd)−1He
0/Ms (4.8)

where β is a constant and is determined from the condition |m0| = 1. For the special
case of a spherical particle, we have Nd = I/3, and β = ±|He

0|/Ms − 1/3. In the
case of a bias �eld in the normal direction of a thin plate we have β = ±|He

0|/Ms − 1
2. From this it is seen that if the bias �eld is in the normal direction of the thin
plate, then M 0 will also be in this direction.

First order terms give (assuming H1 has an e−iωt time dependence so that
M 1(r, t) ≈M 1(r) e−iωt and ∂M1

∂t
= −iωM 1)

−iωM 1 = −γµ0 [M 0 ×H1 +M 1 ×(He
0 −NdM 0)]− α

M 0

Ms

× iωM 1 (4.9)

Collecting all terms containing M 1 on the left hand side implies[
−iωI− γµ0(H

e
0 −NdM 0)× I + iωα

M 0

Ms

× I

]
M 1 = −γµ0M 0 ×H1 (4.10)

2The minus signs in the solutions of β corresponds to the magnetization being antiparallel to
the applied external �eld, which we consider an unstable solution. Thus, we deal only with the
plus sign from now on.
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where I is the identity matrix. Since we have βM 0 = He
0 − NdM 0 from before,

this equation can also be written[
−iωI−(γµ0βMs − iωα)

M 0

Ms

× I

]
M 1 = −γµ0M 0 ×H1 (4.11)

Introducing

ωm = γµ0Ms and using m0 =
M 0

Ms

(4.12)

one obtains
[−iωI−(ωmβ − iωα)m0 × I]M 1 = −ωmm0 ×H1 (4.13)

From this equation it is then seen that m0 ·M 1 = 0, which means we only have to
consider components orthogonal to m0. The matrix on the left hand side is then
(where the cross product m0 × I is represented by the matrix ( 0 −1

1 0 ))

− iωI−(ωmβ − iωα)m0 × I = −iω
(

1 0
0 1

)
−(ωmβ − iωα)

(
0 −1
1 0

)
=

(
−iω ωmβ − iωα

−ωmβ + iωα −iω

)
(4.14)

The equation is then on the form(
a11 a12
a21 a22

)(
M1,1

M1,2

)
= −ωm

(
0 −1
1 0

)(
H1,1

H1,2

)
(4.15)

with the explicit solution(
M1,1

M1,2

)
= − ωm

a11a22 − a12a21

(
a22 −a12
−a21 a11

)(
0 −1
1 0

)(
H1,1

H1,2

)
= − ωm

a11a22 − a12a21

(
−a12 −a22
a11 a21

)(
H1,1

H1,2

)
(4.16)

The small signal susceptibility is de�ned from the relation M 1 = χH1 and since
the components parallel to m0 were shown to be zero, we have

χ =
1

(β − iαω/ωm)2 −(ω/ωm)2

β − iαω/ωm −iω/ωm 0
iω/ωm β − iαω/ωm 0

0 0 0

 (4.17)

The permeability tensor µ is de�ned throughB1 = µ0(M 1 +H1) = µ0(χ+ I)H1 =
µ0µH1, and in this case it has the form of a gyrotropic tensor

µ =

 µ iµg 0
−iµg µ 0

0 0 µz

 (4.18)
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where

µ(ω) = 1 +
β − iαω/ωm

(β − iαω/ωm)2 −(ω/ωm)2
(4.19)

µg(ω) = − ω/ωm

(β − iαω/ωm)2 −(ω/ωm)2
(4.20)

µz(ω) = 1 (4.21)

The losses are connected to the anti-hermitian part of the permeability tensor. In
analogy with the electric conductivity, a magnetic conductivity tensor can be de�ned
as σm = −iωµ0

(
µ− µ†

)
/2 [2], although it has units of [σm] = Ω/m and not S/m as

in the electric case. With the permeability tensor described above and after some
algebra, this is found to be (neglecting components parallel to m0 since they are
zero)

σm = −iωµ0
µ− µ†

2
=

αµ0ωm(ω/ωm)2(
β2 −(1 + α2)(ω/ωm)2

)2
+ 4α2(ω/ωm)2 β2

·
(
β2 +(1 + α2)(ω/ωm)2 −2iβω/ωm

2iβω/ωm β2 +(1 + α2)(ω/ωm)2

)
(4.22)

Since β depend on the bias �eld, He
0 (for instance, β = |He

0| /Ms − 1 for the �at
plate with bias �eld in the normal direction), we have the possibility to control the
value of β with the aid of this bias �eld. For the special case of β = 0, the magnetic
conductivity is independent of frequency

σm
β=0
= µ0ωm

α

1 + α2
I (4.23)

Thus, in this particular case(β = 0), σm can be used to represent a magnetic
conductivity tensor, which is independent of frequency. From the above analysis
it is seen that with the aid of He

0, it is possible (at least in theory) to change the
character of the material. The material can be switched between a material that
behaves like a Lorentz material with a resonance frequency, and a material that
exhibits a magnetic conductivity tensor.

5 Re�ection from PEC coated with ferromagnetic

material

In this section the re�ection coe�cient for normally impinging waves on a Dallen-
bach layer with material parameters given by (4.18) and an isotropic permittivity,
εI, is calculated. The situation is depicted in Figure 2. It is assumed that the
static external biasing �eld He

0 is in the ẑ-direction and that the impinging wave
is propagating along this direction. This impinging wave is then represented by an
impressed time-harmonic �eld, and the �eld inside the material is the �eld H1 that
is used in (4.2).
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BA
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z

ε,µε0,µ0

Figure 2: Slab of a ferromagnetic material with thickness d on a PEC.

Materials represented by permittivity- and permeability tensors on the form
like (4.18) are referred to as gyrotropic media. The wave propagation along the
ẑ-direction in gyrotropic media is well known and the so called eigenmodes for the
material, that represents the �eldH1, are given by (see [6, 24] for detailed discussion){

H+ = H+(x̂− iŷ) e±ik+z

H− = H−(x̂+ iŷ) e±ik−z
(5.1)

where k± = ω
c0

(ε(µ± µg))
1
2 and the E- and H-�elds are related to each other in the

following way {
E+ = ∓η0Z+ẑ ×H+

E− = ∓η0Z−ẑ ×H−
(5.2)

where the minus (plus) sign corresponds to propagation in the positive (negative)

ẑ-direction and Z± =
(
1
ε
(µ± µg)

) 1
2 .

In the vacuum region we are free to choose the polarization of the �elds at will.
However, since the polarization in the material is restricted to the eigenmodes which
in this case are circularly polarized, it is convenient to represent the polarization in
the vacuum region in this polarization state as well. Setting up the in- and outgoing
eigenmodes in the di�erent regions then yields:
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Region A (vacuum region):

H1 = H ie
ik1z +Hre

−ik1z =
[
H+
i (x̂− iŷ) +H−i (x̂+ iŷ)

]
eik1z

+
[
H+
r (x̂− iŷ) +H−r (x̂+ iŷ)

]
e−ik1z (5.3)

E1 = −η0ẑ ×H ie
ik1z + η0ẑ ×Hre

−ik1z (5.4)

Region B (material region):

H1 =
[
H+

+e
ik+z +H+

−e
−ik+z

]
(x̂− iŷ)

+
[
H−+e

ik−z +H−−e
−ik−z

]
(x̂+ iŷ) (5.5)

E1 = η0Z
+ẑ ×(x̂− iŷ)

[
−H+

+e
ik+z +H+

−e
−ik+z

]
+ η0Z

−ẑ ×(x̂+ iŷ)
[
−H−+eik−z +H−−e

−ik−z
]

(5.6)

where k1 = ω/c0 and η0 =
√

µ0
ε0
.

The total �eld in both regions can be represented by the sum of two orthogonal
modes (right- and left-hand circularly polarized modes) that do not couple into each
other. This means that one can separate the two modes and analyze the re�ection
coe�cient for each mode separately. In fact, this will be exactly analogous to the
case discussed in Section 2 for an isotropic layer. Hence, the re�ection coe�cient
for each mode will take the form (2.1) or written in matrix form for both modes(

E+
r

E−r

)
=

(
r+ 0
0 r−

)(
E+
i

E−i

)
(5.7)

where

r+ =
r+0 − ei2k+d

1− r+0 ei2k+d
(5.8)

r− =
r−0 − ei2k−d

1− r−0 ei2k−d
(5.9)

and r±0 = Z±−1
Z±+1

, k± = ω
c0

(ε(µ± µg))
1
2 and Z± =

(
1
ε
(µ± µg)

) 1
2 .

The structure of the re�ection coe�cients r+ and r− are the same as that of the
Dallenbach layer considered in Section 2. It is also seen that for the case when the
waves propagate along the direction of magnetization, the material can, in terms of
wave number, wave impedance and re�ection coe�cient, be described by an e�ective
permeability

µ±e� = µ± µg (5.10)

It is often of interest to study the re�ection for incoming waves that are linearly
polarized. The re�ection coe�cients when the incoming wave is represented by a
linearly polarized mode (instead of circularly polarized) are easily obtained from the
re�ection coe�cients above in the following way

rco =
r+ + r−

2
(5.11)

rcross = −ir+ − r−
2

(5.12)
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where rco is the re�ection coe�cient for the same polarization as the incoming wave
and rcross corresponds to the orthogonal polarization.

6 Results

For the particular geometry described in Section 5, the elements of the demagneti-
zation tensor are all zero except for Nzz which equals unity (see Table 2). Because
of this, equations (4.19)-(4.21) become

µ(ω) = 1 +
β − iαω/ωm

(β − iαω/ωm)2 −(ω/ωm)2
(6.1)

µg(ω) = − ω/ωm

(β − iαω/ωm)2 −(ω/ωm)2
(6.2)

µz(ω) = 1 (6.3)

where
β = |He

0|/Ms − 1 (6.4)

The permittivity was set to a constant, ε = 5 + 1i, in all of the calculations in this
section. In [24, p. 715] the permittivity for di�erent ferrite materials can be found.
From this we see that our choice of permittivity is of the same order as listed even
though the losses for ferrites are usually smaller.

In Figure 3, plots of the components of the permeability tensor is shown. From
these it is seen that the material exhibits a resonant behavior but with �nite ampli-
tude because of the loss term in LLG equation. For small losses (i.e., α � 1) the
resonance frequency is close to ω0 = γµ0(|He

0| −Ms) (≈ 4.7 GHz for the parameters
used in Figure 3 ).

Also, in Figure 4, plots of the e�ective permeabilities are shown. From these
it is seen that the resonance behavior for µ−e� is absent while for µ+

e� the resonance
peaks are increased in amplitude. This shows that there is a preferred rotation
direction in terms of the circularly polarized modes. This is due to the fact that the
magnetization executes a clockwise precession (viewed in the direction of the H0-
�eld) about the H0-�eld at the frequency ω0. This results in a strong interaction
between the mode with a circular polarization that rotates clockwise (left hand
circular polarized when M0 > H0) and the medium, and induces a resonance when
the two frequencies are equal, i.e., when ω = ω0. However, the circular polarized
mode that rotates counter clockwise opposes the precession and thus interacts rather
weakly with the medium. This is also seen from Figure 4, where the imaginary part
of µ−e� is much smaller than that of µ+

e�, which means that the absorption is poorer
for the mode associated with µ−e�.

In the limit He
0 →Ms, one obtains the following expression for µ±e�

µ±e� = 1± ωm

ω(1 + α2)
+ i

ωmα

ω(1 + α2)
(6.5)

From this expression it is seen that even though it is possible to ful�l (2.5), it is not
possible to reach the condition (2.6) for a small k0d. Hence, with the LLG model



17

0 2 4 6 8 10
x 109

−3

−2

−1

0

1

2

3

Hz

R
e 

µ

(a) Re µ

0 2 4 6 8 10
x 109

0

1

2

3

4

5

6

Hz

Im
 µ

(b) Im µ

0 2 4 6 8 10
x 109

−3

−2

−1

0

1

2

3

Hz

R
e 

µ g

(c) Re µg

0 2 4 6 8 10
x 109

0

1

2

3

4

5

6

Hz

Im
 µ

g

(d) Im µg

Figure 3: Real and imaginary parts of the permeability tensor. Ms is set to 2·105

A/m, He
0 = Ms/3 and α = 0.2.
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Figure 4: Real and imaginary parts of the e�ective permeability µ±e� = µ± µg. Ms

is set to 2·105 A/m, He
0 = Ms/3 and α = 0.2.

one cannot expect to achieve the ideal RAM mentioned in Section 2 where we had
zero re�ection at all frequencies. It is also seen that in this limit, the magnitude of
the imaginary part of µ±e� (and thus the losses) falls o� like ∼ 1/ω and depends on
the damping factor α and the saturation magnetization Ms.

In Figures 5-10 plots of |r+|2,|r−|2, |rco|2 and |rcross|2 are shown for di�erent
strength of the biasing �eld. Once again it is con�rmed that the mode with a
circular polarization that rotates in the same direction as the precession of the mag-
netization has a strong interaction with the material when ω ≈ ω0. This interaction
is manifested through the sharp dips in r+ in Figures 5a,c,e. On the other hand,
for the r− mode, this resonance does not appear and the mode passes through the
material without any considerable absorption. It is also seen that this resonance
is shifted when the saturation magnetization is changed (or when He

0 is changed),
since ω0 changes according to ω0 = γµ0(|He

0| −Ms). An additional resonance is
also found to appear at approximately 30 GHz in Figures 5a,b,c,d. This resonance
is associated with the thickness of the material and occurs when the thickness corre-
sponds to roughly a quarter wavelength. This resonance occurs for slightly di�erent
frequencies for the two di�erent modes since these two modes have di�erent wave-
lengths in general. When the thickness of the material is changed one can see from
Figures 5e,f that this resonance is shifted, as expected. For the special case He

0 = Ms

presented in Figure 6, the resonance associated with the precession of the magneti-
zation is no longer present since ω0 = 0 (He

0 = Ms also corresponds to β = 0, i.e.,
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the material exhibits a magnetic conductivity, see (4.23)). Now, only the thickness
resonance remains. From (6.5) it is inferred that the losses will increase as Ms and
α is increased, which then would result in a reduction of r+ and r−. This conclusion
is also reached by studying Figures 6a,b,c,d. A noteworthy result in Figure 7 is that
the resonance frequency associated with the magnetization is shifted over to the r−
mode as He

0 exceeds Ms. This result arise from the fact that the e�ective H0-�eld
is reversed as He

0 exceeds Ms and thus changes the precession direction of the spin.
Consequently, the r− mode now rotates in the same direction as the magnetization.

Now, analyzing the �gures when the material is illuminated by a linearly polar-
ized wave (i.e., Figures 8 - 10), one can qualitatively understand the result in the
following way: Due to the fact that rco and rcross is the sum and di�erence of r+
and r−, respectively, one �nds that as one of the co- or cross polarization increases
the other will decrease and this roughly means that as one gets better, the other
gets worse. This behavior can also be seen from the �gures. Of course, this is not
always true but one also has to take the phases of r+ and r− into consideration in
order to make a more precise analysis. For instance, it may happen that r+ and r−
are of the same magnitude but 180 degrees out of phase, then rco tend to vanish
while rcross becomes relatively large. Furthermore, from the �gures of the re�ection
coe�cients for the linearly polarized case, it is seen that rco seems to preserve both
the resonances while rcross obtains local maxima at these frequencies. Also, in con-
trast to the eigenmodes in the material who does not couple into each other (i.e.,
an impinging wave that is circularly polarized will not excited the other orthogonal
polarization in the material), a linearly polarized wave will excite both polarizations.
This means that if |rco|2 or |rcross|2 are close to unity then the other has to be close
to zero since |rco|2 + |rcross|2 ≤ 1 and this behavior can be veri�ed from the �gures.

7 Discussion and conclusions

Using a linearized small signal model of the LLG equation (3.6), in which the ma-
terial is gyrotropic and described by an e�ective permeability, we have shown that
with the aid of a static external biasing �eld, the material can be switched between
a Lorentz-like material and a material that exhibits a magnetic conductivity.

Furthermore, as the material is set to behave like a Lorentz material, it was
shown that by using a ferro- or ferrimagnetic layer on a PEC with a static external
biasing �eld, one will obtain two resonance frequencies in the re�ection coe�cient
for normally impinging waves (along the bias �eld) on this structure. One of these
resonances is associated with the precession frequency of the magnetization and one
associated with the thickness of the layer. This is a fundamental di�erence between
using a ferro- or ferrimagnetic layer and electric layer as absorbing material. For an
electric layer, only the resonance associated with the thickness will be present. Since
it is possible to shift the resonance frequency, ω0, with the aid of the biasing �eld,
one has the possibility to combine these two resonance frequencies that are present
for magnetic materials. Hence, absorbers consisting of magnetic materials have the
potential of being more broadband and thinner than electrical absorbers. However,
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Figure 5: Plots of |r+|2 and |r−|2 (in dB) for He
0 � Ms. Default values are

Ms = 2 · 105 A/m , α = 0.2, ε = 5 + 1i and d = 1 mm.
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Figure 6: Plots of |r+|2 and |r−|2 (in dB) for He
0 = Ms. Default values are Ms =

2 · 105 A/m , α = 0.2, ε = 5 + 1i and d = 1 mm.
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Figure 7: Plots of |r+|2 and |r−|2 (in dB) for di�erent He
0. Default values are

Ms = 9 · 105 A/m , α = 0.2, ε = 5 + 1i and d = 1 mm.
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(d) α is swept through 0.05 (black
solid line), 0.1 (blue dashed line),
0.5 (red dotted line) and 1 (Green
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Figure 8: Plots of |rco|2 and |rcross|2 (in dB) for He
0 � Ms. Default values are

Ms = 2 · 105 A/m , α = 0.2, ε = 5 + 1i and d = 1 mm.
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(a) Ms is swept through 1 (Black
solid line), 5 (blue dashed line),
10 (red dotted line) and 15 (green
dash-dotted line) ·105 A/m.
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(b) Ms is swept through 1 (Black
solid line), 5 (blue dashed line),
10 (red dotted line) and 15 (green
dash-dotted line) ·105 A/m.
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(c) α is swept through 0.05 (black
solid line), 0.1 (blue dashed line),
0.5 (red dotted line) and 1 (Green
dash-dotted line).
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(d) α is swept through 0.05 (black
solid line), 0.1 (blue dashed line),
0.5 (red dotted line) and 1(Green
dash-dotted line).
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(e) d is swept through 1 (black
solid line), 1.5 (blue dashed line),
2 (red dotted line) and 2.5 (green
dash-dotted line) mm.

108 109 1010 1011−30

−25

−20

−15

−10

−5

0

Hz

r cr
os

s

(f) d is swept through 1 (black solid
line), 1.5 (blue dashed line), 2 (red
dotted line) and 2.5 (green dash-
dotted line) mm.

Figure 9: Plots of |rco|2 and |rcross|2 (in dB) for He
0 = Ms. Default values are

Ms = 2 · 105 A/m, α = 0.2, ε = 5 + 1i and d = 1mm.
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(a) He
0 is swept through Ms/2

(Black solid line), Ms/1.2 (blue
dashed line), Ms/1.1 (red dotted
line) and Ms/1.02 (green dash-
dotted line).
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(b) He
0 is swept through Ms/2

(Black solid line), Ms/1.2 (blue
dashed line), Ms/1.1 (red dotted
line) and Ms/1.02 (green dash-
dotted line).
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(c) He
0 is swept through Ms (Black

solid line), 1.02Ms (blue dashed
line), 1.1Ms (red dotted line) and
1.2Ms (green dash-dotted line).
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(d) He
0 is swept throughMs (Black

solid line), 1.02Ms (blue dashed
line), 1.1Ms (red dotted line) and
1.2Ms (green dash-dotted line).

Figure 10: Plots of |rco|2 and |rcross|2 (in dB) for di�erent He
0. Default values are

Ms = 9 · 105 A/m , α = 0.2, ε = 5 + 1i and d = 1 mm.
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Figure 11: Plots of |rco|2 (solid line) and |rcross|2 (dashed(line) (in dB) for He
0 = Ms.

Ms = 16 · 105 A/m , α = 0.9, ε = 5 + 1i and d = 1 mm.
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only the eigenmode with a circular polarization that rotates in the same direction as
the precession of the magnetization will experience this additional resonance whereas
the other mode will experience only the resonance associated with the thickness, i.e.
like an electrical absorber.

For the linearly polarized case it is seen from the �gures that when the bias �eld
strength is equal or close to the saturation magnetization (β ≈ 0, i.e., the material
exhibits a magnetic conductivity), increasing Ms improves rco but worsen rcross and
increasing α improves the re�ection coe�cient for both polarizations. Thus, large
values for Ms and α is needed in order to obtain a broadband absorber. More than
two decades bandwidth can be achieved for a re�ectivity level around -20 dB at a
material thickness of only 1 mm for co-polarization, see Figure 11. However, this
requires a quite large value for α (0.9), and this might not be possible to obtain.
The condition β = 0 may also be di�cult to achieve since this requires a bias �eld of
the order of the saturation magnetization, which is a very large �eld strength. Also,
it is seen from the �gures that the absorber is sensitive to disturbances in the bias
�eld. Small deviations from Ms in the bias �eld results in quite di�erent results.

At this point one should not read too much into these results in terms of band-
widths and re�ectivity levels since in this analysis the electric losses are not modeled
properly. For microwave ferrite materials, the electric losses are usually negligi-
ble [24, p. 715], but for ferromagnetic materials this loss is usually substantial.
Even though electric losses are included they were set to be independent of fre-
quency. The reason for this is that we wanted to isolate our investigation to e�ects
due to the magnetic losses and develop a better understanding of how these losses
a�ect the absorption of electromagnetic energy. However, the ohmic losses are easily
included in the analysis and then one can obtain more realistic results.

It was also discovered that the conditions for the ideal magnetic Salisbury screen
(a very thin magnetic layer on a PEC with practically zero re�ection at all frequen-
cies for normally impinging waves) mentioned in Section 2 is unreachable with this
model of the magnetization.

In the analysis presented here the anisotropy tensorNc was neglected. It is possi-
ble to augment the analysis to include an arbitrary anisotropy- and demagnetization
tensor and obtain a closed form expression for the susceptibility tensor. However, for
the case of a thin plate geometry biased in the normal direction where the material
is uniaxial with its easy axis along the normal direction, it is found that this will
just lead to a correction in the constant β (and hence the resonance frequency) of
the form β = |He

0|/Ms−1−Nc. Hence, it does not change the fundamental physics
of the problem for this particular case. Therefore we have chosen not to include the
full analysis containing an arbitrary anisotropy tensor.
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