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Popular Science Summary

One of the most subtle concepts in physics is “interaction”. In com-
mon usage, interaction means that separate entities (being electrons, people
or galaxies) influence1 one another. Due to this influence, these entities may
form “emergent” systems with novel collective properties, far beyond the simple
characteristics of the individual parts. Under such circumstances, “the whole
is greater than the sum of its parts”, as Aristotle put it. Let us, for simplic-
ity, consider a potato. This fantastic vegetable is formed by a multitude of
interacting cells, but is immensely more complex than just a mere collection of
cells. Similarly, the cells are built of molecules which in turn are made of atoms
and so on... It is easy to imagine that describing each step in this increasing
complexity requires special efforts such as the introduction of new concepts and
methodologies. In fact, in physics one often refers to the description of such
interacting systems as the “many-body problem”.

The everyday world surrounding us – that we can see, touch, smell and taste
directly with our senses – is perfectly described by classical physics.2 However,
when we try to describe very small objects, such as atoms or nanometer size
structures, the classical physics fails, not only quantitatively but even qualita-
tively. We need to make use of “quantum mechanics”. It is striking that the
fundamental axioms, on which all our physical theories are based, are not only
different but actually in contradiction when we compare classical and quantum
physics. Classical physics says that the physical reality exists independently
of the observer while quantum mechanics claims that there is an inevitable
influence of the observer on the physical reality. Where classical physics tells
us that a quantity has a certain well-defined value, quantum physics says no:
it has only a probability of attaining a certain value. Classical physics endows
particles with precise positions and velocities in space but quantum physics
forbids such a procedure – a particle is to be represented by an extended wave

1In physics this influence corresponds to a force.
2This is, of course, strictly speaking not true as all macroscopic systems are ultimately

made of particles which obey the laws of quantum physics. In fact, according to recent theo-
ries, the way our nose interprets different molecules as different smells can not be described
within classical physics.
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function. When classical physics says that a quantity, such as energy, can have
any value within a certain interval, quantum physics says no: only certain
discrete (quantised) values are allowed. That classical and quantum physics
give contradictory answers on some principal questions does, however, not im-
ply that they are not reconcilable. In fact, in the limit of large systems, the
equations of quantum mechanics become the same as the classical ones.

Another very important concept in physics is “non-equilibrium”. Being
out of equilibrium means that something changes in time. The wind that
blows, the current that flows and the glass which falls are all examples of non-
equilibrium dynamics. The very essence of life is intrinsically linked to non-
equilibrium, in fact the capacity to utilise the non-equilibrium is one of the
basic properties of living organisms. Equilibrium is the opposite: everything
stays unchanged, nothing happens.3

Whenever a system goes out of equilibrium, such as when a cold spoon is
put into a warm cup of tea, the natural tendency of the system is to relax to
the equilibrium state. If we just leave a potato alone it will finally end up as
an inert and boring lump. In order for a system to be driven out of equilibrium
there has to be something that changes (a gradient) in space. In the case of
the spoon, the tea has a higher temperature than the spoon and, therefore, to
re-establish the equilibrium, there will be a flow of heat into the spoon until
it acquires the same temperature as the tea. In fact, the whole universe may
slowly be going towards an equilibrium which ultimately leads to the so-called
thermal death, i.e. when all that can fall has fallen, when all the chemical
reactions have taken place and everything is lukewarm, then nothing will ever
be able to happen...

The problem that we deal with in this thesis incorporates all the three
aspects mentioned above, i.e. interaction, quantum mechanics and non-
equilibrium. We treat this problem by using an approximate4 methodology
called many-body perturbation theory, which is widely used in many different
fields in physics.

The central object of many-body perturbation theory is the Green’s func-
tion which gives the probability amplitude that a particle added (or removed)
to a system at a given position and time propagates to another position at a
different time. With this information one can obtain knowledge of certain im-
portant properties of the system, such as the particle density, the currents and
the energy. In many-body perturbation theory one approximates the Green’s
function in a clever way which guarantees the fulfilment of certain physical
laws, such as the conservation of energy and matter.

The problem of a time-dependent interacting quantum mechanical system
3The constituent microscopic parts may fluctuate in time but the macroscopic system as

a whole does not change on the average.
4An approximate method means that it is intrinsically approximative and thus even if one

had a computer with infinite capacity, one could only obtain approximate results.
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is a very difficult one. Therefore, instead of trying to describe a real physical
system with all its complicated details (which is at present not technically
feasible but will ultimately be the goal of this kind of research) we replace it by
a model system. A model is a simplified version of reality,5 where one neglects
many complicated and hopefully irrelevant aspects and keeps only what one
can hope to be able to treat, all along longing that the model resembles the
real system.6

Apart from actually being technically manageable and having some relation
to the real world, model systems do sometimes admit exact solutions. This is,
of course, delightful. Exact solutions are an invaluable source of to gain insight
of the reliability of approximate schemes such as, e.g. many-body perturbation
theory.

The goal of this thesis is to study how well many-body perturbation theory
works to describe time-dependent phenomena. This is done by considering
simple model systems, where one has full control of the exact solution which
can therefore be used as a benchmark.

The many-body perturbation theory as used here optimises some proper-
ties, specifically the fulfilment of basic conservation laws. A main outcome of
this thesis is that many-body perturbation theory can in some cases give quite
a successful description of the non-equilibrium dynamics. However, in other
situations it may give rise to unphysical results for other properties. The un-
derstanding of these unphysical results is crucial as they put severe boundaries
on the applicability of time-dependent many-body perturbation theory.

Hopefully, our work will be useful in future efforts to remedy these short-
comings.

5Note that we always refer to the physical reality and that we do not dare to even consider
any metaphysical true reality...

6This view is a bit exaggerated, as models have in many cases reproduced the real physics
not only qualitatively but actually quantitatively.
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Populärvetenskaplig
sammanfattning

Ett av de mest subtila begrepp i fysik är “växelverkan”. I en alldaglig
mening betyder växelverkan att skilda entiteter (som elektroner, människor
eller galaxer) p̊averkar1 varandra. När dessa entiteter växelverkar kan de skapa
“emergenta” system med nya, kollektiva egenskaper l̊angt utöver de individu-
ella delarna. Under dessa omständigheter är “helheten mycket mer än summan
av sina delar” som Aristoteles en g̊ang framställde det. Ta för enkelhetens skull
en potatis. Denna fantastiska rotfrukt är byggd av en mängd växelverkande
celler, men är oerhört mycket mer komplex än blott en grupp celler. P̊a lik-
nande vis är dessa celler byggda av molekyler som i sin tur best̊ar av atomer
och s̊a vidare... Det är lätt att föreställa sig att beskrivningen av varje steg
av denna ökande komplexitet kräver stora ansträngningar som till exempel
införandet av nya begrepp och metodologier. Beskrivningen av växelverkande
system brukar benämnas som “m̊angkropparproblemet”.

Den vardagliga världen som omger oss – som vi kan se, röra, lukta och
smaka direkt med v̊ara sinnen – beskrivs väl av den klassiska fysiken.2 Men
när vi försöker studera mycket sm̊a saker, som atomer eller nanometer-stora
strukturer, d̊a misslyckas den klassiska fysiken, inte bara kvantitativt utan även
kvalitativt. Vi m̊aste använda “kvantmekaniken”. Det är verkligen sl̊aende
att de grundläggande axiomen, p̊a vilka alla v̊ara fysiska teorier är baserade,
inte bara är annorlunda utan även motsäger varandra när vi jämför klassisk
fysik med kvantmekaniken. Klassik fysik säger att den fysiska verkligheten exis-
terar oberoende av observatören medan kvantmekaniken menar att det finns en
ofr̊ankomlig p̊averkan av observatören p̊a den fysiska verkligheten. Där klassisk
fysik säger oss att en kvantitet har ett givet väldefinierat värde säger kvant-
mekaniken nej: den har endast en sannolikhet att anta ett visst värde. I klas-

1I fysiken motsvaras denna p̊averkan av en kraft.
2Detta är, uppenbarligen, egentligen inte sant eftersom alla makroskopiska system best̊ar

ytterst av partiklar som lyder kvantmekanikens lagar och faktiskt kan inte sättet v̊ar näsa
uppfattar olika molekyler som olika lukter, beskrivas av klassik fysik.

1



6 Populärvetenskaplig sammanfattning2 Populärvetenskaplig sammanfattning

sisk fysik har partiklarna bestämda positioner och hastigheter i rummet men
kvantmekaniken förbjuder detta – en partikel m̊aste beskrivas av en utbredd
v̊agfunktion. När klassik fysik säger att en kvantitet, som till exempel energin,
kan ha vilket värde som helst inom ett givet intervall säger kvantmekaniken
nej: bara vissa diskreta (kvantiserade) värden är till̊atna. Att klassisk fysik
och kvantmekaniken ger motsägande svar p̊a n̊agra grundläggande fr̊agor be-
tyder inte att de är oförenliga. I gränsen för stora system ger kvantmekaniken
samma förutsägelser som klassisk fysik.

Ett annat mycket viktigt begrepp inom fysiken är “icke jämvikt”. Att
vara utom jämvikt betyder att n̊agot förändras i tiden. Vinden som bl̊aser,
strömmen som flödar och glaset som faller är alla exempel p̊a dynamik utom
jämvikt. Livets innersta väsen är ohjälpligt bundet till icke jämvikt; att kunna
använda saker och ting utom jämvikt är faktiskt en grundläggande egenskap
hos levande organismer. Jämvikt är själva motsatsen: Allt förblir oförändrat,
ingenting händer.3

När ett system hamnar utanför jämvikt, som till exempel när en kall sked
sätts ner i en kopp hett te, är den naturliga utvecklingen att systemet återg̊ar
till jämvikt. Om vi bara lämnar en potatis åt sig själv s̊a kommer den slutgilti-
gen brytas ner och förvandlas till en intetsägande klump. För att ett system
skall drivas ut fr̊an jämvikt m̊aste det finnas n̊agot som ändras (en gradient) i
rummet. I fallet med skeden har teet en högre temperatur än skeden och därför
kommer det flöda in värme in i skeden tills skeden f̊ar samma temperatur som
teet. Faktum är att hela universum kanske sakta g̊ar mot en jämvikt som till
slut leder till det som kallas för den termiska döden, allts̊a när allt som kan
falla har fallit, när alla kemiska reaktioner har ägt rum och allt är lagom, d̊a
kan ingenting n̊agonsin hända...

Problemet vi behandlar i den här avhandlingen innefattar alla tre beskrivna
aspekter, nämligen växelverkan, kvantmekanik och icke jämvikt. Vi behandlar
detta problem med en approximativ4 metodologi som kallas m̊angpartikelteori
och som används mycket i vitt skilda fält i fysiken.

Det centrala objektet inom m̊angpartikelteori är Greensfunktionen som ger
sannolikheten för att en partikel som lagts till (eller dragits bort) i systemet
vid en given position och vid en viss tid, kommer till en annan position vid
en annan tid. Med den informationen kan man f̊a fram viktig kunskap om
systemets egenskaper som till exempel dess täthet, strömmar och energi. I
m̊angpartikelteorin approximerar man Greensfunktionen p̊a ett sätt som garan-
terar att vissa grundläggande fysikaliska lagar uppfylls, som till exempel be-
varandet av energi och materia.

3De mikroskopiska delarna som utgör system kan fluktuera i tiden men det makroskopiska
systemet ändras inte i snitt.

4En approximativ metod betyder att den är approximativ till sin natur, det vill säga
att även om man hade en dator med oändlig kapacitet skulle man endast f̊a approximativa
resultat.
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Att beskriva ett växelverkande kvantmekaniskt system utanför jämvikt är
mycket sv̊art. Istället för att försöka beskriva ett riktigt fysikaliskt system
(vilket idag inte är tekniskt möjligt, men som i själva verket är det slutgiltiga
m̊alet för denna typ av forskning) ersätter vi det därför med ett modellsystem.
En modell är en förenklad version av verkligheten,5 där man helt enkelt bortser
fr̊an en mängd komplicerade och förhoppningsvis oviktiga detaljer och lämnar
endast kvar det som man tro sig kunna lösa samtidigt som man hoppas att
modellen skall efterlikna det riktiga systemet.6

Förutom att faktiskt vara tekniskt hanterbara och ha viss motsvarighet
till verkligheten kan modellsystem i vissa fall ha exakta lösningar. Detta
är självfallet fantastiskt. Exakta lösningar är ovärderliga källor för att f̊a
grundläggande kunskap om approximationers, till exempel m̊angpartikelteorins,
tillförlitlighet.

Målet för denna avhandling är att utforska hur bra m̊angpartikelteorin
fungerar för att beskriva tidsberoende fenomen. Detta görs genom att studera
enkla modellsystem, där man ocks̊a har tillg̊ang till exakta resultat.

Mångpartikelteorin som den används här optimerar vissa egenskaper, speci-
fikt att grundläggande konserveringslagar uppfylls. Ett huvudresultat av avhan-
dlingen är att m̊angpartikelteorin kan i vissa fall ge en bra beskrivning av dy-
namiken. I andra fall kan metoden emellertid ge ofysikaliska resultat för andra
egenskaper. Förbättrad först̊aelse av dessa ofysikaliska egenskaper är avgörande
eftersom de begränsar användbarheten av den tidsberoende m̊angpartikelteorin.

Förhoppningsvis kan resultaten presenterade här ge uppslag till framtida
arbeten med syfte att överbrygga dessa sv̊arigheter.

5Lägg märke till att vi alltid diskuterar den fysiska verkligheten och att vi inte ens v̊agar
röra vid n̊agon metafysisk verklighet...

6Denna beskrivning är lite väl överdriven eftersom modellsystem i m̊anga fall har repro-
ducerat riktiga fysikaliska system inte bara kvalitativt utan även kvantitativt.
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Resum divulgatiu

Un dels conceptes més subtils de la f́ısica és “la interacció”. En termes
comuns, interacció vol dir que diferent entitats (siguin electrons, persones o
galàxies) s’influencien1 les unes a les altres. Quan aquestes entitats interactuen,
poden formar sistemes “emergents” amb noves propietats col.lectives molt més
enllà de les caracteŕıstiques de les entitats inicials. En aquestes circumstàncies,
tal com deia Aristòtil: “el tot és més que la suma de les seves parts”. Com
a exemple senzill ens podem imaginar una patata. Aquest fantàstic tuber-
cle està format per una multitud de cèl.lules interactuant però és immensa-
ment més complex que un simple conjunt de cèl.lules. De manera similar,
les cèl.lules estan formades per molècules que en si estan fetes d’àtoms i aix́ı
fins a l’avorriment... És fàcil imaginar-se que descriure cada pas d’augment
de complexitat requereix grans esforços com ara la introducció de nous con-
ceptes i metodologies. De fet, en f́ısica, se sol referir a la descripció de sistemes
interactuants com el “problema dels molts cossos”.

El món del dia a dia que ens envolta, que podem veure, tocar, olorar i tastar
directament amb els nostres sentits, es pot descriure perfectament amb la f́ısica
clàssica.2 Quan intentem, però, descriure objectes molt petits, com ara àtoms
o estructures a l’escala nanomètrica, la f́ısica clàssica l’erra no només quan-
titativament sinó també qualitativament i necessitem utilizar la “mecànica
quàntica”. És molt impactant que els axiomes fonamentals, que són la base
de totes les teories de la f́ısica, no només són diferents sinó també que són con-
tradictoris quan comparem la f́ısica clàssica amb la quàntica. La f́ısica clàssica
diu que la realitat f́ısica existeix independentment de l’observador mentres que
la quàntica diu que hi ha una influència inevitable de l’observador i la realitat
f́ısica. Allà on la f́ısica clàssica diu que una quantitat té un valor ben definit,
la f́ısica quàntica diu que només té una probabilitat d’adoptar un cert valor. A
la f́ısica clàssica les part́ıcules tenen posicions i velocitats a l’espai ben deter-

1En la f́ısica aquesta influència correspon a una força.
2De fet això, òbviament, no es estrictament veritat ja que tots els sistemes macroscòpics

estan en el fons constitüıts per part́ıcules que estan sotmeses a les lleis de la f́ısica quàntica.
De fet, la manera que el nostre nas interpreta certes molècules com a diferents olors, no es
pot descriure amb f́ısica clàssica.
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minades però la quàntica ho prohibeix; una part́ıcula és representada per una
funció d’ona extensa. Quan la f́ısica clàssica diu que una quantitat, com per
exemple l’energia, pot tenir qualsevol valor en un cert interval, la quàntica diu
que tan sols alguns valors discrets (quantitzats) són permesos. Que la f́ısica
clàssica i la quàntica es contradiguin en algunes preguntes fonamentals no vol
dir que no siguin reconciliables. De fet, al ĺımit de sistemes grans, les equacions
de la mecànica quàntica esdeven les mateixes que les clàssiques.

Un altre concepte important en f́ısica és el de “no equilibri”. Trobar-se
fora de l’equilibri vol dir que alguna cosa canvia en el temps. El vent que bufa,
el corrent que flueix i el got que cau són exemples de dinàmica fora de l’equilibri.
La pròpia essència de la vida està intŕınsicament lligada al no equilibri i, de
fet, la capacitat d’utilitzar coses fora de l’equilibri és una de les propietats
fonamentals dels organismes vius. L’equilibri és el contrari, tot es queda igual,
no passa res.3

Sempre que un sistema surt fora de l’equilibri, com per exemple quan es
posa una cullera freda en un got de te calent, la tendència natural és de tornar
a l’equilibri. Si deixem una patata tota sola, al final esdevindrà una massa
inerta i avorrida. Perquè un sistema surti de l’equilibri, cal que hi hagi alguna
cosa que canvïı (un gradient) a l’espai. En el cas de la cullera, el te té una
temperatura més alta que la de la cullera i, degut a això, fluirà calor del te a la
cullera fins que aquesta assoleixi la mateixa temperatura que el te. De fet, pot
ser que l’univers estigui a poc a poc anant cap a un equilibri que finalment porti
a la mort tèrmica, és a dir, quan tot el que pot caure hagi caigut, quan totes
les reaccions qúımiques s’hagin produit i tot sigui tediosament tebi, llavors res
podrà passar mai més...

El tema que tractem en aquesta tesi incorpora els tres aspectes descrits: la
interacció, la mecànica quàntica i el no equilibri. Per afrontar aquest problema
utilitzarem una metodologia aproximada4 que s’anomena teoria de perturbació
de molts cossos i que s’utilitza en molts àmbits de la f́ısica.

L’objecte central de la teoria de perturbació de molts cossos és la funció de
Green que dóna la probabilitat que una part́ıcula afegida (o extreta) al sistema
en un punt en l’espai i en un instant donats, es mogui a un altre punt de l’espai
en un altre instant. Tenint aquesta informació es poden obtenir coneixements
sobre les propietats del sistema, com ara la densitat de part́ıcules, els corrents i
l’energia. La teoria de perturbació de molts cossos aproxima la funció de Green
de tal manera que es garanteixi el compliment de certes lleis f́ısiques, com ara
la conservació de l’energia i de la matèria.

El problema d’un sistema quàntic interactuant fora de l’equilibri és molt
complex. Per això, en comptes d’intentar descriure un sistema f́ısic real (que

3Les parts microscòpiques constituents poden fluctuar en el temps però el sistema
macroscòpic no canvia en promig.

4Un mètode aproximat vol dir que és intŕınsicament aproximatiu i, per tant, encara que
es tingués un ordinator amb capacitat infinita, només s’obtindrien resultats aproximats.
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a hores d’ara no és tècnicament factible però que és la fita final d’aquest tipus
de reserca) el substitüım per un model. Un model és una versió simplificada
de la realitat5 on ens desfem d’un munt d’aspectes complicats i suposadament
irrellevants i ens quedem només amb el que esperem poder tractar, sempre
tenint la confiança que el model s’assembli al sistema real.6

Els models, a banda de ser tècnicament manejables i de tenir alguna relació
amb el món real, de vegades es poden resoldre de manera exacte; això és,
clarament, un gran avantatge. Les solucions exactes són una font inestimable
per obtenir comprensió fonamental del grau de fiabilitat de diferents mètodes
aproximats, com per exemple la teoria de perturbació de molts cossos.

L’objetiu d’aquesta tesi és el d’estudiar com funciona la teoria de pertur-
bació de molts cossos per desciure fenòmens depenents del temps. Això es fa
analitzant uns models senzills, on es té el control sobre la solució exacte i per
tant serveix com a referent.

La teoria de perturbació de molts cossos, com és utilitzada aqúı, optimitza
algunes propietats, en concret el compliment de les lleis fonamentals de con-
servació. Un resultat principal d’aquesta tesi és que la teoria de perturbació
de molts cossos pot, en certs casos, donar una bona descripció de la dinàmica
del no equilibri. En altres situacions dóna resultats que violen altres lleis de la
f́ısica; la comprensió d’aquestes propietats és primordial, ja que posen severes
restriccions a l’aplicabilitat de la teoria de perturbació de molts cossos fora de
l’equilibri.

Esperem que els nostres resultats obrin la porta a noves investigacions que
puguin superar aquest problema.

5Observa que sempre ens referim a la realitat f́ısica i ni tan sols ens atrevim a tocar cap
realitat metaf́ısica...

6Aquesta descripció és una mica exagerada ja que hi han molts casos on models han pogut
descriure sistemes f́ısics reals no tan sols qualitativament sinó també quantitativament.
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Introduction

Treating interacting systems with strong correlation effects out of equilibrium
is a hard and largely unsolved problem in solid state physics. There are several
different methods which try to tackle this question, all of them with their
own pros and cons. Most approximate methodologies focus on certain physical
aspects and this may lead to the deterioration of other properties. There are,
however, also methods which are in principle exact, but these are usually very
limited by the system size.1

This thesis is focused on the non-equilibrium Green’s function or Kadanoff-
Baym equations (KBE) technique [1, 2] within many-body perturbation theory
(MBPT) [3]. The strength of this method is that one can build approximations
of increasing complexity and that it incorporates memory, which can become
essential when dealing with time-dependent phenomena [4, 5]. An other advan-
tage of the KBE+MBPT technique is that it allows to treat non-homogenous
and extended systems, in particular those of a quantum transport geometry,
i.e. a central interacting region coupled to semi-infinite non-interacting leads
[6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19]. There are various limitations
of the KBE+MBPT approach. One is that the methodology is only approxi-
mate,2 which means that one has to compare to experiments or exact methods
in order to assess its validity. An other restriction is that the Green’s function
is a two-point object3 and the scheme is thus computationally very demanding.
An additional restraint is that the procedure is of perturbative character which
means that it will, in most cases, only be able to describe systems in which the
interaction does not play too strong a role.

To appraise the performance of the KBE+MBPT procedure we have in this

1In general one is only able to find exact solutions in two limiting cases: if the system
is very small, where one can use exact numerical techniques, and in the limit of an infinite
system where analytical methods play a key role in finding the exact solution as, e.g. in the
case of the Bethe-Ansatz solution of the one dimensional Hubbard model.

2The formulation of MBPT is in principle exact, however, in practice it is used to find
approximate Green’s functions.

3Every point represents all space, spin and time variables; thus for a three dimensional
system with spin 1/2 particles the Green’s function depends on 10 variables.
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thesis compared it to two other methods, namely exact diagonalisation [20]
and one which combines time-dependent density functional theory (TDDFT)
[22] with dynamical mean field theory (DMFT) [21]. The exact diagonalisa-
tion scheme has the advantage that it is an exact method but in practise it
can only treat very small systems. The strength of TDDFT is that it depends
on one-point functions, which makes the method computationally very conve-
nient. The weakness, on the other hand, is that it is difficult to construct good
approximations and that it is challenging to incorporate memory effects. The
advantage of using DMFT is that it is not perturbative which means that it is
more adapted to treat strongly correlated systems.

This thesis will deal with model systems. The reasons for studying a model
system are basically three. The first one is that a model is much easier to
handle than a real system. This makes it at all possible to study strongly
correlated systems, also those which are not homogeneous in space and time.
The second reason is that one can in some cases have access to the exact
solution to benchmark the approximate schemes. The third one is that simple
model systems, such as the Hubbard model [23], do have important aspects in
common with the real systems of interest and can actually describe them quite
well. In fact, various works [24] are able to describe real systems by fitting
the model parameters to ab initio4 calculations. In cold atom physics the real
Hamiltonian can not only be described very accurately by the Hubbard model
but one can actually experimentally tune the parameters of the model in a vast
range of values.

The first two points, which are the basis of this thesis, are very important
as they make it possible to scrutinise basic conceptual issues and principles
without having to develop a full-fledged technical machinery as required by ab
initio treatments. It should be clear, however, that the final aim of this kind of
investigations, which is well beyond the scope of this thesis, is to assess criteria
and develop methodologies for an ab initio description of realistic systems.

The actual systems studied in this thesis are small Hubbard clusters, iso-
lated and coupled to semi-infinite, one-dimensional and non-interacting leads.

The general strategy we will follow to assess the scope of time-dependent
MBPT is to study its performance for model systems by comparing to the exact
solution and to the TDDFT+DMFT method.

The background material given in the following chapters is aimed at people
with some general knowledge in physics and mathematics who would like to
get some superficial notion of the concepts and methodologies studied in this
thesis. To this end I will describe the main ideas without going into technical
details. For a more extended discussion, the reader is referred to the original
papers and the references therein.

4Ab initio refers to the treatment of real systems with methods based on first principles.
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Model systems

In physics it is very convenient and common to make use of models. In some
circumstances the word “model” refers to a methodological and theoretical
framework as, e.g. in the “standard model”. In other contexts, such as in
the field of solid state physics, a model refers to a “model system”, i.e. an
hypothetical system which is intended to share certain important characteristics
with a real system. It is in this second sense that we will use the concept of
model in this thesis.

Typically, a model includes effective parameters. If one wants to study a
specific system one needs to fit these parameters, either experimentally or from
ab initio calculations. This is however, not the only way one can use a model.
In fact one can study the properties of a model system theoretically by tuning
the parameters, and then, with modern nano technology one can very often
build a system with some desired characteristics.

Another very important feature of model systems is that they sometimes
admit exact solutions and can therefore be used as benchmark for addressing
fundamental questions of certain approximative methodologies.

The general set-up we consider in this thesis is that of a generic quantum
transport geometry,1 namely a central region, C, contacted to leads, L. The
Hamiltonian of the two parts and their mutual coupling read, in standard
notation,

H = HC +HL +HLC . (2.1)

We will take the central region to be interacting and described by a Hubbard-
like model [23], while the leads will be non-interacting2 and described by the
semi-infinite tight-binding model.

The Hubbard model, introduced in 1963,3 is one of the most important

1Note that, however, with very minor modifications, this method can be used for any
generic subsystem connected to external reservoirs.

2The reason for taking the leads non-interacting is that it is at present not possible to
deal with correlations in extended leads.

3The use of this model goes actually back far earlier in time. It appears that is was first
considered by Van-Vleck [25] already in the late forties, and called the U−T model. However,
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models in solid state theory as it is the simplest model which incorporates inter-
action between particles in a lattice. It has been used to study diverse physical
phenomena such as high-Tc superconductivity, antiferromagnetism and ferro-
magnetism. For a good review see, e.g. [26].

The Hubbard model describes particles which live on discrete interconnected
sites4 which form a lattice. These particles can hop from one site to the other
and if two particles happen to be on the same site they repel (attract) each
other thus getting and energy penalisation (reward). The one band Hubbard
Hamiltonian is:5

HC = −V
∑

〈RR′〉,σ
a†RσaR′σ +

∑

R, σ

εRn̂Rσ + U
∑

R

n̂R↑n̂R↓ +
∑

R, σ

wR (t) n̂Rσ. (2.2)

Here, R, is the site label, a†(a) are creation (annihilation) operators, n̂Rσ =
a†RσaRσ, σ =↑, ↓, and 〈RR′〉 denotes pairs of nearest neighbour sites. The
V = 1 is the hopping parameter, εR are the on-site energies, U is the on-site
interaction parameter and wR (t) is a local, spin-independent, external field
which can be of any shape in time t and space. The parameters εR, U and
wR (t) are given in units of V . Our approach is valid for systems which are
compensated as well as uncompensated in spin. However, in what follows we
will only consider clusters (with/out leads) with an equal average number of
spin-up and -down electrons in the ground state; this will hold at all times
during the dynamics, since H has no spin-flip terms. The leads are taken to be
non-interacting, metallic and described by the semi-infinite, one-dimensional
tight binding model:

HL =
∑

α

{−VLα
∑

〈RαR′α〉, σ
Rα,R′α∈Lα

a†RασaR′ασ + wBLα (t)
∑

Rα, σ
Rα∈Lα

n̂Rασ}. (2.3)

The coupling, HLC , describes hopping between the central region and the leads,

HLC =
∑

α

{−VLαC
∑

〈RαR′〉, σ
Rα∈Lα,R′∈C

a†RασaR′σ}+ h.c. (2.4)

Here the hopping parameter, VLα , and the bias wBLα , in the α-th lead as well
as the coupling to the central region, VLαC are similarly in units of V . The
biases can have any shape in time but are restricted to be the same on all sites
for a given lead.6

due to the detailed analysis provided by Hubbard, the model is universally referred to as the
Hubbard model.

4These sites may represent localised d- or f-orbitals in atoms, coupled quantum dots or
traps in an optical lattice, etc.

5In its original form, the model did not include any time-dependent fields and considered
only positive U :s.

6The reason for having a bias uniform in space is that this greatly simplifies the treatment.
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Time-dependent many-body
perturbation theory out of
equilibrium

According to the laws of quantum mechanics, a system is completely deter-
mined by its wave function, Ψ. This means that if one possesses the wave
function one has the full knowledge of all the possible physical properties of
the system. The equation which governs the wave function, for a given Hamil-
tonian H, is the so-called Schrödinger1 equation [27]:

i~∂tΨ = HΨ. (3.1)

When looking at equation 3.1 the path to follow seems clear: first one finds the
Hamiltonian of the system, then one solves the Schrödinger equation and then
finally one finds all the physical properties one is interested in. True but not
true... The problem is that for any realistic system, the Schrödinger equation
can simply not be solved, and furthermore, even if one had the full many-
body wave function it would essentially be impossible to access the physical
properties. The question of how to treat an interacting system is called the
many-body problem and has attracted an enormous attention in the last five
decades from the condensed matter community.

The reason why the Schrödinger equation can not be solved, and no phys-
ical properties extracted, for any realistic system, where there are typically
1023 particles,2 is that the wave function is just too large. For a system with
N particles, the wave function depends on N coordinates, where each coordi-
nate contains space and spin variables. Non-interacting systems are relatively
simple to treat as they are represented by simple Slater determinants, which
are of single-particle nature. When the particles do interact, however, the wave

1This is the case when the relativistic effects can be neglected. The equation which
determines the relativistic wave function is the so-called Dirac equation.

2In fact it impossible to solve equation 3.1 even for some few hundreds of particles.
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function becomes much more intricate and the phase space grows exponentially
with the system size.3

In actual experiments one is normally interested in few-body correlations
and therefore an attractive alternative to finding the many-body wave function
is to consider the n-particle Green’s function.4 The n-particle Green’s function
is, contrary to the full many-body wave function, designed to explicitly yield
the n-particle correlations. In particular the single-particle Green’s function,5

which describes a sudden addition or removal of a particle, gives important
quantities such as the density, the currents and total energy.

The main advantage6 of the Green’s function is that it depends only on two
coordinates, where these coordinates include spin, space and time. An other
advantage is that when one possesses the Green’s function it is very simple to
obtain the corresponding physical quantities. A word of caution: finding the
exact Green’s function is as hard as solving the original Schrödinger equation.
It is, however, much easier to find approximations for the Green’s function.

The many-body perturbation theory (MBPT) is, as the name suggests, an
approximate and perturbative methodology which attempts to describe the
behavior of systems consisting of interacting particles. It is very convenient
to formulate the MBPT in terms of the Green’s function.7 This is done by
considering the integral equation to which the Green’s function is the solution,
the so-called the Dyson equation. The kernel of the Dyson equation is called
the self energy and determines the Green’s through self-consistency. The aim of
MBPT is to construct approximations of the self energy based on a perturbative
expansion in terms of the interaction strength. This expansion is generally not
a simple order by order series in the interaction strength but rather, as will
be seen in section 3.6, of partial sums to infinite order. This is done in a
systematic way by using the Wick’s theorem and Feynman diagrams [3] or,
alternatively, by the Schwinger functional derivative technique [29]. Originally
MBPT was developed for ground states. Later, Matsubara [30] generalised it to
equilibrium ensembles and Baym, Kadanoff [2, 31, 32] and Keldysh [1] showed
how the technique could be generalised to time-dependent phenomena.

There are many different ways of finding the ground-state or equilibrium
Green’s function by solving the Dyson equation. To determine the time-
dependent Green’s function, however, one needs to use the Keldysh formalism
[1] and solve the Kadanoff-Baym equations [2] i.e. the equations of motion of

3The phase space of the non-interacting wave function also increases exponentially with
the system size but does so in a simple way as it is separable.

4Typically one is only interested in the one- or two-particle Green’s function.
5Henceforth, “Green’s function” will denote the single-particle Green’s function, if not

stated otherwise.
6As mentioned in the introduction, although if the Green’s function is a great simplifica-

tion with respect to the many-body wave function, it is still only possible to determine, even
approximately, for very simple systems.

7Actually MBPT can be used without introducing the Green’s function, as in, e.g. [28].
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the Green’s function.
There is a class of many-body approximations (MBA:s) called the conserv-

ing approximations [32], which guarantee that important quantities like the
total energy or the number of particles are conserved when the system is sub-
ject to an external field. The use of conserving approximations when dealing
with real-time evolution is of great importance as the violation of the conser-
vation laws would compromise the results.

This chapter is structured as follows: The single-particle Green’s function,
the Keldysh contour and the general Dyson equation will be introduced in
section 3.1, the equilibrium Dyson equation will be discussed in section 3.2,
the Kadanoff-Baym equations will be described in section 3.3, how to embed
an interacting region into a non-interacting one is examined in section 3.4, the
topic of conserving many-body approximations is approached in section 3.5
and finally four specific MBA:s, namely the Hartree-Fock, the second Born,
the GW and T -matrix approximations, will be presented in section 3.6.

3.1 Green’s functions

It is not really possible to point out a specific work in which the Green’s func-
tions an other field theoretical methods were introduced in condensed matter
physics. For an early review see, e.g. [33].

As already mentioned, the Green’s function, G, does not provide us with full
knowledge of the system but it does give access to important quantities such as
densities, currents, excitation energies of a system with one added or removed
particle as well as the total energy. There are many ways of introducing the
Green’s function. The way to motivate the definition of the Green’s function
in this thesis is to consider the time-dependent expectation value of a single-
particle operator in the grand canonical ensemble.

3.1.1 Definition of the single-particle Green’s function

One important aim of the single-particle Green’s function, G, is to obtain
the expectation value of a single-particle operator Ô. The time-dependent
observable is:

O (t) =
〈

Ψ (t)
∣∣∣Ô
∣∣∣Ψ (t)

〉
=
〈

Ψ (0)
∣∣∣Û (0, t) ÔÛ (t, 0)

∣∣∣Ψ (0)
〉

=
〈
ÔH

〉
. (3.2)

Here, ÔH , is the operator in the Heisenberg picture and Ψ (0) is the initial,
equilibrium wave function.8 To evaluate the operators in the grand canonical

8Note that in equation 3.2 we choose the initial time to be zero. This is convenient but
obviously completely arbitrary.
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ensemble9 we write,

O (t) = Tr
{
ρ̂0ÔH

}
, (3.3)

where

ρ̂0 =
e−β(Ĥ−µN̂)

Tr
{
e−β(Ĥ−µN̂)

} . (3.4)

Here Tr indicates trace, 1/β is the temperature,10 µ is the chemical potential
and N̂ is the particle number operator.

If we now look at the Boltzmann factor, e−βĤ , we realise that it actually
has the same form as an evolution operator in imaginary time, thus:

ρ̂0 = eµN̂ · Û (−iβ, 0)

Tr
{
eµN̂ Û (−iβ, 0)

} . (3.5)

By using the translational invariance in time, Û (−iβ, 0) = Û (−iβ/2, iβ/2),
and the cyclic property of the trace, the final expression for the time-dependent
observable becomes:

O (t) =
Tr
{
eµN̂ Û (−iβ/2, 0) Û (0, t) ÔÛ (t, 0) Û (0, iβ/2)

}

Tr
{
eµN̂ Û (−iβ/2, iβ/2)

} (3.6)

The above expression can be interpreted as follows: first we evolve the system
from iβ/2 to 0, then from 0 to t, then we perform the measurement with Ô,
then we evolve back from t to 0 and finally from 0 to −iβ/2. At this point it
becomes natural to introduce the Keldysh contour,11 see Fig. 3.1.

We now define the single-particle Green’s function as,

G (r1z1, r2z2) = −i
Tr
{
eµN̂Tγ

[
Û (−iβ/2, 0) ψ̂H (r1, z1) ψ̂†H (r2, z2) Û (0, iβ/2)

]}

Tr
{
eµN̂ Û (−iβ/2, iβ/2)

} .

(3.7)
Here the time argument, z, lies on the Keldysh contour and may be either real,
t, or imaginary, iτ . Tγ is the Keldysh path ordering operator, i.e. it orders
the field operators, ψH , according to the Keldysh contour in Fig. 3.1. This
path ordering of the operators is a prerequisite for using the diagram technique

9The careful reader will realise that in the following scheme, the contact with the bath is
strictly broken once a perturbing field is switched on at t=0.

10We use natural units (kB = ~ = 1).
11Note that the contour in Fig. 3.1 is not the traditional one. The use of the contour in

Fig. 3.1 is numerically favorable as discussed in paper II.
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Figure 3.1: Keldysh contour.

which will be discussed in section 3.6. The time-dependent observable can now
readily be found by:

O (z) = −iTr
{
Ô (z)G

(
z, z+

)}
. (3.8)

Apart from the expectation values of all single-particle operators, the Green’s
function gives the excitation energies of a system if one adds or removes a
particle. In addition one can obtain certain two-body correlation functions
such as the total energy and the double occupancy, 〈n̂R↑n̂R↓〉, as discussed
in paper II and IV respectively. The double occupancy can in turn be used
to evaluate the entanglement entropy, which is a key quantity in the field of
quantum information, see paper IV.

3.1.2 Physical interpretation

By inspecting the definition of the Green’s function in Eq. 3.7 we see that for
z1 > z2 the ψ̂†H (r2, z2) creates a particle at the point r2 at time z2. The system
with the extra particle then propagates to r1 at time z1. The Green’s function
therefore gives the probability amplitude that a particle added at r2 at time z2
is found at r1 at time z1. Similarly, for z1 < z2 the Green’s function describes
the propagation of a hole.

3.1.3 Dyson equation

To shed better light on the underlying structure in what follows we write the
Green’s function in a short-hand notation:

G(12) = −i
〈
Tγ
[
ψH(1)ψ†H(2)

]〉
. (3.9)
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Here 1 = r1σ1z1 represent all single-particle (space/spin) and time labels.
The Green’s function obeys an integral equation which is called the Dyson

equation,

G (12) = G0 (12) +
∫

γ

G0 (13) Σ (34)G (42) d34. (3.10)

Here the non-interacting Green’s function G0 defined by

(i∂z1 − h (1))G0 (12) = δ (12) , (3.11)

where h (z) is the non-interacting Hamiltonian. The kernel of the Dyson equa-
tion, Σ, is called the self energy and describes the effects of interactions and
embedding, as discussed in sections 3.3 and 3.4. The self energy, which is
non-local in space and time, is a functional of the Green’s function, Σ [G], and
therefore the Dyson equation must be solved self-consistently.12

3.2 Equilibrium state

In equilibrium all quantities depend only on z = z2 − z1 and the equations
are then most easily handled in the frequency domain, in terms of Fourier
transformed quantities. The entire ground-state calculation can be performed
using real times13 and the resulting Dyson equation becomes

G (ε) = G0 (ε) +G0 (ε) Σ (ε)G (ε) , (3.12)

where ε is a real frequency. In Fourier space the Dyson equation becomes a
simple matrix equation in the single-particle basis, which can be solved directly
by inversion.

In this thesis we will work in the zero temperature limit and use the corre-
lated ground state as the initial, state for the time evolution [4].

3.3 Kadanoff-Baym equations

For a system which changes in time, the Green’s function becomes intrinsi-
cally dependent on two times and the use of the Keldysh formalism becomes
inevitable.

The generic Keldysh propagator, K, has the following structure:

K (12) = Kδ (12) δ (z1, z2) + Θ (12)K> (12) + Θ (21)K< (12) , (3.13)

12The self energy in approximate treatments is generally also a functional of the Green’s
function and non-local in space and time.

13The use of real times and then going to Fourier space is only one of many possible ways
of solving the Dyson equation.
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where the greater, >, and lesser, <, propagators refer to the electron and hole
part respectively and the Kδ is the time-local part.14 For real times we may
also introduce a retarded

KR (12) = Kδ (12) δ (t1, t2) + Θ (t1, t2)
[
K> (12)−K< (12)

]
, (3.14)

and advanced propagators,

KA (12) = Kδ (12) δ (t1, t2)−Θ (t2, t1)
[
K> (12)−K< (12)

]
. (3.15)

When both time arguments are imaginary, the Keldysh function reduces to the
corresponding equilibrium Matsubara function:

KM (τ − τ ′) = −iK (−iτ,−iτ ′) . (3.16)

In Eq. (3.13), Θ (12) should be understood as Θ (z1, z2), i.e. a generalised
Heaviside function for z1, z2 on the path ordered Keldysh contour. It is worth
noting that when both time arguments lie on the imaginary (Matsubara) axis,
the quantities represent the initial state, taken to be the equilibrium ensemble,
as mentioned in the previous section, which depend only on the time differences.

From the definition of the single-particle Green’s function and using
Schrödinger equation for the field operators we can write the equations of mo-
tion of the Green’s function:

(i∂z1 − h (1))G (12) = δ (12)− i
∫

γ

u
(
1+3

)
GII

(
133+2

)
d3, (3.17)

(−i∂z2 − h (2))G (12) = δ (12)− i
∫

γ

u
(
2+3

)
GII

(
133+2

)
d3. (3.18)

Here u (12) = u (12) δ (z1z2) is the bare interaction, 1+ = r1σ1z
+
1 and GII is

the two-particle Green’s function. Similarly, the equations of motion of the
two-particle Green’s function involve the three-particle Green’s function, and
so forth.15 To close the equations we define the self energy Σ in Eq. 3.10 by:

∫

γ

Σ (13)G (32) d3 = −i
∫

γ

u
(
1+3

)
GII

(
133+2

)
d3 (3.19)

∫

γ

G (13) Σ (32) d3 = −i
∫

γ

u
(
2+3

)
GII

(
133+2

)
d3. (3.20)

14For the K:s considered in this thesis, only Σ and W have time-local parts which are non
zero.

15In fact this hierarchy can be used to generate approximations by, e.g. factorizing the
three-particle Green’s function in terms of one- and two-particle Green’s function as done in
[34].
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The resulting equations of motion of the Green’s function are called the
Kadanoff-Baym equations (KBE),

(i∂z1 − h (1))G (12) = δ (12) +
∫

γ

Σ (13)G (32) d3, (3.21)

(−i∂z2 − h (2))G (12) = δ (12) +
∫

γ

G (13) Σ (32) d3. (3.22)

To simplify the transparency of the KBE we separate out the time-local
Hartree-Fock self energy and include it into the single-particle Hamiltonian,

Σ = ΣHF + Σc/e, h = h+ ΣHF . (3.23)

The time non-local contribution, Σc/e, consist of two terms:

Σc/e = Σcorr + Σemb. (3.24)

The first describes correlations and the second is the embedding (lead) self en-
ergy, which will be discussed in the next section. Specialising on the derivative
of the first argument with both arguments real we can then break the KBE
into:

i∂t1G
≶ (t1, t2) = h (t1)G≶ (t1, t2) + I

≶
1 (t1, t2) , (3.25)

where

I
≶
1 (t1, t2) =

∫ t1

0

dt
[
ΣRc/e

(
t1, t

)
G≶(t, t2

)
+ Σ≶

c/e

(
t1, t

)
GA
(
t, t2

)]

+
1
i

∫ β/2

0

dτ
[
Σ<c/e(t1,−iτ)G>(−iτ , t2) + Σ>c/e(t1, iτ)G<(iτ , t2)

]
, (3.26)

is a collision integral and describes the correlation and lead effects. The first
integral represents the contribution of the real axis, i.e. the memory from the
time evolution. The second integral embodies the effect of the correlations and
embedding of the initial state.

3.4 Embedding procedure

For the scope of this thesis, one of the main advantages of the Green’s function
technique is that it is possible to include non-interacting leads,16 with a space-
homogeneous but time-dependent bias, in an exact way through an embedding

16In general the embedding scheme can be used to treat any non-interacting region. An
other example of embedding is presented in section. 4.3, where a single impurity is coupled
to a non-interacting bath.
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procedure.17 The idea is that one separates the system into a central (possibly
interacting) region and some non-interacting leads which are then projected
into the central region. The net result is that the leads come in effectively as
an embedding self energy [36, 37, 15, 16],

Σemb(z1, z2) =
∑

α

|VLαC |2gLα (z1, z2) . (3.27)

Here gLα (z1, z2) is the non-interacting Green’s function of the uncontacted,
possibly biased, lead Lα.18

3.5 Conserving approximations

The Green’s function based formulations for ground-state and excitation prop-
erties in terms of the one-particle Green’s function and other few-particle cor-
relation functions are formally exact, and so are the Kadanoff-Baym equations.
However, in order to obtain the self-energy and other key quantities in practice,
one has to resort to approximations. A large class of approximations within
MBPT involves infinite partial summations or some clever decoupling scheme
of the equations of motion. It is then very important to have some guiding
principles in order to avoid unphysical results.

In the late fifties and early sixties, Luttinger, Ward, Nozières and others
[38, 39, 40] provided microscopic justification of Landau’s Fermi-liquid theory
by infinite-order perturbation theory and could verify the existence of a sharp
Fermi surface enclosing the correct number of particles as well as the conser-
vation of particles, momentum, etc. An important ingredient in these works
was the discovery that the exact self energy Σ can be considered a functional
of the exact G, and that this functional has a vanishing curl. This means that
the exact Σ is the gradient of some scalar functional Φ[G],

Σ (12) =
δΦ[G]
δG (21)

. (3.28)

Later, Kadanoff and Baym could identify some key properties that approximate
self energies must fulfil in order to have important macroscopic conservations
laws fulfilled, such as the conservation of particles, energy, and momentum,
[32, 31]. In his 1962 paper, Baym [32] found that the necessary and suffi-
cient condition for guaranteeing the conservation laws is that the approximate
self energy must fulfil the same functional relationship in Eq. (3.28) as the

17Similar embedding schemes can be used in wave function based approaches such as in
time-dependent density functional theory [35].

18Eq. 3.27 stays the same if the bias is space dependent but the calculation of gLα (z1, z2)
becomes much more complicated.
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exact one. Different approximate generating functionals Φ generate different
conserving approximations.

The conserving aspects play a less prominent role in equilibrium and might
actually deteriorate the quality of some physical properties [41]. One example
is the well-known GW approximation. This is a conserving approximation
provided that Σ is computed self-consistently. However, in free-electron-like
metals and in the electron gas, the already poor description of satellites is
much worsened [42], and there is also evidence that the quasi-particle bands
in semiconductors deteriorate [43]. If the quantity of interest is the spectral
function one should probably use other summation criteria. These matters have
been discussed, e.g. in [44, 45]. Out of equilibrium, however, it is essential to
use conserving approximations, as an uncontrolled violation of the conservation
laws would put serious limitations on the possible external fields.

3.6 Many-body approximations

The schemes we will consider in this thesis to calculate the Green’s function
are based on conserving MBPT. Loosely speaking, such schemes, can be said
to be perturbative in character. However, at the same time it should be kept in
mind that in conserving approximations one works with the self-consistent G,
which brings in the interaction to all orders already in the simple Hartree-Fock
approximation.19

An advantage of MBPT is its close relation to the Keldysh formalism which
allows us to treat systems which are inhomogeneous both in space and in time.
It is also possible to construct approximations of increasing degree of complexity
in a systematic way, although the difficulties rapidly increase as more vertex
corrections are added.

The self energy admits expansions in terms of the Green’s function and
the bare interaction [3, 46]. These terms become rapidly very intricate and
difficult to handle. The use of the diagram technique,20 where the terms in the
perturbation series are represented by diagrams, becomes decisive.

Order by order perturbation theory leads to expansions in the non-
interacting Green’s function G0 and the bare interaction u. Via infinite partial
summations this may be converted into expansions involving the the interact-
ing Green’s function G and the bare u which defines a functional relationship
Σ[G, u] used in conserving approximations. The corresponding diagrams are
usually called skeletonic and are fewer than those which occur in expansions
with respect to G0. In systems with long-range (Coulomb) interaction it is ad-
vantageous to perform yet another partial summation with respect to screening,

19This obviously also applies to the other MBA:s.
20In the late forties Richard Feynman revolutionised many-body physics, by introducing

the diagram technique [47] which made the whole treatment immensely simpler.
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and this leads to an expansion in terms of G and the screened interaction W
and a functional relationship Σ[G,W ]. The GW approximation is the simplest
approximation of this latter kind.

We will consider two types of MBA:s. In the first type, all diagrams with a
given maximal number of interaction vertices in Σ[G, u] are kept. In the second
type, additional partial summations are performed, usually involving simple
geometrical sums which lead to Dyson-like equations for auxiliary propagators.
The Hartree-Fock and second Born approximations (HFA and BA respectively)
correspond to the first type while the GW and T -matrix approximations (GWA
and TMA respectively) are of the second type. In the HFA and BA the self
energy can be obtained directly from the Green’s function, whereas in the case
of GWA or TMA the Dyson equations for the auxiliary propagators (W in case
of GWA and the T -matrix in case of TMA) must be solved simultaneously with
the Kadanoff-Baym equations for the Green’s function.

The rather simple models that we use do not do justice to all the MBA:s that
we consider. In our models, the time-dependent Hartree-Fock approximation is
trivial, but it has played an important role for deepening our understanding of,
e.g. absorption spectra of atoms and molecules [48]. The GWA [49] has been
extremely successful in describing the quasi-particle bands in sp-bonded materi-
als, in particular it has essentially solved the longstanding problem of obtaining
correct band gaps in semiconductors and insulators [50, 51]. In Coulomb sys-
tems, expansions in the bare interaction u diverge beyond first order as, e.g. in
second Born, and one is more or less forced to expand in the screened interac-
tion W . However, the effects of long-range screening has been encapsulated in
the local model interaction of the Hubbard model, and the GWA then becomes
less interesting. The TMA [52, 53, 54], on the other hand, was designed to treat
systems with short-range interaction and is the most relevant approximation
for our models.

3.6.1 Hartree-Fock approximation

The simplest MBA is the Hartree approximation where the self energy consists
only of the direct first-order term; the first diagram in Fig. 3.2. The Hartree-
Fock approximation also incorporates the first-order exchange diagram; the
second diagram in Fig. 3.2. Including the exchange term, among other things,

+

Figure 3.2: Hartree-Fock self energy.
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cancels the self interaction in the Hartree approximation. Both these approx-
imations have self energies which are local in time and do not involve any
correlations.

3.6.2 Second Born approximation

The simplest MBA which incorporates correlation effects is the direct Born,
where the self energy contains, in addition to the Hartree-Fock terms, also the
direct second-order diagram; the third diagram in Fig. 3.3. The second Born
approximation also includes the second-order exchange diagram; the fourth
diagram in Fig. 3.3.

+ ++

Figure 3.3: Second born self energy.

3.6.3 GW approximation

The GW approximation, see Fig. 3.4, consists in taking all diagrams which
include consecutive electron-hole scatterings, the so called bubble diagrams,
and adding them up to infinite order [49].

+ + ++ + ...

Figure 3.4: GW self energy.

Equivalently the GWA corresponds to keeping the direct first-order term
of the expansion of self energy in terms of the screened interaction W . The
screened interaction satisfies a corresponding Dyson equation,

W (12) = u (12) +
∫
u (13)P (34)W (42) d34, (3.29)

where u (12) = u (12) δ (z1z2) is the bare interaction and the polarisation prop-
agator, P , is given by

P (12) = −iG (12)G (21) . (3.30)
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The GW self energy finally becomes:

ΣGW (12) = ΣH + iG (12)W (12) . (3.31)

3.6.4 T -matrix approximation

In the T-matrix approximation one builds the T-matrix, T , by adding all
electron-electron and hole-hole scatterings [52, 53], the so called the ladder
diagrams, see Fig. 3.5.

+ + + + ...

Figure 3.5: T-matrix self energy.

The Dyson equation of the T is,

T (12) = φ (12)−
∫
φ (13)u (34)T (42) d34, (3.32)

where the so-called irreducible vertex φ is defined as

φ (12) = −iG (12)G (12) . (3.33)

The T-matrix self energy becomes:

ΣTM (12)=ΣHF + i

∫
u (13)G (43)T (34)u (42) d34. (3.34)
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4

Other many-body methods

Many-body perturbation theory is only one among a wide variety of methods to
treat systems with interacting particles. In this thesis we will also consider three
other methods in order to compare and contrast to many-body perturbation
theory. In section 4.1 we will discuss exact diagonalisation, in section 4.2 we will
present density functional theory and in section 4.3 we will introduce dynamical
mean field theory.

4.1 Exact diagonalisation

Exact diagonalisation or configuration interaction [20] is a numerically exact
method where the Hamiltonian is expanded in a given basis and then diago-
nalised. From the diagonalised Hamiltonian one then obtains the wave function
of all the eigenstates, in particular the ground state, which then give access to
all observables. The method is exact in the sense that if one used a complete
set of basis states it would yield the exact solution. In practice, of course, one
has to truncate the basis space and the results are therefore only approximate.
The numerical errors are, however, quite controllable and one can get an arbi-
trarily high accuracy. The time evolution is made with the Lanczos method1

[55], where the Hamiltonian is represented in a basis in which it is tridiagonal.
In this basis it is much easier to diagonalise the Hamiltonian and to make a
systematic cutoff of basis states.

The advantages of exact diagonalisation is that it is very general and can
deal with any interaction and dimensionality. The main drawback is that one
can treat only systems with very few particles.2 In this thesis we use the exact
diagonalisation method to benchmark the approximate results.

1The Lanczos method is only one of many to perform the time evolution, for a detailed
review see, e.g. [56].

2For the systems we consider we can treat up to 18 sites depending on the filling.
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4.2 Density functional theory

Density functional theory (DFT) is one of the most used methodologies in solid
state physics and quantum chemistry to study real many-body systems mainly
due to its relatively high accuracy and rather simple numerical implementa-
tion. The main idea is that one uses the density profile, n(r), as the basic
variable to obtain some important properties of a system. This is an enormous
simplification since for a spin-less N -particle system, the density depends only
on three coordinates while the many-body wave function depends on 3N .

The modern form of DFT was first formulated by Hohenberg and Kohn in
1964 [57] and shortly afterward generalised to equilibrium systems by Mermin
[58] and to spin-polarised systems by von Barth and Hedin [59]. In 1984,
Runge and Gross [22] laid the foundation of the extension to time-dependent
phenomena and thereby to excited states, the so-called time-dependent density
functional theory (TDDFT).

The key quantity in (TD)DFT is the exchange-correlation energy, Exc. This
quantity, which is exactly defined, is generally not known and one needs to rely
on approximations. Peukert [60] outline possibilities to develop approximations
within TDDFT itelself, but generally the approximations in common use have
been developed using MBPT or other methods. Fortunately, the simple local
density approximation (LDA) [61] works much better than originally expected
and other improved approximations have been developed over the years. For a
detailed review see, e.g. [62, 63, 64].

4.2.1 Hohenberg-Kohn theorem

In density-functional theory one considers systems with a given interaction
u(r − r′) put in different environments described by different scalar one-body
potentials v(r). The ground-state energy E0 and the corresponding density
profile n(r) will then be functionals of v(r), E0 ≡ E0[v], etc. The Hohenberg-
Kohn theorem [57] states that if the ground-state densities n1(r) and n2(r) of
two systems (1) and (2) are the same, the corresponding potentials agree up to
a constant, v1(r) = v2(r) + C. The mapping v → n is thus invertible up to a
constant, and one can use the density as the fundamental variable. Hohenberg
and Kohn defined the basic density functional as the Legendre transform

F [n] = E0[v]−
∫

δE0

δv(r)
v(r)d3r = E0[v[n]]−

∫
n(r)v(r)d3r. (4.1)

Here we have used that, from first order perturbation theory, δE0/δv(r) = n(r).
It should be noted that different densities in F [n] corresponds to different
systems and not to different densities that a given system might have.

Hohenberg and Kohn also formulated a variational principle and showed
that one can obtain the ground-state energy and density by minimising the
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functional
Ev[n] = F [n] +

∫
n(r)v(r)d3r (4.2)

with respect to n for a fixed potential v. One can thus obtain the ground-state
properties of any system by working solely with the density and functionals of
the density without referring to the underlying many-body wave function.

4.2.2 The Kohn-Sham scheme

Up to this point one can say that Hohenberg and Kohn provided a much more
rigorous way to use the density as the basic variable than had been possible in
earlier works [65, 66, 67]. An important step that carried the new formulation
far beyond the earlier theories was the ingenious method by Kohn and Sham
[68] that allows for an exact treatment of the kinetic energy3 via a fictitious
independent-electron system. In this way only the relatively small terms from
exchange and correlation need to be approximated, and already in the sim-
plest LDA treatment the essentially correct shell structure of atoms emerged,
something that earlier theories completely failed to describe.

To derive the Kohn-Sham equations we start by rewriting Eq. 4.1 by sepa-
rating out the Hartree and the non-interacting terms,

F [n] = T0[n] + EH [n] + Exc[n]. (4.3)

Here T0 is the kinetic energy functional (or F functional) for independent par-
ticles, EH [n] = 1

2

∫
u(r− r′)n(r)n(r′)d3rd3r′ is the Hartree energy, and Exc is

the exchange-correlation energy functional, i.e. the remaining part of F [n].
In order to find the minimum energy for a fixed number of particles N we

introduce a Lagrange parameter µ and minimise Ev[n]−µN . This leads to the
Euler equation

µ =
δEv[n]
δn(r)

=
δT0[n]
δn(r)

+
δEH [n]
δn(r)

+
δExc[n]
δn(r)

+
δ
∫
vn

δn(r)
(4.4)

=
δT0[n]
δn(r)

+ vH(r) + vxc(r) + v(r). (4.5)

If we instead had considered independent particles in a potential Veff (r) we
would minimise T0 +

∫
Veffn− µN , which leads to

µ =
δT0[n]
δn(r)

+ Veff (r). (4.6)

However, for independent particles we can obtain T0 directly via the one-
particle orbitals ϕi for any Veff without referring to its unknown functional

3Strictly speaking only the independent-electron part is treated exactly.
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dependence on n:

T0 =
occ∑

i

〈ϕi|t̂|ϕi〉. (4.7)

Here, t̂ = − 1
2∇2, is the single-particle kinetic operator. In this way we obtain

T0 for the density n[Veff ]. By varying Veff until the n[Veff ] agrees with a
given prescribed density n we can construct T0[n].4 If we now choose Veff =
v+vH+vxc we see that we can minimise Ev[n]−µN by solving the one-particle
equations

(
t̂+ v + vH + vxc

)
ϕi = eiϕi (4.8)

self-consistently, where the density at each iteration is

n(r) =
occ∑

i

|ϕi(r)|2. (4.9)

It is worth mentioning that the orbitals ϕi and corresponding eigenvalues ei
in general have no clear physical meaning. When self-consistency has been
achieved, T0 has been evaluated exactly and the ground-state energy and den-
sity have been obtained. If the exact Exc were known the scheme would be
exact, but in practice one has of course to use approximations. However, one
is approximating only a relatively small contribution to the density functional
F [n].

The above Kohn-Sham one-particle scheme assumes that the interacting
density n is also the density of an independent-particle system in some other
potential Veff . Such densities are usually referred to as v0-representable. It is
in general very difficult to prove v0-representability, but a relatively large class
of atoms and small molecules have been shown via direct computer experiments
to have v0-representable densities.

4.2.3 Local density approximation

The functional Exc describes in principle the ground-state properties of all
systems in nature and is of course only approximately known. The simplest
approximation is the local density approximation (LDA) where the system is
considered to be locally homogeneous and Exc is approximated by the super-
position

Exc[n] ≈ ELDAxc [n] =
∫
n(r)εxc(n(r))d3r. (4.10)

4This is actually the only known procedure for constructing T0 as functional of n.
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Here, εxc(n0) is the exchange-correlation energy per particle of the homoge-
neous system with density n0 in a constant potential v0,

Nεxc(n0) = Etot − T0 − EH −N
∫
v0d

3r. (4.11)

The exchange-correlation potential is then found by taking the functional
derivative with respect to the density, which in this case reduces to a derivative
with respect to the density at point r,

vLDAxc (r) =
(
d(nεxc(n))

dn

)

n=n(r)

. (4.12)

The LDA evidently becomes exact in the limit of slowly varying densities,
provided that the data for the underlying homogeneous system are known. In
our applications to the 3D Hubbard model, these data were obtained from
dynamical mean field theory [69].

4.2.4 Time-dependent density functional theory

The time-dependent density functional theory (TDDFT) is the extension of
the ground-state DFT to treat excited states and systems out of equilibrium
[70]. Similar to ground state DFT, TDDFT is based on a uniqueness theorem
which was first proved by Runge and Gross [22] and has since then been given
various alternative proofs [71, 72].

The uniqueness theorem concerns systems which are in a given initial state
Ψ, which is not necessarily a ground-state, and evolve under a time-dependent
one-body external potential, v(r, t). The theorem then states that if two sys-
tems (1) and (2) have the same initial state Ψ, and a later time have den-
sity profiles n1(r, t) and n2(r, t) which coincides, then the two corresponding
external potentials must be the same up to a time-dependent constant, i.e.
v1(r, t) = v2(r, t) + C(t). In other words, this theorem establishes an invert-
ible mapping between the time-dependent potentials and the corresponding
time-dependent densities.

In analogy to ground state DFT we can now construct a density functional
F [n] and an action functional,

Ev[n] = F [n] +
∫
n(r, t)v(r, t)d3rdt. (4.13)

The time-dependent densities are then found as stationary trajectories of this
action functional. The fact that the functional is only stationary in TDDFT
rather than minimal as in ground state DFT makes the time-dependent theory
considerably more complicated.
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The corresponding exchange-correlation potential is now much more com-
plex object as it incorporates memory effects by depending on the densities
at all points in space at all previous times. The simplest approximation in
TDDFT is the adiabatic local density approximation (ALDA), where the vxc
is taken to be the ground-state one for a given instantaneous density, i.e.
vxc[r, t;n] = vLDAxc (n(r, t)). It is the ALDA which will be used in this the-
sis.

4.2.5 Density functional theory in lattice models

In these thesis we have applied DFT and TDDFT to discrete Hubbard lattice
models outlined in section 2. The hopping then plays the role of the single-
particle kinetic energy −∇2

2 , the local occupancies n̂R =
∑
σ a
†
RσaRσ the role

of the density n̂(r), and the on-site energy parameter wR the role of the local
potential v(r).

As far as the ground-state theory is concerned, the basic Hohenberg-Kohn
and Kohn-Sham theorems go through essentially unchanged [73], and local-
density functionals (i.e. exchange-correlation energies for homogeneous Hub-
bard models) have been obtained and parametrised for the 1D Hubbard model
[74, 75], and more recently for the 3D Hubbard model [69].

A TDDFT approach to the real-time dynamics of the Hubbard model out of
equilibrium was initially considered in [76]. In this work, the exact many-body
non-equilibrium dynamics of small 1D Hubbard chains of different lengths and
particle densities was performed, and from it, via a reverse-engineering proce-
dure, the exact, time-dependent exchange-correlation potential was obtained,
by propagating the time-dependent Kohn-Sham equations. In [76], exact re-
sults for the density and the exchange-correlation potential were compared to
those from an approximate vxc obtained within the ALDA, and an analysis of
non-local adiabatic effects in vxc was carried out. In addition, an inequality
was provided as a necessary condition for v0-representability.

There are various works in which lattice TDDFT has been used very suc-
cessfully [77, 78, 69]. However, it has recently been found that the Runge-Gross
uniqueness proof along the lines of the continuous case does not hold [79, 80].
This observation corroborates the fact that, for lattice Hamiltonians, one can
actually find examples which contradict the uniqueness of the correspondence
between densities and potentials. If one adopts the bond current as the basic
variable, a one-to-one mapping can be established [79] betweeen current densi-
ties and Peierls phases [81, 82] of the bond-hopping terms. Thus, care must be
exerted in using lattice TDDFT when dealing with issues for which the unique-
ness of the density-potential mapping is relevant. In the works of this thesis,
the v0-representability has been demonstrated, but the exchange-correlation
potentials may not be unique. For further discussion see, e.g. paper III.
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4.3 Dynamical mean field theory

Dynamical mean field theory (DMFT) is a non-perturbative approximation for
homogeneous lattice models [84]. This approach becomes exact in the infinite
dimension limit [21] and being non-perturbative, it implies that one can, in
practice, treat highly correlated systems not accessible to MBPT.

The essence of equilibrium DMFT is that one neglects the momentum de-
pendence of the self energy which results in a frequency-dependent self energy
which is local in space. The problem can not be solved directly but one can
use a similar trick as in DFT: use an auxiliary system where one knows how
to proceed. In DMFT one maps [85] the original lattice into an other system
which automatically has a local, frequency-dependent self energy, namely a
single impurity embedded in a non-interacting bath,5 the so-called Anderson
impurity model (AIM) [86],

HAIM =
∑

σ

ε0n0σ + Un0↑n0↓ +
∑

νσ

ενnνσ +
∑

νσ

[
Vνc
†
0,σaν,σ + V †ν a

†
ν,σc0,σ

]
.

(4.14)
Here c and c† refer to the impurity, a and a† refer to the bath and the index
ν runs over all bath sites. The ε0 is the impurity on-site energy and U is the
interaction strength which is the same as in the original lattice. The εν are
the on-site energies of the bath and Vν are the hopping strengths between the
bath and the impurity. Both εν and Vν are effective parameters which are
determined from the original lattice.

The on-site Green’s function of the homogeneous lattice has the form

Glatt(ω) =
∫ ∞

−∞
dω′

ρ0(ω′)
ω − ω′ − Σlatt(ω′)

, (4.15)

where ω is a frequency, ρ0 is the density of states of the non-interacting system
and Σlatt is the lattice self energy taken to be momentum independent.

The impurity Green’s function is

Gimp(ω) =
1

ω − ε0 −∆(ω)− Σimp(ω)
, (4.16)

where

∆(ω) =
∑

ν

|Vν |2
ω − εν

, (4.17)

5The choice of mapping the lattice onto a single interacting impurity is arbitrary. The
main advantage of this particular mapping is that one can use all the machinery developed
to treat the famous Anderson model.
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is the embedding self energy of the bath and usually referred to as hybridisation
function.

The mapping between the original lattice and the Anderson model is done
self-consistently by requiring that the space-local part of the Green’s function
of the impurity model and that of the original lattice to be the same for the
same self energy:

Glatt = Gimp, (4.18)
Σlatt = Σimp. (4.19)

There are many different ways to handle the self consistency cycle6 but they
all based on a variation of the effective parameters of the bath.

When self-consistency is reached, we obtain the exchange-correlation poten-
tial from Eq. 4.11 and differentiating the EDMFT

xc with respect to the density.

6Examples of solvers are exact diagonalisation, quantum Montecarlo, numerical renormal-
isation group and density matrix renormalisation group.



Bibliography

[1] L. V. Keldysh, Zh. Eksp. Teor. Fiz. 47, 1515, (1964), [Sov. Phys. JETP
20, 1018 (1965)].

[2] L. P. Kadanoff and G. Baym, Quantum Statistical Mechanics (Benjamin,
New York, 1962).

[3] A. L. Fetter and J. D. Walecka, Quantum Theory of Many- Particle Sys-
tems, (McGraw-Hill, New York, 1971).

[4] P. Danielewicz, Ann, Physics 152, 239 (1984).

[5] See, for example, Progress in Nonequilibrium Green’s Functions III, J.
Phys. Conf. Ser. 35, edited by M. Bonitz and A. Filinov (2006).

[6] N. S. Wingreen, A.P. Jauho and Y. Meir, Phys. Rev. B 48, 8487 (1993).

[7] A.P. Jauho, N. S. Wingreen and Y. Meir, Phys. Rev. B 50, 5528 (1994).

[8] A.P. Jauho, in Reference [5], p. 313.

[9] G. Stefanucci, C.-O. Almbladh, Phys. Rev. B 69, 195318 (2004).

[10] N. E. Dahlen, R. van Leeuwen, and A. Stan in Reference [5], p. 340.

[11] K. S. Thygesen and A. Rubio, Phys. Rev. B 77, 115333 (2008).

[12] K. S. Thygesen, Phys. Rev. Lett. 100, 166804 (2008).

[13] P. Darancet, A. Ferretti, D. Mayou, V. Olevano Phys. Rev. B 75 , 075102
(2007).

[14] M. Galperin, A. Nitzan, M.A. Ratner, Phys. Rev. B 76, 035301 (2007).
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Part B

The papers





Summary of the papers

The aim of this thesis is to shed light on the possibilities and limitations of
time-dependent many-body perturbation theory. The strategy for this assess-
ment is to compare the MBPT results with two other methods, namely exact
diagonalisation and TDDFT, for simple Hubbard clusters. The conclusions of
this study can be separated into two different classes.
The first class deals with the varying performance of the approximations de-
pending on the interaction, the filling and the strength and adiabaticity of the
external field. These aspects can be summarised in that:

I The TMA is, among the tested MBA:s, the one which stands out the most
as its performance in the low density regime is very good, also for quite
strong interactions.

II Compared to the TDDFT approach, the MBA:s fail in describing the
strong interaction regime but they are, in particular the TMA, better in
treating non-adiabatic fields. This can be attributed to the fact that the
MBA:s are perturbative in character but do incorporate memory effects.

The second class of conclusions account for genuinely unphysical properties of
the perturbative MBA:s. These features can be summarised in that:

III The MBPT may not handle the phase space correctly. In particular the
KBE+MBPT give rise to a damped evolution in finite systems. In other
words, the finite phase space of the exact solution, which results in an
undamped motion, is misrepresented by an infinite one within MBPT.

IV There exists multiple steady and quasi steady states in the KBE+MBPT
evolution. That is, when the system evolves under a perturbation it reaches
a steady state which depends on how the external field is switched on. In an
isolated system the steady states are real. For weakly contacted systems,
these steady states are still reminiscent as long-lived metastable states.

V The positiveness condition of correlation functions may be violated. In
particular, among the examined MBA:s, positiveness is only guaranteed
in the TMA.
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Paper I

In paper I we treat short Hubbard chains out of equilibrium with KBE+MBPT,
within the HFA, the BA, the GWA and the TMA, and compare these results
with those from the exact solution. We find that among the different approx-
imations, the TMA yields the most accurate results, especially at low filling.
We also present the unphysical treatment of the phase space of the MBPT.
In the ground state this manifests itself as an infinite number of poles of the
spectral function (where the exact one has only a finite number) and in the
time dynamics it leads to a correlation-induced damping (not present in the
exact dynamics) and a broadened spectral function (whereas the exact one re-
mains discrete). We attribute this incorrect handling of the phase space to the
implicit inclusion of diagrams of all orders in a system which can accommo-
date only a finite number of particles. Moreover we show that the steady state
reached is not unique but depends on the history of the external field.

For this paper I have produced the codes for the KBE+MBPT evolution,
participated actively in the discussion and taken an important part in making
the article.

Paper II

In paper II we give a detailed description of the methodology we use for the
KBE+MBPT approach, both for treating the ground state and the time dy-
namics for clusters, isolated and coupled to semi-infinite non-interacting leads.
We study the spin-dependent treatment of GWA [1, 2] to decrease the self
interaction [3, 4] and see that even if it does improve the results, the GWA
is still much inferior to the TMA or the BA. We extract the corresponding
TDDFT exchange-correlation potentials of the different approximations via re-
verse engineering [5] and compare them to the exact one. Similarly to the
comparison of the time-dependent densities we see that the TMA exchange-
correlation potential is superior to the other approximations. We examine the
role of self-consistency in the ground-state spectral function and we observe
the well known fact that the spectral properties in general are worsened by
self-consistency [6, 7, 8]. We discuss the aspects of the correlation-induced
damping for finite and extended systems, where we find that the damping is
present in both cases and that it can completely dominate the time dynamics.
We examine the history dependence of the steady state where we see that there
exists multiple steady states when evolving a finite system while the extended
system may present multiple long-lived metastable states.

For this paper I have produced the codes for the KBE+MBPT evolution,
participated actively in the discussion and taken an important part in making
the article.
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Paper III

In paper III, which is an invited paper on a topical issue on TDDFT, we
give a review of two aspects of TDDFT from the perspective of lattice model
systems: the linear response approach and the adiabatic local density approx-
imation. We present results for the density response function of the 3D ho-
mogeneous Hubbard model, and point out a drawback of the linear response
scheme based on the linearised Sham-Schlüter equation. Finally we study
a small cubic cluster with one interacting impurity under the influence of
time-dependent fields by comparing the TDDFT+DMFT to the exact and
KBE+MBPT densities. In particular we contrast the non-perturbative na-
ture of TDDFT+DMFT to the history dependence of the KBE+MBPT. We
conclude that the TDDFT+DMFT method is much more suited to describe
strongly correlated systems while the KBE+MBPT approach is better in treat-
ing non adiabatic fields.

In this paper I performed the comparison of KBE+MBPT and
TDDFT+DMFT. I produced the codes for the KBE+MBPT evolution, par-
ticipated actively in the discussion and took a part in making the article.

Paper IV

In paper IV we propose a method of obtaining certain two-body correlations,
in particular the double occupancy, from the KBE [9]. We assess the perfor-
mance of the different approximations by comparing the approximate double
occupancies with the exact ones and find that the TMA is very good in the
low density regime. We show that the double occupancy may violate the pos-
itiveness condition [10] within the BA and the GWA while we prove that it is
manifestly positive in the TMA. As an application we study the transmission of
the local entanglement entropy [11, 12, 13, 14, 15, 16, 17, 18, 19, 20], calculated
within an adiabatic formulation, through an interacting impurity contacted to
two semi-infinite leads. We observe that the transmission of entanglement is
suppressed by interactions and can be manipulated by a current.

For this paper I have produced the codes for the KBE+MBPT evolution,
participated actively in the discussion and taken an important part in making
the article.
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Note on the numerical implementation

The numerical implementation of the KBE+MBPT evolution which is used in
all the four articles is based on three codes that I have written from scratch.
The first and second codes are devoted to the determination of the ground-state
properties for clusters, isolated and coupled to semi-infinite leads. The third
code performs the time evolution with the input from the two first codes.
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