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Chapter 1Introdution and SummaryThis thesis examines �nanial market volatility and volatility spill-over between �nanialmarkets. It onsists of three papers and fouses on adapting and proposing models forthe estimation and foreasting of �nanial market volatility. Di�erent appliations of theestimated and foreasted volatility are demonstrated in eah paper. The next setionsgive a brief introdution to the parametri and nonparametri volatility models, as wellas the estimation methods used in this thesis. A short summary of eah paper follows.1.1 The volatility modelsVolatility is de�ned as the degree to whih the prie of an equity or other �nanial assetstends to move or �utuate over a period of time. It plays a entral role in the valuationof suh �nanial derivatives as options and futures and an, in fat, have a large e�et onportfolio seletion and risk management. Therefore, volatility modeling and foreastingis entral to �nane; it has been one of the most ative areas of researh in empirial�nane and time series eonometris during the past two deades.Most researhers agree that volatility is preditable in many asset markets (see, e.g.,Bollerslev et al., 1992), although they di�er on how it should be modeled. The evidenefrom the ontemporary �nane literature for preditability has led to a variety of ap-proahes. The initial developments were tightly parametri, but the reent literature hasmoved in less parametri, and even fully nonparametri, diretions. The ommon empir-ial observation is that �nanial market volatility is time varying and persistent, showslustering, responds asymmetrially to shoks, and is di�erent aross assets, asset lasses,and ountries. (see, e.g., Bollerslev et al., 1992)1.1.1 The parametri modelsIn �nanial time series, one often observes that big shoks tend to be followed by bigshoks in either diretion, and small shoks tend to follow small shoks. This is referredto as volatility lustering. In order to model suh patterns, the ARCH model (Engle,1982) and the GARCH model (Bollerslev, 1986) allow the variane to depend upon1



2 CHAPTER 1its history. Sine those models were introdued, the �nanial eonometris literature hasfoused onsiderable attention on time-varying volatility and development of new tools forvolatility measurement, modeling, and foreasting based on the ARCH and the GARCHmodel. One of the most interesting extensions of the ARCH and GARCH models are the�asymmetri� volatility models that onsider the asymmetri response to shoks.Volatility's asymmetri phenomenon, where it inreases more after a negative thanafter a positive shok of the same magnitude, is another ommon empirially observedharateristi of �nanial markets. This implies a negative orrelation between returninnovations and future expeted onditional varianes. Two eonomi theories explainasymmetri volatility: the leverage e�et and time-varying risk premia (volatility feed-bak). The leverage e�et (see, e.g., Blak, 1976 Christie, 1982) indiates that an inreasein �nanial leverage leads to an inreased volatility level. Volatility rises when stok priesgo down and dereases when stok pries go up. As an alternative explanation of thelarger inrease in volatility after a negative shok, many researhers (see, e.g., Frenhet al., 1987 Campbell and Hentshel, 1992 Wu, 2001) state that news that volatility willbe higher in the future will indue risk-adverse investors to sell positions today untilexpeted return rises to ompensate for the risk, neessitating an immediate stok-priedeline to allow for higher future return. Hene, the leverage hypothesis laims returnshoks lead to hanges in onditional volatility, whereas the time-varying risk premiumtheory ontends that return shoks are aused by hanges in onditional volatility.The GJR-GARCH model of Glosten et al. (1993) is spei�ally designed to aommo-date suh asymmetries. Within this model, the asymmetry is identi�ed and determinedby a dummy that depends on the sign (negative and positive) of the orresponding re-turn innovations in the onditional variane equation. A similar motivation underlies theEGARCH model in Nelson (1991). Although the log-transform ompliates the alula-tion of onditional variane foreasts, it onveniently avoids having to impose nonnega-tivity on the parameters of the variane equation.Alternatively, as disussed above, the asymmetries in the return�volatility relation-ship may also be attributed to volatility feedbak. This feature is aptured by theARCH/GARCH-in-Mean type formulation (Engle et al., 1987), in whih the funtionalform of the onditional mean depends expliitly on the onditional variane. A number ofpapers have employed this framework to apture the empirially observed asymmetry inequity-return volatility (see, e.g., Campbell and Hentshel, 1992 Bekaert and Wu, 2000).Another important empirial �nding is the strong volatility persistene showing inmost daily and weekly �nanial returns. To apture this, Engle and Bollerslev's (1986)IGARCH model diretly imposes unity on the sum of the return-innovation oe�ientsand the lagged variane. However, the imposition of a unit-root in the onditional varianearguably exaggerates the true dynami dependenies. Several alternative long-memory, orfrationally integrated ARCH-type formulations have also been estimated and analyzedmore formally in the literature (see, e.g., Baillie et al., 1996 Ding et al., 1993 Zumbah,2004). Possible explanations for the apparent long-memory dependenies based on theaggregation of volatility omponents have been explored by many researhers (see, e.g.,Andersen and Bollerslev, 1997 Engle and Lee, 1999 Liu, 2000).



1.1. THE VOLATILITY MODELS 3Meanwhile many researhers argue that the high persistene in volatility and lowerauray in the volatility foreast are due to strutural breaks (see, e.g., Engle andBollerslev, 1986 Diebold and Inoue, 2001). Lamoreux and Lastrapes (1990) show thatthe model with swithed parameter values, suh as Hamilton's (1989) Markov swithingmodel, may provide a more aurate tool for modeling volatility. Hamilton and Susmel(1994) indiate also that a Markov swithing proess an provide a better statistial �tto the data than the traditional GARCH model.1.1.2 The nonparametri modelsThe term nonparametri (Li and Raine, 2007) refers to statistial tehniques that do notrequire a researher to speify a funtional form for the estimated objet. Rather thanassuming the funtional form of an objet is known up to a few unknown parameters, thenonparametri model substitutes less-restritive assumptions, suh as di�erentiability andmoment restritions, on the estimated objet. Sine nonparametri tehniques make fewerassumptions about the estimated objet than do parametri tehniques, nonparametriestimators tend to be slower to onverge to the objets being studied than orretlyspei�ed parametri estimators. In addition, unlike their parametri ounterparts, theonvergene rate is typially inversely related to the number of variables involved, whihis sometimes referred to as the �urse of dimensionality.� However, it is often the ase that,even for moderately sized data sets, nonparametri approahes an reveal struture in thedata that might be missed when using parametri funtional spei�ations. Therefore,nonparametri methods are more appropriate when i) we know very little about thefuntional form or the distributions of the objet being estimated, ii) the number ofvariables is not too large, and iii) we have reasonably large data set.Further, semiparametri refers to statistial tehniques that do not require a re-searher to speify a parametri funtional form for some part of the estimated objetbut do require parametri assumptions for other parts.Nonparametri and semiparametri methods have attrated great interests from statis-tiians in the past few deades (see, e.g., Silverman, 1986 Härdle, 1990 Sott, 1992 Wandand Jones, 1995 Fan and Gijbels, 1996 Härdle et al., 2004 Fan and Yao, 2005). The para-metri proedures for volatility modeling rely on expliit funtional-form assumptionsregarding the expeted volatility. The nonparametri proedures are generally free fromsuh funtional-form assumptions and a�ord estimates of volatility that are �exible yetonsistent (Andersen et al., 2005). The advantages of the nonparametri model inlude,for example, disregarding the funtional form of the volatility and the strong assumptionsof the distribution of the residuals in the onditional mean equation. Bülman and MNeil(2002) introdue a nonparametri GARCH model in whih the latent volatility proessis a nonparametri funtion of the lagged return residuals and the lagged volatility.In this thesis, we apply Bülman and MNeil's (2002) nonparametri GARCH modelto volatility estimating and foreasting. As mentioned above, the urse of dimensionalityis a ommon problem in nonparametri smoothing. The additive semiparametri modelis a ommon tool to redue nonparametri funtions' dimension as a remedy to theurse of dimensionality. Therefore, we use additive regression to deompose the whole



4 CHAPTER 1nonparametri funtion of Bülman and MNeil's (2002) nonparametri GARCH modelinto several additive strutured nonparametri funtions.1.2 The estimation methodsIn this setion, we introdue the estimation methods used for the volatility estimationand foreasting in this thesis.1.2.1 Bayesian-based Markov hain Monte Carlo methodThe maximum likelihood method is ommonly used for parametri estimation. With thismethod, a model is estimated by maximizing the likelihood funtion of the data, andthe statistial inferene is made based on the �tted models. However, some ompliatedmodels, suh as the Markov swithing model, are a mixture over all possible state on�g-urations. This makes model estimation infeasible with the maximum likelihood method.With the advanes in the omputing failities, the Bayesian-based Markov hain MonteCarlo (MCMC) method has been widely used in �nanial eonometris and �nanial mod-eling nowadays. We use the MCMC method for the estimation of the regime-swithingmodel used in the third paper (see Chapter 4 in details).The onditional distribution and the prior distribution play essential roles in theMCMC method. For example, onsider an inferene problem with parameter vetor θ ofan unknown model and with the data set, X. The distribution f(θ | X) of parametersgiven the data is alled the posterior distribution, and it is proportional to the produtof the likelihood funtion f(X | θ) and the prior distribution p(θ). In pratie, beausethe posterior is often either unknown or ompliated to aess diretly, one draws theparameters from the prior distributions, whih is highly dependent on the researher'sknowledge about the parameters of the model.For a univariate posterior draw, if the prior and posterior distributions belong to thesame family of distributions, the prior distribution is alled a onjugate prior distribution,and it an dramatially simplify the MCMC drawn. Some well-known onjugate priorsan be found in the Bayesian statistis of DeGroot (1990).For a joint posterior drawn, German and German's (1984) Gibbs Sampling (or GibbsSampler) is the most ommon method when the likelihood funtion is hard to obtain. Forexample, if one needs to randomly drawn from the joint distribution of f(θ1, θ2 | X), andthe individual onditional distributions (f1(θ1 | θ2,X) and f2(θ2 | θ1,X)) are available.One an �rst draw a random number from eah of the onditional distributions, θ1,0 and
θ2,0, and set it as iteration 0. Then iteration 1 is based on ontinuously drawn information,obtaining θ1,1 = f1(θ1 | θ2,0,X) and θ2,1 = f2(θ2 | θ1,1,X). Next, the researher uses thenew parameters as starting values and repeats the draw to obtain θ1,2 and θ2,2. Repeatingthe iterations for m times yields a sequene of (θ1,1, θ2,1), . . . , (θ1,m, θ2,m). Under someregularity onditions, (θ1,m, θ2,m) onverges to the targeted joint draw of f(θ1, θ2 | X).Besides the above method, in this thesis, we have also used a speial type of GibbsSampler to draw the model parameters in the third paper: Tanner's (1996) Griddy Gibbs



1.3. SUMMARY OF THESIS 5sampler. This method is very appliable when the posterior distribution is univariate. Themain idea is to form a simple approximation of the inverse CDF of the posterior density,then draw a uniform random number and transfer the observation via the approximatedinverse CDF to obtain a random draw for the parameters (see details in Chapter 4).1.2.2 The additive semiparametri regressionWe use the additive approah to redue the dimension of the nonparametri funtion forthe �rst two papers in the thesis. The method is from Hastie and Tibshirani (1990). Weonsider a estimation of s0, s1(·), . . . , sp(·) in the additive struture,
E(Y | x) = s0 +

p∑

j=1

sj(Xj), (1.1)where Esj(Xj) = 0 for every j. If we assume that the model, Y = s0 +
∑p

j=1 sj(Xj) + εis in fat orret, and assume also that we know s0, s1(·), . . . , sj−1(·), sj+1(·), . . . , sp(·),and further de�ne the partial residual as
Rj = Y − s0 −

∑

k 6=j

sk(Xk), (1.2)then E(Rj | Xj) = sj(Xj) and minimizes E(Y − s0 −
∑p

k=1 sk(Xk))
2. As we do notknow sk(·)s, we an �nd a way to estimate ŝj(·) given the estimates {ŝi(·), i 6= j}. Theresulting iterative proedure is the bak�tting algorithm.For example, assume we need to estimate three nonparametri funtions, E[Y | X] =

s0 + s1(X1) + s2(X2), where X1 and X2 are the explanatory variables. We �rst set theinitialization iteration and let s00 = E(Y ), s01 ≡ s02(·) ≡ 0. The initial nonparametrifuntions will be (s00, 0, 0). We then nonparametrially regress Y − s00 on X1 to get thefuntions s11 and regress Y −s00−s11(X1) on X2 to get s12. The same proedure is applied toget s10. The nonparametri funtions are now (s10, s
1
1, s

1
2). We then alulate RSS = E(Y −

s10−s11(X1)−s12(X2))
2. We go to the next iteration and repeat the same proedure to getthe nonparametri funtions (s20, s21, s22), repeating this proedure to iteration m to get thenonparametri funtions (sm0 , sm1 , sm2 ) suh that RSS = E(Y − sm0 − s1(X1)

m− sm2 (X2))
2fails to inrease, yielding the �nal smoothed funtions.1.3 Summary of thesisThere are three papers in this thesis. They examine the volatility in the equity and short-term interest-rate markets, and the spillover from the short term interest rate market tothe equity market.



6 CHAPTER 11.3.1 Summary of paper 1The �rst paper, titled "Asymmetry e�ets in Chinese stok market volatility: A gener-alized additive nonparametri approah" examines Chinese stok market volatility andreturn volatility asymmetry.Given the unique harateristis of the Chinese markets and the fat that the typialChinese investor is more prone to speulation and less sophistiated than those from moremature markets (Tan et al., 2008), the Chinese stok volatility behaves di�erently fromthat of other markets. Therefore, the onventional volatility models, suh as the GARCH-family approahes, that rely heavily on volatility spei�ation and known distributions ofthe returns, might insu�iently haraterize the volatility of the Chinese markets. Thispaper therefore applies Bülman and MNeil's (2002) nonparametri smoothing tehniqueto examine the volatility of the Chinese stok markets. Further, we develop a new teh-nique that applies the iterative estimation algorithm of Bülman and MNeil's (2002) NPmodel to Hastie and Tibshirani's (1990) Generalized Additive Model. The motivation ofthis adjustment is to avoid the urse of dimensionality, to provide a more aurate volatil-ity foreast than the parametri models, and to beome more omputationally e�ientthan the original nonparametri model.The results from this paper suggest that the leverage e�et exists in the Chinesestok markets: Bad news does a�et the return volatility more than good news. How-ever, as implied by the news impat urve from the GAM NP model, a limited amountof good news is needed to keep the market alm. Further, ompared with the supe-rior performane of the nonparametri model in the in-sample volatility estimation andout-of-sample foreast, the GJR and EGARCH models tend to overestimate the volatil-ity proess in turbulent periods and yield larger estimation errors. Our results suggestthat the nonparametri model is a more appropriate tool to use in estimating the Chi-nese stok-return volatility than the parametri GARCH models, suh as the GJR andEGARCH models. We reommend the use of the nonparametri model in estimating andinvestigating the return volatility in the Chinese stok markets and other emerging stokmarkets that have features similar to those of the Chinese stok markets.1.3.2 Summary of paper 2The seond paper, titled �Modeling and foreasting short-term interest rate volatility: Asemiparametri approah,� proposes semiparametri proedures to estimate the short-term interest-rate volatility. This paper is oauthored with Sandy Suardi.This paper proposes a semiparametri proedure to estimate the volatility of theweekly three-month U.S. Treasury bills. The new approah aommodates asymmetry,levels e�et and serial dependene in the onditional variane, and is based on the Bülmanand MNeil's (2002) nonparametri proedure. The potential usefulness of the semipara-metri approah for estimating short-rate volatility is examined by omparing its foreastperformane with a variety of one-fator short-rate di�usion models. Results from ourMonte Carlo simulation illustrate the robustness of the semiparametri approah whenestimating short-rate volatility with misspei�ation in the short-rate drift funtion and



1.3. SUMMARY OF THESIS 7the underlying innovation distribution. Moreover, the in-sample foreast performane ofthe semiparametri approah is superior to the parametri models onsidered. The empir-ial appliation to three-month U.S. Treasury bill yields suggests that the semiparametriestimation proedure provides superior in-sample and out-of-sample volatility foreastsompared to the widely used di�usion volatility models of Brenner et al. (1996), whih fea-ture asymmetri and level-dependent onditional variane. Although the semiparametriapproah does not speify asymmetry in the volatility proess, this proedure improvesupon the �t and the preditive power of the volatility estimates. We do not �nd anyevidene of nonlinearities in short-rate drift and onditional skewness in the short-ratehange distribution. Finally, we demonstrate that the semiparametri approah, whihyields a greater degree of auray in modeling short-rate hange volatility, has pertinentimpliations for priing long-dated and path-dependent interest-rate derivatives. Usingthe simulation method, we show that the semiparametri modeling approah gives riseto signi�antly di�erent probability distributions of future interest-rate levels omparedwith parametri short-rate models. The on�dene intervals of future interest-rate levelsare narrower than for any of the parametri models onsidered, thereby leading to lessprie variability in interest-rate derivatives.1.3.3 Summary of paper 3The third paper, titled �The return variane of the EMU equity markets and spillovere�ets from short-term interest rates,� examines equity-return volatility and the spillovere�ets from short-term interest rates in the EMU area.The empirial study is arried out by estimating an extended Markov swithingGJR-in-mean (EMS GJR-M) model with a Bayesian-based Markov hain Monte Carlomethodology. Our results suggest that two regimes exist in the EURO area stok markets,a high-mean low-variane (bull) market and a low-mean high-volatility (bear) market.Most of the Euro ountries have the same regime-swithing status between the bull andbear markets. The orrelation between the �rst two moments of returns is not stableover time, but varies between the bull and the bear markets. Our results also suggestthat bad news from unexpeted stok returns (negative residuals from returns) has anasymmetrially larger e�et on the returns and the volatility than good news has. Suhan impat is larger in the bear market than in the bull market. Surprisingly, as impliedin the news-impat surfae, we �nd that hanges in short-term interest rates only signi�-antly a�et stok market volatility in the bear period in most of the EMU ountries. Inpartiular, the e�et of an inrease in interest rates is asymmetrially larger than that ofa derease in interest rates. Portfolio performane, based on the out-of-sample foreastresults of various models, indiates that the EMS GJR-M model outperforms the MSGJR-M (Markov swithing GJR-in-mean ), the single swithing GJR-M (GJR-in-mean),and the GJR models. Further, the models with regime swithing yield better portfolioperformane than those without it, emphasizing the importane of the interest-rate im-pat and the regime spei�ation when modeling volatility. Ignoring suh state-dependentasymmetri e�ets from short-term interest rates on stok returns and their volatility willlead to invalid inferenes, biased volatility foreasts.
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Chapter 2Asymmetry E�ets in Chinese StokMarket Volatility: A GeneralizedAdditive Nonparametri Approah2.1 IntrodutionThe Chinese stok markets have grown rapidly sine the establishment of the ShanghaiStok Exhange (SSE) in Deember 1989 and the Shenzhen Stok Exhange (SZSE) inApril 1991. Speially, with the reent boom in China's eonomy, China's stok marketshave been attrating an enormous amount of attention from poliy makers, investors, andaademis. Chinese stok markets are interesting and deserve attention also beause theyexemplify many unique harateristis that di�er from well-developed Western �nanialmarkets. One of the unique harateristis is that the Chinese stok markets are the onlyequity markets overed by the International Finane Corporation that have ompletelysegmented trading between domesti and foreign investors (see Chui and Kwok, 1998Yang, 2003). The A-share market is only open to Chinese domesti investors while theB-share market was only open to foreign investors before February 2001.1 Many stud-ies (see Chui and Kwok, 1998 Yang, 2003) also address the fat that the Chinese stokmarkets are tightly ontrolled by the government: The markets are at most partiallyprivatized, and the state maintains state shares in varying amounts. The presene ofmarket segmentation and heavy government regulations give rise to mispriing and in-formation asymmetry, making the market learly imperfet and inomplete (Chan et al.,2007). Further, stok trading is still new to most domesti partiipants. The A shares aredominated by domesti individual investors who typially lak su�ient knowledge and1In order to inrease the mobility of B shares and to strengthen foreign fund investment on the apitalmarket, with a view of paving the way towards China aession to the WTO, the Chinese governmentlifted the restrition of people in the territory of China investing in B shares on February 19, 2001.However, even after the rule hanges, B shares annot exeed 25% of a ompany's total shares to ensurethat Chinese stok markets are not overly in�uened by foreign investment, and domesti investors antrade and own B shares only if they have foreign urreny.11



12 CHAPTER 2experiene in investments (China Seurities and Futures Statistial Yearbook, 2004).Given the unique harateristis of the markets and given that the typial Chineseinvestor is more prone to speulation and less sophistiated than those from more maturemarkets (Tan et al., 2008), Chinese stok volatility behaves very di�erently from thatof other markets. Therefore, onventional volatility models, suh as the GARCH-familyapproahes, that rely heavily on volatility spei�ation and known distributions of re-turns, might insu�iently haraterize the volatility of the Chinese market. Bülman andMNeil (2002) propose a nonparametri GARCH model (hereafter NP model), in whihthe hidden volatility proess is a funtion of the lagged volatility and lagged value of theinnovations from returns and is estimated by an iterative nonparametri algorithm. Thismodel is more attrative than the parametri GARCH-family models beause it requiresneither a spei�ation of the funtional form of the hidden volatility proess nor that ofthe distribution of the innovations.In this paper, we investigate the Chinese stok return volatility and the asymmetrie�et of shoks on return volatility2 by applying the NP model. Moreover, we ontributemethodologially to the literature by suggesting a generalized additive model with thenonparametri approah (hereafter GAM NP model) that applies the iterative estimationalgorithm of the NP model to the generalized additive model of Hastie and Tibshirani(1990). The motivation for suh an adjustment is that the GAM NP model an avoid theurse of dimensionality, whih is a ommon problem for the nonparametri estimation ofa multidimensional regression.3 Further, as will be shown in the Monte Carlo simulationand the empirial investigation, this newly proposed GAM NP model an deliver a moreaurate volatility estimate than the parametri GARCH-family models and beomesomputationally more e�ient than the NP model. Also novel in our approah is that weextend the news impat urve from Engle and Ng (1993) to the nonparametri ontextand use it to measure and examine the asymmetri e�et of shoks on volatility.Currently, GARCH-family models are the most ommon in the investigation of theChinese stok-return volatility and the asymmetri e�et of market news on volatility.For example, Yeh and Lee (2000) use the GJR model proposed by Glosten et al. (1993)to examine Chinese stok market volatility from May 22, 1992, to August 27, 1996.They �nd that investors in China hase after good news indiating that the impat ofgood news (positive unexpeted returns) on future volatility is greater than that of badnews (negative unexpeted returns). By estimating both the GJR and the EGARCHmodel, Friedmann and Sanddorf-Köhle (2002) report that bad news inreases volatilitymore than good news in A-share and omposite indies, whereas good news inreasesvolatility more than bad news in B-share indies based on a sample beginning on May 22,1992, and ending on September 16, 1999. The good-news-hasing-investor phenomenonin China makes the Shanghai and Shenzhen stok markets relatively unique and di�erentfrom many other stok markets in the world. Lee et al. (2001) provide the same result2The asymmetri e�et often refers to the volatility inreasing more after a negative shok than aftera positive shok of the same magnitude (see Blak, 1976 Christie, 1982).3Under the urse of dimensionality, the optimal rate of onvergene of a nonparametri estimationof a multidimensional regression dereases with inreasing dimensionality (Linton and Mammen, 2005).For the multidimensional smoothing, e�orts must be made to alleviate the problem (Härdle et al., 2004).



2.2. MODELING TIME-VARYING VOLATILITY 13as Friedmann and Sanddorf-Köhle (2002) with the EGARCH model and daily returndata from Deember 12, 1990, to Deember 31, 1992. Zhang and Li (2008) investigatesthe asymmetry e�et of bad news on Chinese stok volatility with a partial adjustmentproess. They �nd that the asymmetry e�et begins to appear in May 1996. Dividing thetotal sample into two periods, Huang and Zhu (2004) produe results from the EGARCHand GJR models showing that the asymmetry e�et only exists in the period betweenFebruary 2001 and September 2003.In view of the di�erent �ndings from past researh regarding the leverage e�et ofChinese stok-return volatility, we examine Chinese stok market volatility and the asym-metri e�et of market news on the volatility using data from January 2, 1997, to August31, 2007. Several questions will be addressed in the investigations: Do Chinese stok mar-ket volatilities reat asymmetrially to shoks as in most mature stok markets in theworld? Are investors in the Chinese stok markets still hasing after good news? Dovolatilities in the Shanghai and in the Shenzhen stok markets reat similarly to themarket news? The answers to these questions have important impliations for marketpratitioners foreasting stok returns and volatility, and for risk managers formulatingoptimal strategies for portfolio seletion and risk management.The results from this paper suggest that the leverage e�et exists in the Chinese stokmarkets: Bad news does a�et return volatility more than good news. However, as impliedby the news impat urve (NIC) from the GAM NP model, a small amount of good newsis needed to keep the market alm. Further, ompared with the superior performaneof the GAM NP in the in-sample estimation and the out-of-sample foreast, the GJRand EGARCH models tend to overestimate the volatility proess in turbulent periodsand yield larger estimation errors. Our results suggest that the nonparametri smoothingapproah is a more appropriate tool for estimating Chinese stok-return volatility thanthe parametri GARCH models.The rest of the paper is organized as follows. In setion 2.2, we present the non-parametri models and the model estimation algorithm. Setion 2.3 performs the MonteCarlo simulation to evaluate the performane of the parametri and nonparametri mod-els. Setion 2.4 ompares the performane of the nonparametri models with variousGARCH-family models and examines the asymmetri e�ets of shoks on the volatility.Setion 2.5 onludes.2.2 Modeling time-varying volatilityIn this setion, we introdue the NP and GAM NP models and the model-estimationalgorithm used to estimate Chinese stok market volatility. As we will evaluate andompare the performane of the nonparametri models with the parametri models, we�rst introdue the parametri GARCH-family models.



14 CHAPTER 22.2.1 Parametri GARCH-family modelsBollerslev (1986)'s GARCH model has been the most widely used model for the volatilityestimation sine it was �rst proposed. As pointed out by Bera and Higgins (1993), most ofthe applied �nanial works show that GARCH (1,1) provides a �exible and parsimoniousapproximation to the onditional variane dynamis and is apable of representing themajority of �nanial series. The GARCH (1,1) model is written as
Rt = µ+Xt, Xt = σtzt, zt ∼ N(0, 1),

σ2
t = ω + α1X

2
t−1 + β1σ

2
t−1, (2.1)where ω > 0, α1, β1 ≥ 0, (α1+β1) < 1, and Xt−1 may be treated as a olletive measureof news about equity returns arriving to the market over the previous periods.In the simple GARCH (1,1) approah, good news and bad news�positive and neg-ative shoks�have the same impat on the onditional variane. Many studies havefound evidene of asymmetry in stok-prie behavior: Negative surprises seem to inreasevolatility more than positive surprises do. To allow asymmetri e�ets in the volatility,Glosten et al. (1993) add an additional term in the onditional variane and formulatethe so-alled GJR model. The GJR (1,1) is spei�ed as

Rt = µ+Xt, Xt = σtzt, zt ∼ N(0, 1),

σ2
t = ω + β1σ

2
t−1 + (α1 + γI)X2

t−1, (2.2)where ω > 0, (α1 + γ) ≥ α1 ≥ 0, β1 ≥ 0, (α1 + 0.5γ + β1) < 1. I is an indiator fornegative Xt−1. That is, I = 1 for Xt−1 < 0, and I = 0 for Xt−1 ≥ 0. The struture of thismodel indiates that a positive Xt−1 ontributes α1X
2
t−1 to σt, whereas a negative Xt−1has a larger impat of (α1+ γ)X2

t−1 with γ > 0. Therefore, if parameter γ is signi�antlypositive, then negative innovations generate more volatility than positive innovations ofequal magnitude.Another volatility model that aounts for asymmetri impats on the onditionalvariane is Nelson's (1991) exponential GARCH model (EGARCH). The EGARCH(1,1)is spei�ed as
Rt = µ+Xt, Xt = σtzt, zt ∼ N(0, 1),

log σ2
t = ω + β1 log σ
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. (2.3)Here the oe�ient γ signi�es the leverage e�et of shoks on the volatility. The keyadvantage of the EGARCH model is that the positive restritions need not be imposedon the variane oe�ients. γ must be negative for evidene of asymmetri e�ets.In this paper, we leave the funtional form of the variane proess unspei�ed andattempt to estimate it as a nonparametri mean. We show that the nonparametri modelan apture the asymmetry e�et from the unexpeted news and outperforms the more



2.2. MODELING TIME-VARYING VOLATILITY 15ommon parametri GARCH-family models.2.2.2 The generalized additive nonparametri modelCompared with the parametri models, a nonparametri model enjoys advantages ofrelaxing the spei�ation of the variane proess and the error-distribution assumptions.One example is the NP model from Bülman and MNeil (2002):
Rt = µ+Xt, Xt = σtzt,

σ2
t = f(Xt−1, . . . ,Xt−p, σ

2
t−1, . . . , σ

2
t−q), (2.4)where the stationary stohasti proess {Xt; t ∈ Z} is adapted to the �ltration {Ft; t ∈

Z} with Ft = σ({Xs; s < t}). {zt; t ∈ Z} is an i.i.d. innovation with zero mean and unitvariane and a �nite fourth moment. zt is also assumed to be independent of {Xs; s < t}.
f : R×R+ 7−→ R+ is a stritly positive valued funtion. σt is the time-varying volatilityand σ2

t is the onditional variane of var[Xt | Ft−k], where {1 ≤ k ≤ max(p, q)}. Bülmanand MNeil (2002) have shown that the nonparametri funtion f an be estimated byregressing X2
t on the lagged variables Xt−1 and σ2

t−1 using a nonparametri smoothingtehnique.However, the proposed model annot avoid the ommon problem of a multidimen-sional nonparametri smoothing, the urse of dimensionality. In order to overome thisdi�ulty, Hastie and Tibshirani (1990) propose the generalized additive model, whihenables the dependent variable to depend on an additive preditor through a nonlinearfuntion. We apply Hastie and Tibshirani's (1990) generalized additive proedure to theNP model whih gives rise to the GAM NP model:
Rt = µ+Xt, Xt = σtzt,

σ2
t = µ+ f(Xt−1) + g(σ2

t−1), (2.5)where f : R 7−→ R+ is a positive-valued funtion satisfying f(x) = f(−x)�i.e., f(x) =
α|x|, 0 < α < 1�and g : R+ 7−→ R+ is a positive nondereasing funtion satisfying
g(σ2) = βσ, 0 < β < 1.We observe that the model in equation (2.5) an be written with the following trans-formation.

X2
t = µ+ f(Xt−1) + g(σ2

t−1) + Vt,

Vt = (µ + f(Xt−1) + g(σ2
t−1))(z

2
t − 1) (2.6)Clearly, Vt is a martingale di�erene series with E[Vt | Ft−1] = 0 and cov[Vs, Vt | Ft−1] = 0for s < t.



16 CHAPTER 2From equation (2.6), it follows that
E[X2

t | Ft−1] = µ+ f(Xt−1) + g
(
σ2
t−1

)
,

var[V 2
t | Ft−1] =

(
µ+ f(Xt−1) + g

(
σ2
t−1

))2 (
E[z4t ]− 1

)
, (2.7)This suggests that we an estimate the onditional variane with a nonparametriregression of a generalized additive model. The regression is performed aording to theadditive struture of σ2

t using the bak-�tting algorithm, whih was �rst introdued byFriedman and Stuetzle (1981) and generalized by Hastie and Tibshirani (1990). This toolis now widely used for nonparametri estimation in iterative proedures. We estimate theonditional variane by the generalized additive model aording to the following formula.
σ̂2
t = µ̂+ f̂(Xt−1) + ĝ(σ̂2

t−1) (2.8)2.2.3 Estimation algorithmAssume we have a data sample {X2
t : 1 ≤ t ≤ n} satisfying the proess of (2.5).41. In the �rst step, we set m = 1 (the urrent iteration) and alulate a �rst estimateof volatility {σ̂2

t,0: 1 ≤ t ≤ n} as the initial estimation by �tting the data with theGARCH (1,1) model with a maximum-likelihood estimate.2. We regress {X2
t : 2 ≤ t ≤ n} on the lagged returns, {Xt−1 : 2 ≤ t ≤ n} and

{σ̂2
t−1,m−1, 2 ≤ t ≤ n}, through a nonparametri smoothing proedure with thebak-�tting algorithm to obtain estimates f̂m and ĝm.3. In the third step, we alulate {σ̂2

t,m = µ̂m + f̂m(Xt−1,m−1) + ĝm(σ̂2
t−1,m−1) : 2 ≤

t ≤ n} as spei�ed in (2.8).4. We proeed to inrement the iteration m and return to the seond step until m =
M , where M is the prespei�ed total number of iterations.5. Finally, we average the last k of suh estimates to obtain the �nal smoothed volatil-ity, σ̂t,final, and perform the �nal nonparametri regression with the bak-�ttingalgorithm by regressing {X2

t : 2 ≤ t ≤ n} against {Xt−1 : 2 ≤ t ≤ n} and σ̂2
t−1,finalto get the �nal estimates f̂final and ĝfinal. The �nal estimated volatility an bealulated by σ̂2

t,final = µ̂final + f̂final(Xt−1) + ĝfinal(σ̂
2
t−1,final).2.3 Monte Carlo simulationWe use Monte Carlo simulation to estimate and examine a standard GARCH model anda GARCH model with an asymmetry e�et. The purpose of the Monte Carlo simulation isto show that with a signi�antly large asymmetri e�et, the GAM NP model an o�er4Readers interested in the justi�ations and proofs of this algorithm are referred to Bülman andMNeil (2002)



2.3. MONTE CARLO SIMULATION 17better estimates of the unobserved volatility than an the parametri GARCH-familymodels and an perform as well as the NP model (performing even better in many ases).We generate n = 1000 observations and 50 realizations for eah random proess. For thenonparametri models, the number of iterations is set to M = 8, and a �nal smoothing isperformed by averaging the previous four iterations (K = 5) aording to the algorithmpresented in the previous setion. The performane of eah model is evaluated usingthe mean of the Mean Squared Error (MSE) and the mean of the Mean Absolute Error(MAE) from eah iteration. The MSE and the MAE are alulated aording to theformulas
MSE (σ̂s,m) =

1

n− 20

n∑

t=21

(σ̂t,m − σt)
2 and

MAE(σ̂s,m) =
1

n− 20

n∑

t=21

|σ̂t,m − σt|, (2.9)where σ̂t,m is the estimated volatility at time t from eah iteration m and σt is the truevolatility at time t. The �rst 20 values are exluded from the alulation beause thevolatility estimates at the �rst few points may be unreliable.The data are simulated from the variane proess, whih follows GARCH and Thresh-old GARCH (TGARCH) models spei�ed as follows.
σ2
t = 7 + 0.1σ2

t−1 + 0.66X2
t−1, (2.10)

σ2
t = 7 + 0.1σ2

t−1 +
(
0.66I{X>0} + 0.2I{X≤0}

)
X2

t−1 (2.11)In the variane proess of equation (2.11), the asymmetry e�et between the positiveand negative shoks is built into the ARCH e�et, along the lines of models suggestedby Glosten et al. (1993) and Fornari and Mele (1997). We simulate the proess given byequation (2.11) with t-distributed residuals with four degrees of freedom and estimate itwith both Gaussian and t-distributed errors. Figure 2.1 plots the true volatility surfaes ofthe proesses spei�ed in equations (2.10) and (2.11). It an be easily seen from Figure 2.1that if the true volatility is under the GARCH spei�ation of proess given by equation(2.10) (the left plot), the volatility surfae is very smooth. However, with the asymmetrye�et of the proess given by equation (2.11), there is a signi�ant disontinuity in thevolatility surfae. In this ase, we show that the nonparametri model an smooth thesegmented volatility surfae quite well and therefore outperforms the parametri models.For the purpose of omparison, we �t the simulated proess given by equation (2.11)with the EGARCH, GJR and NP models, and ompare their �t with that of the GAMNP and NP models. - Figure 2.1 about here -In Figure 2.2, we plot the estimated volatility surfaes of the eight iterations andthe �nal smoothing of the GAM NP model from one randomly hosen iteration. Wean learly observe that the smoothing has been well performed already after the �rst



18 CHAPTER 2iteration and the surfae has been perfetly smoothed at the �nal stage of smoothing.This indiates that the estimation algorithm is reovering the essential features of thevolatility surfae and demonstrates the onvergene of the smoothing method.- Figure 2.2 about here -Table 2.1 ompares the performane of the GARCH, EGARCH, GJR, GAM NPand NP models. Table 2.2 presents the goodness-of-�t simulation results from the non-parametri models. It is evident from these two tables that the MSE and MAE of thenonparametri models are muh lower than those of the parametri GARCH models.For example, it an be seen from Table 2.2 that the MSE and the MAE are 0.555 and
0.615 for the GARCH model with Gaussian errors before smoothing. The MAE and theMAE start to derease in eah iteration and reah 0.221 (0.261) and 0.339 (0.405) atthe �nal stage of smoothing for the GAM NP (NP) model. Although the EGARCH andGJR (TGARCH) models apture the asymmetri e�ets partially, they annot maththe nonparametri models' goodness of �t. For example, it an be seen from Table 2.1that the MSE and the MAE of the EGARCH model with Gaussian errors are 0.3 and
0.43, respetively, while those of the GJR model are 0.39 and 0.507, respetively. Moreinterestingly, the goodness of �t of the GAM NP model indiates that it performs evenbetter than the NP model: The MSE (MAE) of the GAM NP model (with normal �t)is 15.4% (16.4%) lower than that of the NP model. We also notie that the hoie of thedistribution for the parametri GARCH models learly matters. There is evidene thatthe EGARCH and GJR models with t-distributed innovations perform better than theones with Gaussian innovations, but this is not the ase for nonparametri estimations.The NP and GAM NP models provide nearly idential results with both Gaussian and terrors. Figure 2.3 plots the estimated volatility proess ompared with the true volatility,whih is an arbitrary seletion of 100 observations from a simulated realization of theproess given by equation (2.11). The left-hand plot shows the true volatility (solid line)ompared with parametri GARCH (1,1) estimates with t innovations (dotted line) andthe right-hand plot shows the true volatility (solid line) with the GAM NP estimate ob-tained after a �nal smooth (dotted line). It is learly shown in the �gure that the GAMNP model yields volatility estimates that math the true volatility movements betterthan those of the GARCH model. In partiular, the sharp spikes observed at the 40thand 90th observations of the true volatility are well aptured by the GAM NP model butnot by the GARCH model.- Tables 2.1, 2.2 and Figure 2.3 about here -From the Monte Carlo simulation, we onlude that the GAM NP model providesmore aurate volatility estimation and aptures more of the asymmetri e�et of shoksompared with the parametri GARCH models and the NP model.



2.4. CHINESE STOCK MARKET VOLATILITY 192.4 Chinese stok market volatilityThe Chinese stok market is relatively young, yet it is developing quikly. By the end of2007, there were 860 listed ompanies in the SSE with the total market value of RMB
29.09 trillion, of whih A shares represented RMB 26.85 trillion and B share representedRMB 1.3 trillion. In the SZSE, there were 670 listed ompanies with a total marketapitalization of RMB 5.73 trillion, of whih A shares represented RMB 5.61 trillion andB shares represented RMB 0.12 trillion.As disussed by many reports, the Chinese stok market is highly ontrolled by thegovernment. The Chinese Seurities Regulatory Commission (CSRC), as a ministry-rankunit of the State Counil, performs almost all supervisory, regulatory, and enforementfuntion over the seurity market. Chinese �rms need the approval from CSRC to belisted and sell their equity. The approval proess is a�eted by many nonmarket fators,and it is not unusual for a ompany to wait several years to reeive listing permission.Furthermore, many of the listed ompanies are former state-owned enterprises (SOEs).When the SOEs go publi, no less than 50% of the shares will be kept by the state.5In addition, most ompanies will also hold retained shares for legal persons and internalemployees of the ompanies. The state-retained shares, legal-person shares, and employeeshares aount for 60%�70% of equity and only the other shares are publily tradable.Another harateristi of the Chinese stok markets is the market segmentation. TheChinese equity markets have two lasses of ownership-restrited shares: A shares, whihan be owned and traded by Chinese itizens, and B shares, whih an be owned andtraded by foreigners and, after February 2001, loal Chinese residents who hold foreignurrenies.6 Despite their idential payo�s and voting rights, A shares are muh moreliquid than B shares.7 The unique harateristis of the Chinese markets make themlearly imperfet and inomplete (Chan et al., 2007).Some reports have given omprehensive reviews of the Chinese stok markets. Forthose interested in learning more about this emerging market, Wang et al. (2004), Chanet al. (2007) and Green (2004) are three very good referenes.2.4.1 The dataThe data used in this paper inlude the daily losing pries of the two primary Chineseindies, the Shanghai Stok Exhange Composite Index (SHCI) and the Shenzhen StokExhange Component Index (SZCI) from January 2, 1997, to August 31, 2007. The SHCI5Shares lassi�ed as A shares are designated for domesti investors and B, H and N shares aredesignated for overseas investors. A shares are further divided into state shares, legal-person shares,tradable A shares, and employee shares. State shares are those owned by the entral government andloal governments. Legal-person shares are those held by domesti legal entities and institutions suh asother stok ompanies, state�private mixed enterprises, and nonbank �nanial institutions. Both stateshares and legal-person shares are not tradable on the stok exhanges.6The B-share market is the result of Chinese regulation. Generally, ompanies allowed to list shareshave to ful�ll a greater number of restritions when issuing B shares than when listing A shares.7A shares traded on average for 420% more than the orresponding B shares. In addition, A sharesturned over at a muh higher rate�500% versus 100% per year for B shares (see Mei et al., 2009).



20 CHAPTER 2has been published sine 1991 and inludes all Shanghai-listed ompanies weighted byapital stoks. The SZCI has been published sine 1995 and is a value-weighted indexof 40 stoks listed on the Shenzhen Stok Exhange. As key market regulations, suhas the raising/down limit, were not well established until the end of 1996, we hose toanalyze the data starting from January 1, 1997. The daily pries are downloaded fromhttp://www.sohu.om.All data are onverted to their daily log returns, and multiplied by 100 as follows,
rt = 100(log(Pt)− log(Pt−1)). (2.12)In order to assess and ompare the preditive performane of the nonparametrimodels with various parametri models, the data is further divided into an in-samplegroup (from January 1, 1997, to August 31, 2006) and an out-of-sample group (fromSeptember 1, 2006, to August 31, 2007). The whole sample has 2,573 observations andthe last 243 are used for the out-of-sample foreasts. We use the expanding window for theout-of-sample foreasts. We �rst do the in-sample estimation using the data from January1, 1997, to August 31, 2006, and use the parameters from the in-sample estimation toforeast the overnight volatility for the next day. Then we add one more data from theseond day (September 1, 2006) and redo the estimation, using the parameters from thisestimation to foreast the volatility for the following day. We repeat this estimation-and-foreast proedure until the end of the out-of-sample foreast period.Further, we alulate the realized volatility as the proxy for the true volatility forthe out-of-sample foreast. The realized volatility is alulated using the high-frequeny(5-minute) data as8

RVt =

n∑

i=1

r2i,t, (2.13)where n is the total number of high-frequeny intervals (i) in day t. This method is usedextensively in the literature (see, e.g., Frenh et al., 1987 Day and Lewis, 1992 Pagan andShwert, 1990 Andersen et al., 2001, 2000) The high-frequeny data are obtained fromhttp://www.wstok.net.9Table 2.3 provides the statistial summary of the returns of both indies. Clearly, themean of both series is lose to zero, exhibits high kurtosis and is negatively skewed. Inpartiular, the skewness in the Shanghai stok market is muh higher than that in theShenzhen stok market. The Jarque�Bera test further on�rms that the return distribu-tions are not normal. The augmented Dikey�Fuller test suggests that they are stationarytime series. The two series are highly positively orrelated at 0.926.Figure 2.4 plots the index prie and returns of the SHCI and the SZCI. The returnslargely mirror eah other and look very volatile. Both series also display strong volatility8Due to the data availability, we use the realized volatility as a proxy for the true volatility only forthe out-of-sample foreasts.9This is the website of a Chinese investment ompany named Huasheng and is only available inChinese. However, the site an be well translated into English by Google's translation system.



2.4. CHINESE STOCK MARKET VOLATILITY 21lustering. These are typial harateristis of �nanial time series. Further, there areseveral peaks and troughs in the return series. The �rst peak ourred on May 12, 1997,where the SHCI/SZCI hit a reord high 6103.62/1500 points. After going through a stabletwo-year period, it experiened a sharp deline before rising and reahing its seond peakon July 1, 1999. Thereafter the stok indies began to inrease in a relatively stablefashion, reahing its third peak in 2000�2001. It then delined again until the �rst halfof 2005. However, after that the stok market began to rise rapidly and ontinued toaelerate upwards until it reahed another historial high on August 31, 2007. It an beseen, therefore, that the period 2005 to 2007 is the most volatile period in the SHCI andSZCI. - Table 2.3 and Figure 2.4 about here -2.4.2 The in-sample estimation results from various modelsWe �rst �t the series from January 1, 1997, to August 31, 2006, with the standardGARCH(1,1) model. Considering the existene of the asymmetry e�ets of shoks on thereturn volatility in the Chinese stok markets, we also �t the data with the EGARCHand GJR models. For all these models, the innovations are assumed to be both Gaussianand Student-t distributed. The estimated parameters and Ljung�Box Q-statistis testsof the standardized residuals are presented in Table 2.4. Note that all parameters of theonditional volatility are signi�ant at the 5% level. The oe�ient of lagged variane
β shows very high volatility persistene. The sum of α and β from the GARCH modelis lose to 1, o�ering evidene of volatility lustering. The p-values of the Ljung�BoxQ-statisti test at the lag 20 of the standardized residual series from all models fail tosuggest the autoorrelation at a 5% signi�ane level. Thus, all models appear to beadequate in desribing the linear dependene in the return and volatility series.In the Shanghai stok market, the estimated leverage parameters γ of the EGARCHand GJR models with Gaussian (t) distributed innovations are −0.036 (−0.063) and 0.06(0.095), respetively. In the Shenzhen stok market, the values of γ for these two modelsof Gaussian (t) innovation are 0.028 (−0.035) and 0.036 (0.055). All these parametersare signi�ant at the 5% level with the exeption of the γ from the EGARCH modelwith Gaussian errors in the Shenzhen market. The signi�ane of the parameters indi-ates the existene of the asymmetry e�et in the Chinese stok markets. That is, badnews (negative shoks) has a larger impat on return volatility than good news (positiveshoks). Notably, the asymmetri e�et is higher in the SHCI than in the SZCI. It is alsoworth noting that the leverage e�et estimated from models �tted with t-distributed in-novations is higher than that with normally distributed innovations. The existene of theasymmetry e�et as in other mature stok markets in the world may be a positive signfor market e�ieny and ompleteness. It also suggests that the Chinese stok market isintegrating with other world stok markets.- Table 2.4 about here -Next we use the NP and the GAM NP approahes to smooth the Chinese stok



22 CHAPTER 2volatility surfae based on the volatility and innovations obtained from the GARCH(1,1)model. We evaluate the performane of various models by alulating four loss funtionsand omparing the results from the GAM NP model with the parametri models. Forreferene, we also estimate the NP model from Bülman and MNeil (2002) and ompareits result with the newly proposed GAM NP model. The goodness-of-�t measures are,1. MSE1: MSE1 is alulated as 1
n

∑n
t=1(X

2
t − σ̂2

t )
2, whih is the mean squared errorbetween the squared innovation X2

t and the squared estimated volatility σ̂2
t . As

X2
t = σ2

t + Vt, where Vt is the martingale series with zero mean, the mean squarederror between both an be a good indiator to illustrate the goodness of �t.2. MAE1: MAE1 is alulated as 1
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t |, whih is the Mean Absolute Errorbetween the squared innovation X2

t and the squared estimated volatility σ̂2
t .3. MSE2: MSE2 is alulated as 1
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∑n
t (σ̂t − σt)

2, whih is the Mean Squared Errorbetween the estimated volatility, σ̂t, and the true volatility proxy, σt =√y2t , where
yt is the daily return at time t.4. MAE2: MAE2 is alulated as 1

n

∑n
t=1 |σ̂t−σt|, whih is the Mean Absolute Errorbetween the estimated volatility, σ̂t, and the proxy for the true volatility, σt =√y2t ,where yt is the daily return at time t.Besides heking the goodness of �t of the models, we also use the DM test suggested byDiebold and Mariano (1995) to hek the signi�ane of the improved preditability ofthe nonparametri models,

DM =
E(dt)

var(dt)
∼ N(0, 1), (2.14)where dt = (eA,t − eB,t)

2 and eA,t and eB,t are predition errors of two rival models, Aand B, respetively. E(dt) and var(dt) are the mean and variane of the time series of dt,respetively.The goodness-of-�t results of various models are presented in Table 2.5. It is learthat the GARCH model performs the worst aording to all goodness-of-�t measures.Compared with the GARCH model, the EGARCH model improves the volatility esti-mation by apturing the leverage e�ets. For the GJR model, it slightly improves theresult from the GARCH estimation in the Shanghai Stok Exhange (SSE), while in theShenzhen Stok exhange (SZSE), it is even worse o� than the GARCH model. This isperhaps not surprising beause the asymmetri e�et is not as strong in the Shenzhenstok market as it is in the Shanghai stok market. However, this may indiate that theEGARCH model an apture more leverage e�et than the GJR model an in the Chi-nese stok markets. When looking at the nonparametri models, we �rst �nd that thedistributions of errors do not matter in the estimation, beause all loss funtions fromthe GAM NP and the NP model with t distributions do not di�er from the ones withGaussian distributions. We observe also that the GAM NP model outperforms all theparametri models and the NP model. The NP model outperforms the GARCH and the



2.4. CHINESE STOCK MARKET VOLATILITY 23GJR models, but not the EGARCH model with t-distributed errors aording to all ofthe goodness-of-�t measures exept the MSE1.We then perform the DM test to investigate the signi�ane of the improvementof the nonparametri model. The DM test is performed under the null hypothesis thatthe improvement of the model in the olumn (the GAM NP and the NP model) uponthe model in the row (the parametri models) is not signi�ant. The DM test resultsreported in Table 2.6 show that both the GAM NP model and the NP model signi�antlyoutperform the GARCH and GJR models at the 5% signi�ane level aording to almostall of the seleted goodness-of-�t measures. The improvement of the GAM NP modelupon the EGARCH model with t-distributed errors is only marginal. Further, we �ndthat the NP model signi�antly underperforms the EGARCH with t-distributed errorsin the SSE, but this underperformane is nearly insigni�ant in the SZSE. Although theimprovement upon the EGARCH model with t-distributed errors is at the marginal level,with the advantages of no need to assume the funtional form of the variane proess andthe distribution of errors, the GAM NP an still be an appropriate tool for examining thereturn volatility in the Chinese equity markets. Speially, in order to show the foreastability of these models, we need to examine their out-of-sample performanes.- Table 2.5 and Table 2.6 about here -2.4.3 The out-of-sample foreast improvements of the nonparametrimodelsThe out-of-sample period is from September 1, 2006, to August 31, 2007. Besides thetrue volatility proxy of, √y2t , used the in in-sample estimation, the realized volatility,alulated from the 5-minute high-frequeny data, is also used as the true volatility proxy.Further, to demonstrate the importane of our results and the appliation of the GAMNP model in pratie, we alulate the 90%-foreasted return intervals whih are basedon the one-day ahead out-of-sample foreasts.The performane of the out-of-sample volatility foreasts of various models are sum-marized in Table 2.7. We �nd from this table that the nonparametri models performmuh better than the parametri models in delivering a lower foreast error. For example,in the Shanghai stok market, the MSE (MAE) of the GAM NP model (with normal�t) is 10% (7%), for the |yt| volatility proxy, and 13% (9%), for the implied volatilityproxy, lower than the one from the GARCH model. Similarly, in the SZSE, there is anapproximately 5% redution in the MSE and MAE for both volatility proxies. Comparedwith the GJR model, the EGARCH model appears to be a better parametri model inapturing the asymmetri e�et of market news in the out-of-sample foreast. We notiethat the GJR model in many ases performs even worse than the GARCH model. Thepoor performane of the GJR model in the out-of-sample volatility foreast has also beenreported by Wei (2002). The author shows that the GJR model has higher foreast errorsthan a random-walk model when examining the Chinese stok markets' return volatility.- Table 2.7 about here -



24 CHAPTER 2As in the in-sample estimation setion, we do the DM test to investigate the signi�-ane of the nonparametri model's improvement. Table 2.8 shows the results of the DMtest under the null hypothesis that the improvement of the model in the olumn (theGAM NP and the NP model) upon the model in the row (the parametri models) is notsigni�ant. This table shows that the nonparametri models signi�antly outperform theGARCH, GJR and EGARCH models in the Shanghai stok market aording to almostall of the measures. However, in the Shenzhen market, ompared with the EGARCHmodel, the improvements of the nonparametri model are almost signi�ant at the 5%level when the volatility proxy is squared returns and are only at the marginal level whenvolatility proxy is the realized volatility. One of the reasons an be that the asymmetrye�et in SZSE is not as high as in the SSE. The performane of the GAM NP model isnearly as good as the NP model. However, during the estimation, we experiened a signif-iant redution of omputing time when estimating the GAM NP model ompared to theNP model. Further, with the advantage of avoiding the urse of dimensionality, the GAMNP model an be an attrative tool for multidimensional nonparametri smoothing.- Table 2.8 about here -After obtaining the out-of-sample foreasted volatility, we use the foreasted valuesto build up the 90% return interval. The return intervals are alulated aording to
r̂t = µ̂± qk

√
σ̂, where qk is the perentage of the quantile of normally distributed errorsand µ̂ and σ̂ are the foreasted onditional mean and volatility. It is worth noting that thelower bound of the interval is appraoximately the 5% daily value-at-risk (VaR) measurewhen the initial value of the investment is 1 Yuan.Figure 2.5 plots the 90% intervals of the foreasted returns based on the foreastedonditional mean and the volatility from the EGARCH, GJR and GAM NP models forthe SHCI and the SZCI. Interestingly, the intervals built upon the foreasted onditionalmean and variane from various models do not di�er that muh when the market isrelatively stable. When extreme events our in the market, however, both the EGARCHand the GJR model provide a muh wider return interval than the GAM NP model does.The most obvious example is the sudden drops in the SHCI and SZCI indies on February27, 2007,10 where the return from the EGARCH and GJR models is overestimated in theupper bound and underestimated in the lower bound. As mentioned earlier, the lowerbound of the interval is the 5% daily VaR measure when the initial value of the investmentis 1 Yuan. Hene, when the market beomes extremely volatile, the 5% VaR based onthe parametri model is overestimated in both Shanghai and Shenzhen stok markets.- Figure 2.5 about here -This result is generally in line with Engle and Ng's (1993), Yeh and Lee's (2000),and Friedmann and Sanddorf-Köhle's (2002) studies. In partiular, Engle and Ng (1993)10In the absene of any sign of irumstanes, this �Blak Tuesday� ame and dumped the SSE andthe SZSE. The SHCI and the SZCI delined by 8.84% and 9.29%, and hit the reord of the biggest dailydrop within the last ten years.



2.4. CHINESE STOCK MARKET VOLATILITY 25provide evidene that the volatility predited by the EGARCH model is muh higher thanthat predited by the other models. Yeh and Lee (2000) argue that the appliation of theGJR model to daily Chinese returns leads to overshooting in the estimated onditionalvariane in periods of high volatility. Friedmann and Sanddorf-Köhle (2002) examineasymmetry by extending the news impat urve of Engle and Ng (1993) to the onditionalnews impat urve and argue that the overshooting of the volatility preditions from theGJR model is due to an aeleration of the news impat in the periods of high volatility.They also found that the EGARCH an overestimate volatility in a manner similar tothe GJR model.In summary, the GAM NP and the NP models perform muh better than the para-metri model in desribing the volatility harateristis and apturing the rise and fallof the volatility in the Chinese stok markets. Beause the EGARCH and GJR modelstend to overestimate the volatility in turbulent periods and therefore yield larger esti-mation errors in general, they are less appropriate tools for estimating the Chinese stokvolatility than the nonparametri models.2.4.4 Analyzing asymmetry via the news impat urveIn the previous setion, the estimation results from the EGARCH and GJR modelshave shown that the asymmetry e�et of unexpeted news exists in the Chinese stokmarkets. We now further examine the asymmetry e�ets from the perspetive of thenonparametri model. We use the news impat urve (NIC) proposed by Engle and Ng(1993) to demonstrate the asymmetry of shoks estimated from the GAM NP model.The NIC relates today's returns to tomorrow's volatility and works as a major tool formeasuring how new information is inorporated in volatility estimates. Holding onstantthe information dated t− 2 and earlier, it displays the implied impat of the funtionalrelationship between onditional variane at time t and the shok term (error term) attime t− 1. Engle and Ng (1993) de�ne the NIC as the expeted onditional variane ofthe next period onditional on the urrent shoks, ǫt.
E(σ2

t+1 | ǫt), (2.15)For the NIC of the GAM NP model, we extend the original news impat urve to thenonparametri ontext:
σ2
t = f(Xt−1) + g(σ2), (2.16)where σ is the onditional volatility, Xt−1 are the shoks from news, and f and g are theestimated nonparametri funtions from the GAM NP model. The relationship betweenthe shoks and the onditional volatility is therefore desribed in the nonparametrifuntions of f . - Figure 2.6 about here -The news impat urves of the EGARCH, GJR, and GAM NP models in the Shang-hai and Shenzhen markets are plotted in Figure 2.6. The parameter values used for



26 CHAPTER 2onstruting the NIC of the EGARCH and GJR models are from Table 2.4. f and g arethe estimated nonparametri funtions from the in-sample estimation. It is obvious thatall models suggest the existene of asymmetri e�ets in stok returns beause the NICsof all models are not symmetri about zero. Typially, negative news drives volatility upmore than good news. In these models, any news today drives up volatility tomorrow. Forexample, in the SHCI, the asymmetri e�et is learly shown with all urves displayingan approximately 20◦ slope for �good news� and a 40◦ slope for �bad news.� We observeless asymmetri e�et of bad news relative to good news in the Shenzhen stok market.The NIC of the EGARCH and GJR models have their minimum shoks at Xt = 0implyingnNo news is good news. In ontrast to the parametri models, the NIC of theGAM NP model has its minimum larger than zero, 0.5 in the SSE and 1.5 in theSZSE. In this model, the NIC is a right-shifted asymmetri parabola. This phenomenonis onsistent with the TGARCH model NIC from Engle and Ng (1993) and Christian(2007). This may suggest that, in the Chinese stok markets, a minimum amount ofgood news is required for the markets to remain as alm as possible. In this ase, nonews implies a higher volatility than in the tranquil market period. This further suggeststhat although the model implies the existene of a leverage e�et, the typial good-news-hasing behavior of the Chinese stok investors found by Yeh and Lee (2000) has nothanged. One of the reasons for Chinese investors' good-news-hasing behavior explainedby Yeh and Lee (2000) is that due to the lak of institutional investors, the trading valuesof the Shanghai and Shenzhen stok markets are ompletely generated by individualinvestors who have no aess to inside information and irrationally at on noise as ifit were information that would give them an edge. This typially re�ets the investorsbehavior in Shenzhen.11 The fast-growing stok market and its development produemore noise, making the investors more likely to speulatively and impetuously hase�good news.�Given the fat that GAM NP better explains the volatility of the Chinese stok mar-kets, we an see from the NIC that both the EGARCH and the GJR model overestimatethe volatility reation to the shoks between 2 and −2. However, the parametri modelsunderestimate the volatility reation to the extremely large shoks (the GAM NP hasthe highest variane in both diretions when news is larger than 2 and smaller than −2).Further, the GAM NP model has the best performane in apturing more asymmetrie�ets of shoks beause the slopes of the two sides of the GAM NP model's NIC areboth steeper than the EGARCH and the GJR models.As a result, ompared with the EGARCH and the GJR model, the GAM NP modelan provide us with better volatility estimates whih apture the asymmetri e�ets ofmarket news. The GAM NP model is more �exible in re�eting the atual market'sonditions as implied by the news impat urve. The �ndings from this paper haveimportant impliations for portfolio seletion, asset priing, and risk management. For11Within the last 20 years, owing to China's eonomi liberalization under the poliies of reformistleader Deng Xiaoping, Shenzhen beame China's �rst, and arguably one of the most suessful SpeialEonomi Zones, moving from a small village to a major �nanial enter and China's seond busiestport.



2.5. CONCLUSION 27instane, as implied by the news impat urves, there are signi�ant di�erenes in thepredited volatility inorporated with asymmetri e�ets of market news in the GAM NPmodel and other models. This may lead to a signi�ant di�erene in urrent option prie,portfolio seletion, and dynami hedging strategies. Only the most appropriate modelan provide us with the best estimate of return volatility.2.5 ConlusionUsing more reent data, this paper updates previous studies on Chinese stok-returnvolatility by examining the return volatility and the asymmetri e�et of market newson the volatility in the Chinese stok markets using a nonparametri approah. Further,in order to avoid the urse of dimensionality, the bak-�tting algorithm from the gener-alized additive model of Hastie and Tibshirani (1990) is applied to the nonparametrismoothing tehnique from Bülman and MNeil (2002). Compared with the parametriGARCH models ommonly used for apturing volatility asymmetry, the nonparametrimodels perform muh better in apturing the asymmetry e�et and in desribing theharateristis of Chinese stok-return volatility.With respet to the predited return volatility's asymmetri reation to good newsand bad news, we �nd that the return volatility responds more strongly to bad news inthe Chinese stok markets in our sample period. We extend the news impat urve tothe nonparametri setting to further examine the asymmetry e�et implied by the GAMNP model. Interestingly, the evidene based on the news impat urve of the GAM NPmodel suggests that the good-news-hasing behavior of the Chinese domesti investorontinued. Additionally, the markets behave suh that they require a ertain amount ofgood news in order to remain as alm as possible.When all the models are employed to obtain the overnight out-of-sample foreast,the nonparametri models yield the lowest foreast errors and outperform the paramet-ri models by apturing the observed spikes in the volatility of returns. In ontrast, theEGARCH and the GJR models tend to overestimate the volatility and returns in thehigh-volatility periods. The foreasted returns are therefore more aurate from the non-parametri model espeially when the market is very volatile. There are many emergingstok markets attrating investors from all over the world. These markets may be as im-perfet and inomplete as the Chinese stok markets have been. We reommend the useof the GAM NP and the NP model in estimating and investigating the return volatilityin the Chinese stok markets and other emerging stok markets with features similar tothose of the Chinese stok markets.
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Tables
Table 2.1: Simulation results from the parametri and nonparametri modelsNormal Student-tModel MSE MAE MSE MAEGARCH 0.5554 (0.0466) 0.6154 (0.0201) 0.5553 (0.0464) 0.6155 (0.0201)GJR 0.3901 (0.0424) 0.5070 (0.0272) 0.3896 (0.0420) 0.5066 (0.0270)EGARCH 0.3004 (0.0445) 0.4295 (0.0296) 0.2976 (0.0378) 0.4273 (0.0230)NP 0.2614 (0.0477) 0.4051 (0.0373) 0.2614 (0.0477) 0.4051 (0.0373)GAM NP 0.2215 (0.0581) 0.3387 (0.0459) 0.2215 (0.0582) 0.3387 (0.0459)Note: This table shows the estimated mean of the Mean Squared Errors (MSE) and the mean of theMean Absolute Errors (MAE) for the estimated samples of n = 1000 and 50 realizations for the GARCH,GJR, EGARCH, and nonparametri models. In the ase of the t distributed errors, there are four degreesof freedom. The standard errors of the MSE and the MAE are in parentheses.
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Table 2.2: Simulation results from the GAM NP and the NP modelNormal Student-tNP model GAM NP model NP model GAM NP modelModel MSE MAE MSE MAE MSE MAE MSE MAEGARCH 0.555 (0.047) 0.615 (0.020) 0.555 (0.047) 0.615 (0.020) 0.555 (0.046) 0.616 (0.020) 0.555 (0.046) 0.616 (0.020)Iteration 1 0.347 (0.043) 0.460 (0.027) 0.286 (0.048) 0.393 (0.031) 0.347 (0.043) 0.460 (0.027) 0.286 (0.048) 0.393 (0.031)Iteration 2 0.281 (0.045) 0.414 (0.032) 0.237 (0.053) 0.349 (0.041) 0.281 (0.045) 0.414 (0.032) 0.237 (0.053) 0.349 (0.041)Iteration 3 0.267 (0.045) 0.406 (0.034) 0.225 (0.056) 0.339 (0.044) 0.267 (0.045) 0.406 (0.034) 0.225 (0.056) 0.339 (0.043)Iteration 4 0.262 (0.044) 0.405 (0.033) 0.221 (0.055) 0.338 (0.044) 0.262 (0.044) 0.405 (0.033) 0.221 (0.055) 0.338 (0.044)Iteration 5 0.264 (0.046) 0.406 (0.035) 0.221 (0.058) 0.337 (0.045) 0.264 (0.046) 0.406 (0.035) 0.221 (0.057) 0.337 (0.045)Iteration 6 0.263 (0.047) 0.406 (0.037) 0.222 (0.058) 0.339 (0.045) 0.263 (0.047) 0.406 (0.037) 0.222 (0.058) 0.339 (0.045)Iteration 7 0.262 (0.048) 0.405 (0.037) 0.224 (0.061) 0.341 (0.049) 0.262 (0.048) 0.405 (0.037) 0.224 (0.061) 0.341 (0.049)Iteration 8 0.263 (0.048) 0.406 (0.037) 0.224 (0.060) 0.340 (0.047) 0.263 (0.048) 0.406 (0.037) 0.224 (0.060) 0.340 (0.047)Final 0.261 (0.048) 0.405 (0.037) 0.221 (0.058) 0.339 (0.046) 0.261 (0.048) 0.405 (0.037) 0.221 (0.058) 0.339 (0.046)Note: This table shows the estimated mean of the Mean Squared Errors (MSE) and the mean of the Mean Absolute Errors (MAE) at eah iterationfor the simulated sample of n = 1000 and 50 realizations for the GAM NP and NP models. The �rst iteration of the nonparametri models is basedon the result of the GARCH model. In the ase of the t distributed errors, there are four degrees of freedom. The standard errors of the MSE andthe MAE are in parentheses.



TABLES 33Table 2.3: Data desriptionShanghai Composite Index (SHCI) Shenzhen Component Index (SZCI)Size 2573 2573Mean 0.068 0.067Median 0.070 0.048Min −9.334 −9.935Max 9.401 9.530Std. Dev. 1.576 1.738Skewness −0.203 −0.090Kurtosis 8.331 7.524JB test 3064.2 (0.001) 2198.0 (0.001)ADF test −50.972 (0.001) −49.107 (0.001)Correlation 0.926Note: This table reports summary statistis for the Shanghai Composite Index (SHCI) and the ShenzhenComponent Index (SZCI) return series from January 1997 to August 2007. The JB test is the Jarque�Bera test for normality and the ADF test is the augmented Dikey�Fuller test for stationarity. The pvalues for the Jarque�Bera test and the augmented Dikey�Fuller test are reported in parentheses.
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Table 2.4: In-sample estimations of the GARCH, EGARCH, and GJR modelsShanghai Composite Index Shenzhen Component IndexGARCH EGARCH GJR GARCH EGARCH GJRNormal Student-t Normal Student-t Normal Student-t Normal Student-t Normal Student-t Normal Student-t
µ 0.000 0.014 −0.011 0.009 −0.018 0.004 −0.021 −0.029 0.040 −0.034 −0.034 −0.037

(0.021) (0.023) (0.024) (0.023) (0.025) (0.023) (0.026) (0.026) (0.029) (0.025) (0.028) (0.026)

ω 0.095 0.093 0.038 0.027 0.082 0.090 0.067 0.097 0.080 0.027 0.062 0.093
(0.013) (0.023) (0.005) (0.009) (0.012) (0.022) (0.010) (0.024) (0.010) (0.009) (0.010) (0.024)

α1 0.139 0.117 0.242 0.239 0.098 0.077 0.100 0.102 0.276 0.216 0.082 0.080
(0.011) (0.018) (0.018) (0.029) (0.011) (0.018) (0.007) (0.016) (0.018) (0.027) (0.008) (0.016)

β1 0.829 0.848 0.964 0.957 0.845 0.844 0.879 0.865 0.932 0.967 0.882 0.863
(0.013) (0.021) (0.006) (0.010) (0.012) (0.021) (0.007) (0.019) (0.009) (0.009) (0.007) (0.019)

γ −0.036 −0.063 0.060 0.095 0.028 −0.035 0.036 0.055
(0.008) (0.016) (0.014) (0.028) (0.010) (0.014) (0.011) (0.024)DoF 4.638 4.87 4.725 4.848 4.952 4.882

(0.455) (0.486) (0.458) (0.517) (0.539) (0.518)Q(20) 24.32 24.43 24.91 25.48 25.12 25.53 27.29 27.17 26.10 27.55 28.28 28.97Note: This table shows the estimated oe�ients of the parametri GARCH, GJR and EGARCH models for the Shanghai Composite Index andthe Shenzhen Component Index return series. The sample period is from January 1997 to August 2006. The data are on a daily basis and have2,330 observations. All returns are saled by 100. The GARCH, GJR and EGARCH models are estimated aording to equations 2.1, 2.2 and 2.3.The standard errors are reported in parentheses. The last row reports the test statistis of the Ljung�Box Q-test for residual autoorrelation of allmodels at lag 20. The ritial value for 20 lags at the 5% signi�ane level is 31.4104.



TABLES 35Table 2.5: Goodness of �t for in-sample foreastsSHCI SZCIModel Distribution MSE1 MAE1 MSE2 MAE2 MSE1 MAE1 MSE2 MAE2GARCH Normal 39.123 2.677 1.310 0.879 48.509 3.081 1.472 0.934Student-t 38.908 2.655 1.297 0.878 48.380 3.062 1.461 0.934EGARCH Normal 38.037 2.576 1.246 0.859 48.232 3.061 1.462 0.944Student-t 37.883 2.564 1.240 0.858 47.956 3.013 1.431 0.926GJR Normal 38.884 2.663 1.299 0.875 48.564 3.082 1.471 0.933Student-t 38.787 2.652 1.293 0.873 48.457 3.068 1.462 0.934NP Normal 37.846 2.595 1.261 0.870 47.734 3.037 1.439 0.930Student-t 37.851 2.596 1.261 0.870 47.735 3.037 1.438 0.929GAM NP Normal 37.700 2.553 1.236 0.857 47.858 3.015 1.429 0.924Student-t 37.708 2.553 1.238 0.856 47.874 3.012 1.429 0.924Note: This table shows the goodness of �t of all models for the in-sample foreast for the ShanghaiComposite index (SHCI) and the Shenzhen Component Index (SZCI) using four di�erent measures.
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36 CHAPTER 2Table 2.6: The DM test results for the in-sample foreastsGAM NP NPModel Distribution MSE1 MAE1 MSE2 MAE2 MSE1 MAE1 MSE2 MAE2SHCIGARCH Normal 3.209 5.504 4.512 4.231 2.389 3.710 2.977 2.003Student-t 2.874 4.905 4.022 4.024 2.224 3.000 2.399 1.889EGARCHNormal 1.0464 1.653 1.026 0.378 0.550 −1.443 −1.472 −3.882Student-t 0.796 0.859 0.506 0.168 0.118 −2.710 −2.353 −4.99GJR Normal 2.856 5.51 4.389 3.820 1.954 3.379 2.545 1.209Student-t 2.562 5.329 4.294 3.812 1.700 2.888 2.212 0.832SZCI GARCH Normal 2.373 4.988 4.648 3.199 2.165 3.268 3.566 1.468Student-t 2.271 4.187 3.940 3.613 2.000 2.281 2.805 2.140EGARCHNormal 0.897 2.701 2.759 4.860 1.049 1.324 1.864 3.593Student-t 0.445 0.125 0.266 0.565 0.883 −2.171 −0.963 −1.269GJR Normal 2.419 5.506 5.029 3.347 2.160 3.476 3.589 1.332Student-t 2.223 5.155 4.681 3.910 1.865 2.638 2.828 1.975Note: This table shows the DM test results of various models for the in-sample foreasts of the ShanghaiComposite Index (SHCI) and the Shenzhen Component Index (SZCI). The reported values are the teststatistis of the DM test under the null hypothesis that the improvement of the model in the olumn(the GAM NP and the NP model) upon the model in the row (the parametri models) is not signi�ant.The nonparametri models in the olumns are the benhmark models. The signi�ane level is 5%.



TABLES 37Table 2.7: The Goodness of �t for the out-of-sample foreastsShanghai Composite Index Shenzhen Component IndexBenhmark I Benhmark II Benhmark I Benhmark IIModel Distribution MSE MAE MSE MAE MSE MAE MSE MAEGARCH Normal 2.13 1.129 0.596 0.578 2.602 1.257 0.731 0.653Student-t 2.088 1.114 0.587 0.575 2.559 1.241 0.709 0.642EGARCH Normal 2.026 1.087 0.573 0.546 2.531 1.228 0.696 0.644Student-t 1.983 1.064 0.577 0.542 2.49 1.218 0.693 0.62GJR Normal 2.138 1.123 0.639 0.587 2.607 1.256 0.724 0.643Student-t 2.12 1.109 0.625 0.581 2.563 1.238 0.744 0.655NP Normal 1.905 1.047 0.515 0.526 2.411 1.195 0.686 0.614Student-t 1.903 1.045 0.517 0.525 2.403 1.192 0.689 0.614GAM NP Normal 1.909 1.056 0.516 0.526 2.468 1.205 0.690 0.620Student-t 1.908 1.055 0.517 0.525 2.442 1.207 0.689 0.619Note: This table shows the goodness of �t for various models for the out-of-sample foreast in theShanghai and Shenzhen markets. The out-of-sample period is from September 2006 to August 2007.Benhmark I uses σ̂t =
√

(yt)2 as the true volatility proxy. Benhmark II uses the realized volatility,
σ̂t =

√

∑n

i=1 r
2
i,t, as the true volatility proxy, where n is the total number of high frequeny intervals, i,in day t



38 CHAPTER 2Table 2.8: The DM test results for out-of-sample foreastsVolatility Shanghai Composite Index Shenzhen Component Indexproxy GAM NP NP GAM NP NPBenhmark Model Distribution MSE MAE MSE MAE MSE MAE MSE MAEI GARCH Normal 4.47 5.04 4.50 5.50 3.32 4.57 4.00 4.77Student-t 3.73 4.44 3.96 5.07 2.97 3.82 3.87 4.16EGARCH Normal 2.28 2.46 2.92 3.57 1.98 2.02 2.22 2.21Student-t 2.19 1.89 2.51 2.01 1.87 1.99 2.11 1.99GJR Normal 4.53 4.55 4.68 5.28 3.70 4.79 4.14 4.54Student-t 4.32 3.87 4.45 4.55 3.74 4.08 4.10 3.78II GARCH Normal 2.49 3.24 2.78 3.44 3.98 3.12 4.36 3.85Student-t 2.20 3.03 2.59 3.31 3.41 2.61 3.88 3.25EGARCH Normal 2.05 2.27 2.26 2.26 0.32 1.68 0.65 1.95Student-t 3.17 2.14 3.15 2.13 0.22 0.80 0.35 1.06GJR Normal 3.35 3.77 3.68 4.16 2.77 3.56 4.61 3.98Student-t 3.76 4.14 4.00 4.49 2.30 3.23 4.17 3.39

Note : This table shows the DM test results for the goodness of �t for various models for the out-of-sample foreast in Shanghai and Shenzhen markets. The reported values are the test statistis from theDM test under the null hypothesis that the improvement of the model in the olumn upon the model inthe row is not signi�ant. The Benhmark I uses σ̂t =
√

(yt)2 as the true volatility proxy. The BenhmarkII uses the realized volatility RVt =
√

∑n

i=1 r
2
i,t as the true volatility proxy.



Figures
Figure 2.1: Volatility surfaes from simulated proesses
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(b) Asymmetri: proess (2.11)Note: This �gure plots the volatility surfaes from the proesses spei�ed in equations 2.10 and 2.11.
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40 CHAPTER 2Figure 2.2: Smoothed volatility surfae from eah iteration

Note: This �gure plots the volatility surfae of the GAM NP model at eah iteration of a randomlyhosen realization. The last plot is the �nal smoothed volatility surfae. In eah plot, the z-axis is thesmoothed volatility from eah iteration. The x-axis is the lagged return, Xt−1. The y-axis is the laggedsmoothed sigma, σ̂t−1, from the previous iteration.



FIGURES 41Figure 2.3: Estimated and the true volatility

Note: This �gure plots the true volatility and the estimated volatility from the GARCH and the GAMNP model for a randomly hosen iteration of 100 points. The solid line is the true volatility and thedotted line is the estimated volatility. The left plot is the true and estimated volatility from the GARCHmodel. The right plot is the true and estimated volatility from the GAM NP model.



42 CHAPTER 2Figure 2.4: Prie and return for Shanghai Composite Index and the Shenzhen Compo-nent Index
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Note: This �gure plots the prie and the return series of the Shanghai Composite Index (SHCI) andthe Shenzhen Component Index (SZCI) for the entire sample period from January 1997 to August 2007.The �rst two plots are the prie and return series of the SHCI and the last two plots are the prie andthe return series of the SZCI.



FIGURES 43Figure 2.5: The 90 % onditional predition interval
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Note: This �gure plot the 90% onditional predition interval for the return of the Shanghai CompositeIndex and the Shenzhen Component Index. The returns intervals are alulated based on the out-of-sample foreast results for these two series. The out-of-sample foreast starts on September 01, 2006 andends on August 31, 2007.
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Figure 2.6: News impat urves
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Note: This �gure plot the news impat urve from the GAM NP, EGARCH and GARCH models. The
x-axis represents the lagged market news, and the y-axis represents the volatility alulated based onequation 15 (for parametri models) and equation 16 (for the GAM NP model).



Chapter 3Modeling and ForeastingShort-Term Interest Rate Volatility:A Semiparametri Approah3.1 IntrodutionThere is an extensive literature on the modeling of the short-term interest rate as thisrate is fundamental to the priing of �xed-inome seurities. The short-term rate isalso a neessary input, for example, for the optimal portfolio hoie, hedging strategies,and other investment deisions. Further, the short rate in�uenes the maro eonomy;therefore, it is a target instrument for monetary poliy makers. One of the earliest papersthat formally ompares a number of single-fator models is Chan et al. (1992) (we referthe proposed model from this paper as CKLS hereafter). Based on U.S. data, their studyontroversially rejets the ommonly adopted square root di�usion model of Cox et al.(1985), whereby the volatility of short-rate hanges is proportional to the square rootof the interest-rate levels. Instead, their model shows that volatility is more sensitive tointerest-rate levels, speifying an exponent for the ommonly known level e�et in theregion of 1.5. A more reent study by Brenner et al. (1996) (we refer the proposed modelfrom this paper as BHK hereafter) shows that models that parameterize volatility as afuntion of only interest-rate levels tend to over emphasize the sensitivity of volatility tolevels and do not take into onsideration the serial orrelation in onditional varianes.They propose a new lass of models whih allows volatility to depend on both interest-rate levels and information shoks. There is by now a general onsensus in the literaturethat short-rate models that aount for both the levels e�et and serial orrelation in thevolatility proesses perform better than models that parameterize only the levels e�etor the serial dependene in the onditional varianes (Bali, 2000).Unlike for the di�usion proess, analysis of short-rate models provides mixed empirialevidene of mean reversion and it remains highly ontroversial about whether the possiblemean reversion is linear or nonlinear. While a large proportion of researh reports a lineardrift (see, e.g., CKLS and the models nested by it), others argue to the ontrary (Aït-45



46 CHAPTER 3Sahalia, 1996b,a Conley et al., 1997 Jones, 2003), �nding nonlinear mean reversion. Usinga semi-nonparametri approah, Aït-Sahalia (1996b,a) onstruts a general spei�ationtest of a short-rate model and rejets a linear drift in favor of models that imply no meanreversion for levels of the short rate between ertain threshold levels and strong meanreversion for extreme levels of the short rate. Stanton (1997) and Jiang (1998) estimatea model of the short rate nonparametrially using di�erent data sets from Aït-Sahalia(1996b) and �nd evidene in support of nonlinearities in the drift funtion. Arapis andGao (2006) also use nonparametri methods to show that the short-rate drift is nonlinear.Bali and Wu (2006) doument evidene that the speeds of mean reversion for short-term interest rates at extremely high interest rates suh as in the Volker (1979�1982)regime are di�erent than at normal times. They attribute the nonlinearity in short-rate drift to the di�erenes in the degree of mean reversion at di�erent interest-ratelevels. Christiansen (2010) allows for extreme value mean reversion by inluding thesmallest short rate during the previous year in the mean equation and �nds that the USshort rates exhibit extreme value mean reversion. Be that as it may, the robustness ofthe nonlinear drift funtion in short-rate models has been questioned by some authors.Pritsker (1998) examines the �nite-sample properties of Aït-Sahalia's nonparametri test,showing that upon adjusting for the high persistene in interest rates, the nonlinearityin the drift funtion beomes statistially insigni�ant. Chapman and Pearson (2000)perform simulation exerises and show that the evidene supporting the nonlinear driftfuntion ould be an artifat of the nonparametri estimation proedure rather than atrue feature of the data-generating proess. Using Bayesian estimation methods, Jones(2003) shows that the determination of short-rate drift spei�ation is dependent on theassumption of the prior distribution. In partiular, under the assumption of a �at priordistribution and the imposition of stationarity in interest-rate dynamis, he identi�es anonlinear drift. However, when he implements an approximate Je�rey's prior, there isno mean-reverting evidene. Durham (2004) �nds that the signi�ane of nonlinearity inthe drift funtion depends on the spei�ation of the di�usion proess, a �nding whihagrees with Bali (2007). Takamizawa (2008) uses ross-setional relations to estimate Aït-Sahalia's (1996a) model, but he �nds that there is generally no nonlinear mean reversion.This paper onsiders an alternative method for modeling short-rate volatility. We ap-ply a semiparametri smoothing tehnique to the generalized autoregressive onditionalheteroskedastiity (GARCH) model of short-rate volatility. This involves estimating aparametri form of the short-rate drift funtion followed by estimating the hidden volatil-ity proess nonparametrially. Beause the literature is divided on the appropriate driftspei�ation, we estimate both linear and nonlinear drift funtions of the short rate. Theestimation of a parametri drift spei�ation quali�es this approah as a semiparametrimethod (Jiang and Knight, 1997). To estimate the latent volatility proess, we use the al-gorithm developed by Bülman and MNeil (2002) and apply it to Hastie and Tibshirani's(1990) generalized additive model. Bülman and MNeil (2002) argue that estimating thevolatility proess with the nonparametri approah is less sensitive to model misspe-i�ation and does not require a priori knowledge of the innovation distribution. Thisfeature makes the appliation of the nonparametri method attrative for estimating a



3.1. INTRODUCTION 47short-rate di�usion proess given that short rates are known to possess distributions thatdepart from normality. We speify the latent volatility proess as a general additive fun-tion of the lagged value of the onditional variane, innovations, and interest-rate levels.This spei�ation is onsistent with a lass of single-fator short-rate di�usion modelswhere the volatility of short-rate hanges is serially dependent on past volatility, squaredinnovations, and interest-rate levels. In addition, the additive struture of the hiddenvolatility failitates the use of a bak�tting algorithm to estimate the di�usion proess.The potential usefulness of the proposed semiparametri approah for estimatingshort-rate volatility is examined by omparing its foreast performane with a variety ofone-fator short-rate di�usion models. Results from our Monte Carlo simulation illustratethe robustness of the semiparametri approah when estimating the short-rate hanges'sensitivity to misspei�ation in the short-rate drift funtion and the underlying innova-tion distribution. Moreover, the foreast performane of the semiparametri approah issuperior to that of the parametri models onsidered in the simulated data. The empirialappliation to three-month U.S. Treasury bill yields suggests that the semiparametri es-timation proedure provides in-sample and out-of-sample volatility foreasts superior tothe short-rate volatility models of BHK, whih feature asymmetri and level-dependentonditional variane. Although the semiparametri approah does not speify the asym-metri feature of the volatility proess, this proedure improves upon the �t and thepreditive power of the volatility estimates. We do not �nd any evidene of nonlinear-ities in short-rate drift or onditional skewness in the short-rate-hange distribution.Finally, we demonstrate that the semiparametri approah, whih yields a greater degreeof auray in modeling short-rate-hange volatility, has pertinent impliations for pri-ing long-dated and path-dependent interest-rate derivatives.1 Using simulation methods,we show that the semiparametri modeling approah gives rise to signi�antly di�erentprobability distributions of future interest-rate levels ompared with parametri short-rate models. The on�dene intervals of future interest-rate levels are narrower than forany of the parametri models onsidered, thereby leading to a less prie variability forinterest-rate derivatives.The rest of the paper is organized as follows. Setion 3.2 desribes the short-ratemodels and the semiparametri smoothing tehnique. Setion 3.3 outlines the design ofthe Monte Carlo experiment to examine the in-sample preditive power of the semi-parametri approah and its foreast property when subjet to possible misspei�ationsin the drift funtion and the innovation distribution. This setion also reports the re-sults of the simulation study. Setion 3.4 applies the semiparametri tehnique to theU.S. short-term interest rates to evaluate its in-sample and out-of-sample foreast per-formane relative to other short-rate models. Impliations of this foreast improvementon priing interest-rate derivatives are also disussed. Setion 3.5 onludes.1These interest-rate derivatives inlude index amortizing rate swaps, CMO swaps, swaptions, mort-gages, and adjustable-rate preferred seurities.



48 CHAPTER 33.2 The short-rate models and the semiparametri approah3.2.1 The short-rate modelsThe generalized ontinuous-time short-rate spei�ation of CKLS is,
dr = (µ+ λr) dt+ φrδdW, (3.1)where r denotes the level of the short-term interest rate, W is a Brownian motion, and

µ, λ, and δ are parameters. The drift omponent of short-term interest rates is apturedby µ + λr while the variane of unexpeted hanges in interest rates equals φ2r2δ. Theparameter φ is a sale fator and δ ontrols the degree to whih the interest-rate levelin�uenes the volatility of short-term interest-rate hanges. The CKLS model nests manyof the existing interest-rate models. For example, when δ = 0 then (3.1) redues toVasiek's (1977) model, while δ = 1/2 yields the Cox et al. (1985) model, see CKLSinter alia for further details. There is a dearth of literature fousing on the univariateCKLS model. Czellar et al. (2007) study di�erent estimation tehniques for the CKLSshort-rate model. Bali and Wu (2006) investigate extensions of the mean spei�ation ofthe CKLS model. On the other hand, Nowman and Sorwar (2005) use the CKLS modelto prie bonds and ontingent laims.It is ommon to onsider the Euler�Maruyama disrete time-approximation to (3.1):
∆rt = µ+ λrt−1 + εt. (3.2)Let Ωt−1 represent the information set available at time t− 1, and let E(εt | Ωt−1) = 0.Suppose ht represent the onditional variane of the short-term interest-rate hanges;then E(ε2t | Ωt−1) ≡ ht = φ2r2δt−1. It an be seen that the only soure of onditionalheteroskedastiity in (3.2) is through the level of the interest rate. BHK relaxes theassumption of a onstant φ2 by allowing it to vary aording to the information arrivalproess. One ommon approah to apturing the e�et of unantiipated news is theGARCH(1,1) model:

ht = α0 + α1ε
2
t−1 + α2ht−1. (3.3)The innovation εt denotes a hange in the information set from time t−1 to t and an betreated as a olletive measure of unantiipated news. In (3.3), only the magnitude of theinnovation is important in determining ht. BHK extends (3.2) to allow information fromunantiipated news and the one-period lagged interest-rate levels to govern the dynamisof short-rate volatility in the following way.

∆rt = µ+ λrt−1 + εt,

εt =
√

htzt, zt ∼ t(v) and
ht = α0 + α1ε

2
t−1 + α2ht−1 + br2δt−1 (3.4)Equation (3.4) is known as the GARCH-X proess. Under the restrition α0 = α1 =

α2 = 0, (3.4) ollapses to (3.2) where b = φ2 and volatility depends on interest-rate levels



3.2SHORT-RATE MODELS 49alone. Furthermore, when b = 0, there is no levels e�et. The GARCH-X model doesnot permit short-rate volatility to respond asymmetrially to interest-rate innovationsof di�erent signs. BHK relaxes the assumption of a symmetri GARCH-X proess bymodeling the onditional variane spei�ation as
ht = α0 + α1ε

2
t−1 + α2ht−1 + br2δt−1 + α3ξ

2
t−1, (3.5)where ξt−1 = min(0, εt−1). BHK refers to this model as the AsyGARCH-X. For simpli-ity, we refer to the symmetri (asymmetri) GARCH-X as the GARCHX (AGARCHX)model. For the purpose of this paper, we only onsider the additive levels e�et as the(A)GARCHX model is onsistent with the generalized additive nonparametri GARCHmodel disussed in the next subsetion.2 In pratie, when estimating the (A)GARCHXmodel, it is ommon to sale the interest-rate-level term in the variane equation with afator (1/10) suh that the levels dependene in the onditional variane is aptured by

b(rt−1/10)
2δ (see Brenner et al., 1996).The linear drift in equation (3.2) implies that the strength of mean reversion is thesame for all levels of the short rate. Even though there is no a priori eonomi intuitionthat would suggest the existene of a nonlinear drift, empirial researh has shown thatthere is evidene of nonlinear drift in short-term interest rates. That is, mean reversionis stronger for extreme low or high levels of short rates. Aït-Sahalia (1996b) advoatesthe use of a �exible funtional form to approximate the true unknown shapes of theshort-rate proess. He estimates a short-rate model,

drt = (µ+ λ1rt + λ2r
2
t +

λ3

rt
)dt+

√
β0 + β1rt + β2r

β3
t dWt, (3.6)and �nds that the test rejets a linear drift in favor of models that imply no meanreversion for levels of the short rate between 4% and 22% and strong mean reversion forlevels outside that range. Conley et al. (1997) adopt the same drift parameterizations asAït-Sahalia but keeps the onstant elastiity variane di�usion used by CKLS:

drt = (µ+ λ1rt + λ2r
2
t +

λ3

rt
)dt+ σrγt dWt. (3.7)They �nd that the drift funtion displays mean reversion only for rates below 3% orabove 11%. Bali (2007) also estimates Aït-Sahalia's (1996b) nonlinear drift spei�ation in(3.6) but with a di�usion proess that follows a GARCH(1,1) model and is dependent oninterest-rate levels. Bali and Wu (2006) estimate a variant of the drift spei�ation in (3.6)whih inludes a �fth-order polynomial. Beause of the extensive researh that adoptsAït-Sahalia's (1996b) nonlinear drift spei�ation and the possible in�uene this nonlineardrift might exert on the onditional volatility of interest-rate hanges, we also estimate2BHK also onsiders the multipliative levels e�et in whih φ2 in E

(

ε2t | Ωt−1

)

≡ ht = φ2r2δt−1 followsa GARCH(1,1) proess.



50 CHAPTER 3a disrete-time approximation of Aït-Sahalia's (1996b) nonlinear drift spei�ation,
∆rt = µ+ λ1rt−1 + λ2r

2
t−1 +

λ3

rt−1
+ εt, (3.8)and the onditional variane of the short-term interest-rate hanges that follows equation(3.5).Empirial studies on short-term interest rates have shown that the standardizedresiduals obtained from the GARCH models exhibit leptokurtosis. The assumption ofnormality is easily rejeted by the Jarque�Bera test when applied to short-rate data.Consequently, the Student's t distribution is ommonly employed to apture the thikertails in the empirial distribution of short rates. There are, however, other nonnormaldistributions that have been used to haraterize the distribution of short-rate hanges.In partiular, muh attention has been paid in modeling the skewness of the distribu-tion. Bali (2007) adopts the skewed generalized error distribution of Theodossiou (1998)as well as Hansen's (1994) skewed t distribution to apture the skewness in the empir-ial distribution of the three-month U.S. Treasury bill yield. Following Bali (2007), weemploy both the Student's t and Hansen's skewed t distributions in the Monte Carlo ex-periment and empirial appliation. For the skewed t distribution, we de�ne the residualsin equation (3.4) as

εt =
√

htzt, zt ∼ Hansen's t(v, η). (3.9)The parameters η and v ontrol the diretion of asymmetry and kurtosis of the distribu-tion. Hansen's skewed t distribution is de�ned by
f(zt; Θ, v, η) =





bc

(
1 + 1

v−2

(
bzt+a
1−η

)2)− v+1
2 if zt < −a

b

bc

(
1 + 1

v−2

(
bzt+a
1+η

)2)− v+1
2 if zt ≥ −a

b
,

(3.10)where zt =
εt√
ht
, Θ is the set of parameters assoiated with the drift and di�usion spei-�ations of the short-rate model, and the onstants a, b and c are given by

a = 4ηc

(
v − 2

v − 1

)
, b2 = 1 + 3η2 − a2, c =

Γ
(
v+1
2

)
√

π(v − 2)Γ
(
v
2

) .For η = 0, Hansen's distribution redues to the traditional standardized t distribution,while for η = 0 and v = ∞, it redues to a normal density. The density (3.10) is de�nedfor 2 < v < ∞ and −1 < η < 1.



3.2SHORT-RATE MODELS 513.2.2 The generalized additive semiparametri GARCH modelConsider the short-rate model,
Xt = σtZt (3.11)
σ2
t = f1(Xt−1) + f2(σ

2
t−1) + f3(rt−1), (3.12)where {{Zt; t ∈ Z} is an i.i.d innovation with zero mean, unit variane, and �nite fourthmoment; Xt = ∆rt− (µ+λrt−1) for a linear drift; and Xt = ∆rt− (µ+λ1rt−1+λ2r

2
t−1+

λ3
rt−1

) for a nonlinear drift. Let f1 : ℜ → ℜ+, f2 : ℜ+ → ℜ+, and f3 : ℜ+ → ℜ+ be stritlypositive-valued funtions. The onditional variane and volatility are denoted by σ2
t and

σt, respetively. Further, assume that Xt and rt are stationary stohasti proesses and
{Xt : t ∈ Z} is adapted to the σ-�ltration {Ft; t ∈ Z} with Ft = σ ({Xs; s ≤ t}). Theassumption of stationarity in rt is empirially veri�ed by performing Seo's (1999) unitroot test on the three-month U.S. Treasury bill rate. To ensure omparability with theCKLS and BHK short-rate models, we �rst estimate the linear drift funtion spei�edin equation (3.2). However, given the vast literature on short-rate models with nonlin-ear drift funtions, we also investigate Aït-Sahalia's (1996b) nonlinear-drift spei�ationgiven by equation (3.8). The exat form of the funtions f1, f2, and f3 in (3.12) is leftunspei�ed, but it an be estimated by a nonparametri method in whih X2

t is regressedon the lagged variables Xt−1, σ2
t−1, and rt−1. To show that this proedure is appliablefor estimating the unobserved variable σ2

t , we rewrite the model (3.11 and 3.12) as
X2

t = f1(Xt−1) + f2(σ
2
t−1) + f3(rt−1) + Vt (3.13)

Vt =
[
f1(Xt−1) + f2(σ

2
t−1) + f3(rt−1)

]
(Z2

t − 1),where Vt is a martingale di�erene series with E(Vt) = E(Vt | Ft−1) = 0 and cov(Vs, Vt) =
cov(Vs, Vt | Ft−1) = 0 for s < t. Taking the onditional expetations of X2

t in (3.13) yields
E(X2

t | Ft−1) = f1(Xt−1) + f2(σ
2
t−1) + f3(rt−1), (3.14)and its onditional variane an be shown to be

var(X2
t | Ft−1) =

[
f1(Xt−1) + f2(σ

2
t−1) + f3(rt−1)

]2 [
E(Z4

t )− 1
]
. (3.15)To estimate the latent variable σ2

t in (3.12), we adopt the estimation algorithm ofBülman and MNeil (2002). For a given data sample, we �rst alulate the volatility esti-mate, σ̂t,0, by estimating the linear drift spei�ation (3.2) and the onditional variane(3.3) using the method of maximum likelihood. Further, we verify that the semiparamet-ri approah is robust to possible nonlinear drift by alulating the volatility estimate
σ̂t,0 with a nonlinear drift spei�ation. Note that σ̂t,0 is used as the initial volatilityestimate. In the �rst iteration, we regress {X2

t ; 2 ≤ t ≤ n
} against {Xt−1; 2 ≤ t ≤ n},{

σ̂2
t−1,0; 2 ≤ t ≤ n

}, and {rt−1; 2 ≤ t ≤ n} using a nonparametri smoothing proedure



52 CHAPTER 3with a bak�tting algorithm to obtain an estimate f̂i,1 of fi for i = 1, 2 and 3.3 Theregression is performed with regression weights {σ̂−2
t,0 ; 2 ≤ t ≤ n

} as this yields improvedestimates of σ2
t (Bülman and MNeil, 2002). Having estimated fi,1, we then alulate

σ̂2
t,1 = f̂1,1(Xt−1) + f̂2,1(σ̂

2
t−1,0) + f̂3,1(rt−1). In the next iteration, we perform anotherregression to obtain f̂i,2 and σ̂2

t,2 whih yields improved estimates of the onditional vari-ane σ̂2
t,2. This iterative proess is performed for a prespei�ed number of iterations, m.As shown by Bülman and MNeil (2002) and aording to our estimation experiene,whih is doumented in the simulation results, the improvement over the parametriGARCH estimation of volatility an be attained in a small number of iterations, usuallythe �rst four iterations. The algorithm an be improved by averaging over the �nal Kestimates:

σ̂t,∗ =
1

K

M∑

m=M−K+1

σ̂t,m. (3.16)Note that we average over the volatility rather than the onditional variane sine σ̂t isour proxy for volatility. In the �nal smoothing, we regress X2
t against Xt−1, σ̂2

t−1,∗, and
rt−1 to obtain f̂i and σ̂2

t = f̂1(Xt−1) + f̂2(σ̂
2
t−1,∗) + f̂3(rt−1). In our empirial appliationand simulation experiments, we obtain the �nal smoothing based on K = 4 for eightiterations (m = 8).3.3 Monte Carlo study3.3.1 Experimental designThe purpose of the simulation experiment is to illustrate the superior volatility-foreastperformane of the semiparametri proedure ompared with parametri short-rate mod-els. In addition, we show that the semiparametri method yields volatility foreasts thatare invariant to the underlying distribution of the short rate and its drift spei�ation.The data generating proess (DGP) for interest rates with a linear drift follows theAGARCHX model (3.2) and (3.5). Spei�ally, the DGP with a linear drift is

∆rt = 0.06− 0.008rt−1 + εt,

εt = σtzt, zt ∼ t (4), (3.17)
σ2
t = 0.24 + 0.1026ε2t−1 + 0.5595ξ2t−1 + 0.3282σ2

t−1 + 0.015(rt−1/10),where ξt−1 = min(0, εt−1). The use of Student's t distribution for the interest-rate inno-vation is onsistent with the widely observed nonnormal short-term interest-rate distri-bution. Moreover, for the purpose of examining the e�ets of nonlinear drift funtions on3For a disussion of the bak�tting algorithm, refer to Friedman and Stuetzle (1981) and Hastie andTibshirani (1986).



3.3. MONTE CARLO STUDY 53foreasts generated by the semiparametri approah, we onsider the DGP,
∆rt = 0.06 + 0.008rt−1 − 0.01r2t−1 + 0.0002/rt−1 + εt,

εt = σtzt, zt ∼ t (4), (3.18)
σ2
t = 0.24 + 0.1026ε2t−1 + 0.5595ξ2t−1 + 0.3282σ2

t−1 + 0.015(rt−1/10),where ξt−1 = min(0, εt−1). The parameter values used in the DGPs are typial of short-rate empirial researh. We disard the initial 50 observations to mitigate the e�et ofstart-up values yielding samples of 1000 observations, drawn with 50 repliations. Thesmall number of repliations does not bias the results in any way. In fat, this is onsis-tent with the number of repliations performed in the simulation experiment ondutedby Bülman and MNeil (2002). Upon generating the data, we estimate the parametrimodels of short-term interest rates with linear and nonlinear drifts, with symmetri andasymmetri GARCHX models, and with three di�erent innovation distributions, namelynormal, Student's t, and Hansen's (1994) skewed t distributions. In addition, we estimatethe latent volatility using the method of the generalized additive semiparametri GARCHmodel disussed in the previous setion. For both DGPs, we �t linear and nonlinear driftspei�ations before applying the nonparametri smoothing tehnique to the volatilityestimates. The parametri models are estimated by maximizing the log-likelihood fun-tion using the Broyden, Flether, Goldfarb, and Shanno algorithm with the Bollerslevand Wooldridge (1992) robust standard error.To ompare the goodness of �t of the in-sample volatility estimates for the di�erentmodels, we ompute the mean of the Mean Absolute Error (MAE) and the mean of theMean Squared Error (MSE) of eah realization. The MSE and the MAE are alulatedas:
MAE(σ̂.,m) =

1

1000 − r

1000∑

t=r+1

|σ̂t,m − σt| and MSE(σ̂.,m) =
1

1000 − r

1000∑

t=r+1

(σ̂t,m−σt)
2,(3.19)where r = 50 beause the semiparametri estimate of volatility at the �rst �fty timepoints are omitted as these estimates may be unreliable, and m applies only to thesemiparametri approah and refers to the spei� number of iterations. These measuresare omputed at eah iteration of the semiparametri proedure to show the degree ofimprovement in the goodness of �t of the volatility estimates. For the 50 independentrealizations, we average our volatility estimation error statistis to provide an estimateof mean of the MSE and the mean of the MAE, as well as the standard errors for theMSE and MAE estimates.3.3.2 Simulation resultsFigures 3.1(a) and (b) plot volatility estimates from the DGP with linear and nonlineardrifts, respetively. Column three of Figures 3.1(a) and (b) shows volatility plots of thesemiparametri method while olumns one and two show volatility plots of the paramet-



54 CHAPTER 3ri GARCHX and AGARCHX models. Both the true and estimated volatility are plottedtogether to provide a visual impression of the �t. To onserve spae, we only report an ar-bitrarily seleted sample of 100 observations from one of the repliation results. The plotof the volatility estimates produed by the semiparametri method is based on the �nalsmoothed σt estimate. A ursory look at Figures 3.1(a) and (b) suggests that the semi-parametri approah yields volatility estimates that math the true simulated volatilitybetter than the parametri models' estimates. This result is robust to the innovation-distribution assumption. The GARCHX and AGARCHX models fail to produe volatilityestimates that an adequately apture the variation in the true volatility even thoughin some instanes they apture the spikes relatively well. Another interesting observa-tion shows in Figures 3.1(a) and (b) is that the parametri volatility estimates tend tobe higher than the atual volatility level. This is not the ase with the semiparametriestimates; they trae the level of the true volatility well. When omparing the volatilityestimates produed by the GARCHX and the AGARCHX models, we �nd that a modelwith asymmetri onditional variane produes estimates that better depit the atualvolatility. This result may not be surprising as the DGP possesses this asymmetri fea-ture in the onditional variane. There are some indiations that the volatility estimatesgenerated by the same parametri model but with di�erent innovation-distribution as-sumptions are distint. This distintion is less notieable with estimates produed by thesemiparametri approah.- Figures 3.1(a) and (b) about here -Tables 3.1(a) and (b) show the estimation error results for the in-sample volatilityestimates of various short-rate models for DGPs with linear and nonlinear drifts, respe-tively. For both DGPs, there is evidene that the standard GARCH model yields thelargest MSE and MAE. This result is robust to the innovation-distribution assumptionand the drift spei�ation that is estimated. On the other hand, amongst the di�erentparametri GARCH models, the AGARCHX model produes the lowest MSE and MAE.There is evidene that �tting the orret onditional variane spei�ation and usingthe appropriate innovation distribution give rise to signi�ant improvement in the MSEand MAE. In the ase of the linear-drift DGP with a linear drift �t, the improvementin the MSE between the GARCH and AGARCHX models is about 16% for the normaldistribution, 26% for the Student's t distribution, and 16% for the skewed t distribution.On the other hand, for a nonlinear drift DGP with a linear �t, the improvement in theMSE between the GARCH and AGARCHX models is about 12% for the normal distri-bution, 14% for the Student's t distribution, and 9% for the Skewed t distribution. Wealso observe that �tting an erroneous drift spei�ation tends to inrease the MSE andMAE of the in-sample �t. -Tables 3.1(a) and (b) about here -The estimation error of the semiparametri approah for both DGPs indiates thatthe MSE and MAE are substantially smaller than for the parametri models. For the



3.4. EMPIRICAL APPLICATION 55linear drift DGP, between the best-�tting AGARCHX model with linear drift and thesemiparametri approah with linear drift, the improvement in the MSE (MAE) is about21% (6%) for both normal and skewed t distributions, and 20% (6%) for the Student's tdistribution. Similarly, for the nonlinear drift DGP with a nonlinear �t, the improvementis about 9% (4%) for normal distribution, 7% (4%) for Student's t, and 12% (3%) forskewed t distribution. It an be inferred, therefore, that while there is gain to be madefrom using a semiparametri approah over parametri GARCH models in estimatinglatent volatility, the bene�t is more substantial for the ase of a short-rate model with alinear drift. An interesting observation about the semiparametri approah, whih on-trasts the parametri models, is that the MSE and MAE produed by the �nal smoothedsemiparametri approah tend to be very lose to eah other for the three di�erent inno-vation distributions, as well as the di�erent drift spei�ations. This result is interestingas it suggests that the semiparametri approah yields volatility estimates that are robustto the innovation-distribution assumption and possible misspei�ation of the short-ratedrift funtion�a feature that is laking in the parametri models.Last but not least, aording to Bülman and MNeil (2002), the apparent improve-ment in the volatility estimates produed by the semiparametri tehnique should showup in the �rst four iterations of the smoothing proedure. Indeed we observe that theredution in the estimation error (relative to a GARCH model) is largest at the �rstiteration of the proedure. However, this redution is more substantial in the ase of thelinear-drift model than the nonlinear-drift model.3.4 Empirial appliation3.4.1 Data desriptionThe empirial investigation is based on 1,892 weekly observations on the 3-month U.S.Treasury bill rate, sampled from February 9, 1973 to May 8, 2009. The data are obtainedfrom the Federal Reserve Bank of St. Louis (FRED) database. This period inludes a shiftfrom historially high interest rates in the late 1970s to early 1980s during the Volkermonetary regime to low interest-rate levels in the latter part of the sample period. Theinterest-rate data and the �rst di�erened series are presented in Figure 3.2. Summarystatistis for the data set are provided in Table 3.2.- Figure 3.2 about here -From Figure 3.2 it is lear that there is indeed a tendeny for the volatility in theinterest-rate series to be positively orrelated with urrent interest-rate levels. At thestart of the sample period, the assoiation between the interest rate and its volatility isvisible. This feature beomes more apparent for the 1979�1983 period during whih boththe level and volatility of the rate are high. The level e�et is not as obvious after theVolker monetary regime. These empirial features tally with those reported in Brenneret al. (1996). The time-varying nature of the volatility in the sample is indiative thatunexpeted �news� might be equally important in explaining the volatility of interest



56 CHAPTER 3rates, in addition to the level e�et.- Table 3.2 about here -The time-varying nature of the volatility that is evident in Figure 3.2 is assoiated,in turn, with an empirial distribution for the �rst-di�erened data that exhibits exesskurtosis. The relevant kurtosis statisti reported in Table 3.2 is signi�antly greater thanthe value of 3 assoiated with the normal distribution. The negative skewness oe�ientis also signi�antly less than the value of zero assoiated with the symmetri normaldistribution. This is re�etive of a �leverage� e�et of sorts, whereby interest-rate fallsare assoiated with higher volatility than inreases of the same magnitude. The �rst-di�erened data exhibits strong orrelation as shown by the Ljung�Box test statistiwhih overwhelmingly rejets the null hypothesis of no serial orrelation at the 10thlag orders. The interest-rate series learly possesses onditional heteroskedastiity asindiated by appliation of a formal 10th-order LM test for ARCH to the residuals froman AR(10) regression of the interest-rate data. The Jarque�Bera test strongly rejets thenull of normality in the interest-rate series.The stationarity property of the interest-rate data is less lear ut. There is a lot ofontroversy in the literature surrounding the unit root property of interest rates. Short-rate di�usion models estimated by Marsh and Rosenfeld (1983), Chan et al. (1992),and Aquila et al. (2003) inter alia based on U.S. data doument evidene that short-term interest rates behave like a random-walk proess. In ontrast, Brenner et al. (1996)and Ball and Torous (1999) amongst others show supporting evidene that the U.S.short-rate means revert. As is widely known, the standard Dikey�Fuller test is subjetto typially moderate-size distortion in the presene of a negleted GARCH e�et inthe series (see Kim and Shmidt, 1993 Haldrup, 1994). To irumvent the problem ofnegleted GARCH e�ets in unit-root testing, Seo (1999) suggests the unit-root testequation and the GARCH proess should be estimated jointly when the series examinedexhibits GARCH e�ets. We pursue this testing approah to ensure that the unit-roottest result is robust to the presene of GARCH e�ets. As is evident from Table 3.2, themean level of interest rate is 5.8252. This suggests that the unit-root tests should inludean interept in the mean equation.Seo (1999) augments the standard Dikey-Fuller testing equations as follows.
∆yt = α+ βyt−1 + εt

σ2
t = φ0 + φ1ε

2
t−1 + φ2σ

2
t−1 (3.20)

εt = σtvt , vt ∼ N(0, 1)The mean equation in (3.20) di�ers slightly from Seo's (1999) approah in whih theinterept is exluded. Seo (1999) onsiders the use of a preliminary regression to demeanor detrend the series prior to testing the series for a unit root. Cook (2008), however,presents an approah where the deterministi terms are expliitly inluded in the testingequation suh as in (3.20). Moreover, he simulates a new set of ritial values involvingdi�erent φ0, φ1, and φ2 parameter values that are more typial in empirial researh.



3.4. EMPIRICAL APPLICATION 57The unit-root hypothesis is examined via the maximum likelihood t-ratio for β, whih isdenoted as tβ. Seo (1999) shows that the asymptoti distribution of tβ is a mixture of thenonstandard Dikey�Fuller distribution and the standard normal. The extent to whihthe distribution moves towards the standard normal from the Dikey�Fuller dependsupon the strength of the GARCH e�et whih is determined by a nuisane parameter,
ρ. The null hypothesis of a unit root is rejeted if tβ is less than the ritial value at theonventional signi�ane levels.In addition to applying the Seo (1999) test, we also perform the augmented Dikey�Fuller (ADF) test and the higher powered GLS-based Dikey�Fuller test (Elliott et al.,1996). The optimal lag length, or degree of augmentation, of the testing equation isdetermined using the modi�ed Akaike Information Criterion (MAIC) proposed by Ngand Perron (2001) following initial onsideration of a maximum lag length given by
int[12(T/100)]0.25 , where T is the total sample size. Hayashi (2000) provides a justi�-ation of this upper bound. The appropriate degree of augmentation for both tests isfound to be 25. The results obtained from the appliation of these tests, denoted as
τµ and τGLS

µ , are given in Table 3.2. Using the 5% ritial values obtained from Fuller(1996) and Pantula et al. (1994), the derived test statistis, respetively, show the unit-root null hypothesis is not rejeted by either of the tests. However, the interest-rateseries learly possesses onditional heteroskedastiity as indiated by the appliation ofa formal 10th order LM test for ARCH to the residuals from the ADF test. Given thepresene of onditional heteroskedastiity, Seo's (1999) approah outlined above is fol-lowed to test the unit-root hypothesis. Aordingly, an ADF testing equation with 18lags is estimated jointly with a GARCH(1,1) proess using maximum likelihood estima-tion and the Bernt�Hall�Hall�Hausman algorithm. The test statisti using Bollerslev andWooldridge's (1992) standard errors is denoted as tβ(BW).4 We simulate the 5% ritialvalue for the estimated GARCH parameters of {φ̂1, φ̂2} = {0.14, 0.85} along with thee�etive sample size of 1,892 observations sine neither Seo's (1999) nor Cook's (2008)studies provide ritial values that an be applied to our results.5 The simulated ritialvalue at the 5% level of signi�ane is −1.9073 for the nonrobust standard errors and-1.8891 for the Bollerslev-Wooldridge robust standard errors. The alulated test statistifor tβ and tβ(BW) are −2.4301 and −2.5147, respetively. These results imply that theunit-root hypothesis an be rejeted omfortably in both ases. On the basis that Seo's(1999) test inorporates the GARCH e�ets into the testing framework, we are moreinlined to believe in its robust inferene. That is, the weekly 3-month U.S. Treasury billinterest rates are stationary.4Cook (2008) shows that the maximum likelihood estimation of the Seo (1999) unit-root test equationsould employ Bollerslev and Wooldridge's (1992) robust standard errors. The t-test statisti for the slopeoe�ient β with robust standard error is given by tβ(BW).5The appendix provides details of the simulation to obtain 1%, 5%, and 10% ritial values for tβand tβ(BW).



58 CHAPTER 33.4.2 Empirial resultsThe data-desription statistis indiate that an appropriate model of short-rate volatil-ity should aount for its time-varying nature, its asymmetri response to shoks ofdi�erent signs and its dependene on interest-rate levels. For this reason, we estimate theGARCHX and AGARCHX models for the di�usion proess. As for the drift spei�ation,we estimate both linear and nonlinear drifts to determine the presene of nonlinearities.Given the evidene of unonditional skewness in short-rate hanges, we also estimatethe models with three di�erent distribution assumptions, namely normal, Student's tand skewed t. All the models are estimated with Bollerslev and Wooldridge's (1992)quasi-maximum likelihood method, whih gives robust standard errors. The in-sampleand out-of-sample volatility foreasts of these parametri models are then omparedwith those of the semiparametri model. To produe the one-period-ahead out-of-samplevolatility foreasts, we exlude the last 100 observations from our sample and estimatethe parametri and semiparametri models reursively over the remainder of the data.In other words, eah time we produe a one-period-ahead volatility foreast, we estimatethe model using all the data up until the period prior to that foreast. The estimationresults for the parametri models with linear and nonlinear drifts are reported in Tables3.3(a) and (b), respetively.- Tables 3.3(a) and (b) about here -It an be seen in Table 3.3(a) that the oe�ients of the linear drift funtion areonly statistially signi�ant at the 5% signi�ane level for the models �tted with aStudent's t distribution. The estimate for the oe�ient λ, whih aptures the degreeof mean reversion, is very small, implying that the degree of mean reversion is weak.The estimates of the interest-rate-level sensitivity parameters (b and δ), the oe�ientsof last period's unexpeted news (α1), the last period's volatility (α2), and the oe�-ient of the asymmetri response of urrent volatility to last period's bad news (α3), arefound to be highly signi�ant. Taken together, these results suggest that there is over-whelming evidene of GARCH, levels, and asymmetri GARCH e�ets in the di�usionproess. In terms of maximized log-likelihood values, the AGARCHX with Student's tdistribution performs better than the other models. There is evidene that, independentof the underlying distribution, models that aount for both asymmetri GARCH andlevels e�ets perform better than models that do not aount for asymmetri GARCHe�ets. The simple GARCH model performs the worst in terms of the log-likelihood val-ues. This model fails to apture the asymmetry and level dependene in the short-ratevolatility proess. Moreover, the Ljung�Box test of the 12th-order serial orrelation inthe squared standardized residuals rejets the null of no serial orrelation, implying thatthe GARCH model does not adequately haraterize the volatility dynami of short-ratehanges. The skewness parameter, η, of the skewed t distribution turns out to be sta-tistially insigni�ant at all onventional signi�ane levels. Furthermore, the η estimatefor the three short-rate models is virtually zero, implying that a Student's t distributionis adequate to haraterize the short-rate distribution. Our �nding supporting the use of



3.4. EMPIRICAL APPLICATION 59the Student's t instead of skewed t distribution is onsistent with Bali's (2007) results.In Table 3.3(b), we show the estimation results for nonlinear-drift short-rate models.Regardless of the error-distribution assumption, the oe�ients λ2 and λ3, whih governthe nonlinear dynamis in the drift funtion, are statistially insigni�ant. Our results,whih support the lak of evidene of nonlinearity in the 3-month T-bill data, onur withBali's (2007) earlier �ndings showing that the inorporation of the GARCH e�ets intothe volatility proess gives rise to no evidene of nonlinearity in the drift spei�ation.The skewness parameter, η, of the skewed t distribution again turns out to be statistiallyinsigni�ant for all models, suggesting there is no evidene for skewness asymmetry in theshort-rate-hange distribution. Comparing models with linear and nonlinear drifts arosssimilar distribution assumptions indiates a substantial redution in the log-likelihoodvalue, thereby suggesting that a short-rate model with linear drift is the preferred spei�-ation. Based on this result, we do not onsider the in-sample and out-of-sample foreastperformane of short-rate models with nonlinear drift and a skewed t distribution.We use four di�erent metris to evaluate the in-sample and out-of-sample volatility-foreast performane of the semiparametri approah ompared to its parametri oun-terparts. In addition to the MAE and MSE measures given in equation (3.19), we alsouse the Akaike Information Criterion (AIC), whih is a penalized negative log-likelihoodriterion adjusted for the degree of parameters that are estimated, and Bali's (2007)
R2

vol measure. For the four metris, we proxy the unobserved true volatility, σt, with
|rt − rt−1|. The AIC is omputed as

AIC = 2K + T
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)
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]
, (3.21)where K is the number of estimated parameters, T is the sample size, and RSS =∑T

t=1(σt− σ̂t)
2, where σt is the true volatility proxy, σ̂t is the model estimated volatility.The R2

vol measure essentially omputes the total variation in the true volatility proxiedby |rt − rt−1| that an be explained by the estimated onditional volatilities. This isobtained from the oe�ient of determination of an OLS regression of the form
σt = a0 + a1σ

f
t + et, (3.22)where σt and σf

t are the volatility proxy of |rt − rt−1| and the foreasted volatility,respetively. It should be highlighted that the R2
vol measure is a rude measure andis subjet to the following aveat. As pointed out by Andersen and Bollerslev (1998),the idiosynrati omponent of daily interest-rate hanges is large, thus the use of re-alized interest-rate hanges may not fully apture day-by-day movements in volatility.To irumvent this problem, we use a range-based volatility proxy by adopting the Gar-man and Klass's (1980) extreme-value estimator to onstrut a minimum-variane un-biased estimator that utilizes the opening, losing, high, and low pries. Due to thepauity of high-frequeny data, the use of the GK extreme-value estimator is deemed asa ompromise to the preferred realized-volatility measure derived from high-frequeny



60 CHAPTER 3data (see Andersen et al., 2001).6 Our hoie of the GK estimator is also motivatedby the �ndings of Bali and Weinbaum (2005), who perform a horse rae among allthe extreme-value estimators featured in the literature. They show that, in pratie,the GK estimator is the least biased and most e�ient estimator ompared with otherextreme-value estimators. The GK minimum variane and unbiased estimator is σ̂2
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1, where Ot, Ct, Ht, and Lt denote, respetively, the opening, losing, high and lowpries on day t and n is the number of days in the sample. The IRX (the value of the13-week Treasury Index) index data are obtained from the Yahoo/�nane web site.7- Tables 3.4(a) and (b) about here -Tables 3.4(a) and (b) report the results of the four metris for evaluating the in-sampleforeast performane of the models using the volatility benhmarks |rt − rt−1| and σ̂GK,respetively. Fousing on the results with volatility proxy |rt − rt−1|, we �nd that theAGARCHX model with the Student's t distribution performs the best ompared withother parametri models. Not only does it deliver the lowest MSE and MAE, it also givesthe lowest AIC and highest R2
vol. The GARCH model, whih does not take into aountthe level dependene and asymmetri response in the onditional variane of short-ratehanges, performs the worst. However, there is evidene that the semiparametri modelyields a superior in-sample volatility foreast as judged by the four metris. When om-pared with the best-�tting AGARCHX Student's t model, the redution in the MSE andMAE based on the �nal smoothed semiparametri method is about 3% and 1%, respe-tively. The AIC shows a marked improvement in the �t, falling from −498.52 to −601.92,while the R2

vol inreases by about 10%. Looking at the four metris, we also �nd that ineah iteration of the semiparametri smoothing proedure there is a signi�ant improve-ment in the volatility foreast performane ompared with the AGARCHX Student's tmodel. Interestingly, we �nd that for the semiparametri approah, �tting a nonlineardrift funtion erroneously to obtain an initial volatility estimate does not give rise to aninferior foreast performane. The di�erene in foreast performane results for the linearand nonlinear drifts with the semiparametri approah is negligible, implying that thehoie of the drift funtion is immaterial to the foreast performane of the semipara-metri approah. This result orroborates the simulation results in whih we �nd thatnegleting to �t the orret drift funtion in the semiparametri approah does not bearany in�uene on its volatility-foreast performane. Another important �nding is thatthe hoie of the innovation distribution, whether it is normal, Student's t, or skewed
t, does not have a onsiderable impat on the foreast performane of the semipara-6Implied volatility an be obtained from the value of the 13-week Treasury index (IRX), whih isbased on the disount rate of the most reently autioned 13-week U.S. T-bill. However, high-frequenyIRX data are only available from November 3, 1997. Our sample period, on the other hand, ommenesfrom February 9, 1973.7The URL for the IRX data is http://�nane.yahoo.om/q/hp?s=%5EIRX+Historial+Pries. Wethank the anonymous referee for direting us to this data soure.



3.4. EMPIRICAL APPLICATION 61metri approah.8 Taken together, these results highlight the robust foreast propertyof the semiparametri approah to possible misspei�ations of the drift funtion andthe innovation distribution. In Table 3.4(b), we show that these results are qualitativelyunhanged even with the use of a more aurate volatility benhmark (i.e. σ̂2
GK) to assessthe foreast performane of the semiparametri approah relative to parametri models.- Figure 3.3(a) and (b) about here -Given the extensive results reported in Tables 3.4(a) and (b), we summarize these �nd-ings by presenting them in Figures 3.3(a) and (b). To interpret the plot, the four shadedbars represent the metri value of the parametri models: AGARCHX-T, AGARCHX-N, GARCHX-T, and GARCHX-N in that order. The line plotted aross the x-axis is alous of the metri value for the GARCH model (represented by the �rst mark on thex-axis), the metri value for the eight iterations of the semiparametri approah (rep-resented by the seond to ninth marks on the x-axis), and the �nal smoothed stage ofthe semiparametri approah (represented by the tenth mark on the x-axis). It is evidentfrom the plot that the semiparametri approah yields the best results based on all fourforeast-performane measures. The results are onsistent whether we use the rude ormore aurate volatility benhmark. To visually illustrate the superior performane ofthe semiparametri approah ompared with the AGARCHX Student's t model, we plotin Figures 3.4(a) to (d) the in-sample volatility estimates of the two models for an arbi-trarily seleted period January 1, 1997�January 1, 2000. Figures 3.4(a) and (b) employ

|rt− rt−1| as the true volatility proxy while Figures 3.4() and (d) are based on the moreaurate volatility proxy given by σ̂2
GK.- Figures 3.4(a), (b), () and (d) about here -By omparing the plots of the volatility estimates between the best-�tting parametriAGARCHX Student's t model and the semiparametri model, we an see that the lattermodel is apable of apturing movements of the short-rate volatility proess better thanthe former model. The AGARCHX Student's t model tends to yield an overly smoothedvolatility estimate of the true volatility proess proxied by |rt − rt−1| (σ̂2

GK) in Figure3.4(b) (Figure 3.4(d)). There are two important features about the way the volatilityestimates obtained from the semiparametri approah improve upon the estimates of theAGARCHX Student's t model. First, there are peaks or spikes in the volatility of theshort-rate hanges that are well aptured by the semiparametri model, but not by theAGARCHX Student's t model. For example, the peak observed on January 1, 1998 islearly aptured by the semiparametri approah, but not by the AGARCHX Student's
t model. Seond, the volatility estimates produed by the semiparametri approah tendto math the rise and fall in interest rates better than the AGARCHX Student's t model.The most obvious of this point is the drop in interest rates between the two peaksthat happened prior to January 1, 1999 (see Figure 3.4(a)). While the semiparametri8To onserve spae, we do not report the results for the semiparametri approah with a skewed tdistribution. These results are available from the authors upon request.



62 CHAPTER 3approah does not fully apture the drop in rates, it does a better job at apturing thefall in interest rates than the AGARCHX Student's t model.- Tables 3.5(a) and (b) about here -- Figures 3.5(a), (b), () and (d) about here -Turning to the out-of-sample volatility-foreast performane of the semiparametrimodel, we �nd that the volatility estimates obtained from the �nal smoothed stagehave better preditive power than those produed by the parametri models. Using thevolatility benhmark σ̂2
GK (see Table 3.5(b)), the improvement in the volatility-foreastestimation error measured by the MSE and the MAE is 14% and 11%, respetively,between the �nal smoothed semiparametri approah and the AGARCHX Student's tmodel. On the other hand, the redution in the foreast estimation error based on therude volatility proxy |rt−rt−1| is more onservative: The MSE and MAE fall by 6% and5%, respetively (see Table 3.5(a)). Figures 3.5(a) to (d) provide plots of the volatility-foreast estimates of the two ontending models. Unlike the in-sample volatility estimates,we fail to �nd that the semiparametri approah is apable of apturing the observedpeaks in interest-rate volatility, partiularly with the volatility benhmark σ̂2

GK and thesharp spike at the start of the foreast horizon (see Figure 3.5()). However, this doesnot diminish the out-of-sample foreast performane of the semiparametri approahompared with the AGARCHX Student's t model. The latter model ontinues to providean overly smoothed out-of-sample volatility foreast of interest rates. In ontrast, thesemiparametri approah yields volatility foreasts that better apture �utuations inthe short rate, thus leading to a smaller estimation error than the AGARCHX Student's
t model.3.4.3 Impliations for priing interest-rate derivativesGiven that the volatility proesses of the semiparametri and parametri models are dis-tint, it is very likely that the two lasses of models will generate di�erent probabilitydistributions of future interest-rate levels. Preditions of future interest rates are essentialfor priing long-dated, path-dependent interest-rate derivatives suh as the index amor-tizing rate (IAR) and swaps, amongst others. For the purpose of illustration, we onsiderthe IAR swaps. The notional value of the IAR swaps is redued over time aording toan amortization shedule based on the level of a referene interest rate on a partiular�xed date in the future (usually every three or six months). The value of this swap isontingent on the probability distribution of the referene rate on eah reset date. Sinethe amount of prinipal that remains on any reset date depends on past interest-ratelevels, the IAR swaps are onsidered �path-dependent� seurities. In other words, �utu-ations in interest rates and hene the auray in modeling short-rate volatility mattersfor the priing of the IAR swaps. For a detailed disussion of the IAR swaps refer toGalaif (1993).To examine how an improvement in the estimation auray of short-rate volatilityould a�et the priing of interest-rate derivatives, we follow BHK and perform the



3.4. EMPIRICAL APPLICATION 63following experiment. We simulate the semiparametri model and the parametri models5,000 times using the 3-month U.S. Treasury bill rate estimation results with June 8,2007, as the starting date. The interest-rate level is 4.67% on this date. Following BHK,we fous on the volatility proess and employ the mean equation rt − rt−1 = −0.0015given that the average weekly hange in the interest rate over the estimated sample periodis −0.0015.9 Figure 3.6 graphs the 5th, 25th, 50th, 75th and 95th perentiles of the 5,000simulated paths for eah horizon up to 100 weeks for the di�erent short-rate models.The solid lines represent the on�dene intervals for simulated interest rates based onthe parametri models. The ordering from the outermost to innermost lines representsthe resulting interest-rate distributions for the AGARCHX-T, GARCHX-T, AGARCHX-N and GARCHX-N models. The dotted lines denote the short-rate distribution of thesemiparametri model. - Figure 3.6 about here -Visual inspetion of Figure 3.6 suggests that there are several interesting results.First, the distribution assumption in the parametri models does not seem to matter forderivative pries. The interest-rate distributions are very similar when omparing betweenthe same type of model with di�erent distribution assumptions. Seond, like BHK, we �ndthat whether we model asymmetries in the parametri models or not is immaterial for thepaths of future interest rates; therefore, this will not greatly a�et interest-rate derivativepries. Third, amongst the di�erent models onsidered, the on�dene intervals of futureshort-rate levels generated by the semiparametri model are narrower, partiularly atthe 5% and 95% levels. In other words, the semiparametri model predits a narroweron�dene band of extreme interest-rate movements than the parametri models. Forother on�dene levels onsidered, we �nd that the future levels of short-term interestrates are omparable with the parametri models.Based on these results, what an be said about the priing of ertain path-dependentinterest-rate derivative suh as the IAR swaps mentioned above, mortgages and ollat-eralized mortgage obligations? Given that parametri models produe larger upper tails,the average predited amortization will be less for suh models than the semiparamet-ri model. In other words, the predited lives of these seurities and their ash �owswill inrease. Aordingly, these seurities would be overpried by the parametri modelsrelative to the semiparametri model. On the other hand, the larger lower tails of theparametri models would imply that these seurities would be underpried ompared tothe semiparametri model. Our results for the parametri models are onsistent withthose of BHK who �nd that the onditional-variane model spei�ation does not in-�uene the priing of interest-rate derivatives. In partiular, they show that whether amodel spei�es an asymmetri onditional variane or an additive or multipliative levelse�et in the variane spei�ation does not yield signi�ant di�erenes in the priing ofinterest-rate derivatives. Likewise, we demonstrate that the asymmetri spei�ation ofthe di�usion proess and the distribution assumption for parametri models do not af-fet the priing of interest-rate derivatives. More importantly, we �nd that the narrower9Although the mean-reverting slope oe�ient is signi�ant, the oe�ient estimate is very lose tozero. Therefore, ignoring the mean-reverting dynamis in the simulation is a reasonable simpli�ation.



64 CHAPTER 3on�dene intervals of future interest-rate levels produed by the semiparametri modelrelative to any of the parametri models suggests that our method would yield less prievariation for long-dated and path-dependent interest-rate derivatives.Although the semiparametri model does not give rise to a simple analytial solutionfor the priing of derivatives, the estimation proess sets up naturally for Monte Carloevaluation. Thus, like the BHKmodels, the semiparametri model an be easily applied tothe valuation of seurities that already require Monte Carlo evaluation. These seuritiesinlude those interest-rate derivatives disussed above.3.5 ConlusionIn this paper an appliation of a semiparametri GARCH approah to modeling short-term interest-rate volatility has been proposed. The semiparametri smoothing tehniqueuses a general additive funtion of lagged innovations, volatilities, and past interest-rate levels with a bak�tting algorithm to estimate the unobserved di�usion proess.While the volatility model is estimated semiparametrially, it resembles the widely usedshort-rate volatility models of BHK, whih feature interest-rate-level dependene andan asymmetrial dynami in the onditional variane. Consequently, we ompare theperformane of the semiparametri approah with this lass of single-fator short-ratedi�usion models in terms of its ability to haraterize short-rate volatility. Our simulationstudy shows that the semiparametri model provides a superior �t of the in-samplevolatility estimates to a GARCHmodel that exhibits asymmetry and the levels e�et. Thevolatility foreast performane of the semiparametri proedure, unlike the parametriGARCH models, is also robust to potential misspei�ation in the short-rate drift andthe innovation distribution. The empirial appliation to weekly 3-month U.S. Treasurybill rates between 1973 and 2009 further illustrates improvement in the in-sample andout-of-sample preditive power of the semiparametri model over BHK's models. Finally,we show that the greater degree of auray in modeling short-rate volatility o�eredby the semiparametri model is important for priing long-dated and path-dependentinterest-rate derivatives.For future researh, we intend to apply this tehnique to Blak et al.'s (1990) two-fator model of with stohasti volatility, whih was developed and estimated by Bali(2003). The two fators of the model are the short-term interest rate and the volatilityof interest-rate hanges. This would involve performing a nonparametri estimation onboth the drift and di�usion of the short-rate proess. The appliation of this tehnique tothe two-fator arbitrage-free model ould be used to assess the importane of modelingshort-rate-hange volatility aurately and its impliations on default-free bond priing.



AppendixTo simulate the ritial values for the Seo (1999) test, the following DGP is employed.
yt = yt−1 + εt, t = 1, . . . , T
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εt = σtvt, vt ∼ N(0, 1)We set the parameters φ1 = 0.14, φ2 = 0.85, and φ0 = 1− φ1 − φ2. These values aretaken from estimates of our ADF testing equation with 18 lags whih is estimated jointlywith a GARCH(1,1) proess. T is set to 1,892 to math our sample size. One the dataare simulated, we perform Seo's (1999) test by estimating
∆yt = α+ βyt−1 + εt

σ2
t = φ0 + φ1ε

2
t−1 + φ2σ

2
t−1 (3.24)

εt = σtvt, vt ∼ N(0, 1),with the maximum likelihood method using the Bernt�Hall�Hall�Hausman algorithm.The resulting t-test for the null hypothesis of a unit-root proess in yt (i.e., β = 0), whihis denoted as tβ, is omputed. In addition, we ompute the robust t-test, tβ(BW), usingBollerslev and Wooldridge's (1992) robust standard error. The experiment is repeated25,000 times and eah time the test statisti values for tβ and tβ(BW) are saved. Theresulting series of t̂β and t̂β(BW) are sorted and the 1%, 5%, and 10% ritial valuesare obtained aordingly. The ritial values at the 1%, 5%, and 10% signi�ane levelsfor tβ are −2.4280, −1.9073, and −1.6701, and for tβ(BW) are −2.4196, −1.8891, and
−1.6454, respetively.
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Table 3.1: Estimates of Mean Squared and Mean Absolute Volatility Estimation Error for Simulated Data(a) DGP - linear driftNormal Student's t Skewed tModels MSE Std. err. MAE Std. err. MSE Std. err. MAE Std. err. MSE Std. err. MAE Std. err.Estimated with a linear drift funtionGARCH 0.3262 0.1210 0.3794 0.0638 0.3558 0.1357 0.4044 0.0716 0.3229 0.1193 0.3772 0.0559Iteration 1 0.2316 0.1065 0.3561 0.0664 0.2310 0.0968 0.3561 0.0638 0.2308 0.0962 0.3558 0.0635Iteration 2 0.2036 0.0861 0.3336 0.0617 0.2028 0.0944 0.3337 0.0629 0.2027 0.0951 0.3333 0.0631Iteration 3 0.2065 0.0886 0.3359 0.0598 0.2030 0.0839 0.3336 0.0595 0.2033 0.0847 0.3336 0.0595Iteration 4 0.2126 0.0961 0.3411 0.0627 0.2038 0.0855 0.3349 0.0607 0.2057 0.0845 0.3370 0.0593Iteration 5 0.2085 0.0855 0.3402 0.0603 0.2057 0.0876 0.3371 0.0597 0.2062 0.0881 0.3379 0.0602Iteration 6 0.2095 0.0846 0.3408 0.0605 0.208 0.0864 0.3389 0.0607 0.2083 0.0876 0.3392 0.0624Iteration 7 0.2155 0.0934 0.3445 0.0628 0.2094 0.0864 0.3398 0.0602 0.2098 0.0868 0.3399 0.0604Iteration 8 0.2137 0.0906 0.3426 0.0623 0.2117 0.0916 0.3404 0.062 0.2119 0.0918 0.3401 0.0619Final smoothing 0.2158 0.0929 0.3442 0.0617 0.2123 0.0909 0.3415 0.0611 0.2125 0.0911 0.3417 0.0614AGARCHX 0.2738 0.1193 0.3674 0.0693 0.265 0.1011 0.3631 0.0652 0.2705 0.1052 0.3640 0.0511GARCHX 0.3194 0.1234 0.3789 0.0711 0.2945 0.1217 0.3704 0.0686 0.3116 0.1143 0.3755 0.0532Estimated with a nonlinear drift funtionGARCH 0.3286 0.1234 0.3785 0.065 0.3552 0.1352 0.4025 0.0717 0.3224 0.1324 0.3826 0.06Iteration 1 0.231 0.1071 0.3552 0.0677 0.2306 0.0972 0.3551 0.0644 0.2378 0.0984 0.3638 0.0661Iteration 2 0.2038 0.0871 0.3331 0.0623 0.2039 0.0951 0.3343 0.0644 0.213 0.0961 0.3436 0.0642Iteration 3 0.2081 0.0897 0.3368 0.0611 0.2031 0.0835 0.3335 0.0597 0.2154 0.0888 0.3454 0.0626Iteration 4 0.2147 0.0996 0.3413 0.0639 0.2053 0.0856 0.3362 0.0611 0.2143 0.086 0.346 0.0613Iteration 5 0.2082 0.0857 0.3397 0.0613 0.2069 0.0892 0.3374 0.0604 0.2176 0.0918 0.3484 0.0636Iteration 6 0.2117 0.0852 0.3423 0.0618 0.2098 0.086 0.3397 0.0605 0.2192 0.0884 0.3499 0.0628Iteration 7 0.2143 0.0907 0.3438 0.0632 0.2095 0.0864 0.3392 0.0599 0.2211 0.0901 0.3502 0.0629Iteration 8 0.2173 0.0958 0.345 0.0641 0.2135 0.0921 0.3414 0.0621 0.2233 0.0942 0.3512 0.0644Final smoothing 0.2167 0.0927 0.3449 0.0629 0.2134 0.0909 0.3418 0.0613 0.2239 0.094 0.3522 0.0639AGARCHX 0.2846 0.1237 0.3689 0.0714 0.2739 0.1223 0.3672 0.0692 0.2814 0.1248 0.3681 0.0663GARCHX 0.3205 0.1260 0.3813 0.0725 0.3131 0.1255 0.3811 0.0710 0.3207 0.1269 0.3859 0.0701
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(b) DGP - Nonlinear driftNormal Student's t Skewed tModels MSE Std. err. MAE Std. err. MSE Std. err. MAE Std. err. MSE Std. err. MAE Std. err.Estimated with a linear drift funtionGARCH 0.1094 0.0708 0.1893 0.0741 0.1077 0.072 0.1877 0.067 0.1042 0.0714 0.1907 0.0667Iteration 1 0.0808 0.0651 0.1791 0.0501 0.0809 0.0649 0.1791 0.0500 0.0805 0.0637 0.1788 0.0497Iteration 2 0.0704 0.0532 0.1669 0.0461 0.0685 0.0524 0.1651 0.0449 0.0692 0.0529 0.1649 0.0443Iteration 3 0.0756 0.0568 0.1747 0.0498 0.0780 0.0758 0.1739 0.0522 0.0764 0.0722 0.1735 0.0509Iteration 4 0.0710 0.0517 0.1693 0.0431 0.0729 0.0581 0.1703 0.0415 0.0716 0.055 0.1695 0.0439Iteration 5 0.0772 0.0605 0.1740 0.0473 0.0739 0.0558 0.1725 0.0460 0.0770 0.0596 0.1746 0.0523Iteration 6 0.0782 0.0680 0.1748 0.0533 0.0700 0.0521 0.1684 0.0427 0.0721 0.0569 0.1691 0.0448Iteration 7 0.0755 0.0568 0.1746 0.0467 0.0756 0.0614 0.1724 0.0466 0.0750 0.0583 0.1721 0.0458Iteration 8 0.0782 0.0623 0.1750 0.0471 0.0754 0.0577 0.1752 0.0486 0.0742 0.0577 0.1732 0.0467Final smoothing 0.0772 0.0603 0.1750 0.0472 0.0756 0.0591 0.1734 0.0464 0.0753 0.0595 0.1725 0.0462AGARCHX 0.0967 0.0695 0.1851 0.0652 0.093 0.0645 0.1825 0.0607 0.0944 0.0673 0.1838 0.0625GARCHX 0.0991 0.0705 0.1872 0.0643 0.0956 0.0671 0.186 0.0618 0.0968 0.068 0.1867 0.0632Estimated with a nonlinear drift funtionGARCH 0.0998 0.1057 0.1865 0.0724 0.0843 0.0646 0.1823 0.0647 0.0963 0.0693 0.1909 0.0653Iteration 1 0.0917 0.0961 0.1816 0.0591 0.0846 0.0782 0.1786 0.0518 0.083 0.0564 0.1843 0.0502Iteration 2 0.0856 0.0948 0.1727 0.0602 0.0688 0.0519 0.163 0.0422 0.0719 0.0572 0.1686 0.048Iteration 3 0.0888 0.097 0.1772 0.0591 0.0754 0.0555 0.1716 0.0478 0.0726 0.0528 0.1721 0.0469Iteration 4 0.0852 0.0907 0.1751 0.0559 0.0709 0.0501 0.1682 0.0432 0.0751 0.0579 0.1739 0.0494Iteration 5 0.0844 0.0899 0.1738 0.0527 0.0779 0.0597 0.1733 0.0481 0.0798 0.0628 0.1778 0.0499Iteration 6 0.0841 0.0907 0.176 0.0551 0.074 0.0538 0.1721 0.0462 0.0777 0.0603 0.1764 0.049Iteration 7 0.0839 0.0884 0.1766 0.0543 0.0737 0.0557 0.1713 0.0454 0.0768 0.0597 0.1751 0.0476Iteration 8 0.0869 0.0906 0.1783 0.055 0.0747 0.0542 0.1732 0.0458 0.0789 0.0532 0.1769 0.0492Final smoothing 0.0862 0.0907 0.1766 0.0535 0.0747 0.055 0.1731 0.0463 0.079 0.0551 0.177 0.0493AGARCHX 0.0945 0.1022 0.1846 0.0619 0.0806 0.0612 0.1804 0.0521 0.0901 0.0635 0.1825 0.0534GARCHX 0.0977 0.1025 0.1852 0.0637 0.0838 0.0637 0.1817 0.058 0.0942 0.0668 0.1843 0.0599Note: The results are for simulated data from the DGP in equation (3.17) for the linear drift and equation (3.18) for the nonlinear drift with the onditionalvariane following equation (16). The sample size is 1,000 and the number of repliations is 50. The rows labeled as iterations and �nal smoothing are theresults for the semiparametri approah.



TABLES 73Table 3.2: Summary Statistis for the U.S. Short RatesVariable Mean SD Skewness Kurtosis JB test Q(10)
rt 5.8252 3.0448 0.7665 1.0476 271.82 18017.36

[0.00] [0.00]

∆rt −0.0028 0.2319 −0.6466 17.9637 25557.59 185.53

[0.00] [0.00]Variable ARCH(10) τµ τGLS
β τβ τβ(BW)

rt 35.5992 −1.4902 −1.5440 −2.4301 −2.5147

[0.00]Note: The JB test represents the Jarque�Bera test of normality. Q(10) is the Ljung�Box test of serial orrelationof order 10. ARCH(10) is the test for ARCH e�et up to order 10 for the resulting residual of an AR(10)regression on the short rate. τµ and τGLS
β are the ADF and the GLS-based Dikey-Fuller test statistis and their5% ritial values are −2.8629 and −1.95, respetively. τβ and τβ(BW) are the test statistis for Seo's (1999)test with the latter using Bollerslev and Wooldridge's (1992) robust standard errors. The simulated ritialvalues of τµ and τGLS

β
are −1.9073 and −1.8891 at the 5% signi�ane level.
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Table 3.3: Short-Term Interest-Rate Model Estimates (February 2, 1973�June 8, 2007)(a) Linear drift spei�ationNormal Student's t Hansen's Skewed tModels GARCH GARCHX AGARCHX GARCH GARCHX AGARCHX GARCH GARCHX AGARCHX
µ 0.0042 0.0039 0.0033 0.0037 0.0018 0.0014 0.0026 0.0041 0.0015

(0.0063) (0.003) (0.0031) (0.0039) (0.0024) (0.0026) (0.0019) (0.0058) (0.0045)

λ −0.0014 −0.0002 −0.0004∗∗ −0.0002∗ −0.0003∗∗ −0.0003) −0.0007∗ −0.0004 −0.0006

(0.0016) (0.0008) (0.0002) (0.0001) (0.0001) (0.0001) (0.0003) (0.0008) (0.0008)

α0 0.0001 0.0001 0.0003∗ 0.0000 0.00002 0.00002 0.0002 0.0003∗ 0.0000

(0.0003) (0.0002) (0.0001) (0.00001) (0.00002) (0.00004) (0.0005) (0.0001) (0.0001)

α1 0.1055∗ 0.3031∗ 0.2157∗ 0.1181∗ 0.2415∗ 0.2643∗ 0.1825∗ 0.2016∗ 0.2389∗
(0.0252) (0.0695) (0.0757) (0.0258) (0.0455) (0.0478) (0.0731) (0.068) (0.0412)

α2 0.8915∗ 0.6719∗ 0.6643∗ 0.8815∗ 0.7110∗ 0.7054∗ 0.8107∗ 0.7589∗ 0.7182∗
(0.0252) (0.1069) (0.1857) (0.0258) (0.0575) (0.0518) (0.0359) (0.1205) (0.1033)

α3 � � 0.0337∗ � � 0.0082∗ � � 0.0028∗
(0.0137) (0.0011) (0.001)

β � 0.0076∗ 0.0006∗ � 0.0010∗ 0.0005∗ � 0.0012∗ 0.0003∗
(0.0014) (0.0001) (0.0003) (0.0001) (0.0004) (0.0001)

δ � 0.4417∗ 0.5231∗ � 2.6622∗ 3.14407∗ � 2.3817∗ 2.9637∗
(0.0861) (0.1494) (0.331) (0.7811) (0.493) (0.5182)

υ � � � 5.2401∗ 4.4148∗ 4.4212∗ 4.9613∗ 4.1945∗ 4.3182∗
(0.4109) (0.4034) (1.5303) (0.3153) (0.5738) (0.5016)

η � � � � � −0.0005 −0.0001 −0.0002

(0.0015) (0.0021) (0.0014)LL 2810.19 2868.07 2871.29 2841.77 2912.65 2946.31 2135.35 2139.57 2146.18Q(εt/σt) 194.8024 168.6053 170.8604 189.8495 170.431 172.7072 153.6514 161.4817 169.2258

[0.0000] [0.0000] [0.0000] [0.0000] [0.0000] [0.0000] [0.0000] [0.0000] [0.0000]Q(ε2
t

/σ2
t

) 22.1335 11.0381 11.5038 20.394 11.728 12.002 21.3148 10.3564 10.0106

[0.0361] [0.5256] [0.4863] [0.0599] [0.4614] [0.4455] [0.0459] [0.5848] [0.6151]
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(b) Nonlinear drift spei�ationNormal Student's t Hansen's Skewed tModels GARCH GARCHX AGARCHX GARCH GARCHX AGARCHX GARCH GARCHX AGARCHX
µ 0.0513∗∗∗ 0.036 0.0356 0.0158 0.0034 0.0018 0.0103 0.0023∗∗ 0.0214

(0.0269 (0.0247) (0.0236) (0.0247) (0.0031) (0.0024) (0.0256) (0.0011) (0.0668)

λ1 −0.0009 0.0047∗∗ 0.0044∗∗ −0.0019 0.0011 0.0016∗ 0.0015 0.0013 0.0006

(0.0007) (0.0017) (0.0021) (0.0026) (0.0007) (0.0004) (0.0037) (0.0035) (0.0014)

λ2 −0.0003 0.0000 0.0000 0.0000 −0.0001 −0.0002 0.0007 −0.0000 −0.0004

(0.0005) (0.0005) (0.0005) (0.0006) (0.0002) (0.0006) (0.0005) (0.0001) (0.0003)

λ3 −0.0004 −0.0002 −0.0002 −0.0001 −0.0002 −0.0001 −0.0002 −0.0001 −0.0002

(0.0291) (0.0181) (0.0195) (0.0171) (0.0042) (0.0035) (0.0725) (0.0395) (0.0497)

α0 0.0001 0.0004∗∗ 0.0005∗ 0.00014∗∗ 0.0003∗ 0.0002∗∗ 0.0002∗∗ 0.0003∗ 0.0001∗

(0.0003) (0.0002) (0.0002) (0.00006) (0.0001) (0.0001) (0.0001) (0.0001) 0.0000

α1 0.1645∗ 0.3180∗ 0.2157∗ 0.1657∗ 0.2643∗ 0.2583∗ 0.1367∗ 0.1714∗ 0.2010∗

(0.0082) (0.0514) (0.0757) (0.0337) (0.0478) (0.0507) (0.0413) (0.0385) (0.0294)

α2 0.8255∗ 0.6619∗ 0.6726∗ 0.8213∗ 0.7054∗ 0.7217∗ 0.8415∗ 0.8107∗ 0.7718∗

(0.1088) (0.1311) (0.1342) (0.0415) (0.0518) (0.0507) (0.2106) (0.1359) (0.1547)

α3 � � 0.0298∗ � � 0.0147∗ � � 0.0108∗

(0.0107) (0.0035) (0.003)

β � 0.0593∗ 0.0009∗ � 0.0006∗ 0.0069∗ � 0.0018∗∗ 0.0035∗

(0.0065) (0.0001) (0.0001) (0.0012) (0.0009) (0.0009)

δ � 0.0540∗ 3.236∗ � 4.5966∗ 0.3979∗ � 4.2613∗ 0.2859∗

(0.0059) (0.3405) (0.743) (0.0671) (0.918) (0.0101)

ν � � � 4.9327∗ 4.4043∗ 4.3314∗ 4.2138∗ 4.1017∗ 4.0981∗

(0.3879) (0.3871) (0.4398) (0.131) (0.6133) (0.5819)

η � � � � � � −0.0008 −0.0003 −0.0005

(0.0561) (0.0318) (0.1036)LL 2443.13 2474.76 2491.27 2334.8 2355.82 2369.91 1753.42 1814.79 1830.25

Q(εt/σt) 165.1314 128.3772 131.0561 141.2809 137.175 148.9106 123.5912 146.2058 151.8333

[0.0000] [0.0000] [0.0000] [0.0000] [0.0000] [0.0000] [0.0000] [0.0000] [0.0000]

Q(ε2t/σ2
t ) 21.0615 17.9813 18.021 19.5918 15.3428 14.7311 20.1113 12.4285 12.0091

[0.0495] [0.1163] [0.1151] [0.0752] [0.2233] [0.2565] [0.0650] [0.4119] [0.4449]Note: The GARCHX (AGARCHX) model refers to the symmetri (asymmetri) GARCH model with additive level e�ets given by equation 3.4 (3.5). LLdenotes the log-likelihood value, Q(εt/σt) and Q(ε2t/σ2
t ) are the Ljung�Box test statistis for serial orrelation in the standardized and squared-standardizedresiduals up to order 12, respetively. *, ** and *** denote signi�ane at 1%, 5% and 10% signi�ane levels.
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Table 3.4: The Goodness of Fit of In-Sample Volatility Estimates of Paramet-ri and Semiparametri Models of U.S. Short Rates over the Period February9, 1973�June 8, 2007 (a) Volatility Benhmark |rt − rt−1|Normal Student's tLinear drift MSE MAE AIC R2

vol MSE MAE AIC R2
volGARCH 0.0441 0.1632−465.2797 0.3539 0.0444 0.1645−451.8839 0.3564Iteration 1 0.041 0.1599−584.3063 0.3982 0.0411 0.1601−583.19 0.3989Iteration 2 0.0413 0.1595−572.9455 0.3941 0.0415 0.1601−564.1346 0.3937Iteration 3 0.0409 0.1583−589.5497 0.3929 0.041 0.1584−586.7339 0.3926Iteration 4 0.0408 0.1578−593.7955 0.3913 0.0408 0.1579−592.4436 0.391Iteration 5 0.0408 0.1576−593.4775 0.3901 0.0409 0.1577−589.1935 0.389Iteration 6 0.0407 0.1571−598.9764 0.3903 0.0407 0.1572−596.3312 0.3893Iteration 7 0.0407 0.1571−599.0108 0.3906 0.0408 0.1573−593.5321 0.3892Iteration 8 0.0406 0.1567−603.5222 0.3909 0.0406 0.1568−601.1995 0.3901Final smoothed 0.0406 0.1569−601.8026 0.3908 0.0407 0.1572−601.9206 0.3899AGARCHX 0.0433 0.1609−468.8008 0.3545 0.0421 0.1584−498.5179 0.3573GARCHX 0.0439 0.1617−459.0652 0.3540 0.0428 0.1596−486.4507 0.3566Nonlinear drift MSE MAE AIC R2

vol MSE MAE AIC R2
volGARCH 0.0441 0.1633−463.5183 0.3534 0.0444 0.1645−453.066 0.3567Iteration 1 0.0411 0.1602−581.6097 0.3981 0.0411 0.1601−583.1312 0.3989Iteration 2 0.0414 0.1597−571.1824 0.3943 0.0415 0.1601−563.9604 0.3942Iteration 3 0.0409 0.1584−588.7446 0.3932 0.041 0.1584−586.7507 0.3928Iteration 4 0.0408 0.158 −593.2638 0.3919 0.0408 0.1579−592.6804 0.3911Iteration 5 0.0409 0.1578−590.8762 0.3901 0.0409 0.1577−589.8344 0.3893Iteration 6 0.0407 0.1573−597.7895 0.3905 0.0408 0.1574−594.9734 0.3897Iteration 7 0.0407 0.1573−597.6123 0.3905 0.0408 0.1573−593.8119 0.3896Iteration 8 0.0406 0.157 −601.9312 0.3914 0.0406 0.1569−600.9026 0.3903Final smoothed 0.0407 0.1572−600.0607 0.3907 0.0407 0.1572−600.0972 0.3901
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(b) Volatility Benhmark σ̂2

GKNormal Student's tLinear drift MSE MAE AIC R2
vol MSE MAE AIC R2

volGARCH 0.0263 0.1366 −1325.280 0.4139 0.027 0.1387 −1281.644 0.4128Iteration 1 0.0249 0.1340 −1417.338 0.4309 0.0251 0.1344 −1409.191 0.4307Iteration 2 0.0245 0.1321 −1448.451 0.4322 0.0248 0.1328 −1428.123 0.4312Iteration 3 0.0242 0.1311 −1464.101 0.4284 0.0244 0.1313 −1455.203 0.427Iteration 4 0.0243 0.1308 −1462.552 0.4259 0.0244 0.1311 −1452.146 0.4245Iteration 5 0.0243 0.1307 −1462.171 0.4264 0.0244 0.1308 −1454.157 0.4246Iteration 6 0.0241 0.1303 −1470.949 0.4251 0.0243 0.1304 −1462.523 0.4223Iteration 7 0.0242 0.1303 −1469.129 0.4257 0.0243 0.1306 −1459.599 0.4241Iteration 8 0.0241 0.1299 −1475.989 0.4262 0.0242 0.1302 −1466.137 0.4242Final smoothed 0.0241 0.1301 −1474.438 0.4263 0.0242 0.1304 −1464.826 0.4240AGARCHX 0.0268 0.134 −1293.64 0.4189 0.0261 0.1335 −1334.653 0.4219GARCHX 0.0266 0.1342 −1302.411 0.4167 0.0258 0.1327 −1352.352 0.4225Nonlinear drift MSE MAE AIC R2
vol MSE MAE AIC R2

volGARCH 0.0266 0.1369 −1310.771 0.4129 0.027 0.1387 −1283.112 0.4129Iteration 1 0.025 0.1343 −1411.852 0.4313 0.025 0.1344 −1409.544 0.4307Iteration 2 0.0245 0.1323 −1444.576 0.4325 0.0248 0.1329 −1427.342 0.432Iteration 3 0.0243 0.1313 −1460.787 0.4287 0.0244 0.1314 −1455.954 0.4275Iteration 4 0.0243 0.131 −1459.072 0.4265 0.0244 0.1311 −1453.408 0.4249Iteration 5 0.0243 0.1309 −1458.577 0.427 0.0244 0.1308 −1455.779 0.4251Iteration 6 0.0242 0.1305 −1469.125 0.4258 0.0243 0.1305 −1461.697 0.4234Iteration 7 0.0242 0.1304 −1468.508 0.4263 0.0243 0.1307 −1459.126 0.4244Iteration 8 0.0242 0.1303 −1469.766 0.4268 0.0242 0.1303 −1466.36 0.4247Final smoothed 0.0241 0.1303 −1470.881 0.4257 0.0242 0.1304 −1464.585 0.4240Note: The rows labeled as iterations and �nal smoothed are the results for the semiparametri approah. Thepre�x �A� denotes asymmetri while the su�x �X� denotes level e�ets.
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Table 3.5: The Out-of-Sample Volatility-Foreast Performane of Parametriand Semiparametri Models of U.S. Short Rates over the Period June 15,2007�May 8, 2009 a. Volatility Benhmark |rt − rt−1|GARCH Final Smoothed AGARCHX-T GARCHX-T AGARCHX-N GARCHX-NMSE 0.0349 0.0318 0.0339 0.0344 0.03499 0.0352MAE 0.1431 0.1225 0.1295 0.1319 0.1346 0.1359b. Volatility Benhmark σ̂2

GKGARCH Final Smoothed AGARCHX-T GARCHX-T AGARCHX-N GARCHX-NMSE 0.0498 0.0395 0.0458 0.0466 0.0477 0.0486MAE 0.1744 0.1402 0.1581 0.1643 0.1666 0.1678Note: See note to Table 3.4. �T� and �N� denote Student's t and normal distributions, respetively.



Figures

79



80
CHAPTER3

Figure 3.1: (a) Volatility Estimates of Various Models for Simulated Data with Linear Drift
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Note: The dotted line represents simulated true volatility, while the solid line represents the estimated volatility derived from estimating a modelwith a linear drift. For the semiparametri approah, the �nal smoothed volatility is presented. N, T and ST denote normal, Student's t, andskewed t distributions, respetively.
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Figure 3.1: (b) Volatility Estimates of Various Models for Simulated Data with Nonlinear Drift
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Note: The dotted line represents simulated true volatility, while the solid line represents the estimated volatility derived from estimating a modelwith a nonlinear drift. For the semiparametri approah, the �nal smoothed volatility is presented. N, T and ST denote normal, Student's t andskewed t distributions, respetively.
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Figure 3.2: The U.S. Short Rates: Levels and First Di�erenes

Note: This �gure plots the level and the �rst di�erene of the three-month Treasury bill rates. The �rst plot is the level, and the seond is the �rstdi�erene.



FIGURES 83Figure 3.3: Plots of MSE, MAE, AIC and R2
vol for the In-Sample Volatility-Foreasting Performane of the Parametri and Semiparametri U.S. Short-Rate Models

(a) Volatility Benhmark |rt − rt−1|
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(b) Volatility Benhmark σ̂2
GKNote: The shaded bars represent the metri value for the parametri models in the following order:AGARCHX-T, AGARCHX-N, GARCHX-T, GARCHX-N. The 1 to 10 marks on the x-axis are to be interpretedin the following way. The �rst mark represents the metri value for the parametri GARCH model. The seondto ninth marks represent the metri values for the eight iterations that are performed in the semiparametriproedure, while the tenth mark denotes the metri value for the �nal smoothing stage. R2 denotes R2

vol . Theresults are for the sample period February 9, 1973�June 8, 2007.



FIGURES 85Figure 3.4: Plots of In-Sample Volatility Estimates for the U.S. Short Ratesover the Sample Period January 1, 1997�January 1, 2000

(a) Semiparametri approah

(b) AGARCHX-T model
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(d) AGARCHX-T modelNote: The dotted line in (a) and (b) is the true volatility proxied by |rt − rt−1|. The dotted line in () and (d) isthe true volatility proxied by σ̂2
GK. The line marked in bold is the volatility estimate σ̂t.
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Figure 3.5: Plots of Out-of-Sample Volatility Foreasts for the U.S. ShortRates over the Sample Period June 15, 2007�May 8, 2009
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GK . The line marked in bold is the volatility estimate σ̂t .
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Figure 3.6: Con�dene Intervals for Simulated Interest Rates from BHK andSemiparametri Models

Note: The solid lines (reading from the outermost to the innermost lines) are on�dene intervals for simulatedinterest rates from the AGARCHX-T, GARCHX-T, AGARCHX-N and GARCHX-N models. The dotted linesare on�dene intervals for the semiparametri model.
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Chapter 4EMU Equity Markets' ReturnVariane and Spillover E�ets fromShort-Term Interest Rates4.1 IntrodutionThe last deades have witnessed poliymakers using the stok market as the intermediatehannel to stabilize in�ation and output. However, muh of the e�et of monetary poliyomes through the in�uene of short-term interest rates on other asset pries inludingbond and stok pries that, in turn, signi�antly in�uene real eonomi ativities. Sinethe Monetary Poliy Committees in the UK started to use short-term interest rates asthe tool for ahieving its in�ationary target in 1997, there is an inreasing trend of usingthe short-term interest rate rather than the money supply as intermediate targets formonetary poliy in the world. Reently, the unexpeted shoks from the money market,suh as the Russian debt risis in 1998 and the subprime mortgage risis of 2007, haveshown how the domino e�et of short-term interest-rate shoks an a�et the �nanialmarket globally. Henry (2009) argues that with huge �utuations in the short-term moneymarket, �rms seeking funding in the short-term rate, and lending in long-term relativelyilliquid seurities, beome insolvent simply beause they annot aess su�ient ash to�nane their short-term ativities and not beause they are unviable in the medium tolong term. Therefore, it is important for poliymakers and analysts to understand howshort-term interest-rate hanges a�et stok pries and for them to pay lose attentionin pursuit of their �nal objetives.Many researhers have examined the impat of interest rates on stok pries, but therelationship between the short-term interest rate and stok pries is still ontroversial.Earlier studies employed Treasury bill rates as a proxy for the expeted in�ation to exam-ine the relationship between interest rates and stok returns (see, e.g., Nelson, 1976 Famaand Shwert, 1977 Fama, 1981 Shanken, 1990). These studies �nd a negative relationshipbetween stok returns and Treasury bill rates. Domian et al. (1996) mainly use yields onone-month Treasury bills to examine the relationship between stok returns and interest-91



92 Chapter 4rate hanges. The results from this study show asymmetri relations; that is, drops ininterest rates are followed by large positive stok returns while inreases in interest rateshave little e�et. By present-value models, the negative relation between interest ratesand stok pries stems from the fat that an interest-rate inrease (derease) auses aninrease (derease) in expeted future disount rates whih should ause stok pries tofall (rise) and long-term interest rates to rise (fall). However, ertain empirial attemptshave provided evidene in favor of a positive relationship between interest rates and stokpries (see, e.g., Asprem, 1989 Shiller and Beltratti, 1992 Barsky, 1989). Barsky (1989)explains the positive relationship in terms of a hanging risk premium. For instane, adrop in interest rates ould be the result of inreased risk or preautionary saving asinvestors substitute away from risky assets � e.g., stoks � into less risky assets � e.g.,bonds. Shiller and Beltratti (1992) argue in favor of suh a positive relationship on thegrounds that hanges in interest rates ould arry information about ertain hanges infuture fundamentals.Meanwhile, sine the seminal Bernanke and Blinder (1992), the impat of hangesin di�erent interest-rate instruments used as the proxy for monetary poliy on the stokmarket has been examined in the �nanial literature (see, e.g., Thorbeke, 1997 Bom-�m, 2003 Rigobon and Sak, 2002 Bernanke and Knutter, 2005 Davig and Gerlah, 2006Basistha and Kurov, 2008 Henry, 2009). In partiular, using the three-month Eurodollarrate as a proxy of monetary poliy, Rigobon and Sak (2002) show that inreases inthe short-term interest rate negatively impat stok pries and signi�antly positivelyimpat market interest rates, with the largest e�et on rates with shorter maturities.1Another important issue onsidered in the interest-rate literature is that the e�et ofinterest rates is di�erent in bull and bear markets. As de�ned in Maheu and MCurdy(2000) and Perez-Quiros and Timmermann (2000), bull markets display high returns ou-pled with low volatility (a stable regime), and bear markets have a low return and highvolatility (a volatile regime). Some empirial studies have established that the e�et ofinterest rates on onditional returns is larger in a volatile regime than in a stable regime.For example, using a Markov-swithing model, Chen (2007) investigates how monetarypoliy, measured by interest-rate instruments, a�ets stok returns, onluding that suhan impat is asymmetrially large in the bear periods. Henry (2009) uses a Markov-swithing EGARCH model to examine the impat of short-term interest-rate surpriseson the volatility of returns in the UK stok market. Using a Markov-swithing model,Perez-Quiros and Timmermann (2000) study the relationship between hanging reditmarket onditions, inluding short-term interest rates, and stok market. They all �nda similar asymmetri e�et of interest rates on stok returns in the bear market. Mean-while, a di�erent onlusion is found in the Markov-swithing framework. In ontrast tothe previous work suggesting interest rates signi�antly impat stok markets, Ang andBekaert (2002) on�rm that the evidene to support the e�et of interest rates on returnsdoes not exist, even if the regime-swithing harateristis are added into the empirial1Ellingsen and Söderström (2001) have also used hanges in the three-month interest rate as a measureof poliy innovations for estimating the term struture's response. Favero et al. (1999) examine thetransmission of monetary poliy in Europe, using the three-month Euro rate as a proxy for that poliy.



4.1. INTRODUCTION 93model.This paper investigates the spillover e�et of interest rate impats on stok returnsand the volatility of returns in the Euro area in di�erent regimes. We extend the urrentliterature in several aspets. First, departing from most previous work, whih primarilyexamines the e�et of interest rates on stok pries and returns, we analyze the potentialimpat of hanges in short-term interest rate on both stok returns and the volatil-ity of returns. Beause the onditional variane is onsidered to be a proxy for risk inthe �nanial and eonomi �elds, it has important in�uene on monetary poliymaking,asset-alloation deisions, and risk management. Merton (1980) suggests that one shoulduse aurate variane estimates in aounting for the risk level when estimating expetedreturns. Optimal inferene about the onditional mean of asset returns requires that theonditional variane be orretly spei�ed. The investigation of interest rates' impaton both stok returns and the volatility of returns is of importane to �nanial-marketpartiipants making e�etive portfolio seletion and formulating risk-management strate-gies.Seond, we ontribute to the urrent literature by investigating the asymmetri e�etof the inreased interest rates on returns and the volatility of returns in bull and bearmarkets in the Eonomi and Monetary Union (EMU) stok markets. Although there issubstantial evidene for the asymmetrial e�et of interest rates on stok returns in bearand bull markets, no researh has been done to examine whether inreases and dereasesin interest rates have the same e�et in di�erent market states. Further, reviewing Sellin's(2001) survey, it is lear that most of the studies fous mainly on the e�et of interest rateson U.S. �nanial markets. In ontrast, the impat of short-term interest-rate movementson stok markets in the EMU area has reeived surprisingly little attention in the reentliterature. We examine the impat of the interest rates on the stok markets in the EMUountries.Third, our empirial work updates the urrent literature by investigating the spillovere�et of the money market on stok returns and the volatility of stok returns by extend-ing the Markov-swithing GJR GARCH in Mean model (MS GJR-M). We extend theMS GJR-M model by adding interest-rate movements diretly to the variane proessof the MS GJR-M model, and formulate the Extended Markov-swithing GJR GARCH-M model (EMS GJR-M). We use the hanges (not the level) of the short-term interestrate beause we want to examine how the �utuations in the short-term interest ratesa�et the EMU equity market, meanwhile the �rst di�erene square is a ommonly usedproxy for the short-term interest-rate variane. By setting the �rst-di�erene squaresto the onditional variane of the equity return, we an investigate the spillover e�etof the short-term interest-rate market on the EMU equity market. There are severaladvantages of the proposed model in this paper. First, a regime swithing model anapture strutural breaks in the volatility in terms of bull and bear markets.2 Seond,given the widespread evidene of the asymmetrial e�et of unexpeted shoks on stok2Lamoureux and Lastrapes (1990), Hamilton and Susmel (1994) and Cai (1994) argue that ignoringthese strutural shifts in the volatility proess auses GARCH models to overestimate the persistene ofvolatility.



94 Chapter 4volatility(see, e.g., Glosten et al., 1993 Engle and Ng, 1993), the MS GJR-M model hassu�ient �exibility to haraterize the persistent and asymmetrial response (leveragee�et) of the volatility to shoks. Meanwhile the time varying risk premia theory (see,e.g., Frenh et al., 1987 Campbell and Hentshel, 1992) states that the volatility asym-metry is due to the volatility feedbak; that is, if volatility is inreased, so is the riskpremium in ase of a positive trade-o� between risk and return. Hene, the disountrate is also inreased, whih in turn, for an unhanged dividend yield, lowers the stokprie. Therefore, the MS GJR-M model aptures the volatility feedbak via a GARCH inMean (GARCH-M) proess from Engle et al. (1987). Finally, adding interest-rate move-ments and distinguishing inreases in interest rates enable us to investigate three typesof asymmetri e�ets in the variane proess, i.e., the asymmetri e�et of unexpetedshoks (negative/positive news) from the stok market, the asymmetri e�et of unex-peted shoks (interest rate inreases/dereases) from the interest-rate market, and theasymmetri e�et of unexpeted shoks in di�erent market states. We investigate theseasymmetri e�ets by modifying the news impat urve (NIC) as suggested by Engleand Ng (1993) to the news impat surfae, in whih the variane proess depends on theshoks from stok returns and from interest-rate hanges in di�erent market states. Weestimate the MS GJR-M and EMS GJR-M models with the Markov Chain Monte Carlo(MCMC) method instead of the traditional maximum-likelihood method. Beause of thestruture of the proposed model, the onditional variane depends on all past history ofthe state variables. The evaluation of the likelihood funtion for a sample path of length
T and k states requires the integration over all kT possible paths, rendering the maxi-mum likelihood estimation infeasible. To the best of our knowledge, this is the �rst timethat a MS GJR-M model has been estimated in the literature.Our results suggest that two regimes exist in the EURO area stok markets, a high-mean low-variane (bull) market and a low-mean high-variane (bear) market. Most ofthe Euro ountries have the same regime swithing status between the bull and bearmarkets. The orrelation between the �rst two moments of returns is not stable overtime, but varies between the bull and the bear markets. Our results suggest also thatbad news from unexpeted stok returns (negative residuals from returns) has an asym-metrially larger e�et on the returns and the volatility than good news. Suh an impatis larger in the bear market than in the bull market. Surprisingly, as implied in the newsimpat surfae, we �nd that the hange in short-term interest rates only signi�antlya�ets the stok market volatility in the bear period in most of the EMU ountries. Inpartiular, the e�et of an inrease in interest rates is asymmetrially larger than that ofa derease in interest rates. Portfolio performane, based on the out-of-sample foreastresults of various models, indiates that the EMS GJR-M model outperforms other mod-els, inluding the MS GJR-M model and a single swithing GJR-M model. The modelswith regime swithing yield better portfolio performane than the ones without it, em-phasizing the importane of the interest-rate impat and the regime spei�ation whenmodeling volatility. Ignoring suh state-dependent asymmetri e�ets from short-terminterest rates on stok returns and their volatility will lead to invalid inferenes, biasedforeasts and onsequently ine�ient portfolio seletion and risk management due to the



4.2. THE MODEL 95biased volatility estimates.This paper proeeds as follows. Setion 4.2 presents the extended Markov-swithingGJR GARCH-M model. Setion 4.3 demonstrates the model-estimation algorithm. Se-tion 4.4 desribes the data used and reports the empirial results. Setion 4.4 also per-forms the asset alloation based on the out-of-sample foreasts result from various models.Setion 4.5 onludes.4.2 The modelIn this setion, we present the model used and proposed in this paper.4.2.1 The Markov-swithing GJR GARCH-M modelThere is a substantial literature desribing the volatility of stok returns. Sine Engle(1982) introdued the ARCH (autoregressive onditional heteroskedastiity) model andBollerslev (1986) introdued the GARCH (generalized autoregressive onditional het-eroskedastiity) model, these types of volatility modeling tehniques have been extendedand applied extensively to haraterize the volatility of stok returns. One ommon ob-served harateristi of the volatility is the volatility asymmetry, where the volatilityinreases more after a negative shok than after a positive shok of the same magnitude.Two eonomi theories explain the asymmetri volatility pattern: The leverage e�etand the volatility feedbak. The volatility feedbak (see Campbell and Hentshel, 1992)indiates that the news that future volatility will be higher will indue the risk-averseinvestors to sell their positions today until the expeted return rises up to ompensate forthe risk. This feature an be aptured by the GARCH in Mean (GARCH-M) type formu-lation (see Engle et al., 1987),3 in whih the onditional mean depends expliitly on theonditional variane. The GARCH-M model also allows us to explore the intertemporalrelation between risk and return. Another extension of the standard GARCH model, theEGARCH (Nelson, 1991) and the GJR GARCH (Glosten et al., 1993), apture asym-metry in the onditional variane by the so alled leverage e�et (Blak, 1976). Theleverage e�et indiates that the inreases in the �nanial leverage lead to an inreasedvolatility level. We hoose to use both the GARCH-M and the GJR model to apturethe asymmetry in the volatility.A standard GARCH model with the GJR spei�ation and the GARCH-M e�et,whih we refer to as the GJR-M(p, q) model, has the following form,
rt = β

√
ht + ǫt, ǫt =

√
htzt, zt ∼ N(0, 1),

ht = αo +

p∑

i=1

(αi + γidi)ǫ
2
t−i +

q∑

j=1

βjht−j , (4.1)3The GARCH-M was primarily motivated by Merton's (1973) Intertemporal Capital Asset PriingModel (ICAPM)



96 Chapter 4where ǫt may be treated as a olletive measure of news about equity pries arriving tothe market over the last period, and αo > 0, αi ≥ 0, βj ≥ 0, αi + βj + 0.5γi < 1. di is anindiator for negative ǫt−i:
di =

{
1 if ǫt−i < 0,
0 if ǫt−i ≥ 0.It an be seen from the model that a positive ǫt−i ontributes αiǫ

2
t−i to σi, whereas anegative ǫt−i has a larger impat (αi + γi)ǫ

2
t−i. Therefore, if parameter γi is signi�antlypositive, then negative innovations generate more volatility than positive innovations ofequal magnitude.While estimating �nanial and maroeonomi series, some eonomists �nd that bothARCH and GARCH models may enounter high persistene in volatility and lower au-ray in prediting performane. Diebold and Inoue (2001) argues that the high persisteneis aused by strutural breaks in the volatility proess during the estimation period. Lam-oureux and Lastrapes (1990) point out that models with swithed parameter values, suhas the Markov-swithing model of Hamilton (1989), may provide a more appropriate toolfor modeling volatility. Hamilton and Susmel (1994) propose a model with sudden disretehanges in the volatility-governing proess. They found that a Markov-swithing proessprovides a better statistial �t to the data than a GARCH model without swithing.Therefore, this paper employs a two-state MS GJR-M model to apture the GARCH-M e�et (volatility feedbak) in the onditional mean, the leverage e�et and struturalbreaks in the onditional variane. The MS GJR-M (1,1) model is de�ned as follows.

rt = βi
√

hi,t + ǫi,t, ǫi,t =
√

hit zt, zt ∼ N(0, 1),

hi,t = αio + αi1ht−1 + αi2ǫ
2
t−1 + αi3diǫ

2
t−1, (4.2)where zt ∼ N(0, 1), i = 1, 2 represents the state and αio > 0, αi1 ≥ 0, (αi2 + αi3) ≥ 0,

(αio + αi2 + 0.5αi3) < 1. di is an indiator for negative news from the last period and indi�erent state i. Following Hamilton (1989, 1990), we assume that the state vetor, St,follows a �rst-order Markov proess with the hidden transition probabilities matrix,
Π =

(
π11 π12
π21 π22

)
,where,

π11 = P (St = 1|St−1 = 1) = 1− e1,

π12 = P (St = 2|St−1 = 1) = e1,

π21 = P (St = 1|St−1 = 2) = e2,

π22 = P (St = 2|St−1 = 2) = 1− e2, (4.3)where 0 < ei < 1, for i = 1, 2. A small ei means that the return series has a tendeny tostay in the ith state with the expeted duration.For the model in 4.2 to be identi�able, we assume that β2 > β1 so that State 2 is



4.2. THE MODEL 97assoiated with higher onditional returns. If α1j = α2j for all j, the model beomes asimple GJR in Mean model. If βi√ht is replaed by βi, then the model in 4.2 redues toa Markov-swithing GJR model.Parameter β is the risk premium. A positive β indiates that the return is positivelyrelated to the volatility. Parameters in the GARCH omponents satisfy onditions sim-ilar to those of GARCH models. If the parameters have signi�ant di�erenes betweenregimes, then there exists a bull market and a bear market in stok returns.4.2.2 The extended Markov-swithing GJR GARCH-M model withthe interest-rate e�etHolding the transition probability matrix onstant, we measure the impat of the interest-rate di�erential on the stok market by extending the MS GJR-M model to the EMSGJR-M model. This model is formulated by adding the interest-rate hanges to thevariane proess:
rt = βi

√
hi,t + ǫi,t, ǫi,t =

√
hi,tzt, zt ∼ N(0, 1),

hi,t = αio + αi1ht−1 + αi2ǫ
2
t−1 + αi3diǫ

2
t−1 + αi4χ

2
t−1 + αi5fiχ

2
t−1, (4.4)where parameters in the variane proess satisfy onditions similar to those in the MSGJR-M model. The interest-rate di�erential, χt = (It/It−1), aptures hanges in short-term interest rates, where It is the interest-rate level at time t. The indiator for positivehanges, inreases, in interest rates satis�es

fi =

{
1 if χt−1 > 0,
0 if χt−1 ≤ 0.For this model to be well de�ned, we use the squared �rst di�erene of interestrates to examine their impat on the onditional variane. As we are estimating theonditional variane, whih is the squared onditional volatility in the GJR model, weuse the squared di�erenes of interest rates in order to keep the interest-rate di�erentialsand the estimated volatility at the same sale. Meanwhile the �rst di�erene square isa ommonly used proxy for the short-term interest-rate variane. By setting the �rst-di�erene squares to the onditional variane of the equity return, we an investigate thespillover e�et of the short-term interest-rate market on the EMU equity market. Further,in this spei�ation, we an examine di�erent asymmetrial e�ets on the volatility ofstok returns. Besides the asymmetri e�ets from market news, we an also examineif an inrease in interest rates asymmetrially a�ets the stok market in the bear andbull markets. Hene, a negative χt−1 (drops in interest rates) ontributes αi4 χ

2
t−1 to σi,whereas a positive χt−1 (inreases in interest rates) has a impat (αi4 + αi5)χ
2
t−1 if αi5is signi�antly di�erent from zero. The oe�ients α1 4 and α1 5 measure the e�et ofmovements in the interest rate on the onditional variane in the bear market, while α2 4and α2 5 measure the impat of interest-rate �utuations on volatility in the bull market.One alternative study of interest rate's impat an be done by allowing the trans-



98 Chapter 4mission matrix to be time varying. However, it is still an open question whether thespei�ation of a time-varying transition probability is suitable for all �nanial data.Some studies report that the regime-swithing model with the time-varying transitionprobability performs worse ompared with the regime-swithing model with a �xed tran-sition probability.4 Therefore, we hoose to analyze the MS GJR-M and EMS GJR-Mmodels with a �xed transition probability.4.3 Model EstimationIn this setion, we desribe the estimation algorithm for a MCMC method. This estima-tion algorithm will be tested with a Monte Carlo simulation.4.3.1 Markov hain Monte Carlo estimation methodThe evaluations of the likelihood funtion of Models 4.2 and 4.4 are ompliated as theyare a mixture over all possible state on�gurations. This may lead to omputational di�-ulties with the maximum likelihood estimation. We estimate the model with a Bayesian-based MCMC method. A Bayesian statistial model onsists of a parametri statistialmodel, f(x|θ), and a prior distribution on the parameters, p(θ). The optimal Bayes esti-mator under quadrati loss is simply the posterior mean: θ̂ = E[θ|Y = y] =
∫
θp(θ|y)dθ.Therefore, we need to ompute the posterior density of our model parameters. The pos-terior density is determined by the prior density and the likelihood.

p(θ|y) =
f(y, θ)

f(y)

=
f(y|θ)p(θ)∫
f(y|θ)p(θ)dθ) .That is,

p(θ|y) ∝ f(y|θ)p(θ), (4.5)where f(y|θ) in equation 4.5 is the likelihood funtion and p(θ) is the prior distribution.The parameter vetor of the model MS GJR-M (1,1), for i = 1, 2, spei�ed in 4.2 is givenby,
Θi = {βi,θi,πi,S},
θi = (αio, αi1, αi2, αi3),

πi = (πi1, πi2),S = (S1, S2, . . . , ST ). (4.6)4For example, Perez-Quiros and Timmermann (2001) demonstrate that the regime-swithing modelwith a time-varying transition probability is not appliable for large �rms. Chang (2009) �nds that theregime-swithing model with the time-varying transition probability performs worse in out-of-sampleforeasting than the model with �xed transition probability.



4.3. MODEL ESTIMATION 99To obtain the Bayesian estimators, Θ̂, we ompute the mean from the sample of thestationary distribution of the simulated Θi. We need the following onditional posteriordistributions: f(β|R,S,H,θ1,θ2), f(θi|R,S,H,θj 6=i), p(S|H,R,θ1,θ2), f(ei|S), i =
1, 2, where R is the observed returns and H is the onditional volatility vetor and anbe omputed reursively. Following Tsay (2005), we use onjugate prior distributions todraw βi and ei (see DeGroot, 1990, for a proof).Sampling βiAssume βi ∼ N(βi0, σ

2
io), the posterior distribution of βi depends only on State i. De�ne,

rit =





rt√
(ht)

if st = i;

0 otherwise.Then we have,
rit = βi + ǫi, for st = i. (4.7)Let ri =

(∑
st=i rit

)
/ni where ni is the total number of data points in state i, and

rit ∼ N(βi, σ
2). Then the onditional posterior distribution of βi is normal with mean β∗

iand variane σ2∗
i :

β∗
i =

σ2βio + niσ
2
iori

σ2 + niσ2
io

and σ2∗
i =

σ2σio
σ2 + niσ2

io

. (4.8)Sampling eiThe onditional posterior distribution of ei only involves S. Assume ei ∼ Beta(ϕi1, ϕi2)and let∑n
t=1 l1t be the number of swithes from State 1 to State 2,∑n

t=1 l2t be the numberof swithes from State 2 to State 1, and ni be the number of the data observations instate i. lit are Bernoulli distributed with parameter ei; then the posterior distribution of
ei is beta as,

ei ∼ Beta

(
ϕi1 +

n∑

t=1

lit, ϕi2 + ni −
n∑

t=1

lit

)
. (4.9)Sampling αijWe draw αij with a modi�ed Griddy Gibbs sampler. The Griddy Gibbs was �rst intro-dued by Tanner (1996). This method is widely appliable when the onditional posteriordistribution is univariate. The main idea is to form a simple approximation to the inverseumulative distribution funtion (CDF) based on the evaluation of the onditional poste-rior distribution on a grid of points. In our model, the onditional posterior distributionfuntion of αij does not orrespond to a well-known distribution; however, as ht ontains
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αij , it an be evaluated easily:

g(αij |·) ∝
n∑

t=1

{
−1

2

[
ln(ht) +

(rt − βi
√
ht)

2

ht

]}
, if st = i,

f(αij|·) ∝ exp(g(αij)). (4.10)In order to avoid the problem of the fast onvergene of the exponential distribution,we modify the Griddy Gibbs by adding a sale fator u = max(g(αij)) to the evaluatedfuntion:
f(αij|·) ∝ exp(g(αij)− u). (4.11)The Griddy Gibbs proeeds in the following steps:1. Evaluate f(αij|·) at a grid of points from a properly seleted interval of αij�forexample, 0 ≤ αi1 < 1 − αi2 − αi3�to obtain ωk = f(αk

ij |·) for k = 1, . . . ,m. Wehoose m = 200.2. Use {ωm
k=1} = ω1, ω2, . . . , ωk to obtain an approximation to the inverse CDF of

f(αij|·), whih is a disrete distribution for {αk
ij}mk=1 with probability p(αij) =

ωk/
∑m

v=1 ωv.3. Draw a uniform (0, 1) random number and transform the observation via the ap-proximate inverse CDF to obtain a random draw for αij .Sampling SFollowing Henneke et al. (2006), we draw the states St by the �Single Move� proedure.At eah step, we sample from the full onditional posterior density of St given by,
P (St = i|R,θ−s, S−t), (4.12)where θ−s is the parameter vetor in equation 4.6 exluding S and S−t is the regimepath exluding the regime at time t. In order to save spae, we omit the notation of theexpliit ondition on θ. Applying the rules of onditional probability to 4.12, we get,

P (St=i|R,S−t) =
P (Si, R|S−t)

P (R|S−t)
=

P (R|St=i, S−t).P (St=i|S−t)

P (R|S−t)
. (4.13)The �rst term in the numerator, P (R|St=i, S−t), is simply the model's likelihood L(St =

i) evaluated at a given regime path, in whih St = i, and
L(St = i) =

n∏

t=j

f(ǫt|H) ∝ exp(fji),

fji =

n∑

t=1

{
−1

2

[
ln(ht) +

(rt − βi
√
ht)

2

ht

]} for i = 1, 2 and t ≥ j. (4.14)



4.4. DATA AND EMPIRICAL RESULTS 101Given t ≥ j, one an ompute ht reursively. The denominator, P (R|S−t), is the sum ofthe two probability-weighted onditional distributions,
P (R|S−t) =

s=2∑

i=1

P (R|St = i, S−t).P (St=i|S−t), (4.15)due to the Markov property of the hain. P (St = i|S−t) is only dependent on St−1 and
St+1,

P (St=i|S−t) = P (St = i|St−1, St+1) =
πl,i.πi,k∑s=2

i=1 πl,i, .πi,k (4.16)Let St−1 = l, St+1 = k and πij be the respetive transition probabilities from thetransition probability matrix. Finally, substitute equation 4.15 and equation 4.16 intoequation 4.13; we ompute the onditional posterior probability as
P (St=i|R,S−t) =

L(St = i).πl,iπi,k∑s=2
j=1 L(St = j).πl,jπj,k . (4.17)The state St an be drawn using a uniform distribution in the interval [0, 1].4.3.2 Monte Carlo SimulationIn order to show that our algorithm works well, we perform a Monte Carlo simulationexperiment. We simulate 10 data sets of 1,000 points from Model 4.2 with the sametrue parameter values for eah data set and 5,000 iterations, of whih the �rst 400 ofthe sample are disarded as burn in. In Table 4.1, we present the estimation resultsfrom the randomly hosen 1000 simulated data points. We �nd that the means of ourestimated parameters are quite lose to the true parameters and the square roots of themean squared errors are quite small. Figure 4.1 shows the plots of the true and estimatedvolatility proess, as well as the plot of the true and estimated probability of Regime 1.The estimated probability of Regime 1 is very lose to the true probability. Therefore,we an be on�dent that our algorithm performs very well and is reliable.4.4 Data and Empirial ResultsIn this setion, we present the data used in this paper, perform the empirial study andreport the results.



102 Chapter 44.4.1 DataThe data used in this study onsist of the weekly stok index losing prie of ten ountriesthat joined the EMU's third stage on January 1, 1999.5 Spei�ally, they inlude Ger-many's DAX, Frane's CAC40, Italy's FTSEMIB, Spain's IBEX35, Finland's HEX25,the Netherlands' AEX, Ireland's ISEQ, Austria's ATX, Belgium's BEL20 and Portugal'sPSI20. Furthermore, the one-month Euro Interbank O�ered Rate (EURIBOR) is thebenhmark money market rate for the Euro area. Interest rates with shorter maturitiesare negleted, and EURIBORs with maturities longer than one month may not be sensi-tive enough to represent short-term interest rates (see, e.g., Kleimeier and Sander, 2006Bohl et al., 2008).The sample period is from January 1, 1999, to Marh 12, 2010. That is, it beginswhen the European Central Bank (ECB) replaed the national entral banks of EMUmembers and assumed responsibility for the ondut of uni�ed monetary poliy. Thedata is further divided into in-sample and out-of-sample periods. The in-sample periodstarts on January 1, 1999, and ends on July 17, 2009, and the out-of-sample period isfrom July 24, 2009, to Marh 12, 2010. The total sample size is 589. All the data areobtained from Thomson Finanial Datastream.We alulate the weekly returns as log(yt/yt−1) and then annualize them by mul-tiplying by the square root of 52. Table 4.2 presents the statistial desription of theEMU stok market indexes' returns. It an be seen from this table that the means ofthese returns are around zero. The standard deviations range from 0.1815% (Portugal)to 0.256% (Finland). The kurtosis statistis are far greater than the 3 assoiated with anormal distribution. The negative skewness oe�ients are also signi�antly less than thevalue (zero) expeted for a symmetri normal distribution. The p values of the Jarque�Bera test show that the null hypothesis of normality is learly rejeted for every series.However, the test statistis from the Augmented Diky�Fuller test are muh less thanthe ritial value, therefore, the null hypothesis of a unit root is rejeted at the 5% signif-iane level for all the return series. The p values of the 10-lag Ljung�Box Q-test indiatethat there are no serial orrelations in the series.4.4.2 Empirial resultsValidation of model estimationsBefore the analysis, we examine the validity of the MS GJR-M model in di�erent ways.First, a 20-lag Ljung�Box Q-test is arried out to hek the serial orrelation in stan-dardized residuals. The p-values of the tests presented in the last olumn in Table 4.3suggest that the null hypothesis of no serial orrelation annot be rejeted. Therefore,the MS GJR-M model �ts the data properly.We then benhmark the proposed MS GJR-M with a standard GARCH model, a GJRmodel and a single swithing GJR-M model desribed in equation 4.2. We use √(rt)25The Luxembourg stok market is the only EMU market whih is not onsidered in this study dueto a lak of the stok index prie data.



4.4. DATA AND EMPIRICAL RESULTS 103as a proxy for true volatility. The mean squared errors (MSE), the mean absolute errors(MAE) and Akaike's information riterion (AIC) are used as adequate model-seletionriteria. The MSE, the MAE and the AIC are alulated aording to the followingformulas.
MSE =

1

N

N∑

t=1

(σ̂t − σt)
2,

MAE =
1

N

N∑

t=1

|σ̂t − σt|,

AIC = 2K +N

[
log

(
2π.RSS

N

)
+ 1

]
, (4.18)where σ̂t is the estimated volatility, σt is the proxy of true volatility, RSS =

∑N
t=1(σ̂t −

σt)
2, where N is the total sample size and K is the total number of parameters in themodel.The results of the model-seletion riteria are shown in the �rst four olumns of Table4.4, where we present the goodness of �t from various models. The results of the MSE,MAE and AIC all indiate that the MS GJR-M model performs the best ompared withthe GARCH, GJR and single-regime GJR-M models. We notie that by allowing theonditional variane to enter into the onditional mean equation, the standard GJR-Mmodel improves the onditional variane in most of the EMU ountries. For example, inGermany, the MSE is redued from 0.028 (GARCH model) and 0.027 (GJR model) to0.025 by the GJR-Mmode; the MAE delines from 0.125 to 0.117 from the GARCHmodelto the GJR-M model; and the AIC is also redued by roughly 3.2% from the GARCHmodel to the GJR-M model. By allowing for a Markov-swithing e�et, the MS GJR-Mmodel further signi�antly improves the estimated volatility. This is partiularity truein the medium and large ountries. For example in the Italian market (FTSEMIB), theMSE, MAE and AIC from the MS GJR-M model are 8%, 3% and 2% lower than the onesfrom the single-regime GJR-M model. This on�rms that the GARCH in mean and theMarkov swithing are all neessary to haraterize the return-variane dynamis. Hene,the MS GJR-M model provides a better haraterization of the EMU stok returns andthe volatility ompared with other GARCH family models, e.g., a GJR model or a singleregime GJR-M model.The time varying relationship between risk and returnTable 4.3 presents the estimated parameters of all indies from the MS GJR-M modeldesribed in equation (4.2). The �rst two olumns of Table 4.3 are the estimated pa-rameters β1 and β2, whih are the GARCH in mean oe�ients in the onditional meanin Regimes 1 and 2, respetively. The β1 parameters are negative in all ountries andthe β2 parameters are positive in all ountries. A negative/positive beta shows that themean of returns has a negative/positive orrelation with the onditional variane. It is



104 Chapter 4obvious that in Regime 1, returns are negatively orrelated with the volatility, while inRegime 2, returns are positively orrelated with the volatility. This means that in Regime1, a higher risk usually leads to a higher loss in the investment, but in Regime 2, an in-reased volatility often leads to a higher pro�tability. Many empirial studies examinethe relationship between the onditional mean and the onditional variane. However,the �nding of the relationship between risk and return is still ontroversially.6 We �nda time-varying relationship between risk and return that is in line with suh studies asHarvey (1989, 2001), Kandel and Stambaugh (1990) and Whitelaw (1994). In partiular,Harvey (2001) argues that the spei�ation of the onditional variane in�uenes the re-lation between the onditional mean and the onditional variane and provides empirialevidene suggesting that there may be some time variation in the relationship betweenrisk and return. Whitelaw (1994) reports also that the ontemporaneous orrelation be-tween the �rst two movements of the return varies from large positive to large negativevalues. The negative relationship between the onditional mean and the onditional vari-ane in the bear market is intuitive. In the bear market, investors are more risk averse.When investors are sared, they look for safety. They adjust their portfolios to inludemore safe assets and fewer risky assets. This kind of ��ight to quality� leads investors tostay away from risky assets (stoks) whih auses stok pries to deline (Barsky, 1989).Bull and bear markets in the EMU stok marketsBy looking at α1 0 and α2 0 in Table 4.3, the interept of the volatility equation in Regimes1 and 2, respetively, we an see that the values of α1 0 vary from 0.01 to 0.077, while thevalues of α2 0 are all almost zero. This implies that the annualized volatility inreases if themarket swithes from Regime 2 to Regime 1 and vie versa. These distint harateristisof the two regimes are typial representations of the high-returns stable and the low-returns volatile states in stok returns, whih are onventionally labeled bull marketsand bear markets in Maheu and MCurdy (2000) and Perez-Quiros and Timmermann(2000). Obviously, the EMU stok markets have well-identi�ed bear (Regime 1) and bullmarkets (Regime 2). This is similar to Chen's (2007) �nding in the S&P 500 index andHenry's (2009) in the UK equity market.The volatility persistene parameters, α1 1 and α2 1, are quite signi�ant in nearly allof the EMU stok markets. Interestingly, in most ountries, α2 1 > α1 1. This implies thatthe volatility is less persistent during the bear period. This result is similar to reports fromFriedman and Laibson (1989) and Daal et al. (2007). Friedman and Laibson (1989) applya modi�ed ARCH and a GARCH model that allow for jumps and divide their sample intoordinary- and unusual-returns periods. They �nd that the volatility of ordinary returnsdisplays persistene, but the volatility of the unusual prie movements are less persistent.Daal et al. (2007) �nd the same pattern with a GARCH model allowing for jumps andasymmetry.6Some papers (e.g., Frenh et al., 1987 Campbell and Hentshel, 1992 Li, 2003 Guo and Neely, 2006)report a positive relationship and others (e.g., Glosten et al., 1993 Pagan and Hong, 1991 Li et al., 2005Guedhami and Sy, 2005) indiate a negative relationship, while others (e.g., Bodurtha and Mark, 1992Baillie and DeGennaro, 1990 Shin, 2005) �nd no signi�ant relationship at all.



4.4. DATA AND EMPIRICAL RESULTS 105Furthermore, we notie that oe�ients α1 2 are insigni�ant in all of the EMU oun-tries, and α2 2 are insigni�ant at the 5% signi�ane level in the majority of the EMUountries. However, this does not mean that the one-week lagged error term has no e�eton urrent volatility at all. On the ontrary, it in�uenes volatility through the hannelof leverage e�et: When bad news arrives (when the residual is negative), the marketdisplays a remarkably di�erent response to news. Parameters α1 3 and α1 3 show thisadditional sharp response of volatility to bad news in most of the EMU ountries. Thisis generally onsistent with the well-doumented prediative asymmetrial e�et in stokmarkets (see, e.g., Campbell and Hentshel, 1992 Engle and Ng, 1993). Further, in allEMU ountries, α1 3 > α2 3, implying that the asymmetry of the volatility response tobad news during volatile periods is greater than during stable periods. For example, thevolatility asymmetry oe�ient of DAX is 0.3858 in the bear market, whih is about2.1 times that of the bull market. This an be explained by noting that during the bearmarket, the on�dene of investors is greatly damaged and market pratitioners beomemore speulatively oriented and more sensitive to any market news, espeially to badnews.In Figure 4.2, we present the smoothed probability of all of the indies of Regime 1(the bear period). The solid line is the probability of the bear regime, and the dot is thereturn. We an see that nearly all of the ountries entered into the bear period during2000 and 2001, during the half burst of the dot-om bubble. Among them, the entralEuropean ountries most resisted the swith to the bear period, for example, Germany,the Netherlands and Belgium started their bear period in the beginning of 2001. TheIrish stok market behaved remarkably di�erently and remained in the bull period untillate 2001. This was due to its outstanding eonomi performane during that period.From year 1995 to 2000, Ireland's GDP growth was around 10%, while that of mostother EMU ountries were merely around 3%. A review from the IMF in August 2000attributed suh performane to the roles played by �sound and onsistent maroeonomipoliies, a generally �exible labor market, a favorable tax regime and the long standingoutward orientation of Ireland's trade and industrial poliies�, and regarded the Irisheonomy as �well plaed to ontinue to perform strongly in the future�. The Irish stokmarket remained in the bull period until late in 2001, when its GDP growth rate droppedby half.By the end of 2002 and the beginning of 2003, when key entral banks desperatelydropped their target rate to a historially low level with the ECB o�ering a deposit rateof merely 1.5%, most of the EMU stok markets started to see the light at the end of thetunnel and started to reenter the bull period, though the eonomy of most ountries wasstill sluggish. The exeption here is the Austria market. Being the gate from Western toEastern Europe, Austria enjoyed strong growth in exports and inward investment from2000 to 2005, whih made it the �rst EMU ountry to leave the bear period as early asthe beginning of 2002.In most of the EMU ountries, the bull period lasted for about 4 years, until thebeginning of 2007, when the housing bubble burst and the subprime risis sparked. TheEMU ountries then dove into the bear market at the same time again with the exeption



106 Chapter 4of Finland, Germany and Portugal, whih delayed a few months. The reason ould bethat at the beginning of the subprime risis, the market underestimated its damage,believing that some European ountries�whih had better eonomi performane, betterrisk ontrol and less speulation in the subprime mortgage market�ould avoid the risis.Germany was a typial example.Finally, the di�erene between all parameters in both regimes and their respetivestandard deviations are shown in Table 4.5. Besides the parameters representing theresponse of the market to market news, the di�erenes between parameters are all sta-tistially signi�ant at the 1% signi�ane level. This on�rms that the bear and thebull markets exist in the EMU stok markets. The estimated persistene for the regime
i is 1/ǫi for i = 1, 2. Regime 1 has a averaged persistene of 22 weeks, while Regime 2has a averaged persistene of 33 weeks. This is onsistent with �ndings from Napolitano(2006) and Chen (2007) whih report that both bull markets and bear markets displaypersistene but the bear market is less persistent.The impat of short-term interest rates on the EMU stok marketsWe examine the impat of short-term interest rates by estimating the EMS GJR-M modelas spei�ed in equation (4.4). We are partiularly interested in studying if an inrease ininterest rates has an additional e�et on stok returns and their volatility and whetherthe e�et varies in the bull and bear markets.The full results of the interest-rate impat on the EMU stok markets are presented inTable 4.6. The estimated parameters from the EMS GJR-M model are not very di�erentfrom the ones estimated from the MS GJR-M model, and the harateristis of bothregimes are maintained. We �nd that the relationship between returns and the volatilityremains largely unhanged in the EMU ountries. The negative and signi�ant parameter
β1 in most of the EMU stok markets implies that returns are negatively orrelated withvolatility in Regime 1. The oe�ient β2 is positive and signi�ant in most of the EMUountries, implying a positive relationship between returns and volatility in Regime 2.The interept of the volatility equation in Regimes 1 and 2 (α1 0 and α2 0) indiates thatthe volatility is higher in Regime 1 than in Regime 2. Therefore, the results providestrong evidene in favor of two states in the EMU stok markets, a high-mean low-volatility state (bull market) and a low-mean high-volatility state (bear market). Theoe�ients α1 1 and α2 1 indiate that the volatility is more persistent in the bull marketthan in the bear market. However, the innovation parameter in both regimes (α1 2 and
α2 2) is insigni�antly di�erent from zero. This does not mean that market news hasno e�et on urrent volatility. If we look at the parameters α1 3 and α2 3, we an �ndthat market news in�uenes the volatility through the leverage e�et. The oe�ient α2 3is signi�ant in most of the EMU ountries (besides Finland, Spain and Austria). Theparameter α1 3 is signi�ant in half of the EMU ountries. Moreover, α1 3 > α2 3 impliesthat the leverage e�et of the bad news is muh stronger in bear markets than in bullmarkets. For example, in Belgium, this additional e�et is about 8 times larger in Regime1 than in Regime 2.Holding the transition probability onstant, the interest-rate �utuations a�et the



4.4. DATA AND EMPIRICAL RESULTS 107equity returns via hanges in the volatility. The parameters αi4 and αi5, for i = 1, 2,indiate the interest rates' impat on the EMU stok market volatility in bull and bearmarkets, respetively. If the parameters αi4 are signi�antly di�erent from zero, thenhanges in EURIBOR rates a�et the onditional variane. Meanwhile, if the parameters
αi5 are signi�antly di�erent from zero, then an inrease in interest rates auses anadditional e�et on the volatility by an amount of αi5χ

2
t−1. It an be seen from Table 4.6that the parameter α2 4 is small in value and is insigni�ant at the 5% level in most of theEMU ountries. The parameter α1 4 is signi�ant in most of the EMU ountries (besidesBelgium). This indiates that hanges in interest rates have a muh stronger e�et onvolatility in the bear market (the low-mean, high-volatility state) than in the bull market(the high-mean, low-variane state). We �nd also that α1 5 is signi�ant at the 5% levelin all ountries (in Germany, Italy, Spain and Netherlands, it is even signi�ant at the1% level) and that α2 5 is only weakly signi�ant in three ountries (Finland, Belgiumand Portugal). This indiates that an inrease in interest rates has an additional e�eton urrent volatility and this e�et is also muh stronger in the bear market than inthe bull market in most of the EMU stok markets. This result is in ontrast to the�nding from Domian et al. (1996) that drops in interest rates are followed by largepositive stok returns while inreases in interest rates have little e�ets. Our �nding isgenerally onsistent with the results from Perez-Quiros and Timmermann (2000, 2001),Basistha and Kurov (2008), Chen (2007) and Henry (2009). For example, Perez-Quirosand Timmermann (2000) �nd that the interest rate an a�et the onditional varianeonly in the low-mean high-volatility regime for large �rms. Henry (2009) also reports thatthe relationship between short-term interest-rate hanges and equity volatility in the UKstok market is regime dependent, the e�et of interest rates is higher in bear marketsthan in bull markets. Basistha and Kurov (2008) show that the stok returns' response tomonetary shoks is more than twie as large in reessions and tight redit onditions as ingood eonomi times. The reason of this phenomenon may be that during the bull periodthe market on�dene is high and more investors believe in the market itself rather thanthe information, espeially the information from other markets. This makes the marketrelutant to respond to hanges in short-term interest rates. During the bear period, themarket beomes nervous and more volatile, and the volatility beomes more sensitiveto information from both the stok market and other markets, and therefore the stokmarket responds to hanges in interest rates. Theoretially, aording to reent modelswith ageny osts of �nanial intermediation (�nane onstraint), people show that whenthere is information asymmetry in �nanial markets, agents may behave as if they areonstrained �nanially. Moreover, the �nanial onstraint is more likely to bind in bearmarkets (see, e.g., Gertler, 1988 Bernanke and Gertler, 1989 Kiyotaki and Moore, 1997Garia and Shaller, 2002). Therefore, a hange in short-term interest rates may havegreater e�et in bear markets than in bull markets.Further, in an in�uential study, Gerlah and Smets (1995) onlude that the e�etsof monetary poliy shoks are somewhat larger in Germany than in Frane or Italy.Clements et al. (2001) have also argued that output in Germany and Frane is morea�eted by monetary shoks than in either Spain or Italy. Contrary to results from these



108 Chapter 4studies, the result from our study suggests that monetary poliy is equally transmittedaross the EMU stok markets. This may stem from the launhing of Euro, whih hasmade the EMU stok markets more integrated than ever.Finally, we hek the goodness of �t of the EMS GJR-M model. As an be seen in thelast olumn of Table 4.4, the goodness-of-�t indiators (MSE, MAE and AIC) suggestthat obtaining the interest-rate impat information improves the EMS GJR-M modelperformane and the fundamental results of the MS GJR-M model in most EMU stokmarkets.Asymmetri e�ets of bad news and rate inreases: The news impat surfaeIn this setion, we investigate the asymmetri news e�ets (returns residuals) and theasymmetri e�et of hanges in short-term interest rates on volatility by extending theNIC, introdued by Pagan and Shwert (1990) and hristened by Engle and Ng (1993),whih shows the implied relationship between the lagged shok from returns and thevolatility. We extend the NIC into the news impat surfae, in whih the onditionalvariane is evaluated at the level of unonditional variane of stok returns, the shokfrom onditional returns, and the hange in interest rates. The news impat surfae of theEMS GJR-M model illustrates the asymmetri e�et of stok market news and hangesin interest rates on the volatility proess:
ht = A+ αi2ǫ
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t−1, for ǫt−1 < 0 and χt−1 < 0. (4.19)where A = αi0 + αi1σ

2, σ2 is the unonditional return variane, αij (i = 1, 2, j =
1, 2, . . . , 5) is the parameter from the estimated EMS GJR-M model , ǫt−1 is the unpre-ditable return at time t− 1, and χt−1 is the hange in interest rates. The original NICof the GJR model from Engle and Ng (1993) does not demonstrate shoks from interestrates and does not distinguish shoks in the bull and the bear markets.Figure 4.3 plots the news impat surfae of the German stok market. Values onthe X axis indiate hanges in interest rates, values on the Y axis indiate shoks fromonditional returns, and values on the Z axis indiate the level of the volatility. The leftplot is the news impat surfae of German stok market in the bear market, and the rightone plots the news impat surfae of German stok market in the bull market. If we holdthe value on the X axis onstant, then the hange in values on the Z axis with respetto the hange in values on the Y axis shows how the onditional volatility hanges withrespet to hanges in market news. We �nd that the volatility inreases as the value onthe Y axis beomes more negative, and this is more obvious in the left plot than in theright one. This is onsistent with our result in the previous setion that negative newshas an asymmetri e�et on volatility in both bear markets and bull markets; however,this e�et is greater in bear markets than in bull markets in the German stok market.



4.4. DATA AND EMPIRICAL RESULTS 109If we hold values on the Y axis onstant, then the hange in values on the Z axis withrespet to hanges in values on the X axis shows how the onditional volatility hangeswith respet to interest rates. We �nd that volatility inreases as the value on the Xaxis beomes more positive, and this situation is only evident in the left plot (the bearmarket). This is onsistent with our result that a rise in interest rates inreases thevolatility more than a fall in interest rates. The e�et is muh stronger in bear marketsthan in bull markets in the German stok market.We show the asymmetri e�et of shoks from unexpeted returns and from hangesin interest rates on the volatility of all EMU stok markets in Figure 4.4, where we ontourplot the news impat surfae of eah EMU stok market. Values on the X axis indiatehanges in interest rates and values on the Y axis indiate shoks from onditional returns.The olor indiates the level of the volatility, the higher the volatility, the brighter itsolor. The �rst and third olumns plot the NIC ontours in the bear market, while theseond and fourth olumns are ontour plots of the news impat surfae in the bullmarket. By looking at the Y axis in the bear market in eah EMU ountry, we �nd thatthe slope of the negative side (the left bottom orner) is muh sharper and the oloris muh brighter than that of the positive side (the left top orner). However, in thebull market, the slope of the negative side of the Y axis (the left bottom orner) is onlyslightly sharper than that of the positive side (the left top orner). This is onsistentwith our result that the e�et of bad news on the volatility is larger than that of goodnews in most of the EMU stok markets, and suh an impat is also larger in the bearmarket than in the bull market. On the other hand, by looking at the X axis in the bearmarket in eah EMU stok market, we an see that the news impat surfae aptures theasymmetrial e�et of hanges in interest rates on the volatility beause it has a steeperslope and brighter olor at the positive side (the right bottom orner where the interestrate moves upward) than the negative side (the left bottom orner where the interestrate follows downward market movements). However, we an only observe this situationin the bear market beause in the bull market, the volatility is symmetrially entered atzero on the X axis in nearly all of the EMU stok markets (exept Portugal). This alsoon�rms our result that an inrease in short-term interest rates has a onsiderably largerimpat on stok volatility than a derease in short-term interest rates, and the impat ismuh stronger during bear periods than during bull periods in most of the EMU markets.Impliations of interest-rate impats on stok marketsTo explain why the interest rate an a�et the equity market, we resort to the disountedash �ow (DCF) model pioneered by Williams (1938). The DCF model views the intrinsivalue of ommon stok as the present value of its expeted future ash �ow. The expetedfuture ash �ow is often represented by the �expeted dividend�, whih is known as a DDMmodel (dividend distribution model). When interest rates hange, �rst, the expetedreturn must be disounted at a di�erent rate; seond, the �rms' future osts to ondutbusiness are hanged. These will ultimately a�et the �rms' expeted pro�tability andadjust market expetations of the �rms' abilities to pay a dividend. Furthermore, byhanging the value of expeted future ash �ows, interest-rate movements hange the



110 Chapter 4level of real ativity in the eonomy in the medium and long term. Campbell and Ammer(1993) deompose the variane of unexpeted exess returns implied by the DDM intothree fators, news about future dividends, news about future interest rates, and newsabout future exess returns, and predit that �utuations in interest rates should auseequity pries to move and may also result in hanges in the variane of equity returns.However, the result from Henry (2009) suggests that events in the money market haveno diret in�uene on the onditional mean of returns in the UK stok market. Ourresults suggest that the interest-rate market's in�uene on the onditional mean of stokreturns is via the onditional variane beause the onditional return and the volatilityare negatively related in the bear market and positively related in the bull market.Therefore, the �ndings of interest rates' impats from the proposed EMS GJR-M modelin our paper support the onlusion that interest rates signi�antly a�et stok returnsand volatility and on�rm the impliations of the DCF model.The empirial results from our paper have important impliations for portfolio sele-tion, asset priing and risk management. For instane, as implied by the news impatsurfae, there are signi�ant asymmetri e�ets of the news and hanges in interest rateson the EMU stok market, after a major impat from the money market, the preditablemarket volatilities given by the EMS GJR-M model and other models suh as a standardGJR model or a GJR-M model are very di�erent, this may lead to a signi�ant di�erenein urrent option prie, portfolio seletion, and dynami hedging strategies.To further demonstrate the importane of the interest rates' impat when modelingthe volatility dynamis, we apply various models to a portfolio hoie problem under twosenarios: portfolio hoies without and with short-selling onstraints.7 We assume thatan investor holds a portfolio onsisting of two stoks of German DAX and Frane CAC40(risky assets) and that the investor tries to maximize the expeted utility funtion withinthe mean�variane framework from Best and Grauer (1990),
max

{
λw′µ− 1

2
w′Vw |w′I = 1

}
, (4.20)where w is the vetor of weights invested in risky assets, V is the variane�ovarianematrix of the asset returns, µ is the vetor of the asset returns, and λ is the risk toleraneoe�ient. The purpose is to �nd the optimum weights of the assets in the portfolio thatmaximize the utility funtion. It has been on�rmed that investment weights are verysensitive to the �rst two onditional movements of the risky-asset returns (see, e.g., Bestand Grauer, 1990, 1991 Fleming et al., 2001). So the model that an better foreastthe onditional mean and variane an provide better performane. Further, as the risk-tolerane oe�ient also a�ets the weight of risky assets, we examine the portfolioperformane with di�erent risk-tolerane oe�ients. The robustness of the empirial�ndings in the investment performane an be on�rmed if similar results an be obtainedunder di�erent risk tolerane oe�ients. Finally, we ompute the optimum weights basedon the out-of-sample foreasted onditional mean and variane of the German DAX and7In the ase that the short-selling strategy is not allowed, the investment weight is between 0 and 1



4.5. CONCLUSION 111the Frenh CAC40. The average returns of the portfolio and the Sharpe Ratio will bealso alulated aording to di�erent risk-tolerane oe�ients and are used to measurethe foreasted portfolio performane.Table 4.7 presents results of the portfolio performane. Panel 1 shows those fromthe unrestrited strategy, and Panel 2 shows those from the restrited strategy. Clearly,among the models, the EMS GJR-M model provides the best investment performanein terms of the averaged returns and sharp ratios. This is not surprising beause theEMS GJR-M model yields a more aurate volatility foreast than other models in theout-of-sample foreast. This is lear in Figure 4.5, whih plots the true volatility proxyand the out-of-sample foreasted volatility of various models in the German DAX andthe Frenh CAC40. The solid lines are the estimated volatility from various models, andthe dashed lines are the true volatility whih is proxied by the absolute values of thereturns. We an observe that the volatility estimated from the EMS GJR-M model isloser to the true volatility proxy and an better desribe the dynamis of the DAX andthe CAC40 return variane ompared with the MS GJR-M, the GJR-M and the GJRmodels.On the other hand, it is worth noting that the sharp ratio of the non�regime-swithingmodels delines onsiderably ompared to the regime-swithing models. Among the non�regime-swithing models, the GJR-M model does not perform better than the GJR modelin the unrestrited senario. This may be beause of the potential statistial problemwith the GARCH-M spei�ation. As pointed out by Christensen et al. (2010) thatwithout the regime swithing, the long memory property of the onditional varianemay not balane well when entering the short memory property of the onditional meanregression. As shown in many studies (see Diebold and Inoue, 2001), the long memory(high persistene) will disappear after inorporating the struture break in the volatility,e.g., a regime swithing spei�ation. These results provide redible evidenes that theshort-term interest-rate e�et, the regime swithing play important roles in modeling thedynamis of the EMU stok markets' returns and variane. Only models inorporatingthese e�ets an o�er more aurate results of the onditional mean and variane. We anobserve that the portfolio volatility of the GJR-M and the GJR models are muh lowerdue to ignoring short-term interest rates and regime swithing, and onsequently resultin poor out-of-sample preditive portfolio performane. The poorly foreasted portfolioperformane from suh models will de�nitely a�et the investor's portfolio hoie andrisk-management strategy.4.5 ConlusionThe DCF model provides the theoretial bakground for the possible impat of interest-rate hanges on equity pries. With the inreased use of short-term interest rates ratherthan measures of money supply as intermediate targets for monetary poliy, many studieshave examined the impat of the interest-rate market on the stok market. Unfortunately,most of the studies examine interest rates' impat on the U.S. stok market and heavilyonsider the e�et of hanges in interest rates on stok pries and returns. This paper



112 Chapter 4investigates the spillover e�et of interest-rate movements on stok markets in the Euroarea, whih has reeived surprisingly little attention. Departing from most previous worksexamining the e�et of interest rates only on stok returns, we analyze the potentialimpat of short-term interest-rate surprises on both stok returns and the volatility ofstok returns. We pay partiularly more attention to the asymmetri e�et of an inreasein interest rates on the EMU stok markets in di�erent market regimes, bull and bearmarkets. The empirial study is arried out by estimating the EMS GJR-M and MSGJR-M models with a MCMC method, whih enjoys several advantages ompared withthe traditional maximum likelihood method.Empirial results suggest that two signi�ant regimes exist in the EMU stok mar-kets, a high-mean low-variane regime (bull market) and a low-mean high-variane regime(bear market). The relationship between the onditional mean and variane is time vary-ing. They are positively orrelated during bull periods and negatively orrelated duringbear periods. Furthermore, the negative shok (bad news) from the stok market hasa larger e�et than the positive shok (good news). Short-term interest rates a�et thestok returns and volatility in the EMU ountries; this e�et is onsiderably strongerin the bear market than in the bull market in most of the EMU ountries, and an in-rease in interest rates has a larger e�et on the EMU stok returns and volatility thana similar drop. It is also on�rmed in the out-of-sample foreasted portfolio performanethat the EMS GJR-M model an better desribe volatility dynamis and provide morepowerful portfolio performane predition than the models without interest rates' im-pat and regime swithing. Our results are of importane not only to the poliymakerantiipating the market response to announed and implemented poliies, but also to�nanial-market partiipants making e�etive investment deisions and formulating ap-propriate risk-management strategies.
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Tables
Table 4.1: Estimated Parameters from the Monte Carlo Simulation

β1 β2 α1 0 α2 0 α1 1 α2 1 α1 2 α2 2 α1 3 α2 3 e1 e2True 0.2000 0.6000 0.1000 0.2000 0.4000 0.5000 0.2000 0.2500 0.1000 0.1500 0.0200 0.0100Mean 0.2106 0.5678 0.1103 0.1859 0.4104 0.5139 0.2124 0.2445 0.0941 0.1531 0.0149 0.0119RMSE 0.0169 0.0173 0.0132 0.0122 0.0130 0.0302 0.0338 0.0115 0.0092 0.0030 0.0038 0.0047Notes: The RMSE is the square root of the mean squared errors between the true and estimatedparameters from all data sets.
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120 CHAPTER 4Table 4.2: Desriptive Statistis for Weekly Returns in the EMU StokMarkets from January 1, 1999, to July 17, 2009, (Weekly Observations)Mean STD Skewness Kurtosis ADF test JB testDAX −0.0044 0.2522 −0.6426 8.0147 −24.0798 0.0010CAC40 −0.0035 0.2131 −0.8192 8.0416 −24.2817 0.0010FTSEMIB −0.0085 0.2310 −1.1698 12.9241 −23.5707 0.0010IBEX35 −0.0003 0.2177 −1.1080 10.6583 −25.5623 0.0010HEX25 0.0005 0.2556 −0.7829 6.3504 −23.2265 0.0010ISEQ −0.0086 0.2417 −1.9024 18.4048 −24.6172 0.0010AEX −0.0093 0.2432 −1.2709 12.6130 −23.4344 0.0010ATX 0.0079 0.2394 −2.2525 24.8953 −23.5760 0.0010BEL20 −0.0067 0.2163 −1.4305 13.9584 −23.0917 0.0010PSI20 −0.0063 0.1815 −1.3557 12.2722 −22.6216 0.0010

Notes: This table reports summary statistis for the index return of the EMU ountries.The ADF test is the augmented Diky Fuller test and the test statistis are reported.The JB test is the normality Jarque�Bera test and the p-values are reported. Weeklyreturns are alulated as the �rst di�erene of the natural logarithm of pries andthen annualized with a square root of 52.



TABLES 121Table 4.3: Estimated Parameters from the MS GJR-M ModelVolatility equationResponse to Additional response Transition LBTestIndex Return equation Interept Persistene news to bad news probability Q(20)
β1 β2 α1 0 α2 0 α1 1 α2 1 α1 2 α2 2 α1 3 α2 3 e1 e2DAX −0.2746 0.0461 0.0769 0.0042 0.2630 0.7150 0.1260 0.0686 0.3858 0.1829 0.0358 0.0106 0.5613

(0.1289)(0.0226)(0.0153)(0.0018) (0.1573)(0.0645) (0.1287)(0.0384) (0.0582) (0.0652) (0.0094)(0.0053)** ** *** ** * *** * *** *** *** **CAC40 −0.0789 0.2632 0.0121 0.0006 0.5676 0.7838 0.0326 0.0832 0.3409 0.0917 0.0122 0.0199 0.9045
(0.0533)(0.0834)(0.0010)(0.0004) (0.0364)(0.0641) (0.0317)(0.0569) (0.0581) (0.0571) (0.0056)(0.0062)*** *** * *** *** *** ** ***FTSEMIB −0.1396 0.1193 0.0236 0.0006 0.1842 0.7984 0.1064 0.1221 0.6018 0.0612 0.0132 0.0110 0.6084
(0.0577)(0.0616)(0.0047)(0.0002) (0.0961)(0.0390) (0.0804)(0.0369) (0.1313) (0.0326) (0.0070)(0.0063)** * *** *** * *** *** *** * * *IBEX35 −0.1735 0.2439 0.0133 0.0005 0.7177 0.8429 0.0265 0.0470 0.1413 0.0768 0.0432 0.0400 0.2582
(0.0687)(0.0781)(0.0035)(0.0002) (0.0653)(0.0538) (0.0238)(0.0377) (0.0613) (0.0391) (0.0199)(0.0224)** *** *** *** *** *** ** ** ** *HEX25 −0.2312 0.2089 0.0536 0.0017 0.3843 0.7839 0.0587 0.1437 0.3002 0.0265 0.0442 0.0238 0.3058
(0.0906)(0.0672)(0.0232)(0.0009) (0.1771)(0.0488) (0.0578)(0.0399) (0.1532) (0.0240) (0.0181)(0.0085)** *** ** * ** *** *** * ** ***AEX −0.1129 0.0648 0.0078 0.0028 0.7060 0.6847 0.0350 0.1042 0.2231 0.1938 0.0349 0.0344 0.7190
(0.0606)(0.0644)(0.0033)(0.0017) (0.0900)(0.1056) (0.0347)(0.0834) (0.0833) (0.0931) (0.0088)(0.0089)* ** * *** *** *** ** *** ***ISEQ −0.2346 0.1328 0.0175 0.0005 0.4750 0.8903 0.0608 0.0521 0.3724 0.0365 0.0613 0.0353 0.7050
(0.0970)(0.0575)(0.0044)(0.0001) (0.0639)(0.0332) (0.0654)(0.0321) (0.1106) (0.0233) (0.0184)(0.0149)** ** *** *** *** *** *** *** **ATX −0.1497 0.2552 0.0101 0.0017 0.5150 0.7361 0.0739 0.2151 0.3604 0.0272 0.0423 0.0368 0.8360
(0.0902)(0.0767)(0.0047)(0.0008) (0.1137)(0.0710) (0.0616)(0.0838) (0.1265) (0.0301) (0.0068)(0.0079)* *** ** ** *** *** ** *** *** ***BEL20 −0.1777 0.2108 0.0151 0.0004 0.4611 0.8551 0.0421 0.0765 0.4434 0.0343 0.0345 0.0333 0.7282
(0.0652)(0.0701)(0.0070)(0.0001) (0.1559)(0.0417) (0.0385)(0.0415) (0.1335) (0.0277) (0.0086)(0.0087)*** *** ** *** *** *** * *** *** ***PSI20 −0.3229 0.2492 0.0155 0.0004 0.1858 0.8522 0.0929 0.1132 0.6177 0.0151 0.0372 0.0310 0.1463
(0.0891)(0.0749)(0.0035)(0.0001) (0.1326)(0.0316) (0.0853)(0.0322) (0.1516) (0.0144) (0.0085)(0.0093)*** *** *** ** *** *** *** *** ***Notes: This table shows the estimated parameters of the MS GJR-M model, without the interest-rate impat,and spei�ed in equation (4.2). Values in parentheses under the estimates indiate standard errors. ***, **, and* denote signi�ane at 1%, 5%, and 10% levels, respetively. The sample period is from January 1, 1999, to July17, 2009, (557 weekly observations). Q(20) is the Ljung�Box test statisti of the standard residuals of order 20(p-values are reported)



122 CHAPTER 4Table 4.4: The Goodness of Fit of Various ModelsMSE MSGJR-MIndex GARCH GJR GJR-M MSGJR-M with interest impatDAX 0.0279 0.0266 0.0247 0.0241 0.0237CAC40 0.0240 0.02261 0.0226 0.0212 0.0207FTSEMIB 0.0275 0.0261 0.0252 0.0232 0.0216IBEX35 0.0228 0.0226 0.0216 0.0195 0.0191HEX25 0.0310 0.0311 0.0307 0.0293 0.0277AEX 0.0297 0.0320 0.0320 0.0263 0.0261ISEQ 0.0319 0.0295 0.0274 0.0290 0.0295ATX 0.0332 0.0300 0.0338 0.0315 0.0300BEL20 0.0269 0.2671 0.0241 0.0224 0.0230PSI20 0.0190 0.0187 0.0179 0.0160 0.0161MAE MSGJR-MIndex GARCH GJR GJR-M MSGJR-M with interest impatDAX 0.1248 0.1206 0.1171 0.1144 0.1157CAC40 0.1177 0.1126 0.1128 0.1091 0.1077FTSEMIB 0.1158 0.1134 0.1096 0.1060 0.1035IBEX35 0.1126 0.1110 0.1097 0.1030 0.1032HEX25 0.1328 0.1327 0.1298 0.1275 0.1268AEX 0.1200 0.1229 0.1206 0.1101 0.1103ISEQ 0.1240 0.1151 0.1112 0.1177 0.1184ATX 0.1211 0.1194 0.1195 0.1143 0.1106BEL20 0.1173 0.1141 0.1076 0.1060 0.1096PSI20 0.0975 0.1016 0.0982 0.0933 0.0930AIC MSGJR-MIndex GARCH GJR GJR-M MSGJR-M with interest impatDAX −1978.8 −2005.5 −2043.1 −2046.7 −2050.2CAC40 −2062.5 −2095.1 −2092.5 −2119.0 −2124.8FTSEMIB −1986.7 −2016.03 −2033.0 −2068.5 −2101.5IBEX35 −2091.0 −2095.1 −2119.5 −2166.3 −2171.5HEX25 −1919.5 −1917.0 −1923.8 −1939.4 −1965.1AEX −1943.2 −1902.4 −1900.3 −1998.5 −2002.5ISEQ −1903.5 −1948.23 −1985.6 −1945.4 −1936.2ATX −1881.4 −1854.5 −1870.4 −1898.2 −1919.5BEL20 −1997.7 −2002.49 −2056.8 −2088.1 −2067.7PSI20 −2191.1 −2200.34 −2229.0 −2273.4 −2265.5Notes: This table reports the three goodness-of-�t measures in terms of the MSE, the MAE, andthe AIC for various models in the EMU ountries. These measures are alulated aording toequation (4.18). The models are the GARCH, GJR, GJR in Mean, MS GJR in Mean, and theMS GJR in Mean with the interest-rate impat.



TABLES 123Table 4.5: Parameter Di�erenes Between Bull and Bear MarketsAdditionalResponse to response toIndex Return Interept Persistene news bad news
β α0 α1 α2 α3DAX −0.3208 0.0727 −0.4520 0.0575 0.2029

(0.1374) (0.0154) (0.1700) (0.1343) (0.0874)** *** *** **CAC40 −0.3421 0.0114 −0.2162 −0.0506 0.2492
(0.0990) (0.0011) (0.0737) (0.0651) (0.0815)*** *** *** ***FTSEMIB −0.2588 0.0230 −0.6141 −0.0157 0.5405
(0.0844) (0.0047) (0.1037) (0.0885) (0.1353)*** *** *** ***IBEX35 −0.4173 0.0127 −0.1253 −0.0205 0.0646
(0.1040) (0.0035) (0.0846) (0.0446) (0.0727)*** ***HEX25 −0.4402 0.0519 −0.3996 −0.0850 0.2737
(0.1128) (0.0232) (0.1837) (0.0703) (0.1551)*** ** ** *AEX −0.1777 0.0050 0.0213 −0.0692 0.0293
(0.0884) (0.0037) (0.1387) (0.0903) (0.1249)**ISEQ −0.3675 0.0170 −0.4153 0.0087 0.3360
(0.1127) (0.0044) (0.0720) (0.0729) (0.1130)*** *** *** ***ATX 0.4048 0.0084 0.2210 0.1412 0.3333
(0.1184) (0.0048) (0.1340) (0.1040) (0.1301)*** * * **BEL20 0.3885 0.0147 0.3940 0.0344 0.4092
(0.0957) (0.0070) (0.1614) (0.0566) (0.1364)*** ** ** ***PSI20 0.5721 0.0151 0.6664 0.0203 0.6026
(0.1164) (0.0035) (0.1364) (0.0912) (0.1523)*** *** *** ***Notes: This table shows the parameter di�erenes (the parameter value in bearmarkets minus the parameter value in bull markets). All parameters are estimatedfrom the MS GJR-M model. Values in parentheses under the estimates indiatestandard errors. ***, **, and * denote signi�ane at the level of 1%, 5%, and10%, respetively.
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Table 4.6: Estimated Parameters from the MS GJR-M Model with the Interest Rate ImpatVolatility equationAdditional Additional responseResponse to response to Response to to inreased TransitionIndex Return equation Interept Persistene News bad news interest rates interest rates probability
β1 β2 α1 0 α2 0 α1 1 α2 1 α1 2 α2 2 α1 3 α2 3 α1 4 α2 4 α1 5 α2 5 e1 e2DAX −0.1573 0.0995 0.0309 0.0041 0.3387 0.6449 0.0710 0.0540 0.4021 0.2360 0.1747 0.0331 0.2085 0.0346 0.0379 0.0288

(0.0793) (0.0821) (0.0134)(0.0021) (0.1908)(0.1076) (0.0757)(0.0486) (0.1860)(0.0839) (0.0804)(0.0224) (0.0698) (0.0258) (0.0082)(0.0091)** ** * * *** ** *** ** *** *** ***CAC40 −0.2080 0.2254 0.0247 0.0007 0.2288 0.7398 0.0425 0.0706 0.4727 0.1450 0.1470 0.0290 0.1854 0.0388 0.0424 0.0389
(0.0751) (0.0775) (0.0076)(0.0005) (0.1658)(0.0625) (0.0413)(0.0566) (0.1678)(0.0686) (0.0792)(0.0216) (0.0825) (0.0241) (0.0063)(0.0078)*** *** *** *** *** ** * ** *** ***FTSEMIB −0.1074 0.0746 0.0246 0.0005 0.2463 0.8343 0.1145 0.0569 0.4565 0.0835 0.1361 0.0220 0.1387 0.0183 0.0623 0.0312
(0.0516) (0.0489) (0.0088)(0.0004) (0.1591)(0.0524) (0.1115)(0.0394) (0.1896)(0.0519) (0.0485)(0.0129) (0.0484) (0.0128) (0.0184)(0.0111)** *** *** ** *** * *** *** ***IBEX35 −0.2165 0.1838 0.0207 0.0008 0.4118 0.8059 0.0623 0.0522 0.2186 0.1125 0.2082 0.0174 0.2297 0.0279 0.0419 0.0317
(0.0855) (0.0621) (0.0090)(0.0007) (0.1811)(0.0690) (0.0592)(0.0357) (0.1378)(0.0704) (0.0684)(0.0146) (0.0605) (0.0224) (0.0064)(0.0089)** *** ** ** *** *** *** *** ***HEX25 −0.2642 0.1589 0.0580 0.0026 0.4295 0.7456 0.0538 0.1071 0.1472 0.0700 0.1758 0.0367 0.1871 0.0501 0.0401 0.0219
(0.0956) (0.0597) (0.0377)(0.0014) (0.2823)(0.0711) (0.0568)(0.0496) (0.1388)(0.0520) (0.0826)(0.0250) (0.0810) (0.0280) (0.0070)(0.0080)*** *** * *** ** ** ** * *** ***AEX −0.1149 0.1306 0.0154 0.0012 0.5605 0.7656 0.0791 0.0350 0.2777 0.1556 0.1045 0.0221 0.1432 0.0192 0.0545 0.0446
(0.0613) (0.0611) (0.0079)(0.0007) (0.1393)(0.0619) (0.0748)(0.0295) (0.1306)(0.0624) (0.0569)(0.0125) (0.0455) (0.0136) (0.0202)(0.0152)* ** * *** *** ** ** * * *** *** ***ISEQ −0.2543 0.1041 0.0298 0.0015 0.4203 0.7666 0.0794 0.0418 0.3359 0.1496 0.1750 0.0236 0.2208 0.0201 0.0413 0.0289
(0.1039) (0.0703) (0.0148)(0.0012) (0.1584)(0.0733) (0.0740)(0.0352) (0.1515)(0.0651) (0.0810)(0.0155) (0.0660) (0.0172) (0.0068)(0.0092)** ** *** *** ** ** ** *** *** ***ATX −0.1899 0.2072 0.0247 0.0061 0.3674 0.5517 0.1792 0.0695 0.2909 0.1832 0.1806 0.0209 0.1818 0.0190 0.0403 0.0252
(0.1031) (0.0660) (0.0194)(0.0030) (0.1529)(0.1569) (0.1377)(0.0592) (0.1935)(0.0954) (0.0638)(0.0191) (0.0653) (0.0209) (0.0063)(0.0086)* *** ** ** *** * *** *** *** ***BEL20 −0.1075 0.1446 0.0209 0.0005 0.3488 0.8220 0.0486 0.0651 0.4825 0.0571 0.0810 0.0203 0.1108 0.0235 0.0675 0.0447
(0.0673) (0.0662) (0.0091)(0.0003) (0.2004)(0.0528) (0.0514)(0.0418) (0.1870)(0.0427) (0.0574)(0.0131) (0.0560) (0.0138) (0.0174)(0.0135)** ** * *** *** ** * *** ***PSI20 −0.3200 0.2053 0.0161 0.0003 0.1629 0.8978 0.0765 0.0347 0.5371 0.0148 0.1712 0.0103 0.1915 0.0516 0.0332 0.0239
(0.0942) (0.0609) (0.0033)(0.0000) (0.1034)(0.0287) (0.0672)(0.0316) (0.1722)(0.0138) (0.0863)(0.0085) (0.0763) (0.0207) (0.0094)(0.0085)*** *** *** *** *** *** ** ** ** *** ***Notes: This table shows the estimated parameters from the MS GJR-M model with the short-term interest-rate impat spei�ed in equation 4.4 in the EMUarea. ***, **, and * denote signi�ane at 1%, 5%, and 10% levels, respetively. Values in parentheses under the estimates indiate standard errors.



TABLES 125Table 4.7: Asset Alloation Performane Results
λ = 20 λ = 10 λ = 5 λ = 1Panel 1: Unrestrited strategy(A) MeanMS GJR-M with interest 0.7661 0.4036 0.2224 0.0774MS GJR-M 0.0792 0.0602 0.0508 0.0432GJR-M −0.0086 0.0134 0.0244 0.0332GJR −0.0123 0.0091 0.0197 0.0283(B) VolatilityMS GJR-M with interest 4.9519 2.5311 1.3307 0.4113MS GJR-M 5.2041 2.6536 1.3889 0.4184GJR-M 0.5074 0.3210 0.2520 0.2258GJR 0.2412 0.2272 0.2225 0.2204(C) Sharp ratioMS GJR-M with interest 0.0391 0.0395 0.0397 0.0356MS GJR-M 0.0118 0.0157 0.0210 0.0307GJR-M −0.0119 0.0012 0.0100 0.0181GJR −0.0011 0.0056 0.0106 0.0157Panel 2: Restrited strategy(A) MeanMS GJR-M with interest 0.0562 0.0558 0.0549 0.0565MS GJR-M 0.0419 0.0419 0.0419 0.0419GJR-M 0.0229 0.0278 0.0341 0.0353GJR 0.0194 0.0218 0.0234 0.0305(B) VolatilityMS GJR-M with interest 0.2401 0.2405 0.2410 0.2410MS GJR-M 0.2289 0.2289 0.2289 0.2289GJR-M 0.2152 0.2144 0.2151 0.2205GJR 0.2509 0.2504 0.2486 0.2322(C) Sharp ratioMS GJR-M with interest 0.0318 0.0315 0.0306 0.321MS GJR-M 0.0261 0.261 0.0261 0.0261GJR-M 0.0130 0.0156 0.0200 0.0205GJR 0.0082 0.0105 0.0124 0.0169Notes: This table shows the mean of the portfolio returns, the mean ofthe portfolio varianes, and the mean of the Sharp Ratio of Portfolio overthe out-of-sample foreast periods for various models and with respet todi�erent risk tolerane oe�ients. Panel 1 is the results for the unrestritedstrategy, short selling is allowed. The panel 2 reports the asset alloationresults for the restrited results, short selling is not allowed. λ is the risktolerane oe�ient.



Figures
Figure 4.1: Estimated results for simulated data
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Note: This �gure plots the estimation results of the randomly hosen simulated 1,000 data points.The �rst and seond plots are the true and estimated volatility, and the last plot is the true andestimated probability of regime 1.
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FIGURES 127Figure 4.2: Bear regime probability
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Netherlands AEX
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Note: This �gure plots the estimated probability of the bear regime of the EMU equity markets.The solid line is the estimated probability, and the red dots are the returns. The sale of thereturn an be found on the y-axis on the right hand side.



FIGURES 129
Figure 4.3: DAX news impat surfae�3D Plot
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Figure 4.4: News impat surfae ontour plots
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FIGURES 131Figure 4.5: Plots of the out-of-sample foreasted and true volatility
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