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Abstract—A new method using Hamming codes to construct
base matrices of (J,K)-regular LDPC convolutional codes with
large free distance is presented. By proper labeling the corre-
sponding base matrices and tailbiting these parent convolutional
codes to given lengths, a large set of quasi-cyclic (QC) (J,K)-
regular LDPC block codes with large minimum distance is
obtained. The corresponding Tanner graphs have girth up to
14. This new construction is compared with two previously
known constructions of QC (J,K)-regular LDPC block codes
with large minimum distance exceeding (J + 1)!. Applying all
three constructions, new QC (J,K)-regular block LDPC codes
with J = 3 or 4, shorter codeword lengths and/or better distance
properties than those of previously known codes are presented.

I. INTRODUCTION

During the last decade low-density parity-check (LDPC)
codes invented in the sixties [1] have attracted a lot of
attention as being the main competitors of turbo-codes [2].
One important class of LDPC codes is the class of quasi-
cyclic (QC) LDPC codes. It is well-known that such codes can
be represented in the form of tailbitten convolutional codes,
which supports searching for new codes with low encoding
complexity.

Typically, the length of the shortest cycle in the Tanner
graph of a QC LDPC code, that is, the girth, is considered
to be one of the important code parameters, as it determines
the number of independent iterations in low-complexity belief-
propagation decoding. However, the minimum distance of such
codes is significantly smaller compared to the best known
linear codes with the same length and dimension.

Note that the error correcting capability of belief-
propagation decoding does not depend directly on the min-
imum distance. However, as the existence of low-weight
codewords can lead to the error-floor phenomenon, that is, in
the high signal-to-noise (SNR) region the bit error probability
decreases very slowly with growing SNR, LDPC codes with
large minimum distance are of particular interest.

A (J,K)-regular QC LDPC block code is a quasi-cyclic
code with exactly J ones in each column and exactly K ones
in each row of its parity-check matrix. It can be determined by
an M(c−b)×Mc binary parity-check matrix or, in polynomial
form, by a (c − b) × c parity-check matrix of its parent rate
R = b/c convolutional code, where M is the corresponding
tailbiting length.

Let H(D) denote a (c − b) × c polynomial parity-check
matrix of a parent convolutional code, then the integer matrix
B is called the corresponding base matrix if it satisfies B =
H(D)

∣∣
D=1

. Thus it is possible to interpret the construction
of QC LDPC codes as labeling base matrices with proper
polynomials. Such polynomials can belong to different classes.
The most commonly used structure of a parent convolutional
code implies that each entry of H(D) is monomial, that is,
Dwij , where wij is a nonnegative integer, or zero. The base
matrix in this case consists of only zeros and ones. As a
straight-forward generalization binomial and trinomial entries
are considered in [3], [4]. The corresponding base matrices
contain symbols from {0, 1, 2} and {0, 1, 2, 3}, respectively.
Base matrices constructed from Steiner Triple Systems were
considered in [5].

Among a large number of papers studying QC LDPC codes
only a small fraction focuses on their minimum distance. The
upper-bound (J + 1)! on the minimum distance of QC LDPC
codes constructed from all-ones base matrices is presented
in [6], [7]. In particular dmin ≤ 24 for J = 3. A lower
bound on the minimum distance of such LDPC codes was
derived in [8] and improved for some special cases in [9].
Some short codes with J = 3 achieving the upper bound
(J + 1)! = 24 were found in [10] by computer search. In
[11] the minimum distance of the well known (155, 64, 20)
(J = 3,K = 5)-regular code is computed. Moreover, in [12],
[3], [4] a generalized approach of [6] is used to derive upper
bounds on the minimum distance of QC LDPC codes with
base matrices containing zeros and ones and of QC LDPC
codes constructed from base matrices labeled by binomials
and trinomials. Finally, in [13], [14] it is shown that the
minimum distance of (J = 3,K)-regular QC LDPC codes
constructed from Steiner Triple Systems STS(m) of order m,
where m = 1, 3 mod 6 except m = 7 and 13, is lower-
bounded by 6.

It is well-known that by labeling the all-ones base matrix,
(J = 3,K)-regular QC LDPC codes with girth up to 12
and minimum distance up to 24 can be obtained. In order
to increase both the minimum distance and the girth of the
code, base matrices with zero and nonzero entries together
with monomial, binomial, and trinomial labelings have to be
used. For example, in [5] the class of (J = 3,K)-regular



QC LDPC codes constructed from Steiner Triple Systems
with monomial labelings and girth up to 18 is presented.
The disadvantage of these codes is their high computational
complexity for both searching and encoding. Generalizing
this construction to (J ≥ 3,K)-regular QC LDPC codes
requires very large base matrices which further increases the
computational complexities.

In [4], (J = 3,K)-regular QC LDPC codes determined by
polynomial parity-check matrices constructed from binomial
and trinomial labelings of J×K base matrices with girth less
than or equal to 10 were analyzed. In particular, it was shown
that by using trinomial labelings, only codes with girth 6 can
be obtained. However, a generalization of this construction to
J ≥ 3 is not straight-forward.

The above mentioned shortcomings of the existing code
constructions motivated the introduction and study of a class
of (J ≥ 3,K)-regular QC LDPC codes constructed from
(2J×2K) base matrices with zeros and ones obtained by using
two parity-check matrices of the Hamming (2J − 1, J) linear
block code together with monomial labelings. In the following,
we will call these codes double-Hamming based QC LDPC
codes. It is shown that codes of this class can achieve girth
up to 14. Upper bounds on the minimum distances for such a
construction are obtained for given labelings by calculating the
free distance of the corresponding parent convolutional code.
Applying this approach to QC LDPC codes with J ≥ 3 is
straight-forward. An example of a base matrix with J = 4 is
given.

The proposed construction is compared with constructions
of (J = 3,K)-regular QC LDPC codes considered in [4] and
[5] and new codes for all three constructions are presented.
Thereby, we focus mostly on finding the minimum distance of
QC LDPC codes under restrictions on their girth, using either
monomial or binomial labelings. In particular, new codes with
girth 8 and 10 obtained from the double-Hamming based
construction with minimum distances up to 32 are found.
Moreover, we included the previously unknown minimum
distance for some codes presented in [5] for comparison.

II. TAILBITTEN CONVOLUTIONAL LDPC CODES AND
THEIR TANNER GRAPHS

A rate R = b/c parent convolutional LDPC code of memory
m is determined by its polynomial parity-check matrix H(D)

H(D) =


h11(D) h12(D) . . . h1c(D)
h21(D) h22(D) . . . h2c(D)

...
...

. . .
h(c−b)1(D) h(c−b)2(D) . . . h(c−b)c(D)

 (1)

where hij(D) is either zero, monomial or binomial, that is,
hij(D) = a1,ijD

w1,ij + a2,ijD
w2,ij , where a1,ij , a2,ij ∈

{(0, 0), (1, 0), (1, 1)} and wk,ij , k = 1, 2, are nonnegative
integers.

By tailbiting the parent convolutional code to length M >

m we obtain the parity-check matrix

HT
TB =


HT

0 HT
1 . . . HT

m−1 HT
m 0

0 HT
0 HT

1 . . . HT
m−1 HT

m

HT
m 0 HT

0 HT
1 . . . HT

m−1

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
HT

1 . . . HT
m−1 HT

m 0 HT
0

 (2)

of an (Mc,Mb) QC LDPC block code, where

H(D) = H0 + H1D + · · ·+ HmDm

and Hi, i = 0, 1, . . . ,m, are binary (c− b)× c matrices.
Notice that by reordering columns and rows of (2) we can

obtain a parity-check matrix of an equivalent (Mc,Mb) block
code, consisting of (c − b) × c circulants of size M × M .
The free distance dfree of the parent convolutional code upper-
bounds the minimum distance dmin of the corresponding QC
LDPC block code.

As previously mentioned, the polynomial parity-check ma-
trix H(D) (1) can be interpreted as a base matrix B labeled
by the corresponding polynomials, where B is a (c − b) × c
matrix with positive nonzero integers on positions of nonzero
entries of H(D). In particular, monomial entries in H(D)
correspond to the integer 1 in the base matrix, while binomial
entries correspond to the integer 2. Both B and HTB can be
considered as biadjacency matrices [15] of their corresponding
Tanner graphs [8]. In other words, we can reduce the problem
of finding new QC LDPC codes to the problem of labeling a
base Tanner graph determined by the biadjacency matrix B.
The length of the shortest cycle in the graph constructed from
the biadjacency matrix given by the parity-check matrix HTB
is called the girth g and is used as a target when searching
for good QC LDPC codes. Similarly, denote the girth of the
graph constructed by the biadjacency matrix given by the base
matrix B and by the parity-check matrix H(D) of the parent
convolutional code by gB and gfree, respectively, where the
girth gfree is an upper bound on the girth g.

In the next section three constructions with base matrices of
different types are compared. Upper bounds on the minimum
distance for given labelings are calculated and restrictions on
the girth g for the three different constructions are discussed.

III. THREE CONSTRUCTIONS OF QC LDPC CODES

A. Binomial QC LDPC codes

We start by considering QC LDPC block codes constructed
from a J × K base matrix B with binomial labeling, that
is, with both binomial and monomial labelings. Such a con-
struction was proposed and analyzed in [3] and [4]. The
parent convolutional code of such a QC LDPC block code
is determined by a polynomial parity-check matrix containing
only zeros, monomials, and binomials, constructed from the
corresponding base matrix with integer entries {0, 1, 2}. In
[4] the related upper bounds on the girth and on the minimum
distance of QC LDPC block codes for this class of codes are
obtained. More precisely, for codes of rate R = 1/4 it is shown
that depending on the labeling the minimum distance is upper-
bounded either by 32 with girth ≤ 8 or by 30 and 28 with girth



TABLE I
PARAMETERS FOR NEW BINOMIAL RATE R = 1/4
(J = 3, K = 4)-REGULAR QC LDPC CODES

(n, k, dmin) M dfree g Labeling

(96, 25, 24) 24 30 8

(4, 0), (13), (4) ;
(4), (3), (0, 1) ;
(10, 0), (3, 0)

(112, 29, 26) 28 30 8

(124, 32, 28) 31 30 8

(144, 37, 30) 36 30 8

(108, 28, 24) 27 28 8

(0, 2), (13), (2) ;
(10), (3), (0, 1) ;
(13, 0), (0, 3)

(116, 30, 26) 29 30 8

(136, 35, 28) 34 30 8

(152, 39, 30) 38 30 8

≤ 10. For rate R = 2/5 the minimum distance is less than or
equal to 28 with girth ≤ 8. In particular, a (184, 47, 32) QC
LDPC block code with girth g = 8 achieving the upper bound
on the minimum distance is presented.

Starting from the base matrix

B =

 2 0 1 1
1 1 2 0
0 2 0 2

 (3)

we applied the search algorithm presented in [16] using ran-
dom labelings to obtain such a labeling, that the Tanner graph
determined by the biadjacencey matrix, which is given by the
parity-check matrix of the corresponding tailbiting block code,
has a given girth g. Using the strengthened algorithm [10],
we calculated the corresponding minimum distance and found
in such a way new QC LDPC block codes with minimum
distance up to 30 as well as a new QC LDPC block code with
the very short codeword length n = 96 and minimum distance
dmin = 24.

The obtained results are summarized in Table I, where n is
the code length and k is the code dimension. The free distance
of the parent convolutional code is given by dfree while the
minimum distance and girth of the corresponding QC LDPC
block code after tailbiting to length M are given by dmin and
g, respectively. The obtained labeling of the base graph B
is specified in the last column, where the labelings for each
row are separated by semicolon. In particular, a tuple (a, b)
corresponds to a binomial entry (Da + Db) while a single
value (a) specifies a monomial entry (Da). Finally, note that
positions with zero entries in the base matrix B are omitted,
that is, the jth labeling in the kth row (block) corresponds
to the jth nonzero entry in the kth row of the base matrix
B. According to [4], the minimum distance and girth of any
QC LDPC block code obtained from the base matrix (3) is
upper-bounded by dmin ≤ 32 and g ≤ 8.

In [4] a special type of monomial labeling for 2J × 2K
base matrices with zeros and ones, obtained from shorter base
matrices with binomial labeling, was studied. The minimum
distance of this construction is upper-bounded by 64 and a
(J = 3,K = 4)-regular QC LDPC block code of length n =
368 whose corresponding Tanner graph has girth g = 8 is
presented. We calculated the minimum distance of this code

to be dmin = 32, reaching the upper-bound determined by the
free distance of the corresponding parent convolutional code
with dfree = 32. Furthermore, it is easy to verify that the girth
of this construction is limited by a maximum girth of 8 since
there always exists a submatrix within the parity-check matrix
which can be normalized to(

1 Da 1 Db

Da 1 Db 1

)
(4)

where a and b are nonnegative integers, that is, it corresponds
to a cycle of length 8 in the corresponding Tanner with labeling
−0 + b− 0 + 0− a + 0− b + a = 0.

B. Double-Hamming based QC LDPC codes

Next we consider a new class of rate R = b/c QC LDPC
block codes constructed from (2J × 2K) base matrices of
zeros and ones with monomial labeling. In this case the base
matrix B is constructed using the parity-check matrix of the
Hamming code, that is,

B =

(
IJ P 1 0 W1

Pp IJ 0 1 W2

)
(5)

where IJ is the identity matrix of size J × J , the submatrix
(P 1) corresponds to the parity part of the parity-check matrix
of the Hamming (2J−1,J)-code, 0, 1 are the all-zero and all-
one column vectors, respectively, and Pp is a permutation of
P .

Depending on the desired rate of the QC LDPC block
code, the dimensions of the matrices W1 and W2 are adjusted
correspondingly to J× (c−2J). Note that the columns of W1

and W2 can be chosen arbitrarily with the restriction that the
number of nonzero elements in each column and in each row
of the base matrix B have to be equal to J and K, respectively,
and that there are no identical columns in B.

For example, the base matrix B for an R = 2/8 (J =3,K=
4)-regular QC LDPC code can be chosen as

B =


1 0 0 1 1 0 1 0
0 1 0 0 1 1 1 0
0 0 1 1 0 1 1 0
0 1 1 1 0 0 0 1
1 0 1 0 1 0 0 1
1 1 0 0 0 1 0 1

 (6)

where the matrices W1 and W2 are not present.
It is easy to verify that there exist always some columns in

the base matrix B that coincide in two positions, and thus the
girth of the corresponding Tanner graph follows as gB = 4.
According to Theorem 2 [10] the achievable girth of a Tanner
graph constructed from the biadjacency matrix obtained by
labeling the nonzero positions in B, is gfree ≥ 3gB ≥ 12.
However, as the second generalized Hamming distance d2
of the R = 10/24 convolutional code whose parity-check
matrix coincides with the incidence matrix of the Tanner graph
specified by the base matrix (6) is equal to 7, it follows
from the same theorem that a code with g ≥ 2d2 = 14
exists. The (2112, 528) QC LDPC block code with g = 14



TABLE II
PARAMETERS OF NEW DOUBLE-HAMMING BASED RATE R = 1/4

(J = 3,K = 4)-REGULAR, R = 2/5 (J = 3,K = 5)-REGULAR AND
R = 1/2 (J = 3,K = 6)-REGULAR QC LDPC CODES

(n, k, dmin) dfree(d̂free) g Labeling

Rate R = 1/4

(168, 42, 30) 54 (≤ 66) 8
7, 3, 0, 5 ; 1, 0, 4, 10 ; 0, 4, 7, 9 ;
7, 6, 0, 3 ; 0, 0, 7, 6 ; 7, 7, 0, 10

(160, 40, 32) 76 (≤ 102) 10
0, 6, 15, 11 ; 6, 9, 0, 0 ; 6, 0, 2, 14 ;
19, 0, 12, 4 ; 13, 4, 0, 4 ; 12, 0, 5, 0

Rate R = 2/5

(380, 144, 26) ≥ 40 (≤ 72) 8

0, 5, 0, 19, 9 ; 3, 0, 0, 11, 0 ;
3, 12, 9, 0, 4 ; 0, 0, 12, 9, 14 ;
6, 5, 13, 0, 2 ; 5, 0, 5, 0, 0

(370, 148,≥ 30)

(dmin ≤ 36)
≥ 38 (≤ 86) 10

0, 22, 28, 6, 24 ; 0, 7, 0, 0, 11 ;
0, 8, 25, 0, 0 ; 19, 6, 0, 15, 0 ;
14, 8, 0, 31, 21 ; 0, 11, 5, 27, 6

Rate R = 1/2

(1080, 540,≥ 28) (≤ 90) 10

40, 47, 17, 77, 36, 10 ; 19, 74, 43,
24, 86, 31 ; 86, 56, 3, 83, 52, 56 ;
26, 38, 0, 22, 81, 25 ; 77, 47, 13,
6, 6, 70 ; 76, 0, 56, 11, 20, 57

was found by labeling the rows in (6) as follows, (0, 0, 0, 0),
(0, 13, 0, 181), (0, 87, 66, 101), (7, 260, 245, 0), (0, 124, 33, 6),
(107, 0, 130, 55), where the ith entry within the jth 4-tuple
corresponds to the monomial degree of the ith nonzero entry
in the jth row of the base matrix. Notice that so far, the shortest
published QC LDPC code of rate R = 1/4 with g = 14 has
length 2208 [5].

Moreover, this construction can be generalized in a straight
forward manner to J ≥ 3. Consider, for example, the rate
R = 8/16 base matrix with J = 4 given by

B =

(
I4 P1 P2 1 0 W1

P2p P1p I4 0 1 W2

)
(7)

where the parity part P of the Hamming code in (5) has
been split into two submatrices P1 and P2 for notational
convenience. In particular, the submatrices of the parity part of
the corresponding Hamming code are given by P2 = P2p = Ic

4,
that is, the complement of the identity matrix I4,

P1 =


0 0 1 0 1 1
0 1 0 1 0 1
1 0 0 1 1 0
1 1 1 0 0 0

 (8)

and

P1p =


0 1 0 1 1 0
1 0 1 0 1 0
0 0 1 1 0 1
1 1 0 0 0 1

 (9)

Using the base matrix (7) and tailbiting to length M =
1168, a (18688, 9344) QC (J =4,K=8)-regular LDPC block

TABLE III
PARAMETERS OF NEW RATE R = 1/4 (J = 3,K = 4)-REGULAR QC

LDPC CODES CONSTRUCTED FROM STEINER TRIPLE SYSTEMS

(n, k, dmin) dfree(d̂free) g Labeling

Rate R = 1/4
(

STS(9)
)

(168, 42, 30) 38 (≤ 84) 8

1, 0, 1, 0 ; 0, 2, 4, 3 ; 0, 2, 0, 1 ;
0, 5, 2, 0 ; 1, 1, 0, 2 ; 4, 3, 4, 4 ;
2, 7, 0, 0 ; 0, 0, 4, 4 ; 0, 0, 3, 3

(216, 54, 34) ≥ 62 (≤ 172) 10

0, 1, 3, 0 ; 14, 11, 0, 0 ; 7, 12, 0, 3 ;
4, 0, 5, 13 ; 0, 9, 3, 0 ; 10, 0, 3, 11 ;
0, 2, 3, 4 ; 0, 0, 4, 12 ; 1, 8, 0, 12

(144, 36, 28) 46 (≤ 98) 10 as specified in [5]

code with girth g = 10 was found. The corresponding labeling
is omitted due to space restrictions, but is available at [17].

Parameters of new QC LDPC block codes found by labeling
the base matrix (6) with monomials are presented in Table II,
where n is the code length and k the code dimension. The
free distance of the parent convolutional code is, if possible,
given by dfree together with the corresponding upper bound
d̂free, computed by applying the approach of [4], [12], that is,

d̂free = min
J

c−b+1∑
i=1

W (∆J,i) (10)

where J is a subset of c − b columns of the parity-check
matrix H(D), and W (∆J,i), i = 1, 2, . . . , c − b + 1, denotes
the weight of the corresponding polynomial determinant.

The minimum distance and girth of the corresponding QC
LDPC block code after tailbiting to length M are given by
dmin and g, respectively, while the obtained labeling of the
base graph B is specified in the last column, separating the
labelings for each row by a semicolon. As positions with zero
entries with the base matrix B are omitted, the jth labeling
in the kth block corresponds to the jth nonzero entry in the
kth row of the base matrix B. So far, the shortest published
R = 2/5 (J =3,K=5)-regular QC LDPC code with g = 10
has length n = 550 [5].

Finally, consider the base matrix B as a matrix of weights of
polynomials. Applying the same approach as before, we obtain
an upper bound on the free distance, equal to 110, for the
presented construction independently of the chosen labeling.

C. Steiner Triple System based QC LDPC codes

A third class of QC LDPC codes was previously considered
in [5]. Codes from this class are obtained by labeling base
matrices constructed from Steiner Triple Systems and integer
lattices. It is proven [5] that the girth of the base Tanner graphs
from this class is at least gB = 6, that is, the achievable girth of
the labeled Tanner graph is lower-bounded by 18. Examples
of QC LDPC codes of this type with girth of their Tanner
graphs equal to 14, 16, and 18 are presented in [5].

In Table III, examples of QC LDPC codes from the third
class with computed minimum distances and girths are given.
One of the codes was found in [5] but we calculated its
minimum distance and by applying the BEAST algorithm



[18] the free distance of its parent convolutional code. The
other codes are new, found by applying our labeling algorithm
[16], [19] using base matrices from [5], and they have better
minimum distances.

IV. CONCLUSION

Advantages of our new double-Hamming based construction
of QC LDPC codes compared to the constructions using
binomial and trinomial labelings are a higher achievable girth
and a straight-forward generalization to larger J values. The
Steiner Triple System based construction can achieve a larger
girth, but is limited to QC (J,K)-regular LDPC block codes
with J = 3. Moreover, due to the large sizes of their base
matrices the LDPC block codes constructed by this method are
much longer than those obtained by using the newly presented
construction based on Hamming codes.
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