
LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

Evaluation of Some Algorithms for Hardware-Oriented Message Authentication

Ågren, Martin; Hell, Martin; Johansson, Thomas

2011

Link to publication

Citation for published version (APA):
Ågren, M., Hell, M., & Johansson, T. (2011). Evaluation of Some Algorithms for Hardware-Oriented Message
Authentication. [Publisher information missing].

Total number of authors:
3

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.
 • Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

Download date: 17. May. 2025

https://portal.research.lu.se/en/publications/707fc3a5-6a99-4fbe-ae30-32e696b25124

Evaluation of Some Algorithms for

Hardware-Oriented Message Authentication

Martin Ågren, Martin Hell, and Thomas Johansson

Dept. of Electrical and Information Technology, Lund University,
P.O. Box 118, 221 00 Lund, Sweden

Abstract. In this technical report, we consider ultra light-weight con-
structions of message authentication in hardware applications. We exam-
ine several known constructions and evaluate details around their hard-
ware implementations. These constructions are all based on the frame-
work of universal hash functions.

Keywords: Message Authentication Codes, Universal Hash Functions,
Hardware Implementation, Lightweight, Stream Cipher

1 Introduction

Message Authentication Codes (MAC:s) [6] is a class of keyed functions used
in many di�erent areas to ensure that a message has been sent by the true
sender and received without having been altered during transmission. The sender
produces a tag t = f(kMAC,m) for a message m using a key kMAC and attaches
it to the message. The receiver, who shares the key kMAC, can produce the tag
for the received message and immediately decide whether the message can be
regarded as authentic.

An active adversary tries to modify a transmitted message and its tag and
hopes to get this accepted at the receiver side. We would like the probability
that the attacker succeeds to be some very small value.

There are many ways to provide message authentication, e.g., using certain
block cipher modes of operation, using a keyed hash function, or using con-
structions based on universal hashing [15, 14]. This report focuses on the last
approach, which is the usual choice when we assume that encryption is done
through a stream cipher (unless there is some dedicated authentication inside
the stream cipher). Typical examples would be the GCM mode [11] and the
UIA2 [1] found in UMTS and LTE.

One major new application area in cryptology is light-weight cryptology.
Many recent applications put very strong demands on parameters of crypto-
graphic algorithms. In particular, we have in mind passive RFID applications,
where the total gate count must be kept very low. No acceptable solutions using
symmetric algorithms have yet been demonstrated in practice. Recently, a new
RFID authentication protocol based on a stream cipher has been presented [4].

Key

IV

Message

Stream cipher

generator

z0z1 . . . zn−1 . . . zn+i . . .

MAC

mi ciCiphertext

kMAC

tTag

Fig. 1. The setting we consider in this paper. The �rst n output bits from a stream
cipher generator, initialized with a key and IV, form kMAC which is used to initialize
the authentication mechanism. The rest of the stream cipher bits are used to encrypt
the message bits mi, i = 0, 1, The end result is a sequence of ciphertext bits ci and
the authentication tag t.

Motivated by this, we consider ultra light-weight constructions of message au-
thentication in hardware applications like RFID.

We examine several known constructions and evaluate details around their
hardware implementations. More speci�cally, we try to assess the cost of a simple
implementation which uses no lookup tables or advanced techniques. We quantify
the cost in terms of registers and gates.

2 Preliminaries

We are interested in a mechanism combining encryption and authentication in
some packet-based communication system, or similar. We assume that the en-
cryption is done through a modern stream cipher, using a secret key k and a
public initial value (IV). The stream cipher would either be a dedicated one, or
a suitable mode of operation for a block cipher. The key kMAC used to produce
the MAC is derived from k by using keystream before encryption starts.

For security reasons, we have to extract the full kMAC before encryption, even
though part of kMAC is typically not used until the very end of the algorithm, after
encryption has completed. The details on why one cannot extract randomness
after encryption has �nished is available in [2].

Summarizing this, we present an overview of this approach in Fig. 1. This
is an adopted and standard approach, used in GCM, GSM, UMTS, etc. The
remainder of this report will focus on the dashed rectangle in Fig. 1 which
inputs a key and a message and outputs a tag. (One might also authenticate the
cipherbits ci instead of message bits mi.)

When we study known constructions, we ignore the process of creating key
bits kMAC. We consider the hardware cost for the MAC generation part, as
marked in Fig. 1. For some constructions, we have detailed a hardware imple-
mentation and will mention the gate count obtained. When assessing the costs

Table 1. The gate counts used for di�erent functions.

Flip �op 8
NAND2 1
XOR2 2.5
MUX2 4
MUX3 5
DEMUX3 5

for certain hardware primitives (gates), we have used cost �gures found in sev-
eral other papers, e.g., [7]; they are found in Table 1. We typically assume a tag
size of 64 bits.

2.1 MAC:s and Universal Hash Functions

In order to fully appreciate the theory behind the constructions in this report,
we need to understand �universal hash functions�. An overview of this theory is
available in e.g., [2]. As we only study details surrounding the implementations,
we do not go into the exact details on why these particular algorithms are secure.

Without going into the precise de�nitions, let us note that the constructions
we study will be either ε-almost universal (ε-AU) or ε-almost XOR universal (ε-
AXU). Here, ε can be directly translated to a success probability for an attack,
and thus we want to keep ε �small�.

When constructing a MAC using an ε-AU family H, the key kMAC is divided
into two parts. One part selects a particular function h ∈ H, and the other is
used with a block cipher to encrypt the output of h. On the other hand, with
an ε-AXU family, the �nal encryption can be done using a simple XOR with the
other part of the key (a one-time pad). This class of families is interesting, since
a stream cipher is often to prefer over a block cipher in the settings we consider.

2.2 Notation

We use || to denote concatenation of bitstrings. 0w denotes a bitstring consisting
of w zeroes. The length of m, encoded using w bits, is denoted [m]w.

3 A Hardware Evaluation of Existing Constructions

We revisit some known constructions. The �rst three use polynomial evaluation.
The basic idea is to combine message blocks and key blocks. A common approach
is to try to avoid multiplications in favour of additions.

The last three constructions we look at are all ε-AXU. Notably, they only
update what will be the output using XOR, meaning that the one-time pad can
be added in the very beginning just as well as at the very end. We note that this
allows us to save one register.

3.1 GCM: GMAC

w ≥ 128 [11] is the block length and H is a hash-key. Ignoring what [11] calls
�additional authenticated data�, the m-bit message is split into w-bit blocks mi,
1 ≤ i ≤ n− 1. We set mn = 0w/2||[m]w/2 and let

GHASH(H,m,mn) =

n∑
i=1

miH
n+1−i

be the internal keyed hash where all calculations are performed in some �xed
representation of F2w . The tag is then encrypted using a key (related to H) and a
value J derived from the IV. [11, Appendix A] shows that GHASH is n2−t-AXU
when n−1 is the maximum allowed message block count and t the length of the
truncated output.

Interpreting the formula for GHASH, we view the message blocks as coef-
�cients of a polynomial which we evaluate in the point H. An implementation
would consist of �ve w-bit registers as in Fig. 2 where the next message block is
loaded in parallell with processing the current one. The �nal XOR-ing of random
bits cannot be performed ahead of time, which means that a special register is
needed for keeping this value until the very end of the process.

The bottom register contains the value H and the message is loaded bit by
bit into the message bu�er. Immediately prior to loading a message block mi

from the message bu�er, the Z register contains the tag accumulated thus far.
mi ⊕ Z is then put into the V register and the Z register is reset. By clocking
the two lower registers and updating the Z register with the contents of V i�
the left-most bit of the lower register is a one, the multiplication with H is
calculated. After w such clockings, the lower register is back at its starting value
(H). At this point, everything is prepared for the immediate loading of another
message block mi+1. The �nal tag is Z ⊕OTP .

A rough calculation of the hardware cost, 5w �ip �ops, w AND:s, w XOR:s
and a small number of multiplexers, yields 2800 gates. To save on one register,
we could get rid of the message bu�er at the cost of lowering the speed to half.
This would give a gate count around 2100, but this �gure cannot be compared
to those later in this report, since the performance is inferior.

3.2 UMTS: UIA2

There are large similarities with GCM, but also some di�erences [1]: Ignoring
the di�ering block sizes in the original speci�cations, one di�erence that emerges
is that the padding is done by choosing mn = [m]w. We need two random values
(apart from the �nal OTP): P (w bits) and Q (w bits). We then calculate

Hash = truncw/2(GHASH(P,m,mn) ·Q)

which is the evaluation of the �polynomial� m in the point P , multiply with
Q and truncate half the bits. A performance di�erence, comparing to GMAC,

Z

V

H

Message bu�er

OTP

mi

. . .

Fig. 2. A hardware implementation of GHASH.

emerges when we study the e�ect of the multiplicating with Q and truncating:
we cannot move the use of Q before the processing of the message, meaning that
we need to store this value somewhere during the entire process. This increases
our cost in terms of registers compared to the GMAC-construction.

Why are these extra operations added to the result of GHASH then? While
the GHASH-call is a n2−w-AXU hash family, the �nal multiplication and trunca-
tion is 2−w/2-AXU. This makes (n2−w+2−w/2)-AXU combined. Comparing this
to the GHASH-construction, the di�erence emerges for e.g., n = 2w/2, t = w/2.
The GMAC construction achieves 1-AXU, while UIA2 clocks in at a less laugh-
able security of 21−w/2.

Studying these two constructions, it seems one protects longer messages
(much) better at the cost of some additional post-processing which unfortu-
nately cannot be implemented in a manner which suits us.

3.3 WH

This [8] is a modi�cation of a scheme named NH used in UMAC [5]. While the
latter uses integer additions, the construction studied here works with polyno-
mials over F2, meaning that a hardware implementation does not need to carry

during addition. The function is de�ned as

WHk(m) =

n/2∑
i=1

(k2i−1 ⊕m2i−1) · (k2i ⊕m2i)x
(n
2 −i)w mod p

where p = p(x) is a polynomial of degree w irreducible over F2. This function is
2−w-AU on equal-length strings using w ≥ 1 and even n ≥ 2. Comparing to NH,
which is also 2−w-AU on such strings, a key di�erence is that that the tags are
of di�erent lengths, where WH produces tags whose �security� actually match
their size.

The problem with this design is that it is AU, not AXU. This di�erence is
crucial since it is not enough to mask the tag with output from the stream cipher
generator. Using block ciphers solves this problem at an apparent cost, which is
not acceptable to us.

3.4 Cryptographic CRC

Krawczyk [9] suggests using a CRC with a secret irreducible polynomial p(x)
and calculating the tag as

hp(m) = m(x) · xn mod p(x).

Note that the message-tag pair (m,h) is accepted i� p(x)|q(x) where

q(x) = m(x) · xn − h(x).

An implementation is outlined in Fig. 3. The top register contains the OTP,
added during �nalization. Message bits are shifted into the middle register. When
the bit shifted out of the middle register is a one, the contents of the lower register
is added to the middle one and the left-most bit in the middle register is �ipped
(this represents the �+1� in the feedback polynomial).

Using 3w �ip �ops, w XOR:s, 2w AND:s and a small number of multiplexers,
we have arrived at a gate count around 1830. One problem is that the feedback
polynomial must be chosen randomly, yet it has to be irreducible. This is a major
drawback.

3.5 LH and UH

Sarkar [13] writes about a construction which he claims can be implemented
very e�ciently using a word-oriented LFSR. Furthermore, he suggests an appli-
cation using a stream cipher to generate a keystream, some of which is used for
encryption and some of which is used for authentication.

Example 1. This is a simpli�ed version of an example in [13] where we avoid
word-oriented LFRS:s and use �ordinary� LFSR:s. We use a full-period LFSR of
length w and a w-bit tag accumulator and start by loading key material into the

OTP

Register

Feedback �polynomial�

. . .

mi

Fig. 3. A hardware implementation of the CRC construction.

shift register. For each bit to authenticate, we either XOR the accumulator with
shift register content or we don't, depending on whether the authenticated bit is
1 or 0, respectively. At each step, we also clock the LFSR. After authenticating
w bits, we load new key material and proceed in the same fashion.

From a security standpoint, it is tempting to use the above example, but the
keystream consumption will be very large and, in fact, the authentication will
use just as much keystream as the encryption.

3.6 An LFSR-Based Toeplitz Construction

We start by �lling an LFSR K with key material and choosing a secret irre-
ducible feedback polynomial. At each time step, this LFSR is clocked and we
denote the content at time i as Ki. Maintain a w-bit state t = t0 . . . tw−1 ini-
tialized with zeroes.

For each bit mi we wish to authenticate, if it is zero we do nothing and if it
is one we update t← t⊕Ki. We may write this as

t =

t0
t1
...

tw−1

 =

k−1 k0 k1 . . . kL−2

k−2 k−1 k0 . . . kL−3

...
...

... . . .
...

k−w k1−w k2−w . . . kL−1−w

m0

m1

m2

...
mL−1

to authenticate L message-bits mi.

It can be shown, by following [3, 12, 10], that this family of hash functions
is ε-AXU where ε = L

2w−1 (see also [9]). That is, the security degrades with
the maximum allowed length of the messages. Note that this result is stated
incorrectly in [10]: there is a factor two missing. See [2] for details.

Please also note the similarities with Example 1 above. In that construction,
we maintained a higher security at the price of constantly re�lling the state of the

LFSR. The price then was keystream consumption; here, there is a cost which
is equally unwanted: we need to randomly choose the irreducible polynomial.

4 Conclusion

In this technical report, we have seen how the lowest number of w-bit registers
needed is three. All of the hardware-e�cient algorithms turned out not to be
particularly suitable for our setting as they rely on one or more of

� a block cipher to do post-processing,
� multiplication in some �eld,
� special randomness, e.g., an irreducible polynomial,
� as many pseudorandom bits as message bits.

Acknowledgment

This work was supported by the Swedish Foundation for Strategic Research
(SSF) through its Strategic Center for High Speed Wireless Communication at
Lund.

References

1. 3GPP. Speci�cation of the 3GPP Con�dentiality and Integrity Algorithms UEA2
& UIA2; Document 1: UEA2 and UIA2 speci�cations. TS 35.215, 3rd Generation
Partnership Project (3GPP), September 2006.

2. M. Ågren, M. Hell, and T. Johansson. On hardware-oriented message authenti-
cation with applications towards RFID. In Proceedings of the 2011 Workshop on
Lightweight Security & Privacy: Devices, Protocols, and Applications. IEEE Com-
puter Society Conference Publishing Services, 2011.

3. N. Alon, O. Goldreich, J. Håstad, and R. Peralta. Simple construction of almost
k-wise independent random variables. Annual IEEE Symposium on Foundations
of Computer Science, pages 544�553, 1990.

4. O. Billet, J. Etrog, and H. Gilbert. Lightweight privacy preserving authentication
for RFID using a stream cipher. In S. Hong and T. Iwata, editors, Fast Software
Encryption 2010, volume 6147 of Lecture Notes in Computer Science, pages 55�78.
Springer-Verlag, 2010.

5. J. Black, S. Halevi, H. Krawczyk, T. Krovetz, and P. Rogaway. UMAC: Fast and
secure message authentication. In Advances in Cryptology�CRYPTO'99, pages
215�233. Springer-Verlag, 1999.

6. E. N. Gilbert, F. J. MacWilliams, and N. J. A. Sloane. Codes which detect decep-
tion. Bell Systems Technical Journal, 53(3):405�424, 1974.

7. M. Hell, T. Johansson, and W. Meier. Grain - a stream cipher for constrained
environments. International Journal of Wireless and Mobile Computing, Special
Issue on Security of Computer Network and Mobile Systems., 2(1):86�93, 2006.

8. J.-P. Kaps, K. Yüksel, and B. Sunar. Energy scalable universal hashing. IEEE
Transactions on Computers, 54(12):1484�1495, 2005.

9. H. Krawczyk. LFSR-based hashing and authentication. In Advances in
Cryptology�CRYPTO'94, pages 129�139. Springer-Verlag, 1994.

10. H. Krawczyk. New hash functions for message authentication. In Advances in
Cryptology�EUROCRYPT'95, pages 301�310. Springer-Verlag, 1995.

11. D. A. McGrew and J. Viega. The security and performance of the Galois/Counter
Mode (GCM) of operation. In A. Canteaut and K. Viswanathan, editors, Progress
in Cryptology�INDOCRYPT 2004, volume 3348 of Lecture Notes in Computer
Science, pages 343�355. Springer-Verlag, 2004.

12. J. Naor and M. Naor. Small-bias probability spaces: E�cient constructions and
applications. SIAM Journal on Computing, 22(4):838�856, 1993.

13. P. Sarkar. A new universal hash function and other cryptographic algorithms suit-
able for resource constrained devices. Cryptology ePrint Archive, Report 2008/216,
2008. http://eprint.iacr.org/.

14. D. R. Stinson. Universal hashing and authentication codes. In J. Feigenbaum, ed-
itor, Advances in Cryptology�CRYPTO'91, volume 576 of Lecture Notes in Com-
puter Science, pages 74�85. Springer-Verlag, 1992.

15. M. N. Wegman and J. L. Carter. New hash functions and their use in authentication
and set equality. Journal of Computer and System Sciences, 22:265�279, 1981.

