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When Errors Become the Rule:
A Survey of Transformation-Based Learning
Abstract
Transformation-based learning (TBL) is a maine learning method for sequential classification,
invented by Eric Brill (Brill, 1993c, 1995a). It is widely used within natural language processing
(but surprisingly lile in other areas).
TBL is a simple yet flexible paradigm, whi aieves competitive or even state-of-the-art per-

formance in several areas and does not overtrain easily. It is especially successful at cating local,
fixed-distance dependencies. e learned representation – an ordered list of transformation rules
– is compact and efficient, with clear, declarative semantics. Individual rules are interpretable
and oen meaningful to humans.
e present thesis has two main parts. First and foremost, we offer a survey of the most impor-

tant theoretical work on TBL. It is intended to be informal but relatively comprehensive, address-
ing a perceived gap in the literature. Second, in a more practical part, we describe a recursive,
parallelizable rephrasing, well suited for declarative languages, of a fast imperative learning al-
gorithm proposed by Ngai and Florian (2001b). We implement and test this algorithm in the
functional language Haskell.

När fel blir regel:
En översikt över transformationsbaserad inlärning
Sammanfattning
Transformationsbaserad inlärning (Transformation-based learning, TBL) är en maskininlärnings-
metod för sekventiell klassificering, uppfunnen av Eric Brill (Brill, 1993c, 1995a). Den används
regelmässigt för många uppgier inom automatisk processning av naturligt språk (men förvå-
nansvärt sällan på andra områden).
TBL är en enkel men flexibel metod som når konkurrenskraiga resultat på många områden,

utan a vara sårbar för överträning. Den kan särskilt framgångsrikt fånga lokala beroenden in-
om sekvensintervall av förbestämd storlek. Den representation som lärs in – en ordnad lista av
transformationsregler – är kompakt o effektiv, med deklarativ semantik. Enskilda regler är tolk-
ningsbara o oa meningsbärande för människor.
Föreliggande uppsats har två huvuddelar. I den första ger vi en översikt av de viktigaste teore-

tiska arbetena rörande TBL. Översikten är informellt hållen men förhållandevis omfaande; den
avses därmed fylla en lua i den befintliga lieraturen.
I den andra delen, mer praktiskt inriktad, beskriver vi en rekursiv, parallelliserbar formulering,

väl lämpad för deklarativa programspråk, av en effektiv imperativ algoritm för inlärningsfasen,
föreslagen av Ngai and Florian (2001b). Vi implementerar o testar denna algoritm i det funktio-
nella programmeringsspråket Haskell.
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Preface
e present work provides a survey of Transformation-Based Learning (TBL), a supervised ma-
ine learning algorithm for sequential classification invented by Eric Brill (Brill, 1993a, 1995a).
It also presents an efficient training algorithm for TBL in a declarative paradigm. In our view,
both TBL and declarative programming deserve wider aention. On the whole, the work pre-
sented here concentrates on the former, but declarativity resurfaces also in our discussion of how
a well-designed domain-specific language may extend the expressivity and usefulness of TBL.
is is a thesis in Computer Science, rather than, say, Computational Linguistics. It is intended

to be readable without mu acquaintance with neither specialized linguistic terminology nor the
toolbox of computational linguistics. Linguistic terminology cannot be entirely avoided, however,
and some familiarity with the concepts and methods will certainly do no harm. To date, TBL has
been applied almost exclusively to natural language data, and most citations must necessarily
be drawn from that area. Where deemed necessary, we have tried to explain non-elementary
concepts in a phrase or two in the body text; sometimes we also provide more extensive but less
crucial comments in endnotes. is is hopefully enough to illustrate the inputs and outputs of a
certain problem, but it is almost certainly not enough to convey the rationales behind posing it in
the first place. Furthermore, in some cases, where exact understanding of the terminology might
not be needed for the understanding of the algorithmic aspects, we found that further detours
added more cluer than clarity. When explanations given here are insufficient, we refer to some
dedicated textbook in Computational Linguistics, for instance the excellent Jurafsky and Martin
(2008). Similarly, for maine learning terminology, we refer to Mitell (1997) (whi, however,
has lile to say specifically about classification of sequences).
is thesis began life as a apter of a yet-to-be-finished PhD thesis; but later it ran away, got

a life of its own and did not want to fit in (apparently this may happen to ildren of the brain
as well as ildren of the flesh). I’d like to thank Torbjörn Lager for valuable encouragement
and feedba on short notice, Mats-Eeg Olofsson for meticulous proofreading, Radu Florian for
graciously providing tex sources of the FnTBL algorithm, and Karin Palm-Lindén for generous
hospitality in critical moments.
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1 INTRODUCTION

1 Introduction
1.1 Four aspects of a restaurant conversation
Consider the following hypothetical fragment of a dialogue, perhaps between a head waiter and
a nervous, newly employed colleague in an overworked restaurant kiten.

– Replace the fork on table four.
– OK. Should I apologize for the wait?
– For now it’s enough to light the candle on the table.

It is a perfectly ordinary piece of language, English, in this particular case – indeed, it may
be ordinary enough to be uninteresting to most people. But let us assume that we have some
valid reason to study this sample – maybe we are engineers and want to build some tenical
applicationwhimight receive it as input, or maybewe are linguists andwould like to investigate
the language phenomena it exemplifies.
In any case, we probably have many more samples like it. We would like to describe them all in

some abstracted way, whi highlights their similarities and differences with regard to the aspect
we currently happen to be interested in. For instance, in Example 1 our domain of interest is the
sequence of words, and to ea element of this sequence we wish to assign a part-of-spee, or
POS – classes su as verb, noun, preposition, etc. We will use the notation w1/1 w2/2 . . .
to indicate su a classification (and generalize as needed).i ¹

(1) – Replace/ the/ fork/ on/ table/ four/ ./.
– OK/ ./. Should/ I/ apologize/ for/ the/ wait/ ?/.
– For/ now/ it/ ’s/ enough/ to/ light/ the/ candle/
on/ the/ table/ ./.

In another scenario (Example 2), we are more interested in the turns of the dialogue itself than
in the exact wordings of the uerances. In dialogue act tagging, we try to label entire uerances
by an abstracted representation of the speaker’s intentions: , , , , ,
 . . .

(2) – Replace the fork on table four./
– OK./
Should I apologize for the wait?/

– For now it’s enough/
to light the candle on the table./

Going from larger elements to very small ones, in Example 3 we instead want to study how
leers correspond to spee sounds (or, with a posh term, their graphophonemic relationships).
Here, the data consists of an alignment of ea leer to its corresponding pronunciation (boom
row, in IPA²), with “_” as a placeholder when one-to-one-alignment is inappropriate. Similar

¹Roman numbers refer to the notes at the end of the paper, mostly elaborating on specifically linguistic issues – here,
for instance, the cryptic , , etc.

²IPA is the International Phonetic Alphabet, http://www.langsci.ucl.ac.uk/ipa/ipachart.html.
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1.2 Classification of elements and sequences 1 INTRODUCTION

subtasks oen appear in spee processing systems, but may also be useful for things like spelling
correction or normalization of names in sear queries.ii
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In yet another seing (Example 4), we are interested in finding exactly what part of a sentence
is modified by some prepositional phrase (PP). For instance, in the example, we would like to
decide whether “on the table” says something about the activity of lighting, or about the candle
whi is being lighted. is is the problem of PP aament : in this case, aament to the verb,
[light]V, or to its associated object noun phrase, [the candle]NP. In the example, the laer oice
turned out to be the correct one; with for instance “for now it’s enough to dance the rumba on
the table”, it would have been the former.iii

(4) – [Replace]V [the fork]NP [on table four]PP−NP.
– OK. Should I apologize for the wait?
– For now it’s enough to [light]V [the candle]NP [on the table]PP−NP.

1.2 Classification of elements and sequences
All of the tasks described are common, oen needed (as preprocessing steps) in real-world ap-
plications. ey all involve classification: given a set of observations, ea one describable by
some predefined aracteristics (its features), the job is to assign ea observation to one out of
a likewise predefined set of discrete classes. A more demanding variant is probabilistic classifi-
cation, where we need to return a probability distribution over the entire set of classes (or, less
ambitiously, a ranked list of the k most probable ones).
What kind of knowledge sources do we have at our disposal, to inform su a classification?

Well, if the observations are taken from a predefined set, then wemight have some a priori knowl-
edge, irrespective of the data set at hand. We might know what the most common class for ea
element is, or we might even have a probability distribution over all possibilities. If there is no
su predefined domain (or if there is one, but it is not closed and thus not guaranteed to contain
all new data), then we will sooner or later encounter elements that we have never seen before.
However, we might still make an educated guess from a dynamic analysis of the features, whi
thus constitute a second knowledge source.
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1.2 Classification of elements and sequences 1 INTRODUCTION

Actually, in Examples 1 – 3, what we are given is not a set of observations, but a set of sequences
of observations. e classification of ea element depends on its local context: its neighbours
(within some not-too-wide window), and their classifications. Sequential classification tasks oen
appear when we deal with symbols ordered in time or space, su as those present in human
language. In su tasks, an additional, third knowledge source – by definition – is the sequential
context: whi are the neighbours of the sample we are trying to classify, what are their features,
and what is our (current) idea of their classification?
e example applications illustrate the varying importance of these knowledge sources:

• In part-of-spee tagging, the domain is semi-closed: most words are likely to be known
beforehand, and we might well have them specified in a lexicon. Still, previously unseen
words are certain to occur now and then in any real-world application, and we are mu
helped by being able to make intelligent guesses from dynamic feature analysis – for in-
stance, guessing that staycation is a noun and defriend is a verb.³ Generally, ambiguous
words cannot be resolved without sequential context.

• In dialogue act tagging the domain is truly infinite, and only seldom will we listen to ut-
terances whi we have heard in their entirety before (when it does happen, it is usually
short phrases: single words, or word-like groups of words: yes, what’s up, I don’t know).
us, appropriate feature extraction is crucial. Sequential context is clearly important – the
answer to a  is mu more likely to be an instance of  or  than , no
maer the phrasing.

• In finding leer-to-sound correspondences, we are very unlikely to encounter any previ-
ously unseen leers, us, feature extraction is pointless – whatever we might wish to use
features for would beer have been included elsewhere, as a priori knowledge. e ba-
ground knowledge specifies default correspondences and sequential context can (crucially,
for many languages) be used to emend these.

• In PP aament, the domain is again infinite, but in contrast to the other examples, se-
quential context has no influence: the fact that a PP was aaed to the verb in the previous
sentence tells us nothing about the current one. us, intelligent feature extraction is the
single source of information.

Another interesting dimension along whi these examples vary is the well-definedness of the
classifier range. In PP aament, we generally have two answers tooose from, and if we look at
a wide enough context, exactly one of them is correct. In finding leer-to-sound correspondences,
we may argue about the best alignment, but there is usually reasonable agreement on the lexical
pronunciation (at least if we consider some reference variety of the target language). POS tagging
is triier: it is only meaningful with respect to some stipulatively defined tagset, specific to a
language and sometimes also to a certain data set.⁴ Dialogue act tagging, finally, is less studied and

³New entries in the Oxford English Dictionary 2010.
⁴Of course, su tagsets are not created in a vacuum; they build on ea other and for a given language, differences
between them partly reflect the number of subdivisions made. us, a larger set can oen be converted to a smaller
with relative ease.
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1.3 e present work: Classification by transformation 1 INTRODUCTION

understood; thus, it has the aracteristics of POS tagging to an even higher extent, with tagsets
depending also on domain or seing. As can be expected, human interannotator agreement for
the four tasks decreases in the order given.

1.3 The present work: Classification by transformation
e sequences we have encountered so far are all finite and not very long. On the other hand, we
may have many of them – thousands, millions, or billions – and we certainly want a computer to
help us. One road to automate the ore is to implement a classifier as a set of manually specified
rules. For some combinations of task and data, this is actually the best solution. Restricting the
data type to natural language for the sake of discussion, it is easy enough to write a leer-to-
sound converter for Finnish, Spanish, or Turkish by enumerating the few necessary rules in a
page or two. Mu more substantial human effort was invested into the thousands of rules of the
EngCG POS tagger (Karlsson et al., 1995), for a long time one of the best part-of-spee taggers
for English.⁵
For most instances of sequential classification, including those illustrated in Section 1.1, this

approa is simply infeasible: there are too many and too weak dependencies, and it is far too la-
borious to try to specify them by hand. Instead, we may oose among many reasonable maine
learning approaes: decision trees, hidden Markov models, neural networks, maximum entropy
models, memory-based learning, to mention just a few. ese are well-known teniques in the
maine learning community, and certainly good oices in many situations. eir main draw-
ba for the tasks we are interested in is the opacity of the learned representation. For the men-
tioned teniques, learning amounts to filling a bla, inscrutable box with estimated parameters.
e exception is decision trees, whi do slightly beer: they give us a somewhat interpretable
tree with if...else questions at every node. ese, however, tend to be overwhelmingly many
for any real-world task.
e focus of the present thesis is on yet another maine learning method: Transformation-

based learning (TBL). It was invented by Eric Brill (Brill, 1993c, 1995a) and has been refined by him
and many others since. In terms of the teniques mentioned, TBL is a hybrid: its representation
involves rules, or transformations, but these are learned automatically from the training data.
Rules are iteratively created and evaluated based on how well they deal with the current set of
errors in the data; hence, the approa is oen termed error-driven.
TBL is typically used as a supervised maine learning tenique for classification of sequences,

where ea element is represented as a symbolic feature vector and assigned a single symbolic
value in the classification. Interpretability of representation is but one out of several properties
whi make the method appetizing for applications involving natural language; some others are
the natural ease with whi it handles local (especially fixed-width) dependencies; its resistance
to overtraining; and its general flexibility and adaptability to different tasks. In the next section,
we will look further into these. e method itself, however, does not (and good implementations
should not) make any assumptions whi are valid only for natural language classification tasks.
To be sure, natural language abounds with ambiguities to pit maine learning methods against,
TBL or others; and it also abounds with weak, mostly local, and incompletely understood depen-

⁵EngCG later got augmented by automatically derived rules. See also Section 3.2.2.
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1.3 e present work: Classification by transformation 1 INTRODUCTION

dencies whi these methods may exploit. But Life offers many examples of symbols ordered in
time or space – just to mention a few, DNA and protein sequences, musical notes, suns and clouds
in weather forecasts.
Furthermore, the problem aracteristics described are typical, not mandatory – with the ap-

propriate problem encoding, it is perfectly possible to apply TBL to most any classification task. In
addition, many extensions have been suggested, some of whi are specifically aimed at widening
the method’s expressive power. For instance, TBL can be rebuilt into a regressor (with real-valued
output), or a probabilistic classifier (with a probability distribution over the entire set of classes
as output); see further Section 3.
ere are two immediate aims to the present thesis. e first and most important one is theoret-

ical: to provide a self-contained but still relatively comprehensive introduction to an interesting
maine learning tenique, without mu formal detail and reasonably readable also without
linguistic training. us, we give an overview of vanilla TBL as per Brill (1993c, 1995a), and a
brief survey of the most important later developments.⁶
e second aim is practical: to propose, implement, and test a declarative and parallelizable

phrasing of a fast algorithm for learning TBL.
In a slightly broader sense, however, this thesis hopes to promote TBL as a general maine

learning method, useful for many kinds of linguistic tasks but potentially also for other types
of supervised sequential classification problems. For some reason, despite its many strong points
and several successful use cases, many Computational Linguists still associate TBLwith the rather
restricted task of part-of-spee tagging. More significantly, outside that relatively small commu-
nity, TBL is practically unheard of (cf. Table 8). In our view, TBL could well be tried on a wider
array of problems, posed by Computational Linguists or others.
is thesis is organized as follows. Section 2 and Section 3, together making up the main part

of the work, provide a survey of original TBL and later improvements. In Section 2, we review
the original algorithm proposed by Brill (1993c, 1995a), its inherent strong points, and the rela-
tion to its distant cousin decision trees. is section also contains a brief overview of TBL uses
in practical applications – many and varied, but, as mentioned, almost exclusively within the
realm of Computational Linguistics and its closest neighbours. Section 3 provides an overview of
the most important developments whi have appeared later, aimed at augmenting the original
paradigm in different directions. We review aempts to extend the range of possible inputs and
the expressivity of the output; to relax the amount of supervision needed; to improve efficiency;
and to ease the problem description.
Section 4 exhibits the algorithmic content of the present work: a recursive phrasing of a fast

training algorithm, parallelizable and well suited for declarative languages. Section 5 concludes
and hints at some possible future directions.

⁶A by-product of this work is a TBL bibliography, at the time of writing comprising around 180 entries. It is an update
and slight extension of a similarly scoped bibliography (with around 75 entries) collected up until 2002 by Torbjörn
Lager, http://www.ling.gu.se/~lager/Mutbl/bibliography.html; this is likely where the updated bibli-
ography will end up as well.
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2 PLAIN VANILLA TBL

Figure 1: A barnyard scene, for transformation-based painters. From Samuel (1998b)

2 Plain vanilla Transformation-Based Learning
2.1 A painting analogy
A useful TBL picture-painting analogy is offered by Samuel (1998b), who aributes it to Terry
Harvey. It generates several of the right intuitions, so we will retell it here (slightly adapted).
Consider the barnyard picture in Figure 1 (where colours have been named rather than rendered

for ease of exposition). A painter comes by. As it happens, he is actually a transformation-based
painter, whi is mostly like any other painter, except he does not ever want to ange from a
smaller brush to a larger. He is also more-than-average cavalier about making mistakes, claiming
that they can always be fixed later.
Our painter finds the barnyard picture and decides to reproduce it on his own canvas, as follows.

First, he looks at the current state of his painting (a blank canvas) and compares it to the target,
or truth, represented by the figure. He notes that the most efficient way to reduce the difference
between his painting and the truth is to take the largest brush he has and paint the entire canvas
blue. When the paint has dried, he again compares the current state of his painting to the truth.
is time he finds that the easiest way to increase the similarity to the target is to take a slightly
smaller brush and paint the filled outlines of a red barn. ere is no need to worry about non-red
details, su as windows, doors, and roof, as these will be taken care of in later stages, by smaller
brushes.
And so our painter goes on. With ea ange of colour, he pis a finer brush and uses it with

increasingly thin and precise strokes. Coarser brushes, used early on, cover a large part of the
picture – they add a lot of paint, but they also make many mistakes. With later, thinner brushes
less paint will be added, but also fewer errors. e final step might be to fill in the fine bla lines
with a very fine brush.
e main point of the analogy is that the painter uses a sequence of colour-brush pairs, in de-
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scending order according to how mu paint they add to the canvas. Ea point of the canvas
may be repainted several times; although we can be convinced that the overall result looks in-
creasingly like the target with ea application of a brush, we cannot be sure about the colour of
a specific point until all brushes have been applied.

2.2 Algorithmic overview
Transformation-based learning works in mu the same way as transformation-based painting.
e method produces a sequence of rules, or transformations, ordered aer impact. Early rules
are very general and may ange classifications on large fractions of the data, usually commiing
errors in so doing. Subsequent rules are more specific andmay correct errors introduced by earlier
ones. A single transformation rule has the general form

if CONDITION(x) then do ACTION(x)

where x is a data sample; CONDITION, sometimes referred to as “context”, is a predicate⁷ on
aributes of x and/or its local context; and ACTION anges some aribute of x. e rules are
induced automatically from the training data. e actual structure of CONDITION and ACTION is
specified by paerns known as templates; thus, templates define the transformation space.
e main data structures and the data flow of TBL training (as presented in the seminal works

Brill (1993c) and Brill (1995a)) are shown in Figure 2.⁸ e output of the learning algorithm is
an ordered sequence of transformation rules. New data (once it has been initialized in the same
way as the training data, see below) can now be classified by applying this sequence of learned
transformations to it. In the following, we look at the data sets; at the templates, and at the flow
of control. Finally, we return to some critical points where design oices lurk.

2.2.1 Corpora
Like most maine learning methods, TBL takes as point of departure a data set of a certain size.
For applications dealing with natural language, su a data set is usually referred as a corpus –
indeed, corpora are the bread and buer of Computational Linguistics.⁹
In the TBL case, this data set is assumed to come with reference classifications, making it a

reference corpus. us, TBL is a supervised method: it depends on the existence of some annota-
tions whi can be taken as truth. e annotations are usually provided (or at least proof-read)
by humans. Manually annotated corpora thus represent large investments, sometimes enormous,
and creating them from scrat for a single project is rarely an option.

⁷A predicate is a boolean-valued function, i.e., it returns true or false.
⁸Somewhat unconventionally, we avoid traditional pseudocode, focusing on flow of data rather than flow of control.
is view fits beer with the declarative phrasing we will use later (Section 4). For more traditional descriptions,
we refer to Brill (1995a) (or almost any other paper whi introduces the algorithm).

⁹A corpus, pl. corpora, is basically a sizable collection of real-world natural language data – text or spee or some-
thing more exotic, like video recordings of sign language. We use that term because it is the most common for the
tasks TBL has been applied to. However, it was not created by any transformation-based deities, and the reader
should feel free to replace it with “big data set” at any time. For non-linguistic applications, this may roll more
smoothly off the tongue.

12
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Figure 2: Data flow of TBL training, Brill’s original algorithm. Main loop in heavier stroke.

A corpus can generally be thought of as a set of items whi are independent of ea other,
by nature or by assumption, with respect to the task at hand. For instance, in POS tagging (Ex-
ample 1), we can be reasonably sure that the POS of the words in the current sentence does not
depend on those in the previous one. In dialogue act tagging, ea uerance (Example 2) is clearly
dependent on the previous one, but the dialogue acts in one conversation are likely independent
of those in another. Partitioning the corpus into a set of subsets for whi we can assume mu-
tual independence is highly beneficial, for the quality of the learned representation as well as the
efficiency with whi it can be learned. To tag POS, we will want our corpus split into sentence-
sized unks. For the case of dialogue acts, the corpus will hopefully contain some delimiters
distinguishing individual dialogues (this case also illustrates that the need of relevant and reliable
annotations may go beyond individual samples). e individual classifications are oen called
tags (irrespective of their being true or not, and irrespective of the task at hand).¹⁰ In the TBL
case, we will oen speak of the training corpus, whi is essentially the reference corpus with the
annotations deleted.

13
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Template Change A to B whenever …

pos:A>B <- pos:C@[-1] …the preceding word has pos C
pos:A>B <- pos:C@[2] …the word two aer has pos C
pos:A>B <- pos:C@[1,2] …one of the two following words has pos C
pos:A>B <- wd:C@[0] …the current word is C
pos:A>B <- wd:C@[-1] & pos:D@[1] …the preceding word is C and the following has pos D

Table 1: Sample templates for POS tagging by TBL, original phrasing, in μ-TBL syntax and as
prose.

2.2.2 Templates
A TBL problem specification uses templates to describe the allowable space of transformations,
and this is the main way of encoding any a priori ideas we may have – domain and expert knowl-
edge, constraints and assumptions. For many tasks, the templates are a natural, transparent, and
compact way of specifying su assumptions.
A few sample templates for POS tagging are shown in Table 1.¹¹ As an example, if we rephrase

the top one in prose we might get “ange value of feature ’pos’ from A to B, whenever the feature
’pos’ one step to the le has value C”. A, B and C are variables implicitly ranging over the domain
of their respective features – over all parts-of-spee, in this case.
Templates are a core component of TBL systems. From the perspective of maine-learning

theory, the template specification carries (a large part of) the inductive bias (Mitell, 1997) of
TBL. For instance, if we only use the single template just described, we are actually disregarding
all dependencies of neighbours except the one immediately to the le (whi clearly is a strong
and simplistic assumption). Similarly, if we wish to enforce that all decisions be made only from
le context, perhaps because the system is to be used in real-time word-for-word processing, then
this assumption can be enforced by oosing the appropriate templates.
e templates in Table 1 are a subset of the 26 proposed in Brill (1995a)). In real-world scenarios,

depending on the task, this number may be a magnitude less (e.g., (Brill, 1995b)) or greater (e.g.,
(Carberry et al., 2001)). A large number of templates may be difficult (or just tedious) to specify
by hand, especially for domains we may not understand completely. We will later see several
developments addressing this and other template-related problems (see Sections 2.3.4, 3.1.2, 3.1.3,
3.5).

¹⁰Somewhat confusingly, the term tag may sometimes be short for part-of-spee. However, in this paper we will
treat the laer as a special case of the former.

¹¹e syntax used for example templates and rules, here and throughout this thesis, is borrowed from the μ-TBL
system (Lager, 1999b). e templates with prose descriptions in Table 1 and the derived rules in Table 6 should be
self-explaining and varied enough to exemplify all constructions we will meet, but otherwise manuals are available
at http://www.ling.gu.se/~lager/Mutbl/manuals.html
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2.2.3 Flow of control
With these pieces of declarative knowledge in place, the control flows as follows (Figure 2). In an
initialization step, all samples of the training corpus are classified (annotated, tagged) according
to some simple baseline algorithm, perhaps giving ea word its most common tag according
to a lexicon or database we have, or whi we extract from the reference corpus. e result is
preliminarily annotated data, the current corpus ci = c0.
In the main loop of the algorithm (heavier stroke in Figure 2), the current corpus ci is compared

to the truth, probably uncovering some errors. For ea error, we use the templates to derive rules
whi will correct it. Conceptually, ea of the rules derived is then scored: the rule, call it r, is
tentatively applied to (a fresh copy of) the current corpus. e result is compared to the truth,
whi yields some number of corrected errors (good applications, gr) and some number of newly
introduced errors (bad applications, br). e score of the rule fr is normally a function of gr and
br – oen simply f(gr, br) = gr − br .
One of the rules receives the highest score (with respect to f ). It is selected, added to the list

of learned rules, and applied to ci, returning the next current corpus ci+1. e main loop repeats
until some termination criterion is fulfilled – for instance, when there are no more rules with
positive scores.

2.2.4 Fork and wait
We return to Example 1 for a toy-sized illustration of POS taggingiv. Selecting a fragment of the
example as a minimal training corpus and the top line of Table 1 (tag:A>B <- tag:C@[-1]) as
a minimal template set, a trace of the learning phase is given in Table 2.
e top line contains the wordswd and the second line the true parts-of-spee tags cr , together

making up the reference corpus. From the reference corpus, we get the initial current corpus c0
by replacing cr with the baseline. Here, we follow tradition and take as baseline annotation the
most common POS for ea word when context is disregarded (we probably have a lexicon for
that), perhaps resulting in the c0 shown in the third row of the table. Next, we find all the errors
in c0 by comparing it to cr (it turns out that there is only one, for the word wait), and we consult
the templates to derive rule candidates whi might correct the errors (in this case, only one,
tag:VB>NN <- tag:DT@[-1]). Following that, we score all our candidates by counting the
errors they correct or induce, at all their sites of application (for the single rule candidate in this
case, one correction and zero new errors commied). Finally, we identify the highest-scoring rule
candidate with a positive score, add it to the list of learned transformations, apply it to the current
corpus, and repeat. In this case, applying our single candidate from above to c0 yields c1. It turns
out that c1 has no more errors le to correct. us, there will be no rules with positive scores,
and training terminates.
If we now want to use the learned rule sequence to classify new data, we just apply the same

baseline and the rules aer that. For instance, with another fragment of Example 1 as test data, we
might get the classification in Table 3 – the rule we learned could correct the erroneously tagged
wait.
In application, we usually won’t know what the truth is. In this case, we do, and we may use

this knowledge to evaluate the performance of the classifier. To emphasize that truth now only is
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wd Should I apologize for the wait ?

cr       .

c0       .

c1       .

Table 2: Trace of TBL learning of the rule sequence tag:VB>NN <- tag:DT@[-1] (see text)

wd Replace the fork on table four .

ce       .

c0       .

c1       .

Table 3: Trace of application of the rule sequence tag:VB>NN <- tag:DT@[-1] (see text)

used for evaluation and no longer can influence the workings of our classifier, we have renamed
cr to ce (for evaluation). In the example, our minimal test data had a single error aer the baseline
annotation, and our learned rule sequence could successfully correct it.

2.2.5 Notes on design choices
In this section we take the same stroll again, but with more aention to details previously le out.
Unfortunately, these are oen incompletely specified in system descriptions.

• e baseline annotation can actually be even simpler than suggested: TBL does not really
care where the first current corpus comes from. us, we could assign random tags, or the
most common tag overall to all the samples, or even just a placeholder.

If we do, we deliberately avoid incorporating some useful information, and we may have to
pay with somewhat lower performance (at the very least, we will need more rules, and they
will take longer to learn). However, as we will illustrate later, our main interest sometimes
is knowledge rather than performance: the rules themselves. If so, we might prefer that
rules encode everything we are able to induce from data, not just what we can add to some
task-and-language-specific-performing baseline, however simple.¹² Dumber baselines may
form a baground against whi the learned knowledge more clearly stands out.

On the other end of the scale, the initial annotation might well be sophisticated, perhaps the
output of another classifier. In this case, TBL only acts as a postprocessing step, specialized
in correcting the errors of others.

¹²For a comparison, the very simple baseline for POS tagging previously described – just assign ea word its most
common tag – oen reaes 90% correctness for inflection-poor languages su as English.
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Template (ACTION <- CONDITION) Change the current pos into B whenever …

pos:>B <- pos:A@[0] & pos:C@[-1] …the current word has pos A and the preceding has pos C
pos:>B <- pos:A@[0] & pos:C@[2] …the current word has pos A and the word two aer has pos C
pos:>B <- pos:A@[0] & pos:C@[1,2] …the current word has pos A and one of the two following has pos C
pos:>B <- pos:A@[-1] …the preceding word has pos A
pos:>B <- wd:W@[0] …the current word is W

Table 4: Sample templates for POS tagging by TBL, as in Table 1 but generalized: the precondition
of the current tag is moved from ACTION to CONDITION

• e templates suggested by Brill and repeated in most descriptions of TBL have the form
“ange A to B whenever condition C holds”, as exemplified in Table 1. For some tasks,
this phrasing facilitates a certain optimization of the training process (most useful for POS
tagging of English and in any case obsoleted by later developments; see Sections 4 and 3.3.1).
A strictly more expressive formulation of the templates (Samuel, 1998a; Ngai and Florian,
2001a) moves the tag=A part from the ACTION to the CONDITION. Table 4 rephrases the first
three templates of Table 1 in this way. In addition, it gives two templates to learn useful
rules su as “ange any tag into B when preceded by tag A” or “ange any tag into B for
word W”, whi were not possible to express in the original formalism.

• e generation of rule candidates is generally best driven by examining the E existing
errors in theN -sized corpus and using the T templates to derive rules whi correct them.
e O(ET ) rules thus derived are known to be at least somewhat helpful: no time will be
wasted with rules whi will never correct any errors, or (worse) rules whi will never be
triggered by the training data at all.¹³

Wewill return to training efficiency issues (Section 3.3.1); here, we only note that most rules
whiwere candidates for the current corpus ci also will be so for the next ci+1. us, mu
of what we record about the rules could be recorded once and then caed and minimally
updated between iterations. is observation underlies several of the faster teniques we
will see later.

A point of ambiguity in deriving rules, unfortunately not oen specified in the description
of practical implementations, is how to handle templates whi refer to non-existing posi-
tions in the sequence. For instance, consider the following two-sample corpus, while again
learning from the tag:A>B <- tag:C@[-1] template:

(5) truth
current corpus

a
x

b
b

¹³Conceptually, though, we note that we could arrive at the same set of good candidates and uncountably many
more useless ones without looking at the data, by blindly instantiating all templates with all possible values of the
(discrete) feature domains.
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. . . -2 -1 0 1 . . . n n+1 n+2 . . . Position / Strategy

. . . ∅ ∅ ∅ w1 . . . wn ∅ ∅ . . . a) Template not applicable OOB

. . . ε ε ε w1 . . . wn ε ε . . . b) Single OOB token

. . . ∅ ∅ . w1 . . . wn / ∅ . . . c) Boundary markers only

. . . ε ε . w1 . . . wn / ε . . . d) Boundary markers and OOB token

. . . ... .. . w1 . . . wn / // . . . e) Position-unique token

Table 5: Handling templates with out-of-bound (OOB) accesses, five example strategies. From
the perspective of a template, a sequence w1 . . . wn may behave a) as if surrounded by
nothing; or b) as if preceded and followed by an infinite number of OOB tokens (here ε);
or c) as if it had a special le boundary marker (here .) at position 0 and a special right
boundary marker (here /) at position n + 1; or d) a combination of b) and c); or e) as if
surrounded by an infinite number of position-unique tokens (here ., .., etc.; /, //, etc.)
in both directions. See also text.

One answer is to stipulate that the template does not apply if it refers to any position outside
the sequence at hand; in the example, learning would thus immediately terminate. Another
way, suggested by Curran and Wong (1999) but probably used by many, is to extend the
vocabulary with special tokens – perhaps a single special symbol for any access outside the
bounds, or just one marker for the le boundary and one for the right, or a combination of
the two, or a unique token for ea position where access was aempted. Table 5 spells out
these possibilities; there are many variations. Any of them except the first would allow us
to learn a rule whi corrects the last error in Example 5, for instance as tag:x>a <- /@[-
1]. For a corpus of mostly long sequences – or for a corpus where we only have a single
sequence, perhaps because we haven’t bothered to split the data into mutually independent
sequences in the first place – the difference is negligible. With many short ones, as is
common in natural language processing, it may be of importance.

For certain applications, we might have a particular interest in high-accuracy rules. An
oen used approa is to compute the accuracy of a rule candidate, acc(gr, br) = gr/(gr+
br), and provide an accuracy threshold a, 0.5 < a ≤ 1.0, whi the rule must surpass to
be further considered.

• e scoring of a rule candidate r employs some user-defined idea of goodness f , normally
a function of the of the number of good gr and bad br anges that r will bring about if
applied. e straightforward f(g, b) = g − b, as used above, is an obvious candidate for
f . We note, however, that, as far as the basic TBL algorithm is concerned, any f whi
fulfills f(g, b) > 0 iff g > b is good enough. Put into words, the only requirement is that
any rule with a positive score will decrease the total error count (and thus the algorithm
must terminate); and any rule that decreases the total error count will have a positive score
(and thus all positive rules may be learned). With this observation, it is conceivable for f to
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introduce a bias – for instance, we might simply generalize the previous scoring function to
fα(g, b) = gα − bα. With α = 1, we retrieve the original function. With α < 1, the scor-
ing function will reward high-accuracy rules (for instance, f0.9(100, 10) > f(200, 100)).
Similarly (but probably less useful), with α > 1, it will reward rules with large impact on
the corpus (for instance, f1.1(200, 100) > f(120, 10)).

So far we have ignored the number of neutral applications nr , where r just anges one
error into another. It is also mostly ignored in the literature, or found to be of lile impor-
tance when mentioned. For example, in experiments described by Lager (1999b), the rules
learned by the two different scoring functions fα=1 = gr − br and f ′

α=1 = gr − br − nr

were not significantly different. Nevertheless, the task at hand may dictate valid reasons
for leing f depend also on nr – perhaps the main interest lies with the rules learned, rather
than in the number of reduced errors, and we prefer low-impact rules to high-impact ones
with the same or even higher gr − br . One should also note that most reports on the em-
pirical behaviour of TBL describe the special case of POS tagging on English, whi has
several properties not necessarily shared by other tasks (su as initial accuracy on the or-
der of 90%, a tagset size on the order of 100, few dependencies on larger distance than 2 or
3). Other questions, perhaps yet unasked, may have 0% or 50% as initial accuracy, tagset
sizes of 2 or 2000, and mu wider sequential dependencies.¹⁴

Of course, more generally speaking, any scoring function whi reflects our ideas of the
task at hand by quantifying the gain of applying a candidate rule could be used. Su
a function could well take other inputs than (gr, br, nr) – say, sequence length, current
correctness, or estimated classification probability (cf. Section 3.2.1). For instance, wemight
be more interested in maximizing the number of correctly tagged sequences rather than the
number of correctly tagged sequence elements. If so, we will weight rule applications in
almost-correct sequences, whether they correct or introduce errors, differently from those
in sequences with more errors.

More elaborate scoring semes seem to be lile explored (but see Section 3.2.3). One
should note that some of the faster training algorithms we will meet later (Section 3.3.1)
assume simple scoring rules and will not work with more complex variants. In addition,
with exotic scorings, the user assumes all responsibility of defining a terminating process.
If a user-defined scoring function cannot be used directly, this could be done by predefining
a maximum number of rules learned.

See also the discussion on scoring in a multidimensional learning seing, Section 3.1.1.

• e selection of the best rule uses greedy sear: whenever a oice needs to be made,
the locally optimal one (here, the highest-scoring rule) is pied, without worrying about
its impact on future oices. is simplification represents a major pruning of the sear
space, whi is indeed immense. Somewhat simplifying an example fromCurran andWong
(2000), if we consider only rules where conditions and actions read the same aribute and
conditions all refer to all positions in a fixed window of width C , then with a tag vocabu-
lary of size |Vt| and templates of the type exemplified in Table 4, we get |Vt|C+1 different

¹⁴See also Endnote v.
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transformation candidates for ea rule. Learning P of these in the optimal order involves
P ! |Vt|(C+1)P possibilities. Pruning is clearly necessary for other than toy-sized examples.

Greedy algorithms, however, will produce the globally optimal solution to a problem only if
it exhibits certain properties, in particular optimal substructure: an optimal solution to the
problem contains optimal solutions to its sub-problems. TBL does not have this property
and it is not difficult to find problem instances where greedy rule selection will fail to
produce the globally best solution. For instance, consider the following five-sample corpus
(for clarity, with only aribute ’tag’ shown), and learning with the same single template as
before (tag:A>B <- tag:C@[-1]):

(6) truth
current corpus

a
a

b
b

a
d

c
b

a
d

In this case, the greedy algorithm will learn the single rule d>a <- tag:b@[-1], whi
will correct two out of the three errors, and then terminate. e optimal solution, however,
is to start with b>c <- tag:d@[-1], whi only corrects a single error but allows two
other rules, d>a <- tag:b@[-1] and d>a <- tag:c@[-1] (in any order), to take care of
the remaining two errors.

In practice, however, the greedy approa seems to work well over a wide range of appli-
cations, and apparently (probably due to the already problematic training times) nothing
else has been tried. We also note that, although a complete scrambling of the learned
rule list certainly will hurt, TBL is not generally very sensitive to minor reorderings (for
the common case study of English POS tagging, see Curran and Wong (2000)). Clearly,
rules whi do not alter ea others’ context are independent and can be reordered without
consequence. Generally speaking, later rules are more oen independent, if nothing else
because they have fewer application sites and apply in more specific conditions. Similarly,
a beer baseline will produce fewer and more independent rules.

• e application of the best rule, once it is selected, could happen in several ways, and as
pointed out in Brill (1995a) the difference is crucial for rules where the action happens to
influence the condition. Either we can first identify all the places where the rule is to apply
and then apply it to them all at once (delayed application); or we may allow earlier anges
to influence later: first e the first position to see if the condition holds, apply the rule if
it does, and repeat at the next position (immediate application). In the laer case, there is
no particular reason why first and next should be taken in le-to-right order: we could just
as well start from the right (or, to be sure, in any other of theN ! ways, like le-to-right but
odd positions before evens; but let us restrict discussion to the less far-feted options).

Brill (1995a) points out the differences but takes no obvious stand. In our view the intelligi-
bility and declarativity of the rule representation may suffer badly with immediate applica-
tion. For instance, modifying an example of Brill’s, suppose we have the rule tag:A>B <-

tag:A@[-1] & tag:A@[1] and a nine-sample corpus, a sequence of nine ’A’ tags. Aer
applying the rule in the three different ways, we get

A A A A A A A A A (current corpus)
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A B B B B B B B A (delayed application)

A B A B A B A B A (immediate application, left-to-right)

A B A B A B A B A (immediate application, right-to-left)

Now consider the application of the same rule, but to a ten-sample corpus instead:

A A A A A A A A A A (current corpus)

A B B B B B B B B A (delayed application)

A B A B A B A B A A (immediate application, left-to-right)

A A B A B A B A B A (immediate application, right-to-left)

at is, if our corpus contain an odd number of samples, we get 100% coincidence between
le-to-right and right-to-le application of the same rule; but if it contains an even number,
we get 0%. is is hardly the way to aieve clear, declarative rule semantics. In our view,
immediate application is a bad idea for mu the same reason that self-modifying code
is, and delayed application is the only option if we are interested in interpretability of the
induced knowledge.

• e stopping condition is normally a score threshold; when there are no more rules rea-
ing this threshold, training is terminated. However, since the rules are ordered in terms
of impact, we will get a meaningful result also if training is interrupted aer, say, k rules
or h hours. A well-osen score threshold will minimize learning of spurious rules (and
training time) without compromising performance. See also the discussion in Section 2.3.4.

2.3 Free with vanilla: TBL strong points
Albeit simple, the variant of TBL as we have seen so far exhibits several desirable properties.
Below we expand on these. e shortcomings of standard TBL and some aempts to remedy
them will be the topic of Section 3, as well as extensions to ease its restrictions on input and
output.

2.3.1 Interpretability of learned representation
Sometimes our main interest may lie in the learned representation itself: the declarative knowl-
edge that a classifier induces, rather than its actual performance when this knowledge is applied.
Statistical representations, essentially bla boxes of numbers, are generally not very informative
in this respect.
By contrast, the interpretability of the representation is high for rule learning algorithms, and

even more so if they can provide some kind of relevance ranking of the learned rules. TBL does
this very efficiently, by outpuing its rules ordered aer expected impact.
We are not, of course, claiming that interpretability amounts to cognitive or psyological va-

lidity – whatever human processes are employed in sequential classification, they are unlikely to
employ hundreds of rules (or, even more unlikely, millions of conditional probabilities or other
statistical parameters). But the sequence of rules is understandable enough that it might encour-
age inspection, modification, experimentation, and occasionally give a new insight.
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To illustrate, Table 6 gives the first few learned transformation rules from a widely used English
corpus and provides examples from the same text. All of the rules cited are general enough that
they could be suggested as rules of thumb for human part-of-spee taggers (at least inexperienced
ones, still trying to internalize and abstract the definitions). e accuracy figures simultaneously
hints at the reliability of the rules thus learned (however, the actual scores of the rules are unim-
portant, as they depend on the size of the training corpus and the specific tagset osen). For
instance, rules 4-5 may in su a seing be paraphrased

“Uncertain if you look at a noun or a verb? Well, here is some help. If the previous
word is a modal, su as can, should, may, then what you see is almost certainly a
verb. If one of the two previous words is a determiner (of whi the most common
cases are articles, su as a, an, the), then you probably look at a noun.”

e two things to note here is that these rules make perfect sense, and that they were extracted
automatically.
For ease of exposition, we have used the same 26 templates as in Brill (1995a). Note, however,

that the alternative templates mentioned in Section 2.2.5 might permit even stronger generaliza-
tions: rules 1 and 4 may possibly be merged, and the same goes for rules 2 and 8.
Although of great practical value, the main point of POS tagging rules is seldom to provide

insights we did not have before. An example with different priorities is lexical stress and word
accent prediction for Swedish. Somewhat simplified, ea Swedish non-compound, non-inflected
word has a particular syllable whi bears (main) stress. e stressed syllable is associated with
one out of two possible word accents, corresponding to pit contours of the voice. Precisely
on what syllable stress is placed and whi of the two accents (Accent I or Accent II) the
syllable will have is mostly predictable from orthography, but not trivially so. ese are good
circumstances for automatic detection of interesting rules. Due to reasons of space we cannot
be very detailed, but the main setup and results of a minimal su study are summarized in
Table 7. Note the high value of the accuracy threshold, typical where the contents of rules are
more interesting than their scores.
e words in the study were all non-compound and non-inflected, and several rules would

have looked different otherwise (for instance, rule 4 is not true for common inflected forms su
as ’pulled’, talat ’spoken’, huset ’the house’). However, the results are already enough to reject
the popular misunderstanding¹⁵ that Swedish basically has stress on the first syllable. As can be
seen, almost all of the rules are conditioned on suffix, not on prefix, and stress placement is more
reliably done from the end (this fact is reflected as negative indices in the accent/stressed syllable
column).

2.3.2 Compactness of learned representation
A major aspect of interpretability, but also of great help in practical implementations (cf. Sec-
tion 3.3.2), is the fact that the learned representation is very compact. As an extreme example, Brill
(1994) presents a TBL system for unknown-word-guessing (i.e., assigning the most likely part-of-
spee to words not in the system lexicon – for instance, reviving the examples from Section 1.2,

¹⁵Just to be clear: this is a popular misunderstanding, not a professional one.
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ID Score Acc Rule Example

1 98 0.99 pos:’VBP’>’VB’ <- pos:’MD’@[-1,-2,-3] government will/MD decide/VBP>VB on rates
2 51 1.00 pos:’VBP’>’VB’ <- pos:’TO’@[-1] compelled to/TO serve/VBP>VB the interests
3 42 0.82 pos:’VB’>’VBP’ <- pos:’NNS’@[-1] interest rates/NNS continue/VB>VBP to undermine
4 42 1.00 pos:’NN’>’VB’ <- pos:’MD’@[-1] would/MD cost/NN>VB the Treasury far more
5 41 0.81 pos:’VB’>’NN’ <- pos:’DT’@[-1,-2] a/DT leading force/VB>NN in the field
6 41 0.67 pos:’IN’>’WDT’ <- wd:that@[0] & pos:’NNS’@[-1] alternative fuels/NNS that/IN>WDT don’t pollute
7 38 0.97 pos:’VBN’>’VBD’ <- pos:’NP’@[-1] Dexter/NP reduced/VBN>VBD its interest in 1987
8 28 0.60 pos:’NN’>’VB’ <- pos:’TO’@[-1] a contract to/TO supply/NN>VB equipment

Table 6: Sample POS tagging transformations, the first few learned from English text (60,000
words of financial news from Wall Street Journal), with example phrases from the same
source. Templates as in Brill (1995a). For clarity, the examples only show the tags mat-
ing the corresponding rule. Tags appearing: VBP: verb, present, not 3rd person singular;
VB: verb base form (infinitive); MD: modal verb (e.g, can,will, should,may); TO: the word
to; NNS: plural noun; NN: singular or mass noun; DT: determiner; NP: proper noun; IN:
preposition or subordinating conjunction; WDT: wh-determiner (e.g., relative whi).

ID Score Acc Accent@Syll <- Condition Example

1 1453 1.00 accI@[-1] <- len:mono bil, jobb
2 891 0.99 accII@[-2] <- suff:a & len:bi väska, springa
3 707 0.99 accI@[-2] <- suff:isk mystisk, arabisk
4 551 0.96 accI@[-1] <- suff:t & len:tri+ desperat, kolorit
5 482 0.99 accI@[-2] <- suff:ra parera, konstruera
6 373 0.99 accI@[-2] <- suff:ing etablering, parkering
7 351 1.00 accII@[-2] <- suff:ig & len:bi konstig, stenig
8 320 0.98 accII@[-3] <- suff:are hammare, visare
9 234 0.96 accI@[-1] <- suff:on & len:tri+ konvention, reklamation
10 197 0.99 accII@[1] <- suff:de & sylls:3 yrande, leende
11 195 1.00 accI@[-1] <- suff:sm kubism, kataklysm
12 185 0.97 accI@[-2] <- suff:er & len:bi vaer, smier
13 176 0.97 accI@[-1] <- suff:i & sylls:4 pedanteri, fotografi
14 166 0.98 accI@[2] <- pref:för förvisa, förmå

Table 7: Sample stress and word accent rules for Swedish, the first few transformations learned
from 33390 syllables in 12396 non-compound, non-inflected entries of a Swedish pro-
nunciation dictionary (Hedelin et al., 1987). 35 templates with the following features:
relative syllable position (le/right); word length (redundantly) both in numeric and syl-
labic representation (#syll[able]s, mono/bi/tri+); pref[ix]/suff[ix] of length 1..6. Accuracy
threshold = 0.96. Positive indices count syllables from the beginning of the word, nega-
tive from the end. For instance, rule 7 says that bisyllabic words ending in -ig, su as
konstig, stenig, will have accent II on the next-to-last syllable. See also text.
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guessing that staycation is a noun and defriend a verb). He quotes comparable performance for
his 148-rule system and an existing statistical unknown-word-guesser with 100, 000, 000 param-
eters.

2.3.3 Competitive performance
e rules induced by TBL may be interesting or at least interpretable reading to humans. Some-
times, however, we don’t really care about su fringe benefits, but only about classification per-
formance. As a stand-alone classifier, TBL generally reaes competitive results on a wide range
of tasks, and state-of-the art for some. For other tasks, it lags somewhat behind the best statis-
tical classifiers (at the time of writing oen Support Vector Maines). However, the trend in
recent years is that the best overall results are reaed not by single, stand-alone classifiers, but
by combining several of these into ensemble learners. Su systems generally gain from diversity
in their constituents, and indeed TBL oen contributes diversity. We return briefly to classifier
combination in Section 2.5.2.

2.3.4 Resistance to overtraining
For most maine learning algorithms, a major problem is overtraining: the learned representa-
tion describes random error or noise and thus fails to generalize outside the training data. For
instance, it is very easy to detrimentally overfit decision trees, and careful measures must be taken
to avoid it (e.g., by growing the trees to completion and then ba-prune; or by performing some
statistical analysis before deciding that a node should be further split (Mitell, 1997)).
TBL, by contrast, comes with an implicit ranking of the learned rules – they are automati-

cally ordered aer expected impact. is fact is the main reason for the method’s remarkable
insensitivity to overtraining.
To be clear, TBL does overtrain – that is, if le to train until conclusion with a very low score

threshold, it will learn a large number of spurious, low-impact rules with no prospects of general-
ization (most of whi will apply to a single site in the training corpus). But this trail of irrelevant
rules does not significantly influence overall performance (in either direction). In case we pre-
fer not seeing them anyway (perhaps because our main interest are the relevant rules only, and
not overall classifier performance), an efficient filter is just to raise the score threshold.¹⁶ More
sophisticated approaes are also conceivable, for instance by combining several TBL classifiers;
we return to this topic in Section 2.5.2.
Perhaps more disturbingly, irrelevant rules may conceivably emanate from unfortunate oices

of templates. Ramshaw and Marcus (1994) briefly investigate this issue. ey report on experi-
ments with training in the presence of a template whi can safely be assumed to be irrelevant
(su as “the POS of the word 37 positions to the le of the current”). When used in isolation, su
a template naturally yields a large number of spurious rules; but when combined with relevant
templates its influence is largely neutralized (Figure 3). eir conclusion is that the presence of
irrelevant templates will have lile impact, if only they are mixed with relevant ones. is is

¹⁶Exactly where to put it will depend on task, intention, corpus, tagset size etc. and may need some experimentation,
but it need not be very high. As a comparison, Brill recommends a score threshold of 2 for his POS tagger designed
for English (typical tagset sizes 50− 150), on the corpus sizes of the mid-90’s (105 words).
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(a) 7 relevant templates

(b) 1 irrelevant template

(c) 7 relevant and 1 irrelevant templates

Figure 3: Learning curve in the presence of relevant and irrelevant templates. POS tagging of
Greek, 120kW. Solid line shows performance on training set, doed line performance on
test set, as a function of the number of learned rules. From Ramshaw and Marcus (1994).

useful knowledge in particular for cases where we are uncertain on what templates best cates
the dependencies of the problem – except training time, there is lile risk in specifying all possible
templates we can think of (see also Section 3.1.2).
We note that Ramshaw and Marcus (1994) are brief on their results, and in any case, more

investigation into TBL overtraining behaviour would be welcome, for differently sized data and
tag sets and for other templates and tasks.¹⁷ In the words of Manning and Sütze (2001), it
appears to be more of an empirical result than a theoretical one, and this judgment still seems
valid in 2011.

¹⁷As stated in several places in this thesis, there is a preponderance for certain tasks and languages in the literature of
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2.3.5 Real-world objective function
TBL is an example of error-driven learning: the objective function¹⁸ that we wish to minimize is
the number of errors; and the evaluation function we use tooose between different solution can-
didates is also typically (a monotonic function of) the current number of errors. us, our way of
evaluating competing rules or rule sets directly optimizes a measure in whi we have a practical,
real-world interest, and differences in this measure correspond to differences in performance.
By contrast, many classifiers use some less straightforward evaluation function (e.g., informa-

tion gain for decision trees) whi is only indirectly related to the classifier performance. While
the correlation of course is designed to be strong, it is not necessarily be perfect.
e real-world relevance of the objective function also allows TBL training to be recast as an

optimization problem. is view allows the application of typical optimization teniques to the
task. For instance, Wilson and Heywood (2005) use genetic algorithms to minimize the error
function between reference and current corpus (see further Section 3.1.3).

2.4 TBL vs. Decision Trees
As several authors have noted (Ramshaw and Marcus, 1994; Brill, 1995a; Manning and Sütze,
2001), TBL and decision trees (Breiman et al., 1984;inlan, 1993) have several commonalities. A
prototypical decision tree (DT) outputs a set of yes/no-questions whi can be asked about a sam-
ple to get at its classification, very similar to the context part of a transformation rule (even more
so with templates of the form described in Section 2.2.5). e questions may refer to aributes of
the sample being classified, but also to those of its neighbours. e TBL baseline simply corre-
sponds to a default classification.
e theoretical and practical differences between the two are important, however. For one

thing, DTs synthesize complex questions on any subset of the available aributes, whereas vanilla
TBL requires the format of the rules to be specified by the templates.¹⁹ For another, arguably
more important, DTs have no (easy) way of saving away current hypotheses, and thus, the ques-
tions cannot refer to intermediate predictions. us, in DTs (as in most other ML classification
semes) classification is performed once and never anged. By contrast, TBL makes several
passes through the data and later predictions may be improved based on earlier. As Ramshaw
and Marcus (1994) put it: “decision trees are applied to a population of non-interacting problems
that are solved independently, while rule sequence learning is applied to a sequence of interre-
lated problems that are solved in parallel, by applying rules to the entire corpus”. In fact, Brill
(1995a) proves by induction that ordinary TBL rules are strictly more expressive than DTs: pre-
cisely due to the possibility of leveraging intermediate results, there are classification tasks whi
can be solved by TBL but not by DTs. ese tasks may be of marginal importance, but it is not
difficult to find real-world cases where a solution with transformations is mumore concise and
natural than an equivalent DT. Brill exemplifies with tagging a word whose le neighbour is to,

Computational Linguistics, and sometimes “we have answered this question” is an inappropriate abbreviation for
“we have answered this question for English”. See also Endnote v.

¹⁸Sometimes the terms “objective function” and “evaluation function” are used as synonyms. Here, we take the former
to describe the purpose to be fulfilled by any learner (generally minimizing or maximizing something), whereas
the laer refers to the quality of any particular solution, with respect to some representation.

¹⁹However, see also Section 3.1.3 and 3.1.2.
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whi may be an infinitival marker (to eat) and a preposition (to Scotland). In the first case, to
is an excellent cue for verbs, in the second a good one for nouns. However, it may well be that
the tagging of to itself into these two classes is unreliable. If so, TBL can automatically delay the
exploitation of this cue until it has been more reliably established by other, intermediate rules,
working on current predictions. By contrast, a DT whi exploits the same information is quite
complicated and will likely contain duplicate nodes.
e difference between DTs and TBL can also be viewed as one between stateless and stateful

classification. State is a mixed blessing, the discussions on whi fill up many a book in an average
computer science library.²⁰ Here, we will only note that a DT at work has no notion of order or
time, whereas TBL rule sets are strictly ordered,²¹ with current predictions representing state.
Brill (1995a) mentions other practical advantages of TBL over DTs: beer resistance to problems

with sparse data and overtraining (a TBL rule has access to the entire training data when being
evaluated; by contrast, a DT recursively splits its training data in smaller subsets at ea node);
the possibility to postprocess other output, and the transparency of the objective function. All of
these have been treated in more detail in previous sections.
As a final point, Hepple (2000) notes that for POS tagging, rule learning generally starts from a

very good baseline. is means that relatively few samples are retagged by rules, and fewer still
are retagged more than once. On these observations he bases two major simplifying assumptions:
independence (rule interaction is ignored, so that early rules are not allowed to ange context for
later ones – in other words, all rules are learned in the context of the initial annotation); and com-
mitment (any particular sample is anged by at most one rule). e rationale for the assumptions
is the massive gains in training time that they allow, and so we will revisit them in that context
(Section 3.3.1). ey are mentioned here because with these assumptions, transformation rules
actually become a form of decision trees.

2.5 TBL in practice
2.5.1 TBL as a standalone classifier
TBL is a flexible and adaptable method, as witnessed by the large number of tasks it has been
applied to. Table 8 lists a selection of tasks and associated central references. It is intended to be
suggestive rather than exhaustive (see the bibliography mentioned on p. 10 for a somewhat more
serious aempt at completeness) but should cover the most diverse cases. e task names listed in
the table may not be very informative for readers who are not familiar with linguistic terminology.
Indeed, some may be cryptic even to those who are: not all of the tasks listed are urgent or
even relevant for all languages, due to factors su as cross-linguistic variation, differences in
writing systems, and availability of appropriate data.v We refer to standard textbooks su as
Jurafsky and Martin (2008) for the interested;vi however, the details aren’t very important. e
main point is that practically any level of language, spoken or wrien, is replete with symbolic
classification tasks based on sequential information in the local context; and with clever encoding,
many problems can be made to fit this mould, some of them perhaps not obviously sequential.
Indeed, in recent years the idea that all useful linguistic mappings can be cast as classification

²⁰e classic Abelson and Sussman (1996) is but one of them.
²¹Brill (1995a) describes a transformation list as a processor, not a classifier.
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Task Ref

Part-of-spee (POS) tagging Brill (1993c, 1995a)
Unknown word guessing Brill (1994); Mikheev (1997)
Text unking Ramshaw and Marcus (1995)
Prepositional phrase aament Brill and Resnik (1994)
Parsing/grammar induction Brill (1996)
Morphological disambiguation Oflazer and Tür (1996)
Spelling correction Mangu and Brill (1997)
Word segmentation Palmer (1997)
Message understanding Day et al. (1997)
Dialogue act tagging Samuel et al. (1998)
Prosody prediction Fordyce (1998)
Ellipsis resolution Hardt (1998)
Word sense disambiguation Dini et al. (1998)
Document format processing Curran and Wong (1999)
Grapheme-phoneme conversion Bouma (2000)
Grammar correction Hardt (2001)
Handwrien aracter segmentation Kavallieratou et al. (2000)
Regression Bringmann et al. (2002)
Hyphenation Bouma (2003)
Named entity recognition Florian et al. (2003)
Compound segmentation Park et al. (2004)
Disfluency detection Kim et al. (2004)
Semantic role labeling Williams et al. (2004)
Word alignment Ayan et al. (2005)
Information extraction Nahm (2005)
Biomedical term normalization Tsuruoka et al. (2008)
Human activity recognition Landwehr et al. (2008)

Table 8: Sample TBL applications
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[light the candle] on [the table]
(a) light/I the/I candle/I on/O the/I table/I

light [the candle] on [the table]
(b) light/O the/I candle/I on/O the/I table/I

Figure 4: NP unks with encodings for light the candle on the table aer Ramshaw and Marcus
(1995), before and aer applying the transformation I>O <- wd:the@[1]. I and Omark
inside and outside an NP, respectively. A third tag, B, is used for the first word in a new
unk directly following another one, as in give/O the/I king/I his/B throne/I.

.

tasks, either as disambiguation or as segmentation, has gained support (Roth, 1998; Daelemans,
1995). is assumption has opened several new fields to maine learning algorithms – TBL is
just one out of many.
We will only give two examples here, osen to illustrate diversity in problem encodings. A

few more can be found elsewhere in this text (e.g., Section 3.5) and, of course, many others in the
references of Table 8.
In NP unking, a string of words is to be divided into non-overlapping, non-recursive subse-

quences corresponding to noun phrases (NPs).²² Figure 4 shows an example and a way (due to
Ramshaw and Marcus, 1995) of casting the task as a classification problem very mu like POS
tagging, with the same type of rules learned.
emore intricate problem of parsing requires the encoding of recursive structures. e straight-

forward although somewhat un-linguistic solution proposed in Brill (1993b) is shown in Figure 5.

2.5.2 TBL in company: Ensemble learning
Like any other classifier, in addition to its stand-alone use exemplified in the previous section,
TBL may be used in combination with other classifiers. We have noted (Section 2.2.5) that a
particularly simple way of doing this is to use TBL as a post-processing, error-correcting step:
since the algorithm assumes an initial-state annotation, but cares lile where it comes from, it
could just as well take the output of any other classifier as this initial baseline (e.g., Ruland, 2000;
Wu et al., 2004). Besides (hopefully) boosting overall performance, TBL rules learned in this way
may provide some error analysis of the underlying classifier, summarizing the systematic errors
it makes.
ere aremore sophisticated approaes than this to ensemble learning, i.e., combiningmultiple

classifiers into one in the hope of reaing beer predictive performance than could be obtained
from any of the constituent models alone. For instance, a typical commiee classifier might
combine multiple ground-level classifiers (”commiee members”) with a higher-level classifier

²²ere is no single “correct” solution to this problem; practical needs will decide how to treat modifiers su as
possessives, prepositional phrases, or relative clauses. Of course, whatever the decision, it should be consistently
held to.
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light
the

candle
on the table

(a) ( light (the (candle (on (the table ) ) ) ) )

light

the candle on the table

(b) (light ( (the candle) (on (the table ) ) ) )

Figure 5: Parse trees with encodings for light the candle on the table aer Brill (1993b), before
and aer applying the transformation delete a left paren to the right of a

determiner. Not shown are some behind-the-scene mainations to cater for paren-
thesis balancing (see Brill (1993b) for details).

.

(”president”), with the idea that the different commiee members have complementary strengths
and weaknesses, and the job of the president is to learn when to trust whom. Ensemble learners
generally gain from being composed by classifiers with complementary strengths (Kuneva and
Whitaker, 2003). To put it another way, ensemble learning is pointless if all component classifiers
make the same errors.
Classifier combination largely falls outside the scope of this thesis; we will here only note that

TBL is different enough from most statistical sequential classifiers to make it a worthy member
of many commiees (e.g., Brill and Wu, 1998; Florian et al., 2003; Xin et al., 2006).

2.5.3 TBL in TBL company
e aim of classifier combination of the type described in Section 2.5.2 is iefly to boost perfor-
mance: combining the complementary strengths of several classifiers into a new and beer. is
can be done also with TBL as the single base learner. For instance, a number of slightly different
classifiers can be induced from repeated resamplings of equally-sized subsets of the training data
(bootstrap aggregating, or bagging (Breiman, 1996)). At classification time, ea TBL classifier is
applied independently, and its output taken as one vote for that class. Aer counting votes, the
majority wins. Santos et al. (2010) claim to be the first to try this approa, for their ETL algorithm
(Section 3.1.2). e resulting combined classifier is tried on text unking, named entity recogni-
tion, and semantic role labeling. It shows substantial improvement on ETL alone, especially for
the semantic role labeling task, and aieves competitive or close to state-of-the-art results for all
of them.
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Another idea for combining the knowledge of several TBL classifiers, apparently unexplored, is
to merge the learned rule sequences, rather than weighing together the classifications they emit.
Basically, rules whi are ranked high by all of the classifiers are highly likely to be relevant; but
rules ranked low or (in particular) learned only by a few are likely not. e rule sequences might
be combined by some rank combination measure and appropriate thresholds.²³
As pointed out previously, TBLmay overtrain in the sense that many of its late learned rules are

spurious and irrelevant; its resistance to overtraining lies in the fact that su rules are automat-
ically ranked as low-impact – they won’t influence performance mu in either direction. us,
we might not expect a great performance boost from weeding out irrelevant rules. However, if
our main interest is the knowledge distilled, that is beside the point.

²³Finding combinations of ranked lists is a common problem in fields su as Information Retrieval and Computational
Biology.
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3 Adding flavour: TBL extensions
We have showcased several desirable properties of the basic TBL method, but there is certainly
room enough for development, improvement, and extension. In the following, we briefly survey
the most important new ideas for TBL: extending the domain of learned hypothesis (Section 3.1:
to multidimensional learning, learning templates jointly and automatically, and learning without
any templates at all); extending its range – its predictions – (Section 3.2: to probabilities, sets, and
regressors); increasing efficiency (Section 3.3: in training and application); decreasing the need
of supervision (Section 3.4); and facilitating declarative problem specification by domain-specific
languages (Section 3.5).

3.1 Extending the hypothesis domain
3.1.1 Multidimensional learning
Many real-world applications involve more than one subtask – perhaps one classifier to assign
parts-of-spee to ea word and another for finding binary braning trees. A simple way of
doing su combined tasks is to put the appropriate classifiers in a pipeline, resulting in a strictly
feed-forward system, where the outcome of task k cannot influence the outcome of task k − 1.
For very different and/or truly independent tasks, this may be the best way. A variation is beam
sear, where we keep n > 1 hypotheses from early steps and defer complete disambiguation
until later.
However, when two tasks A and B are somewhat dependent we may benefit more from mul-

titask learning (Caruana, 1997). Intuitively, if we can expect that solutions to A may provide
useful information for solving B and vice versa, then it would be beer not having to impose
an ordering of these tasks on the system, but rather solve them in parallel. In that way, the easy
cases (of both A and B) may provide information for the more difficult ones (of both A and B).
Two su interrelated tasks are POS tagging andunking – dividing sentences into larger, non-
overlapping units (somewhat like parsing without tree structures; we saw a simpler special case
of unking in Figure 4). Here, easy cases are for instance POS and unks whi can be reliably
predicted directly from word forms.
Indeed, multitask learning on well-osen representations may be worthwhile even when we

are not really interested in solving all of the tasks – learning POS by jointly learning unks is
conceivably easier than learning POS alone.
One way to set up su a joint classifier is to simply create a new derived feature as the concate-

nation of the features we wish to combine. However (in analogy with computing joint probability
distributions) this may cause problems of data sparseness with many types of data. Unusual joint
values will have unreliable estimates, and joint values whi do not occur in the training data
will never be predicted.
A beer way for many purposes is to let the tasks share a common representation and let ea

classifier work on it simultaneously. TBL is well suited for joint learning in this way. Florian and
Ngai (2001) point out the fewanges needed to themain algorithm, mainly small modifications to
the scoring function f . As stated before (Section 2.2.5), to guarantee termination, f needs to assign
positive values only to rules whi actually decrease the current error count. is requirement
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is easily met also in a multidimensional seing, by just leing f taking more than one field into
account:

f(r) =
∑
s∈C

n∑
i=1

wi · (Si(r(s))− Si(s))

Here,

• C is the set of training samples (the training corpus);

• r is a candidate transformation rule to be scored;

• r(s) is the sample whi is the result of applying r to sample s;

• n is the number of fields (tasks);

• wi is an optional weight or priority (see below) for task i;

• Si(s) is an indicator of the current classification of sample s for task i: 1 if correct, 0 if not.

e weights wi could be used to manually assign priorities to ea subtask. ey might also be
initialized from training data based on the counts of correct and incorrect sample classifications
figures for ea field – say, as constants for the entire training session, or as per-iteration values
to be recalculated and reassigned aer ea rule application. Differently weighted aributes are
apparently an unexplored option.
To conclude, in the TBL case, multidimensional learning can be seen as a generalization of one

of the previous key arguments for the method: we can use intermediate results to guide later
predictions. e multidimensional addition is that su intermediate results may refer to more
than one feature.

3.1.2 Automatic template learning
Templates are the main tool for embedding and encoding domain knowledge in TBL. On the other
hand, they can be tedious or difficult to produce. e tediummay to a large extent be alleviated by
automation (e.g., the template compiler described in Lager (1999b)). As we have seen, overtraining
is seldom a problem in TBL, so unnecessary templates will mostly only affect training time. A
greater concern is insufficient domain knowledge: for less well-understood problems, it may be
difficult to know where to start. Learning templates automatically then becomes an aractive
option.
Curran and Wong (2000) envision “evolving templates that ange in size, shape and number

as the learning algorithm continues”, starting from few and simple templates whi are gradu-
ally refined into (or replaced by) more complex ones in a data-driven fashion. ey present no
implementation, but they show empirically that the number of conditions in the templates and
their specificity (e.g., words rather than tags) increase during learning – simple templates with
few conditions are most efficient early on, but later more complex templates tend to pay off beer.
However, the task providing their data is again POS tagging for English; it would be desirable to
see their claims corroborated for other tasks and data sets.
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Figure 6: Template extraction from decision tree. First, the leaves and the labels of the learned
tree are discarded. In the resulting subtree, ea path from the root to an internal node
corresponds to a template (right). Redrawn from Santos (2009).

Less abstractly, Milidiú et al. (2007) implement a genetic algorithm (Mitell, 1997) for automatic
template learning. eir system shows impressive performance but their reported setup suffers
from slow training; with the TBL algorithm as the fitness function, training must happen for ea
individual of the population, for ea generation. For anything but the smallest feature sets, this
rapidly becomes intractable.
A recent approa (Santos and Milidiú, 2009; Santos, 2009), dubbed “Entropy-based Transfor-

mation Learning” (ETL), instead constructs templates from a decision tree (DT) trained on the
task at hand. A DT can be thought of as a series of yes-no questions asked about an object to be
classified, with the questions ordered in terms of descending Information Gain (IG) (see Mitell
(1997); inlan (1993), cf. also Section 2.4). e main idea behind ETL is that the features whi
are addressed by the DT-induced questions on task X are likely to make up a good set of TBL
templates for X . Ea path from the root to any internal node of the learned DT corresponds to
a specific series of questions and thus a specific set of features (Figure 6) – i.e., a template.
Some care needs to be taken to avoid typical DT training problems. e standard algorithms

will strongly favour high-dimensional features – for instance, word identity, rather than part-of-
spee. e version of ETL described in Santos (2009) tries to control this by sorting the values of
a high-dimensional feature in decreasing IG order and replace all except the z top-scoring ones
with a dummy value, where z is a parameter of the algorithm. Furthermore, as discussed in
Section 2.4, decision trees are inherently stateless and has no notion of a “current” classification.
For the purposes of template generation, ETL solves this by introducing the true value of the
classifications in the context (but not for the current object).
Santos andMilidiú (2009) report excellent results for ETL on a number of tasks (Fernandes et al.,
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Figure 7: Bit string encoding of one particular rule in TBL by genetic algorithm. Any subset of tags
within a window of current position±3 can be encoded, replacing a manually specified
template set. From Wilson and Heywood (2005).

2010; Milidiú et al., 2008, 2010; Santos et al., 2008, 2010). e approa has apparently so far only
been used by this single group of researers; a more thorough evaluation will have to wait.

3.1.3 Template-free TBL
An even more radical approa than automatic template learning is TBL without any templates at
all. Wilson and Heywood (2005) suggest a genetic algorithm (Mitell, 1997), whi (in contrast to
the previous genetic approa byMilidiú et al. (2007)) does away with templates entirely. Instead,
an entire sequence of rules corresponds to one individual in the population; and one individual is
a collection (384, in the experiment) of rules represented as a fixed-length bit strings (Figure 7).
Although an undeniably novel approa, several critical oices are tuned to the specifics of

POS tagging (in particular, for English). us, the rather small tagset size is part of the encoding
assumptions: it is not clear how the method would handle a larger target set or many-valued
features (as well may be crucial in other tasks). It is also unclear how it would respond to a
lower-scoring baseline. e paper does not exemplify any rules learned; that would otherwise
have made interesting comparisons with standard TBL.
TBL without manually specified templates seems in particular well-motivated when the oice

of templates is problematic, perhaps due to poor understanding of the domain. is is hardly the
case for POS tagging in English, so template-less genetic algorithms may have more potential for
other tasks. Performance is also quite a bit lower (the authors report 89.8% from a baseline of
80.3%; Brill’s original algorithm scores 97.0% on the same corpus).
Ba et al. (2008) suggest template-free learning by an exhaustive sear through the power set

of a user-defined feature space, where ea subset of features is allowed to generate one rule for
ea error. e paper leaves quite a few questions unanswered and we won’t discuss it further.²⁴

²⁴For one thing, it seems contradictory on how output rule lists are actually compiled. ere is also no information
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3.2 Extending the hypothesis range
3.2.1 Predicting probabilities: Soft classification
e vanilla output of a TBL classifier is one class per sample, with no information as to the uncer-
tainty of the class osen. ese are hard decisions, commiing the system to a single possibility
with no information as to the certainty of the oice.
Probabilistic systems, by contrast, make so decisions, providing confidence measures for ea

classification. Confidence measures are useful for many purposes, and indispensable for some.
For instance, in ensemble systems (Section 2.5.2), the member classifiers may disagree; it is then
very useful to know howmu they are willing to insist. In active learning, the idea is to minimize
manual effort; su systems use confidence measures to identify the most uncertain (and thus, to
the system, most informative) samples and ask the annotator for their classification. For some ap-
plications hard decisions are simply inappropriate. Larger, multi-component systems (e.g., spee
recognizers) are generally built frommany smaller modules whi all deal with probabilistic input
and output (say, as probability distributions, or as ranked candidate lists).
Two notable aempts have been made to add enhance TBL with probabilistic classification.

ey share the basic idea of spliing the training data into equivalence classes: all the samples
whi have been tagged X for reasons Y are considered together. en probabilities can be
estimated for ea equivalence class by standard means (e.g., maximum likelihood estimation,
probably with some smoothing).vii

Florian et al. (2000) gives an algorithm for transforming a learned rule list into an equivalent
decision tree, and then taking the leaves of that tree as equivalence classes. ey note that the
equivalence classes thus constructed will tend to vary a lot in size. In particular, with a good
baseline, the equivalence class of samples to whi no rules apply at all can easily make up most
of the corpus, and the probability estimates of that class will be close to those arrived at without
any learning at all. To remedy that, the learned tree is treated as a (highly accurate) prefix, whose
paths are grown further with standard decision tree learning methods (inlan, 1993).
Santos and Milidiú (2007) instead construct equivalence classes from the baseline classification

and rule traces – for instance, all samples that had initial classification  and were later toued
by rules 11, 57 and 88 form an equivalence class of their own. e problem of unevenly sized
classes is solved by subdividing on manually specified auxiliary features. e authors claim a
significant improvement over Florian et al. (2000) on comparable tasks. eir method arguably
adheres beer to the inherently stateful TBL paradigm (cf. Section 2.4), but seems to involve more
task-specific hand-coding (the auxiliary features to specify) as well as more assumptions on the
data (the relevance of the initial classification).
In any case, probabilistic TBL is an interesting subject, with several unexplored paths. For

instance, it is not clear what influence a dumber initial classification (forcing more samples to be
toued by some rule) or a higher accuracy threshold (inducing a bias for more accurate rules)
would have on the quality of the estimates learned with one method or the other.

on running time, nor any performance comparisons with ordinary-templated TBL – only modest error correcting
scores on good or excellent baseline systems are listed.
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3.2.2 Predicting sets: Constraint grammar
We have already mentioned (Section 1.3) that one of the most successful POS taggers for English
is the originally hand-wrien rule system EngCG (Karlsson et al., 1995). CG stands for Constraint
Grammar. Very briefly (and somewhat simplified), su a system starts with initializing a can-
didate set of tags for ea word to the set of all possible tags for that word (as found in a lexical
lookup, or in a reference corpus). en it traverses a list of rules, ea formalizing some require-
ment, or constraint, on the solution.²⁵ Tags not fulfilling a certain constraint can be removed from
the candidate set (the last tag should not be removed, however).
Ideally, only one correct tag will remain when all rules have been applied. In reality, of course,

some samples will have had the correct tag removed in the process and others will still have
more than one possibility le. us, the evaluation measure of a CG-like system needs to be
adapted accordingly. It is usually calculated on precision and recall instead of percentage correct
– typically as the F1 score borrowed from Information Retrieval.²⁶
A great advantage of CG-like systems is that they can exploit negative information, say “amodal

verb is never followed by an adjective” as easily as positive. On the other hand, a major drawba
is the reliance on every single rule being correct: in contrast to other variations of TBL, it is not
possible to let later rules correct the mistakes of earlier ones. If the correct tag is erroneously
removed from a sample, there is no magic bla hat from whi it could be reproduced. us, this
style of learning will strongly emphasize rules with perfect or almost perfect accuracy.
CG rules were originally specified by hand, but naturally, several aempts have been made

to extract them automatically from a corpus (e.g., Samuelsson et al., 1996). e question of
interest here is how to do so by TBL. Lager (1999b) shows that this can be aieved by con-
ceiving of transformations not as replacement rules but rather as set operations. He incorpo-
rates this style of learning in his µ-TBL system. Especially important are reduction rules, whi
remove an element from a set if it is not the last (otherwise, they do nothing). An example
of su a reduction rule is “reduce the current tag set of a word with tag  if the word im-
mediately to the le is uniquely tagged as ”. In the µ-TBL formalism this rule would read
pos:red vb <- unique pos:dt@[-1] and it would probably be derived from the template
pos:red A <- unique pos:B@[-1]. Lager (2001) explores this learning style for the case of
POS tagging. e results are promising, but prohibitively slow for scaling up: from amodest-sized
240kW corpus with 15 templates, the TBL Constraint Grammar learner described in Lager (2001)
learns 4866 rules in three weeks (!). A more efficient algorithm for CG-style TBL is clearly crucial
if the method is to gain wider usage.
A final disadvantage of CG-style systems is that their output is made up of sets, and using it

as part of a larger system thus presupposes that interfaces of later links are prepared to handle
unranked sets as input. In an increasingly probabilistic view on knowledge induction and transfer,
this assumption may be problematic.

²⁵e “Grammar” part of the term is less informative and reflects the early uses of the approa – it is certainly
conceivable to use it on problems outside grammar or POS tagging.

²⁶http://en.wikipedia.org/wiki/F1_score
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Figure 8: Applying a TBR rule r = if c(si) then yi(t + 1) ← a + b ∗ yi(t). e subset of the
data (grey) for whi the condition part c of r is true undergoes a linear transformation
y(t+ 1) = a+ b ∗ y(t) towards the (correct) diagonal. From Bringmann et al. (2002).

3.2.3 Predicting numbers: Transformation-based Regression
An innovative extension of the prediction range from discrete classes to real numbers is suggested
by Bringmann et al. (2002): TBR, short for Transformation-Based Regression. e end product
looks somewhat like a regression tree (Breiman et al., 1984; inlan, 1993), but, as we have seen
(and the authors point out), TBL gains additional expressivity by making multiple passes through
the data. us, intermediate results can be leveraged, and predictions can be improved based on
current predictions, rather than set once and for all.
TBR deals with continuous transformations. A TBR rule has the following form:

if c(si) then yi(t+ 1)← a+ b ∗ yi(t)

Here,

• si = (xi, yi) is the ith sample in the data set;

• xi is a vector of aribute values describing the ith sample;

• yi is a numerical value to be predicted for the ith sample;

• c(si) is a predicate on the sample si and/or its neighbours (just like before);

• yi(t) denotes the value yi at iteration t;

• a, b are parameters osen to minimize the error aer the transformation.

A rule only applies to (i.e., transforms linearly) the subset of the data for whi c holds (Figure 8).
e algorithm for rule instantiation and scoring needs somemodification for TBR and the stopping
criteria is handled somewhat differently; we refer to Bringmann et al. (2002) for details.
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Two drawbas are difficult to avoid when leaving the world of discrete classifiers and entering
the continuous regression domain. First, overtraining becomes a mu more pressing issue. is
is a standard problem, with several common solutions. e one proposed by Bringmann et al.
(2002) is similar to that oen used in pruning decision trees: partition the available training data
into a development and a validation set, and then prune the tree/truncate the list to the smallest
one within a certain error (e.g, one standard error) from the best one on the validation set. Second,
arguably a greater loss, TBR sacrifices a large part of rule interpretability (cf. Section 2.3.1): the
meaning of rules in the form above is difficult to grasp. Although the top scoring rules may make
some intuitive sense, rule effect is generally cumulative, and later rules whi linearly transform
the output of earlier ones make no more sense to humans than does any other bla-box method.
It should be noted, however, that these downsides are no worse for TBR than for other regres-

sors. Performance-wise, the authors report TBR to be competitive with state-of-the-art regres-
sion learning algorithms on difficult sequential regression tasks (predicting segment durations
from phonological features, and predicting three main musical parameters of expression in piano
playing).

3.3 Improving efficiency
3.3.1 Efficiency in training
One major disadvantage of the TBL algorithm of Section 2.2 is the very slow training. Brill’s
original implementation (in C) was generously made available on the web early on and was oen
used for POS tagging as a preprocessing step in other applications. However, although it contained
clever optimizations, it commonly needed days of training time. For instance, Ngai and Florian
(2001b) report 38 hours training for the simple task of POS tagging on a 1 million word corpus,
whi still is small by the standards of 2011.²⁷
e time complexity of the TBL training phase is difficult to specify. e worst-case analysis

is clear, but rather absurd: a corpus of size N where all initial tags are incorrect and the correct
tags are all unique. us, no possible rule will ever correct more than a single error. Given T
templates, we get O(NT ) rules to oose from in ea iteration,²⁸ and since there are N errors
to correct and no rule corrects more than one of them, we will have to learn O(N) rules. us,
training takes O(N2T ) time, and no indexing semes will improve the situation. Of course
nobody would want to try maine learning on su a data set, but it at least establishes an upper
bound. We could also consider O(N) a lower bound – we won’t need the templates to find out
that there are no errors to correct, but we clearly need to look at the entire corpus.
e average case (whi is of course what we are really interested in: a corpus with some

but not complete regularity and a meaningful baseline whi does not get everything wrong) is
more difficult to pinpoint. e most informative statistic is the number of learned rulesR, whi,
however, will vary a lot with the task at hand: it will grow with the size of the corpus N , with

²⁷More complex tasks are rather worse; and the situation is further exacerbated when a TBL system is used as one of
several base learners in iterating ensemble learners.

²⁸Templates may contain alternative positions, su as pos:A@[1,2] meaning some pos tag A at position 1 or 2.
Given a specific sample with erroneous classification, su a template will usually generate more than one rule
that corrects it. We will disregard that in the discussion here. At any rate, considering the maximum context
width a constant, O(T ) templates will still generate O(T ) rules per application site.
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the initial number of errors E, and with the number of templates T , but not independently and
not very predictably with either.
Roughly, with O(E) errors in the current corpus, learning a single rule with the greedy but

otherwise naive algorithm of Section 2.2 will involve identifying O(ET ) candidates in time
O(N + ET ), scoring them in O(ENT ), piing the best in O(ET ), and applying it in O(N).
e expensive scoring step can be optimized by sorting the candidates according to their descend-
ing good application counts gi, keeping a best score sb, and interrupting the scoring as soon as
the gi falls below sb. is optimization, present in most implementations, is very efficient for
the first few rules, when scoring can be interrupted early, but grows increasingly inefficient as
rule scores drop, when a large fraction of the rules will have to be investigated. As a result, this
method typically finds the initial rules inO(E0T ) but then slows down toO(ERNT ) as training
progresses (where R is the number of rules learned and Ei is error count aer applying i rules).
An early aempt to speed up training is represented by Ramshaw and Marcus (1994). ey

proposed an elaborate indexing seme and minimal state updates between iterations. In an
initial phase, the corpus is traversed linearly twice, once to identify O(ET ) positive rules for
ea error and ea template; once to identify the negative application sites of those rules. As
a result, ea rule in effect has a list of (pointers to) the samples it may be applied to, and ea
sample a list of (pointers to) the rules that can be applied to it. e list of rules is scored and sorted
and the top scoring rule is selected. When applied, ea of its sites of application can be accessed
in constant time, and all the rules affected by the ange of corpus state can in turn be efficiently
updated. e initial phase takes O(ENT ), then the application of ea of the R rules starts at
O(ET ) for the first one and approaes O(T ) as the number of samples anged Cr (at most
2gr) approaes the constant score threshold. us, once the index is built, no linear seares
need to be performed in the corpus.²⁹ Unfortunately, this method consumesO(NT ) memory (or
possiblyO(ET ), with judicious filtering of rules whi have higher negative than positive score).
is makes it infeasible for most real-world tasks with more than a handful of templates.
Ngai and Florian (2001b) propose what is essentially a mu more memory-friendly simplifi-

cation of the algorithm of Ramshaw and Marcus (1994). Instead of storing O(E) pointers for
ea rule in O(ET ) space, they only store the good/bad count (gr, br). At the cost of a linear
sear per iteration, the rule-to-score list then becomes mu smaller and the sample-to-rule list
superfluous. We defer the details of this algorithm to the next section, where we rephrase it for
a declarative paradigm; here, we only note that aer building and indexing the initial rule list
the top scoring rule can be found in constant time, applied in O(N), and the state updated in
O(N + CTw), where w is the width of the widest template context and C is the number of
application sites. Towards end of training, this approaes O(N + STw), where S is the score
threshold.
An entirely different approa to improving training efficiency is Monte Carlo (MC) sampling

of the rule space (Samuel, 1998a; Carberry et al., 2001). In ea iteration, for ea error discovered
in the current corpus, a fixed number of templatesK are osen randomly and used to generate
correcting rules. In effect, we get an unbiased sample of (the currently interesting part of) the rule

²⁹Previously unseen rules may occasionally be created in the neighbourhood of application sites, to correct errors
introduced by the application. Scoring su rules will need linear corpus scans. In our experience, creation of new
rules can usually be disabled without performance loss.
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space. Usually the highest-scoring rule will be the best one, and almost always one of the best. As
we have mentioned (p. 20), small reorderings of good rules are usually not crucial: when several
rules have about the same efficiency, either they correct the same error, in whi case we could
pi any of them; or they correct different errors, in whi case they are usually independent and
their local ordering relative to ea other is of lile consequence. Running time does not depend
on the number of templates, and thus MC sampling is particularly useful where the number of
templates is high – for instance, when the feature-space is inherently high-dimensional and/or
the domain is not (yet) completely understood.
For POS tagging, Carberry et al. (2001) show impressive speedups (two orders of magnitude)

with no concomitant drop in performance. ere might be tasks where performance is more
impacted. For instance, low-scoring rules yield smaller samples and thus are scored with less
certainty than high-scoring, for well-known statistical reasons; also, if there are very many rules
with approximately the same score, true ordering requirements among them are more likely to
be violated. us, the approa may be more problematic when the bulk of the error correction
is catered for by a large number of low-scoring rules. At any rate, MC sampling oen deserves
consideration when non-determinism is acceptable.
Yet another approa are the explicitly stated independence assumptions proposed by Hepple

(2000), that we met in Section 2.4: independence (no rule interaction with respect to the condition
part of a rule – all rules are learned in the context of the initial annotation); and commitment
(at most one ange per sample). Hepple describes two algorithms based on them (ICA and ICP:
Independence, Commitment, and either Append or Prepend, depending on whether the rules are
applied in the learned order or in reverse). e simplified learning shows very impressive speedups
(several orders of magnitude).
Clearly, the validity of the IC assumptions depend very mu on the problem. Some problems

are not sequential; some are sequential, but can reasonably be treated as if they weren’t; some
cannot be handled as sequential without major information loss. Furthermore, the error rate of
the baseline is crucial. Fewer errors of course mean fewer and lower-scoring rules to learn; thus, it
is generally far between rule application sites and rules will not interfere. Poorer baselines mean
more rule interaction. For POS tagging, the performance loss is slight (and probably outweighed
by the possibility of training on mu larger data sets). For several other tasks, IC is significantly
worse (Ngai and Florian, 2001b).

3.3.2 Efficiency in application
e naive application of a set of learned rules to new data is by sequential substitution, one rule
at a time. us, it takes O(RKn) time to apply R rules requiring context of sizeK to a input of
size n. is may be good enough for some purposes, but when the rules for instance describe a
preprocessing step for data-intensive applications (say, information extraction), it is too slow.
Roe and Sabes (1995) apply finite-state algebra to the rule sequences. ey show that a

single learned TBL rule ri may be regarded as a non-deterministic transducer ti. It follows that
the entire set of rules corresponds to the composition of su transducers, whi in itself is a non-
deterministic transducer T . Not all non-deterministic transducers can be determinized. However,
the authors show that T , resulting from composing fixed-width context TBL rule sequences, ac-
tually can (except perhaps for practical limitations). is yields a transducer with O(n) perfor-
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mance in the size of the input, with very low constants – in fact, the run time of their POS tagger
is dominated by the data transfer time from disk.

3.4 Widening the bottleneck: Unsupervised learning
Classification tasks are by definition supervised – they depend on annotations provided by hu-
mans beforehand. For instance, the original TBL algorithm presupposes for the learning step a
reference corpus where ea element in ea of the sequences, whatever they might represent, has
been tagged with its true class. Su data sets are costly to construct. If one can get away with
less expensive resources, it is of course useful. Brill (1995a) proposes an extension to TBL POS-
tagging, where the baseline annotation of a word is created by simply listing all of its possible tags
in some fixed but arbitrary order, disregarding context. For instance, the baseline annotation of
the will likely be the singleton DT; but export will perhaps list VP|VBP|NN (present-tense, non-3rd
person singular verb, as in Cubans export sugar; infinitive verb, as in Cubans want to export more
sugar ; or noun, as in Cuban export of sugar will increase). e system treats this three-item set as
a single tag like any other except that it can be decomposed for scoring (see below). e templates
look just like before, for instance A > B <- tag:@[-1].
Rule scoring has to be adapted: since we do not have access to truth, we cannot simply count

errors corrected. We can, however, score rules according to how efficiently we expect them to
reduce uncertainty. is can be done in many ways. Brill (1995a) uses the following formula³⁰ to
score rules derived from the template A > a <- C (ange A to a in context C , where A is an
ambiguous tag and a is one of its possibilities):

score(A, a,C) = U(a)

[
UC(a)

U(a)
−max

UC(Y )

U(Y )

]
Here, U(X) is the total number of words in the corpus uniquely tagged X , UC(X) is the

number of words uniquely tagged X in the context C , and Y is a variable ranging over the
ambiguous tags of A except a.
In the example above, with the specific context c = dt@[-1] (determiner one step to the le),

this amounts to

score(||, , c) = U()

[
Uc()

U()
−max

(
Uc()

U()
,
Uc()

U()

)]
score(||, , c) = U()

[
Uc()

U()
−max

(
Uc()

U()
,
Uc()

U()

)]
score(||, , c) = U()

[
Uc()

U()
−max

(
Uc()

U()
,
Uc()

U()

)]

Terms of the form UC(X)
U(X) range from 0 to 1, and thus the second factor ranges from −1 to 1.

Given the context of the example, any real-world corpus will find it close to −1 for the first two
cases and close to 1 for the third.

³⁰although differently presented, in our opinion less clearly
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Word POS True unk Initial unk

O art i i
aluno noun i i
esqueceu verb o o
o art i i
caderno noun i i
de prep i i
caligrafia noun i i
amarelo adj i o
em prep o i
casa noun i i

Figure 9: Chunking the Portuguese sentenceO aluno esqueceu o caderno de caligrafia amarelo em
casa ’e student le the yellow calligraphy notebook at home’. Example from Santos
and Oliveira (2005).

With only four templates, Brill (1995a) reports rather impressive 96% (from a baseline of 90%).
However, he simplistically assumes a complete lexicon. Aone and Hausman (1996) extend the
method for Spanish to cope with unseen words, and Beer (1998) generalizes and parameterizes
the approa, allowing compositional templates and different scoring semes. For instance, the
scoring seme above disregards all ambiguous contexts, whi presupposes that there are enough
of the non-ambiguous ones; but one might also want to include ambiguous tagging in the scoring
(and then probably weighted according to degree of uncertainty).
We may extrapolate this idea to Constraint Grammar-style rules (Section 3.2.2) by considering

all tags as sets, possibly singletons, and have the transformations implement set operations rather
than replacements (e.g., reduction: remove a tag from the possibilities). is allows mu easier
exploitation of negative information and might be a way to explore unsupervised transformation-
based learning also for the Constraint Grammar paradigm. e sear space is very large, though,
and the problematic training time of TBL-CG needs to addressed first.

3.5 Abstracting the problem: Template compositionality and DSLs
Santos and Oliveira (2005) apply TBL to unking (p. 29) in Portuguese, but find that traditional
templates are too inflexible to cat important lexical relations. As example, they give the relation
between preposition em ’on’ and the verb esqueceu ’le’ (Figure 9). With the verb esquecer ’leave’,
a prepositional phrase headed by em is generally an adverb, does not belong to the object noun
phrase, and should be tagged o. As a remedy, they propose a widened “constraint atomic term”,
where templates can express things like “condition on value x of feature X of the current word’s
closest neighbour whi has value y for feature Y”. By way of example, they give a template of
the form (where [x;y] indicates a closed interval from x to y, inclusive):
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word[0;0](pos=prep) word[−2;−10]³¹ (pos=verb)

From the data in Figure 9, su a template would allow the system to induce the rule

word[0;0](pos=prep)=em word[−2;−10](pos=verb)=esqueceu –> chunk=O.

is rule should be read “if pos[0]=prep and word[0]=em, and, for the first item in the closed
interval [-2;-10] where pos=verb, word=esqueceu; then ange the value of feature chunk to O

for the target item”. e authors then suggest algorithms to implement their new extension.
We mention this idea not because we find it a good one, but to illustrate a point. In our view,

the suggested extension is at best an acceptable solution to the wrong problem, a problem whi
was phrased too specifically to begin with.³² Mu beer than adding one ad-hoc feature or an-
other to the syntax of TBL templates is to make the templates themselves form a lile language,
with values, abstractions, and combinators as befit the domain. Su a language is known as a
domain-specific language (DSL); in the words of van Deursen et al. (2000), a DSL is a “small, usu-
ally declarative, language that offers expressive power focused on a particular problem domain.”
An appetizing alternative to implementing a DSL from scrat is to extend some suitable base
language with domain-specific constructs. In this way, all features of the base language can be
reused. More importantly, so can the users’ knowledge of it. Su an extension can range in com-
plexity from some preprocessing step up to a complete embedding (an embedded DSL (Hudak,
1996, 1998)).
To our knowledge, there is only one aempt at a DSL for TBL: the template language of the

μ-TBL system (Lager, 1999b). A moderately complex template description for a particular task
(dialogue act tagging) in this system is given in Figure 10.
μ-TBL is implemented in the logic programming language Prolog, and its template language

is just a Prolog extension (by preprocessing). Figure 10 (as well as the examples below) may
not be very informative for readers unfamiliar with that language,³³ and we must anyway omit
some details on data format, argument passing to the auxiliary predicates, etc.³⁴ e point should
be clear, however: some features are given directly in the data representation, while others are
computed dynamically by auxiliary predicates of arbitrary complexity, but the templates use both
kinds and can’t tell the difference between them. If we were to trade space for time by including
some of the computed features in the data representation instead, the templates wouldn’t notice.
Furthermore, just as important, the templates themselves are compositional; they are ordinary
Prolog terms and can be assembled and disassembled by the standardmeanisms of the language.
We will return to μ-TBL in Section 5. Here, we will only take the Portuguese example as a

minimal coding exercise in a DSL (fictive, but perfectly conceivable and not mu beyond that of
Figure 10).

³¹Starting two to the le (-2) rather than with the le neighbour (-1) leaves a spot for the direct object, as in don’t
leave keys on the table.

³²We unfortunately find this a common paern. Non-compositional problem encodings (oen with too mu focus
on performance) tend to create monolithic systems with hard-coded oices: hard to extend, hard to experiment
with, hard to understand.

³³Good books on Prolog, in suggested reading order, are Closin and Mellish (1994); Covington et al. (1997); Bratko
(2001); Sterling and Shapiro (1994); O’Keefe (1990)

³⁴see http://www.ling.gu.se/~lager/Mutbl/mutbl_system.html
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%%% DATA REPRESENTATION %%% AUXILIARY PREDICATES

s(1,speakerA). u_mem(Position, Word) :-

da(1,acknowledge). u(Position, Words),

da(acknowledge,ready,1). member(Word, Words).

u(1,[ehm, right]).

u_first(Position, Word) :-

s(2,speakerA). u(Position, [Word|_]).

da(2,acknowledge).

da(acknowledge,instruct,2). u_bigram(Position,(Word_i, Word_j)) :-

u(2,[you,start,at,the,caravan,park]). u(Position, Words),

nextto(Word_i, Word_j, Words).

s(3,speakerB).

da(3,acknowledge). s_change(Position, Change) :-

da(acknowledge,acknowledge,3). ( s(Position, Speaker),

u(3,[ok]). Position1 is Position-1,

%... s(Position1, Speaker)

-> Change = false

; Change = true

).

%%% TEMPLATES %Condition the transformation rule on...

da:A>B <- da:C@[-1]. % the previous dialogue act

da:A>B <- da:C@[-1,-2]. % any of the two previous dialogue acts

da:A>B <- da:C@[-1] & da:D@[-2]. % both of the two previous dialogue acts

da:A>B <- u_first:W@[0]. % the first word in current utterance

da:A>B <- u_mem:W@[0]. % any word in current utterance

da:A>B <- u_bigram:W@[0]. % any two adjacent words in current utt.

da:A>B <- s:C@[0]. % the current speaker

da:A>B <- s:C@[0] & u_mem:W@[0]. % any combination of word and speaker

da:A>B <- s_change:C@[0] & u_mem:W@[0]. % any word in current utterance, if a

% speaker change has just occurred

Figure 10: Dialogue act tagging in μ-TBL: data representation, auxiliary predicates, annotated
templates. Adapted excerpt from Lager and Zinovjeva (1999). Abbreviations: s:speaker,
u:uerance, da:dialogue act, mem:member.

First, assuming a data representation similar to what we have seen (Figure 11, top), we find
that the example template can be expressed with our existing toolkit (Template 1a in Figure 11,
middle).
Of course, if our DSL allows partial application, there is no reason to hardcode the direction,

the bounds, or the POS we look for. Instead, we could parameterize them in the generally useful
predicate closest/6 (Figure 11, boom). is allows Template 1a to be rephrased as Template 1b.
More interesting, with closest/6 in place, our DSLmay now let us replace the direction to sear
in (left) and the POS tags to sear for (verb and prep) with variables, as usual to be filled in
with the values whi make the strongest predictions. For instance, Template 2 in Figure 11
expresses something like “condition the unk tag ange on the current word, its part-of-spee
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%%% DATA REPRESENTATION

wd(1, o ). pos(1, art). chunk(1, i). chunk(i, i, 1).

wd(2, aluno ). pos(2, n ). chunk(2, i). chunk(i, i, 2).

wd(3, esqueceu). pos(3, v ). chunk(3, o). chunk(o, o, 3).

%...

%%% TEMPLATE 1a

chunk:A>B <-word:W@[0] & pos:prep@[0] & closest_left_verb_2_10:VerbWord@[0].

%%% AUXILIARY PREDICATE

closest_left_verb_2_10(Position, Word) :-

between(2, 10, I),

Position1 is Position - I,

pos(Position1, verb),

!,

word(Position1, Word).

%%% TEMPLATE 1b

chunk:A>B <-word:W[0] & pos:prep@[0] & closest(left, verb, 2, 10):VerbWord@[0].

%%% TEMPLATE 2

chunk:A>B <-word:W[0] & pos:POS1@[0] & closest(Dir, POS2, 2, 10):POS2Word@[0].

%%% AUXILIARY PREDICATE

closest(left, POS, ClosestBound, FarthestBound, Position,Word) :-

between(ClosestBound, FarthestBound, I),

Position1 is Position - I,

pos(Position1,POS),

!,

word(Position1, Word).

closest(right, ...) %identical, except Position1 is Position + I

Figure 11: DSL templates for Portuguese unking. Data representation (top) and auxiliary pred-
icates in different degree of abstraction (see text).

P1, and the word (within a window to either le or right) whi belongs to a part-of-spee that
P1 usually has informative associations with.”
To be sure, Template 2 in Figure 11 is not necessarily a good one. If nothing else, it is almost

certainly inefficient: depending on the size of the corpus and the tagsets, the combinatorial ex-
plosion may render it unusable in practice. However, decisions on whi seares to perform and
whi to prune are beer le to the user than to the designers of the template language.
We could go on and parameterize thewindow edges, or, even beer, replace thewindow entirely

with some predicate “earlier in the sentence”. Wewill stop here, however, in the belief that we have
demonstrated the expressivity and conciseness a DSL can gain by reusing well-known concepts
and constructs of the base language.
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Figure 12: Data flow of TBL training, extended with state (dashed boxes) ruleScores

4 Fast, declarative TBL
As pointed out, one of the major problems of the standard TBL training algorithm is the very slow
learning phase. Section 3.3.1 discussed some proposed improvements. Here, we look closer at one
of those, due to Ngai and Florian (2001b). Like many other aempts at improving efficiency
we have seen in TBL (and, to be sure, in Computer Science in general), it is based on the idea
of using state to avoid recalculation. In the TBL case, this involves generating all potentially
helpful rules once, computing some amount of information for ea, and saving that information
as part of global state. en, aer ea rule application, it is enough to update state minimally,
instead of regenerating new rule candidates from scrat. Figure 12 shows the system aritecture
augmented with state (cf. Figure 2).
e algorithm byNgai and Florian (2001b) resembles the one described by Ramshaw andMarcus

(1994). In that case, however, we saw (Section 3.3.1) that the amount of information kept tra
of for ea rule turned out to be prohibitively memory-expensive for most practical uses. By
contrast, in the algorithm described here, ea rule r is associated only with two integers: the
counts for good and bad applications.
In the following, we give an algorithmic overview, and we present a novel, more declarative

rephrasing of the originally strongly imperative algorithm. Our version is slightly slower than the
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original³⁵ (replacing hash-based maps with functional, tree-based counterparts will oen come
with a O(log(N)) cost, although there might be alternatives in specific cases), but it is beer
adapted for declarative languages and (in our opinion, anyway) easier to understand. In addition,
in contrast to the imperative variation, ours is parallelizable (although, admiedly, the speedups
measured so far fall quite a bit below their theoretical ceiling, see Section 4.6).

4.1 Notation
e following notation and definitions are used throughout this section (from Ngai and Florian
(2001b), slightly adapted):

• S is the sample space – a set of mutually independent sequences of positive length;

• C is the set of possible classifications of a sample;

• C[s] is the current classification of sample s;

• T [s] is the true classification of sample s;

• p is a predicate on S;

• r is a rule: a pair (p, t) of a predicate p and a target t (a class label);³⁶ given a rule r, we
write pr and tr for its predicate and target, respectively;

• good(r) is the count of good applications (successful error corrections) of rule r;

• bad(r) is the count of bad applications (newly introduced errors) of rule r;

• R is the set of all rules that we keep tra of (a subset of the total rule space);

• GBi[r] denotes the current counts (good(r), bad(r)) of rule r in iteration i;

• GBi is used for the current good/bad counts for all rules in iteration i;

• A rule r applies to a sample s if pr(s) and tr 6= C[s].

Any other notation will be introduced as needed.

4.2 Algorithmic overview
Clearly, if we have GBi in some appropriate data structure, it is easy to efficiently find the best-
scoring rule bi in ea iteration i. e question then reduces to two subtasks (dashed boxes in
Figure 12): how do we initialize the state and how do we update it; or, more declaratively spoken,
how do we get GB0; and how do we get to GBi+1 from GBi, given bi.
e first subtask is very similar to what we have seen many times before.

³⁵For time complexity estimations, we refer to Section 3.3.1.
³⁶Note that rules in this formalism correspond to the templates of Table 4, not to those of Table 1.
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Figure 13: Vicinity of a node. e figures shows the fragment …decided to export jewelry from …
just before applying the rule >VB <- TO@-1 & NN@0, whi will ange the tagging of
export. e vicinity of this node with respect to the given template setΘ is simply the
export node itself and its le and right neighbour. Arrows showing reflexivity omied
for clarity.

• 1. calculate-good-scores-for-all-rules For all samples s that satisfyC[s] 6= T [s], generate
all rules r that correct the classification of s; increase good(r).

• 2a. calculate-bad-scores-for-all-rules For all samples s that satisfyC[s] = T [s], generate
all rules r that introduce an error; increase bad(r).

Of course, we are not really interested in rules with no positive scores at all, so the second step
can be optimized:

• 2b. calculate-bad-scores-for-good-rules For all samples s that satisfy C[s] = T [s], gen-
erate all predicates p su that p(s) = true; for ea rule r resulting from step 1 su that
pr = p and tr 6= C[s], increase bad(r).

We can thus get GB0 simply by calculate-good-scores-for-all-rules followed by
calculate-bad-scores-for-good-rules.
e second subtask, the updating step, is more allenging. e key observation behind the

efficiency of the algorithm is that when performing this minimal update, any nodes whi are not
in the neighbourhood of a anged node (usually the vast majority) can be disregarded. is idea
can be formalized (Ngai and Florian, 2001b) by defining the vicinity VΘ of a node n with respect
to a template set Θ as

VΘ(n) = {n} ∪ {x | x influences n} ∪ {x | x influencedBy n},
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where x influences y if there is any template θ ∈ Θ su that x occurs in the CONDITION of θ
and y in the ACTION. e converse relation, of course, is influencedBy. Vicinity is illustrated in
Figure 13.

4.3 A low-level view: Updating GB

e update step for iteration i as proposed by Ngai and Florian (2001b), given a rule br to apply,
involves identifying all samples whi are in the vicinity of any node anged by br , and to
distinguish all the different ways these anges influence the to-be-finished rule counts GBi.
is operation is complicated and we will not delve into the details here. Imperative pseudocode
for their entire algorithm is given in Figure 14 (lines 1-5 correspond to the initialization of GB0;
lines 9 and below perform updating of GBi).

4.4 A high-level view: Computing GB∆

Although very useful, in our experience the amount of book-keeping detail makes the implemen-
tation of the algorithm of Figure 14 difficult to get right. Furthermore, it is geared towards data
structures whi use memory destructively;³⁷ thus, it is difficult or impossible to parallelize.
It turns out that the algorithm can be made quite a bit easier to understand when viewed at a

higher level of abstraction. In addition, if we sti to purely functional data structures, we can
make it parallelizable³⁸ Even in an imperative paradigm, with destructive memory access and thus
lesser prospects on parallelism, the gained clarity might be reason enough to prefer the alternative
view.
Crucially, we prefer to think of the updating step as performing exactly the same operation as

the initial rule scoring, except on a set of independent (hence the potential for parallelization)
subcorpora – namely, the union of all vicinities of all application sites of the best-scoring rule b.
To see how this view is useful, we first define an addition operation for rule counts. Given two

rule counts GBa and GBb we define their sum to be the multiset sum GBa+b = GBa ] GBb.
at is, GBa+b is the mapping su that

GBa+b[r] = GBa[r] +GBb[r]

where r ranges over the rules in either GBa or GBb; and GB[x] is taken to be 0 whenever x
is not in the map. Rule count subtraction is defined analogously.
Second, we define the partitioning and the filtering of a data set D (a set of independent se-

quences of positive length) with respect to a rule r and a template set Θ:

partitionr,Θ(D) = (DVΘ(r), D¬VΘ(r))

filterr,Θ(D) = DVΘ(r)

³⁷e authors suggest a two-level hash, keyed on pr and tr as the main data structure for GB.
³⁸Hopefully it will also be easier to integrate into a declarative DSL, although we will not pursue that path further

here.
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For ea sample s that satisfies C [s] 6= T [s],
generate all rules r that correct the classification of s; increase pos (r).

For ea sample s that satisfies C [s] = T [s]
generate all predicates p s.t. p (s) = 1; for ea rule r s.t. pr = p and tr 6= C [s] increase neg (r).

1: Find the rule b = argmaxr∈R f (r).

If (f (b) < reshold or corpus learned to completion) then quit.

For ea predicate p,
let R (p) be the set of rules whose predicate is p (i.e. R (p) = {r|pr = r}).

For ea samples s, s′ s.t. C [s] 6= C [b (s)] and s′ ∈ V (s):

• If C [s′] = C [b (s′)] then

– For ea predicate p s.t. p (s′) = 1

* If C [s′] 6= T [s′] then
· If p (b (s′)) = 0 then { decrease pos (r), where r = [p, T [s′]], the rule created with
predicate p and target T [s′]; }

* Else
· If p (b (s′)) = 0 then for all the rules r ∈ R (p) s.t. tr 6= C [s′] decrease neg (r);

– For ea predicate p s.t. p (b (s′)) = 1

* If C [b (s′)] 6= T [s′] then
· If p (s′) = 0 then { increase pos (r), where r = [p, T [s′]]; }

* Else
· If p (s′) = 0 then { For ea rule r ∈ R (p) s.t. tr 6= C [b (s′)] increase neg (r);

Else

– For ea predicate p s.t. p (s′) = 1

* If C [s′] 6= T [s′] then
· If p (b (s′)) = 0 ∨ C [b (s′)] = tr then decrease pos (r), where r = [p, T [s′]];

* Else
· For ea rule r ∈ R(p) s.t. tr 6= C [s′] decrease neg (r);

– For ea predicate p s.t. p (b (s′)) = 1

* If C [b (s′)] 6= T [s′] then
· If p (s′) = 0 ∨ C [s′] = tr then increase pos (r), where r = [p, T [s′]];

* Else
· For ea rule r ∈ R (p) s.t. tr 6= C [b (s′)] increase neg (r);

Repeat from step 1:

Figure 14: e FnTBL algorithm (Ngai and Florian, 2001b).
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Figure 15: Partitioning a corpus (the Penn treebank) with respect to a rule b and a template setΘ.
Bla for DVΘ(b), grey for D¬VΘ(b) (see text).

Here, we abuse the V (· ) notation somewhat by expanding it from samples to rules: DVΘ(r)

consists of all vicinities of all application sites of r, taken to be elements of a sequence if they
are so inD (with any overlapping sequences merged – no samples are duplicated). Analogously,
D¬VΘ(r) is everything that did not fit – either subsequences whi were le over when vicinities
of longer ones were removed, or other unanged sequences whi didn’t contain any application
sites to boot. Normally, |DVΘ(r)| � |D¬VΘ(r)|. See Figure 15.
We now assume that we have a template setΘ, a data setD, a rule countGBi

D for the current
iteration i, and a best-scoring rule b whi partitions D into DVΘ(b) and D¬VΘ(b). e goal is to
calculate the net effect of applying b,GBi

∆ = GBi+1−GBi, in terms of this partition. First, we
note that in any iteration i, the good and bad counts contained in GBi

D can be wrien (leaving
the dependence on Θ implicit, to reduce cluer)

GBi
D = GBi

D¬V (r)
+GBi

Π(r) +GBi
DV (r)

(7)

where GBi
Π(r) is a residual term needed to account for sequence boundaries (it depends on

templates whi applied before the split but not aer or vice versa). us,

GBi+1
D = GBi+1

D¬V (r)
+GBi+1

Π(r) +GBi+1
DV (r)

(8)

e key insight here is that application of b has no influence on either GBΠ(r) or GBi
D¬V (r)

;

thus GBi+1
Π(r) = GBi

Π(r) and GBi+1
D¬V (r)

= GBi
D¬V (r)

. Subtracting (7) from (8) yields

GBi
∆ = GBi+1

D −GBi
D = GBi+1

DV (r)
−GBi

DV (r)
(9)
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In summary, we can calculate the update GBi
∆, needed as a consequence of applying the rule

b, by:

1. extracting the subcorpusDV (b) of vicinities of all applications sites of b;

2. score all relevant rules forDV (b);

3. apply b to (a copy of)DV (b) and score the result;

4. subtract the result of (2) from the result of (3).

An outline of the algorithm in functional-style pseudocode³⁹ is given in Figure 16. Several de-
tails are omied; thus, we assume the procedures given in Section 4.2 (with the obviousanges for
the functional paradigm to accept necessary parameters and to return values); furthermore, corpus
filtering, rule count addition, and rule count subtraction as described above; and finally some sen-
sible definitions of findBestRule (cf. page 18), applyRule (cf. page 20), and terminationReached
(cf. page 21).

4.5 Implementation notes
We implemented the algorithm just described in the functional language Haskell (Peyton Jones
et al., 2003).⁴⁰ Here, we collect a few random observations from the process.

• e algorithm requires efficient access to the best-scoring rule and to the scores of ea rule
given (pr, tr). In a declarative seing, this can be acquired by pairing a functional heap
(Okasaki, 1998) and a tree-based map.

• e idea behind the optimization we applied in the initialization step (2b in Section 4.2,
calculate-bad-scores-for-good-rules) is useful also when scoring subcorpora, but
the -good-rules part then need to refer to the good rules for the entire corpus. (e
pseudocode of Figure 16 ignores this optimization, to reduce cluer).

• Occasionally, application of a rule will create the opportunity for an entirely new rule r′,
previously unseen. Even if good(r′) falls below the scoring threshold s in the current itera-
tion (and r′ thus is not likely to be used, as far as we presently can tell), more opportunities
may turn up in later iterations.

However, introducing new rules can be very expensive, as there are no minimal updates
to apply: to score any rule created aer the initialization stage we will need to sear the
entire corpus linearly (see next section for some practical measurements). In our experience,
disallowing the introduction of new rules does not affect performance noticeably. It would
be unwise, however, to make statements of all possible scenarios, so a more flexible solution
is to parameterize rule creation by a threshold. New rules not reaing this threshold will
be ignored. A reasonable value is s or a bit above it. Ngai and Florian (2001b) are not clear
on how they handle this point.

³⁹Essentially Haskell with over-explicit function names, java-style signatures in function definitions, and no worries
about IO.

⁴⁰Haskell tutorials in suggested reading order are Hudak et al. (2000); ompson (1999); Hudak (2000); O’Sullivan et al.
(2008).
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scoreInitialCorpus(Corpus cps, Templates tpls) = goodBadScores

where

goodScores = calculateGoodScoresForAllRules(cps, tpls)

goodBadScores = calculateBadScoresForGoodRules(cps, tpls, goodScores)

scoreSubcorpus(Corpus subCps, Templates tpls) = goodBadScores

where

goodScores = calculateGoodScoresForAllRules(subCps, tpls)

goodBadScores = calculateBadScoresForAllRules(subCps, tpls)

nextGoodBadCount(Rule bestRule, RuleCount goodBad, Corpus cps) = goodBad’

where

subCps = filter(bestRule, cps)

subCps’ = applyRule(bestRule, subCps)

deltaScores = scoreSubcorpus(subCps’) - scoreSubcorpus(subCps)

goodBad’ = goodBad + deltaScores

tbl(Corpus cps_0, Templates tpls) = until(terminationReached, iter, initialState)

where

terminationReached(Corpus cps, RuleCount goodBad, Rules rls) = ...

iter(Corpus cps, RuleCount goodBad, Rules rls) = (cps’, goodBad’, rls’)

where

bestRule = findBestRule(goodBad)

rls’ = append(rls, bestRule)

cps’ = applyRule(bestRule, cps)

goodBad’ = nextGoodBadCount(bestRule, goodBad, cps)

initialState = (cps_0, goodBad_0, rules_0)

where

goodBad_0 = scoreInitialCorpus(cps_0, tpls)

rules_0 = []

-- until(pred, iter, a)

-- yields the result of repeatedly applying function iter until pred holds,

-- with a as the initial value

Figure 16: Fast, declarative TBL in functional-style pseudocode. Names beginning with upper-
case leers informally denote types; with lower-case they denote values. x and x’

have the same type, usually understood as x’ being a modified version of x
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In addition, any aempt to parallelize code inevitably will bring up design oices. Haskell is a
purely functional language with referential transparency, whi puts it in a beer position than
most to explore the increasing number of cores on modern hardware. Nevertheless, compilers for
parallel programming is work in progress in any language. If there are any silver bullets, they
haven’t been found yet, mu less fired. e main problem is to find, ahead of time, the right size
of the work unks: if too small, the bookkeeping cost will dwarf any parallelization gain; if too
big, some of the cores may idle their time away while their colleagues are sweating over the task.
Haskell offers three mainmeanisms for programmer-controlled parallelism. One uses explicit

control with transactional memory (similar to other languages). Another, Data Parallel Haskell
(Chakravarty et al., 2007), is more original. It offers nested data structures whi are specially built
to be traversed in parallel, with ea core executing exactly the same instruction (a single program
counter). e third (Trinder et al., 1998) is mu more lightweight; it amounts to speculatively
annotating data structures where the compiler should sear for parallel opportunities.
With the data description introduced in the previous section, we know that ea updating step

involves a large number of independent and not entirely trivial tasks. is knowledge is a good
base for aspiring to parallelism gains (today, but hopefully even more so with the even smarter
compilers of tomorrow). For the purposes here, we will not be very ambitious: we will be satisfied
with a demonstration that su gains actually are possible, rather than trying to maximize them.
us, we restrict ourselves to the simple annotation seme of Trinder et al. (1998). For a more
serious implementation (e.g., aiming at the same performance ballpark as the existing FnTBL
implementation) we would have considered Data Parallel Haskell, whi can be expected to scale
to a mu larger number of cores.

4.6 Algorithm time and memory consumption
To measure running times, we used the original setup of Brill (1995a): 26 templates, score thresh-
old 2, accuracy threshold 0.5, the Wall Street Journal corpus. e aieved tagging accuracy was
not of interest (and the same in all cases, for a given corpus size). e experiments were run on a
dual-core computer.⁴¹ For ea corpus size, we recorded the time needed to produce the first rule
(Time0, see Figure 17), the time to finish training where new rules were allowed to be created in
ea iteration (TimeN-create) and where new rules were disallowed (TimeN-nocreate). For com-
parison, we implemented the basic TBL algorithm (including the common optimization described
on p. 40) and ran it on the corpus sizes it could reasonably handle (TimeN-Brill).
As can be seen, for this setup, allowing new rules almost doubled the running time, with no

gain. Brill’s original algorithm is asymptotically slower, as expected.
Our aempt at parallelization (Figure 17, right) resulted in a speedup on the order of 30%. is

is quite a bit from the theoretic maximum, but given the effort (about 20 lines of code), we at least
find it interesting.⁴²
Figure 18 (le) gives an idea of the state size. e thing to note is that state grows sublinearly

in the size of the corpusN . is means that the size of the corpus dominates that of the state and

⁴¹ghc 6.8 and 6.10, Ubuntu 8.10 on a Lenovo T400, Intel Core Duo, 2.26 GHz, 4GB RAM)
⁴²Note that the more recent Haskell compiler actually performed worse. We have not looked further into this maer,

but it does strengthen the impression that parallelization is a triy business.
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that total memory usage thus is linear in N (Figure 18, right), whi is the best one could hope
for.

Figure 17: Algorithm performance: Running time (seconds) as a function of corpus size. Le:
comparison with Brill’s original algorithm. See text for details. Right: parallel perfor-
mance, one and two cores used on two different Haskell compilers.

Figure 18: Memory usage as a function of corpus size. Le: state size (nodes in tree). Right:
maximum memory residency (MB).
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5 Conclusion and future directions
In this thesis, we have provided a survey of Transformation-Based Learning. We have done so
without aiming at full formal detail, but hopefully we have been explicit enough to provide a self-
contained introduction to the basic method, and to the most important of its later developments.
Where the full story is needed, we believe that the pointers provided will be helpful, as well as
the comprehensive bibliography.⁴³ Furthermore, we have tried to fill a small gap by rephrasing a
state-of-the-art training algorithm for declarative languages.
In the introduction, in addition to these two concrete aims, we also expressed a rather vague

hope of promoting the general interest in TBL. As we have mentioned, TBL is almost unheard
of outside the linguistic world. Indeed, the absence of non-linguistic applications in Table 8 is
striking, the only exceptions being Bringmann et al. (2002) and Landwehr et al. (2008). We don’t
see any particular reasons why this should be so. It is true that the kind of local dependencies
TBL is especially suited for exploiting are particularly common in language, but they certainly
occur elsewhere.
Although rarely sufficient by themselves, good introductions and good toolkits are helpful when

propagating ideas. While any of several sources (including, perhaps, this thesis) may serve the
first role, the casting of the second is less clear. What qualifications should we look for in the
candidate? A prerequisite for making it in the non-linguistic world is clearly that there are no
limiting, specifically linguistic assumptions on data or tagsets. Actually, removing suhardcoded
assumptions is likely to benefit linguists, too, who are looking for new application domains for a
well-tested tenique.
For a second requirement, we have made no secret of our view that one of the most flexi-

ble ways to interact with a toolkit is via a DSL (Section 3.5), whi can hide any amount of
imperative mainations behind the appropriate, high-level abstractions of the domain. A well-
designed, syntax-light DSL whi covers the relevant concepts of the domain should generally be
understandable and usable by a domain expert who is not a programmer (especially if it is of the
declarative kind). Yet, it exposes all the power of the system (and its underlying base language,
when built as an extension of an existing one) to the experienced user.
On the wish list we may also find features su as unicode compliance, open source, prospects

of parallelization, performance, and many other things. Different projects will weigh these factors
differently and we will not dwell on them here.
With su a list of desiderata, what candidates will we currently find on the world wide web

marketplace? As it turns out, “currently” is not very different from ten years ago. To our knowl-
edge, there are currently four TBL implementations publicly available on the web: Brill (C),⁴⁴
FnTBL (C++),⁴⁵ NLTK (Python),⁴⁶ and μ-TBL (Prolog).⁴⁷
Brill was the first implementation, but it is hard-coded for POS tagging and now mostly of

⁴³See footnote on p. 10.
⁴⁴e original page has disappeared, but a mirror of the Brill tagger at its latest version is at

http://www.tech.plym.ac.uk/soc/staff/guidbugm/software/RULE_BASED_TAGGER_V.1.14.tar.Z

⁴⁵http://www.cs.jhu.edu/~rflorian/fntbl/, latest update 2001
⁴⁶http://www.nltk.org/, Natural Language Toolkit, general tools for language processing; the toolkit is continu-

ously updated, but there has been no non-trivial anges to the TBL module at least since version handling started
in 2005

⁴⁷http://www.ling.gu.se/~lager/mutbl.html, latest update 2000
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historical interest. e others all have different strengths and weaknesses. FnTBL is the fastest
and widely used. It implements several of the extensions of Section 3, but it is not so easy to
extend or experiment with for non-C++ programmers. e TBL implementation present in NLTK
is part of a larger toolkit for natural language processing, actively developed. It thus offers APIs
to all kinds of language-processing modules and utilities. However, its TBL part is very basic and
clearly geared towards the specific task of part-of-spee tagging. With proper generalization and
extension, its impressive infrastructure would make it an interesting tool for TBL applications, but
currently it seems less useful than it could be.
In our view, μ-TBL is the most interesting, and we will describe its pros and cons in somewhat

more detail. It is well-documented and has been used in several real-world projects. It offers
an interactive interface and a scripting language for automation. Code for compiling learned
rules into blazingly fast FSTs (Section 3.3.2) can be generated automatically. It contains, to our
knowledge, the only aempt to learn Constraint Grammar rules by TBL.
Most importantly, as we have already seen exemplified (Figure 10), its template specifications

form a declarative DSL, expressive but concise. It should be reasonably understandable to domain
experts without insights into Prolog or even programming. Still, templates may use arbitrary
Prolog code for complex tasks.⁴⁸
To be sure, the toolkit has a lot of improvement potential, too. It was developed under Sicstus, a

commercial and relatively expensive implementation of Prolog for whose availability no guaran-
tees can be made; ports between Prolog systems are usually possible, but tiresome. Besides Brill’s
original, it includes the fast randomized training algorithm due to Samuel (1998b) mentioned in
Section 3.3.1, but none of the sometimes preferable alternatives (e.g. Ramshaw and Marcus, 1994;
Ngai and Florian, 2001b; Hepple, 2000; Santos andMilidiú, 2007). Data is input as Prolog databases,
rather than in more widely used formats su as csv or XML. All data partitioning into train and
test set must be done by preprocessing. e latest code ange is from 2000: thus, the system
suffers slightly from general bit rot (no unicode; poor use of later hardware, especially memory).
It should be commended for its design around exangeable training algorithms, but this API still
makes unfortunate assumptions on the template format (cf. Table 1 vs. Table 4).
Furthermore, μ-TBL does of course not contain any of the post-2000 developments (and only

a few of the earlier ones) described in Section 3. A list of useful extensions includes probabilis-
tic TBL (Section 3.2.1), multidimensional TBL (Section 3.1.1), template-free TBL (Section 3.1.3),
TBL with automatically learned templates (Section 3.1.2), TBR (Section 3.2.3), unsupervised TBL
(Section 3.4), and means of automatically building ensembles (Section 2.5.3).⁴⁹
Leaving current and planned toolkits aside, we may briefly speculate on future general de-

velopments of the TBL method itself. We have mentioned several areas whi seem to deserve

⁴⁸As a remark, Prolog may seem like an odd oice of implementation language: generally speaking, Prolog tends to
fit very well to some problems and very poorly to others, with the traditional, strongly imperative phrasing of TBL
rather belonging to the second group. However, Prolog is an excellent base language for a declarative DSL behind
whi any amount of imperative detail can be hidden. e details of the hiding is the problem of the implementer,
not the user of the DSL.
In addition, it might well be worthwhile to look for other phrasings than the imperative ones. Lager (1999b)

presents an implementation whi is derived from a logical interpretation of TBL rules; and, by way of a practical
argument, Lager (1999a) describes an implementation of a system based on this idea whi is an order of magnitude
faster than Brill’s original, with the Prolog source code fiing on a single page.

⁴⁹We are aware that writing su lists is quier than implementing them.
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wider use (e.g., ETL, Section 3.1.2; TBR, Section 3.2.3; probabilistic TBL, Section 3.2.1; Constraint
Grammar-TBL, Section 3.2.2) and others whi apparently have been explored lile or not at all
(weights in multidimensional learning, Section 3.1.1; unsupervised Constrained Grammar-TBL,
Section 3.4; alternative scoring semes, Section 2.2.5; TBL rule purification in ensembles, Sec-
tion 2.5.3). Time will tell whi ones of these are worth their salt.
In a slightly larger perspective, it should be recognized that TBL is (mostly) a supervised ma-

ine learning method, and that generally speaking the trend has moved away from most su
methods. e current focus clearly lies on unsupervised learning on very large data sets. Nev-
ertheless, not all data sets are gigantic, and we believe there will always be a use for supervised
methods in specialized and not-so-specialized domains.
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Notes
i e parts-of-spee in this example are taken from the Penn Treebank tagset. So are their sometimes inscrutable
abbreviations –  for verb,  for noun,  for preposition, etc. For the purposes of this thesis, it is enough
to think of su names as arbitrary, atomic labels; see http://www.cis.upenn.edu/~treebank/ for external
definitions.
Admiedly, these labels bear lile similarity to what one might have learned about word classes in fih grade. To
remove any possible misunderstandings, parts-of-spee are not given by nature (this becomes very clear when
unrelated languages are compared). Instead, for practical purposes the set of allowable class labels, the tagset,
needs to be specified stipulatively. e Penn Treebank tagset (along with a few others) is commonly used for
English, but needs extensive modification to be useful even for closely related languages.

ii is problem formulation, whi employs single-leer correspondences, is osen for illustration rather than ef-
ficiency. It works well for many languages, but unfortunately, due to its very irregular orthography, English is
not one of them. Some unnaturalness in the mapping is unavoidable; here, we have had to introduce “empty”
phonemes (denoted by _). However, the point of this section is to provide a few examples of sequential classifica-
tion rather than solve problems, so we will gloss over su details here.

iii Most su ambiguities pass unnoticed by humans – we disambiguate on semantic grounds, usually without even
noticing that we did. But it is not difficult to come up with examples where also humans will be hesitant. Consider

• I [tripped]V [the man]NP [with my umbrella]PP−V(?)

• I [tripped]V [the man]NP [with the bla umbrella]PP−NP(?)

• I [tripped]V [the man]NP [with the umbrella]PP−V/PP−NP??

iv We have osen POS tagging (Example 1) as a recurring example not because we believe it is the only thing TBL
is good for, but rather because it is a practical, basic, and well-defined task, oen needed as a preprocessing step,
and frequently treated in the literature.
We also observe that very oen the allenges of any task for a particular language are decided by its typological
properties – how many, how regular, how complicated are the inflection paerns, how rigid the word order, how
well-defined the word boundaries, etc. POS tagging of Russian is very different from POS tagging of Chinese,
and both are different again from POS tagging of English. In this way, the typological variety of the thousands of
languages of the world brings to light a wide range of interesting suballenges. POS tagging, being one of the
most basic tasks, has inspired (or at least been used to illustrate) several extensions of popular maine learning
algorithms, including TBL.

v For almost all areas of Computational Linguistics, there is an unfortunate but massive preponderance of literature
where English is not only the language of communication but also the object of study. As a consequence, linguistic
phenomena or subtasks whi are judged interesting for English are more researed and (sometimes) beer
understood than those that are not. We will not dwell on this topic here, but just give a few examples. English
exhibits lile inflectional morphology (most words have only two or three forms); and word boundary detection
can mostly be done trivially, on white space. By contrast, a Turkish verb may have thousands of forms; and
word boundary detection is a major allenge in ai. Conversely, any collection of English text wrien by non-
professionals will contain a very significant amount of spelling errors, whi is a allenge for automatic methods.
On the other hand, with respect to spelling, a comparable text for Finnish can be expected to be almost perfect.

vi Just to avoid misunderstandings, linguistic classification tasks su as those in Table 8 do not form a closed set.
Part-of-spee tagging has been performed by humans for thousands of years, since the early grammarians of
Sanskrit and Greek, but word alignment (deciding what words should be paired together in sentences whi are
translations of ea other) or document format processing (e.g., extracting rules for turning poor HTML into
well-formed XML) are recent teniques to help satisfy recent needs.

vii Smoothing is a generic term for teniques for improving probability estimations of stoastic events drawn from
so large event spaces that they may rarely or (more oen) never have been seen before. Human language offers
many su event spaces. For instance, the sentence “please wait for a while before swallowing the headphone”
probably never have occurred before, and in any corpus whi does not include this paper it will have zero oc-
currences. Yet, the sentence clearly has some non-zero probability. Smoothing helps estimating that probability
from existing non-zero counts. It is also an entire resear field of its own.
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