

Participants know best: The effect of calibration method on data quality

Holmqvist, Kenneth; Nyström, Marcus; Andersson, Richard; van de Weijer, Joost

Published in: [Publication information missing]

2011

Link to publication

Citation for published version (APA):

Holmqvist, K., Nyström, M., Andersson, R., & van de Weijer, J. (2011). Participants know best: The effect of calibration method on data quality. [Publication information missing].

Total number of authors:

General rights

Unless other specific re-use rights are stated the following general rights apply:

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.

 • You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

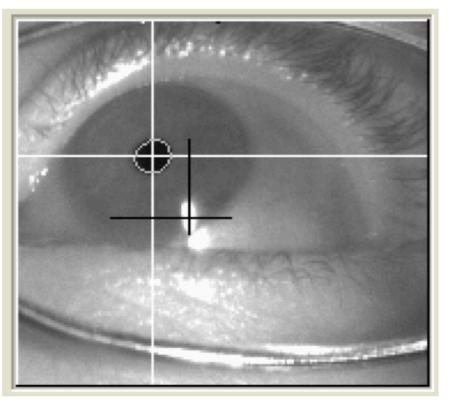
Read more about Creative commons licenses: https://creativecommons.org/licenses/

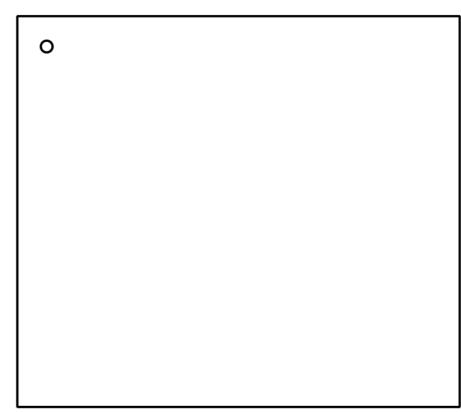
Take down policy

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Download date: 18. Dec. 2025

Participants know best – the effect of calibration method on data quality


Kenneth Holmqvist¹, Marcus Nyström¹, Richard Andersson¹and Joost van de Weijer¹ ¹Humanities Laboratory, Lund University, Sweden


BACKGROUND

1. Automatic calibration Software decides when eye feature samples are recorded.

2. Operator-controlled The operator clicks a button to record eye feature samples.

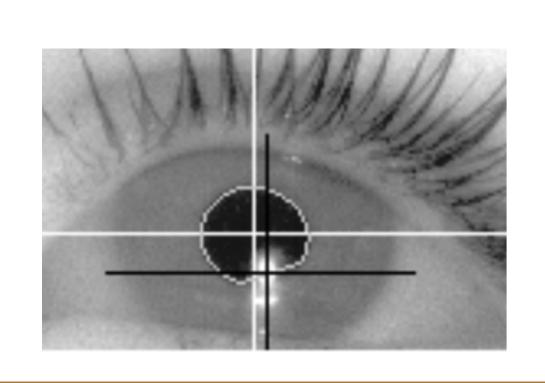
- Pupil (122.5, 147.7) - Corneal reflection (201.3, 194.8)

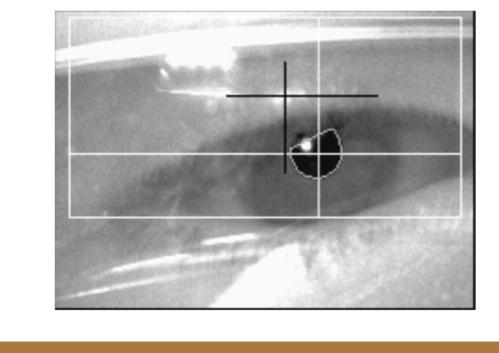
Calibration area with one target - Target (21, 27)

3. Participant-controlled: The participant clicks a button to record samples.

Challenges

The participant must look straight at the calibration target, and keep the eye still. Also, optical conditions may confuse gaze the estimation algorithm.


The participant may move his eye during calibration for a variety of reasons


- Anticipation (looking ahead too soon)
- Square-wave jerks, glissades, blinks
- **Distraction**
- Poor task instructions
- Etc.

Gaze estimation may be faltering due to

- Reflection in glasses
- Split corneal reflection in lenses
- The corneal reflection is in the sclera
- The pupil or corneal reflection are covered by eyelids or lashes
- Etc.

All samples

METHOD

Data recording

Four stations with identical SMI HiSpeed 500 Hz binocular Six operators (five experienced, one novice) 149 non-prescreened students of economics Two recordings: Just after calibration, and after 15 minutes of reading.

Automatic (44), Operator-controlled (62), Participant-controlled (43)

Glasses (12), lenses (35), uncorrected vision (102) Mascara (37), clean eye-lashes (112) Dominant left eye (64), right eye (85) Eye-lashes directed down (8), forward (32), up (109) Eye cleft: medium (13), narrow (3), open (133)

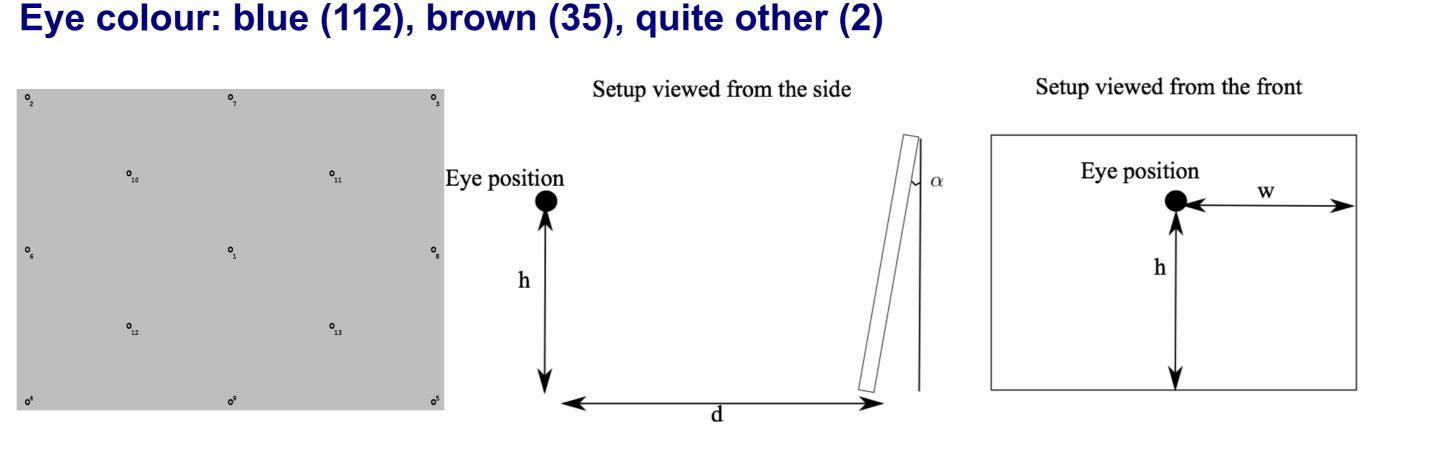
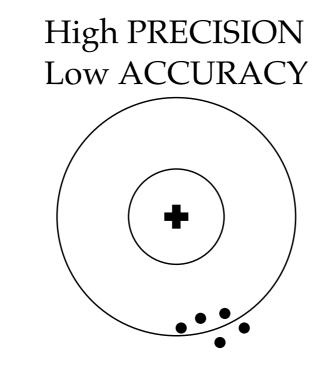
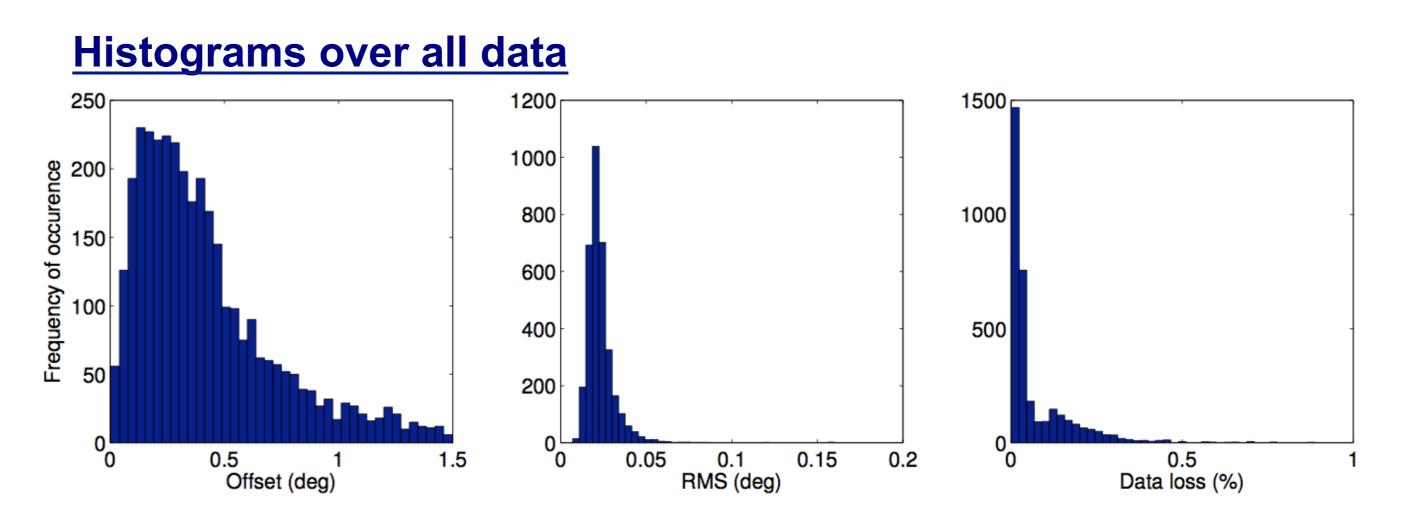




Figure 4: Experimental setup (d=670 mm, h=670 mm, $\alpha=x^{\circ}, w=\frac{3}{4}$ ·W mm, $h = \frac{3}{4} \cdot \text{H mm}$

$$\theta_{\text{Offset}} = \frac{1}{n} \sum_{i=1}^{n} \theta_i$$

$$\theta_{\text{Offset}} = \frac{1}{n} \sum_{i=1}^{n} \theta_i$$


$$\theta_{\text{RMS}} = \sqrt{\frac{1}{N} \sum_{i=1}^{N} \theta_i^2} = \sqrt{\frac{\theta_1^2 + \theta_2^2 + \dots + \theta_N^2}{N}}$$

- - ♣ True gaze position
 - Measured gaze position

RESULTS

Data analysis using a linear mixed-effects model: the lme4 package of R.

Accuracy (offset) is predicted by:

Predictor	min95	mean95	max95	p-value
Participant-controlled	-0.1192	-0.06668	-0.0072	0.0302
Operator-controlled	-0.07222	-0.01998	0.03953	0.4958
Off-center target	-0.00098	0.00000	0.00005	0.5402
Target placed low	-0.0001	-0.00005	0.00000	0.0022
${ m measurement No 2}$	0.2454	0.2747	0.3045	0.0001
EyeColorBrownish	-0.06158	-0.00443	0.06161	0.8762
EyeColorOther	-0.1189	0.2259	0.8560	0.2520
VisualAidsGlasses	0.03837	0.1619	0.3061	0.0064
VisualAidsLenses	0.1613	0.2458	0.3362	0.0001
EyeLashesForward	0.01188	0.08243	0.1661	0.0248
EyeLashesDown	0.04827	0.1828	0.3482	0.0052
Mascara	0.00034	0.06581	0.1448	0.0570
Eye Right	-0.01801	0.1299	0.04165	0.3790
DominantEye Right	-0.02526	0.03098	0.09206	0.2830
EyeR:DominantEyeR	-0.07155	-0.03789	-0.00102	0.0400
EyePhysiologyMedium	-0.2306	-0.1059	0.08341	0.2292
EyePhysiologyOpen	-0.2547	-0.1462	0.0079	0.0680

Precision:

Mascara Yes

DominantEye Right

EyePhysiologyMediu

EyePhysiologyOpen

EyeR:DominantEyeR

Eye Right

Accuracy:

Participant-controlled calibration best Higher position on monitor better Glasses make accuracy worse Open eye physiology better Better accuracy on dominant eye **Accuracy decreases over time**

Precision (RMS) is predicted by:

Predictor	min95	mean95	max95	p-value
-Participant-controlled	-0.00352	-0.00200	-0.00034	0.0160
Operator-controlled	-0.00233	-0.00090	0.00061	0.2444
Off-center target	0.00000	0.00000	0.00000	0.0001
Target placed low	0.00001	0.00001	0.00001	0.0001
measurementNo2	0.00059	0.00088	0.00116	0.0001
EyeColorBrownish	-0.00530	-0.00391	-0.00252	0.0001
EyeColorQuite other	-0.01265	-0.00772	-0.00097	0.0268
VisualAidsGlasses	0.00709	0.01041	0.01421	0.0001
VisualAidsLenses	-0.00286	-0.00142	0.00001	0.0602
EyeLashesForward	-0.00328	-0.00172	-0.00007	0.0394
EyeLashesDown	-0.00313	-0.00035	0.00261	0.8178
Mascara Residues	-0.00135	0.00131	0.00436	0.3572
Mascara Yes	-0.00116	0.00040	0.00218	0.6330
Eye Right	0.00114	0.00159	0.00203	0.0001
DominantEye Right	-0.00044	0.00098	0.00247	0.1674
EyeR:DominantEyeR	-0.00016	0.00039	0.00094	0.1692
EyePhysiologyMedium	-0.00971	-0.00603	-0.00162	0.0084
EyePhysiologyOpen	-0.00901	-0.00534	-0.00126	0.0134

Participant-controlled calibration best

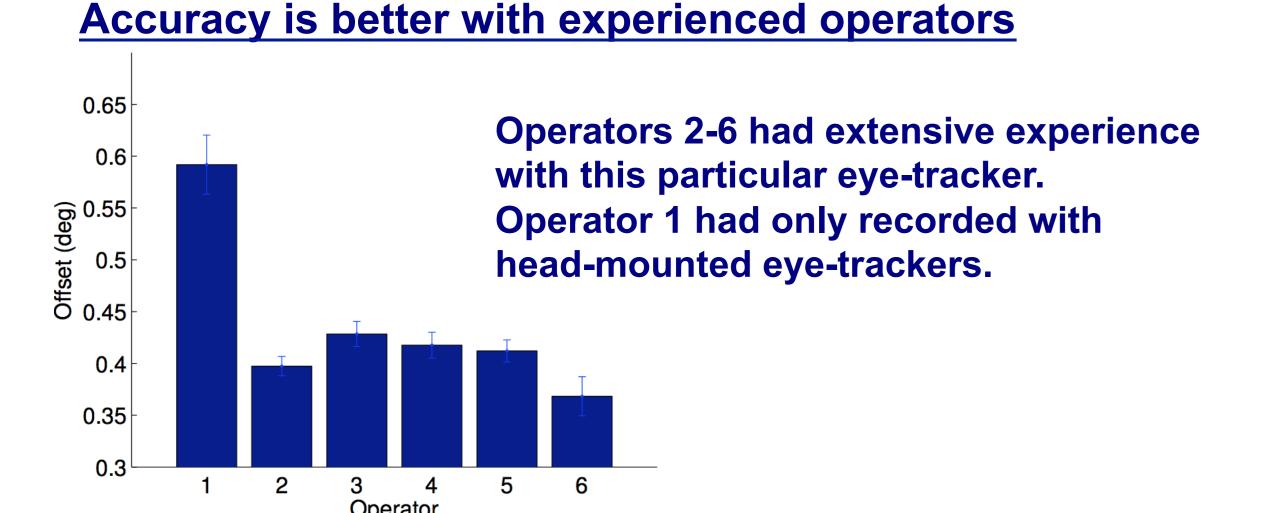
Higher position on monitor better

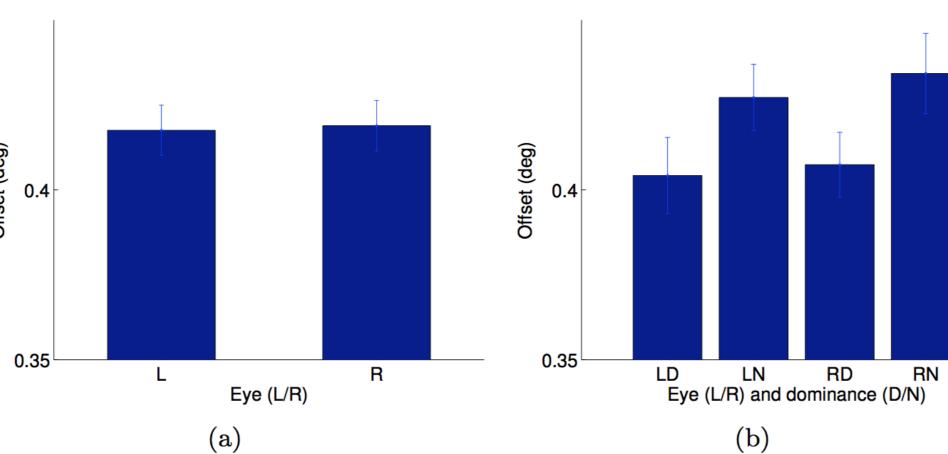
Blue eyes are worse than brown

Glasses make precision worse

Open eye physiology is better

Precision decreases over time


Amount of c	lata los	s is pi	redicte	ed bv_	E
Predictor	$\min 95$	mean95	max95	p-value	
Operator-controlled	-0.01641	0.00055	0.01495	0.9420	_
System-automatic	-0.03424	-0.01335	0.00484	0.1490	1
Off-center target	-0.01163	-0.01021	-0.00891	0.0001	
Target placed low	-0.00288	-0.00211	-0.00130	0.0001	
ValidationNo2	-0.01487	-0.01012	-0.00546	0.0001	
VisualAidsGlasses	0.00128	0.02323	0.03943	0.0416	
Visual Aids None	0.00509	0.01761	0.02817	0.0084	
EyeLashesForward	-0.03211	-0.01099	0.00548	0.2156	1
EyeLashesDown	-0.02165	0.00730	0.02955	0.5834	
EyeColorBrownish	-0.02104	-0.00306	0.01148	0.7100	
EyeColorOther	-0.34447	-0.11866	0.00422	0.0582	
Mascara Residues	-0.05155	-0.01597	0.01105	0.2794	


Data loss:

Higher position on monitor better Glasses make data loss worse Lenses make data loss worse Data loss increases over time

RESULTS

Dominant eye (Miles test) gives better accuracy

Left dominant (LD) and right dominant (RD) eye give better accuracy than non-dominant eyes (LN and RN).

No difference between L and R eye.