
LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

Adaptive CPU Resource Management for Multicore Platforms

Romero Segovia, Vanessa

2011

Document Version:
Publisher's PDF, also known as Version of record

Link to publication

Citation for published version (APA):
Romero Segovia, V. (2011). Adaptive CPU Resource Management for Multicore Platforms. [Licentiate Thesis,
Department of Automatic Control]. Department of Automatic Control, Lund Institute of Technology, Lund
University.

Total number of authors:
1

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.
 • Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

https://portal.research.lu.se/en/publications/359ec70b-4084-4730-967f-568fa562525b

Adaptive CPU Resource
Management for Multicore

Platforms

Vanessa Romero Segovia

Department of Automatic Control

Lund University

Lund, September 2011

To dreams that come true far away from home

Department of Automatic Control
Lund University
Box 118
SE-221 00 LUND
Sweden

ISSN 0280–5316
ISRN LUTFD2/TFRT--3252--SE

c© 2011 by Vanessa Romero Segovia. All rights reserved.
Printed in Sweden,
Lund University, Lund 2011

Abstract

The topic of this thesis is adaptive CPU resource management for
multicore platforms. The work was done as a part of the resource
manager component of the adaptive resource management framework
implemented in the European ACTORS project. The framework dy-
namically allocates CPU resources for the applications. The key ele-
ment of the framework is the resource manager that combines feedfor-
ward and feedback algorithms together with reservation techniques.
The reservation techniques are supported by a new Linux scheduler
through hard constant bandwidth server reservations. The resource
requirements of the applications are provided through service level ta-
bles. Dynamic bandwidth allocation is performed by the resource man-
ager which adapts applications to changes in resource availability, and
adapts the resource allocation to changes in application requirements.
The dynamic bandwidth allocation allows to obtain real application
models through the tuning and update of the initial service level ta-
bles.

3

Acknowledgements

I want to begin by thanking the Department of Automatic Control
for accepting me as one of its members and thereby opening up new
vistas of achieving my valued goal in life —To continuously strive for
excellence in the things that I like the most.
I extend my sincere thanks to my supervisor Karl-Erik for his never

ending patience and support of my ideas needed to accomplish this
work. My thanks also to Tore for his constant motivation and encour-
agement that helped me make the right decisions during the course of
this work.
I would like to express my heartfelt gratitude to my dear parents in

Peru who have been a continuous source of inspiration and supported
me in the pursuit of my dreams.
I would also like to thank my dear friends Niranjana and Song-

wei, for having shared my joys and sorrows, despite the geographical
distance separating us.
It would be an incomplete acknowledgement without mentioning

the enduring support of my beloved husband and soul mate, Patrick,
who has always been there in every journey of my life reassuring me
of the important things in life.
This research has partially been supported by the EC ICT FP7

project ACTORS (ICT-216586), the EC NoE ArtistDesign, and the Lin-
neaus Center LCCC.

5

Contents

1. Introduction . 9
1.1 Motivation . 9
1.2 Outline . 10
1.3 Publications . 10
1.4 Contributions . 12

2. Background . 13
2.1 Threads versus Reservations 14
2.2 Adaptivity in Embedded Systems 17
2.3 Multicores . 19
2.4 Linux . 21
2.5 Related Works . 22

3. Resource Manager Overview 25
3.1 Overall Structure . 25
3.2 Application Layer . 26
3.3 Scheduler Layer . 28
3.4 Resource Manager Layer 30
3.5 Assumptions and Delimitations 31

4. Resource Manager Inputs and Outputs 33
4.1 Static Inputs . 33
4.2 Dynamic Inputs . 36
4.3 Dynamic Outputs . 37

5. Service Level Assignment 39
5.1 Problem Description 39

7

Contents

5.2 BIP Formulation . 41
5.3 Example . 43

6. Bandwidth Distribution 48
6.1 Distribution Policies 49
6.2 Handling Infeasible Distributions 53
6.3 Reservation Parameters Assignment 59
6.4 Example . 59

7. Bandwidth Adaption . 67
7.1 Resource Utilization Feedback 68
7.2 Achieved QoS Feedback 78
7.3 Example . 80

8. Adaption and Learning 89
8.1 Service Level Table Inaccuracy 89
8.2 Resource Allocation Beyond Service Level Specifica-

tions . 90
8.3 Service Level Table Update 92
8.4 Example . 92

9. Adaption towards changes in resource availability . 96
9.1 Changing Resource Availability 96
9.2 Changing Application Importance Values 98
9.3 Example . 98

10. Application Examples . 101
10.1 Video Decoder Demonstrator 101
10.2 Video Quality Adaption Demonstrator 102
10.3 Feedback Control Demonstrator 102

11. Conclusions . 109
11.1 Summary . 109
11.2 Future Work . 111

12. Bibliography . 113

8

1

Introduction

1.1 Motivation

The need for adaptivity in embedded systems is becoming more urgent
with the continuous evolution towards much richer feature sets and
demands for sustainability.
The European FP7 project ACTORS (Adaptivity and Control of Re-

sources for Embedded Systems) [1] has developed an adaptive CPU
resource management framework. The framework consists of three lay-
ers: the application, the resource manager, and the scheduler layer. The
target systems of the framework are Linux-based multicore platforms
and is mainly intended for soft real-time applications.
The ideas presented in this thesis are driven by the desire to auto-

matically allocate the available CPU resources at runtime, and to adapt
the allocated resources to the real needs of the applications. This work
considers the resource manager as the key element of the ACTORS
framework. As a result it focuses all its efforts in the development of
different methods and algorithms for the resource manager.
The methods and algorithms described combine feedforward and

feedback techniques. The last ones have shown to be suitable to manage
the uncertainty related to the real CPU requirements of the applica-
tions at runtime. In this way the resource manager is able to adapt the
applications to changes in resource availability, and to adapt how the
resources are distributed when the application requirements change.

9

Chapter 1. Introduction

1.2 Outline

This thesis is organized as follows: Chapter 2 provides the relevant
background and describes related research. Chapter 3 presents the
ACTORS framework and gives an overview of its different layers. The
inputs and outputs of the resource manager are explained in Chapter
4. Chapter 5 introduces a feedforward algorithm that allows the reg-
istration of applications and assigns the service level at which they
must execute. Chapter 6 continues with the registration process and
shows different algorithms that allow the bandwidth distribution of
the registered applications. Different control strategies that perform
bandwidth adaption are shown in Chapter 7. Chapter 8 shows how the
implemented control strategies can be used to obtain a model of the
application at runtime. Adaption towards changes in resource avail-
ability and/or the changes in the relative importance of applications
with respect to others is described in Chapter 9. A brief description
of different applications that use the resource manager framework is
shown in Chapter 10. Chapter 11 concludes the thesis.

1.3 Publications

The thesis is based on the following publications:

V. R. Segovia, K.-E. Årzén, S. Schorr, R. Guerra, and G. Fohler, "Adap-
tive Resource Management Framework for Mobile Terminals - the AC-
TORS Approach," in Proceedings of the Workshop on Adaptive Resource
Management, WARM, Stockholm, April 2010.

V. R. Segovia and K.-E. Årzén, "Towards Adaptive Resource Manage-
ment of Dataflow Applications on Multi-core Platforms," in Proceed-
ings Work-in-Progress Session of the 22nd Euromicro Conference on

Real-Time Systems, ECRTS, Brussels, July 2010.

K.-E. Årzén, V. R. Segovia, M. Kralmark, S. Schorr, A. Meher, and G.
Fohler, "ACTORS Adaptive Resource Management Demo," in Proceed-
ings of the 3rd Workshop on Adaptive and Reconfigurable Embedded

Systems, APRES, Chicago, April 2011.

10

1.3 Publications

K.-E. Årzén, V. R. Segovia, S. Schorr, and G. Fohler, "Adaptive Re-
source Management Made Real," in Proceedings of the 3rd Workshop
on Adaptive and Reconfigurable Embedded Systems, APRES, Chicago,
April 2011.

E. Bini, G. Buttazzo, J. Eker, S. Schorr, R. Guerra, G. Fohler, K.-E.
Årzén, V. R. Segovia, and C. Scordino, "Resource management on mul-
ticore systems: The ACTORS approach," IEEE Micro, vol. 31, no. 3,
May/June 2011.

V. R. Segovia and K.-E. Årzén, "Adaptive Bandwidth Resource Man-
agement in Multicore Platforms," in Proceedings of the 12th Real-Time
in Sweden Conference, RTiS, Västerås, June 2011.

V. R. Segovia, M. Kralmark, M. Lindberg, and K.-E. Årzén, "Processor
thermal control using adaptive bandwidth resource management," in
Proceedings of the 18th World Congress of the International Federation

of Automatic Control, IFAC, Milan, August 2011.

The contributions by the author in the publications above mainly con-
cern the different algorithms implemented by the resource manager
to allocate bandwidth resources to the applications, and to adapt the
allocated bandwidth to the real needs of the applications.

The author has also contributed to the following ACTORS deliverables:

K.-E. Årzén, P. Faure, G. Fohler, M. Mattavelli, A. Neundorf, V. R.
Segovia, and S. Schorr, "D1f: Interface Specification", Jan. 2011. http:

//www3.control.lth.se/user/karlerik/Actors/M36/d1f-main.pdf

K.-E. Årzén, V. R. Segovia, E. Bini, J. Eker, G. Fohler, and S. Schorr,
"D3a: State Abstraction", January 2011. http://www3.control.lth.

se/user/karlerik/Actors/M36/d3a-main.pdf

K.-E. Årzén, V. R. Segovia, M. Kralmark, A. Neundorf, S. Schorr, R.
Guerra, and G. Fohler, "D3b: Resource Manager", January 2011. http:

//www3.control.lth.se/user/karlerik/Actors/M36/d3b-main.pdf

11

Chapter 1. Introduction

K.-E. Årzén, G. Fohler, V. R. Segovia, S. Schorr, "D3c: Resource Frame-
work", January 2011. http://www3.control.lth.se/user/karlerik/

Actors/M36/d3c.pdf

1.4 Contributions

This thesis contains the following contributions:

• A feedforward algorithm that assigns service levels to applica-
tions according to their bandwidth requirements, the QoS pro-
vided at each service level, and their relative importance values.

• Different policies for performing the bandwidth distribution of an
application on a multicore platform.

• Bandwidth controllers that dynamically adapt the allocated CPU
resources based on resource utilization and/or achieved QoS feed-
back, and that derive at runtime tuned models of the applications.

12

2

Background

Embedded systems play an important role in a very large proportion
of advanced products designed in the world. A surveillance camera
or a cell phone are classical examples of embedded systems in the
sense that they have limited resources in terms of memory, CPU, power
consumption, etc, but still they are highly advanced and very dynamic
systems.
Different types of applications may execute in these systems. Basi-

cally they can be distinguished based on their real-time requirements
as hard real-time applications and soft real-time applications. Hard
real-time applications are those where missing one deadline may lead
to a fatal failure of the system, so temporal and functional feasibility
of the system must be preserved even in the worst case. On the other
hand, for soft real-time applications failure to meet a deadline does not
necessarily lead to a failure of the system, the meeting of deadlines is
desirable for performing reasons.
Well-developed scheduling theory is available to determine whether

an application can meet all its deadlines or not. If sufficient informa-
tion is available about worst-case resource requirements, for instance
worst-case execution times (WCET), then the results from classical
schedulability theory can be applied.
Fixed Priority Scheduling with preemption is the most common

scheduling method. Tasks are assigned priorities and at every point
in time the ready task with the highest priority runs. The priorities
assignment can be done using Rate Monotonic Scheduling (RMS). For
RMS the tasks priorities are assigned according to their periods, the

13

Chapter 2. Background

smaller the period the higher the priority. Schedulability is guaranteed
as long as the processor utilization U is below 0.69 [2]. For overload con-
ditions low priority tasks can suffer from starvation, while the highest
priority task has still guaranteed access to the processor. Fixed Prior-
ity Scheduling is supported by almost all available real-time operating
systems.
There are also multiple dynamic priority scheduling algorithms.

In these algorithms the priorities are determined at scheduling time.
An example of such scheduling algorithm is Earliest Deadline First
(EDF). For EDF the ready task with the earliest deadline is scheduled
to run. EDF can guarantee schedulability up to a processor utilization
of 1.0 [2], which means that it can fully exploit the available process-
ing capacity of the processor. Under overload conditions there are no
guarantees that tasks will meet their deadlines. EDF is implemented
in several research operating systems and scheduling frameworks.

2.1 Threads versus Reservations

Today most embedded systems are designed and implemented in a very
static fashion, assigning resources using priorities and deadlines, and
with a very large amount of testing. The fundamental problem with
state-of-the-art technologies such as threads and priorities is the lack
of behavioral specifications and relations with resource demands.
For advanced embedded systems third party software has come to

play an important role. However, without a proper notion of resource
needs and timing constraints, integration of real-time components from
several different vendors into one software framework is complicated.
Threads and priorities do not compose [3], and even worse, priorities
are global properties, possibly causing completely unrelated software
components to interfere.
Resource reservations techniques constitute a very powerful mecha-

nism that addresses the problems described above. It enforces temporal
isolation and thereby creates groups of threads that have the proper-
ties of the atomic thread. This removes the need to know the structure
of third party software.

14

2.1 Threads versus Reservations

Resource Reservation Techniques

In order to be able to guarantee timely behavior for real-time applica-
tions, it is necessary to shield them from other potentially misbehaving
applications. One approach is to use resource reservations to isolate
tasks from each other.
Resource reservation techniques implement temporal protection by

reserving for each task τ i a specified amount of CPU time Qi in every
interval Pi. The term Qi is also called maximum budget, and Pi is
called reservation period.
There are different reservation based scheduling algorithms, for

instance the Constant Bandwidth Server (CBS) [4, 5], which is based
on EDF, the Weighted Fair Scheduling [6], which has its origins in the
networking field and also the Lottery scheduling [7], which has a static
approach to reservations.

The Constant Bandwidth Server The Constant Bandwidth Server
(CBS) is a reservation based scheduling method, which takes advan-
tage of dynamic priorities to properly serve aperiodic requests and
better exploit the CPU.
A CBS server S is characterized by the tuple (QS, PS), where QS

is the server maximum budget and PS is the server period. The server
bandwidth is denoted as U S and is the ratio QS/PS. Additionally, the
server S has two variables: a budget qS and a deadline dS.
The value qS lies between 0 and QS, it is a measure of how much

of the reserved bandwidth the server has already consumed in the
current period PS. The value dS at each instance is a measure of the
priority that the algorithm provides to the server S at each instance.
It is used to select which server should execute on the CPU at any
instance of time.
Consider a set of tasks τ i consisting of a sequence of jobs Ji, j with

arrival time ri, j. Each job is assigned a dynamic deadline di, j that at
any instant is equal to the current server deadline dS. The algorithm
rules are defined as follow:

• At each instant a fixed deadline dS,k = ri, j+PS with dS,0 = 0 and
a server budget qS = QS is assigned.

• The deadline di, j of Ji, j is set to the current server deadline dS,k.
In case the server deadline is recalculated the job deadline is also

15

Chapter 2. Background

recalculated.

• Whenever a served job Ji, j executes, qS is decreased by the same
amount.

• When qS becomes 0, the server variables are updated to dS,k =
ri, j + P

S and qS = QS.

• In case Ji, j+1 arrives before Ji, j has finished, then Ji, j+1 is put in
a FIFO queue.

Hard CBS A problem with the CBS algorithm is that it has a soft
reservation replenishment rule. This means that the algorithm guar-
antees that a task or job executes at least for QS time units every PS,
allowing it to execute more if there is some idle time available. Such
kind of rule does not allow hierarchical scheduling, and is affected by
some anomalies in the schedule generated by problems like the Greedy
Task [8] and the Short Period [9].
A hard reservation [10, 8, 9] instead is an abstraction that guaran-

tees the reserved amount of time to the server task or job, such that
the task or job executes at most QS units of time every PS.
Consider qri, j as the remaining computational need for the job Ji, j

once the budget is exhausted. The algorithm rules are defined as follow:

• Whenever qri, j ≥ Q
S, the server variables are updated to dS,k+1 =

dS,k + P
S and qS = QS.

• On the other hand if qri, j < Q
S, the server variables are updated

to dS,k+1 = dS,k + qri, j/U
S and qS = qri, j.

In general resource reservation techniques provide a more suitable
interface for allocating resources such as CPU to a number of applica-
tions. According to this method, each application is assigned a fraction
of the platform capacity, and it runs as if it were executing alone on
a less performing virtual platform [11], independently of the behav-
ior of the other applications. In this sense, the temporal behavior of
each application is not affected by the others and can be analyzed in
isolation.
A virtual platform consists of a set of virtual processors or reser-

vations, each of them executing a portion of an application. A virtual
processor is a uni-processor reservation characterized by a bandwidth

16

2.2 Adaptivity in Embedded Systems

α ≤ 1. The parameters of the virtual processor are derived as a func-
tion of the computational demand to meet the application deadline.

Hierarchical Scheduler

When using resource reservation techniques such as the Hard CBS,
the system can be seen as a two-level hierarchical scheduler [12] with
a global scheduler and local schedulers. Figure 2.1 shows the structure
of a hierarchical scheduler.

Figure 2.1: Hierarchical scheduler structure.

The global scheduler that is at the top level selects which applica-
tion is executed next and for how long. Thus, it assigns each application
a fraction of the total processor time distributed over the time line ac-
cording to a certain policy. The local scheduler that belongs to each
application selects which task is scheduled next.
In particular for two-level hierarchical scheduler the ready queue

has either threads or servers, and the servers in turn contain threads
or servers (for higher level schedulers).

2.2 Adaptivity in Embedded Systems

The need for adaptivity in embedded systems is becoming more press-
ing with the ongoing evolution towards much richer feature sets and
demands for sustainability. Knowing the exact requirements of differ-
ent applications at design time is very difficult. From the application

17

Chapter 2. Background

side, the resource requirements may change during execution. Tasks
sets running concurrently can change at design time and runtime, this
could be the result of changes in the required feature set or user in-
stalled software when deployed. From the system side, the resource
availability may also vary at runtime. The systems can be too complex
to know everything in detail, this implies that not all software can be
analyzed. As a result, the overall load of the system is subject to sig-
nificant variations, which could degrade the performance of the entire
system in an unpredictable fashion.
Designing a system for worst-case requirements is in many cases

not economically feasible, for instance in consumer electronics, mobile
phones, etc. For these systems, using the classical scheduling theory
based on worst-case assumptions, a rigid offline design and a priory
guarantees would keep resources unused for most of the time. As a con-
sequence, resources that are already scarce would be wasted reducing
in this way the efficiency of these systems.
In order to prevent performance and efficiency degradation, the

system must be able to react to variations in the load as well as in the
availability of resources. Adaptive real-time systems addresses these
issues. Adaptive real-time systems are able to adjust their internal
strategies in response to changes in the resource availability, and re-
source demands to keep the system performance at an acceptable level.

Adaptive Resource Management

Adaptivity can be achieved using methods for managing CPU resources
together with feedback techniques. The management algorithms can
range from simple such as the adaption of task parameters like the
task periods, to highly sophisticated and more reliable frameworks
that utilize resource reservation techniques. The use of virtualization
techniques such as the resource reservation-based scheduling provide
spatial and temporal separation of concerns and enforce dependability
and predictability. Reservations can be composed, are easier to develop
and test, and provide security support, making them a good candi-
date to manage CPU resources. The feedback techniques provide the
means to evaluate and counteract if necessary the consequences of the
scheduling decisions made by the management methods.
In order to be able to adapt to the current state of the resource

requirements of the application as well as the resource availability

18

2.3 Multicores

of the system, the current state must be known. Thus, sensors are
required to gather information such as the CPU resource utilization,
deadline misses, etc. This information is then used to influence the
operation of the system using actuators, which can be task admission
control, modification of task weights or priorities, or modification of
reservation parameters such as the budget/bandwidth and the period.
These schemes resemble a control loop with sensors, actuators and a
plant which is to be controlled.
There are a variety of approaches how to apply control theory to

scheduling [13, 14, 15]. Of particular interest is feedback control in
combination with resource reservation techniques. The motivation be-
hind this is the need to cope with incorrect reservations, to be able
to reclaim unused resources and distribute them to more demanding
tasks, and to be able to adjust to dynamic changes in resource re-
quirements. Hence, a monitoring mechanism is needed to measure the
actual demands and a feedback mechanism is needed to perform the
reservation adaptation.

2.3 Multicores

The technology improvements in the design and development of micro-
processors has always aimed at increasing their performance from one
generation to the next. Initially for single processors the tendency was
to reduce the physical size of chips, this implied an increment in the
number of transistors per chip. As a result, the clocks speeds increased
producing a dangerous level of heat dissipation across the chip [16].
Many techniques are used to improve single core performance . In

the early nineties performance was achieved by increasing the clock fre-
quency. However, processor frequency has reached a limit. Other tech-
niques include superscalar processors [17] that are able to issue multi-
ple instructions concurrently. This is achieved through pipelines where
instructions are pre-fetched, split into sub-components and executed
out-of-order. The approach is suitable for many applications, however
it is inefficient for applications that contain code difficult to predict.
The different drawbacks of these techniques, the increased available
space, and the demand for increased thread level parallelism [18] for
which many applications are better suited led to the development of

19

Chapter 2. Background

multicore microprocessors.
Nowadays performance is not only synonym of higher speed, but

also of power consumption, temperature dissipation, and number of
cores. Multicore processors are often run at slower frequencies, but
have much better performance than a singlecore processor. However,
with increasing the number of cores comes issues that were previously
unforeseen. Some of these issues include memory and cache coherence
as well as communication between the cores.

Multicore Scheduling Algorithms

One of the large challenges of multicore systems, is that the schedul-
ing problem now consists of both mapping the tasks to a processor
and scheduling the tasks within a processor. There are still many open
problems regarding the scheduling issues in multicore systems. Ana-
lyzing multiprocessor systems is not an easy task. As pointed out by
Liu [19]: "few of the results obtained for a single processor generalize
directly to the multiple processor case: bringing in additional proces-
sors adds a new dimension to the scheduling problem. The simple fact
that a task can use only one processor even when several processors
are free at the same time adds a surprising amount of difficulty to the
scheduling of multiple processors".
An application can be executed over a multicore platform using

partitioned or global scheduling algorithm. For partitioned scheduling
any task of the application is bound to execute on a given core. The
problem of distributing the load over the computing units is analogous
to the bin-packing problem, which is known to be NP-hard [20]. There
are good heuristics that are able to find acceptable solutions [21, 22,
23, 24]. However, their efficiency is conditioned by their computational
complexity, which is often too high.
For global scheduling any task can execute on any core belonging

to the execution platform. This option is preferred for highly vary-
ing computational requirements. With this method, there is a single
system-wide queue from which tasks are extracted and scheduled on
the available processors.

Multicore Reservations

Multicore platforms also need resource reservation techniques, accord-
ing to which the capacity of a processor can be partitioned into a set

20

2.4 Linux

of reservations. The idea behind multicore reservation is the ability to
reserve shares of a multicore platform, so that applications can run in
isolation without interfering on each other. Despite the simple formu-
lation of the problem, the multicore nature of the problem introduces
a considerably higher complexity than the singlecore version of the
problem.

2.4 Linux

The Linux scheduler is a priority based scheduler that schedules tasks
based upon their static and dynamic priorities. Each time the Linux
scheduler runs, every task on the run queue is examined and its good-
ness value is computed. This value results from the combination of
the static and dynamic priorities of a task. The task with the highest
goodness is chosen to run next. Ties in goodness result in the task that
is closest to the front of the queue running first.
The Linux scheduler may not be called for intervals of up to 0.4

seconds when there are compute bound tasks running. This means
that the currently running task has the CPU to itself for periods of
up to 0.4 seconds, this will also depend upon the priority of the task
and whether it blocks or not. This is convenient for throughput since
there are few computationally unnecessary context switches. However,
this can destroy interactivity because Linux only reschedules when a
task blocks or when the dynamic priority of the task reaches zero. As
a result, under the Linux default priority based scheduling method,
long scheduling latencies can occur.

Linux Trends in Embedded Systems

Traditionally embedded operating systems have employed proprietary
software, communication protocols, operating systems and kernels for
their development. The arrival of Linux has been a major factor in
changing embedded landscape. Linux provides the potential of an open
multivendor platform with an exploding base of software and hardware
support.
The use of embedded Linux mostly for soft real-time applications

but also for hard ones, has been driven by the many benefits that it

21

Chapter 2. Background

provides with respect to traditional proprietary embedded operating
systems. Embedded Linux is a real-time operating system that comes
with royalty-free licenses, advanced networking capabilities, a stable
kernel, support base, and the ability to modify and redistribute the
source code.
Developers are able to access the source code and to incorporate

it into their products with no royalty fees. Many manufacturers are
providing their source code at no cost to engineers or other manufac-
turers. Such is the case of Google with its Android software for cellular
phones available for free to handset makers and carriers who can then
adapt it to suit their own devices.
As further enhancements have been made to Linux it has quickly

gained momentum as an ideal operating system for a wide range of em-
bedded devices scaling from PDAs, all the way up to defense command
and control systems.

2.5 Related Works

This section presents some of the projects as well as different research
topics related to the ACTORS project and consequently to this work.

The MATRIX Project

The Matrix [25, 26] project has developed a QoS framework for real-
time resource management of streaming applications on heterogeneous
systems. The Matrix is a concept to abstract from having detailed tech-
nical data at the middleware interface. Instead of having technical data
referring to QoS parameters like: bandwidth, latency and delay, it only
has discrete portions that refer to levels of quality. The underlying
middleware must interpret these values and map them on technical
relevant QoS parameters or service levels, which are small in number
such as high, medium, low.

The FRESCOR Project

The European Frescor [27] project has developed a framework for real-
time embedded systems based on contracts. The approach integrates
advanced flexible scheduling techniques provided by the AQuoSA [28]

22

2.5 Related Works

scheduler directly into an embedded systems design methodology. The
target platform is singlecore processor. The bandwidth adaptation is
layered on top of a soft CBS server. It is achieved by creating a con-
tract model that specifies which are the application requirements with
respect to the flexible use of the processing resources in the system.
The contract also considers the resources that must be guaranteed if
the component is to be installed into the system, and how the system
can distribute any spare capacity to achieve the highest usage of the
available resources.

Other Adaptive QoS Frameworks

Comprehensive work on application-aware QoS adaptation is reported
in [29, 30]. Both approaches separate between the adaptations on the
system and application levels. Architectures like [29] give an overall
management system for end-to-end QoS, covering all aspects from user
QoS policies to network handovers. While in [29] the application ad-
justment is actively controlled by a middle-ware control framework,
in [30] this process is left to the application itself, based on requests
from the underlying system.
Classical control theory has been examined for QoS adaptation. [31]

shows how an application can be controlled by a task control model.
The method presented in [32] uses control theory to continuously adapt
system behavior to varying resources. However, a continuous adapta-
tion maximizes the global quality of the system but it also causes large
complexity of the optimization problem. Instead, we propose adaptive
QoS provision based on a finite number of discrete quality levels.
The variable-bandwidth servers proposed in [33] integrate directly

the adaptation into the bandwidth servers. Resource reservations can
be provided also using other techniques than bandwidth servers. One
possibility is to use hypervisors [34], or to use resource management
middleware or resource kernels [10]. Resource reservations are also
partly supported by the mainline Linux completely fair scheduler or
CFS.
Adaptivity with respect to changes in requirements can also be pro-

vided using other techniques. One example is the elastic task schedul-
ing [35], where tasks are treated as springs that can be compressed
in order to maintain schedulability in spite of changes in task rate.
Another possibility is to support mode changes through different types

23

Chapter 2. Background

of mode change protocols [36]. A problem with this is that the task set
parameters must be known both before and after the change.

24

3

Resource Manager

Overview

3.1 Overall Structure

In ACTORS the main focus was automatic allocation of available CPU
resources to applications not only at design time, but also at runtime,
based on the demands of the applications as well as the current state
of the system. In order to do this, ACTOR proposes a software archi-
tecture [37] consisting of three layers:

• The application layer

• The scheduler layer

• The resource manager layer

Figure 3.1 shows the overall structure of the ACTORS software ar-
chitecture. The resource manager is a key component in the architec-
ture, that collects information from the other layers through interfaces,
and makes decisions based on this information and the current state
of the system.

25

Chapter 3. Resource Manager Overview

Figure 3.1: Overall structure of the ACTORS software architecture.

3.2 Application Layer

The ACTORS application layer will typically contain a mixture of dif-
ferent application types. These applications will have different charac-
teristics and real-time requirements. Some applications will be imple-
mented in the dataflow language CAL whereas others use conventional
techniques.
In general, it is assumed that the applications can provide support

for resource and quality adaption. This implies that an application
supports one or several service levels, where the application consumes
different amount of resources at each service level. Applications sup-
porting several service levels are also known as adaptive applications.
On the other hand, applications which support only one service level
are known as non-adaptive applications.
Applications which register and work together with the resource

manager are defined as ACTORS-aware applications, these applica-
tions can be adaptive or non-adaptive. Applications which do not pro-
vide any information to the resource manager are defined as ACTORS-
unaware applications, these applications are non-adaptive.

26

3.2 Application Layer

CAL Applications

A CAL application is an application written in CAL [38], which is a
dataflow and actor-oriented language. An actor is a modular compo-
nent that encapsulates its own state, and interacts with other actors
through input and output ports. This interaction with other actors is
carried out asynchronously by consuming (reading) input tokens, and
producing (writing) output tokens. The output port of an actor is con-
nected via a FIFO buffer to the input port of another actor. The compu-
tations within an actor are performed through firings, or actions which
include consumption of tokens, modification of internal state, and pro-
duction of tokens. A CAL network or network of actors is obtained
by connecting actor input and output ports. Figure 3.2 illustrates the
structure of a CAL application.

Figure 3.2: CAL application.

A CAL network can correspond to a synchronous data flow (SDF)
model [39], or a dynamic data flow (DDF) model [40]. For the first
type of network the number of tokens consumed and produced during
each firing is constant, making it possible to determine the firing order
statically.
ACTORS distinguishes between dynamic and static CAL applica-

tions. In general dynamic CAL applications correspond to most mul-
timedia streaming applications, where the execution is highly data-
dependent. This makes it impossible to schedule the network statically.
Static CAL applications contains actions with constant token consump-
tion and production rates, for instance a feedback control application.

27

Chapter 3. Resource Manager Overview

In this case the data flow graph can be translated into a static prece-
dence relation.
The execution of a CAL application is governed by the CAL run-time

system. The run-time system consists of two parts, the actor activator
and the run-time dispatcher. The actor activator activates actors as
input data becomes available by marking them as ready for execution.
The dispatcher repeatedly selects an active actor in a round-robin fash-
ion and then executes it until completion.
The run-time system assumes that the actor network is statically

partitioned. For each partition there is a thread that performs the actor
activation and dispatching.
The run-time is not only responsible for the execution of the CAL ac-

tors within applications, but also of the system actors. A system actor is
an actor that is implemented directly in C. The purpose of these actors
is to provide a means for communication between the CAL application
and the external environment. System actors are used for input-output
communication, for access to the system clock, and for communication
with the resource manager. Normally each system actor has its own
thread.

Legacy Applications

A legacy applications is an ACTORS-unaware application. This means
that it is not necessary for the application to modify its internal be-
havior based on which service level that it executes under, and hence
its resource consumption.
The current way of executing a legacy application is through the

use of a wrapper. The wrapper enables the resource manager to han-
dle a legacy application as an application with one or several service
levels and one virtual processor. The wrapper periodically checks if any
application threads have been created or deleted and adds or removes
those from the virtual processor.

3.3 Scheduler Layer

The scheduler is the kernel component which schedules and allocates
resources to each process according to a scheduling policy or algorithm.

28

3.3 Scheduler Layer

As one of the important parts of the kernel, its main job is to divide
the CPU resources among all active processes on the system.
In order to fit the requirements specified by the ACTORS architec-

ture, the scheduling algorithm needs to implement a resource reserva-
tion mechanism [41, 42] for CPU time resources.
According to the resource reservation mechanism, each application

is assigned a fraction of the platform capacity, and it runs as if it were
executing alone on a slower virtual platform (see Figure 3.1), indepen-
dently of the behavior of other applications. A virtual platform consists
of a set of virtual processors, each executing a part of an application.
A virtual processor is parametrized through a budget Qi and a period
Pi. In this way, the tasks associated with the virtual processor execute
for an amount of time equal to Qi every period Pi.

SCHED_EDF

SCHED_EDF [43] is a new real-time scheduling algorithm that has been
developed within the ACTORS project. It is a hierarchical partitioned
EDF scheduler for Linux where SCHED_EDF tasks are executed at the
highest level, and ordinary Linux tasks at the secondary level. This
means, that ordinary tasks may only execute if there is no SCHED_EDF

tasks that want to execute.
The SCHED_EDF provides support for reservations or virtual proces-

sors through the use of hard CBS (Constant Bandwidth Server). A
virtual processor may contain one or several SCHED_EDF tasks.
Some of the characteristics of SCHED_EDF are:

• SCHED_EDF allows the creation of virtual processors for periodic
and non periodic process.

• SCHED_EDF permits the modification of virtual processors param-
eters.

• SCHED_EDF provides support for multicore platforms.

• SCHED_EDF has a system call that allows to specify in which core
the process should execute.

• SCHED_EDF reports the resource usage per virtual processor to
userspace.

29

Chapter 3. Resource Manager Overview

• SCHED_EDF allows the migration of virtual processors between
cores at runtime.

The last characteristic allows monitoring the resource usage of the
threads executing within a virtual processor. This information can be
used by the resource manager in order to redistribute the CPU resource
among the applications if necessary.

3.4 Resource Manager Layer

The resource manager constitutes the main part of the ACTORS ar-
chitecture. It is a user space application, which decides how the CPU
resources of the system should be distributed among the applications.
The resource manager interacts with both the application and the
scheduler layer at run-time, this interaction allows it to gather infor-
mation from the running applications as well as from new applications
that would like to execute on the system, and to be aware of the current
state of the system.
The resource manager communicates with the applications using a

D-Bus [44] interface, which is a message bus system that enables appli-
cations on a computer to talk to each other. In the case of the scheduler,
the resource manager communicates using the control groups API of
Linux. Here, the control groups provide a mechanism for aggregating
partitioned sets of tasks, and all their future children, into hierarchical
groups with specialized behavior.
The main tasks of the resource manager are to accept applications

that want to execute on the system, to provide CPU resources to these
applications, to monitor the behavior of the applications over time,
and to dynamically change the resources allocated during registration
based on the current state of the system, and the performance criteria
of the system. This is the so called resource adaptation.
Figure 3.3 shows in more detail the structure of the ACTORS archi-

tecture. Here, the resource manager has two main components, a global
supervisor, and several bandwidth controllers. The supervisor imple-
ments feedforward algorithms which allow the acceptance, or registra-
tion, of applications. The bandwidth controllers implement a feedback
algorithm, which monitors the resource consumption of the running

30

3.5 Assumptions and Delimitations

Figure 3.3: ACTORS software architecture

applications, and dynamically redistributes the resources if necessary.
A detailed description of these two components will be done in Chap-
ters 5, 6 and 7.

Resource Manager Implementation

The resource manager is implemented in C++. It consists of two threads
which themselves are SCHED_EDF tasks executing within a fixed-size
virtual processor within core 0. The resource manager communicates
with the applications through a D-Bus interface and with the underly-
ing SCHED_EDF using the control groups API of Linux. The first thread
handles incoming D-Bus messages containing information provided by
the applications. The second thread periodically samples the virtual
processors, measures the resource consumption, and invokes the band-
width controllers.

3.5 Assumptions and Delimitations

The current version of the resource manager makes a number of as-
sumptions and have several limitations. These are summarized below.

31

Chapter 3. Resource Manager Overview

Homogeneous Platform: The resource manager assumes that the
execution platform is homogeneous, that is, all cores are identical and
that it does not matter on which core that a virtual processor exe-
cutes. In reality this assumption rarely holds. Also, in a system where
the cores are identical, it is common that the cores share L2 caches
pairwise. This is for example the case for x86-based multicore archi-
tectures. A consequence of this is that if we have two virtual processors
with a large amount of communication between them it is likely that
the performance, for instance, throughput, would be better if they are
mapped to two physical cores that share cache. This is, however, cur-
rently not supported by the resource manager.

Single Resource Management: The current version of the resource
manager only manages the amount of CPU time allocated to the ap-
plications, that is, a single resource. Realistic applications also require
access to other resources than the CPU, for example memory. How-
ever, in some sense the CPU is the most important resource, since if a
resource does not receive CPU time it will not need any other resource.

Temporal isolation: The SCHED_EDF operating system supports tem-
poral isolation through the use of constant bandwidth servers. How-
ever, SCHED_EDF currently does not support reservation-aware synchro-
nization protocols, for instance, bandwidth ceiling protocols [45]. Thus,
temporal isolation is not guaranteed for threads that communicate with
other threads, Synchronization is currently implemented using ordi-
nary POSIX mutex locks. One example of this is the mutual exclusion
synchronization required for the FIFO buffers in the CAL dataflow
applications.

Best Effort Scheduling: Although the resource management frame-
work can be used also for control applications as will be described in
Chapter 10 is has primarily been developed for multimedia application
which commonly have soft real-time requirements and are focused on
maximizing the throughput. The underlying operating system, that is,
Linux together with SCHED_EDF is not altogether well-specified. A con-
sequence of this is that the scheduling approach adopted is best effort
scheduling.

32

4

Resource Manager Inputs

and Outputs

The communication between the different layers of the ACTORS ar-
chitecture is based on interfaces between the layers. The information
flowing through these interfaces has different characteristics, but in
general one can distinguish between static and dynamic information.
Considering that the resource manager is the key element of the archi-
tecture, it also constitutes the pivot from where the information flows
in or out to the other layers.

4.1 Static Inputs

Static inputs include information which is not considered to change
during runtime, or at least not very often. This information is mainly
provided by the application at registration time, and the developer at
system start time.

Service Level Table

In order to be able to run or execute in the ACTORS software architec-
ture, every application must register with the resource manager. The
registration allows the resource manager to be aware of the resource
requirements, quality of service, and structure of the applications run-
ning on the system. These particular characteristics of each application
are described in the service level table.

33

Chapter 4. Resource Manager Inputs and Outputs

The service level table provides information about the different ser-
vice levels supported by the applications. Additionally it specifies the
resource requirements and the quality of service that can be expected
at each service level.
All the values in the service level table are expressed as integer

values. The service level index is a number that can take any value be-
ginning from 0, where 0 corresponds to the highest service level. The
quality of service or QoS, takes values between 0 and 100. It corre-
sponds to the QoS that can be expected at a certain service level. The
resource requirements are specified as a tuple consisting of two pa-
rameters: the bandwidth, and the time granularity. The bandwidth is
an indicator of the amount of resources required by an application, but
it is not enough to capture all of the time properties of an application.
These properties can be included in the service level table through the
time granularity value. This value provides the time horizon within
which the resources are needed. The time granularity is expressed in
micro seconds [µs].
The service level table may include information about how the total

bandwidth should be distributed among the individual virtual proces-
sors of the application for each service level. These values are also
known as the bandwidth distribution or BWD. The bandwidth distri-
bution values may be absolute or relative. If it is relative then the band-
width distribution values for each service level sums to 100, whereas
if it is absolute then it sums to the total bandwidth.
Additionally to the service levels supported by each application, an

extra service level is automatically added to all applications when they
register. This service level is know as the extra service level or x. The
resource requirements at this service level are the lowest that can be
assigned during registration. The functionality of this service level will
be explained in Chapter 5.
Table 4.1 shows the service level table for an application named A1.

The table contains the service level index (SL), the quality of service
(QoS), the bandwidth (BW), the time granularity, and the bandwidth
distribution (BWD). In the table at service level 0 the application A1
provides a QoS of 100%. The total bandwidth required and the granu-
larity at this service level correspond to 200% and 50µs respectively.
The total bandwidth is evenly splited among the four virtual processors
that contain the application tasks, this is expressed by the bandwidth

34

4.1 Static Inputs

distribution values.

Table 4.1: Service level table of application A1

Application SL QoS [%] BW [%] Granularity [µs] BWD [%]

A1 0 100 200 50 [50, 50, 50, 50]

1 80 144 90 [36, 36, 36, 36]

2 50 112 120 [28, 28, 28, 28]

3 30 64 250 [16, 16, 16, 16]

x 1 4 100000 [1, 1, 1, 1]

The values defined in the service level table of each application,
except for the extra service level x, are specified by the application
developer, and can be seen as an initial model of the application. How
certain or trustful these values are is something that can be evaluated
by the different algorithms implemented by the resource manager first
after the application has been executing for some period of time.

Importance Values

The application importance specifies the relative importance or prior-
ity of an application with respect to others. The importance values only
play a role when the system is overloaded, that is, when it is not pos-
sible for all registered applications to execute at their highest service
level.
The importance is expressed as a non-negative integer value and

it is specified by the system developer. In case the value is not explic-
itly specified which is the most common case, the resource manager
provides a default importance value of 10.
Table 4.2 shows an example of an importance table, which has three

applications. The highest value represents the highest importance.
The importance values are provided in a file that is read by the

resource manager during start up.

Number of Virtual Processors

The number of virtual processors is a value provided implicitly through
the bandwidth distribution. For the resource manager this value is an

35

Chapter 4. Resource Manager Inputs and Outputs

Table 4.2: Importance table

Application Importance

mplayer 100

tetris 75

firefox 10

indicator of the topology of the application. The number can be greater
than the number of online physical cores of the system.

Thread Groups

In addition to the service level table each application also needs to
provide information about how many thread groups it consists of, and
which threads that belong to these groups. Each thread group will
eventually be executing within a separate virtual processor.

4.2 Dynamic Inputs

Dynamic inputs includes online information about the state of the al-
located resources, that is, how they are being used, and about the level
of satisfaction obtained with the allocated resources. This information
is provided by the scheduler and the application layers.

Used Budget

The used budget value is the cumulative budget used by the threads
in each of the virtual processors of an application since its creation.
This value is measured in nano seconds.

Exhaustion Percentage

The exhaustion percentage value is the cumulative number of server
periods that the virtual processor budget has been completely con-
sumed. A high value indicates that the application was throttled by
the CBS server and that it is likely that is requires more bandwidth.

36

4.3 Dynamic Outputs

Cumulative Period

The cumulative period value represents the total number of server
periods fully elapsed, that is, the number of times that the deadline of
the reservation has been postponed.
Together the used budget, the exhaustion percentage, and the cu-

mulative period, provide information about the state of the resources
allocated to each application, that is how they are being used by the
application.
The used budget, the exhaustion percentage, and the cumulative

period values are provided by the scheduler layer, and are read pe-
riodically by the resource manager, with a sampling period that is a
multiple of the period of each running application.

Happiness

The happiness value represents the level of satisfaction, or the per-
ceived quality, obtained with the allocated resources at a specific ser-
vice level. The value is provided to the resource manager only by ap-
plications which implement mechanisms that monitor their quality,
and determine whether it corresponds to what can be expected for the
current service level.
For simplicity the happiness value is a binary value, that is, it can

only take one of two values, 0 which means that the application is not
able to provide the quality of service promised at the current service
level, and 1 otherwise. Unless the application reports that it is unhappy
with the allocated resources, the resource manager assumes that the
application is happy.

4.3 Dynamic Outputs

Dynamic outputs include online parameters produced by the resource
manager, which are provided to the application and the scheduler layer.

Assigned Service Level

The assigned service level value is used to inform an application at
which service level it must execute.

37

Chapter 4. Resource Manager Inputs and Outputs

The assigned service level value of each running application is gen-
erated by the resource manager, based on the service level table pro-
vided during registration time, the current state of the system, and the
system objective. A more detailed description of the algorithm used to
calculate this value will be part of Chapter 5.

Assigned Server Budget and Period

The assigned server budget and server period parametrize each virtual
processor created by the resource manager. The assigned server budget
defines the maximum budget that can be used by the application tasks
running inside a virtual processor every period.
The period is directly given in the service level table of each ap-

plication through the timing granularity value. It may depend on the
service level. The assigned server budget value is initially defined by
the resource manager at the creation of the virtual processor, that
is, at the registration of a new application, and redefined whenever
the algorithms inside the resource manager consider that the assigned
server budget does not match the real resource needs of the application
process. Chapters 6 and 7 will provide more information about when
the assigned server budget is calculated, and under which conditions
it can be recalculated.

Affinity

The affinity value decides to which physical processor a virtual proces-
sor should be allocated. Considering that the ACTORS software archi-
tecture is mainly oriented to multicore systems, there are several ways
how the resource manager can specify these values. A more detailed
description about the algorithm used to set the affinity value can be
found in Chapter 6.

38

5

Service Level Assignment

One of the objectives of the architecture proposed by ACTORS (see
Figure 3.3) is to be able to optimally distribute the CPU resources
among the running applications. This distribution must be done sys-
tematically according to a performance criteria, which defines what
optimality means, and to policies that specify when and how this must
be done.
The resource manager plays a key role in this distribution because

it is able to dynamically communicate with the applications and the
scheduler layer. Thus, it is aware at any time of the resource require-
ments of the running applications as well as the availability of system
resources. This places the resource manager in a position of decision
maker in the system, with the ability of implementing algorithms that
provide the desired optimal distribution.

5.1 Problem Description

To carry out the distribution of CPU resources the resource manager
needs to define some rules or policies. They specify who can take part
in the distribution, when it should take place, and which are the min-
imum requirements on the information that must be provided. The
policies specify that:

• Only accepted applications or the ones in process of being ac-
cepted by the resource manager can take part in the distribution.
The process of acceptance is also known as registration.

39

Chapter 5. Service Level Assignment

• The registration is the first step that must be done by every ap-
plication that wants to run on system.

• The distribution is executed when an application registers, un-
registers, and whenever the performance criterion as well as the
system conditions require it.

• The unregistration takes place when the application has finished
its execution and therefore it does not need to use the resources
of the system anymore.

• The information required includes the importance table, the ser-
vice level tables of the applications, and the performance criteria.

In addition to these policies a performance criterion must be con-
sidered. This criterion defines the optimality of the distribution. One
criterion could be to maximize the quality of service provided by the
system, although this could sound like a misconceived idea since the
quality of service is a relative measurement. Consider for instance the
experience perceived by the user when running different applications.
In such a case the system quality of service can be interpreted as the
sum of the quality of service of the different running applications.
Another criterion could be to save energy, in systems such as mo-

bile phones this could be an important issue. This would relegate the
quality of service provided to a second place. However, a certain qual-
ity of service that matches the energy constraints must be guaranteed.
For the purpose of the present work, only the first criterion will be
considered.
The starting point of the resource distribution is when an applica-

tion registers with the resource manager. At this moment the applica-
tion provides its resource requirements through its service level table.
It is then the task of the resource manager to allocate resources to the
application.
The quality of service as well as the consumed resources are directly

associated with the service levels that an application supports. Thus,
the best way to allocate resources to the application would be to define
the service level at which it must execute. This is also known as the
service level assignment of an application.

40

5.2 BIP Formulation

5.2 BIP Formulation

The problem previously described can be formulated as an optimization
problem. The objective of this optimization is to select the service level
of each application so that the weighted sum of the quality of service
is maximized. This optimization problem is subject to the constraint
that the total CPU resources are limited.
Since from all the service levels provided by each application only

one will be assigned, the problem formulation can be done such that
the decision variables represent the selection of a particular service
level. Additionally, the constraint defined by the maximum assignable
CPU resources on the system can be expressed as a linear combination
of the decision variables.
The particular characteristics of the formulation described place it

in the category of a Binary Integer Programming (BIP) Problem [46].
This is a special case of integer linear programming, which constrains
the decision variables to be binary. In general a BIP problem can be
formulated as follows:

min {cT x : x ∈ P ∩ X } (5.1)

Ax ≤ b

Gx = d

xi ∈ {0, 1}, i = 1, . . . ,n

where A and G are real coefficient matrices of dimensions mxn and
pxn respectively. The objective and the constraints are affine functions.
The feasible set of the BIP problem is specified by P ∩ X , where P is
a given polyhedron, and X is a combinatorial discrete set that are
defined as:

P := {x ∈ ℜn : Ax ≤ b, x ≥ 0}

X := {x ∈ Zn : 0 ≤ x ≤ 1}, X ⊆ Zn

BIP problems are convex optimization problems with a feasible fi-
nite set containing at most 2n points. In general they can be very
difficult to solve, but they can be efficiently solved under certain condi-
tions such as when the constraint matrix is totally unimodular, and the

41

Chapter 5. Service Level Assignment

right-hand side vector of the constraints belongs to the integers. They
can be solved using different algorithms, the performance of any partic-
ular method is highly problem-dependent. This methods include enu-
meration techniques, including the branch and bound procedure [47],
cutting plane techniques [48], and group theoretic techniques [49].

Service Level Assignment Formulation

The service level assignment can now be formulated as a BIP prob-
lem [50]. The service level j ∈ M = {0, . . . ,SLi − 1}, where SLi is the
number of service levels supported by application i ∈ N = {1, . . . ,n}, is
represented as a column vector xi j containing boolean variables, where
the variable is 1 if the corresponding service level has been selected and
0 otherwise. The quality of service and the bandwidth of each appli-
cation are represented by the row vectors qi j and α i j of corresponding
size. The problem can now be formulated as follows:

max
n

∑

i=1

m
∑

j=0

wiqi jxi j (5.2)

n
∑

i=1

m
∑

j=0

α i jxi j ≤ C

∀i,
m

∑

j=0

xi j = 1

In the formulation C corresponds to the total assignable bandwidth of
the system, and wi to the importance value of application i. The set
N contains all the running applications which include the registered
applications, as well as the one in process of registration. The set M
contains the service levels supported by each application.
The first constraint guarantees that the total sum of the band-

width at the assigned service level of each application does not exceed
the total capacity of the system. The last constraint ensures that all
applications get registered with the resource manager, this means that
applications that have lower importance values, and do not contribute
significantly to the performance criterion will be accepted to run at
the default lowest service level x that is defined automatically by the
resource manager.

42

5.3 Example

Assigning the lowest service level x is a way for the resource man-
ager to inform an application that it cannot meet its resource require-
ments. Then, it is up to the application to decide whether to proceed
at the lowest service level with a very small amount of resources, or
to terminate itself. Because of the presence of the service level x, the
optimization problem in all practical situations always has a feasible
solution.
The formulation in Equation 5.2 assumes that the resource man-

ager accepts all applications that want to run on the system. In case
this does not represent an important issue, the last constraint can be
relaxed by changing it to an inequality constraint. Thus, the resource
manager will be able to shut down some applications in order to allow
the registration of applications with higher importance values.

5.3 Example

In this section a simple example is introduced to show how the service
level assignment is performed. The scenario includes four applications
named A1, A2, A3, and A4. For illustration reasons the importance
value of the applications is shown as an extra column named I in the
service level table of the applications.
Table 5.1 shows the service level tables of all the applications. One

can observe that the applications support different number of service
levels and have different resource requirements. All the applications
except application A4 provide the BWD parameter, that is, it has more
than one virtual processor.

Implementation Considerations

The physical platform employed is a four core machine. The BIP op-
timization problem is solved using the GLPK [51] linear programming
toolkit. To ensure a proper behavior of the operating system 10% band-
width of each processor is reserved for system applications including
the 10% for the resource manager itself. Thus, 360% of the bandwidth
is available to applications executing under the control of the resource
manager.
Solving an ILP problem online in a real-time system may sound as

a quite bad approach due to the potential inefficiency. However, in this

43

Chapter 5. Service Level Assignment

Table 5.1: Service level table of applications A1, A2, A3, and A4.

Application I SL QoS BW Granularity BWD

name [%] [%] [µs] [%]

A1 10 0 100 200 50 [50, 50, 50, 50]

1 90 150 90 [35, 35, 45, 35]

2 70 100 120 [25, 25, 25, 25]

3 60 50 250 [10, 10, 20, 10]

x 1 4 100000 [1, 1, 1, 1]

A2 100 0 100 180 50 [60, 60, 60]

1 80 140 90 [27, 27, 26]

2 50 100 120 [17, 17, 16]

x 1 3 100000 [1, 1, 1]

A3 1000 0 100 120 50 [30, 30, 30, 30]

1 60 80 90 [20, 20, 20, 20]

x 1 4 100000 [1, 1, 1, 1]

A4 200 0 100 100 50

1 90 90 90

2 60 60 120

x 1 100000

case there are several factors that avoids this problem. The resource
manager thread that performs the optimization is also executing within
a SCHED_EDF reservation. Hence, it will not disturb applications that
already have been admitted to the system, but will only delay the regis-
tration of the new application. Also, provided that the new application
has been correctly implemented using a separate thread for the D-Bus
communication, not even this application will be blocked. Instead it
will continue executing under the normal Linux scheduling class dur-
ing the registration process, provided that the SCHED_EDF threads do
not consume all the CPU time. Also, the size of the optimization prob-
lem is quite limited. The largest application set so far used with the

44

5.3 Example

resource manager is the control demonstrator described in Chapter 10.
It consists of 8 applications with 2-4 service levels each. In this case
the registration process takes 1-2 seconds.

Service Level Assignment

The result of the service level assignment is presented for two cases.
In the first case no relaxation of the second constraint in Equation 5.2
is allowed, and in the second case relaxation is allowed.
At time t0 no applications are running on the system. At time t1

application A1 wants to execute on the system, therefore the registra-
tion process begins. After solving Equation 5.2 the resource manager
assigns service level 0 to A1. At time t2 application A2 begins the reg-
istration process. Since this application is more important than appli-
cation A1, and it contributes significantly to the objective function, the
resource manager assigns the highest service level to A2, and decreases
the service level of A1 from 0 to 1. When application A3 registers at
time t3, the resource manager assigns service level 0 to A3 and A2 and
reduces the service of A1 to 3.
The results are shown in Table 5.2. The table shows that the as-

Table 5.2: Service level assignment of applications A1, A2, A3, and A4 with and without
relaxation of the second constraint of Equation 5.2.

∀i,
P

x(i) = 1 or
P

x(i) ≤ 1 ∀i,
P

x(i) = 1 ∀i,
P

x(i) ≤ 1

t0 t1 t2 t3 t4 t4

A1 - 0 1 3 4 -

A2 - - 0 0 2 1

A3 - - - 0 0 0

A4 - - - - 0 0

WQoS - 1000 11500 110600 125000 128000

ABW - 200 330 350 325 360

signed service level for applications A1, A2, and A3 will be the same if
relaxation of the constraint is considered or not. Additionally the table

45

Chapter 5. Service Level Assignment

shows the weighted quality of service (WQoS) and the total assigned
bandwidth (ABW) after each service level assignment.
Depending on which constraint is employed different results in the

service level assignment can be observed at time t4 when application
A4 registers with the resource manager. When the equality constraint
is used, all four applications remain in the system, however, applica-
tion A1 gets to execute at the default lowest service level that can be
assigned for this application, that is, service level 4 that only provides
4% bandwidth of the system to the application, while application A2
gets service level 2. On the other hand if the inequality constraint is
used, the resource manager will unregister application A1, and give
service level 1 to A2.
A careful observation of the table at time t4 shows that the weighted

QoS is greater when the inequality constraint is used, this at the price
of shutting down the application A1. Naturally when using the equality
constraint application A1 will still be running on the system consuming
a minimum amount of resources, this may imply a poor performance of
the application, then again whenever applications A2, A3 or A4 finish
their execution the application A1 will recover. A deeper evaluation of
this behavior will be done in Chapter 7.

Advantages and Disadvantages of the Formulation

The formulation presented in Equation 5.2 is very simple, and uses lit-
tle information to produce a solution. However, it is this lack of more
detailed information which constitutes its weakest point. For instance
consider the example previously explained. The solution of the problem
did not consider the bandwidth distribution parameter, this parame-
ter is very important specially when defining how each of the virtual
processors of the applications must be assigned to each processor on
the system. Although the maximum assignable bandwidth of the sys-
tem is 360%, the maximum assignable bandwidth in each core is only
90%. Therefore the solution provided by Equation 5.2 is not necessarily
schedulable.
Although this could look like a major drawback, one has to keep

in mind that solving BIP problems can be very difficult and very time
and resource consuming. Thus, the idea behind this formulation is
"divide and conquer", first the resource manager will use this simple
formulation to assign a possible service level, and later on with the

46

5.3 Example

help of additional techniques will produce the final assigned service
levels which respect all schedulability conditions.

47

6

Bandwidth Distribution

In the previous chapter it was mentioned that the optimal distribution
of CPU resources among the running applications begins at registra-
tion time. At this point the resource manager assigns the service level
at which each application present on the system must execute. This
service level assignment is formulated as a BIP optimization problem.
This formulation includes the new application that has requested the
registration as well as the applications already registered.
After the service level assignment the resource manager is aware

of the total amount of resources or bandwidth that each application
requires. The next natural step would be to distribute the total band-
width. This process is known as the bandwidth distribution and in-
cludes two subproblems.
The first subproblem is how the resource manager should divide

the total bandwidth of an application between its virtual processors.
This can be easily solved using the BWD values from the service level
table in case they have been provided. Otherwise, the total bandwidth
is split evenly between the virtual processors (VP) of the application.
The second subproblem is how the virtual processors should be

mapped or distributed onto the physical cores. The complexity of this
problem is increased by the multicore nature of the platform, and the
particular partitioning of the applications (BWD). The resource man-
ager handles this problem using different distribution policies.

48

6.1 Distribution Policies

6.1 Distribution Policies

There are different ways how the resource manager can map the vir-
tual processors of an application onto the physical cores. Basically the
resource manager implements two different policies, the balanced dis-
tribution, and the packed distribution.

Balanced Distribution

The balanced distribution policy is primarily developed for multimedia
applications implemented using dataflow techniques. For multimedia
applications the main objective is often to maximize throughput. In
order to achieve this it is desirable that all the cores do productive
work as much as possible and avoid unproductive work, for instance,
context switching. Hence, the run time system used for these types of
applications contains one thread per physical core. In order to be able
to control the computing resources assigned to these threads they are
each executing within a virtual processor. A consequence of this is that
the number of virtual processors typically equals the number of phys-
ical cores. In order to avoid context switching the virtual processors
are mapped to different physical cores. In order to enable dynamic fre-
quency/voltage scaling (DVFS), which on certain architectures cannot
be applied to the individual cores but only to all the cores, the distri-
bution policy further tries to perform the mapping so that the load on
all the cores is balanced as much as possible.
The policy works as follows. First the physical cores are sorted ac-

cording to their amount of free bandwidth space in descending order
and the virtual processors are sorted according to their bandwidth. If
the number of virtual processors of the application being registered
is equal to or less than the number of physical cores the mapping is
simply performed according to this order. Should the number of virtual
processors be larger than the number of physical cores then a resort-
ing of the physical cores is performed each a time a number of virtual
processors equal to a multiple of the number of physical cores has been
mapped.
Figure 6.1 shows the balanced distribution for an application named

A1 which has five tasks, each of them within a VP. The generated load
is balanced among the four processors (cores). Since the application
contains more VPs than the number of cores, two of the VPs will have

49

Chapter 6. Bandwidth Distribution

the same affinity.

Figure 6.1: Balanced distribution for application A1

The balanced distribution is done only for the new application. In
this way the assigned affinity of the currently executing applications is
kept constant. Only the size of their VPs is adjusted, that is, increased
or decreased accordingly to their assigned service level.

BIP Formulation The balanced distribution can be expressed as a
heuristic first fit problem with the objective to evenly maximize the
usage of all the cores on the system. This can formulated as a BIP
problem [50], where the decision variables are contained in the matrix
x of dimension mxn where m is the number of available cores and n is
the number of virtual processors of the new application. The value of xi j
is 1 if the virtual processor j ∈ N = {1, . . . ,n} of the new application is
assigned to core i ∈ M = {1, . . . ,m} and 0 otherwise. The bandwidth
requirements of each virtual processor is given by the vector v. The
problem can now be stated as follows:

max
m

∑

i=1

n
∑

j=1

civjxi j (6.1)

n
∑

j=1

vj xi j ≤ ci

∀i,
n

∑

j=1

xi j ≤ 1

50

6.1 Distribution Policies

∀ j,
m

∑

i=1

xi j = 1

In the formulation ci is the free bandwidth on core i. The second
constraint implies that each core can have at the most one VP from
the same application, while the third one enforces that a VP can be
assigned to only one core. If an application contains more VPs than
there are cores, the resource manager will pack some of them together,
beginning with the smallest ones. This packing is done so that the
problem matches the formulation proposed by Equation 6.1. Once the
formulation produces a solution, the packed VPs are unpacked and
assigned the same affinity.
The formulation described by Equation 6.1 can be implemented as

a first fit bin packing algorithm. The algorithm sorts the VPs of the
new application being registered from large to small, and the cores
from full to empty. Then it performs the distribution according to the
following pseudo algorithm:

Algorithm 1 BALANCEDDISTRIBUTION

Require: Sort VPs (large to small) ∧ Ps (full to empty).
Ensure: BalancedDistribution.

1: j Z −1
2: for i = 0 to nVPs do {nVPs is number of Virtual Processors}
3: j Z (j + 1) mod nPs {nPs is number of Processors}
4: if j = 0 then
5: resort Ps from full to empty
6: end if

7: if VP[i] fits in P[j] then
8: map VP[i] to P[j]
9: reduce space left in P[j]
10: else

11: BalancedDistribution failed
12: end if

13: end for

The balanced distribution respects the assigned affinity of the cur-
rently executing applications not only during registration of new ap-
plications but also when an application unregisters. Similar to the

51

Chapter 6. Bandwidth Distribution

registration case, the size of the VPs of the running applications is
adjusted according to their new assigned service level.

Packed Distribution

Another way to perform the bandwidth distribution is to select the
affinity of the virtual processors of an application such that they fit in
as few cores as possible. This is also known as the packed distribution.
Figure 6.2 shows the packed distribution version of the example pre-
sented in the Balanced Distribution subsection. One can notice that
this time the number of cores used for the distribution is less than in
the balanced distribution case.

Figure 6.2: Packed distribution for application A1

The motivation for the packed distribution is to utilize as few phys-
ical cores as possible, making it possible to switch off or power down
the unused cores using power management techniques.
The name packed distribution comes from the fact that the algo-

rithm tries to pack as many virtual processors as possible in the same
core. First it sorts the VPs of the application being registered from
large to small, and the cores from full to empty. Then it performs the
distribution according to pseudo algorithm 2.
The algorithm will always try to fit the virtual processors into cores

in the same core order. The packed distribution is done only for the new
application respecting the assigned affinity of the already registered
applications.
For the packed distribution policy the unregistration of an applica-

tion may trigger new affinity assignments for the VPs of the running

52

6.2 Handling Infeasible Distributions

Algorithm 2 PACKEDDISTRIBUTION

Require: Sort VPs (large to small) ∧ Ps (full to empty).
Ensure: PackedDistribution if f ound = 1.

1: for i = 0 to nVPs do {nVPs is number of Virtual Processors}
2: f oundZ 0
3: for j = 0 to nPs do {nPs is number of Processors}
4: if VP[i] fits in P[j] then
5: map VP[i] to P[j]
6: reduce space left in P[j]
7: f oundZ 1
8: break
9: end if

10: end for

11: if f ound = 0 then
12: PackedDistribution failed
13: end if

14: end for

applications. This ensures that the VPs of the applications are packed
in as few cores as possible also after the unregistration.

6.2 Handling Infeasible Distributions

The solution produced by the balanced or the packed distribution may
or may not be feasible in terms of schedulability. This means, that the
particular partitioning for the assigned service level (how the band-
width is distributed among the VPs) of each application might not
match the free space available on the system. In the case of a non-
feasible solution the registration process fails. Figure 6.3 shows the
infeasible distribution solutions of the balanced and the packed dis-
tribution policies. The scenario has three applications represented by
different colors. The infeasibility occurs when the third application
(blue) tries to register.
As mentioned in the last section of Chapter 5 this could be the re-

sult of not including the BWD values of the applications in the service
level assignment formulation described in Equation 5.2. To avoid this
situation the resource manager additionally implements two mecha-

53

Chapter 6. Bandwidth Distribution

(a) (b)

Figure 6.3: Infeasible distribution for the (a) balanced and the (b) packed distributions.

nisms that always produce a feasible solution. The mechanisms are
repetitive service level assignment, and compression and decompres-
sion algorithm. They are self-contained and can be used independently
from each other.

Repetitive Service Level Assignment

Infeasibility occurs when the particular partitioning of the application
at the current assigned service level cannot be mapped to the system
cores. The repetitive service level assignment algorithm addresses the
problem by performing a new service level assignment. This new ser-
vice level assignment does not contain the assigned service level com-
bination that resulted in the infeasible solution. This is repeated until
a feasible solution which can be mapped onto the cores is found.
There are different ways to avoid producing the undesired service

level combination. A simple way consists of adding a constraint that
ensures that the new optimal value of the cost function is always less
than it was at the previous optimization. Equation 6.2 shows the new
constraint, where ZO is the old optimal cost function value.

n
∑

i=1

m
∑

j=0

wiqi j xi j < ZO (6.2)

Notice that the value of the objective function produced by the un-
desired combination could also be obtained by another combination

54

6.2 Handling Infeasible Distributions

which would not necessarily lead to an infeasible solution. This means
that the objective may contain several local maxima. Figure 6.4 shows
a simple illustration of this phenomenon, where the curve contains two
local maxima defined as a and b. The formulation proposed by Equa-
tion 6.2 does not observe this possibility. It directly bounds the upper
limit of the new value of the objective function. Hence, it discards the
other local maxima that could have produce a feasible solution.

Figure 6.4: A function f(x) with two local maxima elements at points a and b

An advantage with this approach is that the number of constraints
remains constant.
A more elegant way to avoid the service level combinations can

be achieved by dynamically adding constraints to the formulation de-
scribed by Equation 5.2. These constraints will include information
about the service level assigned to each application that leads to infea-
sibility. For instance, consider three applications A1, A2, and A3 with
three service levels for each of them. Assume that the service level as-
signment that leads to infeasibility corresponds to 0, 0, and 1 for A1,
A2, and A3 respectively. For this case the new constraint added to the
formulation would correspond to:

x10 + x20 + x31 < 3

No matter which of these methods that is used, the repetitive ser-
vice level assignment will eventually produce a feasible solution. The
only difference between them lay on the optimality of the results.
The repetitive service level algorithm has different effects in each

of the distribution policies. For the balanced distribution algorithm it
respects the assigned affinity of the already registered applications,

55

Chapter 6. Bandwidth Distribution

and only affects the affinity of the new application. For the packed dis-
tribution the algorithm sets the affinity of the applications beginning
with the highest importance application. This may lead to a totally
new distribution.

Compression and Decompression Algorithm

Another way to handle the infeasible solution produced by Equation 6.1
is through the compression and decompression algorithm. The objective
of this algorithm is to always provide a schedulable solution, where the
particular partitioning of the new application matches the available
free space of the system. Depending on the information collected from
the new application that is, the QoS provided at the assigned service
level, and the importance with respect to the other applications, the
algorithm might trigger a new service level assignment for the new
application or even for the currently executing ones. The algorithm
can be described as follows:

• Each virtual processor of each application has a nominal band-
width Bjn, which corresponds to the bandwidth distribution value
assigned to the virtual processor j at the current service level.
The index n means that this is a nominal value.

• Each virtual processor j has a maximum and minimum band-
width Bjmax and Bjmin, which correspond to the bandwidth values
assigned to the same virtual processor j at the next and previous
service level respectively, that is

Bjmin ≤ Bjn ≤ Bjmax

• A new bandwidth B̂j > Bjn can be assigned to a virtual processor
j as long as the following condition is fulfill

∀i,
∑

j

Bi j ≤ 1 i ∈ P (6.3)

where P corresponds to the set of online processors on the system.

• If Equation 6.3 does not hold then the bandwidth assigned to the
virtual processors of the other applications executing in the same

56

6.2 Handling Infeasible Distributions

processor must be reduced or compressed according to

B̂j = Bjn − (Bn − Bd)
s j

S
(6.4)

Bn =
∑

τ j∈Γc

Bjn ∀Bn > Bd

S =
∑

τ j∈Γc

s j ∀τ j∈Γcs j = �(Ij)

Bd = BM − B f ∀B̂j < Bjmin [B̂j = Bjmin

where Γc is the set of VPs which bandwidth can be reduced or
compressed, Γ f is the set of VPs which bandwidth cannot be re-
duced, BM is the maximum assignable bandwidth on the system,
�(Ij) is a function of the importance value of the application,
and s j is a scaling factor which is inversely proportional to the
importance of the application.

In addition to this, the following policies are followed before com-
pressing the bandwidth assigned to the currently executing applica-
tions as well as the new application:

• The applications which bandwidth will be compressed are the
ones for which the importance times the QoS at the currently as-
signed service level is smaller than the one of the application that
has requested more bandwidth than what is available on the sys-
tem. If the compressed bandwidth of the applications is greater
than Bjmin (the assignable bandwidth at the next lower service
level), then the application keeps its assigned service level, oth-
erwise the service level is decreased.

• In case the importance times the QoS of the new application at
the currently assigned service level is smaller than the ones of all
the other applications, then the new application receives the re-
maining free available bandwidth on the system. If this is greater
than Bjmin (the assignable bandwidth at the next lower service
level), then the application keeps its assigned service level, oth-
erwise the service level is decreased.

As can be seen from the previous policies, the compression of the

57

Chapter 6. Bandwidth Distribution

bandwidth either in the currently executing applications or in the new
application can trigger a change in the assigned service level.

Bandwidth Decompression Each time an application unregisters,
the available free bandwidth is distributed among the other applica-
tions which bandwidth was compressed, this is known as the band-
width decompression. By decompressing the bandwidth of the appli-
cations which where affected by the compression algorithm previously
described, the performance of these applications can be increased.
The algorithm can be described as follows:

• Two sets of applications can be considered, the set of applications
that have been compressed, that is Γc and which current band-
width is smaller than the nominal one, that is Bj < Bjn, and the
set of applications that have not been compressed, that is Γ f and
which current bandwidth is greater or equal than the nominal
one, that is Bj ≥ Bjn

• Considering that an application that belongs to the set Γ f de-
creases its bandwidth consumption then two cases can be ob-
served.

1. Decompress under the assumption that:

Bcn + B f ≤ BM (6.5)

Bcn =
∑

τ j∈Γc

Bjn

B f =
∑

τ j∈Γ f

Bjn

where Bcn is the total sum of the original nominal bandwidth
of the applications that have been subject to bandwidth com-
pression, and B f is the total sum of the assigned bandwidth
of the applications that have not been compressed. In case
the sum of these bandwidths is smaller or equal than the
total assignable bandwidth on the system, that is BM , then
the bandwidth of all the compressed applications can be re-
stored to its nominal value.

58

6.3 Reservation Parameters Assignment

2. Compress again under the assumption that:

Bcn + B f > BM (6.6)

In case the sum of these bandwidths is greater than BM ,
then the set is not schedulable and therefore their bandwidth
must be compressed again using the compression algorithm.
Notice that this time the constraint over the bandwidth that
can be distributed among the compressed applications, that
is Bd, will be less restrictive than the first time the com-
pression was carried out.

6.3 Reservation Parameters Assignment

After finding an schedulable solution to the bandwidth distribution
problem, either with the balanced or the packed distribution method,
the resource manager must set the values of the reservation parame-
ters for each of the virtual processors of the new application. The reser-
vation parameters of a virtual processor are defined by the assigned
budget Q and the assigned period P. The reservation parameters can
be directly calculated from the BW and granularity values provided in
the service level table of each application as follows:

Pj = Granularityi (6.7)

Q j =
BWD j Pj
100

where j is the index for the number of the virtual processor of the new
application.

6.4 Example

A simple example containing several applications with different struc-
tures will be described. This will allow us to compare the performance
of the different methods previously described to solve the bandwidth
distribution problem.

59

Chapter 6. Bandwidth Distribution

The scenario contains three applications named A1, A2, and A3
with 3, 4 and 2 service levels respectively. Table 6.1 shows the service
level information provided by the three applications to the resource
manager. For completeness, the importance value I is also included in
Table 6.1.

Table 6.1: Service level table of application A1, A2 and A3

Application I SL QoS BW Granularity BWD

name [%] [%] [ms] [%]

A1 10 0 100 160 40 [40, 40, 40, 40]

1 80 120 50 [30, 30, 30, 30]

2 50 80 100 [20, 20, 20, 20]

x 1 4 100 [1, 1, 1, 1]

A2 1 0 100 200 20 [50, 50, 50, 50]

1 90 160 40 [40, 40, 40, 40]

2 70 120 70 [30, 30, 30, 30]

3 40 80 150 [20, 20, 20, 20]

x 1 4 100 [1, 1, 1, 1]

A3 100 0 100 80 20 [20, 15, 45]

1 70 60 100 [20, 10, 30]

x 1 3 100 [1, 1, 1]

In addition to this the resource manager also knows the number of
VPs that each application contains, that is 4 for A1 and A2 and 3 for
A3, and the importance of each of the applications, in this case 10, 1
and 100 for A1, A2 and A3 respectively. The number of VPs can also
be directly obtained from the number of partitions in the BWD value.

Implementation Considerations

For this example it was assumed that only 90% of the CPU of each
of the four cores could be allocated at any time, this implies a total
available bandwidth of 360% for the system.
The methods implemented by the balanced and the packed distribu-

tion were directly coded in C++. This also includes the BIP formulation

60

6.4 Example

described by Equation 6.1. In this case the GLPK toolkit was not used.
The repetitive service level assignment used for both distributions

implements the constraint defined by Equation 6.2. Hence the new cost
value produced by Equation 5.2 is upper bounded by the old cost value
which led to a non schedulable solution.

Balanced Distribution

At the beginning A1 and A2 register with the resource manager at
time t0 and t1 respectively. The resource manager assigns service level
0 to both applications according to Equation 5.2. The balanced distribu-
tion methodology distributes the load of the virtual processors evenly
among the system processors. This is done at time t0 and t1 for A1 and
A2 respectively.
Figure 6.5 shows the assigned service level (SL), the total band-

width (BW), and the bandwidth distribution (BWD) values of both
applications, as well as a graphic representation of the bandwidth dis-
tribution of the two applications on the four core platform.

App. SL BW BWD

name [%] [%]

A1 0 160 [40, 40, 40, 40]

A2 0 200 [50, 50, 50, 50]

Figure 6.5: Normal registration of applications
A1 and A2.

After some time, A3 with higher importance than A1 and A2 reg-
isters with the resource manager. Following Equation 5.2 the resource
manager assigns service level 0, 2, and 0 to A1, A2, and A3 respectively.
According to the balanced distribution formulation in Equation 6.1, the
solution to the bandwidth distribution problem is not schedulable. This
can be seen in Figure 6.6. In order to handle the infeasible solution, the
repetitive service level assignment method, as well as the compression
and decompression algorithm are used.

Repetitive Service Level Assignment The non schedulable so-
lution triggers the repetitive service level assignment method. The

61

Chapter 6. Bandwidth Distribution

App. SL BW BWD

name [%] [%]

A1 0 160 [40, 40, 40, 40]

A2 2 120 [30, 30, 30, 30]

A3 0 80 [20, 15, 45]

Figure 6.6: Registration of application A3 that
leads to an infeasible solution.

method carries out two more service level assignments until it finds a
feasible solution that can be mapped onto the cores. Figure 6.7 shows
the new service level assignment and the bandwidth distribution for
the three applications.

App. SL BW BWD

name [%] [%]

A1 0 160 [40, 40, 40, 40]

A2 x 4 [1, 1, 1, 1]

A3 0 80 [20, 15, 45]

Figure 6.7: Registration of application A3 after
repetitive service level assignments.

After a while A1 unregisters and the resource manager assigns new
service levels to the remaining executing applications A2 and A3. This
assignment produces again a non schedulable solution as can be seen
in Figure 6.8.
In order to avoid infeasibility, a new service level assignment is

done. In this way, A2 is assigned service level 1, while A3 remains at
its old service level. Figure 6.9 shows the feasible distribution after the
new service level assignment.

Compression and Decompression Algorithm The infeasible so-
lution shown in Figure 6.6 can also be handled by the bandwidth com-

62

6.4 Example

App. SL BW BWD [%]

name [%] [%]

A2 0 200 [50, 50, 50, 50]

A3 0 80 [20, 15, 45]

Figure 6.8: New service level assignment of A2
and A3 after unregistration of A1.

App. SL BW BWD

name [%] [%]

A2 1 160 [40, 40, 40, 40]

A3 0 80 [20, 15, 45]

Figure 6.9: New service level assignment of
A2 and A3 after repetitive service level assign-
ment.

pression algorithm. According to Equations (6.3) and (6.4), the algo-
rithm reduces the service level of the lowest importance application
A2 from 2 to 3 and also reduces the bandwidth values of the virtual
processors of A1 and A2 executing in core P4. The final schedulable
solution is shown in Figure 6.10.

App. SL BW BWD

name [%] [%]

A1 0 157 [40, 40, 40, 37]

A2 3 67 [20, 20, 20, 7]

A3 0 80 [20, 15, 45]

Figure 6.10: Registration of application A3 af-
ter bandwidth compression.

63

Chapter 6. Bandwidth Distribution

Similar to the repetitive service level assignment case, A1 unreg-
isters after finishing its execution. This leads again to the problem
shown in Figure 6.8. The bandwidth compression algorithm produces
a schedulable solution where the service level of A2 is reduced from 0
to 1, as shown in Figure 6.11.

App. SL BW BWD

name [%] [%]

A2 1 160 [40, 40, 40, 40]

A3 0 80 [20, 15, 45]

Figure 6.11: New service level assignment of
A2 and A3 after bandwidth compression.

As can be seen in the example, each time that an application reg-
isters or unregisters with the resource manager, a new service level
assignment as well as bandwidth distribution is carried out accord-
ing to Equations 5.2 and 6.1. This solution might not be schedulable
considering all the possible combinations of all the different parti-
tions of each of the applications running on the system. In order to
produce a schedulable solution, the bandwidth compression algorithm
compresses the bandwidth of the applications in the system according
to Equations 6.3 and 6.4, which could again trigger a new service level
assignment.

Packed Distribution

For the packed distribution case, only the repetitive service level as-
signment is considered. In order to see the differences between this
distribution and the balanced one the registration of each application
will be described. At time t0 application A1 registers with the resource
manager, which assigns service level 0. The packed distribution sets
the affinity of the virtual processors such that they fit in as few cores
as possible. This can be seen in Figure 6.12 which shows the bandwidth
distribution for A1.
At time t1 application A2 begins the registration with the resource

manager. According to Equation 5.2 the resource manager assigns ser-

64

6.4 Example

App. SL BW BWD

name [%] [%]

A1 0 160 [40, 40, 40, 40]

Figure 6.12: Registration of application A1.

vice level 0 to both applications. Of course this leads to an infeasible
solution, which the packed distribution handles by recalling the ser-
vice level assignment method. After one new service level assignment,
which reduces the service level of A2 to 1, the packed distribution is
able to map the virtual processors into the system cores. Figure 6.13
shows the final result of the distribution.

App. SL BW BWD

name [%] [%]

A1 0 160 [40, 40, 40, 40]

A2 1 160 [40, 40, 40, 40]

Figure 6.13: Registration of application A2 af-
ter packed distribution.

Application A3 registers with the resource manager at time t3. The
resource manager assigns service level 0, 2 and 0 to A1, A2 and A3
respectively. This leads to an infeasible solution when the packed dis-
tribution tries to assign the largest VP in the emptiest core. Figure 6.14
shows the infeasible distribution.
The infeasibility is handled by the repetitive service level assign-

ment which assigns service level 3 to A2. Additionally, new affinity
values are assigned to all applications. Figure 6.15 shows the feasible
solution. Notice that the VPs of A3 (highest importance), are the first
to be assigned to a core. Then the assignment follows with A1 and A2.

65

Chapter 6. Bandwidth Distribution

App. SL BW BWD

name [%] [%]

A1 0 160 [40, 40, 40, 40]

A2 2 120 [30, 30, 30, 30]

A3 0 80 [20, 15, 45]

Figure 6.14: Registration of application A3
which leads to an infeasible solution.

App. SL BW BWD

name [%] [%]

A1 0 160 [40, 40, 40, 40]

A2 3 80 [20, 20, 20, 20]

A3 0 80 [20, 15, 45]

Figure 6.15: Registration of application A3 af-
ter repetitive service level assignment.

When A1 unregisters the resource manager assigns service level 0
to A2 and A3, which leads to an infeasible distribution. To solve this
the repetitive service level assignment produces a new service level for
A2. The final result of the feasible distribution is shown in Figure 6.16.

App. SL BW BWD

name [%] [%]

A2 1 160 [40, 40, 40, 40]

A3 0 80 [20, 15, 45]

Figure 6.16: New service level assignment of
A2 and A3 after repetitive service level assign-
ment.

66

7

Bandwidth Adaption

The distribution of CPU resources is performed by the resource man-
ager in two different ways. In the first case the resource manager
adapts the applications to changes in the resource availability. This is
done by changing the service level of the applications. This adaption
takes place whenever applications register or unregister with the re-
source manager or when the amount of available resources changes.
It is event based and includes not only the assignment of the service
level, but also the distribution of the bandwidth at the assigned service
level.
In the second case the resource manager adapts the resource distri-

bution to changing application requirements. This takes place online
during the execution of applications. At this moment the resource man-
ager has provided CPU resources to the application according to the
information provided in its service level table. However, this informa-
tion serves just as an initial prediction of the real amount of resources
needed by the application at a certain service level.
It is the task of the resource manager to find out this amount of

resources such that the resources are optimally used and not wasted.
To do so the resource manager uses the dynamic information provided
by the application, that is, the happiness value, and the information
obtained from the scheduler such as the application resource utiliza-
tion values. Based on this information the algorithms implemented
by the resource manager will adapt the bandwidth provided to each
application.

67

Chapter 7. Bandwidth Adaption

7.1 Resource Utilization Feedback

To guarantee optimal use of the resources provided to the application,
the resource manager periodically measures the application resource
utilization. Based on this, as well as the control strategy implemented
the resource manager adapts the distributed bandwidth of each virtual
processor in each of the cores.

Controller Inputs

The resource utilization values include the cumulative used budget
and exhaustion percentage which are periodically fed back from the
scheduler layer to the resource manager. Figure 7.1 shows the resource

Figure 7.1: Resource utilization measurements per server period for application A1.

utilization measurements inside one of the virtual processors of an ap-
plication. For explanatory reasons the figure considers the resource
utilization measurements per server period and not the cumulative
ones. In the figure UB, EP, T , and AB stand for used budget, exhaus-
tion percentage, period, and assigned budget respectively. The assigned
budget and period correspond to the reservation parameters assigned
by the resource manager to each virtual processor of the application.
The used budget as well as the exhaustion percentage values reflect the
resources consumed by the tasks running inside the virtual processor.
In the figure one can see that during the first two periods the

assigned budget is almost completely consumed. In the third period,
the task wants to consume more resources than the ones provided, this
is represented by the dashed block. Due to the hard CBS nature of the
reservation, the task is not able to consume more than the current
AB3. This triggers an event which is represented by the exhaustion
percentage value EP3. This event as well as the used budget in the

68

7.1 Resource Utilization Feedback

current period will indicate to the resource manager to increase the
assigned budget for the next period.
The process of adapting the assigned budget is carried out dur-

ing the lifetime of the application. It begins after the application has
successfully registered with the resource manager and ends when the
application unregisters.
For illustration reasons in Figure 7.1 the adaption of the bandwidth

is done at each period. In reality this is done at time intervals, which
correspond to the sampling time of the controller. This sampling time
will be a multiple of the period assigned to the virtual processors of
the application. The logic explanation behind this is that the resource
manager should execute the feedback algorithms only in response to
major changes in the resource utilization. This is something that only
can be noticed after the task running inside the virtual processor has
executed for some time.
The cumulative values of the used budget and exhaustion percent-

age are further processed by the resource manager. This results in
average values of the used budget and exhaustion percentage within
each sampling interval. These values together with the assigned bud-
get of the last sampling interval provide the inputs to the controller.

Controller Strategy

The average used budget and the exhaustion percentage represent the
process variables of the control strategy. The correlation between these
two variables depends on many factors. One factor is the relationship
between the used budget and the assigned budget for a particular in-
stance of time, for instance when the used budget equals or exceeds
the assigned budget. Another is the synchronization between the ac-
tivation time of the task within the reservation and the replenishing
time of the reservation budget.
Figure 7.2 shows the dependencies between the used budget and

exhaustion percentage variables within a single period. In the case of
Figure 7.2a the activation and replenishing times are synchronized.
Since the task requires more budget than the assigned one, the ex-
haustion percentage event is triggered. In the case of Figure 7.2b the
exhaustion percentage event is also triggered. However, this happens
not due to lack of budget but due to the lack of synchronization between
the activation and replenishing time.

69

Chapter 7. Bandwidth Adaption

(a) (b)

Figure 7.2: Used budget and exhaustion percentage dependencies.

Considering each of the factors that could affect the correlation
between the process variables would result in the implementation of a
complex controller algorithm. This controller would also require high
consumption of CPU resources which are mainly designated for the
applications. The trade off between the complexity of the algorithm and
the resources needed by the controller is represented by the bandwidth
controller shown in Figure 7.3.

Figure 7.3: Bandwidth controller structure.

The figure shows the cascade structure of the bandwidth controller.
The resource manager assigns one bandwidth controller to each virtual
processor of the applications. In the figure the average used budget UB
and exhaustion percentage EP correspond to the process variables of
the inner and outer loop respectively. The task of the outer controller
C1 is to define the set point UBSP of the inner controller C2 based on the
values of EPSP and EP. The inner controller C2 defines the assigned
budget AB for each of the virtual processors of every application. The
AB is defined such that the UB does not deviate from the UBSP defined
by the outer controller. Each of the set point values EPSP and UBSP

70

7.1 Resource Utilization Feedback

do not correspond to scalar values but to bounded intervals.
The idea behind the bandwidth controller is to be able to keep the

average used budget and exhaustion percentage within the bounds de-
fined by the used budget and exhaustion percentage set points respec-
tively. This can be achieved by adjusting the assigned budget of the
virtual processors.

Outer Controller The inputs of the outer controller C1 are EP and
EPSP. The average exhaustion percentage EP represents the percent-
age of server periods when the used budget exceeds the assigned bud-
get. It may also represent the percentage of server periods within a
sampling interval where the activation and replenishing time where
not synchronized.
The EP value, can have a very noisy nature. This is the effect of the

different factors that affect the dependencies with the UB. Consider
that UB reflects the amount of resources used by a task inside a reser-
vation, and that those resources may change abruptly over time. For
instance in the case of a MPEG 4 video decoder application, decoding
a full color image may need more resources than the ones needed for
a black and white image.
This poses some constraints to the selection of the EPSP. Thus, it

is defined by the interval [EPSL, EPSU], which defines the lower and
upper limit of the exhaustion percentage set point. Figure 7.4 shows

Figure 7.4: Exhaustion percentage set point defined by the limits EPSL and EPSU

71

Chapter 7. Bandwidth Adaption

the average EP value. The EPSP defines three areas in the figure.
Different decisions will be taken by the outer controller depending on
which of these areas the EP is in. These decisions are represented by
the states S1 to S4 in the outer controller.
Each state defines actions taken by the outer controller. The con-

troller output produced in each of these states will affect the UBSP of
the inner controller. Just like in the case of the EPSP, the UBSP is also
specified by the interval [UBSL,UBSU].
Figure 7.5 shows the different states of the outer controller. The

state S0 represents the initial state. State S1 affects the used bud-
get bounds such that AB is decreased. Similarly, state S2 affects the
bounds such that AB is increased. State S3 affects both bounds caus-
ing AB to be kept constant, this defines a stability region for the con-
troller. State S4 smooths the action of the state S1. The variable D
corresponds to the sample standard deviation of UB that will later on
be explained in more detail.

Figure 7.5: Outer controller state machine

When an application has registered, the resource manager initial-
izes bandwidth controllers for each of the virtual processors of the
application. Thus, the outer controller state is set to S0, the exhaus-
tion percentage set point limits EPSL and EPSU are set to values that
guarantee a good performance of the registered application, while the

72

7.1 Resource Utilization Feedback

used budget set point limits UBSL and UBSU are set to initial default
values that later on will be modified or changed by the outer controller.
In order to be able to change the UBSP values, the outer controller

needs to know the initial values of UBSP, as well as the trend of the
average used budget UB in the last sampling intervals. The trend of
UB during the last sampling intervals is obtained through statistical
measurements. These measurements include the sample mean and the
sample standard deviation of UB.
The size of the time window where the statistical measurements

are calculated must be defined considering different aspects. It must
be able to catch the abrupt changes that UB may experience from one
sampling time to another. At the same time it must filter the UB signal
that by nature can be very noisy.
The statistical measurements are defined by Equation 7.1, where

UB and D correspond to the used budget sample mean, and the used
budget sample standard deviation respectively. The total number of
observations N is a multiple of the sampling interval. Its selection is
a trade off between having not enough information and using too old
information to obtain the trend of UB.

UB =
1
N

N
∑

i=1

UBi (7.1)

D =

√

∑N
i=1(UBi − UB)

N − 1

Recalling the state machine of the outer controller shown in Fig-
ure 7.5, one can see that in order to evolve from the initial state S0
to S1, S2, or S3, the outer controller uses the exhaustion percentage
value EP, and additionally the sample standard deviation D. In S0
no changes are done to UBSP, mainly it provides the time needed to
generate the statistical measurements required by the other states.
Figure 7.6 shows the different transitions among the states of the

outer controller. It also shows how the output of the outer controller
changes the lower and upper limit of the average used budget that is,
UBSL and UBSU .
The transition to the state S1 from any of the other states is done

73

Chapter 7. Bandwidth Adaption

Figure 7.6: States transitions of the outer controller and changes of the UBSP in each
state.

whenever EP is below EPSL. The limits defined by UBSL and UBSU
are changed according to Equation 7.2.

eEP = EPSL − EP, eEP ∈ [em, eM]

OL = −
(b− a)

eM
DeEP + bD

UBSP =

{

UBSU = AB

UBSL = UB + OL
(7.2)

Here eEP corresponds to the exhaustion percentage error. This value
is bounded by [em, eM] which are the minimum and maximum eEP. For
state S1, em and eM correspond to 0 and EPSL respectively.
An exhaustion percentage EP smaller than EPSL implies an over-

estimation of the assigned budget AB. This problem can be solved by
shifting UBSL by a factor which is a function of the sample standard

74

7.1 Resource Utilization Feedback

deviation D and the exhaustion percentage error eEP. This is indicated
by OL. The lower offset or OL correspond to a line equation with nega-
tive slope, where a and b are small positive constants. These constants
determine the aggressivity of the controller.
The transition to state S2 is done whenever EP is greater than

EPSU . The limits defined by UBSL and UBSU are changed according
to Equation 7.3.

eEP = EPSU − EP, eEP ∈ [em, eM]

OU = −
(b− a)

eM
DeEP + aD

UBSP =

{

UBSU = UB − OU

UBSL = UBSU − cD
(7.3)

Similar to the previous case EP is bounded by [em, eM], which corre-
sponds to the interval [0, 1− EPSU].
An exhaustion percentage EP greater than EPSU implies an under-

estimation of the the assigned budget AB. This is handled by adjusting
UBSU . In this case the bound is shifted such that it lays below UB.
The shifting factor also know as the upper offset OU corresponds to
a line equation with a positive slope. The constants a, b, and c have
positive values.
The transition to state S3 is done whenever EP is within the in-

terval [EPSL, EPSU]. In this case the upper and lower limits of UBSP
are defined by Equation 7.4 where c is a positive constant.

UBSP =

{

UBSU = AB

UBSL = UB − cD
(7.4)

The outputs produced by state S3 set UBSU and UBSL such that UB
lays within the bounds. Thus, a stability region is reached.
The last state S4 can only be reached from the state S1 whenever

EP is equal to 0. The output is the same as the one produced by the
state S3 (see Equation 7.4). This state smooths the output produced
in the state S1. Whenever EP is smaller than EPSL the state machine
will be oscillating between the states S1 and S4.
The constants a, b, and c previously described have different values

for each state.

75

Chapter 7. Bandwidth Adaption

Inner Controller The function of the inner controller C2 is to change
the assigned budget AB provided to the virtual processor. This is done
based on the deviation between UB and UBSP. When the bandwidth
controller is executed the first time, the UBSP has initial default values
for UBSU and UBSL. These values are updated if necessary by the outer
controller C1.
The inner controller C2 is also modeled as a state machine. The

state machine of the inner controller consisting of four states is shown
in Figure 7.7. In the figure S0 corresponds to the initial state. The
states S1 and S2 are the ones that will change AB according to devi-
ation between the UB and the UBSP. The state S3 keeps the value of
the AB generated in any of the other states.

Figure 7.7: Inner controller state machine

The initial state S0 is able to reach the other states once the band-
width controller begins to execute. In this state no changes are done
to AB, that is, it keeps the value assigned during registration.
The changes produced in AB by the states S1 to S3 are shown

in Figure 7.8. In the figure ABM is the maximum allowed assigned
budget. It corresponds to the budget assigned during registration, and
is also known as the initial budget. In Chapter 8 it will be shown that

76

7.1 Resource Utilization Feedback

this value can be tuned for each service level through the bandwidth
controller.

Figure 7.8: States transitions of the inner controller and changes in the AB in each state.

The state S1 can be reached from any of the states whenever UB
is smaller than UBSL. This suggests a non-optimal use of AB or waste
of resources. Thus, the assigned budget must be reduced according to
Equation 7.5. In the equation eL is the controller error with respect to
the lower bound UBSL. Similar to the case of the outer controller this
error is also bounded by em and eM , which correspond to 0 and UBSL
respectively. An exponential controller is used to change the value of
AB. How fast or slow it changes will depend on the value of KL and a.
The factor KL changes dynamically according to eL and is bounded by
the interval [1, 10]. The constant a is a positive small number derived
through tuning.

eL = UBSL − UB, eL ∈ [em, eM]

KL =
9

UBSL
eL + 1

AB = e−aKL AB (7.5)

77

Chapter 7. Bandwidth Adaption

The state S2 can be reached if UB is greater than UBSU . In this
case the assigned budget is too low to satisfy the performance criteria
of the outer and the inner controller. Hence the assigned budget is in-
creased according to Equation 7.6. The controller error eU is upper and
lower bounded by em and eM , which for the state S2 correspond to 0
and AB −UBSU respectively. The controller employed is also an expo-
nential controller. The factor KU changes dynamically in the interval
[1, 10], the small positive constant a is derived through tuning.

eU = UB − UBSU , eU ∈ [em, eM]

KU =
9

AB − UBSU
eU + 1

AB = e aKU AB (7.6)

The state S3 is reached whenever UB lays within the bounds de-
fined by UBSL and UBSU . This means that the performance criteria
of both controllers C1 and C2 is satisfied. Under this conditions the
assigned budget keeps its current value.

7.2 Achieved QoS Feedback

The resource manager also adapts the resources distributed to the reg-
istered applications based on their achieved QoS, which is indicated by
the happiness value. This approach considers the achieved QoS as a
function of the assigned service level and the CPU resources provided
at this service level only. It does not consider other factors that may
affect the obtained QoS. For instance in the case of a video conference
application, it would not consider degradation of the application per-
formance due to package losses or time delays on the communication
which are not CPU bandwidth dependent.

Controller Input

The happiness value is an indicator of the quality obtained with the
allocated resources at the assigned service level. It takes one of two
values 0 or 1, with 1 meaning that the application is happy and 0
otherwise. For those applications that cannot provide the happiness

78

7.2 Achieved QoS Feedback

value the resource manager assumes that the application is always
happy.

Controller Strategy

For the achieved QoS feedback the bandwidth controller corresponds
to a simple proportional controller. The controller is activated if the
application is unhappy. Figure 7.9 shows how the inner and outer state
machines of the logic explained in Section 7.1 evolve to the unhappy
state S.

Figure 7.9: Complete state machine of the bandwidth controller.

The state S is activated when the application of the virtual pro-
cessor is unhappy. In such a case the controller simply increases the
assigned budget AB linearly according to Equation 7.7, where K is the
proportional constant of the controller.

AB = K AB (7.7)

The assigned budget AB is increased until the application becomes
happy again or the assigned budget becomes equal to the initial budget
ABM of the virtual processor.
The happiness value sent by the application is event based in na-

ture. However, the bandwidth controller always consider the most re-
cent happiness value and uses time triggered control.

79

Chapter 7. Bandwidth Adaption

7.3 Example

Two different scenarios are shown in this section. In the first scenario
a CAL MPEG 4 SP decoder application is used. This scenario shows
how the bandwidth controller adapts the assigned bandwidth and the
effects of different sampling periods and exhaustion percentage set
points in the performance of the application.
In the second scenario the MPEG 4 SP decoder is used together

with a CAL periodic pipeline application. This allow us to evaluate
the bandwidth controller of the CAL MPEG 4 SP decoder at different
service levels.
The information related to the decoder and pipeline applications

is shown in Table 7.1. The importance values of the decoder and the

Table 7.1: Service level table of the decoder and pipeline applications

Application I SL QoS BW Granularity BWD

name [%] [%] [ms] [%]

Decoder 1 0 100 120 100 [60, 60]

1 80 100 330 [50, 50]

2 60 40 400 [20, 20]

Pipeline 10 0 100 80 20 [40, 40]

1 90 54 40 [27, 27]

2 70 32 70 [16, 16]

pipeline application are 1 and 10 respectively, which implies that the
pipeline application is more important than the decoder application.
In this section the terms used bandwidth and assigned bandwidth

will be used instead of used budget and assigned budget respectively.

Implementation Considerations

The decoder is connected to an Axis network camera that streams
MPEG 4 SP frames. The decoder has two partitions, three service lev-
els, and can report its happiness value to the resource manager. When
the decoder is required to switch to a lower service level it configures
the camera to reduce the frames per second (fps) and resolution in

80

7.3 Example

order to reduce the resources required to decode the video frames. The
happiness is a boolean value which indicates if the resulting frame
rate of the displayed video corresponds to what can be expected at the
current service level. Figure 7.10 shows the internal structure of the
MPEG 4 SP application.

Figure 7.10: MPEG 4 SP application.

The periodic pipeline application has two partitions and three ser-
vice levels. This application is intended to model a typical rate-based
streaming application. The structure of the application is shown in Fig-
ure 7.11. The application has two partitions and consists of four paral-
lel pipelines, where each pipeline consists of four actors: one producer
actor, two forward actors, and one consumer actors. The producer is
triggered by a clock token from the clock system actor. When triggered
it generates a token that enters a feedback loop where the number
of loops taken depends on a parameter value. Through this value it
is possible to model that the computations performed by the producer

81

Chapter 7. Bandwidth Adaption

takes a certain amount of time. After the correct number of loops the
token is forwarded to the first forward actor. This also feeds back the
token for a user-dependent number of loops before it is forwarded to
the next forward actor. The final consumer actor instead consumes the
token once the feedback loops are finished.

Figure 7.11: Periodic pipeline application. The dashed rectangles represent the different
partitions.

The DBus actor constitutes the interface to the resource manager.
When the resource manager changes the service level, it is being trans-
lated into a corresponding sampling period for the clock actor. Finally,
the happiness actor implements a keyboard interface through which
the user interactively can change the happiness of the application, in
which case the value is forwarded to the resource manager over the
D-Bus.
The periodic pipeline application has three service levels where the

service levels correspond to different sampling periods. Although the
amount of computations performed per sampling period is the same
independently of the sampling period, that is, the required budget is
the same, the required bandwidth gets smaller as the service level
value increase. The delay of the application in the different service
levels are equal to the sampling periods.
The values of the different constants of the bandwidth controllers

are shown in Table 7.2. In the achieved QoS feedback, the value of the

82

7.3 Example

constant K was set to 1.1. This constant as well as the ones shown in
Table 7.2 were used for both applications.

Table 7.2: Tuning constants of the bandwidth controller based on resource utilization
feedback.

Outer controller Inner controller

S1 S2 S3 S1 S2

a 0.0625 0.5 - 0.01 0.025

b 0.125 0.75 - - -

c - 2 2 - -

The experiment is carried out in a dual core system with resource
availability of each core set to 90%. The sampling period for the two
scenarios is 10Pi, where Pi is the server period of the application i
that is being controlled. Notice that the server period varies with the
service level for the periodic pipeline application. An exception occurs
in two of the experiments in scenario 1, where the sampling interval
corresponds to 5Pi. The size of the time windows to do the statistical
measurements, that is N, was set to 5hi, where hi is the sampling
period of the application i. In order to evaluate the different input
and output signals of the bandwidth controllers, the UB, AB and EP
signals are normalized to values between 0 and 1.

Scenario 1: MPEG 4 SP Decoder Application

For the first scenario three different experiments are carried out. In
the first experiment EPSP is set to [0.1, 0.18]. Figure 7.12 shows the
bandwidth adaption for virtual processor 0 (VP0) of the decoder ap-
plication. The UB (green), AB (red) and EP (blue) are shown in the
first two plots. The transitions between the different states of the outer
controller are shown in the last plot.
At time t = 0 the decoder application registers with the resource

manager, which assigns service level 0 to the application. This produces
an initial bandwidth distribution of 0.6 to both virtual processors. At
the beginning the state machine of the outer controller is in S0 which
is shown as value 0 in the lower plot. At this point the resource man-
ager collects information about the trend of the UB. After sometime it

83

Chapter 7. Bandwidth Adaption

Figure 7.12: Resources adaption for VP0 of the CAL SP decoder application.

begins to generate the statistical measurements required by the outer
controller. Thus, the outer controller begins to switch among states S1
to S4. One can observe that when decreasing AB there is a back and
forth transition between states S1 and S4, which provides a smoother
decrease of AB. Around time t = 220 a disturbance occurs which in-
creases the resource consumption and gives rise to a deviation of EP
from the set point EPSP. This is corrected by increasing AB. This is a
combination of the actions of the states S2 of the outer and the inner
controller.
It is important to remark that each value in the Time interval axis

in Figure 7.12 corresponds to one sampling interval, which in this case
is equal to one second.
The disturbance consists of introducing a moving person in the im-

age. This increases the complexity of the frames that must be decoded.
At the same time it increases the amount of resources needed by the

84

7.3 Example

decoder application to produce an image that satisfies the QoS require-
ments. The images of the video generated can be seen in Figure 7.13.

(a) Decoding without disturbance (b) Decoding with disturbance

Figure 7.13: Images of the video generated by the CAL MPEG 4 SP decoder application.

In the second experiment the sampling time is reduced and EPSP
is set to [0.1, 0.15]. Figure 7.14 shows the bandwidth adaption for both
virtual processors of the application. A disturbance was also introduced
between time t = 200 and t = 220. For this experiment each measure-
ment point in the Time interval axis corresponds to a measurement
done each 0.5 seconds. One can notice that the adaption in this case is
much faster than in the previous experiment.
In the third experiment the sampling time is the same as in the

previous experiment. The exhaustion percentage set point EPSP is set
to [0.05, 0.1]. Similar to the previous experiment the disturbance is
present between time t = 220 and t = 250. In this case EPSP is closer
to an ideal situation of having a used bandwidth UB smaller than the
assigned bandwidth AB during all the sampling intervals. Figure 7.15
shows the final results of the resources adaption for the virtual pro-
cessors of the decoder application.
The outliers observed in the EP are caused by lack of synchroniza-

tion between the activation time of the tasks within the virtual proces-
sors and the replenishing time of the reservation assigned bandwidth
AB.
One can notice in the figure that the bandwidth controllers are

able to keep the EP close to 0 most the time without wasting the

85

Chapter 7. Bandwidth Adaption

Figure 7.14: Resources adaption of the CAL SP decoder application for VP0 and VP1.

bandwidth resources. This means that the application does not need
120% of bandwidth in order to have a good performance.

Scenario 2: MPEG 4 SP Decoder and Pipeline Applications

For the second scenario the upper and lower bounds of the exhaustion
percentage set point, that is, EPSL and EPSU were set to 0.1 and 0.15
respectively. These bounds were used for both applications. Figure 7.16
shows the used bandwidth UB, the assigned bandwidth AB and the
exhaustion percentage EP signals of the two virtual processors VP0
and VP1 of the decoder application.
At time t = 0 the decoder application registers with the resource

manager. Since there is no other application executing on the system,
the resource manager assigns the highest service level 0 to the appli-
cation, which corresponds to an initial assigned bandwidth AB equal
to 0.6. After registration the bandwidth controllers adapt the assigned
bandwidth AB in each of the VPs trying to keep the EP within EPSP.

86

7.3 Example

Figure 7.15: Resources adaption of the CAL SP decoder application.

If the EP is greater than 0.15 the bandwidth controllers increment
the AB. The decoder application becomes unhappy at time t = 10
and t = 210 which causes the bandwidth controllers to increment the
allocated bandwidth until the application is happy again. The peri-
odic pipeline application registers with the resource manager at time
t = 240. Since this application has higher importance than the decoder,
the resource manager assigns service level 0 to the pipeline application
and reduces the service level of the decoder application from 0 to 1.
The initial assigned bandwidth of the decoder application at the new
service level equals 0.5, which later on is decreased by the bandwidth
controllers. Around time t = 410, the pipeline application unregisters,
this increases the amount of free CPU resources, and triggers a new
service level assignment for the decoder application, which in this case
increases from service level 1 to service level 0.
It is important to remark that the time scale in the figure changes

when the service level changes.

87

Chapter 7. Bandwidth Adaption

Figure 7.16: Resources adaption of the CAL SP decoder application.

88

8

Adaption and Learning

The temporal behavior of the registered applications is initially un-
known to the resource manager. The only available information at this
point for the resource manager is what is provided by the service level
table of each application. However, the service level table must be con-
sidered just as an initial model of the application which is not com-
pletely accurate.
For the resource manager, the implemented feedback techniques

provide in first place the means to adapt at runtime the resources
provided to the registered applications. This guarantees that the per-
formance criteria based on resource utilization and/or achieved QoS
is always satisfied. In second place they also provide knowledge about
the real amount of resources needed by the applications, which may
differ from the initial information provided by the service level table.

8.1 Service Level Table Inaccuracy

The application developer specifies offline each of the values in the
service level table. The information used by the developer to define
these values includes the internal structure of the application, the level
of interconnection and communication of the different components of
this structure, the hardware platform, and the nature of the data to
be handled.
Despite having a great deal of information about the internal topol-

ogy and networking of the application, the information about the data

89

Chapter 8. Adaption and Learning

is something that can be certainly known only at runtime. Consider for
instance the CAL MPEG 4 SP decoder application from Chapter 7. De-
pending on the nature of the decoded frames, the amount of resources
needed may vary substantially for the same service level.
Therefore, the resource manager must be able to handle uncertain-

ties in the initial model and to tune the values specified in it.

8.2 Resource Allocation Beyond Service Level

Specifications

The lack of accuracy of the values defined in the service level table can
produce two different scenarios. In the first scenario the application
may require less resources than the ones initially specified. In such
a case the bandwidth controllers can adapt the allocated resources to
the real needs of the application, and reallocate the unused resources
to other applications if needed.
In the second scenario the application may require more resources

than the ones initially specified. This is the worst case scenario due
to the performance criteria of the bandwidth controllers may not be
satisfied. This means that although the bandwidth controllers provide
the maximum assigned bandwidth, the application will not be able to
have a good performance. This of course could reduce the provided QoS.
In order to avoid this problem, the resource manager must be able to

allocate more resources than what is initially specified. This procedure
must be done in a systematic way that considers the resource limita-
tions of the system, and specifies the rules or policies under which
more resources can be provided.
The maximum assignable bandwidth of each core of the system

must be considered when increasing the assigned bandwidth. In or-
der to satisfy the schedulability condition. The policies to increase the
assigned bandwidth specify that:

• A virtual processor of an application can be assigned more re-
sources if there is available free bandwidth.

• A virtual processor of an application can take bandwidth from
other virtual processors that are less important, and are exe-

90

8.2 Resource Allocation Beyond Service Level Specifications

cuting with a bandwidth that is larger than what was initially
assigned during registration.

To understand these policies a simple example is included. Fig-
ure 8.1 shows the additional bandwidth allocated for a virtual proces-
sor of application 1. In the figure BWM is the maximum assignable
bandwidth of the core, that is 90%, where the virtual processor is ex-
ecuting. The maximum assigned bandwidth ABM1 (dotted red line),
corresponds to the initial bandwidth distribution value assigned dur-
ing registration. At time t0 the assigned bandwidth AB1 corresponds

Figure 8.1: Bandwidth assignment beyond service level specifications.

to ABM1, f0 is the free available bandwidth which can be assigned
if needed. The bandwidth controller continuously adapts AB1, and at
time t1 the free available bandwidth increases. This free resource could
be allocated to other virtual processor executing on the same core. The
resource manager begins to allocate more resources to the application
at time t2. The virtual processor of a new registered application is as-
signed to the same core at time t3, this forces AB1 to return to ABM1.
After sometime at time t4 the bandwidth controller of the new virtual
processor release unused resources which are taken and allocated to
the first application.

91

Chapter 8. Adaption and Learning

8.3 Service Level Table Update

In either of the two scenarios, the bandwidth controllers obtain run-
time information about the real resource consumption of the applica-
tions. Thus, the resource manager is able to determine the adequate
amount of resources needed by the application at an specific service
level.
The next natural step would be to update some of the values in the

service level table. These values include the bandwidth and the band-
width distribution at each service level. A complete update of these
values is only possible if the application has been assigned each ser-
vice level at some point during its execution time. Otherwise only a
partial update can be carried out.
The policies to update the bandwidth and bandwidth distribution

values at a particular service level specify that:

• The application has been assigned that particular service level
at least once during its execution time.

• The update is carried out after the application is assigned a new
service level. The values to be updated correspond to the previous
service level. These values are equal to the assigned bandwidth
and bandwidth distribution prior to the new service level assign-
ment.

• In case the same service level has been active more than once,
the updated values correspond to the largest ones among the last
three updates carried out for the same service level.

The last policy gives the possibility to discard old data that does
not provide new information to the update process.

8.4 Example

This section will show the functionality of the service level table up-
date for the CAL MPEG 4 SP decoder application. To force the service
level change of the decoder application, the CAL periodic pipeline ap-
plication is used.

92

8.4 Example

The original service level table for both of the applications is shown
in Table 8.1.

Table 8.1: Original service level table of the decoder and pipeline applications

Application I SL QoS BW Granularity BWD

name [%] [%] [ms] [%]

Decoder 1 0 100 120 100 [60, 60]

1 80 100 330 [50, 50]

2 60 40 400 [20, 20]

Pipeline 10 0 100 80 20 [40, 40]

1 90 54 40 [27, 27]

2 70 32 70 [16, 16]

Implementation Considerations

The experiment is carried out in a dual core system where the resource
availability of each of the cores is set to 90%. The sampling time is set to
5Pi, where Pi is the period of the application i that is being controlled.
The exhaustion percentage set point EPSP is set to [0.05, 0.1]. The
tuning parameters of the bandwidth controllers are the same as in
Section 7.3 (see Table 7.2). For a better visualization of the results the
input and output signals of the bandwidth controller are normalized
to values between 0 and 1.

Service Level Table Update

The resource adaption and bandwidth update of the decoder applica-
tion are shown in Figure 8.2. In the figure the used bandwidth UB,
the assigned bandwidth AB, and the exhaustion percentage EP are
represented by the green, red, and blue colors respectively.
The decoder application registers with the resource manager at

time t = 0, and gets service level 0. According to the service level table
this means that each virtual processor gets an initial assigned band-
width of 0.6. At time t = 100 a disturbance occurs which is counter-
acted by the bandwidth controllers by increasing AB. The application

93

Chapter 8. Adaption and Learning

becomes unhappy at time t = 200 this produces a new increase of AB
until the application becomes happy again. Around time t = 250 the pe-
riodic pipeline application registers with the resource manager. Before
the new service level assignment is performed, the resource manager
updates the bandwidth distribution values and the total bandwidth
for the decoder application at service level 0. The updated bandwidth
distribution values of VP0 and VP1 correspond to 0.47 and 0.33 re-
spectively.

Figure 8.2: Resources adaption and bandwidth update of the CAL SP decoder application.

After registration of the pipeline application the resource manager
assigns service level 0 to the pipeline and the service level of the de-
coder application to 1. The initial assigned bandwidth of the decoder at
this service level equals 0.5 which later on is decreased by the band-
width controllers. At time t = 400 the pipeline application unregis-
ters. Before the new service level assignment is performed the resource
manager updates the bandwidth distribution and the total bandwidth
values for the decoder application at service level 1. In this case the

94

8.4 Example

updated bandwidth distribution values of VP0 and VP1 correspond to
0.25 and 0.24 respectively. After the updating process the decoder is
assigned service level 0. This time the initial assigned bandwidth of
VP0 and VP1 correspond to 0.47 and 0.33 respectively.
For illustration reasons a new service level assignment is forced

with the registration again of the pipeline application. This reduces
the service level of the decoder from 0 to 1. In this case the initial
assigned bandwidth of VP0 and VP1 correspond to the updated 0.25
and 0.24 and not to the original 0.5.
The update of the bandwidth distribution values as well as the total

bandwidth for service level 0 and 1 are shown in Table 8.2.

Table 8.2: Updated service level table of the decoder application

Application I SL QoS BW Granularity BWD

name [%] [%] [ms] [%]

Decoder 1 0 100 80 100 [47, 33]

1 80 49 33 [25, 24]

2 60 40 100 [20, 20]

Once can notice in Figure 8.2 that the output of the bandwidth
controllers after the update is more steady and almost constant. This
is the result of having a model of the application that is tuned at
runtime.

95

9

Adaption towards changes

in resource availability

The resource manager is able to adapt how resources are distributed
when the application requirements change and to adapt the applica-
tions to changes in resource availability. In this last case, it has so far
been assumed that the available amount of system resources is con-
stant. However, this is also subject to changes over time, specially if
the system supports power management and/or thermal control.
Not only the available system resources may change dynamically,

but also the significance that each application may have for the user
at different points in time. This implies that the importance of an
application with respect to others may change dynamically.

9.1 Changing Resource Availability

The system power consumption can become very significant when the
total computational load generated by the registered applications is
too high. This will increase the temperature of the system chips. One
way to prevent failures due to overheating is to limit the computational
load or utilization of the system.
The approach described in [52] which uses a single core platform,

combines a PI controller for thermal control of the chip and the re-
source manager described in the previous chapters. Figure 9.1 shows
the proposed system model. The thermal controller keeps the tempera-

96

9.1 Changing Resource Availability

ture at an acceptable temperature for the processor. The resource man-
ager dynamically allocates resources to each application on the system.
In the figure T and TR are the current temperature of the system, and
the reference temperature respectively. This last value is defined by
the system designer. The values U, Umin, Umax and UL correspond to
the utilization of the system, the lower and upper utilization bounds
and the utilization limit defined by the thermal controller respectively.

Figure 9.1: System model for thermal control in a single core.

The input Umin represents the minimum utilization required by the
applications to provide the lowest permissible QoS. The input Umax is
the maximal available utilization defined by the employed scheduling
policy. The output of the thermal controller UL decides the maximum
amount of bandwidth available to the resource manager for allocation
to applications. A change in UL could trigger new service level assign-
ments for the registered applications.
The extension of this approach to multicore systems would require

the implementation of thermal controllers for each of the cores. The
resource manager would require to dynamically pack the virtual pro-
cessors onto as few physical processors as possible. This would make it
possible to turn off cores. The functionality for this, that is, to be able
to dynamically migrate virtual processors and their tasks is already
available and was explained in Chapter 6.
The service level assignment, the bandwidth distribution as well

as the bandwidth adaption functionalities would still be used on this
extension. The only difference is that they would be subject to the
constraint defined by UL.

97

Chapter 9. Adaption towards changes in resource availability

9.2 Changing Application Importance Values

The significance that the user may give to the running applications
may also change over time. This means that the user may want to
change the importance values of the registered applications at run-
time. In this case the resource manager may have to redistribute the re-
sources. This will possibly require new service level assignments for the
registered applications, and change how the bandwidth is distributed
among the cores.

9.3 Example

This section will show the results obtained when the resource avail-
ability as well as the application importance values are subject to
changes. The chosen scenario contains three applications A1, A2 and
A3. Table 9.1 shows the service level information provided by the three

Table 9.1: Service level table of application A1, A2 and A3

Application I SL QoS BW Granularity BWD

name [%] [%] [ms] [%]

A1 10 0 100 160 40 [40, 40, 40, 40]

1 80 120 50 [30, 30, 30, 30]

A2 1 0 100 110 20 [20, 30, 30, 30]

1 90 55 40 [10, 15, 15, 15]

2 70 35 70 [5, 10, 10, 10]

A3 100 0 100 75 20 [20, 15, 40]

1 70 60 100 [10, 10, 30]

applications and their importance values in column I. Originally the
resource availability of each of the cores in the four core system is set
to 90%.
Figure 9.2 shows the assigned service level and the bandwidth dis-

tribution of each of the applications after their registration with the

98

9.3 Example

resource manager. The bandwidth distribution policy is packed distri-

App. SL BW BWD

name [%] [%]

A1 0 160 [40, 40, 40, 40]

A2 1 55 [10, 15, 15, 15]

A3 0 75 [20, 15, 40]

Figure 9.2: Registration of applications A1, A2
and A3.

bution.

Changing Resource Availability

For the first experiment the resource availability of the processor 4
is set to 0. This change could be generated by a power management
controller. Figure 9.3 shows how application A2 receives a new ser-

App. SL BW BWD

name [%] [%]

A1 0 160 [40, 40, 40, 40]

A2 2 35 [5, 10, 10, 10]

A3 0 75 [20, 15, 40]

Figure 9.3: New distribution and service level
assignments of the applications after changes
in resource availability.

vice level. This is not surprising since this application is the one that
contributes the least to the overall QoS. After the new service level
assignment migration of the virtual processors of A2 to the other pro-
cessors is possible.

99

Chapter 9. Adaption towards changes in resource availability

Changing Application Importance Values

For the second experiment the importance values of A1, A2 and A3 are
changed to 100, 10 and 1 respectively. This means that the importance
of application A2 is increased. This produces a new service level as-
signment for A2 which increases to 0, and for A3 which decreases to
1. The new bandwidth distribution is shown in Figure 9.4.

App. SL BW BWD

name [%] [%]

A1 0 160 [40, 40, 40, 40]

A2 0 110 [20, 30, 30, 30]

A3 1 40 [10, 10, 30]

Figure 9.4: New distribution and service level
assignment of the applications after changes in
the importance values.

100

10

Application Examples

This chapter briefly describes different applications developed based
on the resource management framework described in Chapters 3-9.
The applications were all developed as demonstrators in the ACTORS
project. Most of the applications were implemented in CAL.
The main objective for implementation of the demonstrators was to

evaluate the capacity and the performance of the resource manager.
Of course this also includes evaluation of the performance achieved by
the applications under the control of the resource manager.

10.1 Video Decoder Demonstrator

The camera decoder application consists of an MPEG 4 SP decoder
written in CAL that is connected to an Axis M1011 network camera
capable of generating SP encoded video streams and where the frame
rate and the resolution can be changed dynamically. This application
is the same that has been used in Chapters 7, and 8.
The video frames are received over the network using a special

system actor that extracts the SP frames from the Real-Time Transport
Protocol (RTP) transport format generated by the camera and which
also issues commands to the camera to change the frame rate and
resolution. High frame rate and high resolution both implies a higher
resource demand for the decoding.
The camera decoder application is considered to be a low importance

process, its importance value is set to 100.

101

Chapter 10. Application Examples

10.2 Video Quality Adaption Demonstrator

The video quality adaption demonstrator consists of a video player
client executing under the control of the resource manager. The video
player can either be implemented in CAL or be a legacy media player.
The video stream is received over the network from a video server.
When the available resources for the decoding decrease and it needs
to lower its service level it issues a command to the video server to
adapt the video stream by skipping frames, in the case of MPEG 2
streams [53], or by skipping macro block coefficients in the case of
MPEG 4 streams.

10.3 Feedback Control Demonstrator

The feedback control demonstrator [54] consists of the following ap-
plications which all are executing under the control of the resource
manager:

• A ball and beam controller implemented in CAL. Two instances
of this application are used.

• An inverted pendulum balancing and a swing-up controller im-
plemented in CAL. The actuator for the pendulum is an ABB
industrial robot.

• A CAL MPEG 4 SP video decoder in combination with an Axis
network camera which has already been described in Chapter 7.

• A GUI for the resource manager implemented in C++.

• An external load generator implemented in C++. The load genera-
tor is a compute-bound application that consumes all CPU cycles
given to it. It is used to generate disturbing computing load on
the system.

• A CAL pipeline application described in Chapter 7. This appli-
cation is also used to generate disturbing computing load on the
system.

Figure 10.1 shows a schematic overview of the demonstrator.

102

10.3 Feedback Control Demonstrator

Figure 10.1: Overview of the control demonstrator.

The Ball and Beam Controller

The ball and beam process [55] consists of a horizontal beam and a
motor that controls the beam angle. The measured signals from the
process are the beam angle relative to the horizontal plane and the
position of the ball. Figure 10.2 shows the process.

Figure 10.2: The ball and beam process.

103

Chapter 10. Application Examples

The dynamic model from the motor to the ball position consists of
two transfer function blocks connected in series, in which the beam
angle appears as an intermediate output signal (see Figure 10.3).

Figure 10.3: Ball and Beam Model Structure.

The aim of the control system is to control the position of the ball
on the beam. Due to the dynamic of the process a cascade controller is
used.
The CAL implementation of the controller includes different actors:

• The D-Bus actor acts as an interface to the resource manager.

• The Service Level actor translates the service level into a suit-
able sampling period, that is, in this application different service
levels correspond to different sampling periods. A high service
level implies a short sampling period which in turn results in a
high bandwidth and high QoS obtained.

• The Exit actor implements functionality for terminating the ap-
plication using a keyboard command.

• The Merge actor merges together the sampling period from the
Service Level actor and a token from the Exit actor and forwards
the tokens to the Clock actor.

• The reference signal for the outer controller is a low frequency
square-wave signal. This is generated by a separate clock system
actor (RefGen Clock) and a reference signal generator (RefGen).

• The clock, position, outer controller, angle, inner controller, and
output actors constitute the cascade controller of the process.

The complete CAL implementation of the ball and beam controller is
shown in Figure 10.4.
The service level table of the ball and beam application is shown in

Table 10.1. The task to be performed is the same for all service levels.

104

10.3 Feedback Control Demonstrator

Figure 10.4: Ball and Beam CAL Model.

A service level change produces a change in the controller parameters,
such that the controller is designed with respect to the new period.
The change in the parameters is necessary to have a stable closed loop
system. Due to the structure of the CAL network no parallel compu-
tations are needed, and therefore only one core is used. The ball and
beam application is considered to be a medium importance process
with an importance value of 20.

Table 10.1: Service level table for the ball and beam controller application

SL QoS BW Granularity BWD

[%] [%] [ms] [%]

0 100 30 20 30

1 90 20 30 20

2 70 12 50 12

3 40 9 70 9

The controller does not report any explicit happiness value to the
resource manager. This implies that the application is always happy as
long as it is allowed to execute at one of the specified service levels. It
is, however, straightforward to extend the implementation with func-
tionality for calculating the quality of control achieved. One possibility
is to use an actor that takes the control signal and the measured ball
position as inputs and calculates a quadratic cost function. The value
of this cost function is then sent to a Happiness actor that translates
the value of the cost function into a happiness value taking the current
service level into account. The happiness value would then be sent as

105

Chapter 10. Application Examples

an input to the D-Bus actor that would send a message to the resource
manager.

The Inverted Pendulum Controller

The inverted pendulum controller [55] consists of a free swinging pen-
dulum that is attached to an ABB IRB 2400 industrial robot. The
inverted pendulum actuated by the industrial robot is shown in Fig-
ure 10.5

Figure 10.5: Inverted pendulum actuated by an industrial robot.

The objective of the CAL controller is to automatically swing-up the
pendulum and then balance the pendulum in its upward position. The
pendulum controller consists of four main parts:

• Signal processing logic for calculating the angular velocity of the
pendulum from the angle measurement.

• The balancing controller that balances the pendulum in the up-
ward position. This controller is a state feedback controller using
four states: the cart position, the cart velocity, the pendulum an-
gle, and the pendulum angular velocity.

106

10.3 Feedback Control Demonstrator

• The swing-up controller. This controller automatically swings up
the pendulum from the downward position to the upward posi-
tion by gradually pumping in more and more energy into the
pendulum.

• Mode selection logic for deciding which one of the balancing con-
troller and the swing-up controller that should be connected to
the cart.

The pendulum controller is shown in Figure 10.6. The Sampling

Figure 10.6: Inverted Pendulum CAL Model.

actor takes a sample of the robot arm and velocity, and of the pendu-
lum angle. From the angle the angular velocity is calculated through
a simple difference approximation. The resulting four state variables
are merged together and sent the the balancing controller, the mode

107

Chapter 10. Application Examples

selector, and the swing-up controllers which are executed in parallel.
The Switch actor selects the output of one of the two controllers based
on the output of the Mode Selector actor. The limited control signal is
then sent out to the physical pendulum process. Also, in this example
some of the connections have been omitted for the sake of clarity.
The inverted pendulum controller is considered as the most impor-

tant process, its importance value is set to 100. The service level table
is shown in Table 10.2.

Table 10.2: Service level table for the inverted pendulum controller application

SL QoS BW Granularity BWD

[%] [%] [ms] [%]

0 100 40 10 [8, 16, 16]

1 90 20 20 [4, 8, 8]

2 70 10 40 [2, 4, 4]

3 40 5 80 [1, 2, 2]

The calculations in the CAL network are done in parallel. The clock
actor that triggers the controller, together with the actors that handle
the D-Bus communication execute in the first virtual processor. The
kinematics to obtain the pivot position are calculated in the second
virtual processor, while the signal processing of the angle measurement
is done in the third virtual processor. When all the states are obtained
they are sent to the swing-up and balancing controller (see Figure 10.6)
which execute in parallel in the second and third virtual processors.
The inverted pendulum controller does not report any happiness to

the resource manager, that is, it is assumed to always be happy.

The Resource Manager GUI

The resource manager GUI is implemented in C++, and is used to visu-
alize the internal actions of the resource manager. It runs itself under
the control of the resource manager using a single service level and a
single virtual processor with a default bandwidth of 15%, a granularity
of 10000 ms and an importance value of 10.

108

11

Conclusions

11.1 Summary

The central theme of this thesis is adaptive CPU bandwidth resource
management for applications executing on multicore platforms. The
work focuses on the development and implementation of different algo-
rithms for the resource manager part of the ACTORS framework. The
framework uses the fairly abstract concepts of service levels and happi-
ness to interface the applications with the resource manager. The inter-
face between the resource manager and the operating system is based
on reservation parameters and resource utilization measurements.
The implemented algorithms combine feedforward and feedback

techniques. As a result the resource manager is able to adapt the ap-
plications to changes in resource availability, and to adapt how the
resources are distributed when the application requirements change.
Some remarks about the outcomes of this thesis are given below.

Service Level Assignment and Bandwidth Distribution

An algorithm that uses feedforward techniques is presented. The al-
gorithm proposes a BIP formulation to assign service levels to the
applications. The assignment is done according to their bandwidth re-
quirements and QoS provided at each service level, as well as their
importance values. The formulation is very simple and uses little in-
formation to produce a solution. The lack of more detailed information

109

Chapter 11. Conclusions

may lead to solutions that are not schedulable, this is specially noted
during the bandwidth distribution process.
Different distribution policies are proposed and implemented to per-

form the bandwidth distribution of the registered applications. Each
policy produces a particular mapping onto the physical cores of the
virtual processors of an application. This is always possible when a
schedulable solution is produced during the service level assignment.
Different algorithms are presented to handle unschedulable solu-

tions. The algorithms include a repetitive service level assignment
method and a bandwidth compression and decompression algorithm.
The first one solves the problem in a very simple but non optimal way.
The second one, more complex in nature, provides a better solution.

Bandwidth Adaption and Learning Process

An algorithm that implements bandwidth controllers based on feed-
back techniques is presented. The resource manager assigns one band-
width controller per virtual processor of every application. Each band-
width controller dynamically adapts the allocated CPU resources. The
bandwidth controllers are periodically activated. The adaption is per-
formed based on resource utilization and/or achieved QoS feedback.
For the resource utilization feedback a bandwidth cascade controller

structure is employed. The output of the controller is generated based
on the cumulative measurements of the used budget and exhaustion
percentage, as well as statistical measurements. For the achieved QoS
feedback a simple proportional controller is used. This controller pro-
duces an output based on the happiness measurements directly pro-
vided by the application.
The bandwidth controllers guarantee that the allocated resources

are optimally used and not wasted. Additionally, the bandwidth con-
trollers provide knowledge about the real amount of resources needed
by the applications, which may highly contrast with the initial informa-
tion provided by the service level table. Thus, they are able to produce
a model of the application that is tuned at runtime.

Adaption Towards Changes in Resource Availability

The different implemented algorithms are able to perform adaption to-
wards changes in resource availability. This is very relevant specially

110

11.2 Future Work

for systems that provide support for power management and/or ther-
mal control. The algorithms are also able to handle changes related to
the significance that each application may have for the user at different
points in time.

11.2 Future Work

The work presented in this thesis can be continued in several direc-
tions. Some of the more interesting ones are the following:

Support for power management and/or thermal control The
current functionality of the resource manager is to a large extent al-
ready prepared for this. A possible approach is to use a cascaded struc-
ture where an outer power or thermal controller decides how much
CPU resources that the resource manager may use to allocate to ap-
plications. The thermal controller described in Chapter 9 uses this
approach, but only in the single-core case. Accurate multicore thermal
control requires sensors that measure the temperature of the individ-
ual cores as well as a thermal controller that controls the amount of
resources that may be allocated on a per core basis. A possible ap-
proach to include power management in the system would be to add
terms to the cost function in the service level optimization that allows
individual cores to be either active or inactive.

Multi-resource management The current resource manager only
manages the CPU time. An interesting extension would be to also allow
management of other resources, for example, memory. The service level
table format was initially developed to support multiple resources. The
idea was to use periodic server abstractions for all resources and to
express the bandwidth and granularity requirements on a per resource
basis.

Model-free resource adaptation The current resource manager re-
quires the application developer to provide estimates of the resource
requirements of the application at each service level and for the par-
ticular hardware platform that the application should execute on. This
information can be viewed as a model of the application that is used

111

Chapter 11. Conclusions

in the service level optimization and the bandwidth distribution. How-
ever, this approach has certain drawbacks. In addition to the practical
problems associated with deriving this information it also limits the
application portability from one platform to another. An alternative
approach would be to instead base the resource adaptation only on
feedback from the measurements of the resource consumption and the
application happiness. The bandwidth requirement and the QoS infor-
mation in the service level table could still be used, but should now be
interpreted as relative values that the resource manager may use to,
for example, decide whether to switch service level of an application,
rather than as absolute values. A problem with a purely feedback-based
approach is to decide how much bandwidth that an application should
receive initially.

112

12

Bibliography

[1] ACTORS: Adaptivity and Control of Resources in Embedded
Systems. April 2008. http://exoplanet.eu/catalog.php.

[2] C. L. Liu and J. W. Layland, “Scheduling algorithms for multipro-
gramming in a hard-real-time environment,” Journal of the ACM,
vol. 20, no. 1, 1973.

[3] E. A. Lee, “The problem with threads,” IEEE Computer, vol. 39,
no. 5, pp. 33–42, 2006.

[4] L. Abeni and G. Buttazzo, “Resource reservations in dynamic real-
time systems,” Real-Time Systems, vol. 27, no. 2, pp. 123–165,
2004.

[5] L. Abeni, G. Lipari, and G. Buttazzo, “Constant bandwidth vs.
proportional share resource allocation,” in 6th IEEE International
Conference on Multimedia Computing and Systems, p. 107, June
1999.

[6] A. K. Parekh and R. G. Gallager, “A generalized processor sharing
approach to flow control in integrated services networks: the
single-node case,” IEEE/ACM Transactions on Networking, vol. 1,
no. 3, pp. 344–357, 1993.

[7] D. Petrou, J. W. Milford, and G. A. Gibson, “Implementing
lottery scheduling: matching the specializations in traditional
schedulers,” in ATEC’99: Proceedings of the Annual Technical
Conference on 1999 USENIX Annual Technical Conference, 1999.

113

Chapter 12. Bibliography

[8] L. Abeni, C. Scordino, G. Lipari, and L. Palopoli, “Serving non
real-time tasks in a reservation environment,” in Proceedings of
the 9th Real-Time Linux Workshop (RTLW), November 2007.

[9] C. Scordino, Dynamic Voltage Scaling for Energy-Constrained
Real-Time Systems. PhD thesis, Computer Science Department,
University of Pisa, December 2007.

[10] R. Rajkumar, K. Juvva, A. Molano, and S. Oikawa, “Resource
kernels: A resource-centric approach to real-time and multimedia
systems,” in SPIE/ACM Conference on Multimedia Computing
and Networking, pp. 150–164, January 1998.

[11] K. J. Nesbit, M. Moreto, F. J. Cazorla, A. Ramirez, M. Valero,
and J. E. Smith, “Multicore resource management,” IEEE Micro,
vol. 28, pp. 6–16, May 2008.

[12] G. Lipari and E. Bini, “A methodology for designing hierarchical
scheduling systems,” Journal of Embedded Computing - Real-Time
Systems (Euromicro RTS-03), vol. 1, April 2005.

[13] C. Lu, J. Stankovic, G. Tao, and S. H. Son", “Design and evaluation
of a feedback control edf scheduling algorithm,” in Proceedings
of the 20th IEEE Real-Time Systems Symposium, pp. 56–67,
December 1999.

[14] L. Palopoli, L. Abeni, and G. Lipari, “On the application of hybrid
control to cpu reservations,” in Proceedings of the Conference on
Hybrid Systems Computation and Control (HSCC03), pp. 389–404,
April 2003.

[15] L. Abeni and G. Buttazzo, “Adaptive bandwidth reservation for
multimedia computing,” in 6th IEEE Conference on Real-Time
Computing Systems and Applications, pp. 70–77, December 1999.

[16] W. Knight, “Two heads are better than one [dual-core processors],”
IEEE Review, vol. 51, no. 9, pp. 32–35, 2005.

[17] M. Johson, Superscalar Microprocessor Design. New Jersey, USA:
Prentice Hall, 1991.

[18] M. J. Quinn, Parallel Programming in C with MPI and OpenMP.
New York, NY, USA: McGraw-Hill, 2004.

114

[19] C. L. Liu, “Scheduling algorithms for multiprocessors in a hard
real-time environment,” JPL Space Programs Summary 37–60,
vol. 2, pp. 28–31, 1969.

[20] M. R. Garey and D. S. Johnson, Computers and Intractability:
A Guide to the Theory of NP-Completeness. New York, NY, USA:
W.H. Freeman & Co., 1979.

[21] A. Burchard, J. Liebeherr, Y. Oh, and S. H. Son, “New strategies
for assigning real-time tasks to multiprocessor systems,” IEEE
Transactions on Computers, vol. 44, pp. 1429–1442, December
1995.

[22] S. K. Dhall and C. L. Liu, “On a real-time scheduling problem,”
Operation Research, vol. 26, pp. 127–140, January 1978.

[23] S. Lauzac, R. Melhem, and D. Mossé, “An improved rate-monotonic
admission control and its applications,” IEEE Transactions on
Computers, vol. 52, pp. 337–350, March 2003.

[24] J. M. López, M. García, J. L. Díaz, and D. F. García, “Utilization
bounds for multiprocessor rate-monotonic scheduling,” Real-Time
Systems, vol. 24, pp. 5–28, January 2003.

[25] L. Rizvanovic, D. Isovic, and G. Fohler, “Integrated global and
local quality-of-service adaptation in distributed, heterogeneous
systems,” in The 2007 IFIP International Conference on Embedded
and Ubiquitous Computing, December 2007.

[26] L. Rizvanovic and G. Fohler, “The MATRIX: A framework for
real-time resource management for video streaming in networks
of heterogeneous devices,” in The International Conference on
Consumer Electronics 2007, pp. 219–233, January 2007.

[27] T. Cucinotta, L. Palopoli, L. Marzario, and G. Lipari, “AQoSA -
adaptive quality of service architecture,” Software - Practice and
Experience, vol. 39, no. 1, pp. 1–31, 2008.

[28] AQuoSA: Adaptive Quality of Service Architecture. November
2005. http://aquosa.sourceforge.net/index.php.

[29] A. Kassler, A. Schorr, C. Niedermeier, R. Schmid, and A. Schrader,
“MASA - a scalable qos framework,” in Proceedings of Internet and
Multimedia Systems and Applications (IMSA), August 2003.

115

Chapter 12. Bibliography

[30] B. Li and K. Nahrstedt, “A control-based middleware framework
for quality-of- service adaptations,” IEEE Journal on Selected
Areas in Communications, vol. 17, no. 9, pp. 1632–1650, 1999.

[31] B. Li and K. Nahrstedt, “Impact of control theory on QoS
adaptation in distributed middleware systems,” in Proceedings of
the American Control Conference, pp. 2987–2991, June 2001.

[32] J. Stankovic, T. Abdelzaher, M. Marleya, G. Tao, and S. Son,
“Feedback control scheduling in distributed real-time systems,” in
Proceedings of the Real-Time Systems Symposium (RTSS), p. 59,
December 2001.

[33] S. Craciunas, C. Kirsch, H. Payer, H. Röck, and A. Sokolova,
“Programmable temporal isolation through variable-bandwidth
servers,” in Proceedings of the Symposium on Industrial Embed-
ded Systems (SIES), pp. 171–180, July 2009.

[34] G. Heiser, “The role of virtualization in embedded systems,” in
Proceedings of the 1st workshop on Isolation and integration in

embedded systems, pp. 11–16, April 2008.

[35] G. C. Buttazzo, M. Caccamo, and L. Abeni, “Elastic scheduling for
flexible workload management,” IEEE Transactions on Comput-
ers, vol. 51, pp. 289–302, March 2002.

[36] J. Real and A. Crespo, “Mode change protocols for real-time
systems: A survey and a new proposal,” Real-Time Systems, vol. 26,
no. 2, pp. 161–197, 2004.

[37] E. Bini, G. Buttazzo, J. Eker, S. Schorr, R. Guerra, G. Fohler, K.-
E. Arzen, V. R. Segovia, and C. Scordino, “Resource management
on multicore systems: The actors approach,” IEEE Micro, vol. 31,
no. 3, pp. 72–81, 2011.

[38] J. Eker and J. Janneck, “CAL language report,” Tech. Rep. ERL
Technical Memo UCB/ERL M03/48, 2003.

[39] E. A. Lee and D. Messerschmitt, “Static scheduling of synchronous
data flow programs for digital signal processing,” IEEE Transac-
tions on Computers, vol. C-36, no. 1, pp. 24–35, 1987.

116

[40] E. A. Lee and T. Parks, “Dataflow process networks,” Proceedings
of the IEEE, vol. 83, no. 5, pp. 773–801, 1995.

[41] C. W. Mercer, R. Rajkumar, and H. Tokuda, “Applying hard real-
time technology to multimedia systems,” in Workshop on the
Role of Real-Time in Multimedia/Interactive Computing System,
November 1993.

[42] G. Lipari and C. Scordino, “Linux and real-time: Current
approaches and future opportunities,” in IEEE International
Congress ANIPLA, November 2006.

[43] N. Manica, L. Abeni, L. Palopoli, D. Faggioli, and C. Scordino,
“Schedulable device drivers: Implementation and experimental re-
sults,” in Proceedings of the 6th International Workshop on Op-
erating Systems Platforms for Embedded Real-Time Applications

(OSPERT), pp. 53–62, July 2010.

[44] D-Bus. http://www.freedesktop.org/wiki/Software/dbus.

[45] G. Lamastra, G. Lipari, and L. Abeni, “A bandwidth inheritance
algorithm for real-time task synchronization in open systems,”
in Proceedings of the 22nd IEEE Real-Time System Symposium
(RTSS), pp. 151–160, December 2001.

[46] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge,
MA, USA: Cambridge University Press, 2004.

[47] A. H. Land and A. G. Doig, “An automatic method of solving
discrete programming problems,” Econometrica, vol. 28, no. 3,
pp. 497–520, 1960.

[48] R. E. Gomory, “Outline of an algorithm for integer solutions to
linear programs,” Bulletin of the American Mathematical Society,
vol. 64, pp. 275–278, 1958.

[49] J. F. Shapiro, “Group theoretic algorithms for the integer program-
ming problem 2: Extension to a general algorithm,” Operations
Research, vol. 16, no. 5, pp. 928–947, 1968.

[50] V. R. Segovia and K.-E. Årzén, “Towards adaptive resource
management of dataflow applications on multi-core platforms,”
in Proceedings Work-in-Progress Session of the 22nd Euromicro
Conference on Real-Time Systems, ECRTS, pp. 13–16, July 2010.

117

Chapter 12. Bibliography

[51] GLPK: GNU Linear Programming Kit. http://www.gnu.org/s/

glpk/.

[52] V. R. Segovia, M. Kralmark, M. Lindberg, and K.-E. Årzén,
“Processor thermal control using adaptive bandwidth resource
management,” in Proceedings of the 18th World Congress of the
International Federation of Automatic Control, IFAC, pp. 123–129,
August 2011.

[53] A. Kotra and G. Fohler, “Resource aware real-time stream adap-
tation for MPEG-2 transport streams in constrained bandwidth
networks,” in Proceedings of the IEEE International Conference
on Multimedia and Expo (ICME), pp. 729–730, July 2010.

[54] M. Kralmark and K.-E. Årzén, Deliverable D5b: Control Demon-
strator. January 2011. http://www3.control.lth.se/user/

karlerik/Actors/M36/d5b-main.pdf.

[55] K.-E. Årzén, M. Kralmark, and J. Eker, Deliverable D5d: Control
Algorithms: Dataflow Models of Control Systems. January 2011.
http://www3.control.lth.se/user/karlerik/Actors/M36/

d5d-main.pdf.

118

Department of Automatic Control

Lund University
Box 118

SE-221 00 Lund Sweden

Document name
LICENTIATE THESIS
Date of issue
September 2011
Document Number
ISRN LUTFD2/TFRT--3252--SE

Author(s)
Vanessa Romero Segovia

Supervisor

Karl-Erik Årzén

Sponsoring organisation

ACTORS (EU FP7)
Title and subtitle

Adaptive CPU Resource Management for Multicore Platforms

Abstract

The topic of this thesis is adaptive CPU resource management for multicore platforms. The work was
done as a part of the resource manager component of the adaptive resource management framework im-
plemented in the European ACTORS project. The framework dynamically allocates CPU resources for the
applications. The key element of the framework is the resource manager that combines feedforward and
feedback algorithms together with reservation techniques. The reservation techniques are supported by
a new Linux scheduler through hard constant bandwidth server reservations. The resource requirements
of the applications are provided through service level tables. Dynamic bandwidth allocation is performed
by the resource manager which adapts applications to changes in resource availability, and adapts the
resource allocation to changes in application requirements. The dynamic bandwidth allocation allows to
obtain real application models through the tuning and update of the initial service level tables.

Key words

resource management, embedded systems, real-time systems, multimedia, multicore

Classification system and/or index terms (if any)

Supplementary bibliographical information

ISSN and key title

0280–5316
ISBN

Language

English
Number of pages

120
Security classification

Recipient’s notes

The report may be ordered from the Department of Automatic Control or borrowed through:
University Library, Box 134, SE-221 00 Lund, Sweden
Fax +46 46 222 42 43 E-mail lub@lub.lu.se

