
LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

Control and Communication with Signal-to-Noise Ratio Constraints

Johannesson, Erik

2011

Document Version:
Publisher's PDF, also known as Version of record

Link to publication

Citation for published version (APA):
Johannesson, E. (2011). Control and Communication with Signal-to-Noise Ratio Constraints. [Doctoral Thesis
(monograph), Department of Automatic Control]. Department of Automatic Control, Lund Institute of Technology,
Lund University.

Total number of authors:
1

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.
 • Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

https://portal.research.lu.se/en/publications/e234c2a1-f241-4fd3-bc18-2e20e8c10153


Control and Communication with

SignaltoNoise Ratio Constraints





Control and Communication with
SignaltoNoise Ratio Constraints

Erik Johannesson

Department of Automatic Control

Lund University

Lund, October 2011



Department of Automatic Control
Lund University
Box 118
SE-221 00 LUND
Sweden

ISSN 0280–5316
ISRN LUTFD2/TFRT--1087--SE

c© 2011 by Erik Johannesson. All rights reserved.
Printed in Sweden by Media-Tryck.
Lund 2011



“If I have seen a little further it is by standing on the shoulders
of Giants.”

Isaac Newton
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Abstract

This thesis is about two problems in the intersection of communication and
control theory. Their common feature is that they involve communication
over an additive white noise channel with a signal-to-noise ratio (SNR)
constraint.
The first problem concerns the transmission of a real-valued signal

from a partially observed Markov source. The distortion criterion is the
mean squared error and the transmission is subject to a delay constraint,
which introduces the need for real-time coding. The problem is first con-
sidered for scalar-valued signals when the channel has no feedback and
then, in turn, generalized to each of the cases with non-white channel
noise, vector-valued signals or channel feedback.
It is shown that jointly optimal encoders and decoders within the linear

time-invariant (LTI) class can be obtained by solving a convex optimiza-
tion problem and performing a spectral factorization. The functional to
minimize is the sum of the well-known cost in a corresponding Wiener
filtering problem and a new term that is induced by the channel noise.
The second problem, which can be viewed as a generalization of the

first problem, concerns a networked control system where an LTI plant,
subject to a stochastic disturbance, is to be controlled over the chan-
nel. The controller is based on output feedback and consists of an en-
coder/observer that measures the plant output and transmits over the
channel, and a decoder/controller that receives the channel output and
issues the control signal. The objective is to stabilize the plant, satisfy the
SNR constraint and minimize the variance of the disturbance response.
The problem is studied for channels without and with feedback.
In both cases, it is shown that optimal controllers within the LTI class

can be obtained by solving a convex optimization problem and perform-
ing a spectral factorization. Previously known conditions on the SNR for
stabilizability follow directly from the constraints of these optimization
problems.
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Preface

Motivation

This thesis is about communication and control problems, and aims to be
of interest for researchers in both disciplines. The main difference between
communication theory and control theory lies in the importance of delays:
In communication theory, it is often assumed that delays are of little or
no importance. The most famous results are asymptotical in nature, and
practical communication systems typically employ block coding with large
blocks in order to achieve high performance. On the other hand, it is well-
known that time delays can have a detrimental effect on the stability and
performance of control systems.
This contrast naturally elicits two questions: How to design a commu-

nication system when there is a bound on the accepted delay? And how to
design a control system when there are communication limitations? Two
problems, each related to one of these questions, are studied in this thesis.
It will be seen that the questions are closely related to each other. In fact,
under the circumstances studied here, the answer to the second can also
give an answer to the first.
In the first type of problem a real-valued source signal is to be commu-

nicated over a noisy communication channel under a real-time constraint,
using noisy measurements of the source. The objective is to design an
encoder-decoder pair that minimizes the mean squared error distortion.
A practical example of this is the transmission of a voice signal from a
mobile phone while simultaneously filtering out the background noise.
The receiver should then be able to reproduce the sound of the voice as
well as possible, with some upper bound on the latency.
The setting differs from the traditional in communication theory, both

because of the noise at the source and because of the real-time constraint.
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Preface

In this thesis, the problem is considered for different communication chan-
nel models with signal-to-noise ratio (SNR) constraints. A procedure is
developed for finding optimal linear encoders and decoders. Even though
this problem is mainly seen as a communication problem, it may also be
interpreted as an estimation problem or as a feed-forward control problem.
A current trend in control engineering, both in theory and practice,

is for control systems to become more distributed and dependent on com-
munication over different types of networks. Traditional control theory
assumes perfect communication, so it has become important to study the
impact of communication limitations on the control performance. These
limitations may take many forms, such as rate limitations, variable time
delays, packet drops or SNR constraints. Here, the focus is on the latter.
The reason is that while the analysis and design becomes relatively simple
in an SNR framework, the results can still be useful in a broader context.
The second type of problem studied in this thesis concerns a scenario

where a plant is to be controlled over a noisy communication channel. The
controller is divided into two subsystems: one sensor and encoder part that
measures the plant output and encodes information for transmission over
the channel, and one decoder and controller part that receives the trans-
mission and determines the control signal. The objective is to design the
two subsystems so that the plant is stabilized and the disturbance re-
sponse is minimized. This problem is considered for two different channel
models with SNR constraints. A procedure is developed for finding optimal
linear encoders and decoders. Conditions on the SNR for stabilizability of
the system are also derived.
The optimization of encoders, decoders and controllers is restricted in

this thesis to the linear time-invariant class. This may obviously result
in the obtained solutions being suboptimal in a larger class of filters.
There are three reasons why this restriction is made: First, the problems
become tractable. Optimizing over general mappings is a much more dif-
ficult problem than optimizing over linear time-invariant ones. Second,
using linear solutions means that all of the control-theoretic tools avail-
able for analysis of linear systems can be applied, for example to analyze
system robustness. The third reason is that linear filters are generally
easier to implement.
As is always the case with theoretical studies, all models in this thesis

reflect an idealized version of reality. This is because the aim is not to
directly develop solutions for practical problems. However, relatively sim-
ple models allow us to study the fundamental aspects of the problems.
It is hoped that the results presented here will contribute to a general
understanding of these and related problems, for example by providing
theoretical limitations, as well as ideas for further development.
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Outline and Contributions

Outline and Contributions

This section contains an outline of the thesis and a summary of the con-
tributions. For the most part, the thesis follows the chronological order
in which the results were obtained. As a consequence, the problems will
be considered in order of increasing generality, in the sense that solu-
tions to problems presented later can be used to solve earlier problems as
well. The relationships between the considered problems are illustrated
in Figure 0.1.

MIMO Case
Section 2.3

Real−Time Coding with
Channel Feedback
Section 2.4

Feedback Control over
Channel with Feedback
Section 3.3

Real−Time Coding
Section 2.2

Feedback Control
over Channel
Section 3.2

Real−Time Coding,

Figure 0.1 Relationships between the problems and sections in this thesis. An
arrow pointing from A to B indicates that the solution of A can be used to solve B.

Obviously, a more compact thesis could have been written, in which
the most general problems were first solved and the other problems simply
presented as special cases. But that thesis would have been more difficult
to read. The solution and the main ideas behind it could have become
obscured by the additional difficulties posed by the more general problems.
Furthermore, the author believes that the special cases are important
enough to merit separate presentations and solutions.

Chapter 1: Background

The first chapter gives a brief introduction to communication theory and
networked control systems. Since these are vast subjects, the exposition
is limited to the parts that are relevant for the forthcoming discussions.
Some mathematical preliminaries are also presented.

Chapter 2: Real-Time Coding for a Noisy Channel

The problem of designing jointly optimal encoder-decoder pairs for real-
time coding of a partially observed markov source under a mean squared
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error distortion measure is considered. The encoder and decoder are con-
strained to be causal and time-invariant linear filters. The problem is
considered for an additive white noise channel with SNR constraint, with
and without channel feedback. The case without channel feedback is gen-
eralized to cover non-white channel noise and a setting with vector-valued
signals and parallel channels.
It is shown that optimal linear1 encoders and decoders can be obtained

by solving a convex optimization problem and performing a spectral fac-
torization. The convex optimization problem is expressed in the product of
the encoder and decoder transfer functions and, when channel feedback is
available, the transfer function of an additional feedback filter. The func-
tional to be minimized is a weighted sum of a 2-norm, which is the cost
in a corresponding Wiener filter problem, and an additional term that
is induced by the channel noise. In the case with channel feedback, it is
shown how to pose the optimization problem as a semidefinite program.
It is also demonstrated by example that channel feedback may improve
the performance of linear coding.

Related Publications

E. Johannesson, A. Rantzer, B. Bernhardsson and A. Ghulchak, "Encoder
and Decoder Design for Signal Estimation," in Proc. American Control
Conference, Baltimore, USA, June 2010.

E. Johannesson, A. Ghulchak, A. Rantzer and B. Bernhardsson, "MIMO
Encoder and Decoder Design for Signal Estimation," in Proc. 19th Inter-
national Symposium on Mathematical Theory of Networks and Systems,
Budapest, Hungary, July 2010.

E. Johannesson, "Signal Estimation over Channels with SNR Constraints
and Feedback," in Proc. 18th IFAC World Congress, Milano, Italy, August
2011.

Chapter 3: Feedback Control over a Noisy Channel

The problem of designing an optimal linear output feedback controller
for a linear plant controlled over an additive noise channel with SNR
constraint is considered. The plant has a stochastic disturbance and the
controller is divided into two subsystems that are separated by the com-
munication channel. The controller should stabilize the system and mini-
mize the variance of the plant output while satisfying the SNR constraint.
The problem is considered with and without channel feedback.

1Note that it is not claimed that linear solutions are optimal for any of the problems
considered in this thesis, except when so is explicitly stated.
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It is shown that optimal linear controllers can be obtained by solving a
convex optimization problem and performing a spectral factorization. The
convex optimization problems are similar to the one obtained in the chan-
nel feedback case in Chapter 2, although it is now expressed in the Youla
parameter. The functional to be minimized has been found previously for
the case with channel feedback [53] but the problem considered here is
slightly more general and the solution has a simpler structure.
Necessary and sufficient conditions for stabilizability of a plant with

stochastic disturbance under the SNR constraint follow from the deriva-
tions of the convex optimization problems. The obtained conditions are
shown to correspond to previously known ones.
It is shown how to pose the optimization problems as semidefinite pro-

grams. Finally, it is demonstrated that the solutions to the coding prob-
lems with scalar-valued signals in Chapter 2 can be obtained as special
cases of the solutions to the feedback control problems.

Related Publications

E. Johannesson, A. Rantzer and B. Bernhardsson, "Optimal linear con-
trol for channels with signal-to-noise ratio constraints," in Proc. American
Control Conference, San Francisco, CA, USA., June 2011.

E. Johannesson, A. Rantzer and B. Bernhardsson, "A Framework for Lin-
ear Control over Channels with Signal-to-Noise Ratio Constraints," ac-
cepted for presentation at The 9th IEEE International Conference on Con-
trol & Automation, Santiago, Chile, December 2011.

Chapter 4: Conclusions

Conclusions are made and a number of areas for further research is sug-
gested.

Appendix A: Some Technical Proofs

The proofs of some of the more technical lemmas have been put in the
appendix.

Relation to Research by Silva, Derpich, et al.

Some of the results presented in this thesis are closely related to those
recently presented by Eduardo Silva, Milan Derpich and co-authors in the
publications [53, 12, 10]. The author would therefore like to comment on
the relation between our respective results and their development.
Detailed comparisons of the results are given in Chapters 2 and 3. For

now, it is noted that, despite the similarities, there are several technical
differences between the results presented here and those in [53, 12, 10].
The fact that this thesis presents original work should be obvious from
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these technical differences as well as the differences in the approach used
to solve the problems in this thesis and in the work of Silva, Derpich and
co-authors.
Regarding the historical development, the author was first made aware

of the existence and relevance of [53, 12, 10] in January 2011 by one
of the reviewers of [27]. The results in Chapter 2 and Section 3.2 were
accordingly obtained without prior knowledge of these publications, with
two exceptions:

• Convexity of the functionals in the equivalent minimization prob-
lems had not yet been established. It had, however, been shown that
they are quasiconvex. The convexity proofs provided in this thesis
were independently developed.

• The control problem in Section 3.2 had only been considered for a
single-input, single-output (SISO) plant. The extension to the more
general structure has, to the author’s best knowledge, not been done
elsewhere.

Furthermore, the insight, used in [53], that the orthogonality between
strictly proper transfer functions and constants can be used to rewrite
norm expressions have been helpful in obtaining cleaner solutions, though
it was not critical for actually solving the problems.
The results in Section 3.3 were, in contrast, developed using the results

in [53] with the purpose of generalizing and improving some of the results
presented in that paper.

Other Publications

The following is a list of other publications co-authored by the author of
this thesis. These publications are about event-based control and are not
directly related to this thesis.

E. Johannesson, T. Henningsson and A. Cervin: "Sporadic Control of First-
Order Linear Stochastic Systems". In Proc. 10th International Conference
on Hybrid Systems: Computation and Control, Springer-Verlag, Pisa, Italy,
April 2007.

A. Cervin and E. Johannesson: "Sporadic Control of Scalar Systems with
Delay, Jitter and Measurement Noise". In Proc. 17th IFAC World Congress,
Seoul, Korea, July 2008.

T. Henningsson, E. Johannesson and A. Cervin: "Sporadic Event-Based
Control of First-Order Linear Stochastic Systems". Automatica, 44:11, pp.
2890-2895, November 2008.
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1

Background

The purpose of this chapter is to provide some context and background
that is necessary to understand the problems and results presented in
this thesis. The first and second sections give a brief introduction to com-
munication theory and networked control systems, respectively. The third
and final section presents the mathematical notation along with some
definitions and results that are used in the thesis.

1.1 Introduction to Communication Theory

The fundamental problem of communication, as defined by Claude Shan-
non in his landmark paper, is to reproduce at one point either exactly or
approximately a message selected at another point [48]. See Figure 1.1 for
an illustration.

Decoder

Reproduced
message

Source
Message

Encoder Channel

Noise

Figure 1.1 The fundamental problem of communication: The source generates a
message that is to be reproduced at another point. The encoder determines, based
on the message, a signal to transmit over a communication channel. The decoder
receives the channel output, which may be affected by noise, and tries to reproduce
the original message.

Channel Models

A multitude of different models of communication channels have been pro-
posed and studied in the literature. These can be deterministic or stochas-
tic, have discrete or continuous input and output alphabets, and be dis-
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Chapter 1. Background

p

p

1− p

1− p
0 0

1 1

Figure 1.2 Binary Symmetric Channel (BSC)

crete or continuous in time. A channel may have memory, in which case
the channel output can depend on its previous input and output. Some
simple channel models will now be presented.

Digital Error-Free Channel The digital error-free channel allows
error-free transmission of R bits per time unit. The parameter R is called
the rate of the channel.

Binary Symmetric Channel (BSC) A common simple model of a
memoryless noisy channel is the BSC, illustrated in Figure 1.2. As the
name suggests, the BSC has binary input and output. For each channel
use, the output is equal to the input with probability 1− p and not equal
with probability p.

The AWN and AWGN Channels The Additive White Noise (AWN)
channel, illustrated in Figure 1.3, takes a real number t as input and the
output r is given by

r = t+ n, (1.1)
where the channel noise n is a random number with some specified distri-
bution. The noise is further assumed to be independent between different
channel uses. The channel input must satisfy a power constraint. That is,

E(t2) ≤ σ 2t ,

where E(x) denotes the expected value of x.
If the variance of n is denoted by σ 2n, the Signal-to-Noise Ratio (SNR)

of the channel is given by σ 2 = σ 2t /σ 2n. By scaling the input and output
properly, any channel with a given SNR can be made equivalent to a
channel with σ 2t = σ 2 and σ 2n = 1. For this reason, it will from now on be
assumed that the transmission power is constrained by σ 2 and that the
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1.1 Introduction to Communication Theory

+
PSfr

t r

n

Figure 1.3 Additive White Noise (AWN) channel

channel noise has variance 1. The SNR constraint is thus equivalent to a
power constraint.
If the noise n is Gaussian this channel is known as the Additive White

Gaussian Noise (AWGN) channel. This is the most common channel model
with a continuous alphabet and is used to model many practical channels
including radio and satellite links [9].

Parallel Channels A simple example of a channel with multiple inputs
and outputs is a channel with n independent parallel AWN or AWGN
channels with a common power constraint. This could be used to model
a non-white AWN channel, where each of the components represent a
different frequency [9]. For this channel, (1.1) holds with r, t and n vector-
valued. The noise vector n is assumed to have a diagonal covariance matrix
and the power constraint is

∑

i

E(t2i ) = E(tT t) ≤ σ 2.

Channels with Feedback If a channel has feedback it means that the
received symbols are sent back to the encoder so that it can use them to
decide on the next transmission. This is illustrated in Figure 1.4. This
channel can model a physical situation where the communication link
is much stronger in one direction, for example as in ground-to-satellite
communication [46]. It can also be used as a model of quantization error,
since those are known exactly by the encoder [10]. In general, the feedback
may be subject to noise, but it will be assumed here that it is error-free.

Information Theory

The fundamental problem of communication has been studied extensively
in the field of Information theory, which was established as a result of
Shannon’s paper. The process of manipulating information for transmis-
sion over a communication channel is known as coding. Coding is often
divided into source coding and channel coding.
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Decoder

Feedback link

Reproduced
message

Source
Message

Encoder Channel

Noise

Figure 1.4 Communication channel with feedback.

In general, the message originating from the source contains some re-
dundancy due to statistical dependence. Source coding is a process that
exploits this in order to represent the message at a lower rate. The small-
est rate at which it is possible to represent a source and perform error-free
reconstruction (perhaps after transmission over a digital error-free chan-
nel) is called the entropy H of the source. As an example, a binary source,
which has output 0 with probability p and output 1 with probability 1− p,
has entropy

H = −p log2 p− (1− p) log2(1− p) bits/time unit.

The maximum value, which is 1, is attained for p = 0.5 [48]. Source coding
is sufficient for communication over a digital error-free channel. But when
the channel is noisy, it becomes necessary to add some kind of redundancy
to decrease the sensitivity to the channel noise.
The objective of channel coding is to transmit information over a noisy

channel with a minimum of error in the receiving end. A channel code
has a rate, which is the amount of information about the message that
is being transmitted per time unit. It would be suspected that there is
a strict trade-off between this rate and the amount of errors. Shannon
showed, however, that for every communication channel there is a rate
below which communication is possible with arbitrarily low probability of
error. This rate, which can be used to characterize the channel, is called
the capacity C of that channel. In contrast, any code that has a rate above
C will result in an error probability that cannot be made arbitrarily small.
Note that the theory does not say how to find practically useful channel
codes that achieve capacity rates for general channels [48, 9].
To provide some examples, the digital error-free channel obviously has

capacity R bits/time unit. The BSC has capacity

CBSC = 1+ p log2 p+ (1− p) log2(1− p) bits/time unit

and the AWGN channel has capacity

CAWGN =
1
2
log2

(
1+ σ 2t

σ 2n

)
bits/time unit. (1.2)
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1.1 Introduction to Communication Theory

Surprisingly, the addition of feedback to a memoryless channel does not
change its capacity [47]. It may, however, reduce the complexity required
of a coding scheme to achieve a given level of performance [46].
A separation of a coding system into source and channel coding op-

erations provides a nice structure for designing practical communication
systems. It is one of the main results of information theory that such a
separation is in fact optimal. The well-known coding theorem says, ac-
cordingly, that it is possible to communicate a source, with arbitrarily low
error probability, if and only if H ≤ C [48, 20].

Rate Distortion Theory

When the source entropy is higher than the channel capacity, it is not
possible to communicate without error. This is, for example, the case when
the source has a continuous probability distribution and the capacity is
finite. The source coder must then make an approximation of the source
that satisfies the rate constraint imposed by the capacity. The quality of
the approximation is determined by a distortion measure that quantifies
the difference between the original message and the approximation. A
common distortion measure is the mean squared difference between each
source symbol and the corresponding estimate.
In rate distortion theory, the relationship between the rate R and the

distortion D is studied. Specifically, a rate distortion function R(D ) pro-
vides the trade-off between these two quantities for each source and dis-
tortion measure. As an example, the rate-distortion function for a white
Gaussian source with variance σ 2 is [3]

R(D ) =





1
2
log2

σ 2

D
, 0 ≤D ≤ σ 2

0, D > σ 2.

Just as for error-free communication, there is a theorem that sets the
boundary for approximate communication: Given a distortion D and the
corresponding rate R(D ), there exists a coding system that can commu-
nicate the source with a distortion arbitrarily close to D if and only if
R(D ) < C [48].

Real-Time Coding

All of the results mentioned so far are asymptotic. The proofs rely on block
coding schemes with high complexity, where the block length is allowed
to approach infinity. Since this would require an infinite delay, practical
communication systems most often operate at a performance below the
theoretical optimum. Nevertheless, it should be noted that great progress
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Chapter 1. Background

in approaching the so called Shannon limit has recently been made due
to the development of new coding techniques [31].
If there is a fixed bound on the tolerated delay in a communication

problem, then it is called a real-time coding problem. These problems are
also referred to as causal coding problems, although often with weaker
delay constraints. These problems are very different from, and more diffi-
cult than, the classical formulation of the communication problem, which
ignores the delay aspect. Consequently, a lot less is known about the so-
lutions. For example, the separation between source and channel coding
is not optimal for real-time problems. Instead it is necessary to perform
joint source-channel coding. A nice overview of the literature on real-time
coding is given in [33].
An interesting observation is the fact that channel feedback, even

though it does not change the capacity, is generally useful for real-time
coding problems [58]. It is also interesting to note that there are special
circumstances when optimal performance can be achieved without any
coding, which also implies that communication can occur without delay.
This is for example the case when a white Gaussian source is to be trans-
mitted over an AWGN channel, with a quadratic distortion measure [22].

Remote or Partially Observed Sources

Sometimes it can be assumed that the message is distorted before it
reaches the encoder. This is referred to as a remote source or, alterna-
tively, a partially observed source and is illustrated in Figure 1.5. These
problems are also sometimes called indirect problems. This model is appli-
cable to the problem of transmitting data that is affected by measurement
noise, or to the case when a digital communication system must interface
with a given analog-to-digital converter [3]. An application example is
the presence of background noise in mobile speech communication, which
should ideally be filtered out before transmission.
An optimal coding system for a remote source problem with mean

squared error criterion and additive noise consists of an optimal esti-
mator followed by optimal encoding and decoding of the estimate. This
result, however, holds only asymptotically in the block length and is thus

Noise

Reproduced
message

Source Encoder Channel Decoder

Noise

Distorted
message

Figure 1.5 If the encoder’s observation of the message is affected by noise the
source is said to be remote or partially observed.
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ChannelDecoder Encoder

Plant

Figure 1.6 Feedback control over a communication channel. The control system
consists of an encoder, which also does measurement filtering, and a decoder, which
also determines the control signal.

not necessarily valid when there are real-time constraints [63].

1.2 Introduction to Networked Control Systems

Networked control systems are control systems that operate using some
kind of communication network. There has been a significant research
interest in this field in recent years, driven by a trend of constructing
decentralized and large scale control systems. The focus of the research
on networked control systems has often been on the interactions between
the control and the communication aspects such as random time delays,
packet loss and rate limitations.
One way to study the fundamental aspects of networked control sys-

tems is to consider a model where a plant is controlled over a commu-
nication channel, as depicted in Figure 1.6. The problem of controlling a
plant over a communication channel is closely connected to the commu-
nication problem. In fact, since control in this case requires some kind of
communication, it can be argued that a solution to the control problem
also solves a communication problem. This is done for example in [14],
where control theory was used to design coding schemes and prove some
capacity bounds.
Time delays are critical to the stability and performance of control

systems. Therefore, the classical results of information theory can not,
due to their asymptotic nature, be directly used to solve control prob-
lems with communication constraints. Nevertheless, information theory
can for example be useful for obtaining performance bounds. It has been
successfully used in combination with control theory to analyze optimal
control strategies [2] and to find fundamental limitations of performance
both for feedback control [34] and for disturbance attenuation using side
information [35].
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Stabilization over Channel

A lot of attention has been directed at finding necessary and sufficient
conditions for when an unstable linear plant can be stabilized over a com-
munication channel. By now, it is well-known that the intrinsic entropy
rate of the plant is crucial in this aspect. In discrete time, this quantity
is defined as

H G =
∑

i

max {0, log2 pλ i(G)p} , (1.3)

where λ i(G) is the ith pole of the plant G. The intrinsic entropy rate
depends only on the unstable poles and can be thought of as the amount
of information generated by the plant.
A necessary and sufficient condition for stabilization to be possible

over a digital error-free channel is that R > H G . This statement, called
the data-rate theorem, has been shown both in deterministic [37, 57] and
stochastic [38] settings. A thorough exposition of control with rate con-
straints is given in the review paper [39].
For noisy channels, the situation is a bit more complicated. For dis-

crete channels, C > H G is a necessary and sufficient condition for almost
sure asymptotic stabilizability [36]. This is, however, not generally true
for other stability notions such as mean square stability. For this reason,
the concept of any-time capacity has been proposed as an alternative to
the Shannon capacity, in order to characterize moment stabilizability for
control over noisy channels [45].

The SNR Framework

Mean square stability is, however, easier to characterize in the special case
of control of a linear plant with Gaussian noise over an AWGN channel.
In this context, the capacity is often expressed in terms of the Signal-to-
Noise Ratio (SNR) of the channel. The associated problems are generally
tractable using stochastic control theory, which makes the so-called SNR
framework attractive. This was for example demonstrated in [7] and [51]
where stabilizability was expressed in terms of the SNR, under different
assumptions on plant noise and the controller structure. Specifically, it
was shown that in some circumstances, the condition C > H G is actually
necessary and sufficient for mean square stabilizability.
Using this framework also makes it relatively simple to design lin-

ear time-invariant controllers. Because of this, the SNR framework can
be useful for applications such as power control in mobile communica-
tion systems [52]. Despite the relative simplicity of the SNR approach,
the results obtained using this framework can sometimes be used to draw
conclusions about and design controllers for other communication limita-
tions such as rate limitations [49, 53] or packet drops [54].
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1.3 Mathematical Preliminaries

This section provides the mathematical notation and conventions that will
be used. A number of mathematical definitions and theorems, which are
necessary for the development of the results presented in this thesis, are
also presented. Some of this material may appear non-standard for many
readers, but it is not necessary to understand all of the mathematical
details in order to follow the main points of the thesis. The main reason
for the necessity of this theory stems from the fact that the solutions to
some of the optimization problems presented later on will in general have
non-rational transfer functions.

Basic Notation

The logarithm with base b is denoted by logb. The natural logarithm is
simply denoted log.
The real numbers are denoted by R and the complex numbers by C. The

open unit disk, {z ∈ C : pzp < 1}, is denoted by D. Its closure is denoted by
D and its boundary, the unit circle, by T.
For a matrix A ∈ C

m$n, the rank, trace, determinant, transpose, conju-
gate and conjugate transpose are denoted by rank A, tr A, det A, AT , A and
A∗, respectively. The matrix A is Hermitian if and only if A = A∗. The sin-
gular value decomposition of A is given by A = UΣV ∗, where U ∈ C

m$r,
Σ ∈ C

r$r, V ∈ C
n$r and r = min{m,n}. Moreover, U ∗U = V ∗V = I and

Σ is diagonal with diagonal elements σ k ≥ 0, k = 1 . . . r, called singular
values, satisfying σ 1 ≥ σ 2 ≥ . . . ≥ σ r. The largest singular value of A is
accordingly denoted σ 1(A).
For a matrix A ∈ C

m$n with r = min{m,n}, define the Nuclear norm

qAq∗ = tr
√
A∗A =

r∑

i=1
σ i

and the Frobenius norm

qAqF =
√
tr (A∗A) =

√√√√
r∑

i=1
σ 2i .

Transfer Matrices and Function Spaces

Given a sequence {x(k)}∞k=0, the z-transform F(z) is defined as

F(z) =
∞∑

k=0
f (k)z−k.
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An LTI system can be represented by its transfer matrix, which is the z-
transform of its impulse response. For this reason, complex functions will
often be referred to as transfer matrices (in the general matrix-valued
case) or as transfer functions (to emphasize that they are scalar).
A rational transfer matrix X (z) is said to be proper if limz→∞ X (z)

exists and is bounded. If limz→∞ X (z) = 0, then X (z) is said to be strictly
proper. The space of all rational and proper transfer matrices with real
coefficients is denoted by R.
A non-rational transfer matrix X (z) is said to be proper if the map-

ping z ]→ X (1/z) is analytic at 0. It is strictly proper if it is proper and
limz→∞ X (z) = 0.
The arguments of transfer matrices will often be omitted when they

are clear from the context. Equalities and inequalities involving functions
evaluated on T are to be interpreted as holding almost everywhere on
T. That is, the subset of T in which the (in)equality does not hold is of
measure zero.
For matrix-valued functions X (z),Y(z) defined on T, define

〈X ,Y〉 = 1
2π

∫ π

−π

tr
(
X (eiω )∗Y(eiω )

)
dω

and the norms

qX q1 =
1
2π

∫ π

−π

∥∥X (eiω )
∥∥

∗
dω

qX q2 =
√
1
2π

∫ π

−π

qX (eiω )q2F dω

qX q∞ = ess sup
ω

σ 1
(
X (eiω )

)
.

In the case when X (z) is scalar, these definitions correspond to

qX qp =
(
1
2π

∫ π

−π

∣∣X (eiω )
∣∣p dω

)1/p
, 1 ≤ p < ∞

qX q∞ = ess sup
ω

∣∣X (eiω )
∣∣ .

DEFINITION 1.1—LEBESGUE SPACE
For p = 1, 2,∞, the Lebesgue space Lp is defined as the space of matrix-
valued functions X (z), defined on T, that satisfy qX qp < ∞. The subspace
RLp consists of all real, rational and proper transfer matrices with no poles
on T.

Note that L∞ ⊂ L2 ⊂ L1.
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EXAMPLE 1.1
It holds that

ez ∈ L∞,
z3

(z− 2)(2z− 1) ∈ L∞,
z2

(z− 2)(2z− 1) ∈ RL∞

because these functions are bounded on T. Note that transfer functions in
Lp may be non-proper.

For X such that z ]→ X (1/z) is defined on D (that is, functions defined
outside the closed unit disk) define

Xr(z) = X (rz), r > 1.

DEFINITION 1.2—HARDY SPACE
For p = 1, 2,∞, the Hardy space H p is defined as the space of matrix-
valued functions X (z) such that z ]→ X (1/z) is analytic on D and

sup
r>1

qXrqp < ∞.

The subspaceRH p consists of all real, rational, stable and proper transfer
matrices.

Note that H∞ ⊂ H 2 ⊂ H 1. Note also that H p can be viewed as a closed
subspace of Lp due to Fatou’s Theorem, which says that if X ∈ H p, then
X̂ = limr→1+ Xr exists almost everywhere on T and X̂ ∈ Lp. Moreover, if
X ∈ H p and X ∈ Lq, where 0 < p ≤ ∞ and 0 < q ≤ ∞, then it holds that
X ∈ H q [21]. In the following, when a function in H p is evaluated on T,
it is to be understood as the limit X̂ .

REMARK 1.1
The convention in mathematics is to define H p functions to be analytic
on D [44]. Definition 1.2 (and other definitions that will follow) follows
the convention in the control community and is related the definition of
the z-transform with negative exponents of z [1]. Consequently, a rational
transfer matrix is said to be stable if it has all of its poles in D.

EXAMPLE 1.2

X ∈ H 2 Z[ X (z) =
∞∑

k=0
xkz

−k and
∞∑

k=0
pxkp2 < ∞.

The following function will be used to define the Nevanlinna and Smirnov
function classes. For x ≥ 0, define

log+(x) = max (log(x), 0) .
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DEFINITION 1.3—NEVANLINNA CLASS
For scalar functions, the Nevanlinna class N is defined as all functions
X such that z ]→ X (1/z) is analytic on D and

sup
r>1

1
2π

∫ π

−π

log+ pXr(eiω )pdω < ∞.

A matrix-valued X ∈N if and only if all its elements are in N .

DEFINITION 1.4—SMIRNOV CLASS
For scalar functions, the Smirnov class N + is defined as all functions
X ∈N that satisfy

lim
r→1

∫ π

−π

log+ pXr(eiω )pdω =
∫ π

−π

log+ pX (eiω )pdω .

A matrix-valued X ∈N + if and only if all of its elements are in N +.

EXAMPLE 1.3
The transfer function of a PI controller is not in Lp or H p since it has a
pole on the unit circle. However, it is of class N +. For example,

1
z− 1 ∈N

+.

As an example of a function that is in N but not N +, consider

exp
(
z+ 1
z− 1

)
∈N .

The following lemma from [21] establishes some relationships between the
introduced function classes.

LEMMA 1.1
It holds that

H p ⊂N + ⊂N .
Furthermore, X ∈ H p if and only if X ∈N + and X ∈ Lp. That is,

H p =N + ∩Lp.

For more details about the Lp,H p,N and N + function classes, the reader
may consult standard textbooks such as [44, 21, 65].
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Inner and Outer functions

Inner and outer functions are generalizations of all-pass and minimum
phase functions, respectively.

DEFINITION 1.5—INNER FUNCTION
An inner function is a function X ∈ H∞ such that

X (eiω )∗X (eiω ) = I.

X ∈ H∞ is said to be co-inner if X (z)T is inner.
It follows that a scalar function X (z) is inner if and only if pX (eiω )p = 1.

EXAMPLE 1.4
The functions

X (z) = z+ 2
2z+ 1, Y(z) = exp

(
z+ 1
z− 1

)
,

are inner. Note that Y(z) is not well-defined at z = 1, but that pY(z)p = 1
for almost all z ∈ T.

DEFINITION 1.6—OUTER FUNCTION
The square matrix-valued function X is said to be outer if and only if
X ∈N + and

det (X (z)) = c exp
{
1
2π

∫ π

−π

eiω + z
eiω − z logϕ (eiω )dω

}
,

where c is a constant with pcp = 1 and ϕ is a non-negative function on T

with logϕ ∈ L1.
Note that outer functions are proper since they belong to N +. An equiva-
lent definition of outer functions is that X is outer if and only if X ∈N +,
det X is not identically zero and X −1 ∈N + [28]. From this, a simpler con-
dition can be deduced in the scalar, rational case: A scalar and rational
function X is outer if and only if it satisfies the following conditions:

• X (z) = p(z)/q(z), where p and q are polynomials of the same degree.

• All zeros and poles of X are in D.

In the literature, outer functions are commonly required to be in H p. If
that definition is used then rational outer functions must have all their
poles in D.
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EXAMPLE 1.5
The function

z+ a
z+ b

is outer if and only if pap ≤ 1 and pbp ≤ 1.
For non-square matrix-valued functions, the concept of row outer functions
will be used. The definition is slightly more complicated:

DEFINITION 1.7—ROW OUTER FUNCTION

An m$ n matrix-valued function X ∈N + is said to be row outer if it has
full row rank almost everywhere on T, that is,

rank X (eiω ) = m

and
X (0)∗X (0) ≥ Y(0)∗Y(0)

for any m $ n matrix-valued function Y ∈N + with

Y(eiω )∗Y(eiω ) = X (eiω )∗X (eiω ).

X is said to be co-outer if X T is row outer.

The definition of row outer functions can be found in [26], which also
contains the following facts:

LEMMA 1.2
Suppose X is a square function. Then X is outer if and only if it is row
outer. Moreover, if X is outer, then X −1 ∈N + is outer.

The first statement says that the definition of row outer is a generalization
of the definition of outer to the case of non-square functions. The second
statement can be used to prove the following lemma.

LEMMA 1.3
Suppose Y ∈ N + is square and outer, X ∈ N +, and that Y−1X ∈ Lp.
Then Y−1X ∈ H p.

PROOF

Y−1 ∈N + by Lemma 1.2. It is easy to verify that the product of two N +

functions is N +. The statement then follows from Lemma 1.1.

The following lemma appears as Corollary 4.7 in [21].
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LEMMA 1.4
Suppose X ∈ H p and X −1 ∈ H q for some 0 < p ≤ ∞, 0 < q ≤ ∞. Then
X is outer.

Factorizations

A number of different factorization techniques will be used in this thesis.
The definition of the singular value decomposition can be extended to
transfer matrices: A singular value decomposition of X ∈ Lp is defined
pointwise on T as

X (eiω ) = U(eiω )Σ(eiω )V (eiω ),

where U ,V ∈ L∞ and Σ ∈ Lp.
The standard coprime factorization [65] will also prove useful.

THEOREM 1.1—COPRIME FACTORIZATION
Suppose that the scalar transfer function G(z) has a state-space realiza-
tion

G =
[
A B

C D

]
,

where (A, B) is stabilizable and (C, A) is detectable. Then there exists
a coprime factorization G = NM−1, where N,M ∈ RH∞ satisfies the
Bezout identity VM + UN = 1 for some V ,U ∈ RH∞.
The following theorem from [26] shows that every function in N + can be
written as the product of an inner and an outer function.

THEOREM 1.2—INNER-OUTER FACTORIZATION
For every X ∈ N + there exists an inner-outer factorization X = XiXo
where Xi ∈ H∞ is inner and Xo ∈N + is row outer. Similarly there exists
a co-inner-outer factorization X = XcoXci where Xco ∈ N + is co-outer
and Xci ∈ H∞ is co-inner.

EXAMPLE 1.6
An inner-outer factorization of 1/(z+ 2) is given by

1
z+ 2 =

2z+ 1
z(z+ 2) ⋅

z

2z+ 1,

where the first factor is inner and the second is outer.
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REMARK 1.2
If X ∈ H p, then the outer factor Xo ∈ H p.
Many of the results in this thesis depend on spectral factorization of non-
rational transfer matrices. The following theorem provides conditions for
when this is possible. It is the matrix version of a classical theorem by
Szegő, which is in turn a generalization of the Fejér-Riesz Factorization
Theorem [59, 56].

THEOREM 1.3—SPECTRAL FACTORIZATION
Suppose that Y ∈ L1 is Hermitian, positive definite on T and satisfies

∫ π

−π

log det Y(eiω ) dω > −∞. (1.4)

Then there exists a square outer X ∈ H 2 such that

Y(eiω ) = X (eiω )X (eiω )∗.

REMARK 1.3
If Y satisfies Y(e−iω ) = Y(eiω ) then it is always possible to choose X (z)
such that

X (z) =
∞∑

k=0
xkz

−k, xk ∈ R.

Then X also satisfies X (e−iω ) = X (eiω ). In the rational case, this con-
dition corresponds to X having numerator and denominator polynomials
with real coefficients.

The condition (1.4) is known as the Paley-Wiener condition. The following
result, stated in Theorem 17.17 and under 17.19 in [44] will be useful for
showing that this condition is satisfied.

LEMMA 1.5
Suppose X ∈N is scalar and not identically zero. Then log pX p ∈ L1.
In the matrix case, the following lemma will instead be used for the same
purpose.

LEMMA 1.6
Suppose that m ≤ n and that the m $ n transfer matrix X ∈ H p,
p ∈ {1, 2,∞}, is row outer. Then the singular values of X satisfy

logσ k ∈ L1, k = 1 . . .m.
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PROOF

By Theorem 1.2 there exists a co-inner-outer factorization X = XcoXci.
Since Xco has full column rank on T it cannot have more columns than
rows, and since X is row outer Xco cannot have fewer rows than columns.
Thus Xco is m $m.
By Lemma 1.2, X Tco is outer since it is row outer and square. The deter-

minant of an outer function is by definition also outer, so det Xco is outer
and hence det Xco ∈N +. Applying Lemma 1.5 gives that log pdet Xcop ∈ L1.
For the singular values of X , it holds that

m∑

k=1
logσ k =

1
2
log

m∏

k=1
σ 2k =

1
2
log det X X ∗

= 1
2
log det XcoXciX ∗

ciX
∗
co =

1
2
log det XcoX ∗

co

= log pdet Xcop ∈ L1.

Furthermore, σ k ∈ L1 since X ∈ H p. Because logσ k < σ k it holds that

∫ π

−π

logσ k dω <
∫ π

−π

σ k dω < ∞, k = 1 . . .m

Since the sum of the logarithms is L1 and every term has an integral
bounded from above, it follows that the integral of every term also must
be bounded from below. That is,

∫ π

−π

logσ k dω > −∞, k = 1 . . .m

and hence logσ k ∈ L1, k = 1 . . .m
It is fairly easy to show that the product of two H 2 functions is a H 1

function. The converse, from Theorem 17.10 in [44], will also be useful.

LEMMA 1.7
Every X ∈ H 1 is a product X = YZ, where Y, Z ∈ H 2.
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2

Real-Time Coding for a

Noisy Channel

2.1 Introduction

The problem studied in this chapter lies in the intersection of commu-
nication, estimation and control theory. Its main interpretation is as a
real-time coding problem, but it is also related to Wiener filtering and
feed-forward control.
Figure 2.1 gives a schematic representation of the problem. A source

signal is measured with additive noise by an encoder. The spectra of both
signals are known. The encoder filters and encodes information about
its measurements and transmits over an AWN channel to a decoder that
forms an estimate of the source signal after it has gone through the filter
P. The objective is to find a causal encoder-decoder pair that together
minimize the estimation error variance.

Source signal

Noise
Encoder Decoder

P

Channel

Error

Figure 2.1 Illustration of the problem in this chapter. The encoder and the decoder
should be designed to minimize the error. Nominally, P is a fixed time delay but it
could be any linear time-invariant (LTI) filter. The channel is an AWN channel.
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This problem is a real-time coding problem with partially observed
source and a quadratic distortion measure. Other interpretations can also
be made (see below). In most cases, P is a fixed time delay, but it could
be any stable LTI filter.
In the literature, the problem of coding with a partially observed source

often includes the possibility of noise at the receiver as well. The main
motivation for excluding that possibility here is the fact, noted in [63], that
the optimality of an encoder-decoder design is independent of additive and
independent zero-mean noise at the receiver.
A possible application where this problem is relevant is the transmis-

sion of speech in mobile communication. The source signal to be estimated
at the receiver is the speech signal. The delay constraint is based on the
acceptable latency and the noise is any background sound present at the
microphone. Speech coders are typically designed using source- and sink-
specific models based on the assumption that the speaker’s voice is the
only input. The effect of other sounds can therefore be substantial, affect-
ing the user experience negatively. Incorporating filtering in the encoder
could perhaps help in this aspect [4, 24].

Outline and Main Results

The rest of this section will present the relevant previous research and
alternative interpretations of the problem.
The optimal factorization idea, which provides the basis for all the

results in this thesis, is introduced in Section 2.2. Thereafter, Theorem
2.1 shows that the jointly optimal linear encoder and decoder can be found
in the scalar-valued case by first minimizing a functional of the form

qR − X q22 +
1

σ 2
qX q21 (2.1)

over X ∈ H 2, for a given R ∈ L∞, and then performing a spectral fac-
torization. The solution is also generalized to handle frequency weighted
error criteria and non-white channel noise.
In Section 2.3, the case with vector-valued signals and parallel AWN

channels is treated. Theorem 2.2 shows that the jointly optimal linear
encoder and decoder can be obtained by minimizing the matrix version of
(2.1) and performing a matrix spectral factorization.
In Section 2.4, the scalar-valued case is considered for an AWN channel

with noiseless feedback. It is shown by Theorem 2.3 that the jointly op-
timal linear encoder and decoder can be obtained by minimizing another
convex functional and performing a spectral factorization. By example, it
is shown that channel feedback may improve the performance of linear
coding systems.
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The restriction to linear encoder and decoder may result in suboptimal
solutions. Nevertheless, the linear solution to any problem instance will
provide an upper bound to the minimum distortion possible given the
SNR and the signal spectras. Moreover, the proposed design methods are
relatively simple and computationally feasible.

Previous Research

A family of similar problems was considered in [12, 10] as a means to
design optimal scalar feedback quantization schemes. In particular, it is
possible to solve some instances of the problems considered in sections 2.2
and 2.4 by by using the solutions in [10] (in the former case using a fixed
feedback filter that is set to zero). There are, however, differences in that
[12, 10] only consider the scalar-valued case with zero delay tolerance and
no noise at the source. That is, P = 1 and G = 0. It is not obvious to the
author if the solutions can be easily modified to accommodate for other
delays and for the addition of noise at the source.

Partially Observed Source The problem of coding with a partially
observed source was first considered for the Gaussian case with additive
noise and mean squared error distortion in [13]. It was shown that the
problem is asymptotically equivalent to, and can thus be reduced to, the
fully observed case and that an optimal encoder generally has a structure
consisting of an optimal estimator followed by optimal encoding for a noise-
free source. This structural result was generalized to the non-gaussian
and finite time horizon cases in [63]. The problem was further studied
in [3], where it was noted that in the case of white source noise, the
criterion in the reduced problem is given by the conditional expectation of
the original criterion given the encoder input. It was pointed out in [61]
that the equivalence in [13] actually was proved for the one-shot problem
as well. Moreover, it was shown that the reduction to the non-remote
problem follows from a general "disconnection principle". It would thus be
possible to formulate a finite horizon version of the problem studied in
this chapter as a vectorized one-shot rate distortion problem. The causality
requirement would give structural constraints on the solution in form of
lower-triangular encoder and decoder mappings and the delay constraint
would determine the structure of the performance criterion. However it is
not clear how this insight translates into a practical method for actually
solving the problem.

Real-Time Coding Even without consideration of a partially observed
source, there is not yet a satisfactory solution to the real-time coding
problem, although a number of structural results have been obtained.
The optimal causal source coder for a white source has been found to be
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memoryless [40]. For a Markov source of order k and delay constraint d,
an optimal real-time source coder only needs to use the last max{k,d+1}
source symbols plus the current state of the decoder. No such memory
bound is given, however, when the encoder does not have access to the de-
coder state [62]. Joint source-channel coding with noiseless feedback was
considered for finite alphabet sources in [58] where it was demonstrated
that feedback is useful in general, but that coding is useless for a class
of channels with a certain symmetry property. Conditions have also been
found for when optimal performance can be achieved without coding (even
when allowing coding systems with arbitrary delay) [22].
Real-time source coding for a partially observed source has been con-

sidered in [5]. The structural results of [62, 58] were extended to the
partially observed case in [64], which also presented a separation result
for the linear-quadratic Gaussian case similar to the one in [13]. A method
for design of optimal real-time coding systems for noisy channels was pre-
sented in [32] using noisy feedback and in [33] without feedback. However,
there seems to be no method for efficient numerical application of the so-
lution.

Alternative Interpretations

As a Feed-Forward Problem It is possible to make the following inter-
pretation of the problem in Figure 2.1: The source signal is a disturbance
that will affect some system where a controller (the decoder) can compen-
sate. The controller has a remote sensor that measures the disturbance
and transmits information to the controller over the channel. In this in-
terpretation P may also model any dynamics that the disturbance passes
through on the way. A similar interpretation was presented in [61].
A similar problem setup was studied in [35], where information theory

was used to find a lower bound on the reduction of entropy rate made
possible by side information communicated through a channel with some
given capacity. Under stationarity assumptions, this was used to derive
a lower bound, which is a generalization of Bode’s integral equation, on
a sensitivity-like function. The problem architectures is quite similar to
the one here, but there are some important differences: The main one is
that [35] gives performance bounds for a general communication channel,
while a constructive method is studied here for a specific channel model.
Comparisons of the results are difficult due to differing performance met-
rics: Here, the variance of the error is minimized. In [35], a lower bound
is achieved on the integral of the logarithm of a sensitivity-like function.
Further differences in [35] include the placement of a feedback controller
at the receiving end, error-free observations of the source, and the restric-
tion of P into fixed time delays.
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Connection to Wiener Filter The problem of estimating a signal that
is measured with additive noise, under a mean squared error criterion, is
solved by the Wiener filter [60]. The filter is usually obtained by solving
the Wiener-Hopf equations, but can also be expressed in the frequency
domain as the stable filter K that minimizes

∥∥(z−k − K )F
∥∥2
2 + qKGq

2
2 , (2.2)

where k is the allowed time delay and F and G are transfer functions that
represent the frequency characteristics of the signal of interest and the
measurement noise, respectively.
It is possible to interpret the problem in Figure 2.1 as a distributed

Wiener filtering problem, where the estimation is separated into two dif-
ferent locations. The communication channel is used to model the com-
munication constraint between the two locations. This interpretation is
strengthened by the result in Section 2.2 that the solution to the problem
(without channel feedback) is based on minimizing

q(P− K )Fq22 + qKGq
2
2 +

1
σ 2
qK [ F G ]q21 .

where σ 2 is the SNR and P a transfer function (possibly a pure time
delay). This shows that the cost is similar to the one in (2.2), but that
the communication channel between the two parts of the filter induces
an additional term, which is a weighted 1-norm of K . The size of the
additional term scales inversely with the SNR of the channel. For infinite
SNR, the cost is equal to that in the Wiener filtering problem. When the
channel has feedback, the additional term takes another, slightly more
complex, form.

2.2 Optimal Linear Encoder and Decoder

In this section, the problem will be described in detail and solved for the
single-input, single-output (SISO) case. The solutions to the multi-input,
multi-output (MIMO) case, considered in Section 2.3, and the case when
channel feedback is available, considered in Section 2.4, are more general
and can be used to solve the problem in this section. This simpler case is,
however, presented first in order to make the ideas behind the solution
appear more clearly, as the solutions in the next two sections are more
complex.
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Figure 2.2 Structure of the system. With F, G and P given, the objective is to
design C and D such that the stationary variance of e is minimized.

Problem Formulation and Assumptions

The detailed structure of the problem is shown in Figure 2.2. The in-
put signals u,v,w are assumed to be mutually independent scalar white
noise sequences with zero mean and variance 1. Every block in the fig-
ure represents a linear, time-invariant, single-input, single-output system
described by a corresponding transfer function.
The transfer functions F ∈ H∞ and G ∈ H∞ are given shaping fil-

ters for the source signal and the measurement noise, respectively. It is
assumed that

∃ε > 0 such that FF∗ + GG∗ ≥ ε on T, (2.3)

which implies that F and G have no common zeros on the unit circle (if
F and G are rational then the two statements are equivalent). The given
transfer function P ∈ H∞ represents the dynamics that the source signal
undergoes between the points where it is measured and where it is to be
estimated. The encoder C ∈ H 2 and the decoder D ∈ H 2 are the design
variables. The causality is imposed by their restriction to H 2. Note that
it is not assumed that any of these transfer functions are rational.
The problem is studied in a stationary setting. Since all transfer func-

tions are assumed to be stable, the initial values can, without loss of gen-
erality, be assumed to be zero. The objective is to minimize the stationary
variance of the estimation error e,

lim
k→∞
E(e(k)2).

The communication channel is an AWN1 channel with SNR σ 2 > 0.
1Since only linear solutions are considered, it does not matter if the channel noise or the

other inputs are Gaussian or not. Linear solutions may, of course, be more or less suboptimal
depending on the distributions.
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Chapter 2. Real-Time Coding for a Noisy Channel

The SNR constraint is assumed to hold in stationarity, that is

lim
k→∞
E(t(k)2) ≤ σ 2.

By expressing e and t in terms of the transfer functions in Figure 2.2,
the objective function and the SNR constraint can be written as

J(C,D) = q(P− DC)Fq22 + qDCGq
2
2 + qDq

2
2 = lim

k→∞
E(e(k)2) (2.4)

and
σ 2 ≥ qCFq22 + qCGq

2
2 = lim

k→∞
E(t(k)2), (2.5)

respectively. The problem can thus be formulated as follows.

PROBLEM 2.1
minimize
C,D∈H 2

J(C,D)

subject to (2.5).

Initial Observations

The objective function J(C,D) is clearly not convex in the pair (C,D)
due to the appearance of the product DC. A simple example for which
the minimum can be calculated analytically shows that there are several
solutions to the problem:

EXAMPLE 2.1—STATIC CASE
Suppose that P = 1, F = F0 > 0, and G = G0 ≥ 0. Expressing C and D
as

C(z) =
∞∑

k=0
Ckz

−k, D(z) =
∞∑

k=0
Dkz

−k,

it is easy to see that all coefficients except the first should be zero. For
such C and D, the objective reduces to

J(C,D) = F20 (1− D0C0)2 + G20D20C20 + D20

and the SNR constraint becomes

(F20 + G20)C20 ≤ σ 2.

This problem can be solved by standard methods. The solution is given by

C(z) = (−1)k
√

σ 2

F20 + G20
, D(z) = (−1)k F20

σ 2 + 1

√
σ 2

F20 + G20
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where k ∈ {0, 1}. The minimum value is

J(C,D) = F20
σ 2 + 1 +

σ 2F20G
2
0

(σ 2 + 1)(F20 + G20)
.

If G0 = 0, the solution in this case coincides with the one in the example
given for the AWGN channel in [35].
Note that the SNR constraint is active at optimality. It will be seen

that this is always true, except for the trivial and non-interesting cases
when either F = 0 or P = 0 (when the minimum clearly is obtained by
C = D = 0).
The general problem, when F, G and P are dynamic, is significantly more
difficult. In this section, optimal LTI encoders and decoders will be charac-
terized and it will be shown how they can be obtained by solving a convex
optimization problem and performing a spectral factorization.
First, it will be shown that the SNR constraint (2.5) can be written as

qCHq22 ≤ σ 2, (2.6)

where the function H has some nice properties.

LEMMA 2.1
Suppose that F,G ∈ H∞ and that (2.3) holds. Then there exists H ∈ H∞
with H−1 ∈ H∞ such that

HH∗ = FF∗ + GG∗ on T. (2.7)

PROOF

By (2.3) and Theorem 1.3 there exists an outer function H ∈ H 2 such
that (2.7) holds. Since F,G ∈ H∞ it follows that H ∈ H∞. Moreover,
it follows from (2.3) that

∥∥H−1
∥∥
∞ ≤ 1/√ε and since H is outer it then

follows from Lemma 1.3 that H−1 ∈ H∞.

Optimal Factorization

The optimal factorization approach presented here will provide the basis
for the solution of all the problems solved in this thesis. The idea is to
consider the product DC as given and then to find an optimal factorization
of this product. The factorization gives an analytical expression for the cost
in terms of the product, which means that optimization of the objective
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may then be performed over the product. When an optimal product is
found, the optimality conditions from the optimal factorization can then
be applied to find optimal C and D.
Introduce K = DC. The objective can then be written as

q(P− K )Fq22 + qKGq
2
2 + qDq

2
2 . (2.8)

Note that the first two terms are constant for any given K . The minimum
over C and D, given K , is thus obtained by minimizing the third term
in (2.8) subject to (2.6) and K = DC. This minimization problem is the
optimal factorization problem.
The interpretation is that for any given product of the encoder and

decoder, the contribution to the objective of the signals that pass through
both the encoder and the decoder is not affected by the choice of the factors
C and D — only their product matters. The channel noise, however, only
passes through the decoder, which means that D (and implicitly C since
C = D−1K ) should be chosen to minimize the impact of the channel noise
on the objective.
The optimal factorization problem and its solution will appear many

times in this thesis, in slightly different versions depending on the prob-
lem. The solution to the present version is given by the following lemma.

LEMMA 2.2—OPTIMAL FACTORIZATION, SISO CASE
Suppose that σ 2 > 0, K ∈ H 1 and H ∈ H∞ with H−1 ∈ H∞. Then the
optimization problem

minimize
C,D∈H 2

qDq22 (2.9)

subject to
K = DC, qCHq22 ≤ σ 2 (2.10)

attains the minimum value

1
σ 2
qKHq21 . (2.11)

Moreover, if K is not identically zero then C,D ∈ H 2 are optimal if
and only if DC = K and

pCp2 = σ 2

qKHq1

∣∣∣∣
K

H

∣∣∣∣ on T. (2.12)

If K = 0, then the minimum is achieved by D = 0 and any function
C ∈ H 2 that satisfies (2.10).
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PROOF

If K = 0 the proof is trivial, so assume that K is not identically zero.
Then C is not identically zero and D = KC−1. Then (2.10) and Cauchy-
Schwarz’s inequality gives

qDq22 =
∥∥KC−1

∥∥2
2

≥ qCHq22
σ 2

∥∥KC−1
∥∥2
2

≥ 1
σ 2
〈
pCHp ,

∣∣KC−1
∣∣〉2

= 1
σ 2
qKHq21

This shows that (2.11) is a lower bound on (2.9). Equality holds if and only
if pKC−1p and pCHp are proportional on the unit circle and qCHq22 = σ 2. It
is easily verified that this is equivalent to (2.12). Thus, C and D achieve
the lower bound if and only if D = KC−1 and (2.12) holds.
It remains to show existence of such C,D ∈ H 2. Note that KH−1 ∈ H 1

is not identically zero. Hence, by Lemma 1.5, log pKH−1p ∈ L1. It follows
by Theorem 1.3 that there exists an outer C ∈ H 2 that satisfies (2.12).
Thus

∥∥KC−1
∥∥2
2 =

1
σ 2
qKHq21 < ∞,

so KC−1 ∈ L2. Since K ∈ H 1 and C ∈ H 2 is outer it follows from
Lemma 1.3 that D = KC−1 ∈ H 2.

REMARK 2.1
Optimal D will satisfy

pDp2 = qKHq1
σ 2

pKHp on T. (2.13)

Apparently, the magnitudes of C and D are both proportional to the square
root of the magnitude of K . This provides some intuition to why the min-
imum value depends on the 1-norm of K .

REMARK 2.2
The existence part of Lemma 2.2 shows that one specific solution, where
C is outer, can be obtained. By using the freedom available in spectral fac-
torization, it is possible to obtain other solutions, for example by changing
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Chapter 2. Real-Time Coding for a Noisy Channel

the sign of both C and D, or by instead choosing D to be outer. More gen-
erally, in the rational case, any non-minimum phase zeros or time delays
could be located in C or D.

For any given product of the encoder and decoder, an optimal encoder
and decoder are specified by (2.12) and (2.13), respectively. Their transfer
functions can be obtained by a spectral factorization of pKH−1p.

Equivalent Convex Problem

A heuristic solution to the main problem could now, for example, be to use
the Wiener filter, which minimizes (2.2), for the factorization, but this is
not optimal. An optimal solution is obtained by inserting the minimum
value of qDq22 into (2.8) and minimizing over K . That is, minimizing

ϕ (K ) = q(P− K )Fq22 + qKGq
2
2 +

1
σ 2
qK [ F G ]q21 , (2.14)

which is a convex problem. That this procedure in fact solves the main
problem is shown by the following theorem, which is the main result of
this section.

THEOREM 2.1
Suppose that σ 2 > 0, F,G, P ∈ H∞ and that (2.3) holds. Then the opti-
mization problem

minimize
C,D∈H 2

J(C,D) (2.15)

subject to
qCFq22 + qCGq

2
2 ≤ σ 2 (2.16)

attains a minimum value that is equal to the minimum of the convex
optimization problem

minimize
K∈H 2

ϕ (K ), (2.17)

which is attained by a unique minimizer.
Moreover, suppose K ∈ H 2 is a solution to (2.17). If K is not identically

zero, then C and D solve (2.15) subject to (2.16) if and only if C ∈ H 2,
D = KC−1 ∈ H 2 and

pCp2 = σ 2

qK [ F G ]q1
pK p√

pFp2 + pGp2
on T. (2.18)

If K = 0, then the solution to (2.15) and (2.16) is given by D = 0 and any
function C ∈ H 2 that satisfies (2.16).
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PROOF

By Lemma 2.1, there exists H ∈ H∞ with H−1 ∈ H∞ such that

HH∗ = FF∗ + GG∗ on T. (2.19)

and (2.16) is equivalent to

qCHq22 ≤ σ 2. (2.20)

Define the sets

Θ =
{
(C,D) : C,D ∈ H 2, (2.20)

}

Θ(K ) =
{
(C,D) : C,D ∈ H 2, (2.20), K = DC

}
.

Then the infimum of J(C,D) subject to (2.16) can be written

inf
C,D∈Θ

J(C,D) = inf
K∈H 1

inf
C,D∈Θ(K )

J(C,D)

= inf
K∈H 1

(
q(P− K )Fq22 + qKGq

2
2 + inf

C,D∈Θ(K )
qDq22

)

= inf
K∈H 1

q(P− K )Fq22 + qKGq
2
2 +

1
σ 2
qKHq21

= inf
K∈H 1

ϕ (K ) (2.21)

The first equality is true by Lemma 1.7. The second equality follows be-
cause the first two terms in infC,D∈Θ(K ) J(C,D) are constant. The third
equality follows from application of Lemma 2.2 to perform the inner min-
imization. The final equality follows from (2.19).
It will now be shown that the minimum in (2.21) is attained by a

unique K ∈ H 2. Completion of squares gives that

ϕ (K ) = q(P− K )Fq22 + qKGq
2
2 +

1
σ 2
qKHq21

= qPFq22 + qKHq
2
2 − 2Re〈PFF∗, KHH−1〉 + 1

σ 2
qKHq21

= qPFF∗H−∗ − KHq22 +
1

σ 2
qKHq21 + const.

Let X = KH ∈ H 1 and R = PFF∗H−∗ ∈ L∞. Minimizing ϕ (K ) over
K ∈ H 1 is then equivalent to minimizing

ψ (X ) = qR − X q22 +
1

σ 2
qX q21 (2.22)
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over X ∈ H 1. In the latter problem, it is sufficient to consider X such
that ψ (X ) ≤ψ (0) = qRq22. That is, only X satisfying

qX q2 = qR − X − Rq2 ≤ qR − X q2 + qRq2
≤
√

ψ (X ) + qRq2 ≤ 2 qRq2
def= r.

Now, in the weak topology, ψ (X ) is lower semicontinuous on L2 and the
set {X : qX q2 ≤ r} is compact. This proves the existence of a minimum.
The minimum is unique since ψ (X ) is strictly convex. Moreover, since
qX q2 ≤ r, it is sufficient to minimize over X ∈ H 2 instead of H 1.
Suppose now that X ∈ H 2 minimizesψ (X ). From H−1 ∈ H∞ it follows

that K = H−1X ∈ H 2 attains the infimum value in (2.21) and that this
value is equal to the minimum of (2.17).
Since the minimum is attained in (2.21) and, by Lemma 2.2, there

exists (C,D) ∈ Θ such that J(C,D) = ϕ (K ), it follows that the minimum
of (2.15) subject to (2.16) is attained.
Finally, the optimality condition (2.18) follows from the application of

Lemma 2.2, using that pHp =
√
pFp2 + pGp2.

REMARK 2.3
Preliminary results suggest that the optimal K will have a non-rational
transfer function [23]. This implies that optimal C and D are non-rational
as well. A system with non-rational transfer function cannot be imple-
mented with finite memory, meaning that some approximation has to be
performed.
This may explain the assumption that was made in [62], that the en-

coder has access to the decoder state. Without this type of feedback, it
would be impossible to bound the encoder’s memory requirement.

REMARK 2.4
ϕ (K ) is convex, and ϕ (K ) = ϕ (K ). Thus,

ϕ

(
K + K
2

)
≤ 1
2

(
ϕ (K ) +ϕ (K )

)
= ϕ (K ).

Since the optimal K is unique, this shows that the minimizing K satisfies
K (e−iω ) = K (eiω ). Thus, C can be chosen to have this property as well,
meaning that C can be approximated by a rational function with real
coefficients. The same holds for D.
Similar remarks can be made regarding the corresponding optimiza-

tion problems presented in sections 2.3, 2.4, 3.2 and 3.3.
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Figure 2.3 Extended version of the problem in Figure 2.2. Here, the error is
frequency weighted by S and the channel noise is shaped by N.

REMARK 2.5
It was noted in Remark 2.2 that the optimal factorization problem can
have multiple solutions. To clarify, the optimal K is unique but there are
multiple factorizations of K into C and D that achieve the minimum value
of J(C,D).

It is noted that the solution of the problem essentially amounts to min-
imizing the sum of a 2-norm and a 1-norm of the decision variable. The
2-norm represents the cost in the Wiener filter problem, and the 1-norm
represents the contribution of the channel noise to the error variance. The
SNR σ 2 determines the relative importance of the two terms. For small
SNR, the optimal K will have small magnitude since the channel noise
dominates the transmitted signal. As the SNR becomes larger, the mag-
nitude of K will become larger, and it will approach the Wiener filter in
the limit when the SNR goes to infinity.

Frequency Weighting and Non-White Channel Noise

Consider the extended problem structure illustrated in Figure 2.3. The
difference from the original problem is that the error signal is frequency
weighted by S ∈ H∞ and that the channel noise is colored by N ∈ H∞.
This means that the channel now has memory. In a feed-forward context,
S could represent the sensitivity function of a given closed-loop system
that is affected by the disturbance.
The objective function for the extended problem is

Jext(C,D) = qS(P− DC)Fq22 + qSDCGq
2
2 + qSDNq

2
2 .

The SNR constraint is not changed. Assuming that S−1,N−1 ∈ H∞, it
is straightforward to modify Lemma 2.2 and Theorem 2.1 to cover the
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extended problem, so the proofs are omitted. Solving the optimal factor-
ization problem results in the equivalent convex optimization problem

minimize
K∈H 2

qS(P− K )Fq22 + qSKGq
2
2 +

1
σ 2
qSKN [ F G ]q21 (2.23)

and the optimality condition

pCp2 = σ 2

qSKN [ F G ]q1

∣∣∣∣∣
SKN√
pFp2 + pGp2

∣∣∣∣∣ on T. (2.24)

Numerical Solution

A procedure for numerical solution of the (extended) problem will now be
outlined.

1. The first step is to solve the optimization problem (2.23). Since this
problem is infinite-dimensional and an analytical solution seems to
be out of reach, this is done approximately using a finite basis rep-
resentation of K and sum approximations of the integrals. The ap-
proximated problem can then be cast as a quadratic program with
second-order cone constraints.

2. Use a finite basis approximation A(ω ) of CC∗, for example using the
parametrization

A(ω ) = A0 +
Nc∑

k=1
Ak
(
ekiω + e−kiω

)
(2.25)

and fit A(ω ) to the right hand side of (2.24), for example by mini-
mizing the mean squared deviation.

3. Perform a spectral factorization of A(ω ), choosing C as the stable
and minimum phase spectral factor.

4. Let D = KC−1.
The numerical solution will be illustrated by an example.

EXAMPLE 2.2
Consider the problem with P = z−2 + 0.5z−7, F = 1/(z − 0.5), G = 1,
S = N = 1 and σ = 1. This P can be given the interpretation that the
coding system has two opportunities to estimate each sample of the source
signal. First after 2 samples delay, and then again after 7 samples delay.
The second estimate does not count as much as the first because of the
smaller coefficient.
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Figure 2.4 Impulse response of K , the product of the encoder and the decoder, in
Example 2.2.
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Figure 2.5 Impulse response of the encoder C in Example 2.2.
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Figure 2.6 Impulse response of the decoder D in Example 2.2.

The functional (2.22) was minimized with X = KH parametrized as
an FIR filter:

X (z) =
Nx∑

k=0
xkz

−k,
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with Nx = 30. The minimization was implemented in Matlab using Yalmip
[30] and SeDuMi [55]. The grid distance 0.001 was used for numerical
computation of the integrals. Figure 2.4 shows impulse response of the
obtained K . Note that the two peaks in the impulse response correspond
to the non-zero coefficients of P.
The spectrum of C was parametrized as in (2.25) with Nc = 30. The

spectrum coefficients were obtained by solving a least squares problem.
Finally, C was obtained through spectral factorization and D = KC−1.
The impulse responses of C and D are shown in figures 2.5 and 2.6,
respectively. The obtained value for this problem is 1.00.

2.3 The MIMO Case

In this section, the results in the previous section will be generalized to
the case of vector-valued signals.

Problem Formulation and Assumptions

Consider again the system in Figure 2.2, but with the modification that
all signals are vector-valued and all systems are MIMO with correspond-
ing transfer matrices. The number of elements in signal f is denoted n f
and so forth. Matrix dimensions are not explicitly stated in this section
except when necessary. It is generally assumed that all matrices are of
appropriate size. In addition to all the assumptions made previously, it is
now also assumed that:

1. The number of elements in the signals satisfy

nt ≥ min{n f ,ne}, where C is nt $ n f and D is ne $ nt. (2.26)

If the number of channels nt would be smaller than n f and ne, then
the product DC could not have full rank. This means that optimiza-
tion over K = DC would have to include a rank constraint, which is
very difficult to handle.

2. The inequality (2.3) is replaced by the matrix version

∃ε > 0 such that FF∗ + GG∗ ≥ ε I on T. (2.27)

3. The communication channel consists of nt parallel AWN channels.
The SNR constraint (2.5) is replaced by the power constraint

lim
k→∞
E(t(k)T t(k)) ≤ σ 2.
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4. The input signals u,v,n have identity covariance matrices. Note that
this is non-restrictive for f or the measurement noise, since these
are scaled by F and G, respectively. But it does mean that only the
case when all the channel components have noise with the same
variance is considered.

The objective is to minimize

J(C,D) = q(P− DC)Fq22 + qDCGq
2
2 + qDq

2
2 = lim

k→∞
E(e(k)T e(k))

subject to
σ 2 ≥ qCFq22 + qCGq

2
2 = lim

k→∞
E(t(k)T t(k)). (2.28)

Accordingly, the problem in this section is defined as follows.

PROBLEM 2.2
minimize
C,D∈H 2

J(C,D)

subject to (2.28).
In the norm notation, the objective and the constraint are written in the
same way as in the SISO case. It will be seen that the equivalent convex
problem also looks the same as in the SISO case. The optimality condition
will, however, be more complicated.

Optimal Factorization

The solution to the optimal factorization problem is given by the following
lemma. This problem is much more difficult to solve in the MIMO case.

LEMMA 2.3—OPTIMAL FACTORIZATION, MIMO CASE
Suppose that σ 2 > 0, K ∈ H 1, H ∈ H∞ with H−1 ∈ H∞ and that (2.26)
and (2.27) hold. Then the optimization problem

minimize
C,D∈H 2

qDq22

subject to
K = DC, qCHq22 ≤ σ 2

attains the minimum value 1
σ 2
qKHq21.

Moreover, suppose K is not identically zero and let K = KiKo be an
inner-outer factorization and KoH = UoΣV ∗ be a singular value decom-
position. Then C,D ∈ H 2 are optimal if and only if

K = DC, qCHq22 = σ 2, DD∗ = qKHq1
σ 2

KiUoΣU
∗
o K

∗
i .

If K = 0 then the minimum is achieved by D = 0 and any function
C ∈ H 2 that satisfies qCHq22 ≤ σ 2.
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PROOF

If K = 0 the proof is trivial, so assume that K is not identically zero. Then
neither C nor D are identically zero and α = qCHq2 > 0. Now, suppose
that C,D are feasible and that α < σ . Then

Cα =
σ

α
C, Dα =

α

σ
D

are feasible and qDα q2 < qDq2. Hence, a necessary condition for optimal-
ity is that qCHq22 = σ 2.
The remainder of this proof is divided into three parts. First, the dual

problem is considered. Then, it is shown that there is a saddle point and
the optimality criteria are derived. Finally, existence of the solution is
proven by construction.

DUAL PROBLEM: In order to avoid dealing with analyticity constraints as-
sociated with H 2, the search will temporarily be relaxed to C,D ∈ L2.
Later, it will be shown that there are C,D ∈ H 2 that satisfy the derived
optimality criteria. For λ ≥ 0 and Φ ∈ L∞, where Φ is matrix-valued,
introduce the Lagrangian

L(C,D,λ ,Φ) =

= qDq22 + λ
(
qCHq22 −σ 2

)
− 〈ReΦ,Re DC − K 〉 − 〈ImΦ, Im DC − K 〉

= qDq22 + λ
(
qCHq22 −σ 2

)
− Re〈Φ,DC − K 〉

= 1
2π

∫ π

−π

qDq2F + λ qCHq2F − Re tr (Φ∗(DC − K )) dω − λσ 2 (2.29)

The integrand in (2.29) can be rewritten, by a completion of squares, as

qDq2F + λ qCHq2F − Re tr (CΦ∗D − Φ∗K )

=
∥∥∥∥D −

1
2

ΦC∗

∥∥∥∥
2

F

+ λ qCHq2F −
1
4
qCΦ∗q2F + Re tr (Φ∗K )

=
∥∥∥∥D −

1
2

ΦC∗

∥∥∥∥
2

F

+ tr
[
C

(
λHH∗ − 1

4
Φ∗Φ

)
C∗

]
+ Re tr (Φ∗K ) (2.30)

Only the first term depends on D. The contribution of this term is mini-
mized by

D = 1
2

ΦC∗. (2.31)
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2.3 The MIMO Case

If (2.31) holds, then L only depends on C through the second term of
(2.30). Pointwise minimization of that term gives

inf
C∈L2

tr
[
C

(
λHH∗ − 1

4
Φ∗Φ

)
C∗

]
=
{
0, 4λHH∗ ≥ Φ∗Φ on T

−∞, otherwise.

Moreover, the third term in (2.30) can be written

tr (Φ∗K ) = tr (Φ∗DC) = 1
2
tr (CΦ∗ΦC∗) = 1

2
qΦC∗q2F .

Thus, tr (Φ∗K ) is real and non-negative, and

inf
C,D∈L2

L =





1
2π

∫ π

−π

tr (Φ∗K ) dω − λσ 2, 4λHH∗ ≥ Φ∗Φ on T

−∞, otherwise.

Introduce

Ψ = 1

2
√

λ
ΦH−∗.

Then the dual problem can be written as

maximize
λ≥0,Ψ∈L∞

2
√

λ

2π

∫ π

−π

tr (Ψ∗KH) dω − λσ 2

subject to

Ψ∗Ψ ≤ I on T. (2.32)

The dual function is concave in λ . Letting λ = 0 gives the value 0.
Since tr (Ψ∗KH) ≥ 0 there exists λ > 0 that gives a positive value, so the
optimal λ is given by the first-order condition

(
1

σ 22π

∫ π

−π

tr (Ψ∗KH) dω
)2
= λ ,

obtained by differentiation with respect to λ . With this λ the dual problem
simplifies to

maximize
Ψ∈L∞

1
σ 2

(
1
2π

∫ π

−π

tr (Ψ∗KH) dω
)2

(2.33)

subject to (2.32).
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The integrand in (2.33) will now be maximized pointwise. Recall that
KH = KiKoH = KiUoΣV ∗ and denote the number of rows of Ko by m.
Then Σ is diagonal with diagonal elements σ k, k = 1 . . .m. Since K is
ne $ n f the rank of K is not greater than min{ne,n f } and thus

m ≤ min{ne,n f }. (2.34)

Ko is row outer by definition and H is outer by Lemma 1.4. It follows
that KoH is row outer and thus has full row rank. It follows that the
singular values are positive: σ k > 0, k = 1 . . .m. Since KoH is wide (it
has n f ≥ m columns) it follows that Uo is square and thus unitary.
Define U = KiUo and Ψ̃ = U ∗ΨV . Then it follows from (2.32) and

UU ∗ ≤ I that

Ψ̃∗Ψ̃ = V ∗Ψ∗UU ∗ΨV ≤ V ∗Ψ∗ΨV ≤ V ∗V = I.

Using Ψ̃, an upper bound can be obtained for the integrand in (2.33):

sup
Ψ∗Ψ≤I

tr (Ψ∗KH) = sup
Ψ∗Ψ≤I

tr (Ψ∗UΣV ∗) = sup
Ψ∗Ψ≤I

tr (V ∗Ψ∗UΣ)

≤ sup
Ψ̃∗Ψ̃≤I

tr
(

Ψ̃∗Σ
)
=

m∑

k=1
sup
pΨ̃kkp≤1

σ kΨ̃kk =
m∑

k=1
σ k

The supremum is achieved if and only if Ψ̃ = I. Therefore, the upper
bound is achieved by Ψ if and only if U ∗ΨV = I and Ψ∗Ψ ≤ I. The set of
Ψ satisfying these conditions can be parametrized as:

Ψ = UV ∗ + Ψ0 = KiUoV ∗ + Ψ0 (2.35)
I ≥ Ψ∗Ψ, (2.36)

where Ψ0 satisfies
0 = U ∗Ψ0V = U ∗

o K
∗
i Ψ0V . (2.37)

Pre-multiplying (2.37) with Uo gives the equivalent condition

K ∗
i Ψ0V = 0. (2.38)

Choosing, for example, Ψ0 = 0 gives Ψ = UV ∗, which attains the
upper bound. Hence, the value of the dual problem is

max
Ψ∗Ψ≤I

1
σ 2

(
1
2π

∫ π

−π

tr (Ψ∗KH) dω
)2
= 1

σ 2

(
1
2π

∫ π

−π

tr (VU ∗UΣV ∗) dω
)2

= 1
σ 2
qKHq21 .
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The maximizing dual variables are given by

Φ = 2
√

λΨH∗ = 2
√

λ(KiUoV ∗ + Ψ0)H∗ (2.39)

where Ψ0 is such that (2.35), (2.36) and (2.38) hold, and

λ =
(
1

σ 2
qKHq1

)2
. (2.40)

SADDLE POINT: It will now be shown that there is a saddle point, which
implies that the duality gap is zero.
In the following, assume that (2.35), (2.36), (2.38), (2.39) and (2.40)

hold. Then λ and Φ are dual feasible. The point (C,D,λ ,Φ) is a saddle
point if and only if C,D ∈ H 2 are primal feasible,

λ
(
qCHq22 −σ 2

)
= 0 (2.41)

and

L(C,D,λ ,Φ) = inf
Ĉ,D̂∈H 2

L(Ĉ, D̂,λ ,Φ). (2.42)

The saddle point conditions imply that qCHq2 = σ since λ > 0 and that
D = 1

2ΦC∗ as it was seen earlier that this follows from minimization of
the Lagrangian.
Suppose that C,D satisfy K = DC and D = 1

2ΦC∗. Then

DD∗ = 1
2
DCΦ∗ = 1

2
KΦ∗ =

√
λKiKoH(VU ∗

o K
∗
i + Ψ∗

0)

=
√

λ(KiUoΣU ∗
o K

∗
i + KiUoΣV ∗Ψ∗

0).

Clearly, DD∗ and KiUoΣU ∗
o K

∗
i are Hermitian. Accordingly,

A = KiUoΣV ∗Ψ∗
0

must be Hermitian. Now, by (2.38),

AKi = KiUoΣV ∗Ψ∗
0Ki = 0

[ 0 = AKi = A∗Ki = Ψ0VΣU ∗
o K

∗
i Ki = Ψ0VΣU ∗

o .

Hence, A = 0 and

DD∗ =
√

λKiUoΣU ∗
o K

∗
i =

qKHq1
σ 2

KiUoΣU
∗
o K

∗
i . (2.43)
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Now, suppose instead that C,D ∈ H 2 satisfy K = DC, qCHq2 = σ and
(2.43). Then C,D are primal feasible and (2.41) is satisfied. Moreover,

L(C,D,λ ,Φ) = qDq22 =
√

λ

2π

∫ π

−π

tr (KiUoΣU ∗
o K

∗
i ) dω

=
√

λ

2π

∫ π

−π

tr (Σ) dω = 1
σ 2
qKHq21 ,

so (2.42) holds and thus the saddle point conditions are satisfied. Since
these assumptions and the saddle point conditions imply each other, they
are equivalent.
To conclude, it has been shown that (C,D,λ ,Φ) is a saddle point,

which implies that C,D ∈ H 2 achieve the claimed optimal value, if and
only if K = DC, qCHq22 = σ 2 and (2.43) holds.
EXISTENCE OF SOLUTION: Define M =

√
λUoΣU ∗

o ∈ L1, which is Hermitian
with real diagonal. Recall that KoH is row outer with singular values
σ k > 0, k = 1 . . .m. From this and Lemma 1.6 it follows that logσ k ∈ L1.
Since Uo is unitary it also follows that M is positive definite. Moreover,

log detM = m
2
log λ +

m∑

k=1
logσ k ∈ L1

Therefore, according to Theorem 1.3, there is an outer transfer matrix
Do ∈ H 2 such that M = DoD∗

o . Let D̃ = KiDo ∈ H 2 and C̃ = D−1o Ko.
Then

C̃ = D−1o KoHH−1 = D−1o UoΣV ∗H−1

= D−1o UoΣU ∗
oUoV

∗H−1 = 1√
λ
D∗
oUoV

∗H−1 ∈ L2

Since Do is outer it follows from Lemma 1.3 that C̃ ∈ H 2.
It can now be verified that C̃ and D̃ satisfy the optimality conditions:

D̃C̃ = KiDoD−1o Ko = KiKo = K ,

∥∥∥C̃H
∥∥∥
2

2
=
∥∥D−1o KoH

∥∥2
2 =

1
2π

∫ π

−π

tr
(
H∗K ∗

oD
−∗
o D

−1
o KoH

)
dω

= 1
2π

∫ π

−π

tr
(
VΣU ∗

oM
−1UoΣV ∗

)
dω

= 1√
λ2π

∫ π

−π

tr (Σ) dω = σ 2
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and

D̃ D̃∗ = KiDoD∗
oK

∗
i =

√
λKiUoΣU ∗

o K
∗
i .

If the rank of K does not equal nt, then C̃ and D̃ are not of the required
dimensions. C̃ is m $ n f and D̃ is ne $ m, where, by (2.26) and (2.34),
m ≤ min{ne,n f } ≤ nt. It is required that C is nt$n f and that D is ne$nt.
To solve this problem, let

D =
[
D̃ 0ne$nt−m

]
∈ H 2, C =

[
C̃

0nt−m$n f

]
∈ H 2.

Noting that DC = D̃C̃ = K , that qCHq2 =
∥∥∥C̃H

∥∥∥
2
and that DD∗ = D̃ D̃∗

it is finally concluded that C,D are optimal.

REMARK 2.6
In the scalar case Ki = Uo = 1 and Σ = pKHp, so it is easily verified
that the optimality conditions in that case are equivalent to those in Sec-
tion 2.2.

Equivalent Convex Problem

Just as in the SISO case, the solution to the optimal factorization problem
can be used to find an equivalent convex problem. This problem looks
exactly the same in the MIMO case as in the SISO case.

THEOREM 2.2
Suppose that σ 2 > 0, F,G, P ∈ H∞ and that (2.26) and (2.27) hold. Then
the optimization problem

minimize
C,D∈H 2

J(C,D) (2.44)

subject to
qCFq22 + qCGq

2
2 ≤ σ 2 (2.45)

attains a minimum value that is equal to the minimum of the convex
optimization problem

minimize
K∈H 2

q(P− K )Fq22 + qKGq
2
2 +

1
σ 2
qK [ F G ]q21 , (2.46)

which is attained by a unique minimizer.
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Moreover, suppose K ∈ H 2 is a solution to (2.46). If K is not identically
zero, then C,D ∈ H 2 solve (2.44) subject to (2.45) if and only if

K = DC, qC [ F G ]q22 = σ 2, DD∗ = qK [ F G ]q1
σ 2

KiUoΣU
∗
o K

∗
i ,

where Ki is defined by an inner-outer factorization K = KiKo and Uo
and Σ are given by a singular value decomposition KoH = UoΣV ∗, where
H ∈ H∞ satisfies H−1 ∈ H∞ and HH∗ = FF∗ + GG∗.
If K = 0, then the solution to (2.44) and (2.45) is given by D = 0 and

any function C ∈ H 2 that satisfies (2.45).

PROOF

With the assumption (2.27), Lemma 2.1 holds in the matrix case as well.
The rest of the proof is identical to the proof of Theorem 2.1, except that
Lemma 2.3 is used instead of Lemma 2.2, with the obvious implications
for the optimality conditions.

REMARK 2.7
The assumption (2.26) may deserve some explanation. If there are too
few communication channels relative to the dimensionality of f and e,
the maximum rank of the product DC may be smaller than the smallest
dimension of K . Then not all K would be realizable as a product of D and
C, and a rank condition would have to be imposed on K in Theorem 2.2. In
principle, this changes nothing, but the assumption is included in order to
avoid formulating the solution in terms of an optimization problems that
cannot be reliably solved.

Numerical Solution

A procedure for numerical solution of the MIMO version of the problem
will now be outlined.

1. The first step is to solve the optimization problem (2.46). An approx-
imate solution can be obtained using a finite basis representation
of K and sum approximations of the integrals. The approximated
problem can then be cast as a quadratic program with second-order
cone constraints.

2. Perform a matrix spectral factorization to obtain H ∈ H∞ with
H−1 ∈ H∞ that satisfies HH∗ = FF∗ + GG∗ on T.

3. Perform an inner-outer factorization to obtain KiKo = K .
4. Perform a singular value decomposition to obtain UoΣV ∗ = KoH.
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2.4 Using Channel Feedback

5. Use a finite basis approximation A(ω ) of DD∗, for example using
the parametrization

A(ω ) = A0 +
Nc∑

k=1
Ak
(
ekiω + e−kiω

)

and fit A(ω ) to
qK [ F G ]q1

σ 2
KiUoΣU

∗
o K

∗
i ,

for example by minimizing the mean squared deviation.

6. Perform a spectral factorization of A(ω ), choosing Do as the stable
and outer spectral factor.

7. Let D = KiDo and C = D−1o Ko.

8. If C and D are of incorrect size, add rows of zeros to C and columns
of zeros to D until they are of correct size.

2.4 Using Channel Feedback

In this section, the same problem as in sections 2.2 and 2.3 will be consid-
ered. A SISO setting is again considered, but this time under the assump-
tion of channel feedback, as illustrated in Figure 2.7. The encoder now
has two inputs: one is the same as before, and the other is a one-sample
delayed version of the decoder input.

Source signal

Noise
Encoder Decoder

P

Channel

Error

Figure 2.7 Illustration of the problem studied in this section. It is assumed that
the channel has feedback, that is, the encoder has access to the signal received by
the decoder.
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F

G C D

P

B

e

rt

f

z−1z−1

u

v

n

n

Figure 2.8 Structure of the system with channel feedback. With F, G and P
given, the objective is to design B,C and D such that the stationary variance of e
is minimized. The dashed box represents the encoder.

Problem Formulation and Assumptions

Make the same assumptions as in Section 2.2. Note that it is again as-
sumed that all signals are scalar-valued and that all systems are SISO.
The encoder can be parametrized in a number of ways. The structure and
parametrization illustrated in Figure 2.8 will be used. Since the encoder
remembers its past output, it can subtract t from r to obtain the channel
noise n, delayed by one time step. This is the input to B, which represents
the part of the encoder that processes the feedback signal. By linearity,
this encoder structure can be assumed without loss of generality.
It will be assumed, for technical reasons, that B is rational. Since it

must also be proper and stable, it follows that B ∈ RH∞.
By expressing e and t in terms of the transfer functions in Figure 2.8,

the objective function and the SNR constraint can be written as

J(B,C,D) = q(P− DC)Fq22 +qDCGq
2
2 +
∥∥D(1+ Bz−1)

∥∥2
2 = limk→∞E(e(k)

2)

and
σ 2 ≥ qCFq22 + qCGq

2
2 + qBq

2
2 = lim

k→∞
E(t(k)2), (2.47)

respectively. The problem in this section is thus:

PROBLEM 2.3
minimize

B∈RH∞,C,D∈H 2
J(B,C,D)

subject to (2.47).
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2.4 Using Channel Feedback

Note that if B = 0, then the objective function and the SNR constraint
are the same as those in Problem 2.1.
In contrast with the two previous section, it will be seen here that

the minimum is not generally attained. However, an approximate solu-
tion, that gives a performance arbitrary close to the infimum, can be
constructed. This shortcoming is mainly theoretical, since the numerical
solution of Problems 2.1 and 2.2 is performed approximately anyway.

Optimal Factorization

Compared to before, the problem now has an additional variable in B.
The optimal factorization approach is consequently modified to assume
that, in addition to the product K = DC, B is also given. For feasible B,
it holds that

qBq22 ≤ σ 2.

Actually, if qBq22 = σ 2 then C = 0 and

J(B, 0,D) = qPFq22 +
∥∥D(1+ Bz−1)

∥∥2
2 .

Then it is optimal to let D = 0. But J(B, 0, 0) does not depend on B, so
the same cost can be achieved with, for example, B = 0. Thus, it can be
assumed without loss of generality that qBq22 < σ 2.
By Lemma 2.1, there exists H ∈ H∞ with H−1 ∈ H∞ such that

HH∗ = FF∗ + GG∗ on T. (2.48)

and qC [ F G ]q22 = qCHq22. The set of feasible (C,D), parametrized by
K and B, is thus defined as

ΘC,D(B, K ) =
{
(C,D) : C,D ∈ H 2,DC = K , qCHq22 ≤ σ 2 − qBq22

}
.

The solution to the optimal factorization problem is given by the fol-
lowing lemma.

LEMMA 2.4—OPTIMAL FACTORIZATION, CHANNEL FEEDBACK CASE
Suppose K ∈ H 1, B ∈ RH∞, qBq22 < σ 2 and H ∈ H∞ with H−1 ∈ H∞.
Then

inf
(C,D)∈ΘC,D(B,K )

∥∥D(1+ Bz−1)
∥∥2
2 ≥

∥∥KH(1+ Bz−1)
∥∥2
1

σ 2 − qBq22
. (2.49)

Suppose furthermore that 1 + Bz−1 has no zeros on T. Then there
exists (C,D) ∈ ΘC,D(B, K ) with C,D ∈ H 2 and C outer, such that the
minimum is attained and (2.49) holds with equality.
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If K is not identically zero, then (C,D) ∈ H 2 are optimal if and only
if DC = K and

pCp2 = σ 2 − qBq22
qKH(1+ Bz−1)q1

∣∣∣∣
K (1+ Bz−1)

H

∣∣∣∣ on T. (2.50)

If K = 0, then the minimum is achieved by D = 0 and any C ∈ H 2 that
satisfies qCHq22 ≤ σ 2 − qBq22.

PROOF

The proof of the lower bound is nearly identical to the first part in the
proof of Lemma 2.2 and can be obtained by simply inserting the factor
(1+Bz−1) in the derivations. The optimality conditions follow in the same
way.
The only significant difference lies in the existence part: It is necessary

to verify the existence of C ∈ H 2 and D = KC−1 ∈ H 2 such that (2.50)
holds. Note first that K (1 + Bz−1)H−1 ∈ H 1. Moreover, KH−1 ∈ H 1 is
not identically zero. 1+ Bz−1 ∈ RH∞ is also not identically zero since B
is causal. It then follows from Lemma 1.5 that

log
∣∣KH−1(1+ Bz−1)

∣∣ = log
∣∣KH−1

∣∣+ log
∣∣1+ Bz−1

∣∣ ∈ L1

Hence, it follows from Theorem 1.3 that there is an outer function C ∈ H 2
such that (2.50) holds.
Since 1 + Bz−1 is rational and has no zeros on T, there exists ε > 0

such that p1+ Bz−1p ≥ ε on T. Thus,

qDq22 =
∥∥KC−1

∥∥2
2

=
∥∥KH(1+ Bz−1)

∥∥
1

σ 2 − qBq22
1
2π

∫ π

−π

∣∣∣∣
KH

1+ Bz−1
∣∣∣∣ dω

≤
∥∥KH(1+ Bz−1)

∥∥
1

σ 2 − qBq22
qKHq1

ε
< ∞,

and so D ∈ L2. Since K ∈ H 1 and C ∈ H 2 is outer, Lemma 1.3 implies
that D ∈ H 2.

REMARK 2.8
The existence proof fails for D ∈ H 2 if 1+ Bz−1 is allowed to have zeros
on T. However, in that case there exists D ∈ N + such that the lower
bound is attained. The implications of allowing D ∈N + will be discussed
later.
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Equivalent Convex Problem

Using the optimal factorization of Lemma 2.4, it will now be shown that
the infimum of J(B,C,D) is equal to the infimum of a convex minimiza-
tion problem.
The feasible set is

ΘB,C,D =
{
(B,C,D) : B ∈ RH∞,C,D ∈ H 2, qC [ F G ]q22 + qBq

2
2 ≤ σ 2

}
.

It will be seen that minimization of J(B,C,D) over ΘB,C,D is equivalent
to minimization of the convex functional

ϕ (B, K ) = q(P− K )Fq22 + qKGq
2
2 +

∥∥K [ F G ] (1+ Bz−1)
∥∥2
1

σ 2 + 1− q1+ Bz−1q22
, (2.51)

over the convex set

ΘB,K =
{
(B, K ) : B ∈ RH∞, K ∈ H 1, qBq22 < σ 2

}
.

The (B, K ) obtained from the minimization of ϕ (B, K ) will be used to
construct (C,D) so that (B,C,D) ∈ ΘB,C,D . This will, however, only be
possible if 1+Bz−1 has no zeros on the unit circle. If there are such zeros,
then a small perturbation will be applied, as detailed by the following
lemma.

LEMMA 2.5
Suppose (B, K ) ∈ ΘB,K and ε > 0. Then there exists B̂ such that 1+ B̂ z−1
has no zeros on T, (B̂, K ) ∈ ΘB,K and

ϕ (B̂, K ) < ϕ (B, K ) + ε .

The proof of Lemma 2.5 is based on a perturbation argument and can be
found in Appendix A.

THEOREM 2.3
Suppose that σ 2 > 0, F,G, P ∈ H∞, and that (2.3) holds. Then

inf
(B,C,D)∈ΘB,C,D

J(B,C,D) = inf
(B,K )∈ΘB,K

ϕ (B, K ). (2.52)

Moreover, suppose (B, K ) ∈ ΘB,K and ε > 0. Let B̂ be as given by
Lemma 2.5. Then there exists (C,D) such that the following conditions
hold:
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• If K is not identically zero: (C,D) ∈ H 2, with C outer and

pCp2 =
σ 2 −

∥∥∥B̂
∥∥∥
2

2∥∥∥K [ F G ] (1+ B̂ z−1)
∥∥∥
1

∣∣∣K (1+ B̂ z−1)
∣∣∣

√
pFp2 + pGp2

on T (2.53)

D = KC−1. (2.54)

• If K = 0: C = D = 0.
If (C,D) satisfy these conditions, then (B̂,C,D) ∈ ΘB,C,D and

J(B̂,C,D) < ϕ (B, K ) + ε .

PROOF

Consider (B,C,D) ∈ ΘB,C,D and let K = DC. Then (C,D) ∈ ΘC,D(B, K ).
Moreover, K ∈ H 1 and since the SNR constraint is satisfied by (B,C,D)
it follows that if qBq22 ,= σ 2 then (B, K ) ∈ ΘB,K .
A lower bound will now be determined for J(B,C,D). This will be

accomplished through a series of inequalities and equalities, where each
step will be explained afterwards.

inf
(B,C,D)∈ΘB,C,D

J(B,C,D)

(1)

≥ inf
(B,K )∈ΘB,K

inf
(C,D)∈ΘC,D(B,K )

J(B,C,D)

(2)= inf
(B,K )∈ΘB,K

q(P− K )Fq22 + qKGq
2
2 + inf

(C,D)∈ΘC,D(B,K )

∥∥D(1+ Bz−1)
∥∥

(3)

≥ inf
(B,K )∈ΘB,K

q(P− K )Fq22 + qKGq
2
2 +

∥∥KH(1+ Bz−1)
∥∥2
1

σ 2 − qBq22
(4)= inf
(B,K )∈ΘB,K

ϕ (B, K ).

In the first step, the minimization over (C,D) is parametrized by B and
the product K = DC. The inequality follows from the discussion in the
beginning of this proof and from the fact, shown earlier, that if qBq22 = σ 2

then the same value can be achieved with B = 0.
In the second step, the first two terms of J(B,C,D) are moved out

from the inner minimization since they are constant for fixed (B, K ). The
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third step follows from application of Lemma 2.4. The fourth step follows
from (2.48) and the fact that

qBq22 =
∥∥Bz−1

∥∥2
2 + 1− 1 =

∥∥1+ Bz−1
∥∥2
2 − 1,

which follows from orthogonality.
Now, a suboptimal solution will be constructed for Problem 2.3. Sup-

pose that (B, K ) ∈ ΘB,K and ε > 0 and let B̂ be as given by Lemma 2.5.
Then (B̂, K ) ∈ ΘB,K and

ϕ (B̂, K ) = q(P− K )Fq22 + qKGq
2
2 +

∥∥∥KH(1+ B̂ z−1)
∥∥∥
2

1

σ 2 −
∥∥∥B̂
∥∥∥
2

2

If K = 0 then

J(B̂, 0, 0) = qPFq22 = ϕ (B̂, K ) < ϕ (B, K ) + ε ,

and the proof is complete.
If, on the other hand, K is not identically zero then according to

Lemma 2.4 there then exist C,D ∈ H 2, with C outer, such that (2.53)
and (2.54) hold. The lemma also says that such (C,D) satisfy

∥∥∥D(1+ B̂ z−1)
∥∥∥ =

∥∥∥KH(1+ B̂ z−1)
∥∥∥
2

1

σ 2 −
∥∥∥B̂
∥∥∥
2

2

and

qCHq22 = σ 2 −
∥∥∥B̂
∥∥∥
2

2
.

Thus, (B,C,D) ∈ ΘB,C,D and

J(B̂,C,D) = q(P− K )Fq22 + qKGq
2
2 +

∥∥∥D(1+ B̂ z−1)
∥∥∥

= ϕ (B̂, K )
< ϕ (B, K ) + ε .

Since ε can be made arbitrarily small this shows that (2.52) holds and
hence the proof is complete.
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REMARK 2.9
The purpose of the perturbation of B is to make sure that 1+Bz−1 has no
zeros on the unit circle. This is needed by Lemma 2.4 to ensure existence
of D ∈ H 2. It was mentioned earlier that if the search of D is relaxed
from H 2 to N +, then optimal D exists even if 1 + Bz−1 has zeros on the
unit circle.
Having D ∈N + means that D potentially has poles on the unit circle.

This is fine with regards to the error variance that is being minimized,
since these poles would be cancelled by zeros in C and (1 + Bz−1). (If
they were not cancelled then J(B,C,D) would be infinite, which explains
why D has no unit circle poles if (1 + Bz−1) has no unit circle zeros.)
This does, however, mean that the system is not internally stable in the
following sense: If a signal with finite variance is added to the input of
D, but not to the input of B, then the variance of the output of D would
grow unbounded. Since the input of B is constructed by subtracting t from
r this means that any numerical error in that operation could cause the
output of D to grow indefinitely.
Of course, having a system without internal stability is not acceptable

in practice, which is why the perturbation is performed. Still, since the
perturbation is small, (1+ Bz−1) will potentially have zeros that are very
close to the unit circle, and thus have a very small magnitude at the
corresponding frequencies. Since it is the product of D and (1+Bz−1) that
is minimized by an optimal factorization, it is possible that D will have
large magnitude peaks at those frequencies, resulting in poor robustness.

REMARK 2.10
Note that ϕ (0, K ) is equal to the functional (2.14). This should have been
expected, since B = 0 corresponds to not utilizing the channel feedback.
The solution that is obtained by minimizing ϕ (0, K ) is thus a solution to
Problem 2.1 in Section 2.2.

It will now be shown that the minimization of ϕ (B, K ) over ΘB,K is a
convex problem. To this end, define the functional

ρ(a, e) = 1
2π

∫ π

−π

a(ω )2dω +
(
1
2π

∫ π
−π a(ω )e(ω )dω

)2

σ 2 + 1− 1
2π

∫ π
−π e(ω )2dω

with domain

Θρ =
{
(a, e) : a(ω ), e(ω ) ∈ R ∀ω ,

1
2π

∫ π

−π

e(ω )2dω < σ 2 + 1
}
.
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LEMMA 2.6
The functional ρ(a, e) is convex.

PROOF

Take n ≥ 2. The function

f (x, y,v) = (x + yv)T(x + yv) − v2,
= xT x + 2vxT y+ v2(yT y− 1)

with domain
{
(x, y,v) : x, y∈ R

n, v ∈ R, yT y< 1
}
, is convex in (x, y) for

any v ∈ R. Thus,

�(x, y) = max
v∈R

f (x, y,v) = xT x +
(
xT y

)2

1− yT y,

with domain
{
(x, y) : x, y∈ R

n, yT y< 1
}
, is convex in (x, y) since it is the

pointwise maximum of a set of convex functions [6].
Now, suppose (a, e) ∈ Θρ . Let

ω 1 = 0, ω k+1 −ω k = 2π /n, k = 1, . . . ,n− 1
â = [ a(ω 1) a(ω 2) . . . a(ω n) ]T

ê = [ e(ω 1) e(ω 2) . . . e(ω n) ]T .

By definition of the integral, it holds that

lim
n→∞

êT ê

(σ 2 + 1)n =
1

(σ 2 + 1)
1
2π

∫ π

−π

e(ω )2dω < 1.

So for large n,
(
â, (σ 2 + 1)−1/2 ê

)
/√n belongs to the domain of � and

ρ(a, e) = lim
n→∞

�
(
â√
n
,

ê√
(σ 2 + 1)n

)
.

Since the right hand side is convex in (â, ê), and thus in (a, e), it follows
that ρ(a, e) is convex.
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REMARK 2.11
Convexity of ρ(a, e) has previously been shown in Lemma 4 in [11]. The
proof given here is, however, substantially shorter.

The convex functional ρ will be used in a relaxation of the minimization
of ϕ . To compare the two functionals the constant and linear parts of ϕ
will be removed. They do not matter for the convexity properties and will
be added again later. Define the functional

ϕ0(B, K ) = ϕ (B, K ) −
(
qPFq22 − 2Re〈PF, K F〉

)

= qK [ F G ]q22 +
∥∥K [ F G ] (1+ Bz−1)

∥∥2
1

σ 2 + 1− q1+ Bz−1q22
,

LEMMA 2.7
Suppose (B, K ) ∈ ΘB,K . Then ϕ0(B, K ) ≤ γ if and only if there exists
(a, e) ∈ Θρ such that ρ(a, e) ≤ γ and

a(ω ) ≥ pK p
√
FF∗ + GG∗, e(ω ) ≥ p1+ Bz−1p ∀ω . (2.55)

PROOF

Suppose (B, K ) ∈ ΘB,K and ϕ0(B, K ) ≤ γ . Let

a(ω ) = pK p
√
FF∗ + GG∗, e(ω ) = p1+ Bz−1p

and it follows that ρ(a, e) = ϕ0(B, K ). Conversely, suppose that (a, e) ∈ Θρ

satisfy (2.55) and that ρ(a, e) ≤ γ . Then it follows from inspection of
ϕ0(B, K ) and ρ(a, e) that ϕ0(B, K ) ≤ ρ(a, e) ≤ γ .

Convexity can now be proved.

THEOREM 2.4
The problem of minimizing ϕ (B, K ) over ΘB,K is convex.

PROOF

Suppose (B1, K1) ∈ ΘB,K and (B2, K2) ∈ ΘB,K . Then by Lemma 2.7 there
exists (a1, e1) ∈ Θρ and (a2, e2) ∈ Θρ such that ρ(a1, e1) ≤ ϕ0(B1, K1) and
ρ(a2, e2) ≤ ϕ0(B2, K2). For 0 ≤ θ ≤ 1, it thus holds that

θϕ0(B1, K1) + (1− θ )ϕ0(B2, K2) ≥ θ ρ(a1, e1) + (1− θ )ρ(a2, e2)
≥ ρ (θa1 + (1− θ )a2,θ e1 + (1− θ )e2)
≥ ϕ0(θB1 + (1− θ )B2,θK1 + (1− θ )K2).
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The second inequality follows from Lemma 2.6. The third inequality fol-
lows from Lemma 2.7 and that the constraints (2.55) are convex. It is thus
proved that ϕ0(B, K ) is convex in (B, K ). Since

ϕ (B, K ) −ϕ0(B, K ) = qPFq22 − 2Re〈PF, K F〉
def= ∆(K )

is also convex it follows that ϕ (B, K ) is convex. It is finally noted that
ΘB,K is convex.

Numerical Solution

Even though convexity of ϕ (B, K ) has been established, it is not imme-
diately clear how to formulate the minimization problem in a standard
form. Such a formulation will be derived in this subsection.
Minimizing ϕ (B, K ) over ΘB,K is, by Lemma 2.7, equivalent to mini-

mizing ρ(a, e)+∆(K ) over Θρ$ΘB,K subject to (2.55). A finite dimensional
approximation with n grid points gives

ρn(â, ê) =
1
n
âT â+

(
1
n
âT ê

)2

σ 2 + 1− 1
n
êT ê

( ρ(a, e)

∆n(K ) = qPFq22 −
2
n
Re

n∑

k=1
P(eiω k)∗pF(eiω k)p2K (eiω k) ( ∆(K ).

By the definition of the integral it holds that

lim
n→∞

ρn(â, ê) + ∆n(K ) = ρ(a, e) + ∆(K ),

so the minimum of the approximation can be made to come arbitrarily
close to inf(B,K )∈ΘB,K ϕ (B, K ) if n is chosen sufficiently large. When im-
plementing the minimization program, the transfer functions K and B
are parametrized using finite basis representations. The accuracy of the
approximated problem obviously depends on this representation as well.
Noting that ρn(â, ê) + ∆n(K ) can be written as a Schur complement

and that the denominator of ρn(â, ê) is positive for sufficiently large n, it
follows that ρn(â, ê) + ∆n(K ) ≤ γ if and only if

[ 1
n
êT ê−σ 2 − 1 1

n
âT ê

1
n
êT â 1

n
âT â+ ∆n(K ) − γ

]
5 0,

or, equivalently,
[
n(σ 2 + 1) 0

0 n(γ − ∆n(K ))

]
− [ ê â ]T I [ ê â ] 4 0.
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Since the left hand side of this inequality also can be written as a Schur
complement, this is equivalent to



I ê â

êT n(σ 2 + 1) 0

âT 0 n(γ − ∆n(K ))


 4 0. (2.56)

The constraints can be approximated by

a(ω k) ≥ pK (eiω k)p
√
pF(eiω k)p2 + pG(eiω k)p2, k = 1 . . .n (2.57)

e(ω k) ≥
∣∣1+ B(eiω k)e−iω k

∣∣ , k = 1 . . .n (2.58)

σ 2 + 1 > 1
n

n∑

k=1
e(ω k)2. (2.59)

Minimizing γ subject to (2.56)–(2.59) is a semidefinite program.
A procedure for numerical solution of the coding problem with channel

feedback will now be outlined.

1. Choose n to be sufficiently large and determine the grid points ω k,
k = 1 . . .n. Then solve the optimization problem of minimizing γ
subject to (2.56)–(2.59). The transfer functions K and B are para-
metrized by finite basis representations, for example as FIR filters.

2. Use a finite basis approximation A(ω ) of CC∗, for example the para-
metrization (2.25), and fit it to the right hand side of (2.53), for
example by minimizing the mean squared deviation.

3. Perform a spectral factorization of A(ω ), choosing C as the stable
and minimum phase spectral factor.

4. Let D = KC−1.
The following example illustrates the numerical solution. The exam-

ple also shows that channel feedback can enhance the performance. It is
thus established that feedback is useful for linear real-time coding with a
partially observed source.

EXAMPLE 2.3
Suppose P = z−2 + 0.5z−7, F = 1

z−0.5 , G = 1 and σ = 1. K and B
are parametrized as FIR filters with 20 and 19 coefficients, respectively.
The minimization is implemented in Matlab using Yalmip [30] and Se-
DuMi [55], with a grid distance of 0.0025. The impulse responses of the
resulting transfer functions can be seen in figures 2.9–2.12.
The minimum value for this problem is 0.90, to compare with the min-

imum value of 1.00 for the corresponding problem with no access to feed-
back from the channel, as seen in Section 2.2.
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Figure 2.9 Impulse response of K , the product of C and D, in Example 2.3. Note
that the timing of the peaks coincide with the exponents of P.
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Figure 2.10 Impulse response of the encoder C in Example 2.3.
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Figure 2.11 Impulse response of the decoder D in Example 2.3.
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Figure 2.12 Impulse response of B, the feedback part of the encoder, in Example
2.3. Note that the direct term is strongly negative, resulting in a transmission that
is negatively correlated with the channel noise in the previous time step.

74



3

Feedback Control over a

Noisy Channel

3.1 Introduction

This chapter is about the problem of feedback control of a plant over a
communication channel. The problem is illustrated in Figure 3.1. The
controller is based on output feedback and consists of an encoder and
a decoder. The encoder measures the plant output, filters the measure-
ments and encodes them for transmission over the communication chan-
nel, which is an AWN channel. The decoder decodes the received signal
and determines the control signal. The plant is LTI, possibly unstable
and subject to a stochastic disturbance. The objective of the controller is
to stabilize the system and minimize the plant output, while satisfying
the SNR constraint of the channel.

Outline and Main Results

The case when the channel has no feedback and the controller two de-
grees of freedom is considered in Section 3.2. The case when the channel
has noiseless feedback and the controller has three degrees of freedom is
considered in Section 3.3. In both sections, it is shown that an optimal
LTI output feedback controller is obtained by minimizing a convex func-
tional and performing a spectral factorization. These results are given in
Theorem 3.1 and Theorem 3.3. Previously known necessary and sufficient
conditions on the SNR for stabilizability follow as by-products of the theo-
rems. In both cases, it is also shown how to pose the minimization problem
as a semidefinite program.
Given a nominal LTI controller K , designed for a classical feedback
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ChannelDecoder Encoder

Plant

Disturbance

Figure 3.1 Feedback control of a disturbed plant over a noisy communication
channel. The controller consists of an encoder and a decoder.

system, Lemma 3.3 and Lemma 3.8 shows, in the case without and with
channel feedback, respectively, how to factorize K into an encoder and
a decoder such that the impact of the channel noise is minimized, while
preserving the original closed loop transfer functions from plant input to
output.
In the end of both sections, it is shown that the coding problems with

scalar-valued signals, considered earlier in this thesis, can be solved using
the solutions to the feedback control problems.
The rest of this section will present the relevant previous research.

Previous Research

The general problem of controlling a process over a communication chan-
nel has received a lot of interest recently. As a consequence, many re-
sults have been obtained regarding stabilizability, performance bounds,
and controller design, both for general channels and for specific channel
models. Some of these results were presented in Section 1.2. The exposi-
tion here will be focused mainly on the study of linear control over AWN
channels, also known as the SNR framework.
It has been argued that the SNR framework, despite its relative sim-

plicity, offers the possibility of studying a variety of control problems with
communication constraints and that the usage of linear controllers admits
application of established performance and robustness tools [7].

Stability Necessary and sufficient criteria for stabilizability of undis-
turbed LTI plants under an SNR constraint were developed for state and
output feedback in [7]. For static linear state feedback, the condition is
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that the SNR σ 2 satisfies

σ 2 >
(
∏

i

pmax{1,λ i}p2
)
− 1, (3.1)

where λ i is the ith pole of the plant. For AWGN channels, it can be seen
from (1.2) and (1.3) that this condition exactly matches the data-rate
theorem. For LTI output feedback, a higher SNR will be required if the
plant is not minimum phase. The condition is that

σ 2 >
(
∏

i

pmax{1,λ i}p2
)
− 1+η + δ , (3.2)

where η ≥ 0 depends on the non-minimum phase zeros and δ ≥ 0 on
the relative degree of the plant. It was shown that the condition (3.1)
is recovered for output feedback if the controller is allowed to be time-
varying. However, this leads to poor robustness and sensitivity [7].
The SNR that is necessary and sufficient for stabilization if there are

bandwidth limitations and colored channel noise has been characterized
in [43].
For stabilization of a plant driven by Gaussian noise over an AWGN

channel, the condition (3.1) has been shown to be necessary for stabiliza-
tion, even if nonlinear and time varying state feedback controllers are
allowed [19]. It has been shown that if the encoder is a unity gain and the
decoder is the only design variable, then a plant disturbance may increase
the required SNR so that the condition (3.2) is no longer sufficient [42].
However, regardless of the channel and plant noise distributions, it turns
out that necessary and sufficient conditions for stabilizability of an LTI
plant using LTI output feedback are given by (3.2) when the controller
has two degrees of freedom, and by (3.1) if the channel has feedback [51].

Performance An early formulation of a feedback control problem over
an AWN channel was made in [2], although the encoder design was there
referred to as designing a measurement strategy. In that paper, the plant
is modelled as a time-varying ARMA process and the optimal control prob-
lem is considered both for hard and soft power constraints (the former
being equivalent to an SNR constraint). The channel has feedback and
the encoder has access to the complete history of the decoder input. The
assumed information structure is, however, a bit unusual since it is as-
sumed that the encoder only remembers the current state of the plant. It
was shown how to find the optimal linear solution and it was established,
using information theory, that linear mappings are optimal for first-order
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plants. A counterexample is provided, showing that non-linear solutions
may outperform linear ones for higher order plants [2]. It should, how-
ever, be noted that the provided counterexample requires the plant to be
time-varying and that it fails if the encoder is has more memory of the
process output.
Many authors have since then considered the design of optimal con-

trollers with one degree of freedom: It has been shown how to find the
optimal controller for a structure where the encoder is a constant scaling
factor and the decoder an LTI filter, and that this structure is optimal for
first order plants [17]. Optimal coding systems with unity transfer func-
tion (that is, the decoder is the inverse of the encoder) was designed for
fixed nominal controllers in different architectures in [25]. A more gen-
eral approach to the optimization of an output feedback controller in a
general LTI architecture, possibly including channel feedback, has been
proposed, in which the optimal performance is obtained by solving a con-
vex optimization problem. It was, however, noted that the approach leads
to a difficult optimization problem with sparsity constraints when the con-
troller has two degrees of freedom [51]. A state feedback controller, where
the encoder consists of a scalar product between a static vector and the
states and the decoder is based on an LQG solution was developed in [8].
Optimal control design for MIMO plants and parallel AWN channels was
studied in [29], where the encoder was a constant scaling factor and the
decoder an LTI filter, and in [41] for static state feedback.
A lower bound on the variance of the plant state was obtained for

feedback control over AWGN channels without feedback, using general
controllers with two degrees of freedom, in [19]. This bound tends to in-
finity as the SNR approaches the limit for when stabilization is possible.
For first-order plants it was also shown that the performance bound is
tight and achievable with linear controllers.
An important contribution was made in [53]. Although the aim of that

paper is to establish bounds and coding schemes for control over a rate-
limited channel, it accomplishes this by designing an LTI output feedback
controller in an SNR framework where the channel has feedback. The opti-
mal performance is shown to be obtained by solving a convex optimization
problem with the same structure as the ones found in this chapter. An
optimal controller is then acquired by finding rational transfer functions
that approximate certain frequency responses.
The case without channel feedback is not mentioned in [53]. The pre-

sented convex functional that gives the optimal cost for the case with
channel feedback can, however, with some minor work be modified to give
the optimal cost for this case as well. Moreover, the expressions for the
optimal transfer functions that are given can, with some additional work,
also be modified to give solutions to the case without channel feedback.
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Figure 3.2 Feedback system with noisy communication channel. The objective is
to design the controller components C and D so that the system is stabilized and
the variance of z is minimized under the SNR constraint (3.3).

Regarding the case with channel feedback, the solution in [53] uses an
over-parametrized controller with four degrees of freedom (the encoder
has two filters that both handle the channel feedback). The solution in
Section 3.3 is related, but requires only three degrees of freedom. More-
over, the plant is assumed to be SISO in [53]. Here, it is allowed to have a
slightly more general structure, making it possible to, for example, include
any number of noise and reference signals and to penalize the control sig-
nal variance. A final contribution of this chapter relative to [53] is that it
is shown how to pose the optimization problems as semidefinite programs.
Results related to [53], in the case where the controller is pre-designed

and the coding system should have unity transfer function, are given in
[49] and [50].
The problem of optimizing the control performance at a given terminal

time was considered in [18] and [16]. The solutions may however yield
poor transient performance and can therefore be unsuitable for closed-
loop control.

3.2 Optimal Linear Controller

In this section, the problem of controlling a plant over an AWN channel
will be considered. It will be shown how to design an optimal LTI output
feedback controller with two degrees of freedom.

Problem Formulation and Assumptions

A detailed block diagram representation of the system is shown in Fig-
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ure 3.2. The plant G is a MIMO LTI system with state space realization

G(z) =
[
Gzv(z) Gzu(z)
Gyv(z) Gyu(z)

]
=



A B1 B2

C1

C2

D11 D12

D21 0


 ,

where (A, B2) is stabilizable and (C2, A) is detectable. The signals v and z
are vector-valued with nv and nz elements, respectively. All other signals
are scalar-valued. Accordingly, Gzv is nz$nv, Gyv is 1$nv, Gzu is nz$1 and
Gyu is scalar and strictly proper. It is assumed that G∗

zuGzu and GyvG∗
yv

have no zeros or poles on the unit circle.
The input v is used to model exogenous signals such as load distur-

bances, measurement noise and reference signals. It is assumed that v
and the channel noise n are mutually independent white noise sequences
with zero mean and identity variance. The other signals in the figure in-
clude the control signal u, the measurement y and the control error or
performance index z.
This type of plant model is quite general. Actually, G is the coefficient

matrix of a linear fractional transformation (LFT) [65]. The generality of
the structure makes it possible to formulate many different problems as
special cases of this problem. This will be illustrated in the end of this
and the next section.
The communication channel is an AWN1 channel with SNR σ 2 > 0.

The SNR constraint is assumed to hold in stationarity, that is

lim
k→∞
E(t(k)2) ≤ σ 2. (3.3)

The feedback system is said to be internally stable if no additive injec-
tion of a stochastic signal with finite variance, at any point in the block
diagram, leads to another signal having unbounded variance. This is true
if and only if all closed loop transfer functions are in H 2.
The objective is to find causal LTI systems C and D that make the

system internally stable, satisfy the SNR constraint (3.3) and minimize
the sum of the variances of z in stationarity:

lim
k→∞
E(z(k)T z(k)).

By expressing z and t in terms of the transfer functions in Figure 3.2,
the objective and the SNR constraint can be written as

J(C,D) =
∥∥∥∥Gzv +

DCGzuGyv

1− DCGyu

∥∥∥∥
2

2
+
∥∥∥∥

DGzu

1− DCGyu

∥∥∥∥
2

2
= lim
k→∞
E(z(k)T z(k))

1Since only linear controllers are considered, it does not matter if n or v are Gaussian
or not. Linear solutions may, of course, be more or less suboptimal depending on their
distributions.
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Figure 3.3 Block diagram for internal stability analysis.

and

σ 2 ≥
∥∥∥∥

CGyv

1− DCGyu

∥∥∥∥
2

2
+
∥∥∥∥
DCGyu

1− DCGyu

∥∥∥∥
2

2
= lim
k→∞
E(t(k)2), (3.4)

respectively. The problem can thus be stated as follows.

PROBLEM 3.1

minimize
C,D

J(C,D)

subject to (3.4) and internal stability of the feedback system.

For technical reasons, only solutions where the product DC is a rational
transfer function will be considered. This may exclude the possibility of
achieving the minimum value, but the infimum can still be arbitrarily
well approximated by rational functions.
Since D and C are required to be proper, DC has to be proper has well.

That is, DC ∈ R. Though the latter will be enforced, it is not explicitly
required in this problem formulation that C and D are proper. It will,
however, be seen that the solution can be constructed so that C ∈ H 2 is
outer. Then C,C−1 are proper, and D = (DC)C−1 is also proper.

Internal Stability

The solution to Problem 3.1 will be found by using the same optimal
factorization approach as in Chapter 2. Therefore, introduce

K = DC.

Following the same reasoning as in [65], it is concluded that internal
stability of the systems in Figure 3.2 and Figure 3.3 are equivalent. The
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Chapter 3. Feedback Control over a Noisy Channel

latter can be represented by the closed loop map T , defined by


y

t

u


 = T



w1

w2

n


 .

Hence, the system in Figure 3.2 is internally stable if and only if

T =




KGyu

1− KGyu
Gyu

1− KGyu
DGyu

1− KGyu
C

1− KGyu
CGyu

1− KGyu
KGyu

1− KGyu
K

1− KGyu
KGyu

1− KGyu
D

1− KGyu




∈ H 2. (3.5)

The following two lemmas will give necessary and sufficient conditions
for internal stability, respectively.

LEMMA 3.1
Suppose that T ∈ H 2, that Gyu = NM−1 is a coprime factorization over
RH∞ and that U ,V ∈ RH∞ satisfy the Bezout identity VM + UN = 1.
Then

K = MQ − U
NQ + V , Q ∈ RH∞. (3.6)

PROOF

It follows directly from (3.5) that
Gyu

1− KGyu
∈ H 2,

K

1− KGyu
∈ H 2,

KGyu

1− KGyu
= 1
1− KGyu

− 1 ∈ H 2.

These transfer functions are rational and have no poles on or outside the
unit circle, so it follows that

[
1 −K

−Gyu 1

]−1
=




1
1− KGyu

K

1− KGyu
Gyu

1− KGyu
1

1− KGyu


 ∈ RH∞, (3.7)

It is well-known that the set of K satisfying (3.7) can be parametrized
using the Youla parametrization of all stabilizing controllers [65]. That is,
K can be written as in (3.6).
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3.2 Optimal Linear Controller

LEMMA 3.2
Suppose that

K = DC = MQ − U
NQ + V , Q ∈ RH∞, (3.8)

where Gyu = NM−1 is a coprime factorization overRH∞ and U ,V ∈ RH∞
satisfy the Bezout identity VM + UN = 1. Suppose also that C ∈ H 2 is
outer and that D ∈ L2. Then T ∈ H 2.

PROOF

It follows from (3.8) that

Gyu

1− KGyu
∈ RH∞,

K

1− KGyu
∈ RH∞,

KGyu

1− KGyu
= 1
1− KGyu

− 1 ∈ RH∞.

Moreover,
DGyu

1− KGyu
= KGyu

1− KGyu
C−1,

where the left hand side is in L2 since it is the product of an L2 function
and a RH∞ function. Since C is outer, application of Lemma 1.3 gives
that the right hand side is in H 2. A similar argument shows that

D

1− KGyu
∈ H 2.

Finally,
C

1− KGyu
∈ H 2,

CGyu

1− KGyu
∈ H 2,

since these functions are products of anH 2 function and anRH∞ function.
Noting that RH∞ ⊆ H 2, it has then been proved that all elements of

T are in H 2 and thus T ∈ H 2.

Optimal Factorization

Suppose for now that K is a given stabilizing controller for the classi-
cal feedback system in Figure 3.4. Thus, K satisfies (3.6). Nothing else
is assumed about the design of K , it might for example be the H 2 opti-
mal controller or have some other desirable properties in terms of step
responses or closed loop sensitivity.
In either case, it is a natural question to ask what the best way is to

implement this controller in the architecture of Figure 3.2. If the nominal
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eplacements

K

G

v

y u

z

Figure 3.4 Classical feedback system without communication channel.

design is to be preserved then C and D should satisfy K = DC since
the transfer matrix from v to z would then be the same. Given this re-
lationship, choosing C and D can be thought of as factorizing K . The
factorization should be chosen to minimize the negative effect of the com-
munication channel. That is, they should keep the system stable, satisfy
the SNR constraint and minimize the impact of the channel noise. The lat-
ter can be thought of as minimizing the contribution of n to the variance
of z.
Rewriting J(C,D) and the SNR constraint in terms of K gives

∥∥∥∥Gzv +
KGzuGyv

1− KGyu

∥∥∥∥
2

2
+
∥∥∥∥
DGzu

1− KGyu

∥∥∥∥
2

2
(3.9)

and ∥∥∥∥
CGyv

1− KGyu

∥∥∥∥
2

2
+
∥∥∥∥
KGyu

1− KGyu

∥∥∥∥
2

2
≤ σ 2. (3.10)

The SNR constraint will be impossible to satisfy unless K satisfies

α = σ 2 −
∥∥∥∥
KGyu

1− KGyu

∥∥∥∥
2

2
≥ 0.

Actually, if α = 0 then
∥∥∥∥

CGyv

1− DCGyu

∥∥∥∥
2

2
= 0[ CGyv

1− DCGyu
= 0[ DCGyv

1− DCGyu
= KGyu

1− KGyu
= 0,

which is a contradiction. Thus, it will be assumed for the optimal factor-
ization problem that α > 0.
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3.2 Optimal Linear Controller

The objective of the optimal factorization problem is to find C and
D such that (3.9) is minimized subject to (3.10) and K = DC. Stabil-
ity considerations are temporarily disregarded and will be handled later.
Introducing

S = 1
1− KGyu

∈ RH∞

for notational convenience, the set of feasible (C,D), parametrized by K ,
is thus defined as

ΘC,D(K ) =
{
(C,D) : qCSGyvq22 ≤ α ,DC = K

}
.

It is noted that the first term in (3.9) is constant and that the second
term is a weighted norm of D. In the left hand side of (3.10), the first
term is a weighted norm of C and the second is constant. This means
that an optimal factorization problem can be formulated with the same
structure as those presented in Chapter 2.
The optimal factorization will then be used to solve Problem 3.1. It

could also be used to factorize a nominal controller that was designed for
a classical feedback architecture. The solution to the optimal factorization
problem is given by the following lemma.

LEMMA 3.3—OPTIMAL FACTORIZATION, FEEDBACK CONTROL CASE
Suppose that α > 0, S ∈ RH∞, K ∈ R and that G∗

zuGzu ∈ RL∞ and
GyvG∗

yv ∈ RL∞ have no zeros on T. Then

inf
(C,D)∈ΘC,D(K )

qDSGzuq22 ≥
1
α

∥∥KS2GzuGyv
∥∥2
1 . (3.11)

Suppose furthermore that K ∈ RL1 satisfies (3.6). Then there exists
(C,D) ∈ ΘC,D(K ) with C ∈ H 2 outer and D ∈ L2, such that the minimum
is attained and (3.11) holds with equality.
If K is not identically zero, then (C,D) is optimal if and only if DC = K

and

pCp2 = α

qKS2GzuGyvq1

√
G∗
zuGzu

GyvG∗
yv

pK p on T. (3.12)

If K = 0, then the minimum is achieved by D = 0 and any C that satisfies
qCSGyvq22 ≤ α .

PROOF

Suppose first that K = 0. Then the right hand side of (3.11) is 0. Letting
D = 0 gives qSDGzuq22 = 0 and it is clear that (C,D) ∈ ΘC,D if C is as
stated.

85



Chapter 3. Feedback Control over a Noisy Channel

Thus, it can now be assumed that K is not identically zero. Then C is
not identically zero and D = KC−1.
By assumption both G∗

zuGzu and GyvG∗
yv are positive on the unit circle.

Since these functions are rational this implies that

∃ε > 0 such that G∗
zuGzu ≥ ε and GyvG∗

yv ≥ ε , on T. (3.13)

Thus by Theorem 1.3 there exist scalar minimum phase transfer functions
Ĝzu, Ĝyv ∈ H 2 such that

G∗
zuGzu = Ĝ∗

zuĜzu, GyvG
∗
yv = ĜyvĜ∗

yv.

Now, qCSGyvq22 ≤ α and Cauchy-Schwarz’s inequality gives

qDSGzuq22 =
∥∥∥KC−1SĜzu

∥∥∥
2

2

≥

∥∥∥CSĜyv
∥∥∥
2

2

α

∥∥∥KC−1SĜzu
∥∥∥
2

2

≥ 1
α

〈∣∣∣CSĜyv
∣∣∣ ,
∣∣∣KC−1SĜzu

∣∣∣
〉2

= 1
α

∥∥∥KS2ĜzuĜyv
∥∥∥
2

1

= 1
α

∥∥KS2GzuGyv
∥∥2
1 .

This proves the lower bound (3.11).
Equality holds if and only if pKC−1SĜzup and pCSĜyvp are propor-

tional on the unit circle and qCSGyvq22 = α . It is easily verified that
this is equivalent to (3.12). Thus, (C,D) achieves the lower bound if and
only if D = KC−1 and (3.12) holds, since these conditions imply that
(C,D) ∈ ΘC,D(K ).
Under the additional assumptions that K ∈ RL1 satisfies (3.6), it will

now be shown that there exists such (C,D) ∈ H 2$L2 with C outer. Since
K satisfies (3.6) with M ,N,Q,U ,V ∈ RH∞ it holds that

log pK p = log pMQ − U p − log pNQ + V p

By Lemma 1.5, log pMQ − U p ∈ L1 and log pNQ + V p ∈ L1 and thus
log pK p ∈ L1. It follows from (3.13) and the boundedness of Ĝyv and Ĝzu
on T that ∫ π

−π

log

∣∣∣∣∣
Ĝzu

Ĝyv
K

∣∣∣∣∣dω > −∞
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and ∣∣∣∣∣
Ĝzu

Ĝyv
K

∣∣∣∣∣ ∈ L1.

Then by Theorem 1.3 there exists an outer function C ∈ H 2 such that
(3.12) holds. Also, D = KC−1 ∈ L2 since

∥∥KC−1
∥∥2
2 =

1
α

∥∥KS2GzuGyv
∥∥
1

∥∥∥∥∥
K Ĝyv

Ĝzu

∥∥∥∥∥
1

< ∞.

REMARK 3.1
The spectral factorization gives some freedom in the choice of (C,D) that
attain the bound. For example, D instead of C could be chosen to be H 2
and outer. That would result in having C ∈ L2. Considering more solutions
than the one selected would require more a slightly more complicated
stability characterization, so this is not done.

REMARK 3.2
Optimal D will satisfy

pDp2 =
∥∥KS2GzuGyv

∥∥
1

α

√
GyvG∗

yv

G∗
zuGzu

pK p on T.

It is interesting that the magnitudes of C and D both are directly pro-
portional, on the unit circle, to the square root of the magnitude of K .
In other words, the dynamics of a nominal controller K is "evenly" dis-
tributed on both sides of the communication channel. The static gain of C
(and D) is tuned so that the SNR constraint is active. In the case when
Gyv = Gzu then finding an optimal factorization amounts to performing a
spectral factorization of pK p and tuning the static gain. The magnitudes
of the frequency responses of C and D will then be proportional.

Equivalent Convex Problem

It will now be shown that an approximate solution to Problem 3.1 can
be obtained, with arbitrary accuracy, by solving a convex minimization
problem in the Youla parameter.
As discussed in the problem formulation, (C,D) should satisfy the

SNR constraint (3.4) and stabilize the system. The latter corresponds to
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T ∈ H 2 or (3.5). Also, it was assumed that CD ∈ R. Thus, the set of
feasible (C,D) is defined as

ΘC,D =
{
(C,D) : DC ∈ R , (3.4),T ∈ H 2

}
.

It will be shown that minimization of J(C,D) over ΘC,D can be per-
formed by minimizing the convex functional

ϕ (Q) = qGzv + GzuGyv(AQ + B)q22 +
qGzuGyv (AQ + B) (EQ + F)q21

σ 2 + 1− qEQ + Fq22
,

where A = M2, B = −MU , E = MN and F = MV , with M ,N,U ,V
determined by a coprime factorization of Gyu, over the convex set

ΘQ =
{
Q : Q ∈ RH∞, qEQ + Fq22 < σ 2 + 1

}
.

The Q ∈ ΘQ obtained from minimizing ϕ (Q) will be used to construct
(C,D) ∈ ΘC,D . However, this will not be possible for Q for which the
corresponding K has poles on T. For such Q a small perturbation can
then be applied first. This will result in an increased cost, but this increase
can be made arbitrarily small. That this is possible is established by the
following lemma.

LEMMA 3.4
Suppose Q ∈ ΘQ and ε > 0. Then there exists Q̂ ∈ ΘQ such that

K = MQ̂ − U
NQ̂ + V

∈ RL1, (3.14)

and
ϕ (Q̂) < ϕ (Q) + ε .

The proof of Lemma 3.4 is based on a perturbation argument and can be
found in Appendix A.
The main theorem of this section can now be formulated.

THEOREM 3.1
Suppose that σ 2 > 0, G∗

zuGzu ∈ RL∞ and GyvG∗
yv ∈ RL∞ have no zeros

on T, that Gyu = NM−1 is a coprime factorization over RH∞, and that
U ,V ∈ RH∞ satisfy the Bezout identity VM + UN = 1. Then

inf
(C,D)∈ΘC,D

J(C,D) = inf
Q∈ΘQ

ϕ (Q). (3.15)

Furthermore, suppose Q ∈ ΘQ, ε > 0 and let Q̂ ∈ ΘQ be as in Lemma 3.4.
Then there exists (C,D) such that the following conditions hold:
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3.2 Optimal Linear Controller

• If MQ̂ − U is not identically zero: (C,D) ∈ H 2 $ L2, where C is
outer and

K = MQ̂ − U
NQ̂ + V

(3.16)

pCp2 =
σ 2 + 1−

∥∥∥∥
1

1− KGyu

∥∥∥∥
2

2∥∥∥∥
KGzuGyv

(1− KGyu)2
∥∥∥∥
1

√
G∗
zuGzu

GyvG∗
yv

pK p on T (3.17)

D = KC−1 (3.18)

• If MQ̂ − U = 0: C = D = 0.

If (C,D) satisfy these conditions, then (C,D) ∈ ΘC,D and

J(C,D) < ϕ (Q) + ε .

PROOF

Recall that

ΘC,D(K ) =
{
(C,D) : DC = K ,

∥∥∥∥
CGyv

1− KGyu

∥∥∥∥
2

2
≤ σ 2 −

∥∥∥∥
KGyu

1− KGyu

∥∥∥∥
2

2

}
.

Consider (C,D) ∈ ΘC,D and define K = DC. Then (C,D) ∈ ΘC,D(K ) for
this choice of K . Moreover, because T ∈ H 2 it follows from Lemma 3.1
that K can be written using the Youla parametrization (3.6). Since the
SNR constraint (3.4) is satisfied by (C,D) it follows that K ∈ ΘK , where
ΘK is defined by

ΘK =
{
K : (3.6),

∥∥∥∥
KGyu

1− KGyu

∥∥∥∥
2

2
< σ 2

}
.

The inequality in this definition is strict because it was shown earlier that
equality cannot hold. It has thus been proved that

(C,D) ∈ ΘC,D [ (C,D) ∈ ΘC,D(K ) for some K ∈ ΘK . (3.19)
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A lower bound will now be determined for J(C,D). This will be accom-
plished through a series of inequalities and equalities, where each step
will be explained afterwards.

inf
(C,D)∈ΘC,D

J(C,D)

(1)

≥ inf
K∈ΘK

inf
(C,D)∈ΘC,D(K )

∥∥∥∥Gzv +
KGzuGyv

1− KGyu

∥∥∥∥
2

2
+
∥∥∥∥
DGzu

1− KGzu

∥∥∥∥
2

2

(2)= inf
K∈ΘK

(∥∥∥∥Gzv +
KGzuGyv

1− KGyu

∥∥∥∥
2

2
+ inf
(C,D)∈ΘC,D(K )

∥∥∥∥
DGzu

1− KGzu

∥∥∥∥
2

2

)

(3)

≥ inf
K∈ΘK

∥∥∥∥Gzv +
KGzuGyv

1− KGyu

∥∥∥∥
2

2
+

∥∥∥∥
KGzuGyv

(1− KGyu)2
∥∥∥∥
2

1

σ 2 −
∥∥∥∥
KGyu

1− KGyu

∥∥∥∥
2

2

(4)= inf
Q∈ΘQ

qGzv + GzuGyv(AQ + B)q22 +
qGzuGyv(AQ + B)(EQ + F)q21

σ 2 + 1− qEQ + Fq22
(5)= inf
Q∈ΘQ

ϕ (Q)

The first step follows from (3.19) and a rewriting of the functional in
terms of K . In the second step, the first term of the functional has been
moved out since it is constant in the inner minimization. The third step
follows from application of Lemma 3.3 with

α = σ 2 −
∥∥∥∥
KGyu

1− KGyu

∥∥∥∥
2

2
> 0, S = 1

1− KGyu
∈ RH∞.

The fourth step follows from

∥∥∥∥
KGyu

1− KGyu

∥∥∥∥
2

2
=
∥∥∥∥

1
1− KGyu

− 1
∥∥∥∥
2

2
+ 1− 1 =

∥∥∥∥
1

1− KGyu

∥∥∥∥
2

2
− 1,

where the second equality is due to orthogonality, since Gyu is strictly
proper, and application of the Youla parametrization, which gives

K

1− KGyu
= AQ + B, 1

1− KGyu
= EQ + F.

The fifth step follows from the definition of ϕ (Q).
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Now a suboptimal solution will be constructed for Problem 3.1. Suppose
that Q ∈ ΘQ and ε > 0 and let Q̂ ∈ ΘQ be as given by Lemma 3.4 and
define K ∈ RL1 by (3.16). Then K ∈ ΘK and

ϕ (Q̂) =
∥∥∥∥Gzv +

KGzuGyv

1− KGyu

∥∥∥∥
2

2
+

∥∥∥∥
KGzuGyv

(1− KGyu)2
∥∥∥∥
2

1

σ 2 −
∥∥∥∥
KGyu

1− KGyu

∥∥∥∥
2

2

If MQ̂ − U = 0 then K = 0,

J(0, 0) = qGzvq22 = ϕ (Q̂) < ϕ (Q) + ε ,

and the proof is complete.
If, on the other hand, MQ̂ − U is not identically zero then K is not

identically zero. By Lemma 3.8 there then exists an outer C ∈ H 2 and
D ∈ L2 such that (3.17) and (3.18) are satisfied. The lemma also says
that such (C,D) satisfy

∥∥∥∥
DGzu

1− KGyu

∥∥∥∥
2

2
=

∥∥∥∥
KGzuGyv

(1− KGyu)2
∥∥∥∥
2

1

σ 2 −
∥∥∥∥
KGyu

1− KGyu

∥∥∥∥
2

2

and ∥∥∥∥
CGyv

1− KGyu

∥∥∥∥
2

2
≤ σ 2 −

∥∥∥∥
KGyu

1− KGyu

∥∥∥∥
2

2
.

D,C and K satisfy the conditions of Lemma 3.2, so T ∈ H 2, which
implies that (C,D) ∈ ΘC,D . Moreover,

J(C,D) =
∥∥∥∥Gzv +

KGzuGyv

1− KGyu

∥∥∥∥
2

2
+
∥∥∥∥
DGzu

1− KGyu

∥∥∥∥
2

2
= ϕ (Q̂) = ϕ (Q) + ε .

Since ε can be made arbitrarily small this shows that (3.15) holds and
hence the proof is complete.

REMARK 3.3
Theorem 3.1 shows that an ε -suboptimal solution of Problem 3.1 can be
found by minimizing ϕ (Q) over ΘQ. The obtained Q may have to be per-
turbed so that the resulting K has no poles on the unit circle. Then C is
given by a spectral factorization and D is then obtained from C.

A by-product of Theorem 3.1 is a necessary and sufficient criterion for the
existence of a stabilizing controller that satisfies the SNR constraint.
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COROLLARY 3.1
There exists (C,D) that stabilize the closed loop system of Figure 3.2
subject to the SNR constraint (3.4) if and only if there exists Q ∈ RH∞
such that

qMNQ + MVq22 < σ 2 + 1. (3.20)

REMARK 3.4
Corollary 3.1 implies that the minimum SNR compatible with stabilization
of a stochastically disturbed plant by an output feedback LTI controller
with two degrees of freedom can be found by minimizing the left hand side
of (3.20) over Q ∈ RH∞. The analytical condition (3.2), presented in [7],
is derived from a minimization of the left hand side of (3.20). This means
that the condition (3.2) is also necessary and sufficient in the present
problem setting. This has been noted previously in [51].
There is no plant disturbance in the setup of [7]. In that case, the

critical SNR for stabilizability will be the same regardless if the controller
has one or two degrees of freedom. However, [42] considered the case
when there is a plant disturbance and showed that the SNR required for
stabilizability may then be larger than prescribed by (3.2) (the case when
η = δ = 0 was considered). However, the controller in [42] was assumed
to only have one degree of freedom (the encoder was fixed to be a unity
gain). This corollary, and Theorem 17 in [51], shows that if the controller
has two degrees of freedom, then (3.2) is again a necessary and sufficient
criterion for stabilizability.

It will now be shown that the minimization of ϕ (Q) over ΘQ is a convex
problem. This will be done in the same way as in Section 2.4. Recall that
the functional

ρ(a, e) = 1
2π

∫ π

−π

a(ω )2dω +
(
1
2π

∫ π
−π a(ω )e(ω )dω

)2

σ 2 + 1− 1
2π

∫ π
−π e(ω )2dω

with domain

Θρ =
{
(a, e) : a(ω ), e(ω ) ∈ R ∀ω ,

1
2π

∫ π

−π

e(ω )2dω < σ 2 + 1
}

is convex by Lemma 2.6. Define the functional

ϕ0(Q) = ϕ (Q) −
(
qGzvq22 + 2Re 〈Gzv,GzuGyv(AQ + B)〉

)

= qGzuGyv(AQ + B)q22 +
qGzuGyv (AQ + B) (EQ + F)q21

σ 2 + 1− qEQ + Fq22
.
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LEMMA 3.5
Suppose Q ∈ ΘQ. Then ϕ0(Q) ≤ γ if and only if there exists (a, e) ∈ Θρ

such that ρ(a, e) ≤ γ and

a(ω ) ≥
√
G∗
zuGzuGyvG

∗
yv pAQ + Bp , e(ω ) ≥ pEQ + Fp ∀ω . (3.21)

PROOF

The proof is a simple modification of the proof of Lemma 2.7.

THEOREM 3.2
The problem of minimizing ϕ (Q) over ΘQ is convex.

PROOF

The proof is a simple modification of the proof of Theorem 2.4.

Numerical Solution

Denote

∆(Q) = ϕ (Q) −ϕ0(Q) = qGzvq22 + 2Re 〈Gzv,GzuGyv(AQ + B)〉 .

By Lemma 3.5, minimizing ϕ (Q) over ΘQ is equivalent to minimizing
ρ(a, e) + ∆(Q) over Θρ $ ΘQ subject to (3.21). This problem is infinite-
dimensional, so the integrals are discretized for numerical solution. It will
now be shown how the discretized problem can be posed as a semidefinite
program.
Let n ≥ 2 and introduce

ω 1 = 0, ω k+1 −ω k = 2π /n, k = 1, . . . ,n− 1
â = [ a(ω 1) a(ω 2) . . . a(ω n) ]T

ê = [ e(ω 1) e(ω 2) . . . e(ω n) ]T .

An approximation with n grid points is then given by

ρn(â, ê) =
1
n
âT â+

(
1
n
âT ê

)2

σ 2 + 1− 1
n
êT ê

( ρ(a, e)

∆n(Q) = qGzvq22 +
2
n
Re

n∑

k=1
tr (G∗

zvGzuGyv(AQ + B))pz=eiωk ( ∆(Q).
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By the definition of the integral it holds that

lim
n→∞

ρn(â, ê) + ∆n(Q) = ρ(a, e) + ∆(Q),

so the minimum of the approximation can be made to come arbitrarily
close to infQ∈ΘQ ϕ (Q) if n is chosen sufficiently large. When implementing
the minimization program, Q is parametrized using a finite basis repre-
sentation. The accuracy of the approximated problem obviously depends
on this representation as well.
Noting that ρn(â, ê) + ∆n(Q) can be written as a Schur complement

and that the denominator of ρn(â, ê) is positive for sufficiently large n, it
follows that ρn(â, ê) + ∆n(Q) ≤ γ if and only if

[ 1
n
êT ê−σ 2 − 1 1

n
âT ê

1
n
êT â 1

n
âT â+ ∆n(Q) − γ

]
5 0,

or, equivalently,

[
n(σ 2 + 1) 0

0 nγ − n∆n(Q)

]
− [ ê â ]T I [ ê â ] 4 0.

Using Schur complement again, this is equivalent to


I ê â

êT n(σ 2 + 1) 0

âT 0 nγ − n∆n(Q)


 4 0. (3.22)

Let �k =
√
Gzu(eiω k)∗Gzu(eiω k)Gyv(eiω k)Gyv(eiω k)∗. The constraints can

then be approximated by

a(ω k) ≥ �k
∣∣A(eiω k)Q(eiω k) + B(eiω k)

∣∣ , k = 1 . . .n (3.23)
e(ω k) ≥

∣∣E(eiω k)Q(eiω k) + F(eiω k)
∣∣ , k = 1 . . .n (3.24)

σ 2 + 1 > 1
n

n∑

k=1
e(ω k)2. (3.25)

Minimizing γ subject to (3.22)–(3.25) is a semidefinite program. The value
of the approximated problem is arbitrarily close to infQ∈ΘQ ϕ (Q) for suf-
ficiently large n.
A procedure for numerical solution of Problem 3.1 will now be outlined.

1. Determine a N,M ,U ,V ∈ RH∞ by a coprime factorization of Gyu
and calculate A, B, E, F ∈ RH∞.
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3.2 Optimal Linear Controller

2. Choose n sufficiently large, determine the grid points ω k, k = 1 . . .n
and solve the optimization problem of minimizing γ subject to (3.22)–
(3.25). The transfer function Q is parametrized with a finite basis
representation, for example as an FIR filter. If the problem is infea-
sible it could mean that a larger σ 2 is needed to stabilize the plant.
This can be checked analytically using the condition in [7]. If σ 2 is
sufficiently large according to this condition, the problem could still
become infeasible if n is too small or Q is too coarsely parametrized.

3. If NQ+ V has zeros on the unit circle, determine a small perturba-
tion Q̂ of Q as outlined by Lemma 3.4.

4. Determine K from (3.14).

5. Use a finite basis approximation A(ω ) of CC∗, for example the para-
metrization (2.25), and fit A(ω ) to the right hand side of (3.17), for
example by minimizing the mean squared deviation.

6. Perform a spectral factorization of A(ω ), choosing C as the stable
and minimum phase spectral factor.

7. Let D = KC−1.

Special Cases and Examples

Feedback Control of SISO Plant with SNR Constraint Consider
the system in Figure 3.5. The SISO plant represents a special case where

G(z) =
[
Gzv(z) Gzu(z)
Gyv(z) Gyu(z)

]
=
[
1 1

1 1

]
P(z).

CD

P
w y

r t

n

Figure 3.5 Control of a SISO plant over an AWN channel.

95



Chapter 3. Feedback Control over a Noisy Channel

The functional to be minimized can in this case be written

ϕ (Q) = qP+ P(AQ + B)q22 +
qP (AQ + B) (EQ + F)q21

σ 2 + 1− qEQ + Fq22

=
∥∥N2Q + NV

∥∥2
2 +

∥∥(N2Q + NV
)
(MNQ − NU)

∥∥2
1

σ 2 − qMNQ − NUq22
EXAMPLE 3.1
Consider the plant G = 1/(z(z−2)). It has one unstable pole at z = 2 and a
one-sample time delay. Using the condition (3.2) from [7], it is determined
that stabilization is possible for σ 2 > 12. (η = 0, since there are no non-
minimum phase zeros, and δ = 9, because of the relative degree, which
is 2, and the location of the unstable pole. For details, see [7]).
A controller was determined for various values of σ 2, using the pre-

viously outlined algorithm. The optimization was performed in Matlab,
using the toolboxes Yalmip [30] and SeDuMi [55]. In the optimization pro-
gram, n = 629 grid points were used and Q was parametrized as an FIR
filter with length 20. The plant output variance is plotted in Figure 3.6
for a number of different σ 2. It can be seen that the variance grows un-
bounded as σ 2 approaches 12 and the feedback system comes closer to
instability.

Incorporating the Control Signal Variance In the previous exam-
ple, only the plant output variance was minimized. Frequently, it is de-
sirable to include the control signal variance in the minimization, using
a criterion of the form

lim
k→∞
E(z(k)T z(k)) + ρE(u(k)2), (3.26)

where the parameter ρ ≥ 0 determines the relative weight of the variances
in the minimization.
In general, given a plant

G(z) =
[
Gzv(z) Gzu(z)
Gyv(z) Gyu(z)

]
,

it is possible to minimize (3.26) by instead performing the control design
for the plant

Ĝ(z) =



Gzv(z) Gzu(z)
0

√
ρ

Gyv(z) Gyu(z)


 .
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Figure 3.6 Variance of the plant output y as a function of the SNR/maximum
allowed transmission power σ 2, for the plant G = 1/(z(z− 2)). The variance grows
unbounded as σ 2 approaches the lower limit for stabilization.

Real-Time Coding for Noisy Channel Consider again Problem 2.1 in
Section 2.2. Comparing the block diagram in Figure 2.2 with the one in
Figure 3.2, Problem 2.1 is seen to be a special case of the problem studied
in this section, provided that

G(z) =
[
Gzv(z) Gzu(z)
Gyv(z) Gyu(z)

]
=
[
PF 0 −1
F G 0

]
.

Since Gyu = 0, a coprime factorization is given by N = 0, M = 1, U = 0
and V = 1. Then Q = K and the corresponding functional to minimize is

ϕ (K ) = q[ PF − FK −GK ]q22 +
1

σ 2
q[ F G ] Kq21 ,

which is equal to the one defined by (2.14) in Section 2.2. Moreover, the
SNR constraint reduces to σ 2+1 > 1, which trivially holds for any K . It is
easily verified that the optimality criteria for C and D are also equivalent.
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C D

B

G

v

y

rt

n

u

z

z−1

Figure 3.7 Feedback system with noisy communication channel with feedback.
The objective is to design the controller components B, C and D so that the system
is stabilized and the variance of z is minimized under an SNR constraint.

3.3 Using Channel Feedback

It will now be assumed that the channel has noise-free feedback. This
means that the encoder has access to the channel output and may use
it to modify the transmitted signal. Hence, the controller now has an
additional degree of freedom. Note that there are now two feedback loops
in the system. The problem may be referred to as feedback control over a
channel with feedback.

Problem Formulation and Assumptions

Make the same assumptions as in Section 3.2 and assume additionally
that the encoder has access to the channel output, delayed by one sample.
Assume also that Gyu has no poles on the unit circle. That is, Gyu ∈ RL∞.
Since the controller is linear, it can be assumed without additional

loss of generality that it has the structure illustrated in Figure 3.7. The
encoder now consists of C and the feedback part B. Note that the feed-
back part of the encoder is not structured as in Section 2.4. There, the
transmitted signal was subtracted from the input to B, in order to avoid
forming a loop. The present structure is essentially equivalent.
The objective is to find causal LTI systems B, C and D that make the

system internally stable, satisfy the SNR constraint (3.3) and minimize

lim
k→∞
E(z(k)T z(k)).

Modifying the expressions in Problem 3.1 to take the channel feedback
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C D

B

Gyu
w1 y

rt

n

u

w2

z−1

Figure 3.8 Block diagram for internal stability analysis in the case with channel
feedback.

path into account, the following problem formulation is obtained.

PROBLEM 3.2

minimize
B,C,D

∥∥∥∥Gzv +
DCGzuGyv

1− Bz−1 − DCGyu

∥∥∥∥
2

2
+
∥∥∥∥

DGzu

1− Bz−1 − DCGyu

∥∥∥∥
2

2

subject to

∥∥∥∥
CGyv

1− Bz−1 − DCGyu

∥∥∥∥
2

2
+
∥∥∥∥
Bz−1 + DCGyu
1− Bz−1 − DCGyu

∥∥∥∥
2

2
≤ σ 2 (3.27)

while achieving internal stability of the feedback system.

Due to technical reasons, only solutions where B ∈ R and DC ∈ R are
considered. This may exclude the possibility of achieving the minimum
value, but the infimum can still be arbitrarily well approximated by ratio-
nal functions. It is not explicitly required that C and D are proper but it
will be seen also here that the solution can be constructed so that C ∈ H 2
is outer. Then C,C−1 are proper, and D = (DC)C−1 is also proper.

Internal Stability

The factorization approach used previously has to be modified to handle
the channel feedback and the additional design variable B. As before, K
is defined as the open loop transfer function from y to u. In this structure,
this means that

K = D(1− Bz−1)−1C. (3.28)
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Introduce also the transfer function

S = 1
1− Bz−1 − DCGyu

= (1− Bz−1)−1
1− D(1− Bz−1)−1CGyu

= (1− Bz−1)−1
1− KGyu

.

(3.29)
It is noted that if B is proper then

lim
z→∞
S(z) = lim

z→∞
1

(1− B(z)z−1)(1− K (z)Gyu(z))
= 1, (3.30)

since Gyu is strictly proper. It will thus be assumed that S satisfies (3.30).
This condition guarantees that the feedback system is well-posed, since
both loops then contain a strictly proper transfer function.
Internal stability means that all closed loop transfer functions are in

H 2. Following the same reasoning as in [65], it is concluded that internal
stability of the systems in Figure 3.7 and Figure 3.8 are equivalent. The
latter can be represented by the closed loop map T , defined by



y

t

u


 = T



w1

w2

n


 .

It follows that the system in Figure 3.7 is internally stable if and only
if

T =



SDCGyu S(1− Bz−1)Gyu SDGyu

SC SCGyu S(Bz−1 + DCGyu)
SDC SDCGyu SD


 ∈ H 2. (3.31)

The following two lemmas will give necessary and sufficient conditions
for internal stability, respectively.

LEMMA 3.6
Suppose that T ∈ H 2, that Gyu = NM−1 is a coprime factorization over
RH∞ and that U ,V ∈ RH∞ satisfy the Bezout identity VM + UN = 1.
Then S ∈ RH∞ and

K = MQ − U
NQ + V , Q ∈ RH∞. (3.32)

Moreover, if Gyu has a pole of multiplicity n at z, where pzp ≥ 1, then S
has a zero of multiplicity greater than or equal to n at z.

100



3.3 Using Channel Feedback

PROOF

It is seen in (3.31) that S(Bz−1 + DCGyu) ∈ H 2 and since

S(Bz−1 + DCGyu) = S(Bz−1 − 1+ 1) +
KGyu

1− KGyu
= S− 1, (3.33)

it follows that S ∈ H 2. Since S is rational it has no poles on or outside
the unit circle and thus S ∈ RH∞.
It also follows directly from (3.31) that

Gyu

1− KGyu
= S(1− Bz−1)Gyu ∈ H 2,

K

1− KGyu
= SDC ∈ H 2,

KGyu

1− KGyu
= 1
1− KGyu

− 1 = SDCGyu ∈ H 2.

Since these transfer functions are rational and have no poles on or outside
the unit circle it follows that

[
1 −K

−Gyu 1

]−1
=




1
1− KGyu

K

1− KGyu
Gyu

1− KGyu
1

1− KGyu


 ∈ RH∞, (3.34)

It is well-known that the set of K satisfying (3.34) can be parametrized
using the Youla parametrization of all stabilizing controllers [65]. That is,
K can be written as in (3.32).
To prove the final statement, introduce the function

ϒ(X , z) =





n, X has a zero of multiplicity n at z

0, X has no pole or zero at z

−n, X has a pole of multiplicity n at z.

Suppose that (3.31) holds and ϒ(Gyu, z) < 0 for some pzp ≥ 1. Then

Gyu

1− KGyu
∈ RH∞ [ ϒ(1− KGyu, z) ≤ ϒ(Gyu, z).

The definition of S in (3.29) implies that

ϒ((1− Bz−1)−1, z) = ϒ(S, z) + ϒ(1− KGyu)
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KGyu and 1− KGyu have the same poles, so

ϒ(KGyu, z) = ϒ(1− KGyu, z).

From SCGyu ∈ H 2 and SDGyu ∈ H 2 it follows that S2DCG2yu ∈ H 1.
Moreover, S2DCG2yu ∈ RH∞ since it is rational and has no poles on or
outside the unit circle. Thus

ϒ(DC, z) ≥ −2ϒ(S, z) − 2ϒ(Gyu, z)

Putting these relationships together gives that

ϒ(KGyu, z) = ϒ(DC, z) + ϒ((1− Bz−1)−1, z) + ϒ(Gyu, z)
≥ −2ϒ(S, z) − 2ϒ(Gyu, z) + ϒ(S, z) + ϒ(KGyu, z) + ϒ(Gyu, z),

which gives
ϒ(S, z) ≥ −ϒ(Gyu, z). (3.35)

This means that if Gyu has an unstable pole of multiplicity n, then S will
have a zero with at least the same multiplicity in the same location.

LEMMA 3.7
Suppose that

K = D(1− Bz−1)−1C = MQ − U
NQ + V , Q ∈ RH∞, (3.36)

where Gyu = NM−1 is a coprime factorization overRH∞ and U ,V ∈ RH∞
satisfy the Bezout identity VM + UN = 1. Suppose also that C ∈ H 2 is
outer, D ∈ L2,

S = (1− Bz−1)−1
1− KGyu

∈ RH∞,

and that S satisfies (3.35). Then T ∈ H 2.

PROOF

It follows from (3.36) that

SDCGyu =
KGyu

1− KGyu ∈ RH∞

S(1− Bz−1)Gyu =
Gyu

1− KGyu ∈ RH∞

SDC = K

1− KGyu ∈ RH∞.
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Moreover,

SDGyu =
KGyu

1− KGyu
C−1.

Since S ∈ RH∞ it follows from (3.35) that SGyu ∈ RH∞. This gives
SDGyu ∈ L2. Since C is outer, application of Lemma 1.3 gives that
SDGyu ∈ H 2. SC ∈ H 2 since S ∈ RH∞ and C ∈ H 2. It follows from
SGyu ∈ RH∞ that SCGyu ∈ H 2. From (3.33) it is seen that

S(Bz−1 + DCGyu) = S− 1 ∈ RH∞.

Finally, SD ∈ L2 and thus

SD = K

1− KGyu
C−1 ∈ H 2

due to Lemma 1.3.
Noting that RH∞ ⊆ H 2, it has then been proved that all elements of

T are in H 2 and thus T ∈ H 2.

Optimal Factorization

Suppose for now that K and S are given and that they satisfy (3.30) and
the conditions necessary for stability derived in Lemma 3.6. Then B is
proper and can be obtained from (3.29). C and D are still, however, left
to determine.
Rewriting the objective and the SNR constraint in terms of K and S

gives ∥∥∥∥Gzv +
KGzuGyv

1− KGyu

∥∥∥∥
2

2
+ qSDGzuq22 (3.37)

and
qSCGyvq22 + qS− 1q

2
2 ≤ σ 2. (3.38)

By (3.30), S− 1 is strictly proper and thus orthogonal to 1. Hence

qS− 1q22 + 1− 1 = qSq
2
2 − 1. (3.39)

Thus, the SNR constraint will be impossible to satisfy unless S satisfies

α = σ 2 + 1− qSq22 ≥ 0.

If α = 0 then S is non-zero and qSCGyvq22 = 0. Since Gyv is non-zero by
assumption, this implies that C = 0 and K = 0. This is not possible if Gyu
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is unstable, since (3.34) would be violated. In the case that Gyu is stable,
the objective becomes

qGzvq22 + qSDGzuq
2
2

and it is clear that it is optimal to let D = 0. In that case, the objective
does not depend on S and it gives no loss to set S = 1, giving α = σ 2 > 0.
Therefore, it can be assumed without loss of generality that α > 0.
The objective of the optimal factorization problem is to find C and D

such that (3.37) is minimized subject to (3.38) and K = D(1− Bz−1)−1C.
Stability considerations are temporarily disregarded and will be handled
later. Thus, the set of feasible (C,D), parametrized by K and S, is defined
as

ΘC,D(K ,S) = {(C,D) : qSCGyvq22 ≤ α , K (1− Bz−1) = DC, (3.29)}.

(The final condition in ΘC,D is included to define B by K and S.)
It is noted that the first term in (3.37) is constant and that the second

term is a weighted norm of D. In the left hand side of (3.38), the first
term is a weighted norm of C and the second term is constant. This is
similar to the observations in Section 3.2 and means that the optimal
factorization problem can be formulated and solved in the same manner
as was done there. The solution to the optimal factorization problem is
given by the following lemma.

LEMMA 3.8—OPTIMAL FACTORIZATION, FEEDBACK CONTROL USING CHANNEL
FEEDBACK CASE
Suppose that α > 0, S ∈ RH∞, K ∈ R, B ∈ R satisfies (3.29) and that
G∗
zuGzu ∈ RL∞ and GyvG∗

yv ∈ RL∞ have no zeros on T. Then

inf
(C,D)∈ΘC,D(K ,S)

qSDGzuq22 ≥
1
α

∥∥K (1− Bz−1)S2GzuGyv
∥∥2
1 . (3.40)

Suppose furthermore that K ∈ RL1 satisfies (3.32) and B ∈ RH∞.
Then there exists (C,D) ∈ ΘC,D(K ,S) with C ∈ H 2 outer and D ∈ L2
such that the minimum is attained and (3.40) holds with equality. If K is
not identically zero, then (C,D) is optimal if and only if DC = K (1−Bz−1)
and

pCp2 = α

qK (1− Bz−1)S2GzuGyvq1

√
G∗
zuGzu

GyvG∗
yv

∣∣K (1− Bz−1)
∣∣ on T. (3.41)

If K = 0, then the minimum is achieved by D = 0 and any C that satisfies
qSCGyvq22 ≤ α .

104



3.3 Using Channel Feedback

PROOF

Suppose first that K = 0. Then the right hand side of (3.40) is 0. Letting
D = 0 gives qSDGzuq22 = 0 and it is clear that (C,D) ∈ ΘC,D if C is as
stated.
Thus, it can now be assumed that K is not identically zero. Then

K (1− Bz−1) is not identically zero, since B is proper, and hence C is not
identically zero and D = K (1− Bz−1)C−1.
By assumption both G∗

zuGzu and GyvG∗
yv are positive on the unit circle.

Since these functions are rational this implies that

∃ε > 0 such that G∗
zuGzu ≥ ε and GyvG∗

yv ≥ ε , on T. (3.42)

Thus by Theorem 1.3 there exist scalar minimum phase transfer functions
Ĝzu, Ĝyv ∈ H 2 such that

G∗
zuGzu = Ĝ∗

zuĜzu, GyvG
∗
yv = ĜyvĜ∗

yv.

Now, qSCGyvq22 ≤ α and Cauchy-Schwarz’s inequality gives

qDSGzuq22 =
∥∥∥K (1− Bz−1)C−1SĜzu

∥∥∥
2

2

≥

∥∥∥SCĜyv
∥∥∥
2

2

α

∥∥∥K (1− Bz−1)C−1SĜzu
∥∥∥
2

2

≥ 1
α

〈∣∣∣SCĜyv
∣∣∣ ,
∣∣∣K (1− Bz−1)C−1SĜzu

∣∣∣
〉2

= 1
α

∥∥∥K (1− Bz−1)S2ĜzuĜyv
∥∥∥
2

1

= 1
α

∥∥K (1− Bz−1)S2GzuGyv
∥∥2
1 .

This proves the lower bound (3.40).
Equality holds if and only if pK (1 − Bz−1)C−1SĜzup and pSCĜyvp are

proportional on the unit circle and qSCGyvq22 = α . It is easily verified that
this is equivalent to (3.41). Thus, (C,D) achieves the lower bound if and
only if D = K (1−Bz−1)C−1 and (3.41) holds, since these conditions imply
that (C,D) ∈ ΘC,D(K ,S).
Under the additional assumptions that K ∈ RL1 satisfies (3.32) and

B ∈ RH∞, it will now be shown that there exists such (C,D) ∈ H 2 $L2
with C outer. Since K satisfies (3.32) with M ,N,Q,U ,V ∈ RH∞ it holds
that

log
∣∣K (1− Bz−1)

∣∣ = log pMQ − U p − log pNQ + V p + log
∣∣1− Bz−1

∣∣
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By Lemma 1.5, all three terms in the right hand side are L1 functions and
thus log

∣∣K (1− Bz−1)
∣∣ ∈ L1. It follows from (3.42) and the boundedness

of Ĝyv and Ĝzu on T that

∫ π

−π

log

∣∣∣∣∣
Ĝzu

Ĝyv
K (1− Bz−1)

∣∣∣∣∣dω > −∞

and ∣∣∣∣∣
Ĝzu

Ĝyv
K (1− Bz−1)

∣∣∣∣∣ ∈ L1.

Then by Theorem 1.3 there exists an outer function C ∈ H 2 such that
(3.41) holds. Also, D = K (1− Bz−1)C−1 ∈ L2 since

qDq22 =
∥∥K (1− Bz−1)C−1

∥∥2
2

= 1
α

∥∥K (1− Bz−1)S2GzuGyv
∥∥
1

∥∥∥∥∥
K (1− Bz−1)Ĝyv

Ĝzu

∥∥∥∥∥
1

< ∞.

REMARK 3.5
Optimal D will satisfy

pDp2 =
∥∥K (1− Bz−1)S2GzuGyv

∥∥
1

α

√
GyvG∗

yv

G∗
zuGzu

∣∣K (1− Bz−1)
∣∣ on T.

Equivalent Convex Problem

Define the objective functional

J(B,C,D) =
∥∥∥∥Gzv +

DCGzuGyv

1− Bz−1 − DCGyu

∥∥∥∥
2

2
+
∥∥∥∥

DGzu

1− Bz−1 − DCGyu

∥∥∥∥
2

2

and the feasible set

ΘB,C,D = {(B,C,D) : B,DC ∈ R , (3.27),T ∈ H 2},

consisting of all controllers that stabilize the plant under the SNR con-
straint. Just as in the previous section, the minimization will be performed
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over Q, which parametrizes all K that satisfy the necessary conditions for
stability. Stability also requires S to have zeros where the plant has unsta-
ble poles. In order to deal with this interpolation constraint, the transfer
function X is introduced, from which S can be obtained by multiplication
with all-pass transfer functions.
It will be shown that minimization of J(B,C,D) over ΘB,C,D can be

performed by minimizing the convex functional

ϕ (Q, X ) =
∥∥Gzv + GzuGyv(M2Q − MU)

∥∥2
2 +

∥∥GzuGyv(M2Q − MU)X
∥∥2
1

σ 2 + 1− qX q22

over the convex set

ΘQ,X = {(Q, X ) : Q, X ∈ RH∞, qX q22 < σ 2 + 1, lim
z→∞

X (z) =
∏

λ∈Λ(Gyu)
pλ p},

where Λ(Gyu) is the set of unstable poles of Gyu,

Λ(Gyu) = {z : pzp > 1, z is a pole of Gyu}.

The (Q, X ) ∈ ΘQ,X obtained from minimizing ϕ (Q, X ) will be used to
construct (B,C,D) ∈ ΘB,C,D . However, this will not be possible for (Q, X )
such that the corresponding K has poles on T or X has zeros on T. For
such (Q, X ) a small perturbation can then be applied first. This will result
in an increased cost, but this increase can be made arbitrarily small. That
this is possible is established by the following lemma.

LEMMA 3.9
Suppose (Q, X ) ∈ ΘQ,X and ε > 0. Then there exists (Q̂, X̂ ) ∈ ΘQ,X such
that X̂ has no zeros for pzp ≥ 1,

K = MQ̂ − U
NQ̂ + V

∈ RL1,

and
ϕ (Q̂, X̂ ) < ϕ (Q, X ) + ε .

PROOF

Q̂ is obtained by a perturbation using the same technique as in the proof
of Lemma 3.4 (that proof is found in Appendix A). If X has zeros on
the unit circle they can also be moved in the same way. X will then be
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perturbed into X + x0+ x1z−1, where x0, x1 ∈ R are small. In general, this
perturbation does not satisfy the condition on the limit of X (z) as z→∞.
Therefore, introduce

X̃ = X (∞)
X (∞) + x0

(
X + x0 + x1z−1

)
,

where
X (∞) = lim

z→∞
X (z) =

∏

λ∈Λ(Gyu)
pλ p .

Then X̃ has the same zeros as X + x0 + x1z−1 and limz→∞ X̃ (z) = X (∞).
Since both the perturbations of Q and X can be made small, and since

px0p is small, it holds that ϕ (Q̂, X̃ ) < ϕ (Q, X ) + ε and
∥∥∥X̃
∥∥∥
2

2
< σ 2 + 1.

The non-minimum phase zeros of X̃ will now be mirrored into the unit
disk by multiplication with all-pass factors. This will decrease pX̃ p on T

and thus decrease the value of ϕ , which shows that it is suboptimal to
have non-minimum phase zeros in X when minimizing ϕ . Consider the
set of non-minimum phase zeros of X̃ ,

Ω = {z : pzp > 1, X̃ (z) = 0}

and let

X̂ = X̃
∏

ζ∈Ω

zζ − 1
(z− ζ )ζ .

Then
lim
z→∞

X̂ (z) = lim
z→∞

X̃ (z) = X (∞)

and

pX̂ p = pX̃ p
∏

ζ∈Ω

1
ζ
≤ pX̃ p.

Hence ϕ (Q̂, X̂ ) ≤ ϕ (Q̂, X̃ ) < ϕ (Q, X ) + ε and (Q̂, X̂ ) ∈ ΘQ,X .

THEOREM 3.3
Suppose that σ 2 > 0, Gyu ∈ RL∞, Gyu = NM−1 is a coprime factorization
over RH∞, U ,V ∈ RH∞ satisfy the Bezout identity VM + UN = 1 and
that G∗

zuGzu ∈ RL∞ and GyvG∗
yv ∈ RL∞ have no zeros on T. Then

inf
(B,C,D)∈ΘB,C,D

J(B,C,D) = inf
Q,X∈ΘQ,X

ϕ (Q, X ). (3.43)

Furthermore, suppose (Q, X ) ∈ ΘQ,X and ε > 0. Let (Q̂, X̂ ) ∈ ΘQ,X
be as in Lemma 3.9. Then there exists (B,C,D) such that the following
conditions hold:
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3.3 Using Channel Feedback

• If MQ̂ − U is not identically zero: (B,C,D) ∈ R $H 2 $ L2, where
C is outer and

K = MQ̂ − U
NQ̂ + V

(3.44)

S = X̂
∏

λ∈Λ(Gyu)

z− λ

zλ∗ − 1 (3.45)

B = z
(
1− 1
S(1− KGyu)

)
(3.46)

pCp2 = σ 2 + 1− qSq22
qK (1− Bz−1)S2GzuGyvq1

√
G∗
zuGzu

GyvG∗
yv

∣∣K (1− Bz−1)
∣∣ on T

(3.47)
D = K (1− Bz−1)C−1. (3.48)

• If MQ̂ − U = 0: B = C = D = 0.
If (B,C,D) satisfy these conditions, then (B,C,D) ∈ ΘB,C,D and

J(B,C,D) < ϕ (Q, X ) + ε .

PROOF

Recall that

ΘC,D(K ,S) = {(C,D) : qSCGyvq22 ≤ α , K (1− Bz−1) = DC, (3.29)},

where α = σ 2 − qS− 1q22.
Consider (B,C,D) ∈ ΘB,C,D and define K and S according to (3.28)

and (3.29). Rewriting the SNR constraint (3.27) in terms of S gives that
qSCGyvq22 ≤ α . Thus (C,D) ∈ ΘC,D(K ,S) for this choice of (K ,S).
Moreover, with this choice of (K ,S), it follows that limz→∞ S(z) = 1

since B is proper. Because T ∈ H 2 it follows from Lemma 3.6 that
S ∈ RH∞ will have zeros according to (3.35) and that K can be written
using the Youla parametrization (3.32). Since the SNR constraint (3.27)
is satisfied by (B,C,D) it follows that qS− 1q22 ≤ σ 2. Thus (K ,S) ∈ ΘK ,S,
where ΘK ,S is defined by

ΘK ,S = {(K ,S) : S ∈ RH∞, qS− 1q22 ≤ σ 2, lim
z→∞
S(z) = 1, (3.35), (3.32)}.
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It has thus been proved that

(B,C,D) ∈ ΘB,C,D [ (C,D) ∈ ΘC,D(K ,S) for some (K ,S) ∈ ΘK ,S.
(3.49)

As discussed previously, the case qS− 1q22 = σ 2 can be disregarded
without loss of generality. Removing such S from ΘK ,S gives the set

Θ̃K ,S = {(K ,S) : (K ,S) ∈ ΘK ,S, qS− 1q22 < σ 2}.

Finally, parametrizing over the Youla parameter Q ∈ RH∞ instead of K
gives the set

ΘQ,S = {(Q,S) : Q,S ∈ RH∞, qSq22 < σ 2 + 1, lim
z→∞
S(z) = 1, (3.35)}.

A lower bound will now be determined for J(B,C,D). This will be
accomplished through a series of inequalities and equalities, where each
step will be explained afterwards.

inf
(B,C,D)∈ΘB,C,D

J(B,C,D)

(1)

≥ inf
(K ,S)∈ΘK ,S

inf
(C,D)∈ΘC,D(K ,S)

∥∥∥∥Gzv +
KGzuGyv

1− KGyu

∥∥∥∥
2

2
+ qSDGzuq22

(2)= inf
(K ,S)∈Θ̃K ,S

(∥∥∥∥Gzv +
KGzuGyv

1− KGyu

∥∥∥∥
2

2
+ inf
(C,D)∈ΘC,D(K ,S)

qSDGzuq22

)

(3)

≥ inf
(K ,S)∈Θ̃K ,S

∥∥∥∥Gzv +
KGzuGyv

1− KGyu

∥∥∥∥
2

2
+

∥∥∥∥
KGzuGyv

1− KGyu
S

∥∥∥∥
2

1

σ 2 − qS− 1q22
(4)= inf
(Q,S)∈ΘQ,S

∥∥Gzv + GzuGyv(M2Q − MU)
∥∥2
2 +

∥∥GzuGyv(M2Q − MU)S
∥∥2
1

σ 2 + 1− qSq22
(5)= inf
(Q,X )∈ΘQ,X

ϕ (Q, X )

The first step follows from (3.49) and a rewriting of the functional in
terms of K and S. The second step follows from the fact that if

qS− 1q = σ 2

then the minimum of the functional is attained by K = C = D = 0, in
which case S = 1 gives the same value. The first term of the functional
has also been moved out since it is constant in the inner minimization.
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3.3 Using Channel Feedback

The third step follows from Lemma 3.8, using that

S(1− Bz−1) = 1
1− KGyu

.

The fourth step follows from (3.39) and application of the Youla para-
metrization.
Given (Q,S) ∈ ΘQ,S, define

X = S
∏

λ∈Λ(Gyu)

zλ∗ − 1
z− λ

. (3.50)

Then pX p = pSp on T, so the value of the functional does not change if S
is swapped for X . Furthermore, X ∈ RH∞, qX q22 = qSq

2
2 and

lim
z→∞

X (z) =
∏

λ∈Λ(Gyu)
pλ p .

Hence (Q, X ) ∈ ΘQ,X . Conversely if (Q, X ) ∈ ΘQ,X then S can be defined
by (3.50) and then (Q,S) ∈ ΘQ,S. From this, step 5 follows and the lower
bound is obtained.
Now a suboptimal solution will be constructed for Problem 3.2. Suppose

that (Q, X ) ∈ ΘQ,X and ε > 0 and let (Q̂, X̂ ) ∈ ΘQ,X be as given by
Lemma 3.9 and define K ∈ RL1 by (3.44) and S by (3.45). Then it holds
that (K ,S) ∈ Θ̃K ,S and

ϕ (Q̂, X̂ ) =
∥∥∥∥Gzv +

KGzuGyv

1− KGyu

∥∥∥∥
2

2
+

∥∥∥∥
KGzuGyv

1− KGyu
S

∥∥∥∥
2

1

σ 2 − qS− 1q22
.

If MQ̂ − U = 0 then K = 0,

J(0, 0, 0) = qGzvq22 = ϕ (Q̂, X̂ ) < ϕ (Q, X ) + ε ,

and the proof is complete.
If, on the other hand, MQ̂ − U is not identically zero then K is not

identically zero. Define B by (3.46) and note that B is proper since
limz→∞ S(z) = 1 and Gyu is strictly proper. Moreover, since Gyu has no
poles on T and X̂ has no zeros for pzp ≥ 1, the zeros of S for pzp ≥ 1
correspond, with multiplicity, to poles of Gyu, which are also the zeros of
(1− KGyu)−1 ∈ RH∞. Thus B ∈ RH∞.
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According to Lemma 3.8 there then exists an outer C ∈ H 2 and D ∈ L2
such that

K = D(1− Bz−1)−1C, S = 1
1− Bz−1 − DCGyu

,

and (3.47) and (3.48) are satisfied. The lemma also says that such (C,D)
satisfy

qSDGzuq22 =

∥∥∥∥
KGzuGyv

1− KGyu
S

∥∥∥∥
2

1

σ 2 − qS− 1q22
, qSCGyvq22 ≤ σ 2 − qS− 1q22 .

K ,C,D and S satisfy the conditions of Lemma 3.7, so T ∈ H 2, which
implies that (B,C,D) ∈ ΘB,C,D . Moreover,

J(B,C,D) =
∥∥∥∥Gzv +

KGzuGyv

1− KGyu

∥∥∥∥
2

2
+ qSDGzuq22 = ϕ (Q̂, X̂ ) < ϕ (Q, X ) + ε .

Since ε can be made arbitrarily small this shows that (3.43) holds and
hence the proof is complete.

REMARK 3.6
Theorem 3.3 shows that an ε -suboptimal solution of Problem 3.2 can be
found by minimizing ϕ (Q, X ) over ΘQ,X . The obtained (Q, X ) may have
to be perturbed so that the resulting K has no poles on the unit circle
and S has no zeros on the unit circle. Then B is directly calculated and
C given by a spectral factorization. D is then obtained from C.

A by-product of Theorem 3.3 is a necessary and sufficient criterion for the
existence of a stabilizing controller that satisfies the SNR constraint.

COROLLARY 3.2
There exists (B,C,D) that stabilize the closed loop system of Figure 3.7
subject to the SNR constraint (3.27) if and only if

∏

λ∈Λ(Gyu)
pλ p2 < σ 2 + 1. (3.51)
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PROOF

The theorem showed that there exists (B,C,D) ∈ ΘB,C,D if and only if
there exists (Q, X ) ∈ ΘQ,X . In the definition of ΘQ,X , it is seen that Q
can be chosen freely in RH∞, but that X ∈ RH∞ must satisfy

qX q22 < σ 2 + 1, lim
z→∞

X (z) =
∏

λ∈Λ(Gyu)
pλ p

The second of these conditions states that

X (z) =
∏

λ∈Λ(Gyu)
pλ p +

∞∑

k=1
xkz

−k.

Clearly, the 2-norm of X is then bounded from below by

qX q22 =
∏

λ∈Λ(Gyu)
pλ p2 +

∞∑

k=1
pxkp2 ≥

∏

λ∈Λ(Gyu)
pλ p2 . (3.52)

This bound is obviously tight, which shows that there can exist such an
X if and only if (3.51) holds.

REMARK 3.7
The condition (3.51) is the same as (3.1). This result was previously shown
in [51].
An interesting consequence of (3.52) is that if

σ 2 →
∏

λ∈Λ(Gyu)
pλ p2 − 1, then pSp →

∏

λ∈Λ(Gyu)

∣∣∣∣
z− λ

z− 1/λ∗

∣∣∣∣ = 1 on T.

That is, S approaches an all-pass filter.

It will now be shown that the minimization of ϕ (Q, X ) over ΘQ,X is a
convex problem. This will be done in the same way as in sections 2.4
and 3.2.
Recall that the functional

ρ(a, e) = 1
2π

∫ π

−π

a(ω )2dω +
(
1
2π

∫ π
−π a(ω )e(ω )dω

)2

σ 2 + 1− 1
2π

∫ π
−π e(ω )2dω

with domain

Θρ =
{
(a, e) : a(ω ), e(ω ) ∈ R ∀ω ,

1
2π

∫ π

−π

e(ω )2dω < σ 2 + 1
}
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is convex by Lemma 2.6. Define the functional

ϕ0(Q, X ) = ϕ (Q, X ) −
(
qGzvq22 + 2Re

〈
Gzv,GzuGyv(M2Q − MU)

〉)

=
∥∥GzuGyv(M2Q − MU)

∥∥2
2 +

∥∥GzuGyv
(
M2Q − MU

)
X
∥∥2
1

σ 2 + 1− qX q22
.

LEMMA 3.10
Suppose (Q, X ) ∈ ΘQ,X . Then ϕ0(Q, X ) ≤ γ if and only if there exists
(a, e) ∈ Θρ such that ρ(a, e) ≤ γ and

a(ω ) ≥
√
G∗
zuGzuGyvG

∗
yv

∣∣M2Q − MU
∣∣ , e(ω ) ≥ pX p ∀ω . (3.53)

PROOF

The proof is a simple modification of the proof of Lemma 2.7.

THEOREM 3.4
The problem of minimizing ϕ (Q, X ) over ΘQ,X is convex.

PROOF

The proof is a simple modification of the proof of Theorem 2.4.

Numerical Solution

Denote

∆(Q) = ϕ (Q, X ) −ϕ0(Q) = qGzvq22 + 2Re
〈
Gzv,GzuGyv(M2Q − MU)

〉
.

By Lemma 3.10, minimizing ϕ (Q, X ) over ΘQ,X is equivalent to mini-
mizing ρ(a, e) + ∆(Q) over Θρ $ ΘQ,X subject to (3.53). This problem is
infinite-dimensional, so the integrals are discretized for numerical solu-
tion. It will now be shown how the discretized problem can be posed as a
semidefinite program.
Let n ≥ 2 and introduce

ω 1 = 0, ω k+1 −ω k = 2π /n, k = 1, . . . ,n− 1
â = [ a(ω 1) a(ω 2) . . . a(ω n) ]T

ê = [ e(ω 1) e(ω 2) . . . e(ω n) ]T .
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An approximation with n grid points is then given by

ρn(â, ê) =
1
n
âT â+

(
1
n
âT ê

)2

σ 2 + 1− 1
n
êT ê

( ρ(a, e)

∆n(Q) = qGzvq22 +
2
n
Re

n∑

k=1
tr
(
G∗
zvGzuGyv(M2Q − MU)

)∣∣
z=eiωk ( ∆(Q).

By the definition of the integral it holds that

lim
n→∞

ρn(â, ê) + ∆n(Q) = ρ(a, e) + ∆(Q),

so the minimum of the approximation can be made to come arbitrarily
close to infQ∈ΘQ,X ϕ (Q, X ) if n is chosen sufficiently large. When imple-
menting the minimization program, Q and X are parametrized using
finite basis representations. The accuracy of the approximated problem
obviously depends on this representation as well.
Noting that ρn(â, ê) + ∆n(Q) can be written as a Schur complement

and that the denominator of ρn(â, ê) is positive for sufficiently large n, it
follows that ρn(â, ê) + ∆n(Q) ≤ γ if and only if

[ 1
n
êT ê−σ 2 − 1 1

n
âT ê

1
n
êT â 1

n
âT â+ ∆n(Q) − γ

]
5 0,

or, equivalently,
[
n(σ 2 + 1) 0

0 nγ − n∆n(Q)

]
− [ ê â ]T I [ ê â ] 4 0.

Using Schur complement again, this is equivalent to


I ê â

êT n(σ 2 + 1) 0

âT 0 nγ − n∆n(Q)


 4 0. (3.54)

Let �k =
√
Gzu(eiω k)∗Gzu(eiω k)Gyv(eiω k)Gyv(eiω k)∗. The constraints can

then be approximated by

a(ω k) ≥ �k
∣∣M(eiω k)2Q(eiω k) − M(eiω k)U(eiω k)

∣∣ , k = 1 . . .n (3.55)
e(ω k) ≥

∣∣X (eiω k)
∣∣ , k = 1 . . .n (3.56)

σ 2 + 1 > 1
n

n∑

k=1
e(ω k)2 (3.57)

X (z) =
∏

λ∈Λ(Gyu)
pλ p + Y(z), where Y(z) is strictly proper. (3.58)
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Minimizing γ subject to (3.54)–(3.58) is a semidefinite program. The value
of the approximated problem is arbitrarily close to infQ∈ΘQ,X ϕ (Q, X ) for
sufficiently large n.
A procedure for numerical solution of Problem 3.2 will now be outlined.

1. Check if the plant is stabilizable under the SNR constraint by using
condition (3.51).

2. Determine a N,M ,U ,V ∈ RH∞ by a coprime factorization of Gyu.
3. Choose n sufficiently large, determine the grid points ω k, k = 1 . . .n
and solve the optimization problem of minimizing γ subject to (3.54)–
(3.58). The transfer functions Q, X are parametrized using finite
basis representations, for example as FIR filters.

4. If NQ+V has zeros on the unit circle, or if X has zeros on or outside
the unit circle, determine Q̂, X̂ as outlined by Lemma 3.9.

5. Determine S from (3.45) and B from (3.46).
6. Use a finite basis approximation A(ω ) of CC∗, for example the para-
metrization (2.25), and fit A(ω ) to the right hand side of (3.47), for
example by minimizing the mean squared deviation.

7. Perform a spectral factorization of A(ω ), choosing C as the stable
and minimum phase spectral factor.

8. Determine D from (3.48).

Special Cases

It will now be shown that the problems considered in sections 2.4 and 3.2
can be solved using the equivalent optimizaton problem that was obtained
in this section.

Control with SNR constraint without channel feedback A solution
to Problem 3.1 can be obtained by letting B = 0. Then

S = 1
1− KGyu

= MNQ + MV ,

and the functional to minimize becomes

ϕ (Q) = qGzv + GzuGyv(AQ + B)q22 +
qGzuGyv(AQ + B)(EQ + F)q21

σ 2 + 1− q(EQ + F)q22
,

where A = M2, B = −MU , E = MN and F = MV . The SNR constraint
becomes qEQ + Fq22 < σ 2+1. This is the same problem as the one obtained
in Section 3.2.
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Real-Time Coding for a Noisy Channel with Feedback Just as
the coding problem without channel feedback (Problem 2.1) was seen to
be a special case of the control problem without channel feedback (Prob-
lem 3.1), it can be seen that the corresponding problems with channel
feedback (Problem 2.3 and Problem 3.2 in this section) have the same
relationship.
The feedback part of the encoder is parametrized differently in Sec-

tion 2.4 compared to here (compare the block diagram in Figure 2.8 with
the one in Figure 3.7). These parametrizations are, however, equivalent,
and it is possible to obtain one of them given the other. Denote the filters
that are called B and C in Section 2.4 instead by B̃ and C̃, respectively.
Then it is easy to show that the encoders are equivalent if and only if

C̃ = (1− Bz−1)−1C
1+ B̃ z−1 = (1− Bz−1)−1.

Solving Problem 2.3 corresponds to solving Problem 3.2 for the plant

G(z) =
[
Gzv(z) Gzu(z)
Gyv(z) Gyu(z)

]
=
[
PF 0 −1
F G 0

]
.

Since Gyu = 0, a coprime factorization is given by N = 0, M = 1, U = 0
and V = 1. Then Q = K , S = (1 − Bz−1)−1 and the corresponding func-
tional to minimize is

ϕ (B, K ) = q[ PF − FK −GK ]q22 +
∥∥[ F G ] K (1− Bz−1)−1

∥∥2
1

σ 2 + 1− q(1− Bz−1)−1q

= q[ PF − FK −GK ]q22 +

∥∥∥[ F G ] K (1+ B̃ z−1)
∥∥∥
2

1

σ 2 + 1−
∥∥∥1+ B̃ z−1

∥∥∥
,

which is equal to the one defined by (2.51) in Section 2.4. Moreover, the
SNR constraint becomes σ 2 + 1 >

∥∥(1+ Bz−1)−1
∥∥2
2, which is equivalent

to σ 2 >
∥∥∥B̃
∥∥∥
2

2
. Finally, the optimality conditions are easily verified to be

equivalent.

117



4

Conclusions

This thesis has introduced a new method, based on a technique called
optimal factorization, for solving a number of communication and con-
trol problems. It is a fairly simple idea that there for every product of
the encoder and decoder transfer functions should exist an optimal fac-
torization that minimizes the negative impact of the channel noise. This
approach can also be viewed as a variable change followed by a sequential
minimization over different variables. Luckily, it turns out that the opti-
mal factorization problem has a closed-form expression for the value and
that the minimization over the encoder-decoder product becomes a convex
problem.
Lately, information theory has been successfully applied to control

problems with communication constraints, which has resulted in stabiliz-
ability conditions and performance bounds. Results on the design of opti-
mal controllers have, however, been more scarce. This thesis represents an
attempt to instead apply control theoretic tools to a problem of this kind.
The advantage of the approach developed here is, as has been shown, that
optimal solutions may be obtained using well-known techniques, such as
convex optimization. The disadvantage is that the optimization can only
be performed over the relatively simple class of LTI systems. Still, linear
solutions have nice features in that they are amenable to analysis using
well-known tools and are easy to implement.
Two questions were asked in the preface: How should a communica-

tion system be designed when there is a bound on the accepted delay?
And, how should a control system be designed when there are commu-
nication limitations? The results presented in this thesis give a partial
answer to these two questions, while at the same time demonstrating
how intertwined they are. In order to control there has to be communica-
tion, and the stability and performance of the system depends critically
on any delay induced by coding. Thus, it is no wonder that the solution
of a communication-constrained control problem also can be used to solve
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a communication problem. Interestingly, this does not reflect the chrono-
logical order in which the results in this thesis were obtained.
A number of topics remain for further research. The most obvious is

the investigation whether linear solutions are in fact optimal or not, for
these problems. And if they are not, what is then an optimal solution? For
the linear solutions, it should be investigated if the memory requirements
are infinite for the problems in this where the channel has feedback. When
infinite memory is required, some approximation is necessary for imple-
mentation. It would be good to find suboptimality bounds, for example
when using truncated FIR filters to approximate the optimal filters.
It does not seem to be possible to directly apply the techniques used in

this thesis to solve the feedback control problem in the case of a general
MIMO plant, where also the control loop has a vector-valued signal. But
perhaps the techniques can be modified to handle this case as well? The
case with noisy channel feedback is also of interest.
Finally, perhaps there are other types of problems that could be solved

using an approach similar to the optimal factorization idea.
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A

Some Technical Proofs

This appendix contains the proofs of Lemma 2.5 and Lemma 3.4. The
proof of Lemma 2.5 follows easily from the proof of Lemma 3.4, which is
therefore presented first.

PROOF OF 3.4

The proof is based on construction of Q̂ through a perturbation of Q. Take
Q ∈ ΘQ and let

K = MQ − U
NQ + V .

If K ∈ RL1 then let Q̂ = Q and the construction is complete. Suppose
instead that K has at least one pole on T. Since MQ − U ∈ RH∞, z is a
pole of K if and only if

N(z)Q(z) + V (z) = 0. (A.1)

Moreover, suppose that (A.1) holds and that N(z) = 0. Then it follows
from the Bezout identity that V (z) ,= 0, which is a contradiction. Thus if
NQ + V has a zero at z then N(z) ,= 0.
Suppose now that NQ + V has a zero at z0 ∈ T and that z0 /∈ R (the

case when z0 ∈ R is discussed later). Let

Q̂ = Q + λ0 + λ1z
−1, λ0,λ1 ∈ R.

Then
∥∥∥EQ̂ + F

∥∥∥
2
< σ 2 + 1 if pλ0p + pλ1p < δ λ for small enough δ λ .

The coefficients λ0,λ1 will be chosen so that the zero at z0 is perturbed
away from T. It must also be made sure that none of the other zeros can
reach T under the same perturbation. For this reason, define the set of
zeros not on the unit circle,

Ω = {z : z /∈ T,N(z)Q(z) + V (z) = 0},
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and the smallest distance from that set to the unit circle,

r = inf
z1∈Ω,z2∈T

pz1 − z2p ,

where r > 0 since Ω has a finite number of elements. The location of
the zeros of NQ̂ + V depend continuously on (λ0,λ1). Thus, there exists
δ r > 0 such that if pλ0p+ pλ1p < δ r then all zeros are displaced strictly less
than r.
Introduce the function

X (z,λ0,λ1) = NQ̂ + V = NQ + V + N(λ0 + λ1z
−1).

Then

det



Re
�X
�λ0

Re
�X
�λ1

Im
�X
�λ0

Im
�X
�λ1


 = det

[
Re N Re Nz−1

Im N Im Nz−1

]
,= 0 at z = z0

since N(z0) ,= 0 and z0 ∈ T \ R. Then, by the implicit function theorem,
there is a differentiable mapping z ]→ (λ0,λ1) defined in a neighborhood
of z0, such that

N(z)Q̂(z) + V (z) = N(z)Q(z) + V (z) + N(z)(λ0(z) + λ1(z)z−1) = 0.

This means that a new location z can be determined for the zero, and the
mapping gives the corresponding λ0,λ1.
Take ε > 0. Since ϕ (Q) is continuous there exists δQ > 0 such that

∥∥∥Q̂ − Q
∥∥∥
∞
< δQ [

∣∣∣ϕ (Q̂) −ϕ (Q)
∣∣∣ < ε .

Continuity of the mapping from z to (λ0,λ1) implies that there exists
δ z > 0 such that

pz− z0p < δ z [ pλ0(z)p + pλ1(z)p < min{δQ,δ λ ,δ r}.

Now pick z /∈ T such that pz−z0p < δ z and the mapping to λ0,λ1 is defined.
Then ∥∥∥Q̂ − Q

∥∥∥
∞
≤ pλ0(z)p + pλ1(z)p < min{δQ,δ λ ,δ r},

which implies that pϕ (Q̂)−ϕ (Q)p < ε ,
∥∥∥EQ̂ + F

∥∥∥
2
< σ 2+1 and that there

are no new zeros on T. Since z /∈ T it follows that NQ̂ + V has at least
one zero less than NQ + V on T.
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If z0 is real, then define instead

Q̂ = Q + λ0, λ0 ∈ R

and determine λ0 analogously. Note, however, that the zero must be kept
on the real axis.
If Q̂ is such that NQ̂+V has zeros on T, the procedure may be repeated

again, with ε appropriately chosen, until there are no such zeros. Thus,
for every Q ∈ ΘQ and ε > 0 it is possible to construct Q̂ such that NQ̂+V
has no zeros on T, pϕ (Q̂) −ϕ (Q)p < ε and

∥∥∥EQ̂ + F
∥∥∥
2
< σ 2 + 1.

PROOF OF 2.5

Noting that ϕ (B, K ) is continuous in B, the proof follows the same rea-
soning as the proof of Lemma 3.4 with Q = B, Q̂ = B̂, N = z−1, V = 1,
E = z−1 and F = 1.
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