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Abstract

Array based genotyping platforms have during recent years been established
as a valuable tool for the characterization of genomic alterations in cancer. The
analysis of tumor samples, however, presents challenges for data analysis and
interpretation. For example, tumor samples are often admixed with nonaberrant
cells that define the tumor microenvironment, such as infiltrating lymphocytes
and fibroblasts, or vasculature. Furthermore, tumors often comprise subclones
harboring divergent aberrations that are acquired subsequent to the tumor-
initiating event. The combined analysis of both genotype and copy number status
obtained by array based genotyping platforms provide opportunities to address
these challenges. In this review, we present the basic principles for current array
based genotyping platforms and how they can be used to infer genotype and
copy number for acquired genomic alterations. We describe how these
techniques can be used to resolve tumor ploidy, normal cell admixture, and
subclonality. We also exemplify how genotyping techniques can be applied in
tumor studies to elucidate the hierarchy among tumor clones, and thus, provide

means to study clonal expansion and tumor evolution.



I. INTRODUCTION

Cancer development and tumor formation involves acquired genomic
aberrations, such as sequence mutations and copy number changes. Molecular
investigation of genomic alterations in tumors has traditionally been performed
using methods such as loss of heterozygosity (LOH) analyses and comparative
genomic hybridization (CGH). Conventional GCH, first described by Kallioniemi
and coworkers (Kallioniemi et al., 1992), use differentially fluorescently labeled
DNA from tumor sample and reference DNA to reveal regions of loss and gain by
competitive hybridization to immobilized normal metaphase chromosomes.
With the advent of array-technology (Schena et al., 1995), the analysis of cancer
genomes advanced rapidly with greatly increased resolution and sensitivity.
Array-based comparative genomic hybridization (aCGH) was first performed
using gene-centered arrays originally developed for gene expression analysis, or
using low-density arrays of large genomic segments cloned in bacterial artificial
chromosomes (BACs) (Pollack et al.,, 1999). Initial techniques were soon further
developed for genome-wide investigation of copy number aberrations at high-
resolution by tiling BAC arrays and subsequently by employing oligonucleotide
probe arrays. In short, aCGH utilizes the same strategy as conventional
metaphase CGH but DNA is hybridized to immobilized DNA probes mapped to
known genomic locations. Current array platforms, comprising from tens of
thousands up to millions of probes, allow for detection of breakpoints and copy
number alterations at sub-gene resolution and have been widely used to screen
for genomic alterations in cancer (Pinkel and Albertson, 2005). Such analyses

have provided a depiction of copy number gain and loss frequencies across large
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tumor cohorts in a variety of cancers, highlighting recurrent alterations
important during oncogenesis and tumor development (Chin et al, 2006). LOH
analyses have, on the other hand, been widely used in cancer research to detect
regions of allelic imbalances indicating regions of genomic deletion or copy
number neutral LOH, and have been used to identify tumor suppressor genes
inactivated by mutation followed by loss of the wild-type allele. Traditionally,
LOH analysis use polymorphic markers, such as nucleotide repeat regions or
single nucleotide polymorphisms, to detect regions of allelic imbalance.

Whole genome genotyping (WGG) arrays based on Single Nucleotide
Polymorphisms (SNPs) (Wang et al., 1998) were developed to analyze blood
samples in association studies and have since its introduction successfully been
used in numerous studies for identification of genetic susceptibility loci in a
variety of diseases (Grant and Hakonarson, 2008). Progression of WGG arrays, or
SNP arrays, has followed the identification of SNPs in the human genome derived
from initiatives such as the international HapMap Project
(http://www.hapmap.org), and platforms currently in use allow for genotyping
of millions of SNPs simultaneously. Even though SNP arrays were not originally
designed for analysis of tumor samples, it was soon demonstrated that these
platforms are suitable for the analysis of cancer genomes (Lindblad-Toh et al.,
2000; Wang et al., 2004; LaFramboise et al., 2005; Zhao et al., 2005; Peiffer et al.,
2006). Allele specific interrogation of tumor DNA using SNP arrays provides
means to investigate the relative abundance of alleles and effectively combine
the advantages of LOH analysis and aCGH analysis. Thus, SNP arrays enable

researchers to detect copy neutral events in tumors along with copy number
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aberrations. SNP arrays have therefore become a valuable tool for analysis of
cancer genomes and have been used to provide detailed characterization of a
variety of cancers (Wang and Armstrong, 2007; LaFramboise, 2009). The two
most commonly used platforms for SNP arrays are Illumina BeadChip
(Gunderson et al., 2005; Steemers et al., 2006) and Affymetrix (Wang et al., 1998;
Matsuzaki et al., 2004). Experimental design and data analysis is somewhat
different, although the main principles are applicable to both platforms as that
they provide detection signals from individual alleles separately.

There are several inherent problems with analyses of tumor genomes. For
example, a significant proportion of solid tumors are highly aneuploid and
subjected to genome duplication events causing deviations from the normal
diploid chromosome level (Rajagopalan and Lengauer, 2004). Therefore, a
problem of determining the baseline for calling relative genomic copy number
alterations becomes apparent. In cytogenetics, the most common chromosome
number in a cell population - the modal number - determines if the state of a
genomic region is regarded as neutral, gained, or lost relative to a fixed ploidy
status. In aCGH, the absolute copy number cannot be resolved and copy number
is presented as relative to a reference point, often approximated to the mean- or
median copy number, or to the predominant relative copy number (Staaf et al.,
2007). As SNP arrays provide assessment of allelic composition in combination
with abundance, it opens up for strategies that estimate absolute copy number
and ploidy (LaFramboise, 2009). SNP array platforms have also successfully
been applied to address problems regarding intermixture of nonaberrant cell

populations. As analysis is performed on extracted DNA rather than on



individual cells in-situ, measured copy number changes will reflect overall net
changes in the cell population from which DNA is extracted. Thus, the amplitude
of signal associated with a copy number alteration is dependent on the fraction
of cells harboring the alteration. When DNA from grossly dissected tumor
biopsies is analyzed, presence of residual tumor-adjacent or infiltrating normal
cells will reduce the dynamic range between segments of different copy number.
Importantly, with aCGH data it is not straightforward to discriminate between
contamination of normal genomes and varying magnitude of underlying net copy
number changes, although there have been efforts aimed at resolving this issue
(Tolliver et al., 2010). Traditionally, normal-contamination issues have been
addressed by excluding samples with low tumor cellularity from analysis or,
when feasible, by microdissection of biopsies. However, the tumor
microenvironment comprising tumor cells and other cell types such as immune
cells, fibroblasts, and endothelial cells is integral in tumor development and
progression. The interplay between cells within the tumor microenvironment
has been highlighted as important hallmarks of cancer and its composition has
been shown to represent an intrinsic property of tumors (Hanahan and
Weinberg, 2011). Excluding samples due to cellularity may therefore bias tumor
cohort composition. In this respect SNP arrays might offer an advantage as it has
been demonstrated that interpretation of the readout of allelic-imbalances can
be successfully used to estimate and correct for cellularity or the fraction of cells
affected by an alteration (Nancarrow et al., 2007; Assie et al.,, 2008). The
presence of genetic diversity within tumor samples, i.e., tumor subclonality,

represents another source of sample heterogeneity that presents challenges
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when analyzing tumor genomes. However, the combined analysis of both
genotype and copy number status obtained by SNP array analysis provide
opportunities to discern subclonal alterations against the background of the
predominant clone. Likewise, genotype estimates from SNP array data will also
provide increased possibilities to study clonal relationships between repeated
tumor samples from the same individual.

Here we aim to provide the basic principles for array based genotyping
platforms and the principles of how these techniques can be used to address
sample heterogeneity and subclonality in tumors. We first provide a brief
description of SNP array platforms, experimental procedures and data
extraction. We then proceed to describe the calculation of B allele frequency and
relative copy number, and how these values are affected by underlying acquired
genetic alterations. We finally discuss how these data can be used and
interpreted with the aim of deducing intermixture of nonaberrant cells within

tumor biopsies, as well as subclonal events and intra-tumor heterogeneity.

I1. THE BASIC PRINCIPLES OF SNP ARRAY PLATFORMS AND SNP ARRAY DATA

INTERPRETATION

A. Platforms and Probe Design

There are two SNP array platforms predominantly in use, provided by
Affymetrix and [llumina, respectively. Both platforms have been extensively used
for genotyping blood samples in genetic linkage studies as well as for the

analysis of cancer genomes. The underlying chemistry differs between the
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platforms but both can be used to interrogate genotypes in a similar manner and
both depend on classic base-pairing and hybridization of target DNA to
nucleotide probes of complementary sequences immobilized on a solid surface
(Fig 1). The principle relies on that probe intensities reflect the abundance of the
respective alleles. There are numerous and detailed accounts of technical aspects
of how the platforms work (Matsuzaki et al., 2004; Peiffer et al.,, 2006; Steemers
et al, 2006) and several comparisons of how they perform (Hehir-Kwa et al,,
2007; Baumbusch et al., 2008; Gunnarsson et al., 2008; Curtis et al., 2009). Here,
we will confine to describe the basic principles of the platforms and highlight
some of the differences between them.

Since the first SNP array platforms were presented (Wang et al., 1998), array
density has increased by several orders of magnitude and the current platforms
comprise millions of probes in a single assay. The earlier versions of Affymetrix
SNP arrays utilized comprehensive collections of probes to interrogate each
individual SNP, using paired perfect-match and miss-match probes to infer
genotype, a strategy adopted from Affymetrix expression array platforms. More
recent versions utilize a less redundant strategy of a limited number of probes
per SNP and allele. In short, 25-mer oligonucleotide probes designed to match
the target DNA of interest are in-situ synthesized on the array surface. For
interrogation of SNPs, specific probes are synthesized for each of the two alleles
at separate locations on the array (Fig. 1B). The overall strategy depends on
preferential hybridization of perfect complementary target sequence to the
probes coupled with the ability to quantify the amount of bound target. By

quantification of hybridized targets to separate-allele specific probes their
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individual abundance in the sample may be inferred. The Illumina SNP array
platforms are more recent and have not undergone the same degree of
reformation compared with Affymetrix. It shares the same basic principle of
target hybridization to loci specific probes with Affymetrix, and similarly, probe
density has increased to comprise millions of markers. However, there are some
fundamental differences between the platforms. [llumina utilizes their BeadChip
technology that permits probes to be immobilized on silica beads rather than
directly onto the array surface. Probe-covered beads are then randomly
distributed in microwells covering the array surface, followed by a probe
location decoding procedure. Each SNP is interrogated with a single bead type
covered by one unique 50-mer probe designed to target the sequence adjacent to
the SNP of interest. After target hybridization, alleles are differentiated by a
subsequent enzymatic single-base extension of the probe using the hybridized
target as template. Base extension results in the incorporation of differentially
labeled nucleotides depending on the captured allele. The abundance of the
respective SNP alleles in the sample may then be inferred by dual color
quantification of signal intensities from each bead type (Fig 1C). It should also be
noted that current WGG platforms contain large numbers of probes that are not
designed to interrogate SNPs. Rather these probes are solely designed to assay
copy number and as such serve as aCGH probes and some are specifically
designed to target copy number polymorphic regions, i.e., constitutional copy

number variations (CNVs).



B. Principles of Data Extraction and Normalization

Raw data acquisition and processing varies depending on array platform.
Arrays are hybridized and labeled according to chemistry-dependent
experimental procedures followed by imaging and data extraction. Raw signal
measurements for the A and B alleles are preprocessed, normalized, and
summarized over probe replicates or a collection of probes depending on
platform. Preprocessing and normalization of probe data is performed to achieve
pairs of allele-specific measurements for each SNP locus, and to this end there
are various methods described (LaFramboise, 2009). Pairs of normalized allele
measurements can subsequently be used to call genotypes and to infer DNA
abundance and allele ratio. For calling genotype and calculating allele ratio,
observed normalized intensities are related to expected values derived from
collections of reference data. Transformation of intensities to relative copy
number estimates is essentially also performed by relating values to a collection

of normal reference samples (HapMap) or to a matched control.

C. The B Allele Frequency and Relative Copy Number

The B allele frequency (BAF), first presented using Illumina data (Peiffer et al,
2006), is calculated for each SNP individually by transformation of allele
intensities and represents the proportion of DNA content for allele B as
compared to the total DNA content of A and B alleles together. The proposed
transformation involves linear interpolation of allele frequencies from reference

data derived from normal samples. Since BAF simply describes the total number
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of B allele copies divided by the total number of allele copies for that specific
locus, a theoretical BAF can be calculated for any given genotype using the

following equation:

(1): BAF = Ng/(Na+Ng)

In Eq. (1), Ng is the total number of B allele copies and Na is the total number
of A allele copies.

Apart from genotyping, SNP arrays provide means for quantification of
relative copy numbers at each given loci and current SNP arrays typically contain
large numbers of probes that are solely designed to assay copy number and
target non-sequence polymorphic loci. These probes can be used for the analysis
of CNVs but many are also added to provide increased power and resolution
when analyzing acquired copy number aberrations in tumors. Relative copy
number ratio values are calculated by comparing observed normalized
intensities (sum of A and B) to the expected, similarly to how BAF is derived, and
is typically presented as Log?2 relative ratio (LRR). Data from Affymetrix can be
converted into BAF and LRR by appropriate normalization and transformation
(Wang et al., 2007; Sun et al.,, 2009). Examples of expected BAF and LRR values
for a normal genome and how these values are affected by acquired genetic

aberrations is further discussed below.

D. Expected BAF and LRR for a Normal Genome

In a diploid genome, there are only three possible allele combinations for a

given locus: homozygosity for the A allele (4A), heterozygosity (AB) or
11



homozygosity for the B allele (BB). Thus, given Eq. (1), three different BAF values
are possible for SNP loci in a normal diploid genome: 0 (A4), 0.5 (AB), or 1 (BB).
The genotype status across chromosomes may conveniently be visualized using
BAF-plots (Fig. 2). In these plots the BAF values for individual SNPs (y-axis) are
plotted with respect to their genomic position (x-axis), similar to a copy number
profile. A schematic BAF plot representation of a normal diploid genome is
presented in Fig. 2A. As seen in Fig. 2A, any given SNP locus will only have one
unique BAF value and this value is defined by its corresponding genotype. The
design of current SNP arrays are in practice arbitrary with respect to A and B
alleles, i.e.,, when considering a large consecutive series of SNP loci, A4, AB, and
BB genotypes will ideally appear randomly distributed. Therefore BAF values
plotted across a chromosome will give the impression of being “banded” at the
macro-level. Fig. 2B displays an experimentally obtained BAF-plot of a
chromosome from the analysis of a normal diploid genome. Three seemingly
horizontal bands representing AA, AB, and BB genotypes are apparent, closely
clustered around the theoretical BAF values of 0, 0.5, and 1, respectively (Fig.
2B). In reality the series of consecutive BAF values across the genome shift
continuously between the three states as extensive homozygous genomic
segments are normally not observed. The BAF profile of a homozygous genome,
e.g., a haploid genome, will consequently present only 2 bands, restricted to
theoretical BAF values 0 and 1, whereas a triploid genome will show four bands.
The appearance of more than four bands is inevitably the result of mixed
samples, e.g., inadvertently mixing DNA from two individuals. However, such

chimeric patterns may be observed in clinical samples, for example, when
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analyzing recurring leukemias after the patient has undergone bone marrow
transplantation (Paulsson et al., 2011). We will in section III discuss BAF values
in further detail, and how these values may be used for the identification of
regions of genomic alteration.

In section II.C we described how SNP arrays estimate copy numbers for each
SNP locus. By definition, a normal diploid genome has two copies of each
autosome. Copy numbers are often presented as relative ratios, which are log?2
transformed and centered. Therefore the copy number profile of a normal
genome is centered on 0, corresponding to 2 copies (Fig. 2B). However, it is
worth to mention that constitutional CNVs are quite common (lafrate et al.,
2004; Sebat et al., 2004). Therefore, care should be taken when analyzing tumor
samples - to avoid misinterpreting small copy number gains or losses as
acquired somatic alterations - especially if matched constitutional blood is

unavailable for comparison (Heinrichs et al., 2010).

I1l. WHOLE GENOME GENOTYPING OF TUMOR SAMPLES

Since the introduction of SNP arrays, a large number of studies have proved
these platforms to be important means of analysis of acquired genomic changes.
Since SNP arrays can detect chromosomal imbalances at both the copy number
level, measured as deviation of LRR, and at the genotype level, measured as
deviations of BAF, the combined use of these two measurements can be used for
interpretation of underlying genomic imbalances. We will here discuss the basic

concept of how copy number, and allelic ratios are affected by common genetic
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alterations such as deletions, copy number gains, and copy number neutral

events.

A. Changes in BAF and LLR upon Acquired Genomic Alterations

As described above, there are three possible genotypes for a given SNP locus
in the normal diploid genome, either heterozygous (AB) or homozygous (44 or
BB). Using Eq. (1) for calculating BAF, we also described that these genotypes
have BAF values of 0.5 (AB), 0 (A4), and 1 (BB), respectively. In tumors, however,
deviations from the normal diploid state is frequently observed, for example,
gains of chromosomal regions harboring oncogenes or deletions of regions that
harbor tumor suppressor genes. As a consequence, not only the DNA copy
number will be affected, but also the balance between 4 and B alleles for SNPs
that were constitutionally heterozygous (AB) within the altered region. Similarly
to the normal state, the BAF formula given in Eq. (1) can be used to calculate
theoretical BAF, i.e., a representation of the proportion of B alleles to the total
number of allele copies. In Table 1 we list a number of possible genotypes and
their corresponding BAF values. For example, a region present in three copies
can have four possible genotype combinations: AAA, AAB, ABB, and BBB, which
will have theoretical BAFs of 0/3=0, 1/3=0.33, 2/3=0.67, and 3/3=1,
respectively. Similarly, a SNP locus with an ABBB genotype will have a BAF value
of 0.8. Thus, the simultaneous readout of both BAF and copy number by SNP
arrays provides a unique opportunity to extrapolate the actual genotype status
of an altered region within a tumor genome. We will in the next paragraphs

present a couple of genomic alterations and their effect on BAF and LRR.
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With the simple principle of BAF in mind, let us hypothesize a scenario in
which a somatic hemizygous deletion has occurred within a diploid tumor
genome leading to LOH in the affected region, i.e., the possible genotypes are
restricted to either A or B (Fig. 3A). Thus, BAF values for all germline
heterozygous SNPs are shifted from BAF=0.5 to either BAF=0, or BAF=1,
depending on which chromosomal homologue that has been lost. The plot will
therefore display two horizontal bands of BAF values at 0 and 1. It is important
to note that only SNPs heterozygous in the germ line will change their respective
BAF value in case of a deletion; constitutively homozygous SNP loci are by
definition non-informative for studying acquired allelic imbalances at the
genotype level. At the copy number level, however, all SNPs are informative and
the deletion will be detected as reduction in LRR for all measured probes within
the region (Fig. 3A). In theory, the DNA content for a deletion is reduced to half
of that of the normal state, and the theoretical LRR value for affected SNPs would
therefore be -1 in Log2 space. However, due to platform limitations the
experimentally obtained response on LRR values is typically smaller than the
theoretical (Peiffer et al., 2006).

Similarly, a single copy number gain will not only be reflected at the LRR
level, but also introduce a shift in BAF at all SNP loci that were germline
heterozygous. SNPs within a region affected by a one copy gain caused by
duplication of material from one of the homologues will have four possible allele
combinations (AA4A, AAB, ABB, and BBB), resulting in a four-banded pattern in a
BAF plot (Fig. 3A). A region present in three copies may also arise through a two

copy gain of material from one homologue in combination with deletion of
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material from the second homologue. This will lead to complete homozygosity
within the region (only AAA or BBB genotypes will be present), and the BAF
pattern will be indistinguishable from that of LOH caused by deletions. The
increase in LRR will however indicate that this region is present in more than
two copies.

For more complex alterations involving higher allele copy numbers,
multiple paired genotype combinations are possible within the gained region,
again depending on which homologues are present and in what proportions. Fig.
3A present two possible scenarios of how a two copy gain can be manifested. In
the first example, two imbalanced genotypes are possible for SNPs that were
germ line heterozygous (AAAB and ABBB, BAF=0.25 and BAF=0.75, respectively).
Alternatively, a net gain of two copies may arise through duplication of material
from both homologues. Germ line heterozygous SNPs will here remain balanced
(AABB, BAF=0.5) and no shift will be observed at the BAF-level. Similar to the
three copy example above, all haplotypes in the four copy region may also be
derived from the same homologue leading to complete homozygosity of the
segment (AAAA and BBBB).

Tumors may also display regions of allelic imbalance but without changes
in copy number, a state often referred to as copy number neutral imbalance. The
combination of genotype and copy number measurements makes SNP arrays
ideal for the identification of copy number neutral imbalances. In contrast, such
aberrations are undetectable using aCGH. A simple example of a copy number
neutral imbalance is when a chromosomal region is deleted and followed by

duplication of the remaining allele (Fig. 3A). It must be stressed that definition of
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copy number neutral alterations are intimately linked to the ploidy state of the
tumor. The ploidy-status of tumors and its implication on BAF and LRR will
however be discussed more in detail below. Copy number neutral imbalance is
sometimes referred to as uniparental disomy (UPD), which is the terminology
used to describe when an individual is constitutionally homozygous for a
chromosomal region since both alleles are derived from a single parent. UPDs
are observed as the cause of certain recessive genetic disorders and arise
through meiotic segregation errors, chromosomal duplications, or mitotic
recombination events during early development. Due to its narrow definition -
homozygosity caused by two copies from the same parent - and close association
with constitutional genetics, we will refrain from using the term UPD when

discussing copy number neutral allelic imbalance events.

B. The Mirrored B Allele Frequency (mBAF)

In the examples above we demonstrated how different types of acquired
chromosomal alterations influence the BAFs of constitutionally heterozygous
SNP loci. A consecutive series of SNP alleles (a haplotype series) on a
chromosome homologue is in practice random with respect to its sequence of As
and Bs. If we consider a region affected by a specific genetic alteration we also
note that BAF values for the SNPs within this region are symmetrically
positioned around the 0.5 axis. A reflection of BAF data along the 0.5 axes can
therefore be applied to obtain mirrored BAF (mBAF) values (Assie et al., 2008;
Staaf et al., 2008). In Fig. 3B we demonstrate this inherent symmetry for the

regions of copy number and/or allelic imbalance presented in Fig. 3A. If non-
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informative germ line homozygous SNPs are removed, an mBAF plot will display
only one horizontal band reflecting the proportion between the major and minor
allele for that specific region. Thus, the use of mBAF will provide similar
information as for BAF but requires fewer genotype combinations to describe
the genomic state, i.e., the paired genotype combination for the one copy gain
presented in Fig. 3A (AAB, and ABB) have BAF=0.33 and BAF=0.67, but
mBAF=0.67: corresponding to the BAF for the genotype that is dominated by B
alleles (in this case ABB). As exemplified below, mBAF can facilitate identification

of segments of allelic imbalance.

C. Delineating Regions of Genomic Imbalance

A number of computational methods have been described for the
automated identification of altered regions in tumor genomes analyzed by SNP
arrays. As for conventional LOH analysis, at the level of individual SNPs, a
matched blood sample is needed as a reference to determine if that specific SNP
is subjected to an acquired alteration or not. However, even in case of a matched
normal genotype, individual SNPs are generally not sufficient for determining
the genotype at a given loci due to possible technical noise. Therefore, one must
make use of larger regions of consecutive SNPs to accurately predict genomic
imbalances. We previously described that, when considering a larger series of
SNPs, a BAF plot will appear as banded and that three bands are seen when
analyzing a normal diploid genome. Through the schematic examples of genomic
alterations described above (Fig. 3), we also demonstrate that most somatic

alterations will introduce shifts in the BAF profile and that these shifts are a
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consequence of the particular haplotype combination that constitute that specific
alteration. The high resolution of SNP arrays permits inference of allelic
imbalance from a continuous stretch of LOH without the need of a matched
normal genotype. Initially this possibility was demonstrated using Hidden
Markov Model algorithms to infer regions of allelic imbalance (Lin et al., 2004;
Beroukhim et al., 2006) but several and more elaborate approaches are currently
available for the definition of such genomic segments (Staaf et al., 2008; Li et al.,
2011). It should again be stressed that relatively long stretches of homozygosity
may be constitutionally present, and therefore care must always be taken when
inferring regions of LOH in the absence of a matched normal sample (McQuillan
etal., 2008; Heinrichs et al,, 2010).
Use of segmentation algorithms, e.g., CBS (Venkatraman and Olshen,

2007), to identify breakpoints delineating regions with a joint underlying
genomic state was early adopted for aCGH data and has been repeatedly
evaluated (Lai et al., 2005). Segmentation-based approaches can be applied with
the overall aim to describe the studied genome as a series of segments ascribed
specific BAF and LLR states. Thus, any segment corresponding to a genomic
event or alteration is represented by a LRR and BAF that deviate from the
normal state: either by imbalanced LRR, BAF, or both. Note that when ascribing a
BAF value to a segment, SNPs that are homozygous in the germline are
uninformative and are disregarded.

Fig. 4 displays typical BAF and mBAF patterns obtained from a SNP array
analysis of a tumor and illustrate how data can be segmented in order to reduce

data dimensionality. Thus, instead of describing single SNP loci, we can rather
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refer to the alleles and genotype of whole segments, i.e., we refer to haplotypes
and genotypes as the collective haplotype/genotype state of one genomic region.
A change in the haplotype constitution will result in a change of the banded
pattern. It then becomes intuitive that most acquired alterations will introduce a
shift in BAF and/LRR, and that changing from one underlying state to another

will involve breakpoints in the data delineating genomic alterations (Fig. 4).

D. BAF vs LRR Plots

We have shown that SNP array data provide both genotype and copy number
estimates for each SNP that is queried, and that these can be visually represented
using mBAF and LRR profile plots. To interpret a specific genetic alteration it is
needed to take both mBAF and LRR into account, and their respective
relationship can be queried by plotting LRR versus mBAF (Fig. 5). Although
values from individual SNPs can be plotted, various segmentation approaches
can effectively reduce the complexity of data, i.e., defining regions of genomic
balance or imbalance and treating these as individual events assigned
representative mBAF and LRR values. When plotting segmented LRR versus
mBAF (or BAF) from a tumor with a diploid chromosomal number a
characteristic pattern will emerge where genomic regions (segments) with
identical allele combinations (genotypes) will appear close to each other within
the mBAF/LRR space (Fig. 5).

For example, segments of one copy gain (BBA) will appear together as a
cluster of values with elevated LRR and mBAF, approaching their theoretical

values of mBAF=0.67 and LRR=0.58. Correspondingly, regions representing copy
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number loss (B) will cluster around their theoretical values of mBAF=1 and
LRR=(-1), whereas copy number neutral LOH (BB genotypes) will in this
example be positioned at the same mBAF as losses (mBAF=1) but at LRR=0 (Fig.
5). All unaltered segments (AB) will form a dense cluster at mBAF=0.5 and
LRR=0. Hence, each individual tumor will demonstrate a characteristic
mBAF/LRR pattern depending on what specific alterations (genotype
combinations) have been acquired. Popova and co-authors (Popova et al., 2009)
termed this BAF/LRR pattern as the “Genomic Alteration Print” (GAP) of a
tumor. Pattern-recognition strategies have been applied on similar
representations of SNP array data to resolve tumor cellularity, underlying ploidy
of the tumor, as well as intra-tumor heterogeneity (Attiyeh et al., 2009; Popova et

al.,, 2009).

IV. WGG ANALYSES OF COMPLEX AND HETEROGENEOUS CELL POPULATIONS

We have so far discussed relatively simple examples of alterations affecting
one homogenous population of tumor cells. In practice however, WGG analyses
are often performed on heterogeneous tumor samples that contain more than
one distinct population of cells. For example, primary tumor samples are often
admixed with cells without somatic alterations. These nonaberrant cells can
include cells that define the tumor microenvironment, such as infiltrating
lymphocytes and fibroblasts, or vasculature. Normal cells can also be present
due to sampling procedures leading to inclusion of varying amounts of tumor-
adjacent non-neoplastic tissue. Thus, the proportion of nonaberrant cells will

vary from sample to sample. Regardless of the cause and nature of included
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nonaberrant cells, the presence of normal diploid cells within a tumor sample
can cause problems in downstream analyses and subsequent interpretations of
the data. Moreover, cancers may to varying degrees be composed of multiple
clones harboring divergent aberrations that are acquired subsequent to the
tumor-initiating event. Collectively, the presence of heterogeneity in tumor
samples imposes challenges on data analysis and interpretation. By providing
the combination of genotype and copy number information, SNP array data can,
however, be used for resolving some of this complexity and thereby increase our

possibilities to study the mechanisms and actions underlying cancer.

A. Tumor Ploidy

Tumor genomes are often highly aneuploid and may reach near-triploid,
tetraploid or even higher ploidy states. Such deviations from the normal diploid
state will have direct implications on both BAF and LRR and the underlying
aneuploidy has to be taken into account when making assumptions of the
genotype status of altered regions. In our examples so far we have only dealt
with simple chromosomal alterations on a diploid background. If we instead
consider a tumor with a near triploid genome we will expect most chromosomes
to be in allelic imbalance. Chromosomal regions without copy number
alterations relative to the modal chromosome number can for example have two
copies of one allele and one copy of the other allele: resulting in a characteristic
4-banded pattern in the BAF profile (Fig. 6A). Deletions in a triploid ABB

background will thus be seen as a shift towards either homozygosity, i.e., two
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identical alleles are retained (BB) (Fig. 6A), or towards allelic balance, i.e., one
copy of each allele is retained (AB).

A tetraploid tumor, on the other hand, will typically display a BAF profile
where most chromosomes have a balanced genotype (AABB) (Fig. 6B). Such a
scenario could entail tetraploidization from a diploid genome through
incomplete cytokinesis, endoreduplication or cell fusion. In theory, BAF cannot
be used to discriminate strictly tetraploid cells from diploid cells after
duplication of the genome. In reality though, the complexity of the tumor
genotype is typically such that tetraploid clones can be discerned since
additional alterations are acquired after tetraploidization. A one copy deletion on
a tetraploid background is shown in Fig. 6B.

Deviations from the diploid state will also give rise to highly characteristic
patterns in the mBAF/LRR plot. This is exemplified in Fig. 7A by a near triploid
tumor karyotype and its corresponding mBAF/LRR plot. Note that the majority
of chromosomal segments cluster at LRR=0 with mBAF=0.67, indicative of an
imbalanced BBA genotype. Segments representing deletions, and thus ascribed
negative LRR, are seen at either mBAF=0.5 or mBAF=1, depending on which
homologue that is lost (AB or BB genotype, respectively). In Fig. 7B, an example
of a near tetraploid karyotype and its corresponding mBAF/LRR plot is given.
For this karyotype segments without relative copy-number alterations are
located at mBAF=0.5 (AABB). In contrast to the mBAF/LRR of diploid tumors, a
tetraploid background will allow for a variety of possible genotypes for regions

subjected to deletions, e.g., BBA, BB, and B.
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B. BAF and LRR in an Admixture of Tumor and Normal Cells

The above theoretical examples have focused on situations when there is only
one clone present within the sample, i.e., all analyzed cells have identical
genotypes. Given that the LRR copy number reflects the DNA content, increasing
proportions of cells with a normal karyotype will cause the LRR for a genomic
alteration to converge towards that of the normal cells. In much the same way,
the BAF patterns of a tumor will be affected by the presence of nonaberrant cells
within the sample. However, whereas the change in LRR for imbalanced regions
is linearly proportional to the fraction of present diploid cells, the effect on
expected BAF is not always linear. Instead the effect on BAF for a given alteration
will depend on its’ specific genotype. A simple example to illustrate how BAF for
a genomic alteration is influenced by the presence of normal cells is given in Fig.
8A. Here, a schematic representation of a sample with eight tumor and two
normal cells is displayed, i.e., 20% normal cells are present within the sample.
Let us hypothesize that the tumor cells carry a one copy deletion leading to LOH
in the affected region. Since BAF simply describes the frequency of B alleles in a
given region, Eq. (1) can be used to calculate expected BAF to 0.83 (Fig. 8A). Fig.
8B displays expected BAF and LRR plots for a hemizygous deletion in a sample
with 20% normal cell admixture.

Equation (1) can with some minor modifications be used to calculate BAF

values for any given locus in case of heterogeneous samples. A general formula
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to describe the relationship between BAF and fraction of normal cells is given by

the following equation:

(2): BAF=(x+ Np (1-x))/(2x+ Na (1-x) + N (1-x))

In Eq. (2), x is the fraction of cells with a normal karyotype, and Na and Ng
denotes the number of A and B allele copies for the specific aberration genotype.
As previously stated, BAF is not necessarily linearly affected by the proportion of
normal cells. In Fig. 8C we use Eq. (2) to plot theoretical mBAF for a number of
different chromosomal states as defined by their genotypes and show how these
vary with increasing normal cell admixture. For example, mBAF for an
aberration with genotype B, corresponding to a hemizygous deletion in a diploid
tumor, will shift from 1 to 0.56 with increasing fraction of normal cells from 0%
to 80%. As shown in Fig. 8C the relationship between mBAF and normal cell
admixture is not linear for genotype B. Given Eq. (2), a linear relationship is,
however, seen for genotype BB. The behavior of LRR and BAF in response to
normal contamination has been extensively described (Nancarrow et al., 2007),
and experimentally corroborated using serial dilution experiments of tumor cell
lines and matched normal blood (Assie et al., 2008; Staaf et al., 2008; Van Loo et
al, 2010). As a consequence, it is possible to use experimental array SNP data to
infer the fraction of nonaberrant cells present within a sample. Several studies
have successfully demonstrated this using tumor biopsies by comparing BAF
derived estimates with cellularity scores from histological examination
(Nancarrow et al,, 2007; Assie et al., 2008; Sun et al,, 2009). It follows that BAF of

an altered region is in fact reflecting the fraction of cells harboring the alteration
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and not only the fraction of normal cells. Thus, any deviation from the expected
value can be caused by clonal heterogeneity rather that normal contamination.
The principles of estimating the fraction of normal cells can be illustrated using a
simple example (Fig. 8D). The figure illustrates an expected mBAF/LRR pattern
for the example given in Fig. 5, but in this case on a background of 20% normal
cells. As demonstrated using well-characterized CLL samples (Staaf et al., 2008),
once the cellularity of a sample is resolved it is possible to also estimate the
fraction of tumor cells carrying individual alterations. However, the combination
of normal contamination and increased clonal heterogeneity can rapidly increase
the complexity of the data and thereby reduce the possibility to resolve

underlying genotype status.

C. Tumor Subclonality

The presence of genetic variation between different subclones within a tumor
mass is a well-known phenomenon. Even though tumor cells generally are
clonally related and show identical alterations at some loci, subclonal differences
are often observed. Subclonal genetic alterations may readily be identified at the
individual cell level by conventional cytogenetics or fluorescence in situ
hybridization. Current molecular analyses of bulk samples will however only
give an average estimate of all imbalances. For SNP arrays, the effect on BAF and
LRR of subclonal alterations will in practice follow the same line of reasoning as
discussed in the examples above about nonaberrant cell involvement. If we
further expand our example of a sample of 80% tumor cells and 20% normal

diploid cells (Figs. 5 and 8D) and hypothesize that 50% of the tumor cells carry
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some additional alterations, we can simply calculate expected mBAF for these
using Eq. (2). A deletion (B) present in 40% of the cells will display mBAF of
0.625. If we instead consider a late copy number gain (BBA), mBAF for the
altered region will be 0.583. Subclonal events will in this respect behave as
regular alterations occurring in a proportion the cells and BAF will be affected as
if normal contaminated. When plotting segmented LRR versus mBAF values,
subclones are readily discernable as segment values deviating from the expected
pattern set by the percentage of normal contamination (Fig. 9, arrows).
Subclonal alterations in a region already affected by an earlier alteration will be
much harder to detect. Although it is possible to propose plausible models to
explain any observed pattern, subsequent validation is necessary to definitively
resolve the underlying states. For instance, it is not possible to distinguish
between a case including two clones present in a 50:50 relationship that do not
share alterations from a homogenous tumor population harboring the union of
these alterations but with 50% normal admixture. Likewise, cell populations
comprising highly rearranged genomes and mixed ploidy will add complexity
beyond examples presented here. Nonetheless, for regions that do not follow
expected patterns one can at least assume the presence of subclonal events.
Thus, SNP arrays may provide means for the detection of subclonal events and

also propose a likely genotype that will explain the observed pattern.

D. Tracing Clonal Relationships Using SNP Arrays

Depiction of copy number gain and loss frequencies across large tumor

cohorts highlight recurrent alterations and can be used to classify tumors into
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groups with related karyotypes (Russnes et al.,, 2010). Though providing clues to
genetic events important for tumor initiation, progression, and metastasis,
studies on non-related individuals will never be able to “recapitulate” clonal
evolution and expansion events per se. To be able to discern and model the
underlying chronology of events, repeated samples from the same individual has
to be studied. Unfortunately such studies are quite rare, most probably since
availability of multiple tumor specimens from single individuals is scarce.
Certain cancers are, however, more permissive in studying clonal evolution. One
example includes urothelial carcinomas where sampling from multifocal and
highly recurrent tumors through non-invasive cystoscopies is possible (Hoglund,
2007). The limited availability of multiple samples from individual patients can
be circumvented by macro or micro dissection (Navin et al., 2010) or cell sorting
procedures followed by expansion in animal models (Navin et al,, 2011),
effectively performing multiple samplings of the same tumor. Interestingly, a
number of studies have shown that the bulk of tumor cells at different time
points, although sharing some common alterations, differs with respect to their
array of genomic alterations. In many cases one must assume an ancestral clone
that the tumors are derived from, i.e., there is a clonal relationship but not a
strict linear evolution (Hoglund, 2007; Mullighan et al., 2008).

As described above, SNP arrays provide opportunities to investigate tumor
heterogeneity. The possibility to reveal allelic imbalances and infer genotypes of
acquired alterations facilitates elucidation of clonal relationships between
tumors. Various models to study cancer evolution by LOH, karyotype, and CGH

data have been proposed (Hoglund et al., 2005; Letouzé et al., 2010; Navin and
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Hicks, 2010). For example TuMult uses a computational approach, tracing
breakpoints, for unraveling the succession of genomic alterations that has
occurred during the process of carcinogenesis (Letouzé et al, 2010). Given the
high resolution of current arrays, the presence of multiple identical breakpoints
in tumors is highly indicative of a shared origin. Investigating shared copy
number alterations and mapping breakpoints may be supplemented by genotype
information provided by SNP array analysis.

We will here present some hypothetical examples of how SNP array data can
be used to analyze multiple tumors from the same patient in order to investigate
clonal expansion, chronology of events, and divergence in clonal evolution. We
first return to our example describing a sample of 80% tumor cells and 20%
normal diploid cells in which we demonstrated how intra-tumor heterogeneity
could be readily discerned (Figs. 5, 8D, and 9). In our example, the presence of a
subclone was indicated by segmented mBAF /LRR values signifying an acquired
deletion. The observed BAF for the alteration corresponds to that 50% of the
tumor cells carries the deletion, and we can look for the deletion in other tumor
samples from the same patient. For instance, if a metastasis or recurrence is
available from the same patient we can investigate whether it too carries the
identified deletion. The estimated proportion of cells that carry the deletion can
yield information on whether the recurrence or metastasis represents an
expansion of the specific subclone identified in the primary tumor, e.g., if the
deletion is present in the majority of the cells. Recall that the example from Fig. 9
included an additional late alteration: a one copy gain estimated to be present in

50% of the tumor cells. When analyzing the recurrence, the identified gain might
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be estimated to be present in the same proportion as the deletion, indicating that
both alterations were confined to the same subclone in the primary.
Alternatively, one might fail to detect the gain in the recurrence altogether. The
latter scenario will suggest that the two alterations were in fact confined to
separate subclones in the primary. In line with this simplified example,
numerous paired analyses of tumor samples can be imagined that aim to
describe plausible relationships between tumors from the same individual.

Apart from discerning possible subclonal expansions, as exemplified above,
the inherent properties of SNP arrays provide additional possibilities for tracing
clonal hierarchies. It is of importance to stress one obvious, but fundamental,
principle in a clonal evolution model; a subsequent clone cannot re-acquire an
allele that has been lost, that is, a clone that is heterozygous for a given locus
cannot be a direct descendant from a clone that is homozygous at that locus.
Such a situation is exemplified in Fig. 10A in which one tumor clone (C1) carries
only one homologue of chromosome 9 and the other clone (C2) has retained both
homologues. In this example we can conclude that C2 cannot be directly
descending from C1, however, the opposite is of course possible. Analogously,
homozygous deletions are ideal to discern clonal relationships since complete
loss of a locus also represents a state that cannot be reversed.

With this simple principle in mind, we will introduce the concept of
“imbalance haplotype” (IH). That is, for any region of allelic imbalance, it is
possible to determine the dominating haplotype, i.e., the consecutive series of
SNP alleles that are in abundance. We exemplify this for a deletion in which BAF

is used to infer the complete haplotype sequences of the parental alleles (Fig.
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10B). Importantly, if the actual haplotype is known, it can be used to query an
alteration of the same region but in a separate sample from the same patient. By
extrapolating the actual haplotype series from BAF values, we therefore can
conclude if alterations in tumors from the same patient can be ascribed to the
same chromosomal homologue or not.

We will now use this line of reasoning in a hypothetical example aimed to
model an underlying hierarchy among tumor clones (Fig. 10C). In the example
given we use three tumors (T1, T2, and T3) that are obtained from the same
individual, but at separate time points. From the list of alterations, we can
identify a focal deletion at 9p21 that is present in all tumors. The IHs for this
region are also identical and we can therefore assume that all three tumors stem
from a shared cell of origin and that this deletion is an early event. Deletion of
the same homologue of chromosome arm 17p is shared by tumors T1 and T2,
but not by T3. Thus, T3 cannot be a descendant of either T1 or T2. Neither can T1
and T2 be linearly derived from T3 since this tumor harbors a homozygous
deletion at 10q23. Furthermore, the T1 and T2 tumors both display
heterozygous deletions of 5q, however, different haplotypes are lost in the
respective tumors (incompatible IHs). Thus, neither of these clones can directly
have given rise to one another. This simple way of deducing clonal relationships,
based on compatible and incompatible events, thus, provide us with an
opportunity to connect the tumors hierarchically (Fig. 10C, right). We can
conclude that the tumors share a common origin; moreover, we can reject a
straightforward linear model of clonal evolution. We can, in addition, infer nodes

of lineage deviation representing obligate ancestral clones.
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Even though the above example may be overly simplified, it still conveys
the basal concept of how SNP arrays may be used to address issues of clonality
and tumor evolution. There are, to our knowledge, no reports that use SNP
arrays to infer IHs and that take these into consideration when assessing clonal
relationships between tumors. Nonetheless, the same conceptual thinking, i.e.,
demonstrating loss of incompatible genotypes, has been applied in earlier
studies using LOH analyses, demonstrating its feasibility (van Tilborg et al.,

2000; Lindgren et al., 2006).

V. CONCLUDING REMARKS

Throughout recent years, molecular techniques to study cancer have
progressed in terms of resolution and sensitivity, but also with respect to
accessibility due to decreased cost. Microarray based platforms have evolved
from proof-of-concepts - presented little more than a decade ago - to highly
standardized off-the-shelf assays for genome-wide analysis of gene expression,
DNA copy number, and genotypes. Undoubtedly, technologies will continue to
evolve and much of what is considered at the forefront today will be superseded
tomorrow. We have aimed to present some basic concepts pertaining to the
analysis of tumor-heterogeneity using genotyping techniques. In doing so, we
have also tried to give a brief account of currently available and standardized
platforms for genome-wide genotyping. However, we have refrained from
discussing in depth any particular analysis methods inherently tied to the
mentioned platforms. Much of what has been presented in terms of data

interpretation can in theory be applied to genotype and copy number data in
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general. Recent developments in high-throughput sequencing techniques lend
promise to resolving some of the limitations of current array-based technology
in the analysis of tumor-heterogeneity. Mainly, in terms of sensitivity, array-
based analysis may fail to detect alterations confined to minor subpopulations.
Nonetheless, current techniques have their merits and will undoubtedly
continue to contribute to our understanding of tumor heterogeneity,

development, and progression.
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Tablel  The Association between Genotype and BAF.

Genotype CNa BAF
- 0 (HD)b -

A 1 0

B 1 1
AA 2 0
AB 2 0.5
BB 2 1
AAA 3 0
AAB 3 0.33
ABB 3 0.67
BBB 3 1
AAAA 4 0
AAAB 4 0.25
AABB 4 0.5
ABBB 4 0.75
BBBB 4 1
AABBB 5 0.6
ABBBB 5 0.8
AAABBB 6 0.5
AABBBB 6 0.67
ABBBBB 6 0.83

a CN=Total number of allele copies, P HD=Homozygous deletion
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Figure Legends

Fig. 1 Schematic illustration of the basic principles of how allele specific
intensity values are measured using the Affymetrix and Illumina assays. A)
Parental homologues comprising one centrally located heterozygous SNP (T/G).
B) The Affymetrix assay relies on multiple allele specific probes spanning the
interrogated SNP and complementary to either T or G. In the illustration only one
allele specific probe per allele is depicted. The probes are located in separated
features on the array surface and will preferentially hybridize labeled target of
perfect complementarity. Relative difference in allele abundance is resolved by
comparing the quantified intensities from separate features harboring the
respective probes. C) The Illumina assay relies on a single loci specific probe
complementary to the sequence adjacent to the interrogated SNP. The probe will
hybridize both parental homologues in a non-allele specific manner. The
hybridized target is used as template in a subsequent enzymatic single-base
extension step employing differentially labeled nucleotides. The use of
differentially labeled nucleotides permits dual intensity quantification in the
same feature and relative difference in allele abundance is resolved by

comparing the quantified intensities.

Fig. 2 SNP array analysis of a normal diploid genome. A) A schematic
illustration of an expected BAF and LRR plot from the analysis of a diploid
genome. Each individual SNPs has a BAF value of 0, 0.5, or 1, reflecting the
genotype for that specific locus (44, AB, and BB, respectively). BAF and LRR

values for germ line homozygous- and heterozygous SNPs are colored gray and
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black, respectively. B) Experimentally obtained BAF and LRR plots of a
chromosome. In the BAF plot, individual SNPs cluster close to 0, 0.5, or 1,
producing three characteristic horizontal bands. At the LRR level, the majority of

SNPs cluster around 0, representing the measurement of two DNA copies.

Fig. 3 Schematic examples of common genomic alterations and their expected
BAF, LRR, and mBAF. A) The constitutional genotype showing the two parental
homologues of a diploid genome, each with its own specific haplotype series, is
shown at the top. Allele combinations for a tumor with acquired genomic
alterations are shown below the parental alleles. The balance between A and B,
and the total number of allele copies, will determine the BAF and LRR for each
SNP locus. Thus, each alteration causes a shift in the BAF and/or the LRR profile.
BAF and LRR values for germ line homozygous- and heterozygous SNPs are
colored gray and black, respectively. At the copy number level all SNPs are
informative. Expected BAF and LRR plots for the acquired alterations are shown
at the bottom. From left to right (possible genotype combinations for germline
heterozygous SNPs are given within parenthesis): normal balanced genotype
(AB), a one copy deletion (4 and B genotypes), a one copy gain (AAB and ABB
genotypes), a two copy gain in which both surplus segments are derived from
the same chromosomal homologue (AAAB, and ABBB genotypes), a balanced two
copy gain (AABB genotypes), a segment with copy number neutral LOH (44 and
BB genotypes). B) Schematic mBAF transformation of the above BAF profile. The
mBAF is mirrored at the 0.5-axis yielding only one possible value for SNP loci

that were germline heterozygous. For example, in the AAAB/ABBB two copy gain
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segment, the AAAB genotypes (BAF=0.2) will be transformed to the mirrored
genotype (BBBA) with mBAF=0.8. Non-informative homozygous SNPs are

excluded from this plot.

Fig. 4 Experimental BAF, mBAF, and LRR plots of two chromosomes obtained
from a SNP array analysis of a tumor. Deviations from the expected BAF and LRR
patterns for a normal diploid genome are observed, indicative of acquired
chromosomal alterations, including an intrachromosomal deletion at 1p21-p31,
gain of 5p, and deletion of 5q. The mBAF profiles have been segmented,
identifying breakpoints that delineate segments that constitute a discrete
genomic state. Identified segments are ascribed specific mBAF and LRR values
based on the SNPs between breakpoints. For example, three segments define
chromosome 1 whereas chromosome 5 can be described with two separate

segments.

Fig. 5 A schematic karyotype of a diploid tumor and its corresponding
mBAF/LRR plot. The karyotype illustrates: hemizygous deletions of
chromosomes 13, 9p, and 17p, gains of chromosomes 22 (trisomy, BBA) and 6p
(four copies, BBBA), and copy-number neutral allelic imbalance of chromosome
11 (BB). The parental chromosomal homologues are colored in yellow or blue,
respectively. For the mBAF/LRR plot, each individual circle in the figure
represents a continuous chromosomal segment with identical LRR and BAF as
given by the tumor karyotype. For example, chromosome 6 is represented by

two separate segments: 6p (mBAF=0.75, and LRR=0.65), and the unaffected 6q
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(BAF=0.5, LRR=0). Chromosome 11 has no intra-chromosomal breakpoints and

is only represented by one segment (BAF=1 and LRR=0).

Fig. 6 Experimental BAF, mBAF, and LRR plots obtained from two tumors with
increased ploidy number. A) Representation of chromosome 11 for a near
triploid tumor. Most of the chromosome displays a three-banded pattern
characteristic for a trisomy (mBAF=0.67 and LRR=0). A deletion is however
observed at 11923 (mBAF=0.97, LRR=-0.22), and a gain at 11q24 (mBAF=0.58,
mBAF=0.26). The deletion possibly indicates one copy loss resulting in a BB
genotype. The gain possibly indicates duplication of material from both
homologues relative to the trisomic state (AABBB). B) Chromosome 5 for a near
tetraploid tumor. A small segment of the chromosome (5p14-p15) is present in
four copies (mBAF=0.51, LRR=0). A net loss of one copy for the remainder of the
chromosome results in imbalanced mBAF value and negative LRR value, closely

matching an ABB genotype.

Fig. 7 Karyotypes of two aneuploid tumors and their corresponding theoretical
representations in mBAF/LRR plots. A) A near-triploid tumor. The parental
homologues are colored in yellow and blue, respectively. Relative copy-number
gains are observed for chromosome 22 and 6p. Net losses of material are seen
for chromosomes 9p, 9q, 17p, 69, and chromosome and 13. Copy number neutral
LOH is seen for chromosome 11 for which one homologue is present in three
copies. In the mBAF/LRR plot the majority of segments are in allelic imbalance

(BBA) and located at mBAF=0.67 and LRR=0. Deletions or gains are shifted
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towards either heterozygosity (AB or AABB) or towards increased allelic
imbalance (B, BB, or BBBA). B) A near-tetraploid tumor karyotype and its
representation in mBAF/LRR space. Most segments are located at mBAF=0.5 and
LRR=0. A number of different genotypes are seen for regions with negative LRR
(e.g. BBA, BB, BA, and B). Similarly, a variety of genotypes representing net gain
of material are observed (e.g. BBBAA, BBBBA, and BBBBAA), each with its’

specific expected LRR and mBAF values.

Fig. 8 BAF and LRR in case of tumor and normal cell admixture. A) Schematic
example of a sample containing 2 normal diploid cells and 8 tumor cells with an
acquired deletion (the lost allele is grayed out). The tumor will contribute with
eight B alleles, whereas the normal cells contribute with two 4 and two B alleles.
The expected mBAF for the sample is calculated to 0.83. B) Schematic BAF plot
illustrating a hemizygous deletion in a sample with 80% tumor cells and 20%
normal cells. Germline heterozygous SNPs within the region will not reach their
expected BAF values (0 or 1) since the background of normal cells will
contribute with both A and B alleles. C) Line-plots of expected mBAF for a
number of different genotypes as a function of the fraction of normal diploid cells
present within the sample. For example, a tumor segment with an AAB genotype
has an expected mBAF of 0.6 if intermixed with 50% normal diploid cells. D)
Schematic mBAF/LRR plot of a sample with 80% tumor and 20% normal cells.
The tumor karyotype is identical to the karyotype presented in Fig. 5. Since
normal diploid cells (AB) are present in the sample, the mBAF and LRR for the

respective alterations are shifted towards mBAF=0.5 and LRR=0 along
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theoretical lines (gray). Solid gray circles indicate expected LRR and mBAF

values in case of no normal cells present.

Fig. 9 Schematic mBAF/LRR plot of a sample with a 20% diploid cell background
(80% tumor cells) and two subclonal events within the tumor cell population.
The tumor karyotype is identical to the karyotype presented in Fig. 5, although
50% of the tumor cells also have acquired a gain of 5p (BBA) and a loss of 5q (B).
Since only 40% of the cells in the sample carry these alterations, the respective
mBAF and LRR for these segments will deviate (arrows) from the pattern

observed for the alterations present in all tumor cells.

Fig. 10 Addressing clonal hierarchy using SNP array data. A) Schematic example
of two tumor clones (C1 and C2). The C2 clone has lost one homologue of
chromosome 9. Therefore, subclone C2 cannot be a descendant from C1 (crossed
arrow). The reverse is possible (arrow). B) Definition of imbalance haplotype
(IH). The IH is defined by the series of alleles that are in excess for a given
genomic alteration. In this example a loss of a chromosomal segment is
illustrated. Each SNP within the IH is called from its respective BAF. Non-
informative germ line homozygous SNPs (gray circles) are not considered in the
[H sequence. C) Schematic example of three tumors derived from the same
individual. Identified alterations in each tumor are listed to the left. Incompatible
[Hs for the 5q deletion is indicated by separate colors. A hierarchical tree

describing clonal relationships can be deduced from the given alterations (right).
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Two obligate ancestral clones (A1l and A2, respectively) must be assumed as

intermediate steps to describe the clonal evolution in this example.
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Figure 2
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Figure 4

L T

mBAF

LRR
°

mBAF

LRR
°

53




Figure 5

C 20C )

¢l

——X0

(s o ]
C O )
[ o s}

|
R
o
N
2

—X0
[ o ]

—y
-~
Y
o]
-
w
N
o

5 6
EFRET)

X

ol
[E—.

[ — - =
[S==eu]

[y
[e2]

Gain

Deletion

0.5

Gainl 6p

54

(BBBA)

Q

o

Gain chr 22 :

(BEA) i
@ : CNN LOH
Unaltered H chr 11 (BB)

segments (BA)

Del 9p, 17p,

and chr 13 (B)

0.5 0.67 0.75 1
mBAF
Allelic Imbalance
S
Heterozygous Homozygous



Figure 6
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Figure 7
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Figure 8
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Figure 9
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Figure 10
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