LUND UNIVERSITY

On Sensor-Controlled Robotized One-off Manufacturing

Cederberg, Per

2004

Link to publication

Citation for published version (APA):
Cederberg, P. (2004). On Sensor-Controlled Robotized One-off Manufacturing. [Doctoral Thesis (monograph),
Department of Electrical and Information Technology]. Robotics.

Total number of authors:
1

General rights

Unless other specific re-use rights are stated the following general rights apply:

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.

» Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.

* You may not further distribute the material or use it for any profit-making activity or commercial gain

* You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

https://portal.research.lu.se/en/publications/30f35d9b-9a67-4586-af09-d0fcd04e8bf1

Download date: 16. Feb. 2026

On Sensor-Controlled Robotized
One-off Manufacturing

Per Cederberg

Division of Robotics

Department of Mechanical Engineering
Lund Institute of Technology

Lund University , 2004

Organization Document Name

Lund University PhD Thesis

Department of Mechanical Engineering Date of Issue

P.O. Box 118, SE-221 00 Lund, Sweden 2004-08-27

Phone: +46-46-222 45 92 CODEN: LUTMDN/(TMMV-1058)/1-
78/(2004)

Fax: +46-46-222 45 29

Author(s) Sponsoring Organization(s)

Per Cederberg Vinnova (Komplexa Tekniska System)

Title and subtitle
On Sensor-Controlled Robotized One-off Manufacturing

A semi-automatic task oriented system structure has been developed and tested on an
arc welding application. In normal industrial robot programming, the path is created and
the process is based upon the decided path. Here a process-oriented method is proposed
instead. It is natural to focus on the process, since the path is in reality a result of process
needs. Another benefit of choosing process focus, is that it automatically leads us into
task oriented thoughts, which in turn can be split in sub-tasks, one for each part of the
process with similar process-characteristics. By carefully choosing and encapsulating the
information needed to execute a sub-task, this component can be re-used whenever the
actual subtask occurs.

By using virtual sensors and generic interfaces to robots and sensors, applications built
upon the system design do not change between simulation and actual shop floor runs. The
system allows a mix of real- and simulated components during simulation and run-time.

Keywords

robotics, sensor, control, simulation, task-oriented programming, real-time, world model,
arc welding, one-off manufacturing

Classification system and/or Index term (if any)

Supplementary bibliographical information Language
English

ISSN and key title ISBN
91-628-6289-8

Recipient’s notes Number of pages 123 Price

Security classification

We, the undersigned, being the copyright owner of the abstract of the above men-
tioned thesis, hereby grant to all reference sources permission to publish and dis-
seminate the abstract of the above mentioned thesis.

Signature Date

On Sensor-Controlled Robotized One-off

Manufacturing

Per Cederberg

UNIVERSITY
Akademisk avhandling som fér avliggande av teknologie doktorsexamen vid

tekniska fakulteten vid Universitetet i Lund kommer att offentligen forsvaras i
sal M:E, Tekniska Hogskolan i Lund, onsdagen den 8 dec 2004, kl 10.15.

On Sensor-Controlled Robotized One-off

Manufacturing

Per Cederberg

UNIVERSITY

Division of Robotics
Department of Mechanical Engineering
Lund Institute of Technology
Lund University, P.O. Box 118, SE-221 00 Lund, Sweden

PhD Thesis
CODEN: LUTMDN/(TMMV-1058)/1-78/(2004)
ISBN 91-628-6289-8

(©2004 by Per Cederberg and the Department of Mechanical Engineering, Lund
University.
All rights reserved.

Printed in Sweden
KFS i Lund AB, Lund

Summary

While robots today are cheaper, faster, more reliable andrate than ever be-
fore, they are still mainly used to reiterate preprogramrrapbctories. These
static robot programs are fairly efficient in handling higllume production pro-

cesses, but fail to address problems facing small batch @ manufacturing-

dependent systems.

Off-line programming has reduced the transition time betwgroducts in a man-
ufacturing system, but requires accurate information att@iphysical work-cell.
In practice, the precision needed is seldom possible teaehand costly adjust-
ments have to be taken care of on the shop floor. Other waysdiesslthe
precision deficiencies, besides touch-up on the shop flemexpensive clamping
and design modification.

It is tempting to think that sensors solely should be ableitdge the gap between
a manufacturing potential and the result accomplished.aBuanced application
processes imply more complex relationships; observalyiiahlas are not neces-
sarily controllable and controllable variables are notassarily those that define
the task. Hence, in complex industrial operations, theeenaapping issues in
both directions between not only variables that are daldayesensors and con-
trollable variables, but also between the task specifinati®scribed in terms of
how to reach productivity and quality measures and how tdrobthe process to

obtain such goals.

From the above, a comprehensive view yields the best uraelisty of the prob-
lem. Knowledge of the environment is important in robotiotoanation. The use
of advanced sensors may yield the competitive edge in mdmbsmall batch and
one-off production systems. However, sensors increassytstem complexity.
To avoid, for instance, singularities and collisions, dixis have to be taken at a
system level, during run-time or even before a process itestaThis collection
of system knowledge has been given a name -wibtidd model

Vi Summary

The world model may quite easily be appreciated as a generalept but is
much harder to implement in reality. It depends on processific conditions
and equipment limitations. Computer modeling of sensorabieh is difficult.
Manufacturers of robots, sensors, robot simulation systatt., are as eager to
sell the equipment as they are reluctant to reveal the “bgsisecrets” inside. In
the perfect world, a manufacturer of sensors should be abjfgadvide a black
box, a piece of software that when used in simulations remtigimilar results as
the real sensor. Robot simulations are for instance mongraiectoday than ten
years ago much because of the introduction of a correspgrdahnique, RRS —
Realistic Robot Simulation.

Despite static off-line programming problenasly onerobot program exists after
simulation and can be down-loaded to the robot, and we fatd gasured that the
robot will carry out an identical sequence of instructioastetime the robot pro-
gram executes. On the contrary, if simulating and execudyrgamic programs
that includes sensors, it would also be preferable to bethateertain situations
do not occur, and when we feel assured, we do not wish to be uncexbant
what to expect later on the shop floor. This situation is gditierent compared
to the former, and it seems obvious that a simulation andime-environment
for sensor-driven robots must, besides high quality sitedlgensors, also incor-
porate a realistic work-cell simulation tool with, for iasice, collision detection.

Even if we succeed to copy robots and sensors well, we stitl e decide the
context our world model should grasp and at what abstradtieel people will
interact with the system. Robot motion is usually seen ags@f continuous
moves, but from a human point of view, the process is rathédergtood as a
sequence of discrete steps, tasks and sub-tasks. Thus, amanHevel, it is
favorable to be able to work with components on processdabeit encapsulate
the logic needed to drive the robot and its sensors in the-weltk

The thesis includes a task-oriented structure that deescihibw to organize sim-
ulated and real components in development and deploymesgnsir-controlled

applications. Realistic sensor simulation includes manant of sensor defi-
ciencies. Likewise, it involves sensor APIs that do not atwvehether the sensor
utilized is modeled or real. The proposed structure alsluiles means to organ-
ize an application for allowing users to extend the world eiaalith respect to

process knowledge by applying tasks and sub-tasks as tewsabponents in an
object-oriented way.

As a test and implementation case, the thesis describes arelting application
process where sensors have been utilized: a laser seararfrackstance-sensor
and stereo cameras. The technique is by no means limitec:$e $ensors, but

Vii

they serve to illustrate difficulties that can be handledhmy groposed structure.
Process parameters studied include collision tests amlaiity detection and
avoidance. Particular arc welding process issues havesaot inder study.

By the development and organization of simulated and realpoments in the
proposed structure, the potential of applications thaudws sensor-controlled
industrial robots have been studied. Most components asdajeed in-house by
the author and could be used on any operating system withrrefifart. The
Robot Simulation Application is used as a server for gregdffmedback and colli-
sion tests, and as a tool to create the nominal work-celhithis context, the term
nominal refers to known knowledge of the work-cell's franegpdndencies before
any input from sensors (“how we think the world looks like”Jhe application
and the developed library for high-level robot motion, Rlitanages kinematical
relationships, trajectory creation, error handling, etc.

Sensor-driven applications need to be able to create togjes in run-time. The
included “feeder”, which allows the developed experimeplatform to continu-
ously create trajectories and to send joint values to theadiified industrial ro-
bot used, has provided the means to show the industrial fiatefthe platform
(given the significant limitations imposed by the robot nmfasturer). Still, an
Open Control Systetrwould yield a more appealing solution.

The organization of objects and the level chosen for thetasks they encapsulate
are essential. Their initialization parameters define thesability in different
contexts. The level suggested was chosen considered éhataimple application
was created as a raw C program. The objects define procesfiesgebtasks
and handle a certain set of sensors. By use of an objeddipdfion GUI, a
higher granularity of collaborating objects, or as an akdive, more customizable
objects would probably yield greater reusability withodtieng extra burden on
the user. It is also important that these objects have césgonsibilities in their
relation to the underlying motion control and to other olgec

IMany robot control systems support some type of user |Oseauird to local networks or
buses. An Open Control System would for instance allow aficgijon to read and write the robot
pose with short and predictable latency, something thatdumake the application more robust.

viii Summary

Preface

Acknowledgements

First of all | would like to thank Professor Gunnar Bolmsjd fas contributions

to the research and the guidance throughout the work. | walatilike to express
my gratitude to other colleagues at Division of Roboticpeesally Dr. Magnus

Olsson who | have had the pleasure to share ideas and a |ateafroh hours with,
Dr. Mikael Fridenfalk who has been a great supporter andidsion partner, Dr.
Stefan Adolfsson who has contributed to the experimentalehand Dr. Giorgos

Nikoleris with whom | have had interesting discussions marel to seam tracker
calibration methods.

| have also appreciated the cooperation with the DepartmfeAtitomatic Con-
trol and Department of Computer Science at Lund Universitywould like to
thank Professor Rolf Johansson, Dr. Klas Nilsson, Dr. As@Rabertsson, Techn.
Lic. Mathias Haage and Techn. Lic. Tomas Olsson for theiregaums help and
interest in my work. | am also grateful to Professor Rolanddhufor his valu-
able comments respecting the content and the language air Qhrister Boiers,
Department of Mathematics, for guidance on issues relatedlibration and, fi-
nally, to Dr. Jacek Malec, Department of Computer Scienmeadlvice in mobile
robotics. Financial support from Vinnova “Complex Teclowital Systems” is
gratefully acknowledged.

Research work is often stimulating and energizing but sonestimplies isolation
and frustration. | therefore wish to express a special twidgito my dear friends,
Richard Weston and Arne Ingemansson, for their concern gedt@n through
good and hard times.

Finally, my© belongs to my family, especially my beloved wife Meta anddrtk
her for just being here for me.

Per Cederberg, Lund, 2004

Preface

Papers

The thesis is based on the following papers:

A.

Cederberg, P., Olsson, M. and Bolmsjo, G. (1999), A GenegitsS8r In-
terface in Robot Simulation and Contrah, ‘Proceedings of Scandinavian
Symposium on Robotics 99’, Oulu, Finland, pp. 221-230.

. Cederberg, P., Olsson, M. and Bolmsjo, G. (280Remote control of a

standard ABB robot system in real time using the Robot Al Pro-
tocol (RAP),in ‘Proceedings of the International Symposium on Robotics,
ISR2002’, IFR, Stockholm.

Cederberg, P., Olsson, M. and Bolmsjd, G. (2002Virtual triangulation
sensor development, behavior simulation and CAR integragipplied to
robotic arc-welding’ Journal of Intelligent and Robotic Syste%4), 365—
379.

. Cederberg, P., Olsson, M. and Bolmsj6, G. (2004), ‘A senoiaattic task

oriented programming system for sensor-controlled rgledtismall batch
and one-off manufacturing’. Submitted to Robotica at theetof printing
of this thesis.

. Olsson, M., Cederberg, P. and Bolmsjo, G. (1&99Integrated system for

simulation and real-time execution of industrial robok&# ‘Proceedings
of Scandinavian Symposium on Robotics 99’, Oulu, Finland,291-210.

Olsson, M., Cederberg, P. and Bolmsjo, G. (1999ele-Robotics for Sen-
sor Driven Industrial Robot Tasks) ‘Proceedings of Deneb User Confer-
ence 99, Troy, MlI, USA.

. Olsson, M., Cederberg, P. and Bolmsj6, G. (2002), Integmatif Simu-

lation and Execution in Industrial Robot Systens,Proceedings of the
International Symposium on Robotics, ISR2002’", IFR, Statin. paper
No. 112.

. Bolmsj6, G., Olsson, M. and Cederberg, P. (2002), ‘Robotic Weld-

ing - Trends and Developments for Higher Autonomlyidustrial Robot
29(2), 98-104.

. Johansson, R., Robertsson, A., Nilsson, K., Brogardh, &detberg, P.,

Olsson, M., Olsson, T. and Bolmsjo, G. (2004), ‘Sensor Irgttgn in Task-
Level Programming and Industrial Robotic Task Executioni@®’, Indus-
trial Robot31(3), 95-102.

Xi

J. Blomdell, A., Bolmsjo, G., Brogardh, T., Cederberg, P.kkson, M., Jo-
hansson, R., Haage, M., Nilsson, K., Olsson, M., OlssonRdhertsson,
A. and Wang, J. J. (2004), ‘Extending an industrial robottoaler with a
fast open sensor interface — implementation and applitsitio Accepted
for publication in Robots and Automation.

Xii Preface

Contents

Summary s
Preface iX
1 Introduction 1
1.1 ResearchProblem 1
1.2 ResearchObjective 1
1.3 Outlineofthesis., 2
2 Materials and Methods 5
2.1 Introduction 5
2.2 Methodology0, 6
2.3 ScientificMethod 7
2.4 System Modeling Hardware 7
2.5 System Modeling Software 7
3 Waeding 9
3.1 Introduction 9
3.2 Jointtypes 9
3.3 Weldprocessvariables 10
3.4 Weldtechniques e 10
35 Welderrors 11
3.6 Weldmanagement., 12
3.7 Manualwelding 12
3.8 Roboticwelding. 13
39 Weldmethods 14
391 Arcwelding. 0. 14
3.9.2 Laserwelding. 15

3.10 Sensor technology normally applied to robotic welding 16

3.10.1 Wiretouchsensing 16

Xiv Contents
3.10.2 Through-arcsensing 17
3.10.3 Vision-guided line scan systems 17
3.10.4 Vision-guided circular scan systems 71
3.10.5 Calibration of linescansystems 17

3.11 Designing for automated systems 8 1
3.11.1 Tooling and fixtures 18
3.11.2 Parttolerances 19
3.11.3 Jointdesigndecisions 19
3.11.4 Parameterization of robot programs 20

3.12 Conclusions 20

4 Programming of robots 23

4.1 Introduction 23

4.2 Industrial robotics programming 4 2
4.2.1 Teachprogramming 24
4.2.2 Off-line simulationsystems 25
4.2.3 “Automatic robot programming” 26

4.3 Approaches used inresearch projects 27.

4.4 Programminglanguages 0. 28
4.4.1 Motion-oriented programming languages 28
4.4.2 Task-oriented robot programming languages 9 2

4.5 Task-level programmingsystems 30

4.6 Robot programming libraries and environments 34
4.6.1 OroCOS o v v v i it e 34
46.2 Pyro. 35
4.6.3 Robotics Toolbox forMatlab 35
46.4 SPACELIB, 36
46,5 ROBOOP 36
4.6.6 OpenDynamicsEngine 37
46.7 Simderella 37
46.8 GameEngines, 38

47 Conclusions 38

5 High-level control 41

5.1 Introduction 41

5.2 Artificial intelligence oL 42
5.2.1 Atrtificial intelligence applied to industrial robcgi 42

5.3 Sensors e 43
5.3.1 Sensorsimulation. L. 43

5.3.2 Sensorfusion 45

Contents XV

5.4 High-level control of industrial robots with examples. 46
5.4.1 Example: Asurgical robotsystem 47
5.4.2 Example: A meat-processing robot system 48
5.4.3 Example: Experiments using an open control architect 49

5,5 Conclusions 49

6 Motivation 51

6.1 Introduction 51

6.2 Manufacturing of one-off products 25

6.3 Conceptualideas 53

6.4 Conclusions e e e 55

7 Contribution 57

7.1 Introduction 57

7.2 Scopeandlimitations, 57
7.2.1 Development of virtual sensors/robots 8 5
7.2.2 Generic interfaces to robots and sensors 8. 5
7.2.3 Run-timelibrary 59

7.3 Main objective: A semiautomatic task-oriented prograng model 59

7.4 Systemphilosophy 60

7.5 General systemstructure 61
7.5.1 Definition of the nominal model 61
7.5.2 Theruntimemodel. 62
7.5.3 Supportinglibraries. 63
7.5.4 Process-oriented parameterization 4. 6
7.5.5 Visualization of work-cell components 65
7.5.6 Objectaspects 66

7.6 Conclusions 68

8 Experimental system structure 71

8.1 Introduction 71

8.2 Application 72

8.3 Feeder 73
8.3.1 RAPIDlanguage 73
8.3.2 Remote Procedure Call and External Data Represamtati73
8.3.3 High-level remote motion control 74
8.3.4 Remote editing and compilation of RAPID programs . . 7 7

8.4 Stereocameras e e 77

85 Tracker 77

8.6 Physical tracker components L. 79

XVi Contents
8.6.1 Laserscanner 79
8.6.2 Controlunit. 79
8.6.3 Processing algorithms 79
8.6.4 Image-processing region and breakpoints 0. 8
8.6.5 Weld jointrecognition 81
8.6.6 Processresults 81

8.7 Simulatedlasercamera 81
8.7.1 \Virtuallaserscanner 81
8.8 Simulated controlunit. 83
8.8.1 Segmentationprocess. 83
8.8.2 Filletjointtemplate matching 83
8.9 Distance-sensor e 84
8.10 The RSAanditsresources 84
8.10.1 Export of the nominal kinematic relationships 84
8.11 Applicationobjects 0 84
8.11.1 Searchobject 85
8.11.2 Startpointobject 85
8.11.3 Weldobject 85
8.11.4 Obstacleobject 85
8.11.5 Endweldobject. 86
8.12 Application object interaction mechanisms 86
8.13 RLib, the high-level motion control library 86
8.14 Theworldmodel 87
8.15 Conclusions 87
9 Experimental work 89
9.1 Introduction 89
9.2 Creating and importing the nominal model 91
9.3 Reading nominal data and initiating application olgect. 91
9.4 Improving the workpiece nominalpose. 29
9.5 Execution of start and search simulation objects 93
9.6 Start point search and trajectory creation 94
9.7 Finding the start point and weld path generation 95
9.8 Workpiece calibration, 95
9.9 Singularity check and collision detection 96
9.10 Welding from the start point towards the relnforcement 96
9.11 Handling the reinforcement 96
9.12 Welding from the reinforcement 98
9.13 Conclusions 98

Contents

XVii

10 Discussion

10.1 Introduction
10.2 Sensor modeling, simulation and integration
10.3 Simulation and execution of sensor-guided robots
10.4 FutureResearch

11 Conclusions

XViii Contents

Chapter 1

Introduction

Industrial robot utilization of today is optimized for laadatch manufacturing.
Large batches are needed since high costs caused by, foméastobot program-
ming, touch-up on the shop floor and clamping, largely preusgtustrial robots
from being used in small batch or one-off manufacturing.

1.1 Research Problem

As mass production of large-lot items moves to less labpessive countries, it
is believed that if one is able to successfully introduceugidal robots in small
batch manufacturing and in one-off manufacturing, thedased automation will
yield the edge to stay competitive in a changing market.

By introducing advanced sensors, these costs are assurbeddaduced. Today’s
programming technique, using off-line systems that cretgtc programs, which
are downloaded to the robots, assumes that advanced sensbras cameras and
seam trackers are not used, since no sensor feedback islguioexcept in local
loops.

1.2 Research Objective

The presented objectives below have the overall objeatidevelop a concept for
utilization of sensor-controlled industrial robots foreenff manufacturing. Scope
and limitations of the thesis are specified in Chapter 7.

2 Introduction

Research objective 1 Sensor modeling, simulation and integration

Develop methods for sensor simulation and integrationrimukation and execu-
tion environments.

The concept of (modeling of) virtual sensors and generic@emterfaces is
presented and is applied to arc welding. A virtual arc wejdiansor and its gen-
eric interface to graphical environments and control umitge been developed.

Resear ch objective 2 Simulation and execution of sensor-guided robots

It is apparent that realistic sensor simulation and ruret@mecution of sensor-
guided robots cannot be performed using today’s mechanisimesre no inform-
ation is fed back to the model in which the robot program weasied. To avoid
the problem of differences between simulation and exesuifapplications that
include sensor-guided robots, find a structure that allogiagle source code and
a transparent transfer between simulation and execution.

A structure parameterizing on reusable objects repreggatib-tasks, and the un-
derlying run-time system is presented. It permits exeoutibhigh-level control
on a single nominal and predictable model. Generic robotsemdor interfaces
developed, which allow an application to transparentlyutate and execute ex-
perimental welding operations, are utilized.

1.3 Outline of thesis

This Chapter has given some introductory perspective tadkearch area and
formulated the problem and the objective of the thesis. @haB-5 give the

necessary background to the main part of the thesis, Clsaptend 7. Besides
this Chapter the thesis outline is as follows.

Chapter 2 starts with the methodology behind the thesisallwiis up with some
words about the scientific method used and a summary of thelingdools.

Chapter 3 gives an introduction to welding, the chosen éxytal case area of
the thesis. Welding is complicated and when robotized amfbpeed with the
use of sensors, it is even more complex and the Chapter sra@atenderstanding
to the problems.

In Chapter 4, robot programming is discussed, both from dasgtrial robotics
view and from the viewpoint of research. Examples of non{zemcial robot
programming libraries and environments are also given.

The high-level control Chapter, No. 5, comprises reasongtid against Artifi-

1.3 Outline of thesis 3

cial Intelligence, general sensor concepts and theirioelab industrial robotics.
High-level control is still an important research area, ardmples of developed
applications are given.

The main part of the thesis is described in Chapters 6 andapt€h6 is important
as it gives a background to the choice of research area antifiee small batch
manufacturing and one-off manufacturing as an importashistrial focus for the
years to come. Chapter 6 also presents the conceptual itiesveork presented
in Chapter 7.

The thesis contribution is described in Chapter 7. Scopeliamthtions of the

thesis are specified. Then, it continues with the philosdpdlyind the research
work and describes a model for sensor-controlled robotfieahto arc welding.

Some parts of the implementation are discussed, but the foairs is on the
methodology.

In the experimental system structure Chapter, i.e. No 8pthposed system of
real and computerized components built to enable a tagkdmd application to
operate is described.

In Chapter 9, the experiments are depicted. They show howytstem handles
process-related events during run-time in a system whetearel simulated ob-
jects (robots, sensors, workpieces) are transparengycimingeable.

A wider discussion of the implications by the thesis is take@hapter 10 where
after conclusions follow in Chapter 11.

Introduction

Chapter 2

Materials and Methods

A SEAMAN MEETS A PIRATE IN A BAR, AND THEY TAKE TURNS TO TELL THEIR ADVENTURES ON THE SEAS.
THE SEAMAN NOTES THAT THE PIRATE HAS A PEG LEG, HOOK, AND AN EYE PATCH.
CURIOUS, THE SEAMAN ASKS "SO, HOW DID YOU END UP WITH THE PEG-LEG?"
THE PIRATE REPLIES "I WAS SWEPT OVERBOARD INTO A SCHOOL OF SHARKS.
JUST AS MY MEN WERE PULLING ME OUT, A SHARK BIT MY LEG OFF".

"WOW!" SAID THE SEAMAN. "WHAT ABOUT THE HOOK"?

"WELL...", REPLIED THE PIRATE, "WE WERE BOARDING AN ENEMY SHIP

AND WERE BATTLING THE OTHER SAILORS WITH SWORDS.

ONE OF THE ENEMY CUT MY HAND CLEAN OFF."

"INCREDIBLE!" REMARKED THE SEAMAN. "HOW DID YOU GET THE EYE PATCH"?
"A SEAGULL DROPPING FELL RIGHT IN MY EYE", REPLIED THE PIRATE.

"YOU LOST YOUR EYE TO A SEAGULL DROPPING?" THE SAILOR ASKED.

"WELL..." SAID THE PIRATE, "THAT WAS MY FIRST DAY WITH THE HOOK."

2.1 Introduction

Laboratory experiments seldom surprise the researcheurmtibning immedi-
ately; it may not be easy to receive data from some equipnfentifferent reas-
ons: the manual is not up-to-date and does not explain tHerped method of
how to communicate, or the often cryptic communicationrfaige may have been
invented at a time with low bandwidth. Sometimes, the eqgeipintoes not work
at all which may only be discovered after tedious test wotthis Tvas the also the
case during the experiments in this thesis. The sensor udatbtiseem to ac-
cept any data requests sent to it at all. It was noticed ratidy but for different
reasons it took a while before it was decided to ship the 5Gckga@ control unit
overseas for service.

Time constraints made it necessary to test the performdhbe various compon-
ents although the actual hardware was missing. This resinltthe development
of a tracker control simulator with a GUI and two seam tradkéerfaces, one

6 Materials and Methods

simple and dedicated to the current task, and one underéyidgnore complete.
The interfaces were generic in the sense that the sensotlatsystem compon-
ents did not have to change for using the hardware after atioal This matter
plays a key role in the thesis.

2.2 Methodology

The methodology is based on earlier research and refleatioi®w to create a
structure that benefits most from advantages of sensorsinsgdall batch and
one-off manufacturing cases while minimizing possibleadracks. A number of
systems exists for off-line programming purposes, but e found unsuitable
for on-line execution of sensor-driven robots for diffaresasons. An important
reason is the lack of an environment that allows both deveéop and deployment
of sensor-driven processes. A run-time environment neiadgtactice, robots
with Open Control Systems (OCS). OCS is important, becaeséions based
on (global) sensor information can be taken and trajecar@ be produced in
real-time and executed by the low-level robot controller.

An experimental platform has been developed, which isfiated to a commer-
cial robot system. Because of the limited openness of cogiadepbot systems,
the platform developed also has had to cope with significatieinties. By the
choice of a slow process — arc welding — as the example application, it has bee
possible to conduct experiments. It includes a library,Rfdr high-level robot
motion control in soft real-time. Furthermore, two virts&nsors, which both are
soft replicas of real industrial sensors with similar cletedstics, and an applic-
ation built on object-oriented principles, have been dgwved. The platform also
includes a “feeder” that permits joint values to be sent tommercial robot in
real-time and allows high-level control during execution.

The application defines a task as a number of instances dfaskb-that can be
re-used in related contexts. A commercial robot simulaggstem is used to
graphically perform any robot motion induced by the appitcaand produced by
the library. Any component, robot or sensor in the system gither be simulated
or real. Moreover, a mix of these components may coexishdwgkecution. This
is manageable by the use of a world model that keeps virtubieal components
synchronized. The platform is not dependent on a particitaulation system
and any system that is capable of providing means to resmorefjiests via the
experimental platform’s API will do well.

Slow considering the travel speed of the robot.

2.3 Scientific Method 7

The experimental system would, with minor modificationsubable in an indus-
trial test case. With support from OCS, the precision wounkidéase drastically,
thereby widening the industrial opportunities.

2.3 Scientific Method

Scientific work methods are the processes by which scismtisate a reliable and
consistent representation of the world. The use of proesfiaims to minimize
influences of cultural and personal beliefs in our percegtiand interpretations.
These methods can assist in getting sufficient as well agatoand structured
information compiled and expressed in an understandatdegement (Patel and
Tebelius, 1987).

2.4 System Modeling Hardware

Most system development and evaluation has been done ohv@@Bkstations

running the IRIX operating system. The M-Spot laser scarthephysical tracker
and two Unibrain Fire-i-400 cameras each equipped with anrHens are equip-
ped with setup and GUI software that only run on DOS/Windbased PCs. All

other software is developed in-house, and the chosen lgag@ has made it
possible to compile and run it at home on an Apple Workstagiquipped with

the MacOSX operating system.

The robot used is a standard ABB IRB2400/16 with the S4C+trobotroller.

2.5 System Modeling Software

During experiments, IGRIP from DELMIAhas been used. IGRIP is a com-
mercial 3D Robot Simulation Application (RSAthat includes tools for design,

2However, good procedures mainly create a foundation foreéeearch work when the idea is
already there. If we know what we do not know, a good researoteglure may be of great help.
Insights in the subject of research that is gained throughisyef experience increases research
efficiency but do also limit the creativity. What is of moreilpsophical interest is how new ideas
originate. How do we find out the things we do not know that wexdbknow? It is the author’s
belief that chance and pure co-incidents are probably the faetors of real invention.

3Formerly Silicon Graphics, Inc. http://www.sgi.com

“Digital Enterprise Lean Manufacturing Interactive Appgliions. http://www.delmia.com

®RSA is not an established abbreviation but will be used is tinésis.

8 Materials and Methods

evaluation and off-line programming of robotics work-sellt has been extended
with custom logic in C using IGRIP’s shared library techrgylo

It is only a minor part of the system that is developed as aensibn to IGRIP.

Most of the system code, underlying routines to support p@ieation devel-

opment, and the example application itself have been pnomeed in separate C
programs. Some implementations are in JAVA. Chapter 7 descthe supporting
code in more detail.

The running program on the robot controller is developethénABB RAPID lan-
guage. Communicating software between the system codéhandltot has also
been developed in C and has followed the ABB RAP API and theNbigrosys-
tem$ RPC API.

Shttp://www.sun.com

Chapter 3

Welding

3.1 Introduction

Welding can, according to Merriam-Webster, be defined asutiibe (metallic
parts) by heating and allowing the metals to flow togeth&téiriam-Webster’'s
Collegiate Dictionary, 11th Edition2003). Welding can be performed by one of
the two major welding processes — spot welding and arc welditere, only arc
welding will be discussed. In welding, the base materia¢sjained by having
their respective abutting faces melted. In some weldinggsses, mainly during
laser welding and TIG welding, only the base material melf®tm the weld. In
other processes a filler material is added to the joint.

3.2 Joint types

There are basically two major joint types — fillet weld andthwld, see Figure

3.1. Fillet welds are triangular in cross section and fortvieen two surfaces that
are not in the same plane. The weld metal is placed alongsalemo surfaces.

Butt welds are applied between two components, normalihéndame plane.
The weld metal creates continuity between the componenteerQveld types,

for instance corner weld, lap weld and edge weld can be ceresidas special
variations of these two types (Chester, 2004; AWS, 1976).

10 Welding

Toe

P@ Face
9

Leg Length/‘

Gap \
Root

Figure 3.1: The two major joint types — fillet weld (left) and butt weld.

3.3 Weld process variables

Welding may look uncomplicated but is really a sophistidgbeocess. The two
weld types mentioned must be treated differently dependeshape, size and a
number of other process variables, for instance: gaps leetitre plates, travel
speeds, electrode selection, electrode angles, and theimuced strain. Fur-
thermore, different techniques must be used if the weldagiyced horizontally,
vertically or overhead (AWS, 1976).

3.4 Weld techniques

Two different welding techniques are applied based on hogewield bead one
want to achieve: straight welding and weaving. In straightding, the size of
the weld pool can be adjusted by selecting a proper weld speddize of the
electrode. If a wider bead is needed, several passes djtttraeld beads can
be used. A wider bead can also be achieved with a smalleradiecby laterally

moving the tip across the weld puddle. The weaving is nogmatiited to a

movement twice the diameter of the electrode. Weaving igdes, which differ

in the shape, exist as well (AWS, 1976).

3.5 Weld errors 11

3.5 Weld errors

The goal is of course to achieve a “perfect” weld, but theee rmany pitfalls.
Crackscan occur in both the base metal and the weld metal as a résuddding.
Therefore, the composition of base and weld metals is iraparfToo high current
produces excessive concavity. A too large electrode, me shvel speed or too
low current will create slag entrapment on the root of thedwd3oth concavity
and slag entrapment will reduce the throat thickness andleaalyto cracking of
a shrinking weld and a restrained joint.

Besides cracksyndercutis considered a severe defect. Undercut is a term for a
sharp narrow groove along the toe of the weld due to the stgaition of the arc
removing the metal and not replacing it with weld metal, amsa Figure 3.2. It
reduces the cross sectional area and provides a notch ehett-affected area of
the joint, raising the stress and acting as a nucleus of énitéktion and possibly
causing fatigue failure. It is often caused by incorrectetae angles, incorrect
weaving technique, excessive current and too fast trawsdplf, on the other
hand, too much molten metal is flowing within the joint aredhaut sufficient
direct arc action on the base metal beneath, another difekinpf fusion occurs,

see Figure 3.2.

Undercut

Lack of fusion\ Incomplete penetration

Figure 3.2z Common weld defects: undercut, lack of fusion and incormlen-
etration.

Slag inclusiongmay occur if penetration of the weld is incomplete and there i
lack of fusion. Insufficient cleaning of slag along an undétoe of a multi-pass
weld and incorrect electrode manipulation can also cawsgistlusions. Other
reasons are excessive weaving and the use of a too largeodeciameter in a
narrow groove, or too low amperage. Slag inclusions redoeetoss sectional
area strength and may serve as an initiation point for sedoacking, particularly
in harder steels (Chester, 2004; AWS, 1976).

12 Welding

If incorrect current and size or type of electrode is choseif the electrode is
poorly manipulated, aimcorrect profilemay be the result. Besides appearance
deficiencies, the overall strength of the joint is also défddy excessive concavity
or convexity.

Incomplete penetrationccurs when the weld does not penetrate to the root, res-
ulting in insufficient throat thickness and reduced joimesgth, see Figure 3.2.
Insufficient root gap, too large electrode, too low currentnzorrect electrode
angle all contribute to such imperfection.

Finally, porositymay arise as a result of coating breakdown due to excessive cu
rent or moisture pickup by the electrode and absorption giuinties from the
base metal.

Besides these weld errors, the expansion caused by the imiag evelding and
the subsequent contraction as the metal cools down may neslistortion from

the original or expected shape. It is therefore importanwéhding to carefully
plan the placements and order of welds, preheats, joinapatipns, use of jigs,
etc (Chester, 2004; AWS, 1976).

3.6 Weld management

Besides avoiding weld errors it is even more important te lip to specifications.
These are normally defined in Weld Procedure Specificatib®Ss, and in qual-
ity control records, NDEs. WPS is an instruction sheet tatgdetails of how
the weld is to be performed. Its purpose is to aid planningarality control of
the welding operation. A WPS may cover a range of thicknesiameters and
materials and is required for demonstration of the abilityptoduce welds with
required mechanical and metallurgical properties. Exaspf Non Destructive
Examination methods are: Eddy current testing; Ultrasteak detection; X-ray
diffraction and Visual inspection. Finally, it is also nesary to demonstrate that
the welders have the required knowledge and skill to do acgewrk. Certain
weld tests exist to assure this, see (Dyson, 2004) and (Bowi®89) for more
information.

3.7 Manual welding

Manual welding is still an important production process. nylareas still ex-
ist where welding robots cannot provide the flexibility ofnan workers. This
applies especially to workpieces that are too large to bdlkdrby standard weld-

3.8 Robotic welding 13

ing robots. Another problem is geometry changes due to istattion during the

welding process especially in case of multilayer weldirgnething that a manual
welder (but not an automated robotized system) may be aldertpensate for.
Because of these reasons many advantages of welding rabuotetde realized
(Helms, Schraft and Hagele, 2002).

A human worker is able to start welding with no further instran or teaching,
while the teaching of a welding robot can be very time-corisgnespecially for
small batch sizes and multiple curved welding trajectorfasother advantage of
manual welding is offered by the possibility to change int@or process variables
like current, welding angle and feed rate instantly. This icaprove the welding
quality (Helms et al., 2002).

3.8 Robotic welding

There are two popular types of industrial welding robotsticatating robots
and rectilinear robots Rectilinear robots move in line along any of three axes
(X,Y, Z). In addition to linear movement, there is a wrist that allowstional
movement. Articulating robots employ arms and rotatingt@iand are the type
of robots focused on in this thesis. Robotic welding needsetengineered dif-
ferently from manual welding and there are a number of factbat must be
considered, for instance (McCabe, 2003)

e the number of axes needed,

e reliability and maintenance of the equipment used,

e accuracy and repeatability demands,

e fixture planning,

e calibration and programming of robots and sensors,

e seam tracking and other sensor system demands,

e control issues of robots and sensors,

e arc welding or laser welding equipment, and

e positioner and part transfer issues.

1A common configuration combines the two with a XYZ gantry amdaaticulating robot
hanging upside down from the gantry.

14 Welding

To reach an arbitrary pose in 3D space, six-axes robots adedebut if seam
tracking is not used, welding can sometimes be a five-axisga® The sixth
axis is then free for rotation about the weld-wire which isragmsed method to
avoid singularities (Olsson, 2002). Besides the six axefgreal ones may as
well be necessary to position the work-piece or to be abledeeraround large
work-pieces.

Even if modern industrial robots are considered robust atidhle, they need
scheduled maintenance on a regular basis. Preventiveenamte could keep
a robot from experiencing major breakdown. Most robot macitufrers have
courses on robotics maintenance. Robot maintenancengaiméludes: training
on safety operations, basic operations, periodic mainmaountermeasures for
troubles and exchange of worn units for recovery (Fulle@40 The robot’s ro-
bustness may not be the weakest link in the chain. Tools;exdhangers and
other equipment will also have to be checked and possiblgireg or exchanged.

Mechanical movements cause physical wear, and electromiepsupplies, sen-
sors, and analog-to-digital converters change in valuk age. Preventive main-
tenance should include checking for possible accuracyegpehtability problems.
Recalibration of the robot requires adjustment or repladnof mechanical or
electronic parts. Sensor calibration is as equally imporss robot calibration
and orientation is often harder than positioning for cdroadibration.

3.9 Weld methods

Several weld methods exist, each with different advantagdsirawbacks associ-
ated with the welding engineering problem to be solved. Ththods pertinent to
this thesis are briefly discussed below. For outline of te®tatical and practical
basics of welding and metallurgy, special literature imnamended (Cary, 1997).

3.9.1 Arc welding

Welding is one of the major applications in the use of indaktobots. Arc weld-
ing is a predominant application area for industrial rot®tnd the process nor-
mally includes control of positioning of the welding-torahd control of weld pro-
cess variables in real-time. Different materials and qualéemands need diverse
approaches and many methods and variants exist. The most@otechniques
will be discussed here.

3.9 Weld methods 15

Gas Tungsten Arc Weldingl1G?) is a commonly used high quality and high
precision welding process. In TIG welding, an arc is formetween a non-
consumable tungsten electrode and the metal being weldad.isGed through
the torch to shield the electrode and molten weld pool. Iéfillvire is used, it
is added to the weld pool separately. TIG welding may reqgiieater dexterity
than other welding methods and has normally lower depaositites and may be
more costly (AWS, 1976).

Plasma Arc WeldindPAW) is achieved by establishing the arc and generating
the plasma inside the torch head. The plasma reaches teompsras high as
30000°C near the tungsten electrode and exits the torch througtal-diameter
aerodynamically designed constricting orifice that caddlies the plasma and dra-
matically concentrates its energy into a beam-like, higloeity stream. The
small-diameter constrained plasma column provides dineakt control and pro-
duces narrower welds than the TIG process as well as deepetration for the
same energy level. The higher energy density of the coratedtplasma heats the
weld joint more rapidly and significantly decreases the sizthe heat-affected
zone adjacent to the weld (Eckart and Francoeur, 2002).

Gas Metal Arc WeldindGMAW) is frequently referred to aMIG3 and MAG*
welding. In this context, an inert gas is one that does nattreéh the molten
material. MIG and MAG welding are high deposition rate psssEs where the
wire is continuously fed from a spool. The shielding gas fertme arc plasma,
stabilizes the arc on the metal being welded, shields tharatenolten weld pool,
and allows smooth transfer of metal from the weld wire to tlwtem weld pool.
The primary shielding gas in MIG welding is argon mixed witdibm. In MAG
welding, argon containing a small proportion of carbon @lexor oxygen is an
example of an active gas (McCabe, 2003; Sedlenieks, 2004).

The travel speeds achieved with arc welding is in the ran@e25 to 2 meters per
minute.

3.9.2 Laser welding

Laser beams have been applied for welding since the inveafilaser techniques.
In the early 1970s, laser beams where used for thick stetd plalding using
experimental carbon dioxide lasers with output power ediceelOkW. Applica-
tions for laser welding have increased steadily. Todagrlaglding is versatile

2Tungsten Inert Gas
3Metal Inert Gas
“Metal Active Gas

16 Welding

with power ranging from a few hundreds to 60kW and can be agb as differ-
ent areas as joining miniature electronic components amdingesteel structures
thicker than 25mm (Farson and Duhamel, 2001).

The laser welding process speed and penetration conttibitsehigh productiv-
ity compared to arc welding. Speeds range from 1 to 10 megmnnute and are
even higher for sheet metal applications with thin matehekness. In addition
to single pass welding at relatively high speed, the lasecgss commonly does
not utilize filler material that is necessary for multiplags arc welding. Further-
more, the deep penetration characteristic of laser weldsllysallows single-pass
welding, and finally, since laser welding is a process withimum thermal dis-
tortion, fixturing may be simplified, resulting in shorterafting and unloading
time and lower fixture cost (Farson and Duhamel, 2001).

3.10 Sensor technology normally applied to robotic welding

Tight tolerances and other requirements for automatedimgetday not always be
possible to achieve. This, however, does not automatidalpty that robotized

welding is out of the question; sensory technology can sionest be used for
seam location, seam tracking, torch distortion compemsatinetrology and to
localize form errors. The most important techniques wditoday can be divided
into

e wire touch sensing,
e through-arc sensing,

e vision-guided line scan systems, and

e vision-guided circular scan systems.

There exist also variations on the methods described here.

3.10.1 Wire touch sensing

After applying a sensing voltage to the weld wire, the rofsopiogrammed to
move to a series of positions relative to the weld joints. Tdw point position

is recorded when the wire touches the part and the voltagesdoozero. After a
series of touches, the position of the joint found relativéhie original program
is calculated and the original program is adjusted. Thertigcte is not applicable
to all joints, materials and shapes (McHaney, 2001).

3.10 Sensor technology normally applied to robotic welding 17

3.10.2 Through-arc sensing

The robot is programmed to weave the arc across the weld jd@iné weaving
results in a current change in the weld power supply and thet imontrols offsets
in the programmed trajectory to bring the weld current back specified level.
As with wire touch sensing, this technigue cannot be apptied joints, materials
and shapes (McHaney, 2001).

3.10.3 Vision-guided line scan systems

A laser camera is mounted a distance ahead of the weld torohacéurate po-
sition of the weld, down to 0.1 mm, and process variables sschap and joint
angles, are measured. Based on an accurate calibratioa cdihera’s pose com-
pared to the weld torch, the weld pose is calculated and tiarepsed with regard
to the weld speed and saved in a circular array of calculadhaes. The array
length is proportional to the sensing speed and/or accuraeged. But vision-
based systems have drawbacks as well. Robotized weldiragrizatly a five-axis
process and a sixth axis can be utilized to avoid singudarltly rotation along the
sixth axis (Olsson, 2002). However, the vision system, gmév rotation by its
need to be nearly perfectly perpendicular to the weld dwactAnother problem
is that despite the small size of modern laser cameras, theyake the robot
system more sensitive to collisions.

3.10.4 Vision-guided circular scan systems

Using a circular scan rather than a line scan, three-diraeakidata can be ob-
tained from a single measurement. If the circle crossesébmdwice, the tra-
jectory can also be calculated within one scan. A circulansgystem is usually
slower than a line scan system.

3.10.5 Calibration of line scan systems

When relying on a sensor for guidance, any initial calilortinaccuracy or sub-
sequent misalignment during production will result in agbbystem that con-
sistently produces defective parts, unless this can quigktl automatically be
detected and corrected. Laser welding is a technique tmaaulgs extreme spa-
tial accuracy with which the robot must position the focainpof the laser with
respect to the joint to be welded.

18 Welding

Determining the transformation that defines the sensordratith respect to the
wrist frame is referred to as the “sensor mount registrgtimiblem” and was first
addressed by Shiu and Ahmad (Shiu and Ahmad, 1989). Sevbeslapproaches
for obtaining a solution have been presented, see (Chou antkK 1988; Tsai
and Lenz, 1989; Zhuang and Shiu, 1993; Park and Martin, 1994)

In (Huissoon, 2002), a calibration system consisting offaremce object and a
laser focal-point sensor is described. The reference plgatesigned so that a
structured-light seam-tracking sensor can be used tordigteruniquely the pose
of a frame associated with the reference object with regpexframe associated
with the seam-tracking sensor solving a set of linear eqnatising the singular
value decomposition (SVD) technique.

According to Huissoon, the technique works well with sinbethdata but is prone
to measurement noise and provides only a good estimate witeal aneasure-
ment data are used. However, by solving the forward probgwen an assumed
sensor frame pose with respect to the reference objectptiatidn of the edges
in the sensor image can be predicted. By using the solutioviged by the SVD
algorithm as an initial estimate of the sensor pose, a nilddsional optimiza-
tion technique such as the Simplex algorithm can be useditilgiconverge to
the sensor pose that provides a general least squares beshéitmeasured edge
locations (Huissoon, 2002).

3.11 Designing for automated systems

A simple but efficient type of tooling uses fixed locators aaddhclamps to secure
the part. With larger volumes more sophisticated appraasheh as pneumatic
or hydraulic clamping, part-presence sensing and autafpatic clamping can
be used. Products designed with arc welding in mind may nikginthe costs and
problems associated with jigs. By applying laser cuttinfig#ess approach can
be utilized. However, the method requires relatively lavgkimes to cover its
increased product development costs.

3.11.1 Tooling and fixtures

Air-driven actuators reduce load/unload time and improrgoeomics for fix-

tures that require a large number of clamps if clamping goare not easily
reached and if high clamping forces are needed. By addingppesence sen-
sors, the robot system can confirm that parts have been prdpaded before
part-processing starts. Auto-pneumatic clamping contbpreeumatic clamping

3.11 Designing for automated systems 19

and part-presence sensing. This tooling is controlled by @°Ro allow part-
presence confirmation, clamp position sensing, clamp s@iug and extension
or retraction during welding (AWS, 1976).

It is important to determine if the tooling and fixturing epoient should hold a
pre-tacked subassembly or to hold individual pieces irr #veact locations while
they are being welded together. Holding individual piecesrd) a welding se-
guence is much more complex since they must be held securdheir relat-
ive position as the positioner moves and rotates at highdspaed accelerations
(Crowe, 2001).

3.11.2 Part tolerances

To increase productivity in an automated system, the part® twelded and the
system itself must by designed properly. Careful re-desigexisting parts may
be necessary, and the design of new parts will probably ehemgccommodate to
an automatic system. The tolerance for each component roltteic arc welding

system affects the overall tolerance of the system and wdierances from robot,
positioner, fixture and the part itself is summed up, thetiooaof the weld may

very well end up to be out of place. Size and capacity of coraptmin a robot

system can also affect tolerances; maintaining low tolegans critical when the
volume increases (Crowe, 2001).

3.11.3 Joint design decisions

After choosing the correct weld method, several ways ekist tan be used to
reduce welding costs and increase finished part qualityw(€r8001):

¢ Reduce the distortion potential and eliminate possiblersgary processes
such as bending or straightening by welding close to theedémd of the
part.

¢ Increase the travel speed of the welding robot and reducartieunt of
filler material by using the minimum root opening and the $estincluded
angle needed.

e Improve weld quality and reduce heat input to the part bygiésg the
weld joint for torch access and maintaining the proper tamgle through-
out the weld.

*Programmable Logic Controller.

20 Welding

However, the methods above increase in general the demartds control of the
weld process as the allowable process operational winddlvrespect to various
variables becomes smaller.

Joint design decisions also include methods of stresslaéitmo, structural design

philosophies and their influence on the choice of weldinggesses and proced-
ures and their effect on fatigue and fracture behavior. Alsatical constraints on

joint design and configuration in the context of joint prejieom and access must
be considered. For a deeper understanding, see (Hicks).2000

3.11.4 Parameterization of robot programs

To be able to handle different variants of parts without wgta new robot pro-
gram for each partparameterizatiorof the robot program is a commonly used
method. Normally the differing shape parameters are savéitks residing on a
hard drive on the robot controller, and the appropriate Spatameters is chosen
by user-selection on the teach pendant.

This is a technique that works well if parts have similastie shape, for instance
different lengths within a product line of forks to forkkftbut it does not work if
parts have different forms. One-off manufacturing or srbalich series of differ-
ent products cannot benefit from using this method. For thmat &f production,
the only option is to write different robot programs or to tera single and com-
plex program. Therefore, robots are rarely used for ongroffiucts unless quality
demands make manual welding unfeasible.

3.12 Conclusions

The welding process is one of the most complex manufactysimogesses and
frequently the least understood. Choosing a weld methodnssid variables is

difficult both in manual and robotized welding because oftadl different aspects
mentioned. Robotized welding not only includes optimizatbf the robot process
but also introduces new difficult decisions in terms of feggisensing and robot
and sensor programming.

There is a limited use of advanced sensors in the industryteycre mostly used
for closing local loops. The reluctance to use sensors isthas

¢ the assumed increase in system complexity that normaligvis|

3.12 Conclusions 21

¢ the fact that only parts of the process information needediamally given
by the sensor,

¢ the mapping problem between what is observable and caadtte|land

¢ that the sensors normally are only used in a local loop; detgsare taken
at a too low level.

A fully automated system is not a realistic goal today. Hosvetools that make
it possible to use advanced sensors in robotized weldirigyivé the welding en-

gineer the opportunity of making his specialist input totenufacturing process
for one-off products and a tool to handle the increase in dexity.

The most flexible manufacturing system takes advantagetbfthe robot and the

welding engineer. The knowledge and the skillfulness ofvdding engineer

are combined with the advantages of the robot (e.g. streegtfurance, speed,
accuracy) to an enhanced system (Helms et al., 2002).

22

Welding

Chapter 4

Programming of robots

4.1 Introduction

Robot programming is the means by which a robot is instruct@erform its task.
The art of robot programming is almost as old as the develapofaobot manip-
ulators. The first was a language, called MHI, designed bgtanMIT in 1961
(Ernst, 1961). Two languages developed at Stanford UniyeM/AVE (Paul,
1977) and AL (Finkel, Taylor, Bolles, Paul and Feldman, 19vM4ijtaba and
Goldman, 1979) were particularly influential in the field.eldarliest efforts were
on hardware level via point-to-point and simple motioneldanguages to motion-
oriented structured robot programming languages (Blurdelakob, 1986; Ranky
and Ho, 1985). But as with programming languages and envienits in general,
the robot programming efficiency has, despite the trememndéiorts undertaken,
by no means followed the manipulator hardware improvements

A common denominator of modern robot programming is thaag to deal with

both the real, physical world and a virtual world represemt and possibly aug-
menting — the physical world. The two worlds need to be kepthkyonized at all

times. Robot programs are basically computer programshadeal with a richer

variety of I/O devices. However, manipulating objects ia ghysical world may
lead to errors, and therefore the programmer must try t@ipate and test erro-
neous conditions (Korein and Ish-Shalom, 1987).

The position and orientation of a rigid object in space wébpect to a reference
frame may be represented ad & 4 homogeneous transformation matrix with,
when the last row is ignored, three unit vectors describotgtion (n, o, a) and

a translation vectop locating the origin of the object coordinate system. The

24 Programming of robots

conventions for the namesvhere taken from Paul (Paul, 1981). Although not
computationally efficient (Taylor, 1979), the homogenemarix representation
is particularly convenient for manipulation. In the coritekrobotics, the homo-
geneous matrix representation has come to be calfeah@ It is important in
robot programming to be able to specify the pose of an objétt r@spect to a
reference frame and then obtain that pose with respect theneference frame
and this conversion is made simple by the use of homogeneaunsfarmations
(Korein and Ish-Shalom, 1987).

The testing and debugging of robot programs is charactétigemuch greater
degree of trial and error than many other kinds of prograngmitt is common
to debug robot programs at low speed, and then increase ¢gel &5 much as
possible without producing intolerable losses in accu(oyein and Ish-Shalom,
1987).

There are many different ways to specify robot-programnsggtems. In this
thesis, we will divide the field of robot programming into irsdrial robotics pro-
gramming and approaches used in research projects.

4.2 Industrial robotics programming

There are basically two programming modes in developingnairos for industrial
robots: on-line and off-line programming (Nitzan, 1990;zbao-Perez, 19&j.
Most programming languages are controller-specific andtrotanufacturers of-
ten provide a simulation system as well. By using a translaétween robot lan-
guages a single simulation system can be used. A transtaimefvork worked
out by various researchers has been used in commerciabemants (Freund,
Ludemann-Ravit, Stern and Koch, 2001). However, a few esigeroff-line sys-
tems provide the means to generate robot programs for elifféarget robots.

4.2.1 Teach programming

A safe but time consuming method to program the robot is toualiyy move
the robot using a teach pendant. This time demanding proeeaso halts the
production and each variation of a workpiece demands a newodlified robot
program, reasons that make teach programming suitabldarirge series man-
ufacturing of identical workpieces (Jacobsen, 2004). ¥haikubstantial research

!Because the object was often a grippeindicates the axis along which the grippsgens a
indicates theapproachdirection in which the gripper points, andindicates their commonormal
in the directiono x a (Korein and Ish-Shalom, 1987).

4.2 Industrial robotics programming 25

effort is directed toward task-level programming, mostisttial robots are still
programmed using a simple pendant. However, teach pendenif suited for

tasks involving complex manipulator trajectories, or wittegre is increased reli-
ance on outside sensing (Burdea, 1999).

4.2.2 Off-line simulation systems

Off-line programming is a term that is usually applied to Hesttion of techniques
for robot programming without actually using a (physicalpot. A Computer-
Aided Design (CAD) system is typically used to model the tolorkstation,

parts, and auxiliary equipment. Then the simulated robptaggrammed and its
task executed in the simulated environment (Meyer, 198bweéver, if a model

does not include uncertainties in part position, part disiams, and robot posi-
tion, the simulation will succeed in situations where a aggllication would fail

(Korein and Ish-Shalom, 1987).

Off-line simulation systems were introduced in the mid 18&Md today make up
a mature technology that permits performance and fundt&mailation of work-
cells. These systems are usually programmed in virtuaésyssuch as IGRRP
eMPowe? and CimStatiof. Some features of off-line systems are

e cycle time evaluations,

reach determination,

trajectory optimisation,

collision detection,

jigs and fixture design,

calibration, and

e evaluation of robots.

Besides being able to create the robot program withoutfariag with the phys-
ical robot system except for touch-up, the major benefit tiné systems is
the possibility of doing advanced trajectory optimizatida achieve shorter cycle
times. Some of these optimizations, especially in casesentia® or more robots

2http:/iwww.delmia.com/
*http://www.tecnomatix.com/
*http://www.acel.co.uk/

26 Programming of robots

move in the same working-area, would not be possible by nigmoaessing.

There are many systems currently on the market, both fromit nandors target-
ing their own product range, for instance RobotStddind from other suppliers
that are independent such as IGRIP, eMPower and CimStation.

Off-line programming environments typically offer a siratibn language that
hides the underlying robot language, which means that thetrprogrammer
“only” has to learn one language, even if robots from muitipendors are to
be programmed. However, they are normally not feasible fimaaced sensor
simulation.

4.2.3 “Automatic robot programming”

In (Jacobsen, 2004), a third method to program a robot whidokken have
named “Automatic robot programmirJ{ARP) is discussed. In ARP, robot tra-
jectories are automatically calculated based on CAD in&diom, a task descrip-
tion, sensor data and expert process knowledge from a rqiwvamr. A disad-
vantage with ARP is that the system must be configured spaityffior each type
of production. While CAD data has been standardized to a temdts, task de-
scriptions have not and it is not trivial to transform taslsat@tions into ARP
system readable forms. Process knowledge is important\@rdmrocesses that
look simple actually contain extensive human expertise arndessful robot in-
tegration depends on to what extent process knowledge iiscpuaiith the task
description (Jacobsen, 2004).

At the Odense Steel Shipyard in Denmark, an ARP installdtesbeen running
for nearly ten years. Steel plates are joined in large blademblies which are
similar in construction but vary in details. Multiple gaymounted robots are off-
line programmed to weld fillet joints on block assembliesns®es are utilized to
find the exact start point and to correct deviations of thegeacompared to CAD
data during welding. The system has a theoretical capatitelling 2000-2500

meters per day, but about 5000 meters are weld per week dasttictions in the
assembly line. When the wire mesh input data is replaced byemosolid 3D

information and with the introduction of a more advanced AB®, the system
is expected to be able to weld about 90% of all seams (Jacpob8ed).

Jacobsen identifies five important issues to take into acoehen introducing

Shttp://www.abb.com

®The term Automatic Robot Programming is in (Wahl and Thorg882) referred to as a task-
level programming systems where the applicatishdt to do) is specified on a high abstraction
level and is automatically converted into a sequence obastimotionstfowit should be done) by
a task planner.

4.3 Approaches used in research projects 27

robots in a manufacturing system (Jacobsen, 2004):

1. The operator’s knowledge and understanding of the system

2. A good working position, enough workspace and degreeseefibms for
the robot.

3. The use of sensors to allow for imprecisions of the wortgie
4. Good planning of the capacity of the robot work cell.

5. CAD datamustfit the real world.

4.3 Approaches used in research projects

Besides controller-specific languages a few different @aggines exist. In research
environments it is not uncommon to extend a high-level laggusuch as C, C++
and Java to provide robot-specific functionality. Some enptntations are spe-
cific to a certain robot, but others use abstract classesr¢amvent hardware
differences. One example is Pyrthat provides abstractions for robots and al-
gorithms. Pyro is written in Python, which is an interprel@tguage. This means
that it is easy to experiment interactively with the robatgnam on the expense
of the execution speed.

Virtual systems should be suited for sensor-intensivestaskt robotic languages
are dependent on the particular manipulator used, and thegydng stage is quite
time consuming (Blume and Jakob, 1986; Rehg, 1997; Burd#@9)1 The DLR
project, a man-machine interface based on a high perforene®8-environment
(Landzettel, Brunner, Hirzinger, Lampariello, Schreilzgrd Steinmetz, 2000),
and the project at Fraunhofer IPA in Stuttgart, Germanyof8iner, Neugebauer
and Flaig, 1993; Flaig, Grefen and Neuber, 1996), are exesngdlattempts to ad-
vance the state-of-the-art in robot programming. In theifinafer project, a GUI
is used, which allows the user to specify the dynamic behaficomponents.
Once the program is completed, it is downloaded to a realtrofanected to the
same VR engine and the same task is executed (Burdea, 1999).

Behavior-based languages provide a different approadgifgpmg how a robot
should react to different conditions and defining functlipahat the end-user
would use to perform tasks. An alternative to text-basedhou is graphical

"http://lemergent.brynmawr.edu/pyro/?page=Pyro
8Virtual Reality.

28 Programming of robots

programming systems. They typically use flow-charts anccansidered easy to
use, at least for simple application programming. Lego Miatns robotics kit
LEGQ? let the user create advanced performances by combiningsstédow-
level actions to form high-level tasks.

A graphical system for off-line programming of welding raddias been de-
veloped with the main objective to increase sensor use idimgekobot programs
by providing a user-friendly interface (Dai and KampkerQ@Q An icon-oriented

interface provides the main programming method. To makasy ¢o incorporate
sensor operations, macros are defined in a sensor editor.

Another method Programming by demonstratipnis to use teach pendants for
demonstration. Current research in this area extractsnirgtion besides move-
instructions in order to, for example, optimize paths (Clamd McCarragher,
1998; Chen and McCarragher, 2000; Chen and Zelinsky, [20Dhen and Zelin-
sky, 2003). There are mainly three different ways to collect inforimat voice,
touch and vision. While these systems certainly are impgvihey are not eas-
ily used in cluttered industrial environments. Programgninat includes virtual
environments will probably prove to be more successful.délwances in this par-
ticular area, see (Friedrich, Holle and Dillmann, 1998;|#e, Rogalla, Dillmann
and Zollner, 2002; Onda, Suehiro and Kitagakiand, 2002).

Voice- and gesture recognition can be used to command rabotsry out tasks
for which they are already programmed. Thésstructive Systemsse for ex-

ample gestures to find and direct the attention of the robpgtticular objects,

avoiding and overcoming problems caused by cluttered emvients (Strobel,
lllmann, Kluge and Marrone, 2002; Steil, Heidemann, Jocku&ae, Jungclaus
and Ritter, 2001).

4.4 Programming languages

4.4.1 Motion-oriented programming languages

Modern motion-oriented programming languages were firgtld@ed in the mid
seventies. Some of the proprietary languages used todhyask the soph-
isticated data structures that can be found in the earlyulzges such as VAL
(Shimano, 1979) and AML (Taylor, Summers and Meyer, 198@)pagh elab-
orated languages exist, for instance ABB RapgMBB Rapid Reference Version
3.2, RAPID Summarnyn.d.). Today, well over a hundred robot languages exist.

®http://mindstorms.lego.com/eng/products/ris/risssf

4.4 Programming languages 29

Attempts to introduce general languages (Fahim and ChéB;ll%apham, 1999)
have so far had none or little impact on industrial robotics.

Modern robot languages use frames, often expressed by lemogs transform-
ation matrices that somehow conform to human intuition, lzidd the robot hard-
ware behind software interfaces. The use of internal aneleat sensors has led
to the monitor concept (M. A. Lavin, 1982). Monitors are sineer-defined
or built-in programs heavily communicating with both usppkications and the
robot control system’s motion pipeline. Monitors read a@esensors in spe-
cified time intervals, or depend on changed sensor valueseaot by modifying
the path’guided motion’or trigging some actioriguarded motion’(Wahl and
Thomas, 2002). While this monitor concept seems to be ysiefigl hardly ap-
plied today in commercially available robot programmingdaages.

4.4.2 Task-oriented robot programming languages

The idea behind task-oriented robot programming is to hidehime details and
let the user specify an application at a higher level of alstbn. Instead of
lengthy programs that descritt®w to do something, the emphasis is what
to do. As task-level specifications do not describe the Betdihow the robot
is to perform an operation, the translation of such a spetific into a robust
robot program is a central research problem in robot progreug. Some pioneer
efforts in this area can be studied in (Feldman, 1971; L &ietan and Wesley,
1977; Popplestone, Ambler and Bellos, 1980) and (LozanezZPé&nd Winston,
1987).

Still, the complexity of a task remains of course even if weesarccessful in hiding
it under a task-oriented interface. Human interfaces, @\gls, and commands,
have to be developed. These interfaces will, when invokethbeyuser, transfer
the high-level commands to a sequence of actions and motions

If this transformation is made automatically, we normadiktabout aask plan-
ning systensuch as the one described in (Mosemann and Wahl, 2001; Thedas
Wahl, 2001). The most difficult part in automatic robot pogming seems to be
execution and control of the generated action/motion sezpse including the
generation of collision-free paths and force-controlledting operations (Wahl
and Thomas, 2002). A task planning system also includest#n planner

Grasp motion plannindnandles object grasping. Early work made by R. Paul on
grasp planning made the assumption that the gripper sheytdsitioned so that,
at grasp time, simply closing the jaws produced a stablgpgvashe workpiece
but was, in the presence of uncertainty, not stable (PawR)L9EXxisting meth-

30 Programming of robots

ods for automatic grasp motion planning handles objects @éttain geometric

restrictions; arbitrarily shaped objects would magnifg thme and space com-
plexity. In (Miller, Knopp, Christensen and Allen, 2003); abject is modeled

as a set of shape primitives (spheres cones, boxes etc.)sandaset of rules to
generate a set of grasp starting positions and pre-grageslitaat can be tested
on the object model.

Gross motion planningomputes the intermediate paths and includes obstacle
avoidance which is a problem that has received consideratdation. Early
work includes (Udupa, 1977) and (Lozano-Pérez, Y8Ih (Hwang and Ahuja,
1992), research directions and their performances ardélybdescribed. Sev-
eral methods exist, among them approaches based on a nahpartiential field
method (Barraquand and Latombe, 1991; Barraquand, Langld Latombe,
1992). Other attempts are based on an idea of attraction emdsion forces
and, more recently, probabilistic road map planners (PR{shlin and Kav-
raki, 2000). As with grasp motion planning, all methods htawvérade between
computation time and path optimization.

While task-oriented programming in theory provides medran to convert ab-
stract high-level actions into low-level code, there armsedlifficulties to over-
come according to (DaCosta, Hwang, Khosla and Lumina, 1992)

e no generalized mechanism to translate the task specificiatio-level code
exists,

e sensor integration is difficult, for example error detettamd part variation
handling, and

e itis often difficult to represent complex real-world sceoar

4.5 Task-level programming systems

According to (Meynard, 2000),task-level programming systearchitecture must
be able to cope with three main issues: task specificatipnesentation of objects
and robot program synthesis.

The task specification specifies a task to the planner as &isegwf actions on
the objects in the world model. Different concepts exist dthwespect to spe-
cification of these actions. The spatial relationship betwebjects is described
by their relative position in (Nnaji, 1993). This method tiddresting because it
allows a high-level of automatic reasoning leading to adednautomated plan-
ning. Other methods rely on manually created sequencestiohadhat let the

4.5 Task-level programming systems 31

user describe the requested task without creating an ofvjedel at a specified
position.

Theworld modelcontains the spatial, kinematical and dynamical featufébeo
objects related to the task.

Therobot program synthesisorresponds to three steps: sequence planning, mo-
tion planning and plan checking. Sequence planning treesskatask into a low-
level code. Then, motion planning finds a collision-freehggt is kinematically
suitable for the manipulator. Finally, plan checking gudeas that the planned
task does not violate any rules and is allowed in the curngstem state.

In (Meynard, 2000), an experimental research platform, ®BRs presented that
features “a task-level programming environment, a dynamycesentation of the
work-cell’'s equipment, and sensor data integration attime- allowing on-line
program monitoring and adaptation”. By introducing an ripteted task-level
programming language that hides hardware-specific rafesgrthe XPROB sys-
tem has, according to Meynard, been made application-grigmt and hardware-
independent.

DLRC has focused its work in space robotics on the design and imgsiation

of MARCO*!, a domain-specific high-level task-oriented robot prograng and
control system. The goal is to develop a unified concept fogxalfle and highly
interactive on-line programmable teleoperation groumdict as well as an off-
line programming system, which includes all sensor-basedral features partly
tested in the ROTE¥ scenario (Brunner et al., 1993; Landzettel et al., 2000;
Landzettel, Brunner, Schreiber, Steinmetz and Dupuis]1 200

In ROTEX, tasks such as assembly, tracking and capture obgctdfloating in

zero gravity were successfully executed despite almostrsseconds of round
trip time delays. The key to the impressive demonstratios thia use of virtual
models of the robot geometry as well as of its sensory dated@2) 1999).

DLR’s system provides a flexible architecture that can betdhto application
specific requirements. Programming and control methogolsgased on the
use of sensors such as cameras, laser range finders andoi@ge-sensors. Ap-
plications that include sensor feedback loops in a welkkm@nvironment can
be preprogrammed and verified on-ground (Landzettel et2@00; Landzettel
et al., 2001).

Tasks can be composed in a virtual world by a user without itispein robot-

%Das Deutsche Zentrum fiir Luft- und Raumfahrt (Eng: The Gerkerospace Center).
“Modular Automation and Robotics COntroller.
12ROboter Technology EXperiment

32 Programming of robots

ics. A man-machine interface based on a high performanceeMRonment.

The power of the task-oriented sensor-based programmipgagh was shown
1999, demonstrating the vision and force control schemexegiging a pro-

totypic peg-in-hole task fully autonomously on-board. #&ie operations were
preprogrammed in the simulation environment on-grounduding image pro-

cessing and vision controller parametrization (Landtetteal., 2000).

The task-level architecture in (Landzettel et al., 20003 Wwased on two layers,
the expert layerand theuser layer The expert layer controleow the system
should act to successfully execute the task and make haasé\yof sensor data
processing algorithms. In the virtual environment, norhgensor patterns were
stored and appropriate robot motion reactions were gestbest elementary oper-
ations.

An operation in the user layer was characterized by a sequehelementary

operations. These operations were, however, not visiltleetaiser. The operator
only selected the object/place that should be handled. Wassreflected by the
virtual reality environment which showed the work cell vath the robot. Via

a 3D interface, an object could be grasped and moved to am@gte place

thereafter a specific VR-hand gesture started the task géxrd¢uandzettel et al.,

2000).

MARCO is a task-oriented programming and controller fraroewto program
sensor-based robots like the DLR 7-axes light weight robtitz{nger, Albu-
Schéffer, Hahnle, Schafer and Sporer, 2001), which enalreasperator to pre-
simulate the robot tasks at a graphical simulation, inclgdill sensor processing
(force-torque, laser range finder, vist@h The controller code for the simulation
as well as the real system is the same, however the interfagebots and sen-
sors are not identical for simulation and real operationwd&®C and VxWorks
are used for the real-time environment, while Linux or IRI)¢ ased for the sim-
ulation. Almost all the code (written in C) is platform-inueEndent®.

Donald L. Pieper, who derived the first practically releveegult when he in his
Ph.D. thesis (Pieper, 1968) showed that the inverse kinesnatt serial manipu-
lators with six revolute joints, and with three consecujoiats intersecting, could
be solved in closed-form, i.e., analytically, 1989 postgat@posal to NASA®s

13The sensors are general models of force-, camera-, andsieasener type, and not models of
existing sensors.

¥Thanks to Bernhard Brunner at DLR for sharing information@tMARCO not disclosed in
papers.

5National Aeronautics and Space Administration

4.5 Task-level programming systems 33

SBIR'® program. The abstract of Rfsproposal Macro- and Task-Level Program-
ming of Arc Welding Robots for Aerospace Applications” caints ideas related
to those presented in this thesis and is quoted below:

Abstract:

The goal of the overall project is an innovative programmangironment for the next
generation of advanced welding robot controllers. Thisiremvnent will incorporate
macro-level programming, icons for user interfaces, giagtsimulation, and, possibly,
elements of task-level programming, e.g. automatic paginmphg and weld sequence
optimization. Macro-level programming, aspects of whidh e considered in Phase I,
refers to the generation of complex part programs from s which encapsulate all
the required motions and operations needed to weld gerassas of parts, components,
or joints. Such developments could significantly improvedurctivity and consistency of
teaching welding robot programs and impact the cost andhidity of robotic welding
in aerospace application. Phase | tasks include: a brigdwesf related work, analysis
of welding requirements for aerospace fabrication, prielary design of the advanced
programming environment, and evaluation of macro-levejpgmming approaches. The
feasibility of the proposed schemes will be examined, néad&iture research will be
identified, and the Phase Il effort will be planned.

Potential Commercial Applications:

Advanced welding robot controllers may benefit commeroatolume/small-batch ro-
botic welding applications.

Unfortunately, no documentation except the above abshastheen made pub-
licly available’® but the concept is nonetheless relevant and close to soras ide
presented in this thesis.

Task-level programming systems have been identified aslagbe field of robot
programming, since they should be able to produce a robgtano solely from a
description of a desired final state without specifying tbioas needed to achieve
it (Ude and Dillmann, 1995). The problem of going from the fstate description
to the underlying actions at a low level has been a problersidered in planning

16Small Business Innovation Research (http://www.sbagirj. This particular project was
sponsored by NASA's Marshall Space Flight Center.

The proposal (89-1-04.10-7900) was actually sent from Auatiix, Inc, Billerica, MA 01821,
USA.

18This has been confirmed by a representative from NASA SBIRMro Support and National
Technology Transfer Center (NTTC). Technology Transfedpcts and services that are sponsored
by NASA are not available to individuals or organizationsside the United States or to resident
aliens living in the United States.

34 Programming of robots

research in the field of artificial intelligence (Nilsson80D9 Sacerdoti, 1977).

An obvious approach to augment workspace knowledge is teseissors. But
each sensor has its own issue. Vision-based systems, fanags suffer from in-
accuracy even in a clean laboratory with close to optimatlitams. In disordered
shop floors, these drawbacks become even more pronounaadiltiple sensors
are used, sensor fusion problems may also occur.

4.6 Robot programming libraries and environments

Besides the commercial robot programming environmentisribiamally turn to

end-users and in-house developers, a number of “open Sagfteare libraries

exist that are released under different licenses. Thesariis would normally

interest application programmers or serve as a base foandsgrojects. Most
open source software projects have originally been deedl@s a side effect of
research in some particular area.

4.6.1 Orocos

The OROCO®’ (Open Robot Control Software) organizaticdDROCOS2004)
ambitious goals are to develop robot control software uRdee Softwaré and/or
OpenSourcé licenses for all sorts of robotic devices, including marfapors,
mobile robots and humanoids offering an infrastructure ithendependent of any
particular architecture for both hard real-time and noi-tieze applications.

The organization also attempts to contribute to the devedy of programming
interfaces that can be accepted as standards by robotigosuiunities and to
the development of free educational material. Orocos igtewrin C++ and runs
under LinuxX? and RTAP3, a Real-Time Linux Application Interface.

The Orocos project follows a component-based strategyrent@mponents alter
their state when called. This modular robot control framdwarovides the infra-
structure and the functionalities to build applicationteVisionary software en-
gineering requirements include (Bruyninckx, Soetengrisand Leuven, 2002):

e Object-oriented design.

http://www.orocos.org
Dhttp:/ww.fst.org/philosophy/license-list.html
2Ihttp://www.opensource.org/licenses/
Zhttp://ww.linux.org
Bhttp://ww.aero.polimi.it/ rtai/

4.6 Robot programming libraries and environments 35

e Decoupling and modularity. Class-wise interfaces and detagncapsula-
tion of internal data to promote independent evolution anidnplementa-
tion of classes.

e Small and shallow interfaces. Separated interfaces give rfhexibility in
changing implementations.

¢ Distributable. The robot control software benefits fromnigescalable and
network-based. Abstraction layers are needed for bothatipgr system
and interfacing hardware.

e Minimalism. Superfluous APIs may lead to different implenagion with
similar functionality.

e Hardware independent. Linux has been the operative systefmoae for
both development and deployment.

e Thorough large-scale design. Safe design should alwaysidema com-
plex distributed and hard real-time implementation.

Orocos started in September 2001, is still developing biarisrom complete.
The current status is available on the Orocos website.

4.6.2 Pyro

Pyro provides abstractions for robots, especially molileots, and algorithms.
Pyro is written in Python, which is an interpreted languadgéhis means that
it is easy to experiment interactively with the robot pragran the expense of
the execution speed. Since Pyro abstracts underlying laaeddetails, it can be
used for experimenting with several different types of tslaond robot simulators.
Currently, robots supported include the Pioneer and theBteefamily. These are
all small, mobile robots. Industrial robots do not seem talpgimary target.

4.6.3 Robotics Toolbox for Matlab

The Robotics Toolbd¥® (Corke, 1996) provides many functions that are useful
in robotics, such as kinematics, dynamics and trajectoneggion. The tool-
box provides functions for manipulating data types sucheasors, homogeneous

Zhttp://www.cat.csiro.au/cmst/staff/pic/robot/

36 Programming of robots

transformations and quaternions (Chou, 1992). It is al$e @bgraphically dis-
play any robot that can be represented in the Denavit andehtagtg parameters
(Denavit and Hartenberg, 1955). It also includes a Simahitkock library. Ro-
botic Toolbox is small and simple and is equipped with sowame.

4.6.4 SPACELIB

SPACELIB?® (Legnani, Casolo, Righettini and Zappa, 1996; Legnani,oldas
Zappa and Righettini, 1996) is a library for 3D kinematicsl @ynamics of sys-
tems of rigid bodies and is available in C and in Matlab sowade. It is based
on an extension of the homogeneous transformation matgsoaph by Denavit
and Hartenberg and addsx 4 matrices for velocity, angular- and linear acceler-
ations, andt x 4 matrices for forces, torques, angular and linear momentuin a
inertia. Its functionality includes basic operations ontticas, points, lines and
planes, vectors and transformation matrices and is fragliadle for non-profit
activities.

46.5 ROBOOP

ROBOOF’ (Gourdeau, 1997) is an object-oriented programming tooladgiten

in C++ for robot kinematics, dynamics and linearized dyremuf serial robotic
manipulators. It depends on the NEWMATFEamatrix library and if graphical
features are to be used, also the gnifisbftware. It is released under the terms
of the GNU General Public Licent It includes operations on homogeneous
matrices such as rotation and translation, operations atequons and a specific
robot class, which for each link handles kinematics as deflme Denavit and
Hartenberg, link- and motor inertias and motor gear rati faistion.

gimulink (http://www.mathworks.com/products/simulipis an interactive tool for modeling,
simulating and analyzing dynamic, multi-domain systems.

Bhttp://bsing.ing.unibs.it/%7elegnani/

ZThttp://www.cours.polymtl.ca/roboop/

Bhttp://www.robertnz.net/

http://ww.gnuplot.info

SOhttp:/iww.gnu.org/copyleft/gpl.html

4.6 Robot programming libraries and environments 37

4.6.6 Open Dynamics Engine

The Open Dynamics Engife(ODE) is a free library for simulating articulated
rigid body dynamics. It has built-in collision detectiondaaccording to the au-
thor, Russel Smith, ODE is “reasonably mature and stabl& E@ designed to
be used in interactive or real-time simulation. The userthagreedom to change
the structure of the system while the simulation is runni@DE is written in
C++ but uses a native C interface. ODE is a computationahergmnd completely
independent of any graphics library. However the examlasdome with ODE
use OpenGL. It is released under either the GNU Lesser GdPebdic License
(LGPL)%2 or the BSD-style licensg.

4.6.7 Simderella

Simderelld* (van der Smagt, 1994) is a robot simulator. It was originaliy
veloped to aid research in neural networks for arm conttaomsists of a simple
controller, a forward kinematics part (simulator), and atWihdows oriented
graphics back-end. The controller, simulator and grapthiaek-end are separate
processes synchronized by message parsing. The flexiblmgniration setup
lets the controller handle multiple simulators and/or reabts simultaneously if
required. The simulator handles kinematics for any robah wotational and/or
translational joints as defined by Denavit and Hartenbemgnéit and Harten-
berg, 1955).

During operation, the simulator expects joint values, e#iles and accelerations
from the robot socket connected to the controller. At eatie tstep, the simulator
translates the current pose of the robot into a set of hormeamenmatrices describ-
ing the position and orientation of the links in Cartesiaacgp These matrices are
then sent to the graphical back-end, followed by a matrixideisg the pose of
the target object, which place the objects on the canvasdditian, it has a user
interface for object rotation, translation, scaling anctymie dumping. It can also
render z-projection of all shown objects — i.e., a shadowherfloor. Simderella
3.0 is written in C++ and was released 1999 under the GNU @uldense.

Slhttp://q12.org/ode/
$2http://www.opensource.org/licenses/Igpl-licenselhtm
33http://opende.sourceforge.net/ode-license.html
34http:/iwww.robotic.dlr.de/Smagt/software/simderglla

38 Programming of robots

4.6.8 Game Engines

Game engines offer frameworks for games or game-like agdics. Their power
lies normally in appearance features such as lighting, ispaand reflections.
Rendering and visualization is important to game engineshanw models and
worlds are stored is often apart of the function of the readdn game engines,
the 3D pipeline (the equivalent to the motion pipeline irlofe systems) handles
everything from scene/geometry database traversal vimgwy, different trans-
forms, triangle set u}¥ and rendering/rasterization to the final display on screen.
As a contrast to most robotic off-line programming appliwasg, which are pro-
prietary and expensive, many sophisticated game engireslansed under GNU
and other licenses and can be downloaded from the Internet.

One example is Crystal Spa€ewhich is a free (LGPL) and portable 3D game
development kit written in C++ with an extensive list of femgs. Crystal Space
currently runs on all major platforms.

4.7 Conclusions

Off-line programming systems have evolved to efficientipdiia design and op-
timization of robot programs. Their greatest strengthégtredefined robot librar-
ies and also their ability to visualize the designed work-ddowever, as design
tools and run-time environments for sensor-driven robptiegtions, the generic,
complex, monolithic and integrated approach yields an edliptable perform-
ance. Instead, specialized software based on the problésa solved has the
potential to create efficient solutions to problems thatuide sensor-guided ro-
bots.

There obviously exists a somewhat higher threshold in amogning a system
from “scratch”, but the lesson learned from the author’'s @xperience is that
even if one usually gets a quick start with some pre-engatkexpensive tool,
the thrill of development speed is likely to end well befdne project objectives
are fulfilled.

Open source libraries and frameworks are available fordrethe Internet. Al-

most all of them have developed as offsprings from researcjeqis and have
therefore particular strengths and weaknesses. Nevest)dhey usually repres-
ent good ideas, and provide inspiration and sometimes sandes that can be
used as a basis for specialized software development. Ehefussgame engine

35E.g. back-face culling, slope/delta calculations and ditenconversion
http://crystal.sourceforge.net

4.7 Conclusions 39

involves commitment to its large infrastructure and willyobe beneficial if most
of the features of the engine will be used.

Task orientation will mean as much for robot technology geatkoriented pro-
gramming has improved software engineering. Research ssiioa¢ there are
tremendous obstacles that must be overcome to find gendutibes (DaCosta
et al., 1992). These difficulties clearly show that it is reslistic to find a generic
task-oriented approach valid for the vast robotic area. dillf even if general
mechanisms cannot be found, particular application araasaad will benefit
from task orientation. Arc welding is one such area.

40

Programming of robots

Chapter 5

High-level control

5.1 Introduction

For low-level control, a close relation between what a senssasures and what
is to be controlled is not uncommon, but for a sensor meaguriare complex
data patterns or data from several sensors, the matter isoniivial. A seam
tracker for arc welding can of course be used for simple jowsitg control, but
if it provides some geometrical features of the weld jointfipe, that informa-
tion can be used for high-level control of the process or thetask the robot is
performing-.

High-level control in industrial robotics is a vast resdmarea and a selection of
interesting topics related to this thesis is discussedti&gawith a short introduc-
tion to artificial intelligence from an industrial robotipsint of view, a discussion
of the concept of sensors in general and virtual sensorgriicpiar and their rela-
tion to high-level control follows, and finally, a few exareplof research projects
in the wide robotics research field related to high-leveltarare presented.

1Conceptually, such sensor data is considered as prodasseréeedback information. If, for
example, a gap in the weld joint is varied, but still withincaptable limits defined in a WPS,
different controlling actions may be needed. Such acti@msle a combination of controlling the
welding power source and the motion of the robot. A wider gay,nfor instance, need a lower
travel speed and/or weaving. Likewise, the orientatiorhefweld relative to the horizontal plane
may need to adjust based on the size of the weld pool.

42 High-level control

5.2 Artificial intelligence

Artificial Intelligence (Al) is an interesting area that helsvays had a close rela-
tion to robotics in general. It has always been a delicatblpro to define what
Al is. Problem areas that earlier were thought of as Al areasiaw well known
and reinterpreted (Stork, 2001).

One of the central lessons learned in the last 40 years ofs&lareh is that prob-
lems that were thought to be difficult turned out to be lesshlilesome and vice
versa (Stork, 2001). Al papers and textbooks often discigsdfisant questions,
such as “how to reason with uncertainty” or “how to reasorciffitly”. It is hard
to find descriptions of ambitious, interesting and conchdteroblems (Selman,
Brooks, Dean, Horvitz, Mitchell and Nilsson, 1996).

The success of Deep BR@®eepBlue 2004; Schaeffer and Plaat, 1997) is a good
example of something that at the time was a concrete Al aingdigoroblem: de-
velop a program that is able to defeat the world chess champitowever, the
Deep Blue was not superior to Kasparov in strategy and tabécause of any
sophisticated, heuristically guided search Al-methodeBlue’s strength was
an efficient brute-force search. In fact, it was so succésisdl it led Kasparov to
exclaim “I could feel — I could smell — a new kind of intelligem across the table”
(Kasparov 1996).

While many Al researchers may not like the lesson learnea fitte Deep Blue
experience, the value of brute-force over more “intellijesearch-forms is, nev-
ertheless, very substantial (Selman et al., 1996). Howeliess is far easier than
many other tasks like those involved in the evolution of ganf such as under-
standing a simple story, recognizing objects and theitioglahips, understanding
speech, and so forth. For these and nearly all realistic @blpms, the brute force
methods in Deep Blue are hopelessly inadequate (Stork;)2001

5.2.1 Atrtificial intelligence applied to industrial roboti cs

The Al community seems to have a limited interest in concegtglications in
general and industrial applications in particular. The ant@nt goal of having a
completely automatic and still reliable task-level apptom a concrete industrial
robotic case does not yet appear to have been fully examipdgtebacademic
world.

’Deep Blue is an IBM supercomputer that 1997 had a speciglegerhardware that enabled it
to calculate nearly a quarter of a billion chess positiorrsspeond

5.3 Sensors 43

Trajectory planning, which often requires exploring laggarch spaces, raises
critical complexity issues and there is strong evidenceahg complete algorithm
will require exponential time in the number of degrees oéétem (Reif, 1979;
Canny, 1989). The Al community has made some progress, ynaialssembly,
but academia has yet to find industrial robotics an intarggtiatform for apply-
ing its technology. A reason for the reluctance to apply Alnidustrial robotics
may be that the high process accuracy demands, both in évsaicuracy and in
repeatability, normally prevent the uncertainty-basedlgbrithms.

Another problem is the problem of time allocation for plamgersus control and
sensing (Halperin, Kavraki and Latombe, 1999). This pnwbtemains poorly
understood, though promising ideas have been proposediyBod Dean, 1989;
Nourbakhsh, 1996). Moreover, real robot tool trajectodesiate from planned
paths due to errors in control and position sensing and suotsegaise recogniz-
ability issues which make planning more complex (Halpetirak, 1999).

5.3 Sensors

Simple switch-type sensors are often used in industriabtiod, but more ad-
vanced sensors such as cameras and seam trackers arecstifirmon. The goal
is to reach a higher level of autonomy, but the introductibsemsors is associ-
ated with high-level control issues. A higher level of awoty implies complex
relationships; there is normally no straight coupling betw observable and con-
trollable variables and between controllable variables\amiables that define the
task.

A comprehensive survey of sensors that describes gengrattastechnical and
physical fundamentals, construction, function, appilret and developments of
the various types of sensors can be found in (Gopel, Hessgemél, 1997).

5.3.1 Sensor simulation

Computer-based sensors knownsasulated sensorer virtual sensor$ should
yield a significant leap forward in industrial robotics. @gderberg, Olsson and
Bolmsjo, 1999), the author defines a virtual sensor as “aveoé model of a
physical sensor with similar characteristics, using gedoa data from a 'real’
world model”. Off-line programming systems normally provide means to-si

3Virtual sensors is also a concept in Automatic Control, tag the different meaning of calcu-
lating values of (unsensed) process variables from reabseradings.
“In this context, sensors for use in robotics are considditedyision and laser seam trackers.

44 High-level control

ulate work-cells with several robots working in parallelit simple switch-type
sensors typically control their interaction.

Advanced sensors are not common in industrial robotics hecktore it is dif-
ficult to find sensor models of real industrial sensors. Mestser simulation
models are strictly of research character and are not golftas of any known
sensor. An off-line system is a reasonably useful desigstppping and visual-
izing tool for shorter delivery time by automatic code gextien (Adolfsson, Ng,
Olofsgard, Moore, Pu and Wong, 2002). The normal proces$f-ine robotic

programming using an off-line system is to build the work;aeate trajectories
and finally generate a program for the particular target ttoddhe work-cell is

created with sufficient accuracy and fixtures prevent chaunmggeometry during
the manufacturing process, the program will run correctiyttee target system.

In reality, however, such a procedure is not adequate footsobsing sensors,
especially if they are used for (simulating) trajectorydarice in real-time. Feed-
back of advanced sensor data must then be reflected in thd model. Virtual
sensors provided as black boxes by manufacturers and s@d aption along
with the physical sensors, would of course yield the mosinahsolution. How-
ever, there is no indication that this will happen in the rieémre. The idea of
simulating sensors in robotic systems is not new.

In (Chen and Trivedi, 1994), Chen and Trivedi describes &aysvhich main
goal is to create a visualization environment to aid the rmatec robot program-
ming and off-line programming capabilities of sensor-dnivobots. The software
system should help the users visualize the motion and ozeatisensor-driven ro-
bots. Their main research objective included 1) integratibsensing and motion
simulation; 2) integration of planning and simulation; 8hslation of multiple
sensor modalities; 4) compatibility of operation in reatlaimulation modes,
i.e., switching between real and virtual modes occurs agtdawel of control and
is transparent to the operator; 5) exchangeability of sariéwools and hardware
devices between real and virtual world operations, e.geah mobot controller
should be able to control the virtual robot, and the percdpamd motor com-
mands and routines generated in virtual environment shoelldble to control
the real robot as well; and 6) functionality as a stand alomwkaso as a system
interfaced with a real robotic system.

In the system, sensory information is generated (simuldigdhe system upon
receiving sensing commands. The sensing simulation isdbasehe sensor’s
type, position and orientation, process parameters, amdttitus of the work-
piece. A 3-D object data structure is defined to specify #tinat¢ relationships
and kinematics of the components. The ability to switch frertual world oper-

5.3 Sensors 45

ation to real world operation and vice versa ensurefr)patibilityof the system
operation in real and simulation modes, an&2hangeabilityof software tools
and hardware devices (Chen and Trivedi, 1994).

The system had three modes. In tBperator Interface/Monitor Modehe sys-
tem received the control signals from the real controllghefrobot, and displayed
real-time graphics simulation of the robot’s motion andsseg. TheReal Con-
troller/Virtual Robot Modeallowed the operator to control the virtual robot using
the real controller without running the real robot. In B#-Line Visualization
Mode the system acted as a stand alone simulation and visuatizatviron-
ment. This mode allowed the operator to create and examimngatmts and their
work environments before real production and constructonml also allowed for
development and testing of new algorithms (Chen and Trj\i€a§4).

Virtual sensors are at least as important as virtual rol#otson-tactile sensor, for
example a camera or laser (Cederberg, Olsson and Bolmg)@hR0s normally
more easily simulated than a tactile sensor (Li, Wang andlH88; Li and Wang,
1999), especially when the tactile sensor measures far@egrocess that includes
removal of materials.

5.3.2 Sensor fusion

Sensor fusion is defined by (Hall and Linas, 2001) as: “A pssagealing with
the association, correlation, and combination of data afatrnation from single
and multiple sources to achieve refined position and idem#timates, and com-
plete and timely assessments of situations and threatsthairdsignificance”.
This definition is appropriate for the kind of sensor fusieshnology that was
originally developed in military applications researchutBhere are wider and
more recent definitions than the original one from U.S DoDné¢g in (Steinberg,
Bowman and White, 1999), sensor fusion is “the process obiimg data or in-
formation to estimate or predict entity states”.

Independent of definition, sensing and gathering of enwremtal information
make up the first step and one of the most fundamental tasksldiry intelli-
gent Human-Computer-Interaction (HCI) systems. The pagmf sensor fusion
is to sense the environmental information of its users oruters’ own activity
information (Wu, 2003). According to Wu, this purpose rasm@®m deploying
suitable sensors to detect the interesting phenomena iables, extracting ne-
cessary features and combining these information piegesher.

Sensor fusion is important in several research areaxomtext-aware comput-
ing, the ultimate goal is to have computers understand the reddélwThe result

46 High-level control

would be that human beings and computers could interact ighetlevel of ab-
straction, for instance in hospitals (Munoz, Rodriguea/di@ Martinez-Garcia
and Gonzalez, 2003) or when using mobile phones (Myers aigl, B803).

In (Brooks and lyengar, 1997), sensor fusion has been diite three classes:
complementary sensgrsompetitive sensorand cooperative sensorsThe au-
thors give definitions and examples:

e Complementary sensaase not dependent on each other, and can be merged
to form a more complete picture of the environment. An exanipla set
of radar stations covering non-overlapping geographimrey Since these
sensors do not conflict with each other, they are easily impiged.

e Competitive sensogrovide redundant information about the environment.
An example is that three identical radar units can tolefaefdilure of one
unit. It is a challenging general problem that involves iipteting conflict-
ing readings.

e Cooperative sensomsork together to mobilize information that none of the
individual sensors can provide. This is exemplified by theecaith two
cameras in stereo for 3D vision. It is a type of fusion thatete}s on the
affected devices’ details and cannot be approached as safjpnablem.

For those specially interested in sensor data fusion, (BrE@B9) and (Hall and
Linas, 2001) may be of interest. Even if an application ordndiles one sensor
at a time, packaging of components and information maylstilbne of decisive
importance for the result of production improvement.

5.4 High-level control of industrial robots with examples

By default, commercial robot environments are proprietand closed systems.
Normally, they are customized by the vendor of the systemeetroertain applic-
ation demands. A more flexible production, however, demanciemprehensive
view of a work-cell or even a shop floor, where optimizatiorcoftrollable vari-
ables must be taken on system level, outside any robot, sensther specific
part of the system.

High-level industrial robot control deals with similar fems as telerobotics
(Hirzinger, Brunner, Koeppe and Vogel, 1997). LearningsfiDLR’'s ROTEX,

the first remotely controlled robot in space, has been appbetask-level pro-
gramming (Brunner et al., 1995; Landzettel et al., 2000;dzattel et al., 2001)

5.4 High-level control of industrial robots with examples 47

and to teleconsultation by telepresence in medicine (WHdek and Hirzinger,
1997).

Experiences from space robotics have had a tremendous tirmpaobotics in
general. Telerobotics depend on virtual environmentsifoukation and training,
automatic control, dynamics, haptics and robotics. At tkenfdrd Telerobot-
ics Lab, the core belief is that robots can be great toolshbatan intelligence
“remains unsurpassed in guiding robots”, and this is algoalithor’s opinion.
Constructing robots that are fully autonomous is, at leasnistructured environ-
ments, not possible today.

Sensors is a way to cope with accuracy problems and movimg frege to low
volumes with less try outs will generally increase the ussarfsors (Bolmsjo,
Olsson and Cederberg, 2002). But today’s robot simulatystesns are not well
suited to handle advanced sensor-driven applicationssd@emre basically not
used by the industry because of lack of simulation and mme-tiools and the
industrial robotics vendors unwillingness to open up theintrol systems. A pro-
posed OCS architecture can be studied in (Nilsson, 199@ndslon, Robertsson,
Nilsson, Brogardh, Cederberg, Olsson, Olsson and Bolr26i64).

5.4.1 Example: A surgical robot system

The surgical robot system RobaCKa used for maxillofacaid craniofaciél
treatment by “automation” in (Raczkowsky, Dauber, Engalpple, Korb, Schorr,
Hassfeld and Worn, 2003) is custom-made, since it was inifjegs use a stand-
ard robot from any of the major vendors. RobaCKa enablesttigeen to carry
out precise bone cuts for bone repositioning. The problefindfng the correct
robot position relative to the patient is similar to the penb of finding a suitable
path in robot arc welding:

Feasibility of the robot path
No proximity to singularities

No collisions of robot and patient

r w0 b PF

No collisions of robot arm segments

5. Consideration of surgical access path

®Relating to the jaws and the face.
®Relating to both the cranium and the face.

48 High-level control

The RobaCKa system consists of a modified Staubli RX90 rolibtawrobot con-
trol system running V+. The system relies on input from adeftorque sensor, an
infrared navigation system Polaris and an inspection camed sensor data pro-
cessed on a Sensor-PC running RT/Linux. Furthermore, dgaser interface
with a pointer-based human-machine interface is used.

To support the surgeon in planning and intraoperative zatidin an augmented
reality system PROBARIS (Hoppe, Kuebler, Raczkowsky, Waand Hassfeld,
2002) has been developed. The system allows overlayingpbeating field with
planning data and other information.

5.4.2 Example: A meat-processing robot system

Food Science Australia (FSA) has developed several apiplisafor the meat in-
dustry that require the robot to have quick responses dbgtigon-line operation
and off-line communication (Li, Ring, MacRae and HinschQ2D However, the
authors establish the fact that “commercial robots havebeet designed with
the operational response common among other types oftirealeontrol’ equip-

ment”. The dynamic response of industrial robots is recogphias a critical factor
when determining their use in meat industry.

The particular system studied in this case was a robotic dmehss splitter. The
components integrated to the application were an ABB IRBO66ibot with
a standard S4C+ controller, an ultrasound image-proagssiit and a remote
primary control unit responsible for the majority of the ®&yn-processing. A
simple ABB RAPID (controller resident program) routine waaded on to the
S4C+ controller that performed specific move operationse RAPID program
executed on the robot received update position data fronmateecomputer in
real-timée according to the schedule proposed in (Cederberg, OlssbBamsjo,
20029). In this application the position of the backbone was detéwia analysis
of images from an off-the-shelf medical ultrasound unit.

The motivation to use a commercial industrial robot rathantpurpose-built ma-
nipulator was that the former possess proven positionimfppeance, has sound
safety records, has operational reliability and have mmpteent parts and service
technicians readily available. Furthermore, FSA has fainad the development
of an application that integrates an industrial robot redudevelopment cycle
time for an application significantly, and is more econorhieapecially since a
single robot can be used in the development of multiple apfiins.

"Real-time means that the RAPID program running on the robotroller accepts new joint
values from a external computer with a frequency of 5-10Hz.

5.5 Conclusions 49

However, the robot response to position data sent varield thi velocity and
actual acceleration performance of the robot and with th&dce to a singularity
configuration. Li, Ring, MacRae and Hinsch conclude thap&idg an industrial
robot directly to an application is “extremely challendinfjreal-time or quick

response operation is required (Li et al., 2003).

5.4.3 Example: Experiments using an open control architect ure

A platform for fast external sensor integration to an indaktobot control system
(ABB S4C+) has been used to interface an ABB IRB6400 roboippgal with a
force sensor and a grinding tool (Johansson et al., 2004n&dd, Bolmsjo, Bro-
gardh, Cederberg, Isaksson, Johansson, Haage, NilsssgrQDIsson, Roberts-
son and Wang, 2004). The experiments have been performashdtWUniversity
and at Kranendonk, an enterprise in the Netherlands. Theéedjgeinding tool has
been developed at KU in Leuven, Belgium. The sensor intenfaain features are

e a shared memory interface to the built-in motion controbldimg fast in-
teraction with external sensors in both hard and soft liead;t

e compensation at low-level propagates to higher level ofetten and con-
trol,

e system and safety supervision and other standard comtfetures (10,
RAPID, etc.) are still preserved, and

e add-ons to the original controller can be engineered by bt@thdard and
state of the art engineering tools.

The sensor platform is an open experimental platform footiob research and
can handle problems with different need of bandwidth. Eigpee from the plat-
form confirms that the design is appropriate and that soévaad control need to
be tightly integrated.

5.5 Conclusions

High-level control is an area of research that definitely gribw in the near future.
Manufacturing of one-off products creates a spectrum oftjes that will need
creative solutions which traditional local control fails deliver. The decision
to possibly use Al for path planning, process planning,, eteould be based on

50 High-level control

the particular application control needs in terms of piieoisrepeatability and
speed. In some cases, exact algorithms with calculatedtwass exponential
time growth might behave quite wall

Sensors are vital to high-level control, but the potentialsing them may be
hampered by the introduced uncertainty and increasedmysimplexity. Simu-
lations of manufacturing systems that include sensorsei®tbre needed to find
robust and safe solutions. Virtual sensors with a behakiraonforms with their
real counterparts must be developed. Sensor fusion is aoriam research area
of its own. In this thesis, complementary sensors have bsed.u

The three examples clearly show the need for open contrégrsgsto be able to
automate typical small batch production systems. Indalstrbots of today do not
generally support control outside the standard system¢hwidrmally demands
an off-line program. Industrial robot vendors have not begpecially responsive
to provide solutions for applications for which it is necagsto let the robot’s end
tool position reflect a real-time output from one or more sefs

Naturally, safety and technical issues (Hissam and Kl€d042 are good reasons
to reject end user influence tight control loops, but it isbatady not the only
reason. Today, most vendors try to control the whole markaing not only by
selling the manipulator, but also by exerting control ovestallation and service.

8See for instance (Andersson, 2003), where the exact aigusipresented not only produce
better solutions than the traditional heuristic methodsalso, indeed, seem to perform surprisingly
fast according to the measurements on the presented impietions.

Chapter 6

Motivation

6.1 Introduction

The business potential for robotized production has begiihirecent time, with
lower robots prices, higher reliability and accuracy baspecting repeatable po-
sitional accuracy and in absolute terms. Industrial robo¢sincreasingly becom-
ing an integral part of manufacturing strategies. Indaknobots are used for a
wide spectrum of applications: material handling, assgnsplray painting, weld-

ing and product inspectidn There are several reasons to use robots, for instance

e fast implementation times,

increased manufacturing performance and output rate,

enhanced quality,

eliminated dangerous and undesirable jobs, and

reduced labor cost.

According to the UN, robot orders in first half of 2003 were ypa6% to the
highest level ever recorded (United Nations, 2003). 80 Qfbts were sold
between January and June. According to the same sourceotasal in 2002
would have cost less than a fifth of what it would have cost 8019 he UN report
also states that the usual pay-back period is as short asar2.yMoreover, the

1A new potential market is underground construction whebet® are expected to be used for
a number of applications like drilling in rock and concrete well as shotcreting.

52 Motivation

report states that the price of robots in Germany relativatior costs has dropped
from 100 in 1990 to 17 in 2002 taking into account the radjcatiproved per-
formance of robots.

Regarding its profitability, it may be asked why roboticsestment not even
greater? In the UN report, UNECE claims that robot systerilisase so com-
plicated that potential buyers need “sufficient in-houssmelogical know-how
as well as a thorough comprehension of their production geses” to benefit
from the investments.

Another reason is that there are a few dominating applicareas, i.e. arc weld-
ing and material handling serving a single type of end udex, the automotive

industry. A problem with this dominance is that integratifrrobots into other

areas may be hampered since these applications have othande measured in
speed, accuracy or flexibility such as fast changeover tergitoducts and easy
operation. Traditionally, most other application areagehaot been considered
important business segments for the robotics manufastusdrich therefore have
not provided solutions. There is a challenge to robot mattufars to evaluate
the potential of robots in other areas of manufacturing.

Finally, the shift in production batch sizes is an importtagtor. As mass pro-
duction of large-batch items moves to less labor-expersivmtries, many high-
developed countries will find that the key to future manufeog success is to
move to production of many smaller batches of different gerfowever, fast
product changes along with customization and optimizedgdassing new ma-
terials and manufacturing processes put greater demandouafatturing opera-
tions with respect to control performance and productiggywell as quality. This
inevitable change to small batch volumes and one-off matwrfiag of products
is also the main focus in this thesis.

6.2 Manufacturing of one-off products

Small batch and one-off production systems are rarely ablese robots effi-
ciently. The investment in an industrial robot system aralttme taken to pro-
gram the robots are usually too long and costly comparedetfitancial benefits
and actual throughput in material. Another reason is thatcthst of necessary
fixtures and clamping becomes high compared to the numberodiipts to be
made. Sometimes, for instance in shipyards, it may even pessible to use
fixtures because of the size of the parts to be welded. Fjnsdine products
are unique, expensive and may have such a high material cogtared to the
manufacturing cost that production mistakes cannot bedsth

6.3 Conceptual ideas 53

The use of sensors is a promising way of meeting the demanittiésadituation.
The use of robots generally requires an integrated appraéehne product data
defined within a CAB environment is taken as input and applied within a RSA
software that enables modeling, simulation and progrargmimobot operations.

However, traditional off-line programming systems are suited to simulations
that include sensor-guided robots. The normal processfitinef robotic pro-

gramming using a RSA is to build the work-cell, create tregjges and finally
generate a program for the particular target robot. Gelgetake program will

run correctly on the target system if the work-cell is crdangth sufficient ac-
curacy and fixtures prevent changes in geometry during theufaeturing. For
robots using sensors, however, such a procedure is inagejtizey are used for
trajectory guidance in real-time.

There is no trivial way to simulate the behavior of sensoid sensor-controlled
robots. Most (robot) feedback systems are implemented asah loop, which
only considers the specific instructions used to define thetriask as a set of mo-
tions. Since a sensor-guided robot’s trajectory may chadsajectory somehow
different from the nominal and static trajectory that isguoed by the traditional
off-line systems, creating and applying a nominal pre«dated program is not
possible.

6.3 Conceptual ideas

Considering the number of robots used in industrial aut@mathe use of ad-
vanced sensors such as vision, laser scanners or forde/sensors is still not
comprehensive. One area where sensors are important isséding/where pro-
ducts based on new materials decrease the overall dime(date thickness)
and increase the general need for keeping tight toleranaéisgdwelding. New
processes such as laser welding further emphasize this.

Off-line programming systems are not suited to simulatiwet includes sensor-
guided robots. But given the new opportunities for precisamd calculation of
speed allowed by specialized software and hardware clastlgborating with

open control systems, sensors are likely to appear mone infteew manufactur-
ing systems that include robots in small batch and one-offufacturing systems.

A promising way of meeting the demands of this situation isge a simulation
environment to test a work-cell that includes a sensorroliatl robot before its
actual operation in real life. The idea of simulating theabtask with its use of

2Computer Aided Design

54 Motivation

sensors is interesting since robots equipped with sensithsreal-time connec-
tion to trajectory generation may later lead to malfunctidrihe real robot cell.
Problems that may occur are numerous including out-oftjtimits, collisions
with objects in the workspace, movement into singularitigth resulting robot
configuration changes, etc.

Thus, instead of feeding back instructions, the static engfghe model normally
used in today’s programs, sensor information can be fed bmekmodel rep-
resentation of the task. Real-time sensor feedback to thikel wwdel allows the
information from sensors to be used to actually update théehmoodel, including
updating object positions in real time as required, or @angatbjects not included
beforehand. Through this mechanism, the use of sensorsecaalidated in a
simulated environment in the same way that similar testeanéed out in a real,
physical set-up.

The idea is to control the robot by specifying the task rathan by using a
set of predefined motions and logic, thus providing a higheell of abstraction
in the formulation of instructions. Examples of how this dam used include
resolution of singularity issues, necessary trajectoanping, process adaptation
due to changing conditions and environment, motion plamttiat considers real-
time update of geometrical objects in the world model, etsimdlicated by these
examples, lack of coupling between the running robot pmogead the virtual
model is not acceptable since the system must have theydbimulate and act
on possible situations in the real environment, which ofsewre not fully known
in advance.

Also, by receiving sensor information in the same way relgasdof whether a
real or virtual sensor is producing the data, dynamic effeciginating from the
internal system relating to time delays, information flovd &@ndwidth are also
taken into account. The interface between sensor and afiplicfacilitates these
properties. This system structure makes it possible toatedtvalidate the op-
eration of a sensor-guided robot system during simulatisnyell as to run the
system on the shop floor without any change to the task pragram

An important feature of such a task-oriented programmingrenment and run-
time system should be usability. This is normally a forestsiure of many
technical systems and almost never considered of any sttespecially by tech-
nically oriented professionals, that prevent the systesrisetused at all or to a
limited extent. It is important that the user has a feelindgp@ihg in control. In-
stead of having to rely on intricate and automated systernsidaes on how things
should be done, and what process variables should be chbseimdustrial ac-
ceptance will likely be higher if these conclusions are takg the staff, while

6.4 Conclusions 55

letting the automated system handle and conceal the umagrgchnology to
create the necessary trajectories. Of course, when oridibtel intelligent de-
cisions can be taken by machines and when or if this techrigjaecepted by
human beings, machine responsibility may increase in thedwand higher level
of task abstractions may be reached.

The above mentioned ideas are all needed but must be suppmyrtEndustrial
control systems that allow trajectories to be sent in riea¢tduring the process
instead of, as done today, demanding a predefined and sigéctory. These
open control systems exist today mainly for research pagdsit will most likely
be commercially available in a five-year perspective.

6.4 Conclusions

We can conclude that there are some important featuresnmigsitraditional
robotic programming systems. They need to be found for ektgrthe usability
of industrial robots to small-batch and one-off productsystems:

e Traditional off-line programs are inadequate in servingarbatch and
one-off production systems. New systems are required tloat asers to
develop, simulate and run applications that includes sensod sensor-
controlled robots.

¢ Virtual sensors need to be developed to support these systémadequate
models, similarly to how traditional off-line systems atgported by robot
libraries.

¢ Virtual sensor interfaces should hide the underlying ladithe sensor, vir-
tual or real, from the user. The application using the virsgmsor should
focus on the task, and not on whether a virtual or real sesagséd.

e Task-oriented programming systems that let the user keeppper hand,
not leaving difficult and important decisions to a machinat thecause of
insufficient or unreliable technology is unable to take wyati decisions.

e Open Control Systems that allow real-time trajectory gaetie@n for indus-
trial robots and let a high-level control system make nesngssomprehen-
sive decisions.

56

Motivation

Chapter 7

Contribution

7.1 Introduction

Most contributions from other work in the task-level andcktasiented program-
ming areas are generic solutions having complexity issnddimitations such as
exponential growth of planning algorithms. In this workamhing is the respons-
ibility of the user, who is supposed to have the expertisessary to define the
problem, and to choose, order and initialize subtasks. Jtnédegy does, how-
ever, not impose that it would be impossible to automatenitanin particular
situations or for a certain application. Perhaps arc wgliéirsuch an application,
but it has not been studied.

7.2 Scope and limitations

The author’s contribution consists of identifying problameas and resolving is-
sues preventing a successful implementation of high-lesatrol of industrial
robots. The technique presented is intended for small tartichone-off manu-
facturing systems for which it should be advantageous tosessor-controlled
robots.

The main objective, described in section 7.3, has been telag\a semiauto-
matic model for task-oriented programming applied to sensatrolled robotic
arc welding. To reach this goal, three subsystems have meroped

58 Contribution

1. avirtual sensor,
2. generic interfaces to sensors/robots, and

3. an underlying run-time library to real and virtual sesémbots.

7.2.1 Development of virtual sensors/robots

Scope:To be able to simulate the use of sensors/robots it is negessdevelop
virtual sensors/robots that behave sufficiently well coragao real sensors/robots
and conform geometrically. Using these virtual componediféerent scenarios
can be simulated without compromising safety and withoutrtgato use the ac-
tual equipment on the shop floor. In traditional off-line gr@mming, libraries
describing kinematical properties usually exist for seddndustrial robots.

Limitation: A virtual laser tracker has been developed based on the Ms8&psor
from ServoRobot, Inc. The real sensor is of a type commordg usthe arc weld-
ing industry and uses a triangulation method for depth nreasents. The sensor
is validated both statically and dynamically by matchingvith a commercial
sensor through measurements in setups and by comparingdagvabplication
performed in a real and a virtual work-cell created with a REhe experimental
results successfully validate its performance. In thigextn a virtual sensor is a
software model of a physical sensor with similar charasties, using geometrical
and/or process-specific data from a computerized modeledlanork-cell.

7.2.2 Generic interfaces to robots and sensors

Scope: A well defined virtual sensor/robot should be exchangealith areal
sensor/robot without affecting the application(s) usingrhis is important since
every mode added to the program will make it error prone afitult to main-
tain. Seamless exchange of virtual and real componentsasalcial to run
experiments with a mix of virtual and real components. Fetdnce, a real robot
can be used along with a simulated sensor acting in the V/etwaronment. The
simulated sensor may discover virtual obstacles that tlysigdl robot avoids,
despite the fact that no physical obstacles exist. Suchgeraents allow the user
to check and debug different parts of the system during threldpment of task
objects.

Limitation: A generic interface to the M-Spot sensor and the virtual @ehas
been developed. The interface covers a large subset (batlhof the possible
interaction between the client using the sensor capasildind the sensor itself.

7.3 Main objective: A semiautomatic task-oriented programming model 59

A generic interface to the real and simulated robot has asm lleveloped that
allows the application to send joint values in real-timel(4z). The client is
unaware of if a real or simulated sensor/robot is used.

7.2.3 Run-time library

Scope:A run-time library is needed to support the building of thifestent com-
ponents that constitute an application. Robots, the degami of which follows
the Denavit and Hartenberg representation are supportéa liBrary handles
kinematical relationships, interpolation and functioosrhanipulating data types
such as vectors, matrices, homogeneous transformatiahsaternions. Fur-
thermore, implemented events, communication, threadsymechronization rou-
tines may be needed to efficiently handle interaction betveeenponents.

Limitation: The library has been tested with the ABB2400/16 robot andvthe
Spot sensat.

7.3 Main objective: A semiautomatic task-oriented program -
ming model

Scope:The proposed approach could be considered semiautomsitiotnted
programming in the sense that the user manually defines skebtachoosing a
sequence from a set of predefined sub-tasks. One or morenseguef objects
constitute the robot program needed to execute the taskbAesk can be thought
of as an “object”. Several instances of objects may co-@xipendently during
the task. When the sequence is defined, the task executiatoissnous.

This approach handles a task differently than the existargupeterization tech-
nigue, which is based on similarities in shape rather thars garoposed here, in
sub-tasks.

Limitation: Current planning research has generally not reached suchtiaen
level that it can be used in industrial robotics. Still, huniseings better accom-
plish perception of the work-cell — geometrical and procesderstanding as well
as planning. The semiautomatic task-oriented programmmadel presented is
tested on the weld application described in this thesis.

1These are the robot and sensor available for research irobatics lab.

60 Contribution

7.4 System philosophy

Previous work at the department has over the past yearsogeekideas on themes
related to this thesis. In (Brink, Olsson, and Bolmsj6, 19@btask-oriented ro-
bot programming method focusing on tasks connected to tjeetshin the robot
work-cell, is presented. Tasks are described as statesjeétetand their de-
pendencies, and the method described should avoid an éshidel in task-level
programming, the intricate problem to describe complexesys in a language
similar to written natural languages. The robot work-celekpressed as a dis-
crete event system where attributes (conditions) of thesparthe environment
only change at a discrete set of points in time, and wheninectanditions are
fulfilled. But as with other generic methods, its weakness In the fact that
although there is a finite number of possible states, the owtdrial explosion
could make the number very large.

A theoretical description of a framework for higher levebohtrol and autonomy
is described in (Bolmsjo, Olsson and Brink, 1999). The raegdeatresses the im-
portance and advantage of a high-level task control systehite control struc-
ture layout is given. The framework uses a world model anti@&irsensors are
briefly mentioned.

In (Olsson, Cederberg and Bolmsjo, 1898nd (Olsson, Cederberg and Bolmsjo,
199%), a system is presented that integrates a simulation arcutoe envir-
onment for industrial robot tasks. Sensor feedback is usatptate a virtual
work-cell model and sub-tasks are autonomously executeedban the inform-
ation currently available from the virtual model. The iddale work presented
in this paper was to add an interface to a commercial RSA dap# interact-
ing with the physical system in real-time. The authors r&fesirtual sensors and
sensor interfaces but at the time the paper was writteng idleas were fairly new.
Nevertheless, this RSA centric solution, further devetbjpe(Olsson, Cederberg
and Bolmsjo, 2002) was an inspiring source for the develaoprokthe platform
described here.

Research in industrial robotics implicitly means that amyst-worthy solution
should be based on an engineering strategy even if the exgeal work some-
times has to be done on a somewhat simplified experimentdibpta It is nat-
ural for researchers to favor generic solutions, and theyarmally also the most
interesting. However, good engineering solutions in ai@aer domain are fore-
seen because of unsolvable difficulties with a general isolut

7.5 General system structure 61

7.5 General system structure

A system structure to support high-level control of serwmrtrolled industrial
robots to support small batch and one-off production systeas been developed.
A nominal model is defined and exported. The run-time modes$ tise nominal
model along with kinematical robot models to create a wortdlel. All tasks are
then executed on this world model, which communicates duun-time through
sensor and robot interfaces with real and simulated rolmatsansors, see Figures
7.1and 7.2.

The described system structure contains components geeeloy the author
mixed with other components. In section 7.2, the scope andalions of the
thesis have been stated.

7.5.1 Definition of the nominal model

The technique of modeling work-cell components in CAD emwinents and cre-
ating off-line robot programs in RSAs is mature and appligdigers of industrial
robots today. Process data may originate from process akgapfor example a
weld database and from the CAD models. As we today are useddtelnpro-
cesses in CAD/RSAs, these systems are a natural starting fooigenerating
models. The model created is theminalmodel, i.e. it describes our work-cell
as well as we know it before information from sensors giveseasons to change
it.

Nominal world model
defined in the RSA T~
RLib DB

Robot model

Initialization Application C

i i initialization Run-time
Forward kinematics L

Inverse kinematics routine

Figure 7.1: A nominal model is defined and exported (1). The run-timetipr
uses the nominal model along with kinematical robot mod2|s3) to create a
world model (4). All tasks are then executed on this world @hod

Kinematic data from CAD/RSAs are related in an order thatoissidered effi-
cient for the particular application and its purpose ancdhiged in a proprietary
format or a common CAD format. Normally, these expensiveliagiions also

62 Contribution

give the user the opportunity to view data via some functignthat recursively
traverses the internal structures of the application. Byeeiusing this option or
by traversing documented formats, data relevant to kiniennakationships and
process relationships, when appropriate, can be colle@ieel developed system
provides an API that makes it possible to save relevantiméion in a system-
dependent, but CAD/RSA-independent way. After using thé RiRematic data
is saved in a CAD/RSA-independent format but it may still hetrelated in a
feasible way for its new purpose — realistic simulation ama-time handling of
sensor-controlled robots. The system API therefore alsodehange kinematic
relationships “manually”, i.e. with a few lines of code,afdata are read from
the system format into our application.

Process data from the CAD/RSA environment along with mdyoetated data is
also collected. Some process data can be collected dusngaerse of internal
structures, but not all. Sensor-specific data are not comimGAD/RSAS today,
since they do not normally support sensors or modeling af@sn Process data
may be different for various parts of the workpiece, and tfstesn take this into
account by creating objects that relate to the process. parts

After kinematic and process data are made available to giersy the CAD/RSAS
are mainly used as hosts for virtual sensors/robots andiglaie the running op-
erations either as a full virtual process without any plaisparts involved or to
let the user monitor the real process. Despite their ofteéansive functional-
ity CAD/RSAs may be more or less suitable for this purgosnother general
problem is that these applications tend to be quite largetlagid multipurpose
monolithic structure may harm their execution speed sicgnifily. To overcome
these and other problems it is suggested that efficient grapdnvironments are
built and used instead.

7.5.2 The run-time model

At this point, nominal kinematic data, process and senstr al@ well known to
the system and available in appropriate structures. An@fficun-time library, a
library APl and a set of objects, serve as a foundation to applications can be
built upon. Today’s RSAs are not suitable as engines in thdime environment
either. This is mainly because of their complicated andlsitigreaded structure
and their different layers of APIs with functionality onlgachable from vendor
proprietary languages. One has to remember that theseatimiis are optimized

2As an example, the graphics update process within the RSAnwiaye fully controllable from
a user standpoint, and this significantly hampers the acguwfmeasurements done by virtual
sensors inside the graphical environment.

7.5 General system structure 63

for simulation purposes only, and are not built for run-tiosage. A better solu-
tion is a library where one simple API gives access to theirequdunctionality.

Sensors:
-Simulated
-Physical Application

task execution

o
Subtasks: Run-time
-Search RLib DB
-Start Point

3D Visualization -Weld

Simulated sensor-
data acqusition

Sensor and robot interfaces

Figure 7.2: The world model communicates during run-time through seasd
robot interfaces (4) to real and simulated robots and send@). The task is
visualized in 3D (3). When simulated sensors are presensos@lata acquisition
is made in the 3D model (1). Changes in the world model arecsemie run-time
database (5).

The library consists of all or at least most of the functidyaheeded to create
an application, including interpolation routines that @ah upon the kinematical
data that is saved in the database, service routines suamnesrsions between
different mathematical representations of orientatim@nmunication routines
and others. Interpolation routines will be needed sinc@ds&ion and orientation
of the tool is continuously calculated by the high-level ttohsystem, outside the
traditional robot-control system.

It is important that this library is used both for simulatiand for running the
actual system. The application built will not have to acfatiéntly on virtual
and real components, and will not even know which componieigsoperating.
This is a major feature in the high-level control system titaites more realistic
simulations, less errors and simpler applications.

7.5.3 Supporting libraries

A library of robots and sensors needed in the model is alsoinedy The robot
library is preferably based on routines provided by the tobanufacturer, “black
boxes”, that will help the high-level control system to edéte correct accelera-
tions, speeds, and limitations in the different situatioAscurate trajectory per-
formance is important in the industry. Laser welding, fatance, demands very
accurate performance to obtain a good weld quality. Thekidbax includes an

64 Contribution

accurate dynamic model of the robot consisting of meché&hietectrical/digital
and robot control models.

The sensor library is also based on manufacturer routing®ach virtual sensor
is essentially built around this black box consisting oftioes providing the same
interface and accuracy as the real sensor. Also, limitatinrhardware must be
taken into account, for example bandwidth and, if possitaliires that will oc-
cur with some measured or expected probability. Forceeserend other tactile
sensors will be more difficult, but not impossible to simelatin cases where
there is a major difference between reality and simulatiois,discrepancy can be
guantified.

It is realistic that generic robot/sensor interfaces amvided for groups of ro-
bots/sensors with similar characteristics and usabilBy. using generic inter-
faces, the user will have the opportunity to compare singtdutions from dif-

ferent manufacturers. Virtual components are also vaéubbfore a work-cell is
built, or when different alternatives are to be assessedthier words, two dimen-
sions of generic interfaces are needed: one that hides iipaoent is virtual or
real, and one that groups similar components together, igeiee7.3.

Component A
(physical)

Interface A

Component A
(simulated)

Run-time
Library

s

Figure 7.3: Two dimensions of generic interfaces, one that hides if apooment
is virtual or real, and one that groups similar componentgether.

Component B
(physical)

w
o
&
—
o
&
=
o
<
>
=
=
[=
o
c
o
a
=
o
O

Interface B

Component B
(simulated)

7.5.4 Process-oriented parameterization

In normal industrial robot programming, the path is creaded the process is
based upon the decided path. Here a process-oriented misthamposed, based
on the hypothesis that it is natural to focus on the procésse she path is in real-
ity merely a result of process needs. Another benefit of dhggzrocess focus is

3Calculated, for instance, using a non-linear finite elenfi@mhulation.

7.5 General system structure 65

that it automatically leads us into task-oriented thoughtsch in turn can be split
in sub-tasks, one for each part of the process with similacgss-characteristics.
By carefully choosing and encapsulating the informatioadsel to execute a sub-
task, this kind of encapsulation, object can be re-used whenever the actual
subtask appears. For each subtask, an instance of the ishjeeated, see Figure
7.4,

Application 1 (main task) Application 2 (main task)
Al Bl

\

Object A ObjectB Object C Object D Object E Object F Object G
Object repository

Figure 7.4: Applications are built upon object instances taken from abgect
repository. Each object can be re-used whenever the actimbask appears.

The path is often created during run-time and is based oroseeadings. This
put clear demands of openness of the robot control systeukillrin many con-
crete industrial applications, a nominal path is normaligwn before hand and a
deviation from the nominal path over a specific threshold ld/twe considered an
error that can stop the process. For those processes, alcgygtem that allows
a certain deviation from a nominal path will probably suffice

7.5.5 Visualization of work-cell components

The system also consists of APIs to visualize general coemisrbesides robots
and sensors in the work-cell. Thus, an application builhwlite system is inde-
pendent of visualization software used and can basicalleba as a controller in
the model-view-controlleparadigm. Portions of the model are spread in differ-
ent parts of the system, in the graphical environment, irptioeess database, in
kinematical and other databases. The view is, not surghgimappearing in the
visualization software. As mentioned before, each objastiesponsibility over

a subtask and may occur in as many instances as needed faHelfarticular
task.

4The name is given because of the resemblance with objeseslas Object-Oriented Program-
ming, OOP.

66 Contribution

7.5.6 Object aspects

When an application is running, one of the objects normaldlythe actual control.
The underlying run-time system is the framework that ess&nipermits high-
level control and supports the objects and the main progreatl major aspects.
The object may create the path on-line-dependent on seaadings. Since the
object encapsulates most of the control of the process inmaartant duties:

e Initialization and execution

e Sensor-process interaction

Interaction with other objects

Graphics interaction

Interaction with run-time and operating system

Object-initialization and execution

Each object must be initialized with relevant sensor pataragprocess variables
and world model parameters and these are usually diffeoeaich object. Then,
the objects are executed in sequence order. Some objectssarieted to start
the process, some defines the process end, and other olgjeaisauir in arbitrary
order between start- and end objects.

Sensor-process interaction

The objects rely on data from a world model and are bound foubditom one or
more sensors and a process. A good example is the experimetdeobject that
is bound to a laser tracker sensor and weld process variables chosen level
of abstraction is intended to hide sensor-process inierafitom the user. The
objects’ behavior is predetermined by their initializatidata and run-time rules.

The coupling between sensor and process makes it possibteate a library of
objects that can be re-used for tasks within similar contdmtthe robotic arc
welding experiment, the weld object is invariant of the wdlgtance. Thus, a
single weld object can be used for all possible distancasid&eparate welds are
necessary to complete a particular task, two separatdiglinéd instances of the
weld object are needed.

7.5 General system structure 67

Object-object interaction

Although objects normally are independent they are partoidinuous task. The
weld object, for example, is designed to weld forever undserror occurs, i.e.
sensor readings are indicating a lost seam. To end a welahycgn end-weld
objecP has been chosen, which interpret a lost seam as an normaifeveld
condition instead of an error.

In this situation it is feasible to stop execution of the waligect close to where the
weld is supposed to end without signaling an error conditiinereafter control
is returned to the main program, which then invoke the enldhwbject. There
are, of course, several possible solutions to accomplistster between objects.

Object and graphics interaction

The kinematic definition of the nominal work-cell is sepachfrom the execution
of tasks, and can preferably be made in a RSA. The work-celtlvan be saved
in a RSA-independent text-based format. When a progranaiitest, the nominal
world-model can be imported. The model describes the kitiemalationships
between different objects (including robots) in the woetkc

During execution, the user interface and the motion cofagit should be separ-
ated whenever possidleAn advantage of separating graphics and logic is that it,
under execution, becomes possible to accomplish high-terdrol using a real-
time operating system, which is needed to actually run tetegy as a component
sharing resources with an open control system. Howevet,lieyond the scope
of this thesis to propose actual hardware solutions.

Object and run-time system interaction

The implementation of the underlying run-time systeRb,ib, calls the objects
regularly during execution if the object uses interruptgaaures for tags and
tasks. RLib calls the task procedure before and after thkadasxecuted. The call
includes the current task state. The tag procedure is dadifte, during and after

®This is an implementation decision. Another solution ccgdo introduce an end-weld mode
in the weld object.

5The implementation uses procedure hooks that are calley @werpolation step, i.e. each
time the object itself is called from the underlying run-¢isystem.

"Although it is not realistic to use a RSA as a container foiut sensors during execution of a
system with hard real-time demands, it has been used in rexiexents.

68 Contribution

each tag is processed. Here, “during” denotes an interftgrteach interpolation
step when executing the tag.

RLib holds the state of the task in a structure. The strudiotds the current path
and tad along with other information pertinent to the current motand current
state, and is passed to the task- and tag procedures. By th&nigpformation,
the object can read the current motion state and use it aftengin program has
invoked it.

Run-time system and operating system interaction

A problem with today’s off-line systems is that logic andgnas are mixed and
dependent on each other, which results in that actual loddeographical system
strongly affects the control performance. In reality, tkeefprmance of embedded
systems is usually needed in parallel to high performancgraphics. If graphics
need to be updated in tight loops which might be the case wineralksensors are
used, today’s commercial RSAs do not provide a realistigtani because of their
low and unpredictable performance. Customized solutioepeobably required.
This does not impose major difficulties taking into accowtday’s computing
potential and available software tools.

7.6 Conclusions

With current programming technique, robotized small bat@nufacturing and
manufacturing of one-off products demand individual ropigrams. As a res-
ult, robotized manufacturing is not cost-effective foisthjpe of production. The
fact that today’s industrial robot programming is motia@ntered probably results
from that robots normally just iterate through a predefined downloaded pro-
gram. Apart from local adjustments, most robot progranisdstinot use sensors
which output affects the actual path of the tool. The use $ses has potentially
to cope with the different set-ups for one-off products, thiet increased system
complexity and uncertainty that sensors implicate must treehandled.

The methodology addresses the mapping problem betweernvabkeand con-
trollable variables and the focus is on controlling the psst¢task rather than the
motion alone. As indicated above, such motion may includentation changes
of the weld object (with a positioner), changes of poses®ftivot and changes of
travel speed. In turn, this will require to monitoring issuelated to out-of-joint

8A tag contains a pose and one or more tags constitute a pathirdjectory is then created
from one or more paths.

7.6 Conclusions 69

limits, collisions, configuration changes and singulestiwhich, during sensor
guidance, has to be done in real-time.

The proposed process-sensor oriented methodology padpest on sub-tasks.
Each sub-task is based on process-sensor data and thisatifmn is encapsulated
in anobject Motion is generated by the object, taking into account titions
imposed by initialization and process restrictions. Theaglhave been submitted
for publication in (Cederberg, Olsson and Bolmsjo, 2004).

70

Contribution

Chapter 8

Experimental system structure

8.1 Introduction

A test bench has been developed based on the general syateturst described
in Chapter 7 for combining simulated and real componentsvamiflying their

functionality, both during simulation and execution. Th@erimental structure
and arc welding application used a laser tracker with comtandware, which
existed both as simulated and as real components, a conaingisciaxis robot
with an unmodified control system, a distance-sensor, whith existed in the
simulated world, and two camefashe cameras were not simulated.

Several features were handled by the system componentsteeompilation and

loading of a specially designed program to the robot coletrobn-line trajectory

generation, and on-line collision-tests and singulariéfedtion and avoidance.
The commercial robot controller could only execute predémh programs. To
be able to execute on-line generated trajectories, the miogram downloaded
to the robot was given a generic design that demanded counnupdated joint

values to execute. This was very different from the statmgpams with pre-

decided trajectories typically executing on the robot caifsr.

The arc welding application was assembled as a set of opjebish divided the
logic of the arc welding task into sub-tasks. Each objectapsualated sensor-
process related data and could potentially occur sevenaktiduring the applica-
tion process. Figure 8.1 gives a logical view of system camepts.

1Camera set-up and mathematical treatment of camera ougpubartesy of Stefan Adolfsson
(stefan.adolfsson@hbg.Ith.se).

72 Experimental system structure

Simulated robot

Collision detection
Simulated work-cell
Simulated laser camera

Robot interface

Physical robot

Feeder ABB 2400/16
S4C+ control unit
RAPID

Slave - Simulated camera

Simulated M-Spot tracker

CSR4000 control simulator
GUI

] Slave
Tracker interface

Master
Physical M-Spot tracker

M-Spot laser camera
CSR4000 control unit

Vision system

Unibrain Fire-i-400
3.5 mm lens
MatLab

Figure 8.1: Logical view of system components in the experimental setup

8.2 Application

The application was connected to the different sub-systémesRSA, the tracker,
the distance-sensor interface, the robot interface aritetaer”. The information
time rate needed for a tracker-guided robot during arc wgldias in the interval
of 40-60 ms (20Hz) which made local host TCP/IP communicatiosuitable
choice.

8.3 Feeder 73

8.3 Feeder

In this particular experiment an ABB 2400/16 robot was udési S4C+ control
system executed programs written in the ABB RAPID langudgeaccomplish
on-line trajectory generation the “feeder” component eduhe joint values from
the application to the generic program executing on thetrabatroller. This
system component utilized a robot vendor proprietary paf{ahe ABB Robot
Application Protocol (RAP), to communicate with the robaintroller. Thus,
the feeder served as an interface to the robot and hid vetepmndent protocols
from the application. From the application’s point of viedwe requirement was
to deliver joint values whenever requested by the feeder f€bder was also
responsible for reading the actual position and oriemtaticthe robot.

8.3.1 RAPID language

The program consists of a number of instructions that desdtie work of the
robot in a Pascal-like syntax. There are specific instrastior the various com-
mands, such as to move the robot or to set an output, etc. Bherthree types
of routines: procedures, functions and trap routines arektkinds of data: con-
stants, variables and persistents. Persistents are lesrihlat can be reached from
the outside world. Other features in the language are: meygarameters, arith-
metic and logical expressions, automatic error handlingdufar programs and
multitasking ABB Rapid Reference Version 3.2, RAPID Sumuad;).

8.3.2 Remote Procedure Call and External Data Representati on

Remote procedure calls are a high-level communicatiordigrathat allows pro-
grammers to write client/server network applications ggmocedure calls that
hide the details of the underlying network. The RPC modelinslar to the
local procedure call model where the caller places argusnent procedure in
a well-specified location (such as a result register) anasfesis control to the
procedure. When the caller eventually regains controktiaets the results of the
procedure from the location and continues executiin{ Network Programming
Guide n.d.). RPC uses XDR to establish uniform representationsldta types
in order to transfer message data between machiklieés\ersion 4.3 Communic-
ations Programming Concept4997). Sun’'s RPC and XDR are freely available
on numerous platforms.

The Robot Application Protocol provides a set of serviced thakes it possible

74 Experimental system structure

to monitor and control the robot from an external computdrese are grouped
into four classes: general management, variable accesm)dihagement and pro-
gram control services. The general management servicesippert services for
all other services, e.g. opening and closeing a conneatian dpecified server
and restart of the controller. RAP is using named variabjeatb to get inform-
ation from the robot-system or affect the robot system, éogread and write
RAPID defined and predefined system variables and eventihgndhn event
in the system can be subscribed for, and as a result of susleritipn, a spon-
taneous message will asynchronously be sent to the extsngduter when the
event occurs. RAP file management provides the functigntiaiccess files on
the memory devices in the robot system, e.g. to open, reatk, wlose, rename
and delete a fileABB RAP Protocol Specification 1,06.d.; ABB RAP Service
Specification 1.05n.d.;ABB Ethernet Services 3.0.d.).

8.3.3 High-level remote motion control

Typically, a standard RAPID program needs no invocatiomftbe outside world
after execution has been initiated. It is only possible tuisgata with RAP.

A special RAPID program with a designated sequence of masteuictions was
downloaded to the controller. The RAPID program needed tadmgned for
letting a remote application control the robot’s motion imaster-slave fashion.
The relevant part of the program consisted of a loop whereenostructions
continuously were executed as shown below.

I RAPI D program executing on robot controller

PERS num pnum :

= - 1’
PERS num pOset := O0;
PERS r obt ar get po:=[...];

WH LE NOT aborted DO
WaitUntil plset <> 0;
plset := O;
pnum : = O;

MovelL pO, v, z, toolO;

WaituUntil p2set <> 0;
p2set := 0;
pnum : = 1;

2As oppose to instructions; a limitation that has been cineemted in (Pires and da Costa, 2000)
by introducing a switch statement in the RAPID program whesreh selector defines a predefined
and possibly complex service.

8.3 Feeder 75

MovelL pl, v, z, toolO;

WaituUntil p3set <> 0;
p3set := 0;
pnum : = 2;
MovelL p2, v, z, toolO;

WaitUntil pOset <> O;

pOset : = O;

pnum : = 3;

MovelL p3, v, z, tool0;
ENDWHI LE

The loop represented a circular bufferdaf obt ar get structure$0...p3 which
contained position, orientation of tool center point (tapyl configuration of robot
and external axes. The variables were declardeERS (persistent). During exe-
cution, these structures were dynamically set (with sonem&y) with joint values
provided by the application. The feeder kept track of whidveinstruction that
was to be executed by the robot controller, i.e. whidbt ar get structure to
be updated at a specific time.

TheMoveLdirective refers to a via movement anéndz denoted tcp speed and
the zonedat a structure respectivelyzonedat a was used to specify how a
position was to be terminated, i.e. how close to the prograchposition the axes
had to be before moving towards the next position. For ingtaat some point
of time during the move fronp1 to p2, bothp2 andp3 had to be known to the
robot control system. To be able to prepare for the next mevem fourth point
was needed.

Even though a RAP call returns synchronously, there is noagiee that the
r obt ar get structure in RAPID is updated whem i t eRobTar get () re-
turns. Since RAP calls that write data to RAPID variables riacfice are asyn-
chronous, there is need for a mechanism to be certain thattiaybar variable
holds the data previously written to it.

This hand-shaking problem was resolved by using busy’waihe RAPID code
as well as in the feeder. Thmnumvariable in the running RAPID program was
continuously monitored by the feeder and when it eventuadigame updated in
the RAPID program, the nextobt ar get structure update was sent from the
feeder to the robot controller.

/* Feeder pseudo code to handle */
/* routing of data and hand-shaki ng */

3A polling method.

76 Experimental system structure

/* between application and robot */

static int pnum= -1;

i nt pnuntChanged()

{

}

RAPVAR_DATA_TYPE dat a;

readRAPI DVar (" pnunt, data);

i f (data. RAPVAR _DATA TYPE_u. num!= pNum {
pNum = dat a. RAPVAR_DATA_TYPE_u. num
return 1;

}

return O;

voi d feedRobTar get (ROBTARGET robTar get)

{

/* set two pnumis ahead, i.e. */
/* if pnum= 0, set p2set =1 */
/* in RAPID program */

int pXset = (pnum+ 2) MODULUS 4;
wr it eRobTar get (robTarget, pXset);
witepXset (pXset);

voi d routedoints()

{

}

ROBTARGET robTarget;
JO NTVALUES j oi nts;
do {
i f (pnunChanged()) {
joints = sendJoi nt Request ToApplication();
robTarget = kinematicCal cul ation(joints);
f eedRobTar get (robTarget) ;

}
} while (!aborted);

voi d main()

{

if (conpileProgranm() == SUCCESS) {
connect Application();
/* initialize first two robtargets */
initializeRobTargets();
st art RAPI DExecution();
routedoints();

}

el se
di spl ayErrors();

8.4 Stereo cameras 77

To avoid having the speed of the application exceeding tkeedpf the robot,
the application only sent joint values after receiving auesi message from the
feeder. If the application was unable to send values uporgaest, the robot
came to a temporary stop until the application was ready some delivery of
joint values.

8.3.4 Remote editing and compilation of RAPID programs

Some of the strengths of RAP were shown in the supporting pdirthe feeder.
Besides handling the real-time issues of routing values titee application to the
robot, the feeder provided a RAPID compile environment inigimac$, a well
known LISP-based editor. By issuing a compile command inasmiiie RAPID
program would get syntax checked and any errors were shotinrew, column
and error message in a second window. By clicking on the @heicursor marked
the offending line in the RAPID program, see Figure 8.2.

Behind the scene, the actual compilation was performed tedynon the robot
system. By using RAP, the RAPID program was sent to the robwotroller and

was loaded and checked. The errors were saved in a log fileeorobot con-

troller and were transferred back to the feeder and disglagethe user in an
user-friendly fashion. If the RAPID program passed the ayrtheck, the user
could choose to automatically run it.

8.4 Stereo cameras

Two Unibrain Fire-i-400 cameras each equipped with a 3.5 pma Were used to
calibrate the nominal world model. The cameras were plagaykt a bird view

of the work area. Workpiece images were processed in Matidittee result, a
better nominal workpiece pose was written to a file beforeafhication started.

8.5 Tracker

A tracker component was developed to allow applicationsnteract with the
tracker control unit. The tracker interface permitted tpplation to use a single
protocol for communication irrespective of if communioatiwith the physical

40riginally written by Richard Stallman in 1976, as a set oft@IMACroS for the TECO
editor. Popular versions today are GNU Emacs, see httpu/gmu.org (also written by Stallman),
and its close relative XEmacs.

78 Experimental system structure

= emaes@newlon.miov.ith.se 1= 10
Buffers Files Tools Edit Search Mule Help
%%
WEREION:1
LANGUAGE: ENGLISH
5%%
MODULE automoduls
PERS tooldata +11 :=[TRUE,[[0,0,0],[1,0,0,0]],[0,([0,0,0]0,([1,0,0,0],0,0,0]11;
PERS wobjdata wjl :=[FALSE,TRUE,"",[[0,0,0],[1,0,0,0]1,[[0,0,0],(1,0,0,0]11];
PERE jeointtarget homel :=[[0,0,0,0,0,0],[3E+05,9E+0%,9E+09,5E+05,9E+0%,9E+09]7;
PERS num prum = -1;
PERS num plUset := 0;
PERS num plset := 0;
PERS num piset = 0;
PERS num plset = 0;
PERS num k := 150t;
PERS robtarget p0:=[[1140,-202,385,1400.41],[0,0,0.999982,-0.00599861],
0,0,0,0],[3E+03,9E+09,3E+09, 9E+09, 9E+09, SE+05]];
PERE robtarget pl:=[[1140,-202.385,1400.41]1,[0,0,0.993982,-0.00599861],

[
[
[
[0,0,0,0], [9E+09, 9E+09, 9E+09, 9E+09,9E+09, 9E+09]] ;
[[1140,-202.385,1400.41],[0,0,0.999982,-0.00593861],

[

[

[

[

PERZ robtarget pg:=
0,0,0,0], [9E+05,9E+09,53E+09, 9E+09, 9E+09, SE+05]];
PERS robtarget p3:=[[1140,-202.385,1400.41]1,[0,0,0.999982,-0.00599861],
0,0,0,0], [9E+05,9E+09,9E+0%, 9E+09,9E+09, 3E+05]];
PERS speeddata v = [140,500,0,07;

PROC main()
MovedbsJ homel,vl00,fine,tooll;
| SinghreatiWrist;
confLhNOEE;
plset := 0;

——:-- automodule.prg 4:33PM (Fundamental)--L15--C0--Top
"automedule.prg", line 15 : error(-2107:40700): Unexpected identifier
PERS num k = 150t;

n

!Fompilation exited abnormally with code 1 at Thu Mar 14 16:35:08

4 -l:— #compilaticn# 4:39PM (Compilaticniexit [1])--L15%--CO--Bot
Wlark set

Figure 8.2 The feeder provided an emacs compile environment whiclwatlo
the user to remotely edit and execute RAPID programs (thgraro in the Figure
is just provided as an example, please disregard from dgtail

or with the simulated tracker. The interface was simple dedapplication did
not need to be aware of issues such as internals of data paekeir-handling
procedures etc.

When the tracker component was used for simulation, a storuéamulated the
tracker controller’s actions. A simulated tracker, i.ee thacker running a sim-
ulator subcomponent, could work in conjunction with a reasionulated robot.
Again, this did not affect the application, which becaus¢heftracker interface
was truly unaware of whether the tracker connected to thelator or to the
tracker control unit.

Next will a description of the physical tracker, the ServbBoM-Spot Laser and
the CSR4000 control unit, follow.

8.6 Physical tracker components 79

8.6 Physical tracker components

8.6.1 Laser scanner

The laser beam projection is called the optical plane andc#meera can only
image objects that intersect the optical plane within tiectif’e depth of field of
the camera. The coordinate system of the camera is definde ioptical plane.
A 3D model, as represented in the RSA, is shown in Figure 8cheldding on the
camera head, it has a practical resolution ranging fromthess0.015 millimeter
at close-working distances (100 mm) to 1.5 millimeters atifarking-distances
(2000 mm).

Figure 8.3: A 3D model representation in the RSA of a welding torch with at
tached seam tracker.

8.6.2 Control unit
The controller maintained the camera at its optimal opegaliével. It adjusted

the power and/or sensitivity in order to cope with varyingace finishes and di-
gitized the video signal of the camera and performed lowellgision-processing.

8.6.3 Processing algorithms

Several image-processing algorithms were provided dextida the five follow-
ing joints: fillet, corner, lap, butt and v-groove, as showrigure 8.4. Several

80 Experimental system structure

techniques were used to ensure the system robustness.téhsonathe surface of
the plates or shiny surface conditions could cause outli&drsoutlier is a point
that is far away from most of the others. The outliers wereatet and elimin-
ated at the initial stage of image-processing. The algoritfieach joint included
validation features taking into account the obstacles ¢hatbe seen in the field
of view of the camera.

e
| mie

 I—

Figure 8.4: Standard joints: fillet and corner in left column. Lap, butidav-
groove in right column.

8.6.4 Image-processing region and breakpoints

Each profile contained 256 or 512 points. The boundary sifiaatethe image-

processing region, which could be specified for two reastingstrict the vision-

processing region in order to avoid unnecessary featuatsrttly confuse the vis-
ion analysis, and to reduce the vision-processing timeinyihting unnecessary
profile points.

Breakpoints are feature points extracted from the profitesach image-process-
ing algorithm, the breakpoints were extracted from the methased on the joint
features. They were numbered from O to 7 and were used to degnieacking
point position or to extract further information. The qugnbf breakpoints de-
pended on the quantity of joint features but did not exceed l& breakpoints
were labeled aBy, ..., B;.

8.7 Simulated laser camera 81

8.6.5 Weld joint recognition

A basic function was to filter the data and create line segmimatt matched the
criteria of specific weld joints and their tolerances. Th&ade in this process are
beyond the scope of this thesis but included in principle(idination of outliers,
(2) creation of line segments, (3) merging of line segmeritls similar geomet-
rical characteristics and (4) validation of joint paramgtdor instance angle and
gap, see Figure 8.5. The process result consisted of a setakpmints, i.e. in-
formation describing the geometry of the chosen joint typ@o such joint was
discovered, an error was returned.

8.6.6 Process results

The process results from both the physical and virtual #aekas used by the
“master”, which was the tracker sub-component closesteé@pplication. When-
ever the application wished to receive information fromghmulated tracker, the
request was handled by the master sub-component, whiclnnaiked to either

the tracker control unit or the simulator, without knowledgf which. When

running the tracker in a simulated mode, a tracker GUI coeldided to monitor
the joint and the calculated breakpoints.

8.7 Simulated laser camera

If a simulated robot was used, a simulated camera emuldimtracker, could be
applied. A simulated robot could be an ordinary robot fronolzot library in any
RSA or other application providing visualization and an At enabled the user
to create a simulated camera for interaction with the welkabjects. By having
the simulated camera emulate laser rays sweeping overitneraa field of view
and working-distance, an array of distances to objectsenatbrk-cell could be
collected. The sweep distance array could then be sent tslthae”, which was
another tracker sub-component.

8.7.1 Virtual laser scanner

The virtual scanner was represented by only one functionchwémitted virtual
rays over a certain angle. For each ray, the RSAARIEnt i t yRayCast ()
was called, which yielded the distance in millimeters araghint of intersection
to the closest part (plates, weld joint). The distance waspazed to a maximum

82 Experimental system structure

Plates Rays

N7

'

Outlier
elimination

Split when Merge when
Rough dmax > tspit and |al < dmerge and
surface S >= Smin 0 < gmax

Fillet Joint Templa te Matching.

Accept if

Omin < 0 < Olmax and

gapmin < gap < gap max

Create breakpoints Bo..B4 and
process parameters o and gap

Figure 8.5: Principle of the joint filtering process: (1) elimination ofitliers, (2)
creation of line segments, (3) merging of line segments siittilar geometrical
characteristics and (4) validation of joint parameters.

8.8 Simulated control unit 83

hit distance that limited the measurable area. Measurenexaieeding this dis-
tance were not taken into account. Finally, a complete sweepreturned as a
raylist containing a vector with measured points of intersectiothecoordinate
system of the virtual camera and the total number of suaglesefasurements.

8.8 Simulated control unit

The segmentation process and fillet joint template matapesented the control
unit in the physical world.

8.8.1 Segmentation process

The slave sub-component performed image-processing awibep distance ar-
ray using similar algorithms as the physical tracker cdninit. The segmentation
process consisted of calling thplit procedure followed by thenergeprocedure,
see Figure 8.5. The points of intersection formed a profilsti&ight lines. Ini-
tially, the profile was considered consisting of only onensegt. Thesplit al-
gorithm divided the initial profile into several accordir@tt,;;, Sintw aNdS,ip.
Only segments with length between end points larger tharspiie threshold,
tspiie, Were split. To increase the calculation speed,shg parameter could be
set to an integer value greater than 1. A value of 2 means tleay second ray
were discarded in calculations. The segments were storedgmentliselong
with num_segmentshe number of segments. Split was implemented as a recurs-
ive algorithm, which divided the segment until eittaby,, was less than,,;,
or the region was smaller than the predefined minimum sjzg. d,... was the
maximum distance between the intersection of a line betweernd points of
the segment and the normal to this line to a point includetiérsegment.

Next, themergealgorithm was called. Two segments that were close enough to
each other and fulfill angular requirements, i.e., less thamaximum merge gap,
Omaz and the maximum merge anglte,,..q. respectively were merged to one. A
merge gap could occur after outliers were eliminated. Thegemangle was the
angle between two segments. The iteration continued thrallgegments in the
profile.

8.8.2 Fillet joint template matching

The result from the segmentation process consisted of aewuafilsegments that
fulfilled stated terms of linearity. The simple templatetalieng module imple-

84 Experimental system structure

mented used these segment to check if the segments cordesbtmnpre-defined
angular and gap restrictions and to create breakpoints.

8.9 Distance-sensor

The range sensor, which measured the distance to obstadhesveld direction,
utilized a similar simulation technique as the tracker.

8.10 The RSA and its resources

The RSA provided resources for creating the nominal virtuatk-cell and the
simulated physical work-cell, visualization and collisidetection in the simu-
lated work-cell. In simulation mode, it also displayed tipdysical” robot motion
and distance measurements utilized by simulated sensbeseTresources were
reached by the RSA's proprietary APIs. RLib handled the kiatic relationships
between these objects and the RSA was responsible for iatiah, collision
detection, export of the nominal kinematical relationshgmd for simulating the
M-Spot camera.

8.10.1 Export of the nominal kinematic relationships

When the nominal work-cell was created in IGRIP, a RLib dasgbwas built
by using IGRIP’s proprietan)AxxessAPI. During the recursive traverse of the
work-cell objects, the kinematical relationships weressboutside IGRIP in RLib
database format by using RLib object creation methods.

8.11 Application objects

The application consisted of a number of independent ahjediere instances of
some of the objects could be used and re-used in virtuallynraegningful order.
The objects encapsulated the logic in different processgshaf the application;
search phase, start point phase, weld phase, obstacleaageigphase, end weld
phase etc. For all application objects, the user definedctbjeecific behavior
such as speed, weld current and other process-dependaht$iateral instances
of an object could be utilized in one application, each imsgawith its own pro-
cess characteristics.

SHowever, weld process dependent data was not utilized githimexperiments.

8.11 Application objects 85

8.11.1 Search object

The search object was utilized to determine the weld stant pt/hen found, it
created a start point path and a weld path. The search cedtsmas to measure
the weld workpiece orientation and thus, the weld directibims extended search
distance was usually equal to the distance measured in tledivection between
the weld wire and the laser beam sweeping perpendicularetavéid direction.
The search information was saved as a number of tags in the peeh, each
containing a pose. A search path was a user-defined numbeveafps in the
weld direction, and each sweep was performed at some disteora the nominal
start point. After the extended search, the virtual worgpieras calibrated with
respect to the actual pose of the (possibly simulated) weckpmeasured in the
search.

8.11.2 Start point object

This object consisted of the start point task that in turrcated motion along the
start point path that was created by the search object. lystia start point path
only consisted of a single start tag.

8.11.3 Weld object

The weld object continuously read data from the tracker aedted tags during
the welding process. In other words, new poses were appdndad weld path
at the same time the as motion system used earlier addedotagsde the weld
gun. Instances of this object could be utilized anywhergveeh the start point
object and the end weld object.

8.11.4 Obstacle object

The obstacle object responsibility was to safely guide tt®or in the vicinity
of the obstacle. The robot followed a predefined obstaclh. pahe path was
“owned” by the obstacle being described in the obstacledinates, and natur-
ally depended on the shape of the obstacle. The obstaclet @ojeld be applied
between weld two objects or between a weld object and an eltdobgct.

86 Experimental system structure

8.11.5 End weld object

The end weld object was similar to the weld object exceptdahast weld message
from the seam tracker was interpreted as end-of-seam ¢thefdmeing interpreted
as an error. It was normally used after a weld object but cbaldpplied after an
obstacle object as well. In any case, it was utilized clogheaxpected end weld
point.

8.12 Application object interaction mechanisms

While it was comfortable to split the weld task into logigatiiefined discrete
sub-tasks using the above-mentioned objects, since robtibmis continuous,
there was a need to know when one object should hand overgpensibility to
another. Instances of, for example, a weld object could roaftar a search object
or after an obstacle object and therefore the object-izisiion prerequisites also
had to be defined. The strategy utilized in this implemeaotativas to refer to
common motion data by calls to objects owned by the motiortrobfibrary,
RLib (briefly described below). Application-specific dasaich as references to
the robot, tracker and distance-sensor, were handledghraushared process
object that was passed to every application object duriitiglimation.

8.13 RLib, the high-level motion control library

All components, except for the tracker GUI, were built updajects from RLib,
a lightweight library for high-level simulation and higlvel control of advanced
sensor-guided robots in soft real time. RLib was the ruretiitorary that handled
the interaction with the unmodified S4C controller and ifsteed application ob-
jects. RLib was written in portable ANSI C in an object-otiesh style and handled
model building including frame dependencies, trajectagation, singularity de-
tection and motion. The library was based on POSIX threadsrastuded APIs
to handle threads and synchronization between objectsb Bljects were for
example tags, paths, tasks and robots. RLib handled thenkitheal relationships
between these objects.

RLib also contained an API that was utilized to import kin¢ice relations from
a work-cell in a RSA or any other system providing work-ceital Provided that
the application allowed its internal data to be read, an Rlatabase could be
saved to disk and read into a run-time database duringlinéteon of the applic-
ation. The application objects could then modify the runetidatabase through

8.14 The world model 87

an API. Madification of RLib objects included both adjustrhehobject content
and changes in kinematical relationships between obj&ttser features of RLib,
besides motion handling, were:

¢ Device independence. Handled all devices that could beitdesgcwith the
Denavit-Hartenberg notation.

e Synchronization and thread handling routines.
¢ Kinematic expression of any RLib object in any other RLibeutj

e Conversion functions between homogeneous coordinatestaedrepres-
entations.

e Event handling, notification and subscription routines.
e Communication, printing and serialization routines.

e Safety routines and debugging help.

8.14 The world model

In the experimental structure described, the world moded sgit between the
application, RLib and the RSA. RLib was responsible for Himgdkinematic

relationships and for generating robot motion, while IGRI®Bvided graphical
feedback, measurements needed by simulated sensors dismbredests. The
two environments were kept synchronized during run-timéhiayapplication and
any change in RLib therefore immediately affected the gi@dmodel in IGRIP.

The opposite also hold; a detected collision in IGRIP prapad) instantly to the
application, which in turn asked RLib to halt execution.

If the application besides the virtual work-cell also siated the real robot, the
world model was extended to comprise the simulated robofitarattached sen-
sors.

8.15 Conclusions

A system of real and simulated components was built to eratésk-oriented
application to operate by executing instances of reusdijéets, each with a par-
ticular sub-task responsibility. The structure let theli@agtion use real or sim-
ulated components without change of object code and it cingldefore be used

88 Experimental system structure

for both simulation and execution of the robot program. Tinecsure even made
it possible to mix simulated and real components. Focus wabaese ideas and
not on the implementation issues, but virtual sensors,oseargl robot interfaces,
and a run-time library were nonetheless developed to stpperexperimental
platform.

The integration of computerized and real components maplesiible to create
applications that included sensor-guided robots off-ind run them unmodified
on-line. In this particular experimental platform, arc dialy was the application
in mind but the method can of course be utilized in other aasasell.

Chapter 9

Experimental work

9.1 Introduction

An arc welding application was chosen to verify the concelptieas in Chapters
6 and 7 of dividing a sensor-guided process into sub-taskg tise experimental
structure described previously. The use of sensors implgdation from some
nominal condition and in robotized arc welding a change a¢h mauld lead to
several malfunctions that had to be detected. In this paaticexperiment, sin-
gularity detection, collision detection and out-of-jolimits were caught. Actual
welding was not performed. Figure 9.1 shows the experinhertaup.

The experiment showed a capability to handle processeekaents during run-
time in a system where real and simulated objects (robotsoss, workpieces)
were transparently interchangeable. The on-line events we

¢ finding the workpiece actual pose,

e calibration of world model objects based on sensor input,

e trajectory creation based on calibrated objects,

e singularity and out-of-joint limit detection performedtime calibrated
world model,

e collision detection of simulated objects in the calibrateatld model, and

e handling of objects that interrupted the trajectory.

20 Experimental work

Figure 9.1: Acutal experimental set-up. An ABB 2400/16 robot with urifieatd
S4C controller (outside view), the M-Spot Laser Scannercatd 50 mm ahead
of the weld torch with its CSR4000 controller (outside vianyl two Unibrain
Fire-i-400 cameras, each equipped with a 3.5 mm lens.

The application execution was essentially based on a nuailmjects that con-
trolled robots and sensors without knowledge of if they wansulated or real.
Simulating the entire welding application on the computer most of the ex-
perimental work. The delay of two interpolation steps cdusg the design of
the generic RAPID program running on the real robot cordraihfluenced the
tracker and was therefore also simulated.

The program was defined by the subset of chosen objects amdéebetween
these objects. The order of objects was laid out by hand asdcesmpiled in a
“normal” C program. The program then ran autonomously witheny human
intervention.

The application remained unchanged independently of venedal or simulated
components were used. By using, for instance, a real roltbaaimulated laser
tracker attached to a simulated robot in IGRIP, the real tréddtowed the simu-

9.2 Creating and importing the nominal model 91

lated robot’s trajectory and the real robot’'s motion coutdsbudied without any
chance of collision with real obstacles. In other experitaga real laser tracker
was used with a virtual robot. By using this set up it was easyéke sure that
the tracker worked as supposed without having to run thedfistolliding with
the physical robot.

9.2 Creating and importing the nominal model

The nominal model was created in IGRIP and included the wedep the robot,
the seam tracker and the distance-sensor. The catneeas not included in the
model since they were not simulated. The work-cell in IGRBswecursively tra-
versed. RLib APIs were used to save the work-cell to a file@Rhib format still
keeping the hierarchical kinematical relationships betnigems in the work-cell.
In the imported work-cell, only the robot's base coordinsgstem was represen-
ted. The internal relations between robot joints, forwand sverse kinematics,
were accessed by RLib from a shared library.

9.3 Reading nominal data and initiating application object S

After the application was launched, a run-time databasebwitsfrom the saved
file. After the nominal work-cell was defined, the applicatiobjects were ini-
tialized. The following application objects were used tddthe experimental
application:

1. Start object. Contained the path from the home positichéqosition of
the search start point.

2. Search object. Controlled the search path, the creafidheostart point
path and the first 50 mm of the weld path. Created a new workgiese
and calibrated the simulated workpiece according to it.

3. First weld object. Was responsible for the weld from tregtgioint to the
reinforcemertt.

4. Reinforcement object. Handled welding just before asd ter the rein-
forcement, and guided the robot safely around the reinfoecg.

1Camera set-up and mathematical treatment of camera outpabartesy of Stefan Adolfsson
(stefan.adolfsson@hbg.Ith.se)

2It is a type of reinforcement that supports the structurénguwelding only and is sometimes
removed depending on the application.

92 Experimental work

5. Second weld object. Controlled welding from the reinéonent and almost
to the end of the seam.

6. End weld object. Was responsible for the last weld digtanc

7. Retract object. Retracted to a safe pose after the weldiorses

The first and second weld objects were instances of the wggddtdbut initialized
separately. Besides these active objects, simulatiorcisbjeere also initiated.
These objects, which were used to simulate the operatidosctual searching,
welding, etc., served to minimize chances for enteringudargconditions, out-of-
joint limits and collisions.

In the main experiment, described below, stereo cameraswsed to improve the
nominal pose and to measure the position of the reinforcendera second exper-
iment, a simulated distance-sensor was used to measugnf@cement position
during the first weld. After the distance was measured, tinellsited work-cell in
IGRIP was updated, and since the reinforcement path wasssgu in reinforce-
ment coordinates, the path was updated accordingly. Sheceistance-sensor
did not exist in the real world, this experiment was done wutha real reinforce-
ment, but the real robot acted as if a real reinforcementexkiand followed the
simulated trajectory to avoiding it.

Only a minor change to the code was needed to handle the cagetiv rein-

forcement’s position was known from the beginning, and tagecwhen its po-
sition was computed during the weld. This procedure, whiels walled during

each interpolation from the weld object, either just stapfie weld object after
the fixed distance given from camera readings, or called i$tarte-sensor to
measure the range and then stopped the weld object at a sgatigtance from
the reinforcement.

9.4 Improving the workpiece nominal pose

The workpiece, seen in Figure 9.2, was essentially a falegsbox with a size
and geometry known in advance. The pose of the workpiece xaut position
of the reinforcement along the weld was, however, not knowme objective of
the first part of the experiment was to find a good estimate @fvihrkpiece’s
actual position and orientation by using the stereo camdrias calibrated cam-
eras yielded a rough estimate of the parameters as well asafcurate relative
position of the reinforcement compared to the weld stamipoepresented by a
corner of the box. The cameras yielded a good estimate of dhkeprece position

9.5 Execution of start and search simulation objects 93

Figure 9.2: (Left) The workpiece before calibration from the vision system.
(Middle) After the camera calibration but before search with the tasacker.
(Right) After searching with the tracker, the position and orieittaterror of the
workpiece is sufficiently small to create a good quality weld

and orientation. In the vertical direction, the error wassléhan five millimeters
and in the horizontal direction less than 20 mm. The reirforent’'s pose was
accurately given as an offset from the weld start point.

The tack-welded reinforcement had a known size and orientgterpendicular
to the weld seam but had an unknown absolute position mehsurdhe weld
direction. Having knowledge of what kind of obstacle is eotpd and of their
approximate position of where to expect them is relevamdiustrial applications
and should not be interpreted as a restriction.

The application adjusted the position of the virtual wodqa and reinforcement
to coincide with camera output, see Figure 9.2. The simdlatedel in IGRIP
was updated as well. Under lab conditions, the workpiecdiposind orientation
interpretation of the camera-produced data were in theerafigwo centimeters
from its actual pose. The path from the home position to tleecked starting
point was represented in workpiece coordinates and, threred good estimate of
the nominal position and orientation of the workpiece asduar collision-free and
safe trajectory to the position where the search started.

9.5 Execution of start and search simulation objects

After the nominal pose of the workpiece had been improveddmgara readings,
the start and search simulation objects were executed. @aied robot in IGRIP
followed the start path to the search start point and thenrgtaie search includ-
ing all sweeps was then conducted, see Figures 9.3 and @.4infjular condition
occurred, or if an out-of-joint limit condition or collisiowas encountered, the ap-

94 Experimental work

p ;rf:E"E*tq NFS

N, h

Figure 9.3: The search phase. The semi-hidden box in the backgroundsempr

ted the nominal placement of the workpiece. In the foregiptime actual pose of
the box was simulated. The search path followed the nomield direction. The

tags already created in the lower left corner of the Figurpresented the start
point and other poses found during the extended search.eTtags became first
poses in the weld path.

plication was aborted signaling an error condition.

:2 g Helgurs

(i

Figure 9.4: (Left) The start phase(Middle) The weld phase. The tags already
created at the bottom of the middle picture represented tm goint and other
poses found during the extended sear{Right) The reinforcement phase. The
reinforcement path is marked as detour.

9.6 Start point search and trajectory creation

A search path, representing the workpiece’s frame and Iphtal the nominal
weld direction covered the position of the nominal starnpoivas followed. Us-

9.7 Finding the start point and weld path generation 95

Figure 9.5: The start point phase. After the search phase the virtuakpiece
was calibrated by the application, the laser was lit, anduedd torch approached
the weld start point.

ing the cameras to adjust the nominal pose of the workpieegagteed a safe
search path. Figure 9.3 shows a simplified search betweémwostags. The
search volume occupied at the most<I®x5 cm but normally less, dependent
on the quality of the output from the cameras for the givenkpmce and light
conditions. The search could contain several sweeps frdetsiside.

9.7 Finding the start point and weld path generation

When the joint was eventually found, the start point wasudated based on the
breakpoint data provided by the tracker. If the tracker weele to find the joint

during the search, the process was aborted and the robgiestophe start point
was then saved as the first tag in the newly created trajeettvg weld path, see
Figures 9.4, 9.5 and 9.7.

9.8 Workpiece calibration

The laser camera was mounted 50 mm ahead of the tool tip arseédneh contin-
ued over this distance and accumulated information abeyotht. This extended
search phase, see Figure 9.3, yielded joint-local infdonatnd the actual orient-
ation of the workpiece. The extended search resulted in datapf the nominal
world model to the workpiece real position and orientatisee Figure 9.2. All

96 Experimental work

objects referring to the workpiece — paths, tags and théare@ment — also auto-
matically received their correct pose.

9.9 Singularity check and collision detection

Before the robot followed the weld path, a singularity cheas conducted. It
was performed as a simulated weld; a virtual robot was mol@ugathe weld

path and the check was done for each interpolated pose. Bimgmsition of the
reinforcement was known, the detour around it, the second avel the end weld
were also simulated at this point. The application was Haftthe robot came to
close to a singular pose or if it was out-of-joint limits odl@ed with anything in

the work-cell.

The actual pose of the workpiece could possibly induce astmil between the
robot and objects in the work-cell and therefore collisietedtion was also per-
formed in parallel with the singularity check during the siated weld. Optim-

ized collision avoidance and trajectory re-planning, Wwhéce specific research
areas, were not particularly studied in this thesis but ¥peement showed the
benefits of using a world model to detect and avoid collisions

9.10 Welding from the start point towards the reinforcement

After a successful singularity and collision check, thel@ation was ready to
perform the first weld, from the start point to the reinforeem The simulated
tracker sent measured data to the tracker slave, whichlatddubreakpoints de-
scribing the joint profile. The application used the breaf{soto calculate tags,
which it appended to the weld path. These tags were then ysRdib to calcu-
late joint values that created the trajectory for the (sated) robot, see Figures
9.6 and 9.7. The laser tracker had already scanned the fistrbpath length and
tags taking local deviations into account were createchdutie extended search.
When the weld started, new tags were added to the weld patle aaime time as
the weld torch followed previously created tags.

9.11 Handling the reinforcement

The precise location of the reinforcement was defined dfeirtitial calibration.
The vision system yielded the information needed, i.e. thidce from the weld
start point to the reinforcement. The reinforcement waggdesl to let the weld

9.11 Handling the reinforcement 97

Figure 9.6: After executing the start point object, the applicationfpans the
first weld.

continue uninterrupted below it. To be able to approach ¢irdarcement and to
create a continuous weld, the M-Spot camera was rotatedddi@els, away from
the workpiece and the weld torch was tilted by 45 degree aingia the weld

direction. During the time when the weld torch was rotated @ited, the seam
tracker was temporarily put in a passive mode and weldinégppaed without

sensor readings.

The path around the obstacle was expressed in virtual dbstagrdinates, which
in turn were expressed in the virtual workpiece coordingtgesn. Since the
virtual workpiece at this point was calibrated, the obstgmhth created a valid
trajectory around the reinforcement after it was calildatéoreover, by using a
path expressed in obstacle coordinates, it was easy to mgelabstacle without
affecting application code, see Figures 9.4 and 9.8. Whemwdd on the left
side of the box was complete, the weld torch was retracteddropposite torch
direction and followed a trajectory relative to the reig@ment.

By using a world model, it was easy and desirable to cregjectaies relative to

98 Experimental work

nt

i llh:lf !rz':Ei;*tQH r5-1
N
=i

i T

Figure 9.7: The weld phase. The simulated tracker sent measured déstadnc
the tracker slave, which calculated breakpoints descgltime joint profile. The
application used the breakpoints to calculate tags, whicppended to the weld
path. These tags were then used by RLib to calculate joinkegahat created the
trajectory for the (simulated) robot.

other objects. This produced an association between th&asklprogram, the tra-
jectory and the real object, and encapsulated their deperee The association
could then be reused to handle similar sub-tasks in differentexts.

9.12 Welding from the reinforcement

The second weld started when the weld torch and laser traeiehed the normal
perpendicular orientation to the seam. The second weldccobjarted welding
without local sensor readings over the first 50 mm and coatinmelding until
90% of the weld was made. At this point, the second weld olgtapgped and
the end weld object started and continued until the end paastreached and the
retract object moved the torch from the workpiece, see Eigar9 and 9.10.

9.13 Conclusions

The experimental system running an arc welding applicatows how a system
that includes sensor-controlled robots can be built tonafionulation and execu-
tion without any change of the task oriented program. Inddpet and reusable
components, here called objects, autonomously deteatedlarities, collisions

9.13 Conclusions 99

 veinyPIg. Sy
g i el

",

PRI :
/Betpyr tﬁww 5.1

e 5

Figure9.8: The reinforcement phase. The reinforcement path is marke@tur.

Figure 9.9: The second weld phase. A second instance of the weld objexds

100 Experimental work

v

~ 1

Pa o A
VA rrétstﬂurﬁ-u

g N N R
di66086 bobbbboBb b A

Figure 9.10: The end weld phase. To highlight the idea of a unique process
information per object, the end weld object used has beeengan increased
speed compared to the weld object that shows in the Figureesgeg distances
between tags.

and out-of-joint limits. These are common problems everavit sensors, but
can be resolved before the application is run on the shop. fldowever, when
sensor-guided robots are used, these limitations cannmdmdved beforehand.
Some of the advantages with the experimental platform arersarized below:

e The overall performance, robustness and algorithms forindtion feed-
back could be investigated and analyzed at an early stage.

e The implementation of the sensor to the real, physical ralasta seamless
procedure and no major changes had to be made except fos isdated to
calibration. Accurate sensor calibration is, howevetjaai to the system.

e The sensor interface developed has the advantage of beilagfarm for
both simulation and actual operation. The same code was insiedth
modes.

e The “requester® of sensor data could be exchanged without affecting the
sensor and vice versa by separating the requester fromnbkerséself.

e During execution, the requester using sensor data was ueafavhich
sensor, virtual or real, it was receiving sensor data fromeesiboth used
identical communication protocols and channels.

3The requester is the client which is provided with sensca datthis case, the requester resides
in the application.

9.13 Conclusions 101

e During execution, dynamic conditions were preserved irddpntly of if
a virtual or real work-cell was used. Deficiencies such aaydein the real
system were also simulated.

e During development, time was saved because modularitywaticspecific
tests on component level during testing and debugging.

By using a mix of virtual and real sensors and robots, it issiiids to gradually
test different parts of the application. This gives a robusy of creating sensor-
based applications. Most of the development of the experahglatform has
been done by simulating the system and only a limited amoititne has been
spent in the lab with the actual robot.

The problem of sensor calibration is always important arghb® an issue during
the experiments. Small positional and rotational errohéwrist-sensor trans-
formation matrix yielded large (10mm) positional errorshem sensor readings
where done from different distances to the workpiece.

The high-level control system shows a parameterizationnigae based on sub-
tasks where instances of a limited set of objects can beddns@milar contexts.
This generalization is one of the most important outcometh@fauthor’s work
and indicates applicability of the worked out techniquesa iarge number of in-
dustrial activities. In the experiment, the weld object waed both between the
start point object and the reinforcement object as well &wéden the reinforce-
ment object and the end weld object.

The utilization of a world model makes it possible to use amcbenulate work-
cell information and to act on events and information whiohnmally would not
be available to the robot program otherwise. This is of coak&n more important
when a system of robots and sensors is controlled.

102 Experimental work

Chapter 10

Discussion

10.1 Introduction

The increasing emphasis on more personalized productshanisproduct life-
cycles as well as reduced production cost will result in melj@nges in manufac-
turing practices. Competition requires higher quality afrmafactured products.
Different strategies will be needed to cope with these charamnd the thesis has
included study of the consequences of resolving the seasoe$ among several
other matters. The use of sensors has turned out to be pantjcimportant and
the discussion therefore focuses on this issue.

Sensor feedback must include several levels in time spat@formation com-
plexity and a comprehensive control perspective to mees aghup in a task or
process specification. Traditionally, sensors are usesktt hack information to a
low-level type of actuator or process control. Advancediappon processes and
a higher level of autonomy implies more complex relatiopshbbservable vari-
ables are not necessarily those that are controllable anchthtrollable variables
are not necessarily those that define the task. Hence, inlergriy@ustrial op-
erations there are mapping issues in both directions betweeonly observable
variables that are detected by sensors and controllakiebles, but also between
the task specification described in terms of how to reachymtidty and quality
measures and how to control the process to obtain such goaisost cases this
is not a trivial problem, as many controllable variables ewatradictory. As a
result, many such issues must be considered as optimizatatsiems that, due
to the complexity and incoming information from sensorsealttime, must be
solved on a case-by-case basis.

104 Discussion

The research responds to the demands for flexibility in tleeofisensors in cop-
ing with various facets of production. Examples of increbfiexibility include
reduced requirements on feeders (vision), seam trackirigglwelding (triangu-
lation scanners), inspection (various type of sensors)sarmh. However, apply-
ing sensors in industrial automation is not as easy as it rppga. Sensors not
only add valuable information needed to perform a task, k&g eause system
complexity. Thus, the robustness of the system may be dedras a result of
poorly integrated subsystems.

The research responds to the demands for quality, safetst eelidble view of the

advancing process during the process of development. Tow pvograms de-
veloped for real-time decisions require a completely d#ife simulation environ-

ment. The traditional way of off-line programming and dowading of ready-to-

go programs will not work as greater autonomous behavidn génsor feedback
is needed. Today’s methods are only sufficient for largéestenufacturing such
as in the automotive industry. In one-off and small batctdpotion, sensors give
the robot system more flexibility and speed up product chaveye

10.2 Sensor modeling, simulation and integration

The sensor model mimics closely the behavior of the realosdmg using sim-

ilar characteristics and aspects related to sensor and coitrol. This is dif-

ferent from previous research in sensor modeling, whererge(non existent)
type of sensors are modeled. The use of simulated sensoth@naethodology
developed to model sensor-guided robot systems provid®d gatch between
reality and simulation. Such modeling allows the manufamttio deal with the
shorter product life cycles required by current and futwstemer demands. It
permits sensor-based systems to be analyzed at an eardy stafurther step

would be to introduce sensor models from sensor vendors imidas way as

robot vendors now offer software for RSAs for more realistbot simulation

(RRS).

The developed sensor model is fully integrates with a sitariaand execution
model by the use of generic interfaces. The interfaces arerigeto such an extent
that they handle simulation and operation without any ckasfghe application.
The sensor developed is modeled after an existing sensbis atilizing the same
protocols as the real counterpart. The generic sensofdantedeveloped lets the
Sensor act as a separate component in a simulation or r@nsiigiem.

In (Chen and Trivedi, 1994), sensor interfaces are utilined allows the user to
decide whether the sensor and robot should act in simulatsshbmode. In the

10.3 Simulation and execution of sensor-guided robots 105

Chen and Trivedi system, one of the three mod®gerator Interface/Monitor
Mode Real Controller/Virtual Robot Modeand Off-Line Visualization Modas
discussed earlier, had to be selected. However, modes woulik selected on in-
dividual sensor (and robot) basis, and therefore the syksteked the potential of
mixing real and virtual components, one of the significardrgjths of the system
described in this thesis.

Most virtual sensors developed, for instance (Li et al. &t ®runner et al., 1999;
Fridenfalk, 2003) do not have a real counterpart. They aveldped to solve a
specific problem, for instance the force-sensor describdtliiet al., 1998) or
have general objectives as the 6-D seam tracker reportderinefalk, 2003).
They may also be of a genetitype such as the camera, seam tracker and force
sensor utilized in the impressive DLR system (Brunner et 1893; Brunner

et al., 1999; Landzettel et al., 2000; Landzettel et al. 1200 the DLR system,
most of the controller code from the simulation environmisralso used in the
real system, but generic sensor interfaces are not utilireti virtual and real
components cannot be used concurrently.

The developed sensor has been verified in (Cederberg e0@l)2and the ideas
about generic sensor interfaces are described in (Cedesbel., 1999).

10.3 Simulation and execution of sensor-guided robots

The task-oriented framework developed has the advantageirg a platform for
both simulation and actual operation. It operates on thiesy$evel and cooper-
ates with modern RSAs but can easily be connected to anyarogiith a graph-
ical model. The separation between graphics and motiorrgtoe makes it pos-
sible to interface an open control system such as the oneiloegén (Johansson
et al., 2004; Blomdell et al., 2004).

By using the author’s approach, task-oriented controtesgias can be validated
through controlled experiments in a simulated environmekd the same com-
ponents and protocols are used for both environments, dgneffects originat-

ing from the internal system are taken into account. As mastl before, this
is not fully the case with the DLR system, which lacks of gémérterfaces to

components.

The methodology described makes it possible to produce alhdate sensor-
guided robot programs. Robustness is increased in the desisthe robot op-
eration has been verified in a simulated environment. Wifindé tolerances in

1Generic in the sense that no specific physical sensor hashegeled.

106 Discussion

the world model, a nominal robot program can be producedwiamost likely
succeed in a real time operation.

Robotized manufacturing of unique products and small betahufacturing need
programming models where the process rather than the slighe product is

important. The parameterizing technique that is used tddeyses on product
families with similar appearance and does not support sensbhe presented
methodology is focused on parameterizing on sub-taskshadoald appear on
any product independent on shape. The sub-tasks, whialdim&ensors, which
either can be used in simulated or real mode and act indeptyaé other sub-

tasks, have not been found in literature. The mix of real d@rtdal components

that can be run with the example system developed assur@sp#i@nt trans-
fer between simulation and execution. This functionalifs mot been seen in
other developed systems such as those described in (Chdmieadi, 1994) and

(Brunner et al., 1993; Brunner et al., 1999; Landzettel et 28100; Landzettel

et al., 2001). The methodology is submitted in (Cederbergle2004).

By using objects that operate on a continuously updateddwoddel, simulation

and process execution can be run on a single (nominal) medeitd changes to
the actual work cell. Virtual robots and sensors may sineuthtanged conditions
in real-time and in advance of real robots and sensors, agcdmable to predict

and possibly avoid difficulties.

10.4 Future Research

Today'’s robot systems do not provide the flexibility neededreate industrial
solutions that include sensors. Future enhancements esihect to the devel-
opments described in this thesis will consist of extendhmy dapabilities of the
model by implementing it on a real-time operating systemiaodrporate an open
control system.

The model implementation should be simplified as well. Thésts has been fo-
cused on the model structure and the development of a gedplser interface for
initialization and ordering of objects that should enhameplementation. Also,
there is a need for replacement of IGRIP, the RSA used in tipeimentation. A
customized implementation that includes collision débecand tightly integrates
with other system scomponents is necessary if the systeaidshan efficiently
in real-time.

The simulated sensor developed could be improved by adtimgdpability to
handle different joint-types besides fillet joint, for iaste corner, lap butt and v-

10.4 Future Research 107

grove in a similar way as the real sensor operates. This wayakte a foundation
for simulation of more complicated welding scenarios thentest case described.

Future work should also generalize the sensor interfageésation to support
different sensors and different requesters of sensorrirdtion.

108 Discussion

Chapter 1 1

Conclusions

It can be concluded that performing high-level control veitivorld model updated
in real-time from sensors in a work-cell, real or virtualjngsa sensor interface
yields several advantages:

1. High-level control can be moved outside the actual walk-d1ore effect-
ive coordination in a particular work-cell and betweenefiént work-cells
is therefore possible.

2. Robot programs can be tested in a virtual world and later ieal work-
cell without rewriting of code. This cuts development tinreldncreases

robustness.

3. On-line tests, collision tests, out-of-joint limit tesand alike can be per-
formed in advance or in real-time as soon as sufficient inftion regard-
ing the real world becomes available to the virtual world elod

4. Since the virtual model is updated continuously, knogéedf the process
can be accumulated. This can effectively be used to recaower &rrors
during autonomous robot operations.

Performing sensor-guided operations using an on-line gggmmodel outside
the robot control hardware may appear more futuristic thaeailly is. Our ex-

perimental setup used an ABB S4 system robot controller itstiRRAPID pro-

gramming environment where features of RAPID were avasldbfough remote
procedure calls (RPC). Thus, it is already technically fmbs$o remotely control
a standard robotic system and it is not unrealistic to assatesensor-guided
robots will be controlled from world models updated in réaie in the future.

110 Conclusions

The method described to model and implement sensor furditipropens new
possibilities for simulation and programming of robot gyss in realistic indus-
trial applications. This is important for more advanced ofaoturing systems and
specifically for rapid and virtual development of productsane time is important
for developing systems that produce the product. Thus,dh#med simulation
and run-time environment must be able to represent reabwdcesses as they
appear in the context of industrial automation. The viraerisor developed acts
in the tested cases similar to its real counterpart and hes lgown to be easily
managed in a simulation environment.

Bibliography

ABB Ethernet Services 3(0.d.).

ABB Rapid Reference Version 3.2, RAPID Sumniau.).
ABB RAP Protocol Specification 1.05.d.).

ABB RAP Service Specification 1.06d.).

Adolfsson, J., Ng, A., Olofsgard, P., Moore, P., Pu, J. anachgyC.-B. (2002),
‘Design and simulation of component-based manufacturirghime sys-
tems’, Mechatronicsl2, 1239-1258.

AIX Version 4.3 Communications Programming Concép@97).

Andersson, C. (2003), Register Allocation by Optimal Gr&ahoring,in ‘Com-
piler Construction: 12th International Conference, CC20teld as part of
the Joint European Conferences on Theory and Practice ti&ef, ETAPS
2003. Proceedings’, Springer-Verlag Heidelberg, Wargzoland, pp. 33 —
45.

AWS, ed. (1976)American Welding Society Welding Handbook, Section 1: Fun-
damentals of welding?algrave Macmillan, New York, NY.

Barraquand, J., Langlois, B. and Latombe, J.-C. (1992), &tigal potential field
techniques for robot path planning, ‘Proceedings of IEEE Transaction on
Systems, Man and Cybernetics’, Vol. 22, pp. 224-241.

Barraquand, J. and Latombe, J.-C. (1991), ‘Robot motiommiey: A dis-
tributed representation approachiternational Journal of Robot Research
10(6), 628-649.

Blomdell, A., Bolmsjo, G., Brogardh, T., Cederberg, P.kkson, M., Johansson,
R., Haage, M., Nilsson, K., Olsson, M., Olsson, T., RoberissA. and

112 Bibliography

Wang, J. J. (2004), ‘Extending an industrial robot conénoWith a fast open
sensor interface — implementation and applications’. Tpeap in IEEE
Robotics and Automation Magazine., 2004.

Blume, C. and Jakob, W. (198@rogrammiersprachen fir IndustrierobotdBer-
lin ; New York : Springer Verlag. ISBN 0387163190.

Boddy, M. and Dean, T. L. (1989), Solving Time-DependennRiag Problems,
in ‘Proceedings of 11th Int. Joint Conf. on Atrtificial Intelégce’, pp. 979—
984.

Bohlin, R. and Kavraki, L. (2000), Path planning using laZ&N®, in ‘Proceed-
ings of the International Conference on Robotics and Autama Vol. 1,
pp. 521-528.
URL : citeseer.nj.nec.com/bohlin00path.html

Bolmsjo, G., Olsson, M. and Brink, K. (1999ncreased autonomy in indus-
trial robotic systems: A frameworKluwer Academic Publishers, Hingham,
MA, USA, chapter 2. ISBN 0-7923-5580-6.

Bolmsjo, G., Olsson, M. and Cederberg, P. (2002), ‘RoboticWelding - Trends
and Developments for Higher Autonomyfydustrial Robo29(2), 98—104.

Boving, K., ed. (1989)NDE Handbook: Non-destructive Examination Methods
for Condition Monitoring Woodhead-publishing.
URL: http://www.woodhead-publishing.com

Brady, J. (1989), ‘Special issue on sensor data fusimtérnational Journal of
Robotics ResearcF(6), 1-161.

Brink, K., Olsson, M., and Bolmsj6, G. (1995), Event Based&oControl,
Focusing on Sensor#) ‘Proceedings of the International Symposium on
Measurement and Control in Robotics’, Bratislava, Sloaagp. 507-512.

Brooks, R. R. and lyengar, S. S. (1997). OE Reports 164.
URL: http://www.spie.org/web/oer/august/aug97/sensot.htm

Brunner, B. et al. (1993), Multisensory shared autonomy &sld-sensor-
programming — key issues in the space robot technology empet RO-
TEX, in ‘Proceedings of the 1993 IEEE/RSJ International Confezemt
Intelligent Robots and Systems’, IEEE/RSJ, pp. 2123-2139.

Brunner, B. et al. (1995), Tele Sensor Programming - A tasketed program-
ming approach for sensor-based space rolwot$nternational Conference
on Advanced Robotics)’, ICAR.

Bibliography 113

Brunner, B. et al. (1999), A Universial Task-Level Groundn@ol and Pro-
gramming System for Space Robot Applicatioims'5th International Sym-
posium in Artificial Intelligence, Robotics and Autonmation Space’,
SAIRAS.

Bruyninckx, H., Soetens, P., Issaris, P. and Leuven, K. 0022, ‘The OROCOS
Project’.
URL: http://www.orocos.org/

Burdea, G. C. (1999), ‘Invited Review: The Synergy Betweénuél Reality and
Robotics’,IEEE Transactions on Robotics and Automatici(3), 400—410.

Canny, J. F. (1989), On Computability of Fine Motion Plams,Proceedings
of IEEE Int. Conf. on Robotics and Automation’, ScottsdateZ, USA,
pp. 177-182.

Cary, H. B. (1997) Modern Welding Technology (4th EditigrBrentice Hall; 4
edition (June 30, 1997), Stanford, CA, USA. ISBN 0132418037

Cederberg, P., Olsson, M. and Bolmsjo, G. (1999), A Genegits8r Interface in
Robot Simulation and Contradh ‘Proceedings of Scandinavian Symposium
on Robotics 99', Oulu, Finland, pp. 221-230.

Cederberg, P., Olsson, M. and Bolmsjo, G. (2001), ‘Virtuaamgulation Sensor
Simulation Integrated in a CAR Environment’, Digitally trded by the
Division of Robotics, 2001-12-18.

Cederberg, P., Olsson, M. and Bolmsjo, G. (280Remote control of a standard
ABB robot system in real time using the Robot Applicationt®ool (RAP),
in ‘Proceedings of the International Symposium on Roboti&R24002’,
IFR, Stockholm. paper No. 113.

Cederberg, P., Olsson, M. and Bolmsj6, G. (20002Virtual triangulation sensor
development, behavior simulation and CAR integration igppto robotic
arc-welding’,Journal of Intelligent and Robotic SysteB&{4), 365—-379.

Cederberg, P., Olsson, M. and Bolmsjo, G. (2004), ‘A seroiaugitic task oriented
programming system for sensor-controlled robotised shaath and one-off
manufacturing’. Submitted to Robotica at the time of prigtof this thesis.

Chen, C. and Trivedi, M. (1994), ‘Simulation and animatidrsensor-driven ro-
bots’, IEEE Transactions on Robotics and Automati®5), 684—704.

114 Bibliography

Chen, J. and McCarragher, B. J. (1998), Robot Programmirigdmgonstration-
Selecting Optimal Event Pathis, ‘Proceedings of the IEEE Intl. Conf. on
Robotics and Automation (ICRA '98)’, ICRA, pp. 518-523.

Chen, J. and McCarragher, B. J. (2000), Programming by Detraiion - Con-
structing Task Level Plans in a Hybrid Dynamic FramewarkiProceedings
of the IEEE Intl. Conf. on Robotics and Automation (ICRA 'QOICRA,
pp. 1402-1407.

Chen, J. and Zelinsky, A. (208}, Generating a Configuration Space Represent-
ation for Assembly Tasks from Demonstratiam, Proceedings of the IEEE
Intl. Conf. on Robotics and Automation (ICRA '01’, ICRA, pp530-1536.

Chen, J. and Zelinsky, A. (200}, Programming by Demonstration: Remov-
ing Suboptimal Actions in a Partially Known Configurationa8p,in ‘Pro-
ceedings of the IEEE Intl. Conf. on Robotics and Automati@RA '01)’,
ICRA, pp. 4096-4103.

Chester, R. (2004), ‘Introduction to arc welding'.
URL: http://www.aussieweld.com.au/arcwelding/

Chou, J. C. K. (1992), ‘Quaternion kinematic and dynamitedéntial equations’,
IEEE Trans. of Robotics and Automatit(8), 53—64.

Chou, J. C. K. and Kamel, M. (1988), Quaternions Approachdlwethe Kin-
ematic Equation of Rotation AaAx = AxAb of a Sensor MountedRiic
Manipulator,in ‘Proceedings of the IEEE International Conference on Ro-
botics and Automation’, Philadelphia, PA, USA, pp. 656-662

Corke, P. (1996), ‘A Robotics Toolbox for MATLABIEEE Robotics and Auto-
mation Magazine(1), 24-32.

Crowe, D. (2001), ‘Designing for successful robotic arcdired) automation’.
URL: http://www.thefabricator.com

DaCosta, F., Hwang, V., Khosla, P. and Lumina, R. (1992), #egrated proto-
typing environment for programmable automation,SPIE/OE92 Interna-
tional Symposium on Intelligent Robot in Space’, SPIE.

Dai, W. and Kampker, M. (2000), User oriented integratiors@fsor operations
in a offline programming system for welding roboits, Proceedings of the
IEEE Intl. Conf. on Robotics and Automation (ICRA '00)’, V&, IEEE,
pp. 1563-1567.

Bibliography 115

DeepBlug2004).
URL: http://www.research.ibm.com/deepblue/

Denavit, J. and Hartenberg, R. (1955), ‘A kinematic notafiar lower pair mech-
anisms based on matrice® SME Journal of Applied Mechanigp. 215—
221.

Dyson, J. (2004), ‘Welding Certification, A Basic Guide’'.
URL: http://www.gowelding.com/

Eckart, F. and Francoeur, M. (2002), ‘Welding Techniques'.
URL: http://www.sensorsmag.com

Ernst, H. A. (1961), A Computer-Controlled Mechanical HaRtD thesis, Mas-
sachusetts Institute of Technology, Camebridge, MA. SthEsis.

Fahim, A. and Choi, K. (1998), ‘The UNISET approach for th@dgamming
of Flexible Manufacturing Cells’Robotics and Computer-Integrated Man-
ufacturing14(1), 69-78.

Farson, D. and Duhamel, R. F. (2001), ‘Taking advantagesgflevelding’.
URL: http://www.thefabricator.com

Feldman, J. (1971), The Stanford Hand-Eye Projectrirst International Con-
ference on Atrtificial Intelligence’, London, England, pfp(3-358.

Finkel, R., Taylor, R., Bolles, R., Paul, R. and Feldman]1974), ‘A Program-
ming System for Automation’. Stanford Al Memo 177, Stanfahdiversity,
Stanford, CA 94305.

Flaig, T., Grefen, K. and Neuber, D. (1996), Interactivepipiaal planning and
design of spacious logistic environmerits,Proceedings of the Conference
FIVE Working Group’, Scuola Superiore S. Anna, Italy, pp—10.

Freund, E., Ludemann-Ravit, B., Stern, O. and Koch, T. (20Qteating the
architecture of a translator framework for robot programgrianguagesn
‘Proceedings of the IEEE Intl. Conf. on Robotics and Autdora{ICRA
'01’, Vol. 1, ICRA, pp. 187-192.

Fridenfalk, M. (2003), Development of intelligent robotsggms based on sensor
control, PhD thesis, Lund University, Lund, Sweden. ISBNGZB-5550-6.

Friedrich, H., Holle, J. and Dillmann, R. (1998), Interaetgeneration of flexible
robot programsjn ‘Proceedings of the IEEE/RSJ Intl. Conf. on Robotics
and Automation’, Vol. 1, IEEE, pp. 538-543.

116 Bibliography

Fuller, J. L. (2004), ‘Introduction to Robotics Programigiin
URL: http://www.tvcc.cc/staff/fuller/cs281/cs281.htm

Gopel, W., Hesse, J. and Zemel, J. N. (19%8nsors - A Comprehensive Sugvey
Wiley. ISBN: 3-527-26538-4, Hardcover.

Gourdeau, R. (1997), ‘Object Oriented Programming for Ricbiganipulators
Simulation’,IEEE Robotics and Automation Magazi#3), 21—-29.

Hall, D. and Linas, J. (2001), Handbook of Multisensor Datsibn, in ‘CRC
Press’.

Halperin, D., Kavraki, L. E. and Latombe, J.-C. (1999), RoB&orithms, in
M. Attalah, ed., ‘Algorithms and Theory of Computation Haondk’, CRC
Press, Boca Raton, NY, chapter 21.

Helms, E., Schraft, R. D. and Hagele, M. (2002), rob@workb®&Assistant
in Industrial Environmentsin ‘In Proc. of the 11th IEEE Int. Workshop
on Robot and Human interactive Communication, ROMAN2008., 399—
404.

Hicks, J. (2000)Welded Joint Design (3rd Edition)ndustrial Press, New York,
NY, USA. ISBN 0132418037.

Hirzinger, G., Albu-Schéffer, A., Hahnle, M., Schafer, hdaSporer, N. (2001),
On a new generation of torque controlled light-weight rebot ‘Proceed-
ings of the IEEE Int. Conference on Robotics and Automatideoul,
Korea, pp. 1087-1093.

Hirzinger, G., Brunner, B., Koeppe, R. and Vogel, J. (199%yanced Telero-
botics, in ‘Advanced Research Workshop “Autonomous Robotic Systems
ARS 97’, Universidade de Coimbra, Portugal.

Hissam, S. A. and Klein, M. (2004), ‘A Model Problem for an @pRobot-
ics Controller’. Carnegie Mellon Software Engineeringtituge, Technical
Note CMU/SEI-2004-TN-030.

URL: http://www.sei.cmu.edu/publications/

Hoppe, H., Kuebler, C., Raczkowsky, J., Woern, H. and Hégst (2002), A
Clinical Prototype System for Projector-Based AugmentedlRy: Calib-
ration and Projection Methodm ‘Proceedings of Computer Assisted Radi-
ology and Surgery (CARS)’, Paris, France, p. 1080.

Bibliography 117

Huissoon, J. P. (2002), ‘Robotic laser welding: Seam sesistdaser focal frame
registration’,Robotica20(3), 261-268.

Hwang, Y. K. and Ahuja, N. (1992), ‘Gross motion planning -uavey’, ACM
Comput. Sun24(3), 219-291.

IRIX Network Programming Guid@.d.).

Jacobsen, N. J. (2004), ‘Can CIM using robots fulfill its pisenfor flexible pro-
duction? Experience and visions for the first decade in “dreelond steel
production”. Odense Steel Shipyard Ltd., Denmark.

Johansson, R., Robertsson, A., Nilsson, K., Brogardh, detberg, P., Olsson,
M., Olsson, T. and Bolmsjo, G. (2004), ‘Sensor Integratinnrask-Level
Programming and Industrial Robotic Task Execution Cohtrisidustrial
Robot31(3), 95-102.

Korein, J. U. and Ish-Shalom, J. (1987), ‘RoboticBM Systems Journal
26(1), 55-95.

Landzettel, K., Brunner, B., Hirzinger, G., Lampariello,, BSchreiber, G. and
Steinmetz, B. (2000), A Unified Ground Control and Programgrivieth-
odology for Space Robotics Applications — Demonstratiom€Ed S-vii, in
‘31st International Symposium on Robotics’, Montreal, &dan.

Landzettel, K., Brunner, B., Schreiber, G., Steinmetz, igl Bupuis, E. (2001),
MSS Ground Control Demo with MARCGn ‘i-SAIRAS 6th International
Symposium on Atrtificial Intelligence, Robotics and Autoioatin Space’,
Montreal, Canada.

Lapham, J. (1999), ‘Robotscript: the introduction of a ensal robot program-
ming language’jndustrial Robot26(1), 17-25.

Legnani, G., Casolo, F., Righettini, P. and Zappa, B. (19%6Homogeneous
Matrix Approach to 3D Kinematics and Dynamics. Part 1: tggoMech-
anism and Machine Theory (the scientific journal of IFToMM)

Legnani, G., Casolo, F., Zappa, B. and Righettini, P. (19%6Homogeneous
Matrix Approach to 3D Kinematics and Dynamics. Part 2: agilons’,
Mechanism and Machine Theory (the scientific journal of IAMW) .

Li, Y. F. and Wang, J. G. (1999), ‘Incorporating contact segsn virtual envir-
onment for robotic applicationsIEEE Transactions on Instrumentation and
Measuremend8(1), 102—-107.

118 Bibliography

Li, Y. F., Wang, J. G. and Ho, J. K. L. (1998), Using physicsdzhmodels in vir-
tual reality for dynamic emulation of robotic systenrs,Computer Graph-
ics International, 1998. Proceedings’, IEEE Computer &gcpp. 388—390.

Li, Z., Ring, P., MacRae, K. and Hinsch, A. (2003), ‘Contrélliedustrial Robots
for Meat Processing Applications’. Presented at the ACRB3X€Ebnference
in December 1-3 in Brisbane, Australia.

L.Lieberman and Wesley, M. (1977), ‘AUTOPASS: An Automdimgramming
System for Computer Controlled Mechanical AssemblgV J. Res. Dev
21(4).

Lozano-Perez, T. (198, Al in the 1980s and Beyond: An MIT Sury@&he MIT
Press, Cambridge, MA.

Lozano-Pérez, T. (1987, An algorithm for planning collision free paths among
polyhedral obstaclesh ‘Communications of the ACM’, Vol. 22, pp. 560—
570.

Lozano-Pérez, T. and Winston, P. H. (1987), LAMA: A LanguégreAutomatic
Mechanical Assemblyn ‘International Joint Conference’, Artificial Intelli-
gence.

M. A. Lavin, L. I. L. (1982), ‘AML/V: An Industrial Machine Vsion Program-
ming System’ntl. J. Robotics Researc(3), 42-56.

McCabe, R. (2003), ‘Robotic Welding'.
URL: http://www.weldingengineer.com/

McHaney, B. (2001), ‘Automated welding for job shops’'.
URL: http://www.thefabricator.com

Merriam-Webster's Collegiate Dictionary, 11th Editiof2003). Merriam-
Webster, Springfield, MA 01102, USA. ISBN 0877798087.

Meyer, J. (1981), ‘An emulation system for programmablessenrobots’,IBM
Journal of Research and Developm@6{6), 955—962.

Meynard, J. P. (2000), Control of industrial robots throumgh-level task pro-
gramming, PhD thesis, Linkdping Studies in Science and fi@dgy,
Linkping University, Sweden. Tech. Lic. ISBN 91-7219-701-35Ns0280-
7971.

Bibliography 119

Miller, A., Knopp, S., Christensen, H. and Allen, P. (2008ytomatic Grasp
Planning Using Shape Primitives ‘Intl Conf on Robotics and Automa-
tion’, IEEE, Taipai, Taiwan.

Mosemann, H. and Wahl, F. M. (2001), ‘Automatic Decompositof Planned
Assembly Sequences Into Skill PrimitiveEEE Transactions on Robotics
and Automatiori7(5).

Mujtaba, S. and Goldman, R. (1979), ‘AL User's Manual’. Stad Al Memo
323, Stanford University, Stanford, CA 94305.

Munoz, M. A., Rodriguez, M., Favela, J., Martinez-Garcia,lAand Gonzalez,
V. M. (2003), ‘Context-Aware Mobile Communication in Hotgds’, IEEE
Computer36(9), 38—-46. ISSN 0018-9162.

Myers, B. A. and Beigl, M. (2003), ‘Handheld ComputindEEE Computer
36(9), 27-29. ISSN 0018-9162.

Nilsson, K. (1996)Industrial Robot ProgrammingDept. of Automatic Control,
Lund University, Lund, Sweden. Ph.D. Thesis.

Nilsson, N. J. (1980)Principles of Artificial Intelligence Tioga Publishing Co.,
Palo Alto, CA.

Nitzan, D. (1990),Encyclopedia of Artificial IntelligenceJohn Wiley & Sons,
New York.

Nnaji, B. O. (1993).Theory of automatic robot assembly and programm@igap-
man & Hall. ISBN 0-412-39310-7.

Nourbakhsh, I. R. (1996), Interleaving, Planning and Exeo,PhD thesis, Dept.
of Computer science, Stanford University, Stanford, CAAUS

Olsson, M. (2002), Simulation and execution of autonomab®t systems, PhD
thesis, Division of Robotics, Department of Mechanical iBegring, Lund
University, Sweden. CODEN: LUTMDN/(TMMV-1051)/1-100/@9, ISBN
91-628-5120-9.

Olsson, M., Cederberg, P. and Bolmsjo, G. (1899ntegrated system for sim-
ulation and real-time execution of industrial robot tasksProceedings of
Scandinavian Symposium on Robotics 99’, Oulu, Finland 200—-210.

Olsson, M., Cederberg, P. and Bolmsjo, G. (1999Tele-Robotics for Sensor
Driven Industrial Robot Tasksn ‘Proceedings of Deneb User Conference
99', Troy, MI, USA.

120 Bibliography

Olsson, M., Cederberg, P. and Bolmsjd, G. (2002), Integmatif Simulation and
Execution in Industrial Robot Systemin,‘Proceedings of the International
Symposium on Robotics, ISR2002’, IFR, Stockholm. paperN@.

Onda, H., Suehiro, T. and Kitagakiand, K. (2002), Teachingl&monstration of
assembly motion in vr - non-deterministic search-type omith the teaching
stagejn ‘Proceedings of the IEEE/RSJ Intl. Conf. on Intelligent Rtsband
System’, Vol. 3, IEEE/RSJ, pp. 3066-3072.

OROCO0S2004).
URL: http://www.orocos.org/

Park, F. C. and Martin, B. J. (1994), ‘Robot Sensor Calibrati Solving AX
equals XB on the Euclidean GroudEEE Transactions on Robotics and
Automationl10(5), 717-721.

Patel, R. and Tebelius, U. (198rundbok i forskningsmetodik, (In Swedish)
Studentlitteratur, Lund.

Paul, R. (1972), Modeling, Trajectory Calculation and $earg of a Computer
Controlled Arm, PhD thesis, Stanford University, StanfaZé\ 94305.

Paul, R. (1981)Robot ManipulatorsMIT Press, Cambridge, MA.

Paul, R. P. (1977), ‘WAVE, A model based language for mamitioh control’,
The Industrial Robo#(1), 10-17.

Pieper, D. L. (1968), The kinematics of manipulators undenguter control,
PhD thesis, Stanford University, Stanford, CA 94305, D&pant of Mech-
anical Engineering.

Pires, J. N. and da Costa, J. M. G. S. (2000), ‘Object-oribiated distributed
approach for programming robotic manufacturing cellBAC Journal Ro-
botics and Computer Integrated Manufacturibg(1), 29—42.

Popplestone, R., Ambler, A. and Bellos, 1. (1980), ‘An Imeter for a Lanugage
Describing AssembliesArtificial Intelligence14(1).

Raczkowsky, J., Dauber, S., Engel, D., Hoppe, H., Korb, \6ha®, O., Hassfeld,
S. and Woérn, H. (2003), ‘Karlsruhe Surgical Robotics Reg@aPresented
at the ACRA 2003 conference in December 1-3 in Brisbane, rAlist

Réanky, P. and Ho, C. (1985Robot Modelling: Control and Applications with
Software Kempston, Bedford, England : Berlin ; New York : IFS (Puhblic
tions) ; Springer-Verlag. ISBN 0-903608-72-3.

Bibliography 121

Rehg, J. (1997)Introduction to Robotics in CIM SystenBrentice-Hall, Upper
Saddle River, NJ.

Reif, J. H. (1979), Complexity of the Mover’'s Problem and @mtizations,in
‘Proceedings of FOCS’, pp. 421-427.

Sacerdoti, E. D. (1977)A Structure for Plans and BehavioElsevier/North-
Holland, New York.

Schaeffer, J. and Plaat, A. (1997), ‘Kasparov versus Deap:Brhe Re-match’,
ICCA Journal20(2), 95-102.

Sedlenieks, M. (2004), ‘MIG/MAG Welding'.
URL: http://www.linde-gas.com

Selman, B., Brooks, R. A., Dean, T., Horvitz, E., Mitchell, N. and Nilsson,
N. J. (1996), Challenge Problems for Atrtificial Intelligendn ‘Proceed-
ings of AAAI-96, Thirteenth National Conference on Artifitintelligence’,
AAAI, Menlo Park, California, pp. 1340-1345.

Shimano, B. E. (1979), VAL: A Versatile Robot Programmingl &wontrol Sys-
tem,in ‘COMPSAC 79'.

Shiu, Y. C. and Ahmad, S. (1989), ‘Calibration of Wrist-Mded Robotic Sensors
by Solving Homogeneous Transform Equations of the Form AXB, X
IEEE Transactions on Robotics and Automatgfh), 16—29.

Steil, J., Heidemann, G., Jockusch, J., Rae, R., Jungdhasd Ritter, H. (2001),
Guiding attention for grasping tasks by gestural instarctthe gravis-robot
architecturejn ‘Proceedings of the IEEE/RSJ Intl. Conf. on Intelligent Ro-
bots and System’, Vol. 3, IEEE/RSJ, pp. 1570-1577.

Steinberg, A. N., Bowman, C. L. and White, F. (1999), Revisido the JDL
Data Fusion Modeljn ‘Proceedings of SPIE AeroSense (Sensor Fusion:
Architectures, Algorithm and Applications Ill)’, SPIE, p$p30—441.

Stork, D. G. (2001), ‘The end of an era, the beginning of aexttHAL, DeepBlue
and Kasparov'.
URL: http://www.research.ibm.com/deepblue/

Strobel, M., llimann, J., Kluge, B. and Marrone, F. (2002}ing spatial context
knowledge in gesture recognition for commanding a domestigice robot,
in ‘Proceedings of the 11th IEEE Intl. Conf. on Robot and Hunmderbactive
Communication’, IEEE, pp. 468-473.

122 Bibliography

Strommer, W., Neugebauer, J. and Flaig, T. (1993), Traesf#tsed virtual real-
ity workstation as implemented for the example of induktadot control,
in ‘Proceedings of the Interface Real Virtual Worlds ConfeenMontpel-
lier, France, pp. 137-146.

Taylor, R. H. (1979), ‘Planning and execution of straightlimanipulator traject-
ories’, IBM Journal of Research and Developm@86{4), 424—-436.

Taylor, R. H., Summers, P. D. and Meyer, J. M. (1982), ‘AML: AaNufacturing
Language’ Intl. J. Robotics Researct(3), 19-41.

Thomas, U. and Wahl, F. M. (2001), A System for Automatic Riag, Evalu-
ation and Execution of Assembly Sequences for Industri&ld®&in ‘Inter-
national Conference on Intelligent Robotics and Systet&BEE/JR.

Tsai, R. Y. and Lenz, R. K. (1989), ‘A New Technique for Fullptdnomous and
Efficient 3D Robotics Hand/Eye CalibratiodEEE Transactions on Robot-
ics and Automatio(3), 345-357.

Ude, A. and Dillmann, R. (1995), ‘Robot motion specificatioh vision-based
approach’ Surveys on Mathematics for Industy109-131.

Udupa, S. M. (1977), Collision detection and avoidance imgoter controlled
manipulators,n ‘Fifth International Joint Conference on Atrtificial Intell
gence, Camebridge, MA, pp. 737-748.

United Nations, U., ed. (2003)\orld Robotics United Nations. ISBN 92-1-
101059-4.

van der Smagt, P. P. (1994), ‘Simderella: a robot simulatomguro-controller
design’,Neurocomputing(2), 281-285.
URL: citeseer.ist.psu.edu/vandersmagt94simderella.html

Wabhl, F. M. and Thomas, U. (2002), Robot Programming - Frompk Moves
to Complex Robot Tasks. Workshop.

Wei, G.-Q., Arbter, K. and Hirzinger, G. (1997), ‘Real-Tinvésual Servoing
for Laparoscopic Surgery’|EEE Engineering in Medicine and Biology
4(16), 40-45.

Wu, H. (2003), Sensor Data Fusion for Context-Aware ConmgutUsing
Dempster-Shafer Theory, PhD thesis, The Robotics Institharnegie Mel-
lon University, USA. CMU-RI-TR-03-52.

Bibliography 123

Zhuang, H. and Shiu, Y. C. (1993), ‘A Noise-Tolerant Algbnt for Ro-
botic Hand-Eye Calibration with or without Orientation Memement’,
23(4), 1168-1175.

Zollner, R., Rogalla, O., Dillmann, R. and Zollner, M. (2002nderstanding
users intention: programming fine manipulation tasks by alestration,in
‘Proceedings of the IEEE/RSJ Intl. Conf. on Intelligent Rtsband System’,
Vol. 2, IEEE/RSJ, pp. 1114-11109.

