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Preface

Virtually all real life systems are such that they present some kind of
limitation on one or many of its variables, physical quantities. In some
cases this is a direct consequence of the laws of physics. In others it is
an engineering constraint. Usually, the operating points of the system
are such that these limitations are of little or no concern. However, there
exist several systems where these limitations are critical and can lead to
undesirable behaviors.
Nevertheless, all of these systems can be classified as systems with

limited capacity. This thesis is treating control related problems of a sub­
class of such systems, where the limitation is a critical factor.
The thesis is composed of four parts. The first and the fourth part is

treating two industrial applications, the control of tire slip in a braking
car and, the voltage stability control in power systems. The capacity lim­
ited factor in theses cases are the friction coefficient between the tire and
the road and the maximum transferable power through a power network.
The second and third part treats two nonlinear control related problems,
of a more theoretical nature. The second part introduces a tuning method
for PI(D) controllers that can be used for a class of systems with lim­
ited capacity. The third part is treating the trajectory following problem
in piecewise linear systems with focus on anti­windup compensation of
saturated systems. These latter processes fall naturally in the class of
systems with limited capacity.
The Anti­lock Braking System (ABS) is an important component of a

complex steering system for the modern car. In the latest generation of
brake­by­wire systems, the performance requirements on the ABS have
changed. The controllers have to maintain a specified tire slip for each
wheel during braking. This thesis proposes a design model and based on
that a hybrid controller that regulates the tire­slip. Simulation and results
from drive tests are presented.
In the second part, a design method for robust PID controllers is pre­
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Preface

sented. Robustness is ensured with respect to a cone bounded static non­
linearity acting on the plant. Additional constraints on maximum sen­
sitivity are also considered. The design procedure has been successfully
applied in the synthesis of the proposed ABS controller.
The third part studies the trajectory convergence for a general class

of nonlinear systems. The servo problem for piecewise linear systems is
presented. Convex optimization is used to describe the behavior of system
trajectories of a piecewise linear system with respect to some input sig­
nals. The obtained results are then applied for the study of anti­windup
compensators.
The last part of this thesis is treating the problem of voltage stability

in power systems. Voltage at the load end of a power system has to be
controlled within prescribed tolerances, in order to guarantee a satisfac­
tory voltage for the consumers. Even in case of normal operation, this
task is non­trivial due to the ever­changing load conditions. Moreover, in
case of emergencies such as sudden line failures, this task can be very
difficult and sometimes impossible. The main contribution of this chapter
is a method for improving the stability properties of the grid by dynamic
compensation of the reference load voltage. Moreover, a complete compen­
sation scheme is proposed that has load shedding as secondary control
variable. This control scheme is shown to stabilize different power sys­
tem models, meanwhile attempts to minimize the amount of disconnected
load.
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1

Introduction

This thesis has four parts that are addressing four different nonlinear
control problems in the framework of systems with limited capacity. The
work presented here is based on a total of six papers.
The first and fourth part handles industrial applications, the control

of tire slip during braking of a vehicle and voltage stability problem in
power networks respectively.
In the second part, a method for tuning PI(D) controllers is presented

that can be used for a class of systems with limited capacity. The theory
developed here has been applied in the tire slip control problem.
The third part is concentrating on a more theoretical issue, the trajec­

tory following in piecewise linear systems. Also a practical application of
the theory is presented by in the context of anti­windup compensators.

1.1 Contributions of the Thesis

Chapter 2 of this thesis is concerned with an industrial application, an
Anti­lock Braking System for a passenger vehicle. It introduces an effec­
tive design model that is shown to capture the main control difficulties of
the problem. A novel control system is proposed. The resulting controller
is a gain scheduled nonlinear PI(D). Simulation and test results show
the efficiency of the controller. An extended introduction of this work is
presented in Section 1.4. This chapter is is an extended version of:

Solyom, S., A. Rantzer, and J. Lüdemann (2003): “Synthesis of a model­
based tire slip controller.” Vehicle System Dynamics, 41:6, pp. 477–511.

Furthermore, the Appendix B of Chapter 2 contains a benchmark for
Anti­lock Braking Systems that is based on:

Solyom, S., J. Kalkkuhl, and Rantzer (2002): “A benchmark for control of
anti­lock braking systems.” In http://www.control.lth.se/H2C.
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Chapter 1. Introduction

Chapter 3 is treating a synthesis method for robust PI(D) controllers
for a class of systems with limited capacity. Due to the involved nonlinear­
ity, no classical PID tuning methods can be used to guarantee stability of
the system.This work proposes a novel design method based on the Circle
Criterion that guarantees stability of the closed loop nonlinear system.
The method is used in the tuning of the PI(D) controllers used in the
tire slip controller. An extended introduction of this work is presented in
Section 1.5. This chapter is based on the results in:

Solyom, S. and A. Ingimundarson (2002): “A synthesis method for robust
PID controllers for a class of uncertain systems.” Asian Journal of
Control, 4:4, pp. 381–387.

Chapter 4 is treating the servo problem for piecewise linear systems,
that is, the trajectory convergence of piecewise linear systems in presence
of exogenous output signals. This problem is shown to be solvable in terms
of LMI­based convex optimization. As a case study, the class of saturated
systems with anti­windup compensation is explored. An extended intro­
duction of this work is presented in Section 1.6. This chapter is based on
the results in:

Solyom, S. and A. Rantzer (2002): “The servo problem for piecewise linear
systems.” In Proceedings of the Fifteenth International Symposium on
Mathematical Theory of Networks and Systems. Notre Dame, IN.

Solyom, S. (2003): “A synthesis method for static anti­windup compen­
sators.” In Proceedings of the European Control Conference, ECC03.
Cambridge, UK.

Chapter 5 is concerned with voltage stability of power systems. This
work analyses a simple model that is shown to capture the control diffi­
culties of this problem. A new stabilization method is introduced and a
controller is proposed that improves the stability properties of a power
network. An extended introduction of this work is presented in Section
1.7. This chapter is based on the results in:

Solyom, S., B. Lincoln, and A. Rantzer (2004a): “A novel method for
voltage stability control in power systems.” In Proceedings of the World
Automation Congress.

Solyom, S., B. Lincoln, and A. Rantzer (2004b): “Power systems.” In
Patent application nr. 040031­8, Svenska Patentverket.
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1.2 Background and Motivation

Other related publications:

Solyom, S. and A. Rantzer (2003): “ABS control ­ a design model and
control structure.” In Nonlinear and Hybrid Systems in Automotive
Control, pp. 85–96. Springer Verlag.

Ingimundarson, A. and S. Solyom (2003): “On a synthesis method for
robust PID controllers for a class of uncertainties.” In Proceedings of
the European Control Conference, ECC03. Cambridge, UK.

1.2 Background and Motivation

I started my research activities at the department within the frame of
the European project on Heterogeneous and Hybrid Control, H 2C . Its
objective was to develop innovative theory for heterogeneous and hybrid
control while proving the industrial relevance of this technology. The an­
alyzed benchmark was the tire slip control problem for a braking vehicle.
This work led to the results in the Chapters 2 and 3. It also inspired us to
formulate the servo problem in Chapter 4. After the project finished, I got
involved in another European project, named Computation and Control,
C C . This project involved a benchmark devoted to the voltage stability of
power systems. To our surprise, we realized that the two systems present
in essence the same type of limitations.

1.3 Systems with Limited Capacity

The term capacity has several meanings, the one used in this thesis can
be described by the following definition, according to Webster Dictionary:
“the facility or power to produce, perform, or deploy’’.
The majority of real life systems are such that they present some kind

of limitation on one or many of its variables, physical quantities. In some
cases this is a direct consequence of the laws of physics. In others it is
an engineering constraint. Usually, the operating points of the system
are such that these limitations are of little or no concern. However, there
exist several systems where these limitations are critical and can lead to
undesirable behaviors. Nevertheless, all of these systems can be classified
as systems with limited capacity. Some typical example are:

• the amount of water contained in a water tank is limited by the size
of the tank,

• information transmission rate is limited by the capacity of the used
network,

13



Chapter 1. Introduction

x

y

Figure 1.1 Nonlinearity that can give rise to system with limited capacity. The
value of y can not increase above a maximum value.

• the maximum attainable friction force between two surfaces is lim­
ited by the maximum friction coefficient between the two surfaces,

• the maximum electrical power transmitted through a network with
limited power source is limited by the impedances in the network,

• actuators in a sontrol system have limited range and velocity.

This work addresses a special class of systems, where the capacity
limitation is given by a nonlinearity of the type shown in Figure 1.1.
Moreover, in the studied processes the nonlinearity has a critical influence
on the behavior of the system. As seen in the figure, the variable y can
not increase above a given maximum value. A dynamical system with
such limitation on one of its variables is said to have limited capacity of
delivering the quantity y.
This thesis studies three different class of systems with limited capac­

ity:

• an Anti­lock Braking System, where the capacity limited factor is
the deliverable friction force between the tires and the surface,

• a power system, where the capacity limited factor is the deliverable
power through the network. This reaches its maximum when the
impedance of the network and the load are matched.

• saturated control systems, where the limited variable is the control
authority of the actuators.

It is shown that these apparently very different systems are techni­
cally, quite similar from the control point of view.

14



1.3 Systems with Limited Capacity

xr

y

∫

Figure 1.2 Dynamical system with limited capacity. This system describes the
control difficulties of both an anti­lock braking system (ABS) of a car and voltage
stability control in power systems.

The dynamical system, in Figure 1.2 is investigated. It is shown that
this system describes the control difficulties of both an Anti­lock Braking
System (ABS) for a car and voltage stability control in power systems.
In case of ABS control the quantities in the figure have the following
physical interpretation:

• x ­ tire slip,

• y ­ torque caused by the friction between the tire and the road,

• r ­ braking torque.

The tire­road friction coefficient is the capacity limited factor. In case of
voltage stability control in power systems the quantities in the figure have
the following physical interpretation:

• x ­ load admittance,

• y ­ the power transfered through the network,

• r ­ the power requested by the load.

Here, the power transfered through the network is the capacity limited
factor. It is well known that the transmitted power is maximized when
the impedances of the load and network are matched.
Even in the simplest case, when a linear system is combined with such

a nonlinearity (Figure 1.1), there are several control difficulties arising:

• Depending on the interconnection, the resulting system can have
one, two, or no equilibrium points. This can give rise to interesting
behaviors of the nonlinear system.

• When the system has two equilibrium points, it can exhibit qualita­
tively different behaviors depending on the equilibrium. One equi­
librium point is typically stable while the other is unstable.

15



Chapter 1. Introduction

• Limitation of one or more quantities in the system can have serious
repercussions on the global behavior of the nonlinear system.

These problems can not be solved by classical linear system theory.
This work uses Lyapunov theory to formulate some approaches and solu­
tions.

1.4 Anti-Lock Braking Systems and Tire Slip Control

“While the development of braking systems has come a long way, the

progress is just beginning.’’ [Buckman, 1998]

Introduction

In the 1970’s government mandated standards started to emerge that
regulated the exhaust emissions and fuel economy of the vehicles. Car
manufacturers realized that automatic control systems are a viable so­
lution for this problem. Since then automatic control systems have been
used to improve almost every function of a vehicle. Major fields of applica­
tions are improvement of passenger safety. Arguably the most important
contribution has been in the area of braking, traction and stability con­
trol. In these application the control system aids the driver and corrects
its mistakes [Jurgen, 1999].
One of the most important subsystems in any vehicle is its braking

system. In the last century, braking systems have evolved considerably.
It started with primitive systems, consisting of a block rubbing against
the wheel rim. Today, the braking is electronically controlled by Anti­lock
Braking Systems (ABS).
The first ABS systems were implemented in the late 1970’s, the main

objective of the control system being prevention of wheel­lock and they
typically made use of hydraulic actuators.
In the latest generation of brake­by­wire systems, electro­mechanical

actuators are capable of delivering continuously varying and different
brake forces independently to the four wheels. Such actuators are capa­
ble of superior performance, needing novel slip controllers that can fully
exploit these capabilities. The control objective of these systems shifts to
maintain a specified tire slip rather then just preventing wheel­lock. The
set­point slip is supposed to be provided by a higher level in the hierarchy
(e.g. an Electronic Stability Program), and can be used for stabilizing the
steering dynamics of the car while braking.

16



1.4 Anti­Lock Braking Systems and Tire Slip Control

ω

Fx

v

Fz

Tb

Figure 1.3 The tire slip is the normalized difference between the linear velocity
of the wheel ω r and the velocity of the vehicle v.

Tire Slip Control

Consider the wheel of a vehicle (see Figure 1.3), then the tire slip λ is
defined as the normalized difference between the linear velocity of the
wheel ω r and the velocity of the vehicle v:

λ =
v−ω r

v

Tire slip control aims at the control of the tire slip λ . This is a nonlinear
control problem. Additionally, the friction characteristics between the tire
and the surface introduces significant uncertainty into the problem.
Chapter 2 is based on the results in [Solyom and Rantzer, 2003; Solyom

et al., 2004]. It introduces a simple design model (see Figure 1.4) that is
shown to capture the main control difficulties of the problem. Due to the
nonlinearity introduced by the friction curve, this problem clearly belongs

1
vse−sT

Tb λ
α

β µ(λ)

u

Figure 1.4 Proposed design model for an ABS. The nonlinearity is in feed­back
with an integrator scaled by the linear velocity. Note that the system can have two
equilibrium points. The one to the left of the peak of the friction curve is stable
while the one to the right is unstable.
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Chapter 1. Introduction

to the class of systems with limited capacity. The limited variable in this
case is the friction coefficient between the road and the tire.
Based on this model, a systematic design procedure is proposed. The

resulting controller is a gain­scheduled nonlinear PI(D) controller. The
controller is using information about the vehicle velocity, the angular ve­
locity of the wheel and an estimate of the maximum friction between the
road and the tire.
Both simulation and experimental results show the viability of the

proposed method. The experimental testing was carried out in a modi­
fied Mercedes E220 passenger vehicle that has been provided by Daim­
lerChrysler. The vehicle was fitted with brake­by­wire system and state
of the art electromechanical brake actuators. The tests consisted in con­
trolled emergency­braking on dry surface. The braking distance for the
proposed controller, from an initial velocity of 30 m/s, was between 36−41
meters. The proposed controller outperformed the production ABS and
some other controllers that have been tested.

1.5 PI(D) Control of a System with Limited Capacity

“The PID controller can be said to be the ’bread and butter’ of control

engineering.’’ [Åström, 1995]

PID Control

One of the most commonly used controllers is the PID controller. In pro­
cess control, more than 95% of the control loops are of PID type. The
popularity of this type of controllers is mainly due to fact that inspite of
its simple structure, it provides some important functions such as: feed­
back, ability to eliminate steady state offsets through integral action and
it can anticipate the future through derivative action [Åström and Häg­
glund, 1995].
Over the past 50 years several design methods for PID controllers

have been presented. Some of the methods need only superficial informa­
tion about the process, in form of simple parameter models (e.g. Ziegler­
Nichols, λ tuning method). These parameters can be easily identified by
simple experiments (e.g. by measurement of the natural frequency of the
plant, or by examining the step response of the plant). Other design meth­
ods need a more in­depth knowledge of the process (H∞ synthesis).
Optimal control synthesis is a widely studied problem in the control

engineering community. These methods are usually computationally in­
volved and almost exclusively need a good process knowledge. In case of
output feedback controllers, the resulting controllers have typically com­

18



1.5 PI(D) Control of a System with Limited Capacity

Re L(iω )

Im L(iω )

Rs

−Cs

Figure 1.5 The radius Rs of the circle centered in −Cs is a robustness measure
of the closed loop system. When the robustness is measured by the maximum sen­
sitivity function, the center −Cs becomes −1 and Rs = 1/i(1+ L)−1i∞.

parable number of states as the plant. It has been shown in several oc­
casions that the synthesis of optimal controllers with fixed number of
states is a difficult problem. Nevertheless, in the case of PID controllers
there have been several successful attempts to solve this problem [Ho,
2001; Panagopoulos, 2000].
In the latter mentioned work a design procedure for PI(D) controllers

was presented which minimizes the effect of load disturbances. This is
achieved by maximizing the integral gain while making sure that the
closed loop system is stable. Furthermore, robustness is conferred by guar­
anteeing that the Nyquist curve of the loop transfer function is outside a
circle with center −Cs and radius Rs (see Figure 1.5). When the robust­
ness is measured by the maximum sensitivity function, the center of the
circle becomes −1 and

Rs =
1

i(1+ L(s))−1i∞

where L(s) is the loop transfer function. This way Ms = 1/Rs can be
used as a design parameter. The value of this parameter will influence
the damping of the closed loop system.
These type of constraints will give rise to regions in the parameter

space of the controller that are delimited by ellipsoids. Although a non­
linear optimization problem, it has been shown to be solvable for a class
of systems.
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Chapter 1. Introduction

C(s) G1(s) G2(s)r z
y

f (⋅,⋅)

Figure 1.6 Block diagram showing nonlinearity, plant, and controller.

PI(D) Control of Systems with Limited Capacity

Chapter 3 is based on the results in [Solyom and Ingimundarson, 2002; In­
gimundarson and Solyom, 2003]. The extension presented in this chapter
guarantees, in addition, asymptotic stability of the system when a cone
bounded nonlinearity is present in feedback with part of the plant, as
shown in Figure 1.6. In particular this procedure can be used for systems
with limited capacity that have a cone bounded nonlinearity in feedback
with a linear plant.
The method is based on the Circle Criterion [Khalil, 1992]. In Chapter

3 it is shown that similarly to the Ms constraints, the Circle Criterion will
induce regions in the controller parameter space bounded by ellipsoids.
In case of PI control the optimal solution can easily be picked through
visual inspection. However, for PID controllers optimization routines are
desirable.
As a case study, the ABS control problem is revisited and a local design

procedure is outlined which in combination with gain­scheduling gives the
controller in Chapter 2.

1.6 Piecewise Linear Systems and Trajectory Following

Introduction

One type of nonlinear systems are the so called piecewise linear systems.
These are dynamical systems of the form:

ẋ = Aix + ai + Biu

y = Cix + ci + Diu
for x ∈ Xi (1.1)

20



1.6 Piecewise Linear Systems and Trajectory Following

The state space of such systems is partitioned in a finite number of regions
Xi, so that the system dynamics undergoes switching when passing from
one operating regime to the other.
Many engineering applications can be modeled by piecewise linear sys­

tems. This specific structure can appear either inherently, as in the case
of actuator saturations, or by piecewise linear approximation of nonlin­
earities. Either way, such system have an essential nonlinear character,
exhibiting behaviors that can not be predicted by classical linear system
theory.
One appealing property of such systems is that in many situations

they can be analyzed by various computationally tractable methods. Sta­
bility of such systems can be investigated using Lyapunov theory. It has
been shown by several authors that quadratic and piecewise quadratic
Lyapunov functions for piecewise linear systems can be computed using
convex optimization. The analysis problem usually results in a set of Lin­
ear Matrix Inequalities (LMIs), which can be solved by efficient convex
optimization algorithms.

Stability of Piecewise Linear Systems

All the results related to piecewise linear systems that are presented in
this work assume stability in the sense of the next theorems [Boyd and
Yang, 1989; Hassibi and Boyd, 1998]:

THEOREM 1.1
Consider the system in (1.1). If there exist P > 0 such that

[
x

1

]T [ ATi P + PAi Pai

aTi P 0

] [
x

1

]

< 0 for x ∈ Xi\ {0} (1.2)

then the system is said to be quadratically stable.

Condition (1.2) can be transformed to an LMI with the help of the S­
procedure [Boyd et al., 1994].
A less conservative result than quadratic stability was introduced

in [Johansson, 1999], where piecewise quadratic Lyapunov functions are
used instead of a quadratic one.

THEOREM 1.2
Consider the system in (1.1). If there exist a continuous function V (x)
such that

V (x) =

[
x

1

]T

P̄i

[
x

1

]

> 0 for x ∈ Xi\ {0}
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and

[
x

1

]T
([
ATi ai

0 0

]T

P̄i + P̄i

[
ATi ai

0 0

])[
x

1

]

< 0 for x ∈ Xi\ {0}

Then every trajectory x(t) ∈
⋃
Xi satisfying (1.1) with u = 0 for all t > 0

tends to zero exponentially.

Also these inequality conditions can be converted to LMIs, using the S­
procedure. By parameterizing the Lyapunov functions with respect to the
cell boundaries, continuity at the switching hyperplanes can be imposed.
If the input signal of the system is different from 0, the equilibrium

will be moved from the origin. To determine the stability properties of this
equilibrium point, a new analysis is needed. That is, the analysis of the
system for one input signal will, in general, not give enough information
about the system behavior if the input signal is changed. Moreover, it is
also interesting to characterize the system behavior when the input signal
is time varying.

Trajectory Following

Behavior of trajectories for piecewise linear systems in presence of an in­
put signal, is an important issue from a control theoretic point of view.
Most analysis results on piecewise linear systems are oriented towards
stability of the origin for the unforced system [DeCarlo et al., 2000; Has­
sibi and Boyd, 1998; Johansson and Rantzer, 1998]. The convergence of
trajectories of the unforced piecewise linear system as defined in [Johans­
son and Rantzer, 1998] is not sufficient in general, to guarantee good
behavior when input signals are applied to the system. Even if the un­
forced system is proved to be stable, applying an input might change the
equilibrium point in such a way that the system behavior becomes unsat­
isfactory. Moreover, the time varying nature of the input signal can easily
lead to an unacceptable behavior of the system.
The so called servo problem studies the behavior of the system trajec­

tory with respect to time varying reference signal. It gives information
about the convergence of the system trajectory when disturbed by a time
varying input signal (see Figure 1.7).
One way to approach this problem is by looking at the input­output

stability of the system. In case of L 2 analysis, one is interested in a finite
γ such that

∫ T

0
hxh2dt ≤ γ 2

∫ T

0
hrh2dt

This relation gives a good idea about the behavior of the system tra­
jectory for some time varying input signal. Nevertheless, it does not give
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S

x

xr

Figure 1.7 The servo problem studies the system trajectory x with respect to
some time varying reference signal r. In this work, a particular reference trajectory
is used to describe the system behavior. The reference trajectory is defined such that
each constant reference value r corresponds to an equilibrium point xr. Thus, for a
slowly varying r the distance between x and xr should be small. This way, the system
behavior for time varying reference signals can be analyzed by characterizing the
distance between x and xr . Moreover it is desirable to distinguish the influence of
the variations in the reference signal r.

direct information about the behavior of the system trajectory with respect
to the variations of the reference signal.
Consider now a trajectory xr that is defined such that each xr is the

value at rest of the system trajectory x corresponding to a constant refer­
ence signal r. Then an inequality of the form:

∫ T

0
hx − xrh

2dt ≤ γ 2
∫ T

0
hṙh2dt .

describes how a disturbance in form of variations in r, will affect the
system trajectory in comparison to its value at rest. Note that this relation
gives information also about the input­output stability of the system.
Chapter 4 presents a method to solve the problem above. Computing

the L 2 gain from the derivative of the input signal (ṙ) to the “distance”
between system trajectory (x) and reference trajectory (xr), one obtains
information relating the convergence of the system trajectories.
Chapter 4 is based on the results in [Solyom and Rantzer, 2002; Solyom,

2003]. The contribution of this work is to give a quantitative bound on
the neighborhood of the equilibria when the variation of the parameter
is a continuous function. For piecewise linear systems, a computational
method using Linear Matrix Inequalities is proposed.
One possible application of this theory is in the field of anti­windup

compensation. This will be addressed in the following.
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r u y
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Λ

Figure 1.8 The considered anti­windup scheme. Λ represents a block of static
compensators.

Anti-Windup Compensation

All real world control systems must deal with actuator saturation. This
give rise to interesting control challenges. As a result of actuator satu­
ration the plant input will be different from the controller output. When
this happens the control loop is broken and the controller output does not
drive the plant. Thus the states of the controller are updated incorrectly,
resulting in serious performance deterioration [Kothare et al., 1994].
Figure 1.8 shows the typical system setup. A linear plant with satu­

ration­type limitations on the input, is controlled by a linear controller.
When the actuator saturates, that is the system enters the affine region
of operation, the control loop is broken. The regulator has no more control
authority and the controller states will exhibit undesirable behavior.
A well­known and successful methodology to cope with this problem

is anti­windup compensation or conditioning. This methodology gives rise
to a compensator that during saturation improves the performance of the
closed loop system. In Figure 1.8, the anti­windup compensator block is
denoted by Λ. The input signal for this compensator block is zero as long
as the system does not saturate. In case of saturation, its input signal
becomes the difference between the desired and saturated control signal.
It is customary to use linear filters as anti­windup compensators. Both
static and dynamic compensators are reported in the literature.
In [Fertik and Ross, 1967; Teel and Kapoor, 1997] the problem of anti­

windup compensation has been recognized as being that of returning the
system to linear behavior. That is, return of the system output to the one
that would have been without saturation. Thus it is clear that the anti­
windup problem can naturally be posed as a servo problem for a nonlinear
system. The goal is to return to the behavior of the linear system as well as
possible. In this context, xr can be viewed as a trajectory that describes the
linear behavior of the system. Computing the L 2 gain from the derivative
of the input signal to x − xr, gives a measure on the behavior of the
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system trajectories with respect to xr. Notice that the reference signal is
smoothly time varying. Chapter 4 presents a method for designing static
anti­windup compensators that fulfill the above mentioned criterion.

1.7 Voltage Collapse in Power Systems

Introduction

A power system consists of several electrical components (e.g. generators,
transmission lines, loads) connected together, its purpose being transfer
and usage of electrical power. Power systems are referred to as the largest
machines built by man. Geographically they stretch over entire continents
including hundreds of generators and millions of costumers.
An important feature of electrical energy is that it cannot be easily

stored in large quantities. This basically means that at any instant in
time the energy demand has to be met by corresponding generation. This
suggests that keeping the balance between consumption and generation
is a difficult problem.
In case of special events in the network, such as faults or unexpected

increase of power demand, the balance between the generation and con­
sumption can be disturbed. Such disturbances can have catastrophic con­
sequences, such that major parts of the grid can be disabled. In the year
2003, several power blackouts occurred throughout the globe. A major
blackout stroke on August 14 in the US. Over 60 MW of load and over 50
million people were affected. Geographically, it spread over eight states of
the US and part of Ontario. The estimated costs of this power outage are
between 4.5 – 8.2 billion dollars [Jones, 2004]. Such events are studied in
the frame of power system stability and are of major concern in the power
system community.

Voltage Stability in Power Systems

Due to the complexity of a power system, instabilities can be manifested
in different ways. In general, power system stability can be defined as the
property of the power system that enables it to remain in a state of equi­
librium under normal operating conditions and to regain an acceptable
state of equilibrium after being subject to a disturbance [Kundur, 1993].
The type of power system stability studied in this work is voltage

stability. Voltage at the load end of a power system has to be controlled
within prescribed tolerances to guarantee a satisfactory voltage for the
consumers. Even in the case of normal operation, this task is not trivial
due to the ever­changing load conditions. Moreover, in case of emergencies
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Ẽ
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Figure 1.9 The considered two­node system with generator, transmission line,
transformer and load.

this task can be very difficult and sometimes impossible.
Chapter 5 is based on the results in [Solyom et al., 2004a; Solyom et al.,

2004b]. The power system considered in this work is shown in Figure 1.9.
It is a radial system containing a generator E, a transmission line with
impedance Z̃LN , a transformer with an on­load tap changer (OLTC) and
a load with impedance Z̃LD . The system can be thought of as having two
nodes, generation (i.e. the generator source) and consumption (i.e. the
load). The on­load tap changer regulates the voltage on the load side at
a desired value Vref . In a power system, the loads have a built­in control
system that tries to achieve some control objective. Usually this control
objective is to keep the absorbed power at a given value. In turns this
means that the load will dynamically change its impedance.
It is shown that this simple system exhibits the typical nonlinear be­

haviors that appear in a voltage collapse scenario. Furthermore, it is
shown that also this system fits the framework of systems with limited
capacity. The limited variable, in this case being the transferred power.
In Section 5.4 it is shown that in some scenarios, the stability of the

power system can be maintained by dynamic compensation of the refer­
ence signal Vref .
Furthermore, a complete compensation scheme is proposed that has

load shedding as secondary control variable. This control scheme is shown
to stabilize different power system models, at the same time it attempts
to minimize the amount of disconnected load. The structure can be easily
expanded, integrating additional control variables (e.g. capacitor banks).
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1.8 Future Work

In the first part of this thesis a model based Anti­lock Braking System
is presented. Simulation and test results are presented. In order to fully
validate the proposed controller, more tests are needed, especially for low
friction surfaces. Furthermore, in the control design only longitudinal slip
has been considered. It is the belief of the author that the controller can
be easily adapted for the cases when side­slip is present. Using the multi­
model observer, the estimate of the maximum friction coefficient is ob­
tained rather fast, although it is usually not precise. This information
could be used also in a feedforward fashion to improve the transient re­
sponse of the controller in case of changing road surfaces.
Chapter 3 of the thesis treats a synthesis procedure for PID controllers

for a class of uncertain systems. It solves the problem for a cone bounded
nonlinearity in feedback with a part of the plant. It is of interest to inves­
tigate the case when multiple cone bounded nonlinearities are present in
the system.
Chapter 4 presents a result for analysis of piecewise linear systems.

Behavior of system trajectory is analyzed with respect to some input sig­
nal. The theory has been used in the study of static anti­windup compen­
sator. It would be of interest to explore the case when the anti­windup
compensators are dynamic (having same order as the plant or with re­
duced order). In presented results, LMIs are used as computational tools.
It would be of interest to study the results with a more flexible compu­
tational tool, such as the recently, increasingly popular sum of squares
approach.
In Chapter 5 the voltage stability of power systems is analyzed. A

simple model is used that describes a radial system. It is of significant
importance how such system would interact if interconnected, moreover
how the proposed solution will influence neighboring systems.
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2

Synthesis of a Model-Based

Tire Slip Controller

2.1 Introduction

The Anti­lock Braking System (ABS) is an important component of a
complex steering system for the modern car. It is now available on most
of the vehicles, enhancing their braking capabilities.
The early development of anti­lock system for vehicle brakes began

in Europe in the mid 1920’s [Buckman, 1998]. One of the first patents
in Europe was issued in 1932 entitled “An Improved Safety Device for
Preventing the Jamming of the Running Wheels of Automobiles when
Braking”. In the US the first patent was issued in 1936, named “Appa­
ratus for Preventing Wheel Sliding”. Contrary to the common belief, the
first practical application of an anti­lock system to a vehicle was done
to railroad trains and not to aircrafts. The first occurred around 1943,
while the latter appeared in the late 1940’s and early 1950’s. In 1951 an
anti­lock braking system for highway vehicles was presented. These early
systems were mechanical systems and performed with varying degrees of
efficiency, but they significantly improved vehicle steerability during brak­
ing. This ability of the early systems encouraged further development. In
1968 an optional equipment for Thunderbirds was a rear axle hydraulic
ABS. The control algorithm of this system was implemented on analog
computers with primarily discrete components, resulting in low reliability.
In 1978, Mercedes­Benz offered anti­lock braking system as an optional
equipment for its S­class vehicles. In the beginning of the 1980’s the algo­
rithms were migrated to micro­computers and ABS development started
to progress strongly. By 1985, Mercedes, BMW and Audi introduced Bosch
ABS systems. Meanwhile Ford introduced its first Teves systems. In the
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late 1980’s ABS systems were offered on many luxury and sports cars.
Today, ABS systems can be found on most of the vehicles, tending to be a
standard equipment.
The main objective of most of these control system is prevention of

wheel­lock while braking. This is important for two main reasons. First,
to maintain steering ability of the car while hard and emergency braking,
enabling obstacle avoidance in such situations. Second, to decrease the
braking distance in case of an emergency braking. The later is due to the
fact that the maximum friction between the road and the tires is, in most
of the cases, achieved when the wheel is still rotating and not when it is
locked.
It turns out that this task is not trivial, one of the main reasons being

the high amount of uncertainty involved. Most uncertainty arises from
the friction between the tires and the road surface. In addition, the tire­
road characteristics is highly nonlinear, which burdens even further the
control task.
The brake actuators play an important role in slip control, influencing

the performance of the control system. Most of the ABS available on the
market are making use of hydraulic actuators. These are simple hydraulic
valves, usually with three­point­characteristics. In the new generation of
ABS, electro­hydraulic actuators are used and in the next generation of
brake­by­wire systems electro­mechanic actuators will be used. In a brake­
by­wire system the drivers action on the brake pedal is converted into
electrical signals that are transmitted via microcontrollers to the brake
actuators. This way there is no hydraulic connection between the pedal
and the actuators. The brake actuators used in these systems have the
advantage of allowing continuous and more accurate adjustment of the
brake force. These braking systems enable control of tire slip at arbitrary
set­points which can be used to improve the driving characteristics of the
vehicle. This means that to fully exploit the capabilities of such braking
systems, there is a need for new high performance control systems. In
particular, these controllers should be able to regulate the slip at different
set­points. These reference values are to be specified by other systems,
such as an Electronic Stabilization Program (ESP).
The key word for novel vehicle dynamics control systems is integration.

Different levels, in a hierarchical structure of controllers with different
functionalities are interacting in order to improve the driving character­
istics of the vehicle. Such a high level integration and interaction is not
possible without brake­by­wire technology. To fully use the capabilities
offered by this technology, new analysis and synthesis approaches are to
be developed.
This chapter is addressing the ABS system for a vehicle equipped with

brake­by­wire technology. A novel model based control approach for slip
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Figure 2.1 The quarter car consists of a single wheel attached to a mass.

control is proposed. A systematic synthesis method is proposed. The re­
sulting controller is a hybrid nonlinear PI(D) controller. Tests have been
carried out in a Mercedes E220 vehicle, provided by DaimlerChrysler,
equipped with electro­mechanical brakes and brake­by­wire system.

2.2 Process Description

The easiest way to understand the underlying control problem is by look­
ing at the so called quarter car model. This model consists of a single
wheel attached to a mass, as shown in Figure 2.1.
The equations of motion of the quarter car during braking are:

Jω̇ = rFx − Tb

mv̇ = −Fx
(2.1)

where:

m ­ mass of the quarter car

v ­ velocity over ground of the car

ω ­ angular velocity of the wheel

Fz ­ vertical force

Fx ­ tire friction force

Tb ­ brake torque

r ­ wheel radius

J ­ wheel inertia
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Figure 2.2 Typical tire friction curve. It describes the nonlinear dependence be­
tween the friction and the wheel slip.

The longitudinal tire slip is defined as:

λ =
v−ω r

v
(2.2)

hence, a locked wheel (ω = 0) is described by λ = 1, while the free motion
of the wheel (ω r = v) is described by λ = 0.
The tire friction force, Fx, is determined by:

Fx = Fzµ(λ , µH ,α , Fz, v)

where µ(λ , µH ,α , Fz) is the road­tire friction coefficient, a nonlinear func­
tion with a typical dependence on the slip shown in Figure 2.2 (µH denotes
the maximum friction coefficient). The most common tire friction model
used in the literature is the “Magic Formula” [Bakker et al., 1989], or the
Pacejka model. This model uses static maps to describe the dependence
between slip and friction. In the literature, there are several dynamical
friction models reported [Bliman et al., 1995; Canudas de Wit and Tsio­
tras, 1999; Svendenius, 2003], that attempt to capture more accurately
the transient behavior of the tire­road contact forces. However, in this
work a Pacejka model will be used for simulations as well as design. This
function depends also on the normal force (Fz), steering angle (α ), road
surface, tire characteristics and velocity of the car. For ease of writing in
the following the arguments of µ will be dropped. Substituting (2.2) into
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(2.1), the system becomes:

λ̇v = −
Fzµ

J
r2 −

Fzµ

m
(1− λ) +

r

J
Tb

v̇ = −
Fzµ

m

(2.3)

This is a nonlinear differential equation where the parameters v, µ are
time varying. Notice that the slip dynamics is scaled by the inverse of the
velocity over ground of the vehicle. This will have an important effect on
the control performance.
As mentioned before, the tire­road friction coefficient is itself a nonlin­

ear function. Depending on the road condition and the tire characteristics,
the peek of the friction curve will be more or less pronounced and the value
of the maximum friction coefficient (µH) will be different. To the left of
the peak the tire slip dynamics is stable. While on the right of the peak,
where the slope of the curve is negative, the slip dynamics becomes un­
stable. The easiest way to see this is by linearizing in operating points
that are in the positive respectively negative slope regions of the curve.
Another factor that is influencing the tire­road friction curve is the side­
slip angle. In case of steering while free rolling, side slip together with a
side force occur. This phenomenon is more pronounced in case of simul­
taneous braking and steering. In general, the larger the tire slip angle is
the smaller the longitudinal friction will be. Naturally, this will lead to
reduction of the braking force when braking in a curve and consequently
will increase the braking distance.
Consider the tire friction curve shown in Figure 2.2 (this curve cor­

responds to a high friction surface, e.g. dry asphalt). Then by fixing the
braking torque Tb, one can draw the phase plane of (2.3). Figure 2.3
shows the normalized vector field of (2.3) together with some simulated
solutions. The thick dashed lines represent the slip coordinate of the two
equilibrium points close to the peak of the tire friction curve. These equi­
librium points are on different sides of the peak (see Figure 2.2)). One of
them is a stable equilibrium point (0.079, 0) while the other is unstable
(0.205, 0). The position of these points (for a fixed curve) depends on the
braking torque (Tb). It can be seen from the phase­plot that the velocity
over ground dynamics is much slower than the slip dynamics. Further­
more, the slip dynamics is somewhat faster for low velocities than for
high velocities. Figure 2.3 is drawn for fixed Tb = 1300 Nm, one can see
the specific behavior of the slip dynamics, namely that for an initial slip
higher than a given value (in this case 0.205), the slip dynamics becomes
unstable. This would basically mean, that for a given constant braking
torque Tb = 1300 Nm, if the point λ = 0.205 is passed, the wheel will
lock.
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Figure 2.3 Phase plane for the quarter­car model with a fixed braking torque.
There is one stable and one unstable equilibrium point indicated by the thick dashed
lines.

Notice that this model is a quite simple description of the slip dynam­
ics for a wheel. It does not capture pitching motion of the car body while
braking, suspension dynamics, actuator dynamics, tire dynamics nor cam­
ber angle (in the above given model, the tire is consider perpendicular on
the road surface).

2.3 Existing ABS Solutions

Most ABS controllers available on the market are table and relay­feedback
based, making use of hydraulic actuators to deliver the braking force [Hat­
twig, 1993; Maier and Müller, 1995; Maisch et al., 1993; Wellstead and
Pettit, 1997].
The existing ABS control strategies can be divided, conceptually in

two groups: wheel acceleration control and slip control. The first group
of ABS uses the measured angular velocity of the wheels. This control
strategy is regulating the slip indirectly by controlling the wheel decel­
eration/acceleration. It is used mainly for hydraulic brakes with three­
point­characteristics. The idea is to measure the wheel rotational velocity
and compute the wheel deceleration. Then, given some thresholds for the
wheel deceleration and acceleration, the pressure is increased, held, or
decreased preventing wheel lock during braking [Kiencke and Nielsen,
2000]. By appropriately selecting these thresholds, the slip will oscillate
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around the “critical slip”. This way, the friction force between the tires and
the surface is close to its maximum value and the braking distance is min­
imized. This kind of algorithm will have as side­effect vibrations which are
noticeable while braking. Todays production ABS are rule based control
system, having exhaustive tables for different braking scenarios. These
controllers are tuned in trial and error manner, using simulations and
exhaustive field testing. The level of complexity they reach is a serious
limitation for the analysis and further development of this kind of ABS.
These difficulties naturally lead to model based approaches where

the parameters have physical meaning. An immediate advantage for the
model based controllers is that they are easier to migrate to different
vehicles. In the literature several such approaches are reported. In the
following some of these results are presented.
In [Drakunov et al., 1995] a model based approach is presented for

hydraulic brakes. Here the maximum friction point is reached measuring
the angular velocity of the wheel and the brake pressure. This approach
uses sliding mode to reach and track the maximum friction during emer­
gency braking. In [Liu and Sun, 1998], feedback linearization is used to
design a slip controller and gain scheduling to handle variation with speed
of the tire friction curve.
Most of the ABS control systems, including production ABS do not aim

for control of tire slip at a given set­point, but they maximize the friction
force between the tire and the surface by finding the peak of the friction
curve. In the latest generation of brake­by­wire systems electro­mechanic
actuators are used, which are capable of delivering continuously vary­
ing and different brake force on each of the four wheels. Set­point slip
is supposed to be provided by a higher level in the hierarchy, such as
an ESP system, and can be used for stabilizing the steering dynamics of
the car while braking. This way the control objective shifts to maintain a
specified tire slip for each of the four wheels. This might imply different
reference values for the slip of each wheel. In [Johansen et al., 2001],
two model based hybrid approaches are presented. These controllers have
been tested on the same vehicle as the one used in this thesis. One of the
controllers is a Lyapunov function based adaptive controller. It is using
Sontag’s universal formula to obtain an optimal stabilizing control law.
Independently of the set­point slip, the controller also returns an esti­
mate of the maximum friction coefficient resulting from the adaptation.
The other approach presented in [Johansen et al., 2001] is a constrained
LQ controller. To make it applicable for such fast processes, it does not
rely on real­time optimization, but it evaluates the explicit solution to a
suboptimal LQ problem. The controller is shown to be a piecewise lin­
ear controller. Additional gain­scheduling on tire slip and velocity is used.
Test results for both approaches will be shown later, in comparison with
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Figure 2.4 The H 2C test vehicle. It is a modified Mercedes E220 passenger
vehicle, fitted with an advanced brake­by­wire system and four state of the art
electro­mechanical disc brakes.

results for the solution proposed in this thesis.
In [Jiang, 2000], different controllers have been proposed: a PID, a

robust controller resulting from loop­shaping, and a nonlinear PID con­
troller. In the latter the nonlinearity is a function that returns high gains
for low errors and low gains for high errors. Simulation results are pre­
sented for a heavy vehicle.

2.4 The Test Vehicle

The test vehicle was a specially equipped Mercedes E220 passenger vehi­
cle (see Figure 2.4). This vehicle was provided by DaimlerChrysler and it
was used as test vehicle in the EU – Esprit project Heterogeneous Hybrid
Control (H 2C ). It was equipped with an advanced brake­by­wire system
and four state of the art electro­mechanical disc brakes.
In addition, it was fitted with the following sensors:

• four wheel speed sensors,

• two accelerometers for longitudinal and lateral acceleration respec­
tively,

• sensors for the position of the brake pedal and the force applied to
the brake pedal,

• a sensor for the steering wheel angle,
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Figure 2.5 Test vehicle hardware architecture. It consists of four individually
controlled electromechanical brakes, brake­by­wire control unit and a power supply
unit. The control systems communicate on a TTP bus.

• a yaw rate sensor,

• hall sensors for measuring the clamping forces at each brake.

The ABS controllers are components of a complex brake­by­wire system.
Figure 2.5 shows a block diagram of the hardware architecture of the test
vehicle. It consists of four servo controllers for the brakes, a monitoring
unit, a brake­by­wire control unit, and a power supply unit.
The electro­mechanical disc brakes are servo controlled by PID con­

trollers. The brake­by­wire software, among other functions, gives access
to sensor signals and command signals provided by the ABS controllers.
The modules in the above shown architecture communicate on a syn­
chronous TTP bus. This is advantageous from control point of view, in the
sense that the time delay of the system is fixed.

2.5 The Control Problem

The control objective is, as mentioned above, to follow a reference tra­
jectory for the tire slip on each of the four wheels while braking. The
specifications include the following requirements [Kalkkuhl, 2001]:

• no wheel lock allowed to occur for speeds above 4 m/s

• wheel lock for a period of less than 0.2 seconds is allowed for speeds
in the range of 0.8 . . .4 m/s

• for speeds below 0.8 m/s the wheels are allowed to lock
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• the control system should be robust with respect to other unmodeled
dynamics:

– actuator dynamics

– suspension dynamics

• the control system should be robust to an additional time delay of 7
milliseconds due to communication

One of the most important signals in slip control is the velocity of the
vehicle (v). This signal is not measurable and it has to be estimated. The
measured signal that is used to obtain the velocity of the vehicle is the
angular velocity of the wheels and an the output of an acceleration sensor.
In the same manner, any information about the tire friction curve has

to be estimated. This later task can be challenging since the road surface
conditions can change rapidly (e.g. a wet spot on a dry surface) and the
estimate should converge rapidly inspite of the uncertain environment.
Thus already at this point, some of the robustness requirements can

be identified due to:

• the feedback signal (λ) is not measurable but results from estima­
tion and the quality of the signal is rather poor,

• time delay due to sampling and communication,

• high uncertainty in the tire­friction curve, especially in the nonlinear
region.

In other words it is to avoid controllers with high gains, while robustness
against modeling error has to be maintained (resulting especially from the
friction curve). On the other hand fast response time is imperative, that is
obviously contradictory to the above mentioned robustness requirements.
Thus, to have good control performance it is important to have precise

estimate of the velocity of the car, a good estimate of the surface conditions
and a not too long time delay in the control system. Naturally, the brake­
actuator performance is also important. However, this work is focused
on brake­by­wire systems equipped with electromechanical brakes, which
guarantee high performance such that their limitations are not essential
for the control system.
Another aim in the synthesis was to obtain a controller that is rela­

tively easy to tune in the test vehicle and can easily be ported onto other
vehicles.
As pointed out in the previous section, the proposed controller is model

based, therefore, the quarter car model is a natural point to start with.
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Figure 2.6 Proposed design model for an ABS. The nonlinearity is in feed­back
with an integrator scaled by the linear velocity. Note that the system can have two
equilibrium points. The one to the left of the peak of the friction curve is stable
while the one to the right is unstable.

2.6 Proposed Design Model

From the equations of motion for the quarter car, taking into account
that the velocity of the car varies much slower than the other variables
involved, one obtains the dynamics of the tire slip:

λ̇v = −
r2Fz

J
µ +

r

J
Tb (2.4)

Relation (2.4) is a first order nonlinear differential equation due to the tire

friction coefficient function. Denoting β
∆
= r2Fz/J, α

∆
= r/J and adding a

time delay T , the proposed design model (see Figure 2.6) can be synthe­
sized in the following:

λ̇(t)v = −β µ(λ(t)) +αu(t− T) (2.5)

where v is considered constant but uncertain.
This model captures the main control difficulties of an anti­lock brak­

ing system. Notice that in addition to those pointed out at the beginning
of this section, velocity dependence of the system is also included.
If the model (2.5) is linearized around an operating point, the resulting

model is of the form:

λ̇(t)v = −β (miλ(t) + Ψ) +αu(t− T) (2.6)

where mi is the slope of the tire­friction curve at the considered operating
point. Locally the slip dynamics is given by a first order system, stable or
unstable depending on the sign of the slope mi.
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Fundamental Limitations

If the slope mi resulting from the linearization is negative, one obtains
locally an unstable system which in conjuncture with a time delay will give
rise to fundamental limitations in control performance [Åström, 1997]. In
the following a local analysis of the system in the mentioned situation
will be carried out. Consider that there are no other unstable nor non­
minimum phase dynamics in the system. Then the unstable pole is:

p = β
hmih

v

with mi < 0. According to rules of thumb in [Åström, 1997], satisfactory
control performance with a phase margin ϕm = π/4 requires

pT ≤ 0.3

where T is the time delay, and the resulting crossover frequency is:

ω c = p

√

2
pT

− 1

Typical process parameters for a passanger vehicle are β � 440, a
time delay of T = 14 ms, and a friction curve with local negative slope
of −0.5 (that is a deflection from horizontal of −26o). Satisfactory control
performance can then be obtained until a velocity over ground is not less
than v = 10 m/s. For a local negative slope of −0.05 (that is a deflection of
approximately −3o) the same performance can be obtained up to a velocity
over ground not less than v = 1 m/s. The crossover frequency where this
performance can be achieved is ω c � 50 rad/s.
Thus the time delay plays an important role in the investigated sys­

tem.

2.7 Proposed Control Structure

As mentioned previously, many of the important signals used in the con­
trol unit are not directly measurable. The resulting control structure is
of the form shown in Figure 2.7. The estimated variables are the tire slip
(λ), velocity of the car (v) and the maximum friction coefficient (µH). In
the design procedure these variables are considered to be measurable, i.e.
no dynamics of the estimators are taken into account. This work is focused
on the slip control loop based on given estimates of velocity and friction.
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Figure 2.7 ABS control structure. The proposed controller is using information
about friction, wheel slip, and linear velocity which are obtained through estimation.

Due to braking the car body will exhibit a pitching motion so there is a
difference between the front and back wheels behavior. On the other hand,
due to the position of the center of gravity of the car there is a difference
between the left and right wheels even in case of straight line braking.
In the design, only the simplified model (2.5) is be used. In this model
none of the above mentioned phenomena are considered. The design is
carried out based on the same model irrespective of the wheel location.
Furthermore, no suspension dynamics are explicitly considered.

Estimation

The velocity of the car is estimated using information from the accelera­
tion sensor and the wheel speed. An extended Kalman filter is used, that
besides the velocity also estimates other states of the vehicle too. One
of the estimated parameters is the maximum friction coefficient of the
road (µH). However, the convergence of this estimate is too slow to be
effectively used for control purposes. In [Kalkkuhl et al., 2001] a multiple
model observer structure is proposed. This hybrid observer can be used
to obtain a fast estimate of the maximum friction coefficient for the slip
curve. The idea is to construct a finite set of parallel observers, each being
designed for a fixed parameter value of the nonlinear plant. Defining a
performance index for each of the individual observers it is possible to
quantify the parameter mismatch between each of these observers and
the real plant. Then, a switching logic is used to select the observer with
the best performance, this way obtaining an estimate for the unknown
parameter. The transient behavior for the estimate of µH , is much faster
than the one obtained from the extended Kalman filter. In the simulations
and experiments in the test vehicle, an extended Kalman filter has been
used to estimate the velocity v and the multiple model observer has been
used to obtain an estimate of the maximum friction coefficient µH .
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Figure 2.8 Block diagram for the proposed control scheme with the proposed
design model. The controller uses a gain scheduling scheme based on the tire slip
value λ , the velocity over ground v and the maximum friction coefficient µH .

Proposed Controller

The process is highly uncertain and nonlinear, mainly due to the tire
friction characteristics. On the other hand, fast changes in operating con­
ditions can appear (e.g. change in surface characteristics from wet to dry
road­surface). An important limiting factor is time­delays due to sampling
and communication.
In the following, a synthesis method is proposed that handles uncer­

tainties induced mainly by the friction curve, while the system has to
operate in a noisy environment. A simple static friction model is used.
Based on this, we develop a gain­scheduled controller which switches be­
tween local controllers. The proposed control structure (Figure 2.8) is a
gain scheduling scheme, based on the tire slip value λ , the velocity over
ground (v) and the maximum friction coefficient µH (i.e. friction coefficient
at the top of the friction curve).
The main idea behind the slip control design is to use a few local con­

trollers that locally, robustly stabilize the system for different slopes of
the friction curve and which tolerate the time variations due to the de­
creasing velocity over ground of the car (v). Switching between the local
controllers is done according to the estimated friction and slip, which de­
fine the operating point on the friction curve.

Design of the Local Linear Controllers

Due to high uncertainty in the real process, it is natural to look for a
simple robust controller which can easily be tuned in the test vehicle.
Therefore, PI controllers are used and the gains are scheduled based on
the three variables mentioned above.
Consider a linearized model as in (2.6). The bandwidth of this model
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depends on v, i.e. the bandwidth is lower for high car velocities than for low
car velocities. Therefore, it is natural to design the controller to counteract
this variation. The controller is scaled by velocity (v) to ensure a higher
gain for high velocities. In particular, when the system is operating at
maximum friction, that is at the top of the friction curve, this scaling will
theoretically remove the dependence on velocity over ground. The chosen
local controllers are of the form:

u(t) = k (λ0(t) − λ(t)) v(t) +

∫

ki (λ0(t) − λ(t)) v(t)dt (2.7)

and can be viewed as PI­ controllers scaled by the velocity over ground.
As seen in (2.6), in stationarity the slip dynamics does not depend on

v. Hence, in stationarity the control output should not be affected by the
velocity scaling. This can be achieved by moving the velocity inside the
integral, thus the integral term is kept constant as long as the slip error
is zero. Also the gain ki is inside the integral in order to obtain a smooth
transition while switching between parameters [Åström and Hägglund,
1995].
Another important issue in ABS control is to prevent wheel­lock in case

of changes in surface condition (e.g. a transition from dry to wet surface).
Such a change will act as a load disturbance of magnitude β (Ψ1−Ψ2)/α
according to (2.6). Thus, it is important that the controller minimizes the
effect of load disturbances on the system. On the other hand, as seen
in relation (2.6), the slope of the approximating line (resulting from the
linearization of the friction curve) affects the pole of the linear system.
Furthermore this is scaled by the velocity as a consequence of (2.7).
The local control problem is to robustly stabilize the system while

minimizing the effect of load a disturbance. The main uncertainty comes
from one pole and the gain of the plant.
To synthesize a PI controller that minimizes the effect of load distur­

bances one can solve a constrained optimization problem as suggested in
[Åström et al., 1998]. To guarantee additional robustness against the un­
certainty in the plant, it is possible to add a further inequality constraint
based on the circle criterion as described in [Solyom and Ingimundarson,
2002; Ingimundarson and Solyom, 2003]. For improved accuracy, a model
of the actuators was also introduced in the optimization.
PID controllers can be designed in the same way, with the arising

design difficulties described in [Solyom and Ingimundarson, 2002]. The
main potential advantage of using PID instead of PI controllers for the
above described system is the ability to significantly increase the integral
gain, while keeping the robustness constraints inactive. Simulations have
been encouraging. More details about the design of the local controllers
are given in Section 3.7.
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The Scheduling

As described above, local robust controllers have been designed to handle
different slopes on the friction curve at different velocities. By scheduling
the gains k and ki the controller can be adapted to the current operating
mode/position on the estimated friction curve. In the results presented
below, only two local PI controllers are used. Thus the resulting controller
is a hybrid nonlinear PI respectively PID controller, abbreviated in the
following as HPI and HPID.
The choice of two local controllers is based on the observation that

usually there is a maximum on the friction curve, and to the left of this
there is a positive slope region , while to the right of the top (tire slip
values up to 0.5 are considered) there is a region with negative slope that
tends to flatten out for higher slip values. Thus it is natural to have one of
the scheduling variables depending on the slip value where the assumed
maximum is located (λH). To the left of this, a controller is used which
is tuned for relatively high positive slopes, while to the right a controller
that can handle negative slopes is used.
The coordinate of the maximum, changes with the friction curve, thus

a new scheduling variable is introduced, the maximum friction coefficient
(µH) which is estimated. According to this a new λH is considered.
Due to the robustness of local designs, it is enough to use the same

λH for a family of friction curves. This is a point where trade­off between
robustness and performance will influence the complexity of the resulting
controller.
This way, the scheduling scheme for the controller used in the simu­

lations and experiments is the following:

If low­friction surface

If low slip1 use k1, ki1
If high slip1 use k2, ki2

If high­friction surface

If low slip2 use k1, ki1
If high slip2 use k2, ki2

Notice that the same parameters k, ki are used for low and high friction
surfaces, only the scheduling based on the tire slip is changing (λH). This
is indicated by the subscripts 1 and 2 for the scheduling slip variable.
Thus this controller has seven tunable parameters.
To have a fast response at the beginning of the braking action, an

initial braking force is applied, by initializing the controller state at once
as the ABS is switched on. In this way, fast response times are possible
while the robustness of the controller is maintained.
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Figure 2.9 Simulation results for left front­wheel with a HPI controller. Con­
trolled braking is initiated on a high friction surface, then surfaces with lower fric­
tion are encountered. The tire slip has to be controlled at a given set­point value.

2.8 Simulation and Experimental Results

Simulation Results

The simulator contains a four wheel model including pitch dynamics of
the car body. This simulation environment has been written and provided
by DaimlerChrysler. Ansi C has been used as programming language for
the environment. The simulator also contains the estimators for µH and
v, that is the Multi­Model Observer and the extended Kalman filter. The
control software used in the simulator is designed such that it can be
directly transferred onto the platform used in the test vehicle.
Figure 2.9 shows simulation results for the left front wheel during

controled braking. Figures 2.14–2.16 in the Appendix show simulation
results for the other wheels. As mentioned before, in the design procedure
there is no information included regarding position of the wheel. That is,
identical controllers are used on each of the four wheels. The first subplot
shows the estimate of the controlled slip (λ) and its set­point. The second
subplot shows the velocity of the car v (dashed line) and the linear velocity
of the wheel ω r. The difference between these two is given by the tire slip
scaled by the vehicles velocity v. The third subplot shows the estimate of
the maximum friction, (denoted µ̂H) and the maximum friction used in
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Figure 2.10 Control signal from the HPI controller on the left front­wheel in the
simulation from Figure 2.9. Controlled braking is initiated on a high friction surface,
then surfaces with lower friction are encountered. The braking torque is adjusted
according to the surface conditions.

the simulation. Figure 2.10 shows the control signal during braking.
The plots show the tire slip control in a scenario where emergency

braking is commenced on a high friction surface (µH = 0.9) then a surface
with low friction is encountered (µH = 0.3) and finally the braking is
finished on a high friction surface (µH = 0.6). That means a scenario that
would simulate braking on a dry surface with a wet or icy spot. Note the
influence of the pitching dynamics which makes it harder to control the
slip for the front wheel. The plot shows that in case of a change in the
surface conditions, (transition from a high to a low­µ surface) the front
wheels have a more pronounced tendency to lock than the rear wheels (see
Figures 2.9 and 2.15). This phenomenon can be easily understood from
(2.6). Pitching of the car body can be thought of as an increase of the mass
acting on the front wheels, respectively decrease of the mass acting on the
rear wheels. The mass is proportional to the term β in (2.6). A change in
the surface characteristics, will act as a load disturbance on the system, as
pointed out in the previous section. This load disturbance is proportional
to β , which means that a change in the surface conditions will affect much
more the front wheels than the back wheels. This is exactly the behavior
noticed in the simulation results.
The same simulations have been performed using local PID controllers.

The results are presented in Figures 2.17–2.20. It can be seen that the
overall performance is better. In particular the influence of surface changes
is significantly reduced.

48



2.8 Simulation and Experimental Results

0 1 2 3 4 5 6
0

0.5

1
slip
setpoint

0 1 2 3 4 5 6
−40

−20

0

20

40

0 1 2 3 4 5 6
0

0.5

1

ti
re
sl
ip

v
, ω
r

t, [s]

µ̂
H

Figure 2.11 Experimental results for left front­wheel with HPI. Controlled brak­
ing is performed on dry asphalt. The tire slip has to be controlled at a given set­point
value.

Experimental Results

The hybrid PI (HPI) controller has been tried out on the test vehicle with
typical results as presented in Figure 2.11, and Figures 2.21 –2.23. Fig­
ure 2.11 presents the result for the left front­wheel. Here braking on dry
surface with summer tires was tested. Summer tires present a promi­
nent peek at the maximum friction coefficient, which will give rise to an
unstable region for the slip dynamics.The third plot of the figure shows
an estimate of the maximum tire friction coefficient, µ̂H , obtained from
the multi­model observer. Figure 2.12 shows the control signal during the
experiment, for the left front­wheel. As shown in Figure 2.11, after an
initial transient the slip is controlled very smoothly. It is to be noticed that
for the back­wheels the performance is even better. The initial transient
is not so pronounced.
In these tests the HPI controller had the best deceleration in compari­

son to the approaches in [Johansen et al., 2001]. The braking distance for
the HPI controller, from an initial velocity of 30 m/s was between 36−41
meters, outperforming in this sense the controllers in [Johansen et al.,
2001] and the production ABS. A test result for the production ABS is
shown in Figure 2.13. As mentioned before, the production ABS was not
designed to track a reference slip trajectory, but to maximize the friction
force. This explain the oscillatory behavior.
For the tests as well as the simulation a gain­scheduled controller
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Figure 2.12 Control signal from the HPI controller on the left front­wheel in the
tests from Figure 2.11. Controlled braking is initiated on dry asphalt. The braking
torque is adjusted according to the surface condition.

has been used with two local controllers, one for the regions with high
slopes in the tire­friction curve and one for regions with low slopes in the
tire­friction curve. Hence for the HPI controller, seven parameters were
tuned.

Figure 2.13 Test result for production ABS. Controlled braking is initiated on
dry asphalt. The plot depicts slip versus time dependence. Notice the oscillatory
behavior of the response, as the controller tries to maximize the friction force.
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2.9 Conclusion

A simple but powerful design model for ABS control was presented. It was
shown that this simple model captures the main control difficulties of the
slip­control problem. Fundamental limitations on the control performance
have been pointed out.
A gain­scheduled PI/PID design approach has been used for the con­

troller. A controller with seven tunable parameters has been tested. The
controller parameters have good, intuitive interpretations enabling a more
straightforward tuning.
Simulations and experiments in a test vehicle were performed with sat­

isfactory results proving the effectiveness of the proposed control scheme.
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Appendix A – Additional Test and Simulation Results
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Figure 2.14 Simulation results for right front­wheel with HPI controller. Con­
trolled braking is initiated on a high friction surface, then surfaces with lower fric­
tion are encountered. The tire slip has to be controlled at a given set­point value.
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Figure 2.15 Simulation results for left back­wheel with HPI controller. Controlled
braking is initiated on a high friction surface, then surfaces with lower friction are
encountered. The tire slip has to be controlled at a given set­point value.
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Figure 2.16 Simulation results for right back­wheel with HPI controller. Con­
trolled braking is initiated on a high friction surface, then surfaces with lower fric­
tion are encountered. The tire slip has to be controlled at a given set­point value.
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Figure 2.17 Simulation results for right front­wheel with HPID controller. Con­
trolled braking is initiated on a high friction surface, then surfaces with lower fric­
tion are encountered. The tire slip has to be controlled at a given set­point value.
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Figure 2.18 Simulation results for left front­wheel with HPID controller. Con­
trolled braking is initiated on a high friction surface, then surfaces with lower fric­
tion are encountered. The tire slip has to be controlled at a given set­point value.
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Figure 2.19 Simulation results for right back­wheel with HPID controller. Con­
trolled braking is initiated on a high friction surface, then surfaces with lower fric­
tion are encountered. The tire slip has to be controlled at a given set­point value.
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Figure 2.20 Simulation results for left back­wheel with HPID controller. Con­
trolled braking is initiated on a high friction surface, then surfaces with lower fric­
tion are encountered. The tire slip has to be controlled at a given set­point value.
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Figure 2.21 Experimental results for right front­wheel with HPI controller. Con­
trolled braking is performed on dry asphalt. The tire slip has to be controlled at a
given set­point value.
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Figure 2.22 Experimental results for right back­wheel with HPI controller. Con­
trolled braking is performed on dry asphalt. The tire slip has to be controlled at a
given set­point value.
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Figure 2.23 Experimental results for left back­wheel with HPI controller. Con­
trolled braking is performed on dry asphalt. The tire slip has to be controlled at a
given set­point value.
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Appendix B – A Benchmark for Control of Anti-lock Braking
Systems

The following is a simplified model of wheel dynamics subject to brake
torque and ground contact forces.

dω (t)

dt
= α µ (λ(t)) − βTb(t− τ )µb(ω (t)), Tb ≥ 0

dv(t)

dt
= −γ µ(λ(t))

λ(t) =
v(t) −ω (t)r

v(t)

where:

ω ­ angular velocity of the wheel

v ­ velocity over ground of the car

λ ­ longitudinal tire slip

Tb ­ brake torque. It is the input signal of the model.

µ ­ road­tire friction coefficient. Dependence on the longitudinal tire slip
(λ) for four different surfaces is shown in Figure 2.24.

µb ­ friction coefficient in the brakes. This is used in the modeling of
wheel lock. For simplicity use µb = min(ω/ε , 1), for some small
ε > 0.

τ ­ time delay (an appropriate value is 14 milliseconds)

r ­ wheel radius (a suitable value for a passenger vehicle is 0.3 meters)

α , β , γ ­ positive constants, resulting from physical parameters of the
vehicle (appropriate values for a passenger vehicle are respectively
1500, 1 and 10).

The following signals are available from the plant:

• ω ­ angular velocity of the wheel

• v ­ velocity over ground of the car

• µH ­ maximum road­tire friction coefficient

These are estimated or measured and available for feed­back in the control
algorithm. In this benchmark, all of these signals can be considered as
measurable.
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Figure 2.24 Tire friction curves

Specifications

The control objective is to maintain a desired tire slip level λ , by adjusting
the brake torque (Tb). The ABS has to fulfill the following requirements
[Solyom, 2002]:

• no wheel lock allowed to occur for speeds above 4 m/s

• wheel lock for a period of less than 0.2 seconds is allowed for speeds
in the range of 0.8 . . .4 m/s

• the control system should be robust with respect to other unmod­
eled dynamics, e.g. actuator dynamics. A reasonable model of the
actuator dynamics, that can be used in the robust design is:

0.0091s+ 3.9545
0.0001s2 + 0.0402s+ 3.9545

.

It is of special importance that the above mentioned specifications are
fulfilled in case of transition between different surface conditions while
braking (e.g. transition from dry to wet surface).
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Figure 2.25 Quarter car. It consists of a mass attached to a wheel.

Comments on the Model

The benchmark model is derived from the well known quarter car model
[Johansen et al., 2001; Drakunov et al., 1995]. This consists of a single
wheel attached to a mass, as shown in Figure 2.25.
The benchmark describes the equations of motion of the quarter car

in case of braking. The constants given in the model have the following
physical interpretation:

α =
rFz

J
, β =

1
J
, γ =

Fz

m

where,

m ­ mass of the quarter car

Fz ­ vertical force

r ­ wheel radius

J ­ wheel inertia

An additional time delay (τ ) is added due to sampling and communi­
cation between the different modules of the system.
The longitudinal tire slip (λ) definition will imply that a locked wheel

(ω = 0) is described by λ = 1, while the free motion of the wheel (ω r = v)
is described by λ = 0.
The tire friction force, is given by Fzµ(λ , µH ,α , Fz, v) where the term

µ(λ , µH ,α , Fz) is the road­tire friction coefficient. This is a nonlinear func­
tion with a typical dependence on the slip shown in Figure 2.24. The most
common tire friction model used in the literature is the “Magic Formula”
[Bakker et al., 1989], or Pacejka model (other type of friction models can
be found in [Bliman et al., 1995; Canudas de Wit and Tsiotras, 1999; Sven­
denius, 2003]). This model uses static maps to describe dependence be­
tween slip and friction. This function depends also on the normal force
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(Fz), steering angle (α ), road surface (having different maximum values
µH for different road conditions). For ease of writing, the model equa­
tions highlight only the dependence on the longitudinal tire slip (λ). In
Figure 2.24 there are shown tire friction curves, generated by the Pace­
jka model, for four different kind of surfaces. The identification of such
curves is not a trivial task. Some methods can be found in [Kalkkuhl et al.,
2001; Gustafsson, 1997].
Notice that this model contains a quite simple description of the slip

dynamics for a wheel. It does not capture pitching motion of the car body
while braking, suspension dynamics, actuator dynamics, tire dynamics
nor camber angle (in the above given model, the tire is consider per­
pendicular on the road surface). However, it captures the major control
challenges of the problem.
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3

A Synthesis Method for

Robust PI(D) Controllers for

a Class of Uncertainties

3.1 Introduction

Many optimal control synthesis methods result in controllers of order
related to the order of the plant. However, it is desirable to design con­
trollers with a restricted structure. Their performance can be often close
to optimal performance while they remain substantially less complex.
The most common controller used today is the PID controller. Its popu­

larity is mainly due to fact that despite of its simple structure, it provides
some important functions such as: feedback, ability to eliminate steady
state offsets through integral action, and can anticipate the future through
derivative action [Åström and Hägglund, 1995].
This work presents a synthesis method for PID controllers in the case

when a static nonlinearity is in feedback with the plant. For the PI case
it is shown that the optimal controller can be easily found by visual in­
spection of constraints in the controller parameter space (k − ki plane).
For the PID case, optimization routines are more suited for solving the
problem.
The proposed synthesis method was succesfully applied to the tire slip

control problem presented in Chapter 2.
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3.2 Problem Statement and Previous Work

Robust PID control design has been considered by many authors. In the
literature, there are several results on tuning methods of PID controllers
with interval uncertainties in the plant [Ackermann and Kaesbauer, 2003;
Ho et al., 1998; Malan et al., 1994]. These methods, essentially result in
convex polygons in the parameter space of the controller, that robustly
stabilize the considered plants. There have been reported results also on
the parameterization of all stabilizing PID controller. In [Silva et al., 2002]
this is done for first order systems with time delays while in [Ho et al.,
1997] it is done for linear systems of any order. Both of these results are
based on a generalization of the Hermite­Biehler Theorem for complex
polynomials.
Also H∞ synthesis of PID controllers has been reported [Ho, 2001].

The design procedure in this paper results in constraints in the controller
parameter space. Similar approach can be found in [Saeki and Kimura,
1997] where graphical design method of robust PID controllers for three
kinds of loop shaping problems and the H∞ control problem is proposed.
A CAD system for Matlab was also developed. The contribution of this
paper in relation to the above mentioned articles is that the uncertainty is
a cone bounded nonlinearity and the method is using the Circle Criterion
to guarantee stability. The CAD system presented in the second article
could be used as part of the synthesis procedure presented here.
The synthesis procedure presented in this chapter, is an extension

to synthesis procedures presented in [Åström et al., 1998; Panagopoulos
et al., 1999] which are collected in [Panagopoulos, 2000]. There, a design
procedure for PI(D) controllers was presented which minimizes the effect
of a load disturbance. This is achieved by maximizing the integral gain
while making sure that the closed loop system is stable. Furthermore, it is
guaranteed that the Nyquist curve of the loop transfer function is outside
a circle with center −Cs and radius Rs. This constraint can be expressed
with the equations

maximize ki (3.1)

subject to l(k, ki, kd,ω ) ≥ R
2
s ∀ω ≥ 0

where l is the function:

l(k, ki, kd,ω ) = hCs + C(iω )G(iω )h
2, (3.2)

and G(s) is a linear time invariant plant and C(s) is the PID controller
parameterized as

C(s) = k+
ki

s
+ kds (3.3)

64



3.2 Problem Statement and Previous Work

C(s) G1(s) G2(s)r z
y

f (⋅,⋅)

Figure 3.1 Block diagram showing nonlinearity, plant and controller.

By choosing Cs = 1 and Rs, the resulting controller will guarantee that
the maximum of the sensitivity function equals 1/Rs, i.e,:

1
Rs
= max

ω
hS(iω )h,

where S(s) = 1/(1+ G(s)C(s)). Controllers with constraints on the max­
imum complementary sensitivity function (T(s) = 1 − S(s)) could also
be designed or a combination of these constraints. In the case of PID
controllers, additional inequality constraints will be added regarding the
curvature and phase change of G(s)C(s).
In [Panagopoulos, 2000] the main design parameter was Ms = 1/Rs,

with values typically between 1.4–2. The value of this parameter will
influence the damping of the closed loop system. In the PID case, the
above mentioned inequality constraints are supplemented. These will be
reviewed later.
The extension presented in this chapter guarantees in addition asymp­

totic stability of the system when a cone bounded nonlinearity is present
in feedback with part of the plant, as shown in Figure 3.1. Here, as well as
in the rest of this chapter C(s) represents the controller. The nonlinearity
f (⋅, ⋅) is a memoryless, possibly time­varying nonlinearity within the cone
given by α ,β ∈ R, α < β and β �= 0 (see Figure 3.2), that is:

α y2 ≤ yf (y, t) ≤ β y2, ∀y ∈ R,∀t ≥ 0 (3.4)

Furthermore, it is assumed that f (y, t) is piecewise continuous in t and
locally Lipschitz in y. The synthesis procedure is based on a frequency
domain description of the system so it is easy to take into account dead
time in the plant.
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The synthesis procedure can be thought of as a nonlinear optimization
problem with two families of constraints. One that ensures stability and
performance for the closed loop system without the nonlinearity f , and
another group of constraints that will guarantee stability of the closed
loop system in presence of the nonlinearity f (as shown in Figure 3.1).
From this point on the first family of constraints will be referred to as con­
straints for nominal performance, while the second group of constraints
will be referred to as constraints for robust stability. Furthermore, it has
to be mentioned that the constraints for nominal performance ensure ro­
bust stability against a cone­bounded nonlinearity in the control loop (see
[Panagopoulos, 2000]).
The constraints for nominal performance can be considered those pre­

sented in [Panagopoulos, 2000]. This work will concentrate on the con­
straints for robust stability.

3.3 Sufficient Conditions for Stability

Consider the transfer functions G(s) describing a linear plant. In feed­
back with a part of this plant, a cone bounded nonlinearity is present.
Factorizing G(s) as

G(s) = G1(s)G2(s), (3.5)

the cone bounded nonlinearity is in feedback with G1(s), as shown in
Figure 3.1. Consider the case with a PI controller first, i.e.:

C(s) = k+
ki

s
. (3.6)

α y

β y

y

f (y, t)

Figure 3.2 Sector bounded nonlinearity.
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With G(s), G1(s) and G2(s) as in (3.5) define

P(s)
∆
=

G1(s)

1+ C(s)G(s)
(3.7)

Furthermore,
G(iω ) = a(ω ) + ib(ω ) = r(ω )eiφ(ω ) (3.8)

and
G1(iω ) = a1(ω ) + ib1(ω ) = r1(ω )e

iφ1(ω ) (3.9)

be the evaluations of the transfer functions G(s) and G1(s) on the positive
imaginary axis.
In the case that P(s) is not strictly proper, the analysis involves ad­

ditional test for the well posedness of the feedback connection. For sim­
plicity, only the strictly proper case will be considered. Hence, a minimal
realization of P(s) is given by:

ẋ = Ax + Bu

y = Cx
(3.10)

Then,

ẋ = Ax − B f (y, t)

y = Cx
(3.11)

describes the system in Figure 3.1 with r = 0.
First, some definitions will be quoted, that are necessary to state the

main results.
Absolute stability [Khalil, 1992]: The system (3.11) is absolutely stable if
the origin is globally uniformly asymptotically stable for any nonlinearity
in the given sector. It is absolutely stable with a finite domain if the origin
is uniformly asymptotically stable. �

Hurwitz transfer function [Khalil, 1992]: A transfer function H(s) is Hur­
witz, if all poles have negative real part. �

Positive real transfer function [Slotine and Li, 1991]: A transfer function
H(s) is positive real (PR) if

Re{H(s)} ≥ 0, ∀Re{s} ≥ 0.

It is said to be strictly positive real (SPR) if H(s − ε ) is positive real for
some ε > 0. �

It is a well known result that a transfer function H(s) is SPR if and
only if H(s) is Hurwitz and

Re{H( jω )} > 0, ∀ω ≥ 0
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Conditions for absolute stability of the system (3.11) can be obtained
by applying the Circle Criterion, for the transfer function P(s) as it is
connected in a loop with the nonlinearity. Therefore the Circle Criterion
for a scalar plant will be cited:

PROPOSITION 3.1—CIRCLE CRITERION [KHALIL, 1992]
Consider the system (3.11), where (A, B) is controllable, (A, C) is observ­
able. f (y, t) is locally Lipschitz in y, piecewise continuous in t and satisfies
the sector condition (3.4) globally. Then, the system is absolutely stable
if A−α BC is Hurwitz and

1+ β P(s)

1+α P(s)

is strictly positive real.

In order to state the main results, some intermediary steps will be helpful.

LEMMA 3.1
Consider P(s) as in (3.7) and α , β ∈ R. Then ∀ω ≥ 0

Re
{
1+ β P( jω )

1+α P( jω )

}

> 0 (3.12)

if and only if

r(ω )2k2 + p(ω )k+
r(ω )2

ω 2
k2i + q(ω )ki + h(ω ) > 0 (3.13)

with

p(ω ) = (a(ω )a1(ω ) + b(ω )b1(ω )) (α + β ) + 2a(ω )

q(ω ) =
1
ω
((a(ω )b1(ω ) − b(ω )a1(ω )) (α + β ) + 2b(ω ))

h(ω ) = (α + β )a1(ω ) +α β r1(ω )
2 + 1 (3.14)

The proof of this lemma is based on elementary but tedious computations
and it can be found in the Appendix of this chapter.
Lemma 3.1 states that since in the control structure (3.7) the con­

troller C(s) is a PI, the positivity constraint (3.12) can be checked in the
parameter space of the controller, i.e. k – ki plane. The parametric curve
in (3.13) is an ellipse in the k – ki plane, for a given frequency ω . This
result is similar to those in [Åström et al., 1998; Panagopoulos et al.,
1999; Saeki and Kimura, 1997].
Based on the Circle Criterion and the lemma above, the following the­

orem for absolute stability of system (3.11) can be stated:

68



3.3 Sufficient Conditions for Stability

THEOREM 3.1
Let A,B,C describe a minimal realisation of the system defined by (3.5)­
(3.9). Consider α , β ∈ R and a function f (y, t) piecewise continuous in t
and locally Lipschitz in y such that (3.4) holds.
If A−α BC is Hurwitz and (3.13) holds then the system of form (3.11) is
absolutely stable.

Proof:

The circle criterion provides sufficient conditions for absolute stability of
the system. The only condition left to prove is that 1+βP(s)

1+α P(s) is SPR. All poles

of 1+βP(s)
1+α P(s) have strictly negative real part due to the fact that A−α BC is

Hurwitz. By Lemma 3.1, ∀ω ≥ 0

Re
{
1+ β P( jω )

1+α P( jω )

}

> 0

is equivalent to (3.13), and since P(0) = 0 the proof is complete. ♦

In many engineering applications it is of interest to look at other equi­
librium points than the origin. This is natural since often the equilibrium
point will change depending on the system input. Obviously any equilib­
rium point can be analyzed by shifting it to the origin. This would mean
different tests for each equilibrium point. Therefore it is of special inter­
est to derive a single test, that will give information about the stability
of equilibrium points depending on the input signal. In this sense the
following theorem gives a useful result.

THEOREM 3.2
Consider the system:

ẋ = Ax − Bw+ Brr

w = f (Cx)
(3.15)

with A Hurwitz, (A, B), (A, C) controllable respectively observable pairs
and f a continuous, memoryless scalar nonlinearity. Denote P(s) = C(sI−
A)−1B.
If there exist α , β ∈ R such that

α ≤
f (y1) − f (y2)

y1 − y2
≤ β , ∀y1, y2 ∈ R, (3.16)

Re
{
1+ β P( jω )

1+α P( jω )

}

> 0, ∀ω ≥ 0 (3.17)
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and A − α BC is Hurwitz then every equilibrium point of (3.15) corre­
sponding to some constant r, is a global uniformly asymptotically stable
equilibrium point.

Proof:

Consider the change of variable: ξ = x − xr with xr given by

0 = Axr − B f (Cxr) + Brr

for some constant r. If for a fixed r, the solution of the above equation
exists, then it is unique. (see Lemma 3.2 in the Appendix)
Consider the system:

ξ̇ = Aξ − Bϕ(Cξ )

with the new nonlinearity ϕ(Cξ ) = f (C(ξ + xr)) − f (Cxr). According to
(3.16) this is a cone bounded nonlinearity.
Using the circle criterion for this system, it can be concluded that ξ = 0
is a global uniformly asymptotically stable equilibrium point. Hence xr is
a global uniformly asymptotically stable equilibrium point of (3.15), for
the considered r ∈ R. ♦

Consider now the system defined by (3.5) ­ (3.9) in feedback with a non­
linearity f . This system is shown in Figure 3.1. The system equations are
given by:

ẋ = Ax − B f (y) + Brr

y = Cx

z = Crx

(3.18)

where (A, B), (A, C) are controllable respectively observable pairs and f
is a continuous, memoryless scalar nonlinearity. This system has a spe­
cial structure, in the sense that it uses a PI controller. The problem is
to investigate the equilibrium points with respect to r. Hence, for the
system (3.18) Theorem 3.2 can be applied. Since the controller is a PI,
the positivity condition (3.17) can be checked, according to Lemma 3.1, in
the parameter space of the controller (k− ki plane). Then the following
proposition can summarize the result for the case of PI controllers.

PROPOSITION 3.2
Let A,B,C describe a minimal realization of the system defined by (3.5)
­ (3.9). If there exist α , β ∈ R such that (3.13), (3.16) hold and A−α BC
is Hurwitz then every equilibrium point of (3.18) corresponding some
constant r, is a global uniformly asymptotically stable equilibrium point.
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Thus in the case of PI controllers, the constraints that guarantees nominal
performance, robust stability as well as solution for the servo problem in
case of a constant input can be easily drawn in the parameter space of the
controller (k – ki plane). In this way the optimization problem of finding
the maximum ki such that these constraints hold can be solved by visual
inspection.

Systems with time delays In most of the text books the Circle Crite­
rion is proved for systems without time delays. By using the small gain
theorem one can show that the theorem holds also for systems with time
delays.
Nevertheless, for plants with time delays a slight modification of the

above theorems is required. In case of infinite dimensional systems it is
more convenient to use the transfer function description. This way, in the
theorems one should check that P(s)/(1+α P(s)) is assymptotically stable
instead of A−α BC being Hurwitz and that P(s) is asymptotically stable
instead of A being Hurwitz.

3.4 Other Design Issues

PID controllers

In the case of PID controllers the synthesis procedure is similar to the
PI case presented above. The above presented results hold with minor
changes. The easiest way to migrate the results to the case of PID con­
trollers is by replacing the parameter ki with ki − ω 2kd. This way the
parameter space becomes three dimensional (k, ki, kd) making the syn­
thesis procedure more complex.
Furthermore, in the case of PID controllers it was found in [Panagopou­

los, 2000] that the sensitivity constraint alone was not sufficient to guar­
antee a nice, well­damped response. Condition ensuring negative curva­
ture of the loop gain and the monotonicity of the phase function of the loop
gain were added to the optimization problem. In the case of integrating
processes only the second condition is imposed.
Thus in contrary to the PI case, where the optimization problem could

be easily solved by visual inspection, for the case of PID controllers a
similar approach is significantly more difficult. Therefore an optimization
routine is more adequate to solve this problem.
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3.5 Optimization

Using the results presented in the previous section the synthesis problem
can be stated as the following optimization problem.

max ki

subject to f (k, ki, kd,ω 1) ≥ R
2
s ∀ω 1 ≥ 0 (3.19)

n(k, ki, kd,ω 2) ≥ 0 ∀ω 2 ≥ 0 (3.20)

k > 0, ki > 0, kd > 0 (3.21)

Constraint (3.21) guarantees that the controller will not have an unstable
zero. The two frequency dependent inequalities define the exterior of two
ellipses for a fixed frequency. For 0 ≤ ω < ∞ these ellipses generate
envelopes that define the boundaries of the set of parameters which satisfy
the constraints.
The constraints can be visualized by plotting the ellipses for a tight

griding of frequencies, enabling to visually identify the optimizer. This
graphical approach is suitable when PI design is considered but is more
difficult in case of PID controllers. However it is possible to plot the el­
lipses for a grid of kd values. Here it is of more interest to have a numerical
optimization procedure that can give the desired result. For most numer­
ical optimization procedures it is important to have good starting values.
The problem of finding good starting values is related to determining if
the problem has any feasible solution. But a quick view of the constraints
for a few values of kd should be sufficient to obtain good starting values
and to see if the problem is feasible.

Automating the synthesis procedure

So far the synthesis procedure that has been presented would need much
manual intervention. It is of interest to automate the synthesis procedure
so that only the process and the parameters characterizing the uncer­
tainties would need to be specified. This is in principle to automate the
checking of feasibility and finding a good start value for the numerical op­
timization procedure. For ideas about this issue see [Panagopoulos, 2000].
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Figure 3.3 Constraints in the k – ki plane in Example 3.1.

3.6 Examples

Two examples of PI controller design will now be given followed by one
example for PID design.

EXAMPLE 3.1
Consider the system in Figure 3.1 with

G1(s) =
1

(s+ 1)3
G2(s) = 1

and a static, time varying nonlinearity f (y1, t) : α ≤ f (y, t)/y ≤ β with
α = 1, β = 4. In particular if the cone bounded uncertainty would be an
uncertain gain the transfer function would be given by

G(s) =
1

(s+ 1)3 + ∆

where ∆ ∈ [1, 4]. The two constraints, equations (3.19) and (3.20), will
give rise to constraint surfaces as shown in Figure 3.3. As seen in the
figure, in this case, the optimizer considering the stability constraints
for the linear system (in the figure indicated as “sensitivity constraint”)
will not guarantee stability of the nonlinear system with cone bounded
uncertainty as considered above. The stability constraint for the nonlinear
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Figure 3.4 Nyquist plot of the loop transfer function L(s) in Example 3.1.

system is indicated in the figure as “robustness constraint”. Choosing the
maximum ki that falls below both constraint surfaces and a corresponding
k, Theorem 3.1 guarantees absolute stability of the nonlinear system.
The Nyquist plots of the loop transfer function and the transfer func­

tion defined by equation (3.7), shown in the Figures 3.4 respectively 3.5,
confirm that the constraints are not violated. In both cases the Nyquist
plot is outside the constraint circle (dashed line).
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Figure 3.5 Nyquist plot of P(s) in Example 3.1.
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Figure 3.6 Constraints in the k – ki plane in Example 3.2.

EXAMPLE 3.2
Consider the system in Figure 3.1 with

G1(s) =
1
s+ 1

G2 = e
−0.1s

and a static, time varying nonlinearity f (y, t) : α ≤ f (y, t)/y ≤ β with
α = −5, β = 5. In particular, if f (y, t) is an uncertain gain, the transfer
function would be given by: G1(s) = 1/ (s+ ∆) e−0.1s where ∆ ∈ [−4, 6].
Constraints (3.19) and (3.20) give rise to constraint surfaces as shown in
Figure 3.6.
From this figure follows that neither in this case the “optimum”, con­

sidering only the stability constraints for the linear system, will guar­
antee stability of the nonlinear system. Choosing the maximum ki that
falls below both constraint surfaces and a corresponding k, Theorem 3.1
guarantees absolute stability of the nonlinear system. The Nyquist plots
of the loop transfer function and (3.7), shown in Figure 3.7 respectively
3.8, confirm that the constraints are not violated.
Consider now the case when a reference signal r is present at the

control system input. This will modify the equilibrium point of the sys­
tem. Assume that the considered nonlinearity f satisfies the condition
α ≤ ( f (y1) − f (y2))/(y1 − y2) ≤ β , ∀y1, y2. Then Theorem 3.2 guarantees
stability of the arising equilibrium point.
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Figure 3.7 Nyquist plot of the loop transfer function L(s) in Example 3.2.

EXAMPLE 3.3
Assume a PID controller is wanted for the process in Example (3.2). The
maximum integral gain was ki = 8.0 when only a PI controller was used.
By plotting the ellipses for a selection of kd values the following solution
could be obtained.

[k ki kd] = [6.7 22.5 0.2]

The envelopes that the ellipses generated for these parameters can be seen
in Figure 3.9. A substantial increase in integral gain could be achieved
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Figure 3.8 Nyquist plot of P(s) in Example 3.2.
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Figure 3.9 Ellipses for kd = 0.2 in Example 3.3.

with the PID design. The process on the other hand is simple so this
could be expected. The Nyquist plots of the loop transfer function and
(3.7), shown in Figure 3.10 respectively 3.11, confirm that the constraints
are not violated. Notice that the constraints shown in Figure 3.9 do not
contain any extra constraints on the curvature nor the phase lead of the
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Figure 3.10 Nyquist plot of the loop transfer function L(s) in Example 3.3.
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Figure 3.11 Nyquist plot of P(s) in Example 3.3.

loop transfer function as suggested in Section 3.4. However, in this case,
the Nyquist curve of the loop transfer function (L( jω )) has a satisfactory
behavior. Naturally, for more complicated systems this might not be the
case.

3.7 Controller Synthesis for an Anti-lock Braking System

In this section an application of the above described synthesis method
to an Anti­lock Braking System (ABS) will be presented. The synthesis
method will be used to design local PI(D) controllers for a gain scheduled
scheme as presented in Chapter 2 and [Solyom and Rantzer, 2003; Solyom
et al., 2004]. The proposed design model from chapter one will be used to
design the local controllers.
According to (2.5) the plant can be written as:

λ̇(t)v = −β µ(λ(t)) +αu(t− T)

As pointed out before µ(λ) is a nonlinear function of λ , and possibly time
varying (e.g. as result of a change in surface conditions). Moreover, v is
the traveling velocity of the car, which is obviously time varying, however,
it has a slower dynamics than the tire slip λ .
The tire friction curve, µ(λ), is highly uncertain. It depends on many

variables, as described in Chapter 2. However, it is safe to assume that
is cone bounded. Furthermore, we assume that it is locally Lipschitz in
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λ . Then Theorems 3.1 and 3.2 can be used to design optimal controllers
that are robust against a cone bounded nonlinearity, which in this case is
the tire friction curve.
Applying the synthesis method for a cone that contains the entire fric­

tion curve will give rise to difficulties. In case that all equilibrium points
are considered (Theorem 3.2) it is very likely that the optimization prob­
lem turns out infeasible. This can be due to a potentially large cone while
the degrees of freedom in the controller are restricted. On the other hand,
as pointed out in Section 2.6, limitations on the control performance arise
due to time delay and unstable dynamics. Even if it would be possible
to stabilize the system at any point on the entire friction curve, the re­
sulting controller would be very conservative and it would not satisfy the
performance requirements on the ABS.
A way around this problem is to design controllers for different smaller

cones and then switch between them according to some scheduling vari­
ables. These cones are supposed to describe different regions of a typical
friction curve. Using Theorem 3.2, one would look at regions on the friction
curve with slopes in a given cone. The resulting controllers will stabilize
any equilibrium point on the considered cone bounded nonlinearity. Con­
sidering all possible slopes of the friction curves, by Theorem 3.2 one is
able to stabilize any point on a friction curve by its appropriate controller.
Then by switching between these controllers, it will be possible to stabi­
lize points on any friction curve that are contained in the considered cone
and has its slope confined to the same cone.
The scheduling variable is supposed to be able to determine the oper­

ating point on the friction curve. This was presented in Chapter 2 of this
work.
Furthermore, scaling the controller by velocity over ground (v) as sug­

gested in Section 2.7, will in turn scale the relative uncertainty caused
by the friction curve by v−1. This scaled uncertainty remains in feedback
with a nominal plant as shown in Figure 2.6. Considering the uncertainty
as being cone bounded, this scaling will “tighten” the cone with increasing
velocity.
As pointed out in Section 2.7, to prevent wheel lock in case of sud­

den change in the surface conditions, it is important that the controller
minimizes the effect of load disturbances.
Thus the synthesis methods proposed in this chapter can be directly

applied to this problem, resulting in optimal controllers that stabilize the
system for a family of friction curves.
Furthermore, to obtain a better performance, the actuator dynamics

have been also considered. These are incorporated in G2(s) and can be
easily handled by the proposed design method.
It is worth mentioning that during the field tests, diagrams of the kind
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shown in Figure 3.3, showing the constraint surfaces in the k–ki plane,
has been proven to be helpful in retuning the controllers.

3.8 Conclusions

The synthesis method presented deals with design of robust controllers
with restricted structure, in particular PID controllers. The uncertainty
in the plant is described by a cone bounded nonlinearity, which is in
feedback with part of the plant. To obtain a “good” controller, maximum
sensitivity is limited as well. The synthesis method presented requires
much manual intervention but it is the belief of the author it can be
automated significantly. The design method was successfully used to tune
local controllers for an Anti­lock Braking System.

Appendix

Proof of Lemma 3.1:

Re
{
1+ β P(s)

1+α P(s)

}

= Re
{
1+ C(s)G(s) + βG1(s)

1+ C(s)G(s) +αG1(s)

}

Re

{

1+ (k− j kiω )(a(ω ) + jb(ω )) + β (a1(ω ) + jb1(ω ))

1+ (k− j kiω )(a(ω ) + jb(ω )) +α (a1(ω ) + jb1(ω ))

}

> 0:;

Re
{(

1+
(

k− j
ki

ω

)

(a(ω ) + jb(ω )) + β (a1(ω ) + jb1(ω ))

)

(

1+
(

k+ j
ki

ω

)

(a(ω ) − jb(ω )) +α (a1(ω ) − jb1(ω ))

)}

> 0

(3.22)

which represents a region outside some ellipses (depending on ω ) in the
k − ki. By identifying the coefficients of k and ki in (3.22), one obtains
inequality (3.13) with parameters as in (3.14). ♦

LEMMA 3.2
Consider the system:

ẋ = Ax − Bw+ Brr

w = f (Cx)
(3.23)
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with A Hurwitz, (A, B), (A, C) controllable respectively observable pairs
and f a continuous, memoryless scalar nonlinearity. Denote P(s) = C(sI−
A)−1B.
Assume that there exist α , β ∈ R such that

α ≤
f (y1) − f (y2)

y1 − y2
≤ β , ∀y1, y2 ∈ R,

Re
{
1+ β P( jω )

1+α P( jω )

}

> 0, ∀ω ≥ 0. (3.24)

If for a given r0 ∈ R, (3.23) has an equilibrium point then it is unique.

Proof

An equilibrium point xe corresponding an r0 ∈ R satisfies the equation:

0 = Axe − B f (Cxe) + Brr0 (3.25)

Assume there exist xe1 �= xe2 satisfying (3.25) for the same r0. Since A is
Hurwitz, one obtains:

xei = A
−1B f (Cxei) − A

−1Brr0, i = 1, 2

then
xe1 − xe2 = A

−1B( f (Cxe1) − f (Cxe2))

hence

α ≤
f (Cxe1) − f (Cxe2)

Cxe1 − Cxe2
=

1
CA−1B

≤ β (3.26)

Furthermore, (3.24) is equivalent to:

Re
{

(1+ β P( jω ))(1+α P( jω ))
}

> 0, ∀ω ≥ 0

thus in particular

Re {(1+ β P(0))(1+α P(0))} > 0

i.e.
(1− βCA−1B)(1−αCA−1B) > 0

or (
1

CA−1B
− β

)(
1

CA−1B
−α

)

> 0

which contradicts (3.26), completing the proof. ♦
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4

The Servo Problem for

Piecewise Linear Systems

4.1 Introduction

Behavior of trajectories for piecewise linear systems, in presence of an
input signal, is an important issue from a control theoretic point of view.
Most analysis results on piecewise linear systems are oriented towards
stability of the origin for the unforced system [DeCarlo et al., 2000; Has­
sibi and Boyd, 1998; Johansson and Rantzer, 1998].The convergence of
trajectories of the unforced piecewise linear system as defined in [Johans­
son and Rantzer, 1998] is not sufficient, in general, to guarantee good
behavior when input signals are applied to the system. Even if the un­
forced system is proved to be stable, applying an input might change the
equilibrium point in such a way that the system behavior becomes unsat­
isfactory. Moreover, stability for constant input signals is not sufficient to
imply input­output stability of the system.
The servo problem for a general nonlinear system can be analyzed in

a framework such as presented in Figure 4.1. The problem is to estimate
the differences between the system trajectory (x) and a predetermined
trajectory xr in presence of an input signal r. The trajectory xr is defined
such that each xr is the value at rest of the system trajectory x correspond­
ing to a constant reference signal r. The exogenous input considered in
this framework will be the time derivative of r. Choosing L 2 norm as a
measure for the signals, it is natural to use the L 2 gain to characterize
the system behavior. Thus by computing the L 2 gain from the derivative
of the input signal (ṙ) to the “distance” between system trajectory (x) and
reference trajectory (xr), one obtains information relating the convergence
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ṙ r

ẋ = f (x, r)

xr = n(r)

∫

x

xr

Figure 4.1 This chapter derives computable bounds on the map from the time
derivative ṙ of the reference signal to the magnitude hx − xrh of the state error.

of the system trajectory. Then an inequality of the form:

∫ T

0
hx − xrh

2dt ≤ γ 2
∫ T

0
hṙh2dt . (4.1)

describes how a disturbance in form of variations in r, will affect the
system trajectory in comparison to its value at rest. Note that this relation
gives information also about the input­output stability of the system.
In the literature on nonlinear systems, there exist qualitative results

[Khalil, 1992; Rugh and Shamma, 2000], of the following type: if an au­
tonomous nonlinear system depending on some parameter, is stable for
different fixed values of this parameter, then slow variations of the pa­
rameter between these fixed values, result in a non­autonomous system
that will stay in the neighborhood of the equilibria defined by the fixed
parameters. The contribution of this work is to give a quantitative bound
on the neighborhood of the equilibria when the variation of the parame­
ter is a continuous function. For piecewise linear systems a computational
method using convex optimization is proposed.
Application of this theory in the field of anti­windup compensation is

studied in some detail.
This chapter contains the work of [Solyom and Rantzer, 2002; Solyom,

2003]. The outline of the chapter is as follows: Section 4.2 presents the
analogous problem for a linear system while Section 4.3 generalizes the
problem for a nonlinear system. Section 4.4 treats the case of piecewise
linear systems. In Section 4.5 the results are applied for anti­windup
compensation. Finally, some conclusions are presented in Section 4.6.
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4.2 The Linear Case

The L 2 gain for a linear system is given by well known formulas. One
approach is to solve a Riccati inequality, by means of convex optimization
[Zhou and Doyle, 1998]. Theorem 4.1 uses this approach for the compu­
tation of L 2 gain between the derivative of the reference signal and the
difference x − xr.

THEOREM 4.1
Consider the linear system:

ẋ = Ax + Br, x(0) = 0 (4.2)

such that A−1 exists. Furthermore, define

xr
∆
= −A−1Br (4.3)

then the following statements are equivalent:

i) There exist γ > 0, P > 0 such that
[
ATP + PA+ I PA−1B

(A−1B)TP −γ 2 I

]

< 0. (4.4)

ii) For each solution of (4.2) with r ∈ C 1 and r(0) = 0 the following
inequality holds:

∫ ∞

0
hx − xrh

2dt ≤ γ 2
∫ ∞

0
hṙh2dt (4.5)

Proof:

Defining x̃
∆
= x − xr, the following linear system is obtained:

˙̃x = Ax̃ + A−1Bṙ .

The L 2 gain of this system can be found using standard results [Zhou
and Doyle, 1998], which will result in the relations (4.4) and (4.5). ♦

4.3 The Generic Nonlinear Case

In case of a general nonlinear system with a time varying input, it is
more difficult to draw conclusions about trajectory convergence. Still, it is
possible to find an upper bound on the L 2 gain from the derivative of the
input to the state deviation.

87



Chapter 4. The Servo Problem for Piecewise Linear Systems

THEOREM 4.2
Let f : R

n � R
m → R

n be locally Lipschitz. For every r ∈ R ⊂ R
m let

xr ∈ R
n be a unique solution to 0 = f (xr , r).

If there exists γ > 0 and a non­negativeC 1 function V , with V (xr , r) =
0 for all r ∈ R and

[
VV
V x f (x, r) + hx − xrh

2 1
2
VV
Vr

1
2

(
VV
Vr

)T
−γ 2 I

]

< 0 (4.6)

for all (x, r) ∈ S , then for each solution to

ẋ = f (x, r), x(0) = xr0 , r(0) = r0 (4.7)

such that r(t) ∈ R and (x(t), r(t)) ∈ S for all t, it holds that

∫ T

0
hx − xrh

2dt ≤ γ 2
∫ T

0
hṙh2dt (4.8)

Proof:

Multiplying (4.6) from left and right with [ 1 ṙT ] one obtains:

VV

V x
f (x, r) + hx − xrh

2 +
VV

Vr
ṙ − γ 2hṙh2 < 0

that is
dV

dt
+ hx − xrh

2 − γ 2hṙh2 < 0

which in turn by integration on [0, T ] gives

V (x(T), r(T)) +

∫ T

0
hx − xrh

2dt− γ 2
∫ T

0
hṙh2dt < 0

and inequality (4.8) results since V (x, r) ≥ 0. ♦

Remark Consider a linear system as in (4.2) with xr defined by (4.3).
Furthermore, consider a Lyapunov function of the form V (x, r) = (x −
xr)
TP(x − xr). Then

VV

V x
f (x, r)

(4.3)
= (x − xr)

T (ATP+ PA)(x − xr)

VV

Vr
= 2(x − xr)TPA−1B
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and the matrix in (4.6) becomes:

[
x − xr 0

0 1

]T [
ATP + PA+ I PA−1B

(A−1B)TP −γ 2 I

] [
x − xr 0

0 1

]

which negative definiteness is given by (4.4).
Remark The matrix inequality (4.6) using Schur complement can be

written as

VV

V x
f (x, r) +

1
2γ 2

VV

Vr

(
VV

Vr

)T

+
1
2
(x − xr)

T (x − xr) ≤ 0

which is the Hamilton­Jacobi inequality for the system







[
ẋ

ṙ

]

=

[
f (x, r)

0

]

+

[
0

1

]

u

y = x − xr

(4.9)

(see Theorem 6.5 in [Khalil, 1992]).
Similarly to Theorem 4.2, an upper bound on the instantaneous value

of hx− xrh can be obtained. The following result is analogous to the one in
Theorem 4.2.

THEOREM 4.3
Let f : Rn�R

m → R
n be locally Lipschitz. For all r ∈ R ⊂ R

m, let xr ∈ R
n

be a unique solution to 0 = f (xr , r).
If there exist γ , c, p, λ > 0 and a C 1 function V with V (x, r) ≥ chx − xrhp,
V (xr , r) = 0 and [

VV
V x f (x, r) + λV 1

2
VV
Vr

1
2

(
VV
Vr

)T
−γ 2 I

]

< 0 (4.10)

for all (x, r) ∈ S , then for each solution to

ẋ = f (x, r), x(0) = xr0 , r(0) = r0 (4.11)

such that r(t) ∈ R and (x(t), r(t)) ∈ S , it holds that

hx(T) − xr(T)h
p ≤

γ 2

c

∫ T

0
hṙh2e−λ(T−t)dt (4.12)
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Proof:

Multiplying (4.6) from left and right with [ 1 ṙT ] one obtains:

VV

V x
f (x, r) +

VV

Vr
ṙ + λV − γ 2hṙh2 < 0

thus on S yields that:

dV

dt
+ λV − γ 2hṙh2 < 0

which by multiplication with e−λ(T−t) > 0 gives

dV

dt
e−λ(T−t) + λVe−λ(T−t) − γ 2hṙh2e−λ(T−t) < 0

<
d

dt
Ve−λ(T−t) − γ 2hṙh2e−λ(T−t) < 0

then by integrating on [0, T ] and using that V (x(0), r(0)) = 0, gives

chx(T) − xr(T)h
p ≤ V (x(T), r(T)) < γ 2

∫ T

0
hṙh2e−λ(T−t)dt

thus inequality (4.12) holds. ♦

Remark Consider a linear system as in (4.2) with xr defined by (4.3)
and S = R

n�R
m. Furthermore, consider a Lyapunov function of the form

V (x, r) = (x − xr)
TP(x − xr) and p = 2. By using Schur complement, the

positivity condition of the Lyapunov function in Theorem 4.3 translates
to:

P − c2 I > 0<
[
P I

I 1
c2
I

]

> 0

while (4.10) becomes:

[
ATP + PA+ λP PA−1B

(A−1B)TP −γ 2 I

]

< 0

Obviously, for a generic nonlinear system as considered in (4.7) it might
be difficult to find a V (x, r) such that (4.6) or (4.10) is fulfilled. In case
of piecewise linear systems, however, LMIs can be used. This will be pre­
sented next.
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4.4 Piecewise Linear System

Consider now a particular kind of nonlinear systems, a piecewise linear
system, of the form:

ẋ = Aix + Bir, x(t) ∈ Xi (4.13)

with {Xi}i∈I ⊆ R
n a partition of the state space into a number of convex

polyhedral cells with disjoint interior. Suppose that Aix + Bir, x ∈ Xi is
locally Lipschitz and for any constant r ∈ R , the piecewise linear system
has a unique equilibrium point.
Furthermore, consider symmetric matrices Si j that satisfy the inequal­

ity:
[
x − xr

r

]T

Si j

[
x − xr

r

]

> 0, x ∈ Xi, ∈ R (4.14)

Define

B̄j
∆
=

[
A−1j Bj

1

]

, Ī
∆
=

[
I 0

0 0

]

(4.15)

Āi j
∆
=

[
Ai −AiA

−1
j Bj + Bi

0 0

]

(4.16)

The following proposition is useful for application of Theorem 4.2 and
Theorem 4.3.

PROPOSITION 4.1
Let f (x, r) = Aix + Bir, x ∈ Xi, and xr = −A−1j Bjr, xr ∈ X j with x(0) =
xr(0), r(0) = r0. If there exist γ > 0, P > 0 such that P̄ = diag{P, 0}
satisfies

[
ĀTi j P̄+ P̄Āi j + Si j + Ī P̄B̄j

B̄Tj P̄ −γ 2 I

]

< 0, i �= j (4.17)

[
ATj P + PA j + I PA−1j Bj

(A−1j Bj)
TP −γ 2 I

]

< 0 (4.18)

then V (x, r) = (x − xr)TP(x − xr) satisfies (4.6) for all x ∈ Xi, r ∈ R .

In particular, in the case when ṙ(t) = 0, for t > T , by finding a finite
γ > 0 it is shown that all trajectories of the nonlinear system (4.13) will
converge to xr.
The conservatism of the theorems can be reduced by considering piece­

wise quadratic Lyapunov function. In this case the Lyapunov function
will be piecewise C 1 instead of C 1. Imposing that it is non­increasing at
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the points of discontinuity, the results hold (see [Johansson and Rantzer,
1998]).
Remark When the local linear systems contain affine terms the ar­

gument vector of the Lyapunov function will be extended to [ x̃ r 1 ].
Similarly, when partitions that do not contain the origin are to be de­
scribed, the vector of variables will be extended. Then the definitions in
(4.15), (4.16) become:

B̄j
∆
=





A−1j Bj

1

0



 , (4.19)

Āi j
∆
=

[
Ai −AiA

−1
j Bj + Bi ai

0 0 0

]

(4.20)

Remark The variation in the affine term due to r, can be viewed as
parametric uncertainty in the system. Thus the theorem can be used to
prove robust stability for a piecewise linear system, with uncertain affine
terms in the local linear systems.

A Unifying View

In Section 4.2, in the case of linear systems, it has been shown that the
proposed method is equivalent to finding the L 2 induced gain of a system
expressed in the coordinates x − xr. It is natural to ask if the same type
of recasting is possible in the case of piecewise linear systems. That is, is
it possible to find a piecewise linear system which L 2 induced gain gives
an equivalent characterization of the servo problem in (4.1) for system
(4.13)?
In [Johansson, 1999] a method has been developed for estimating an

upper bound on the L 2 induced gain of a piecewise linear system. This
result is cited below:

THEOREM 4.4
Suppose there exist symmetric matrices T , Ui and Wi such that Ui and
Wi have non­negative entries, while Pi = FTi TFi and Pi = F

T

i TFi satisfy

0 >
[
PiAi + A

T
i Pi + C

T
i Ci + E

T
i UiEi PiBi

BTi Pi −γ 2 I

]

for i ∈ I0

0 >

[

PiAi + A
T

i Pi + C
T

i Ci + E
T

i UiEi PiB i

B
T

i Pi −γ 2 I

]

for i ∈ I1

92



4.4 Piecewise Linear System

Then every trajectory x(t) of (4.13) with x(0) = 0,
∫∞
0 (hxh

2 + huh2)dt < ∞
satisfies ∫ ∞

0
hyh2dt ≤ γ

∫ ∞

0
huh2dt.

The best upper bound on the L 2 induced gain is achieved by minimizing
γ subject to the constraints defined by the inequalities.

In the above theorem, I0 denotes the index set of the cells that contain the
origin and I1 is the index set of the cells that do not contain the origin.
In light of this theorem, one can characterize the servo problem for

piecewise linear system by finding the L 2 induced gain for the piecewise
linear system:






[ ˙̃x

ṙ

]

=

[
Ai −AiA

−1
j Bj + Bi

0 0

] [
x̃

r

]

+ ai +

[
A−1j Bj

1

]

ṙ

ỹ = x̃

x ∈ Xi, r ∈R

{
˙̃x = A j x̃ + A−1j Bj ṙ

ỹ = x̃
x ∈ X j , r ∈ R

which is equivalent to the result in Proposition 4.1.

Polyhedral Cell Boundings and Continuity Matrices

In the LMIs from the above theorems, the S­procedure is used to specify
the region where the analysis is carried out. One way to describe the re­
gions of the state space is by using polyhedral cell boundings [Johansson,
1999]. Using compact matrix representation, the polyhedral cell bound­
ings Ei have the property:

Eix � 0 for x ∈ Xi

It basically contains information about the hyperplanes bounding the cell
in question.
In case of continuous piecewise quadratic Lyapunov functions, con­

tinuity can be automatically imposed by parameterizing the Lyapunov
functions as:

FTi TFi for x ∈ Xi

where T is a positive definite matrix and Fi are constrain matrices. Each
Fi contains information about the hyperplanes bounding the cell in ques­
tion.
It is obvious from the above, that in order to construct the polyhe­

dral cell boundings and the constraint matrices, one has to provide the
hyperplanes bounding the cell.
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Chapter 4. The Servo Problem for Piecewise Linear Systems

In the case of the servo problem, the argument of the Lyapunov func­
tion includes also the reference signal r. Still it is rather straightforward
to describe the bounding hyperplanes. On the other hand, in the LMIs
one has to describe the regions in the coordinates [x − xr r 1]T . One easy
way to overcome this problem is by specifying the hyperplanes [x r 1]T

coordinates and then use the coordinate transformation:




x − xr

r

1



 =





I A−1j Bj 0

0 I 0

0 0 1









x

r

1





where xr = −A−1j Bjr.

Computational Example

Consider the system of the form:

ẋ = Ax + B(r −ϕ(Cx))

where A is a stable matrix. The nonlinearity is defined as:

ϕ(z) =

{

z, z < 1

1, z ≥ 1

This system can be described by the following piecewise linear system.

ẋ =

{

Ax − B + Br, Cx ≥ 1

(A− BC)x + Br, Cx < 1
(4.21)

Here the two partitions are X1 = {xhCx ≥ 1} and X2 = {xhCx < 1}. The
numerical values are:

A =

[
−0.5 1

−1 0

]

, B =

[
1

3

]

, C = [ 1 0 ] .

The state space partitions of such a system is shown in Figure 4.2. Then
the sets R 1 = (

4
3 ,∞) and R 2 = (−∞, 43 ) follow from simple computations.

Consider first the case when r(t) ∈ R 2 for all t, i.e. xr(t) ∈ X2 for all t.
The LMIs resulting from Theorem 4.2 turn out to be infeasible, suggesting
that a quadratic Lyapunov function might be too conservative. Therefore,
a piecewise quadratic Lyapunov function is tried:

V (x, r) =











x − xr

r

1





T

P1





x − xr

r

1



 , x ∈ X1

(x − xr)
TP2(x − xr), x ∈ X2
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x1

x2
X1X2

x1 = 1

Figure 4.2 State space partitions in the computational example.

Minimizing γ subject to the LMI constraints, one obtains the Lyapunov
function’s matrices:

P1 =








5.0749 −0.8930 −6.6918 8.9351

−0.8930 5.1082 0.0703 0.2583

−6.6918 0.0703 −12.1141 16.2238

8.9351 0.2583 16.2238 −2.2493








P2 =

[
20.69 −0.63

−0.63 5.1

]

and γ = 7.182.
Consider now the case when r(t) ∈ R 1 for all t, i.e. xr(t) ∈ X1 for all t

and consider the Lyapunov function:

V (x, r) =







(x − xr)
TP1(x − xr), x ∈ X1





x − xr

r

1





T

P2





x − xr

r

1



 , x ∈ X2

Solving the constrained minimization problem, one obtains a Lyapunov
function with the matrices:

P2 =








18.36 −2.55 47.17 −68.64

−2.55 4.22 −13.32 8.21

47.17 −13.32 146.8 −173.34

−68.64 8.21 −173.34 317.36







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(a) System trajectories and input signal.
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(b) Reference trajectories.

Figure 4.3 Simulation results for the computational example.

P1 =

[
3.874 −0.503

−0.503 4.225

]

and γ = 8.3221. Thus, for every (x, r) starting in X1 �R 1 respectively
in X2 �R 2, trajectory convergence, in the sense of Theorem 4.2, is guar­
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4.5 A Synthesis Method for Static Anti­Windup Compensators

anteed by the finite γ ’s. In Figure 4.3 state trajectories x1 and x2 are
presented when r ∈ R 2. Notice that x1 is passing through region X1.
It is of interest to derive lower bounds on the L 2 gain to verify the

conservativeness of the result. A natural lower bound is obtained by The­
orem 4.1. This way for the case when xr ∈ X2 a lower bound of 1.12 is
obtained, while in the case xr ∈ X1 a lower bound of 8.318 is computed.
For the case when xr ∈ X1 the resulting bounds turned out to be very
tight. However, it can be noticed that the lower bound when xr ∈ X2 is
rather small in comparison to the upper bound. This could be refined by
finding a “worst case disturbance” for the nonlinear system.
As seen above, S­procedure is used (Si j) to describe the state­space

partition of (4.13), and in the same time describe the set of considered
r’s. More details on how to find such matrices can be found in [Johansson,
1999]. The used matrices are:
for X1

S12 =








0 0 −8.562 11.772

0 0 0 0

−8.562 0 −12.844 16.259

11.772 0 16.259 −20.528








and for X2

S21 =








0 0 −52.66 −34.957

0 0 0 0

−52.66 0 −315.965 100.217

−34.957 0 100.217 −336.966








4.5 A Synthesis Method for Static Anti-Windup
Compensators

Figure 4.4 shows the studied system. A linear plant with saturation­type
limitations on the input, is to be controlled by a linear controller.
The usual way to handle this kind of nonlinear systems is by using

a two­stage design approach. First, design the linear controller without
taking into account the nonlinearity at the plant input. Second, design a
compensator that will ensure a graceful decay of the control performance
once the system enters saturation. The latter is the so called anti­windup
compensator.
It is customary to use linear filters for anti­windup compensation. Both

static and dynamic compensators are reported in the literature. In this
work, static anti­windup compensators are to be designed, i.e. the static
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r u y
K (s) P(s)

Λ

Figure 4.4 The anti­windup scheme considered.

compensator block Λ is to be found, according to some appropriate perfor­
mance criterion.
In [Teel and Kapoor, 1997] the problem of anti­windup compensation

has been recognized as being that of returning the system to linear be­
havior. That is, return of the system output to the one that would have
been without saturation. Thus it is clear that the anti­windup problem
can naturally be posed as a servo problem for a nonlinear system (i.e. the
closed­loop piecewise linear system). The goal is to return to the behavior
of the linear system as fast as possible.
The use of a L 2 performance criterion in the synthesis of anti­windup

compensator is well established (see [Teel and Kapoor, 1997; Mulder and
Kothare, 2001; Weston and Postlethwaite, 1998; Grimm et al., 2001]).
However, to the best of the author’s knowledge, posing the anti­windup
problem as a servo problem with the performance criterion as proposed
in this work has never been presented.
Return of the system output to the linear region is imposed as a goal

in [Turner and Postlethwaite, ]. However, this method does not allow the
kind of variations of the input signal as in the here proposed theory.

Anti-Windup and the Servo Problem

The description of the system in Figure 4.4, as a piecewise linear system
is similar to that presented in [Mulder and Kothare, 2000].
The linear plant P(s) has a state­space description given by the ma­

trices Ap, Bp, Cp, Dp. The state­space description of the linear controller
K (s) is given by Ac, Bc, Cc, Dc. It is assumed that P(s) is stable and K (s)
has been designed such that the closed loop linear system is stable.
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The saturation function is defined as

sat(u) =







um, u < um

u, um ≤ u ≤ uM

uM , u > uM

The saturation nonlinearity will give rise to a partitioned state­space
for the system, obtaining a piecewise linear system. The three resulting
regions will be denoted as follows X2 – the linear region, X1 – the region
where u < um and X3 denotes the region where u > uM .
The anti­windup compensation block Λ enters the controller as follows:

ẋc = Acxc + Bce+ Λ1(u− sat(u))

u = Ccxc + Dce+ Λ2(u− sat(u))

where Λ =

[
Λ1

Λ2

]

and e = r− y. Thus, in the three partitions the dynamics

will be given by:
{
˙̄x = A1 x̄ + a1 + B1r

y = C1 x̄ + D1r
, x̄ ∈ X1

{

ẋ = A2x + B2r

y = C2x + D2r
, x ∈ X2

{
˙̄x = A3 x̄ + a3 + B3r

y = C3 x̄ + D3r
, x̄ ∈ X3

Here the matrices Ai, Bi depend linearly on the parameter Λ1(I +
Λ2)

−1. The matrices used in the representation are the same as in [Mulder
and Kothare, 2000] (for details see Appendix 4.6).
The anti­windup problem can naturally be posed as a servo problem

for the nonlinear system (i.e. the closed­loop piecewise linear system). The
goal is to return to the behavior of the linear system as fast as possible.
In this context, xr introduced in the previous section can be used to define
a trajectory that describes the behavior of the system in the linear region.
That is, define

xr = −A
−1
2 B2r (4.22)

Computing the L 2 gain from the derivative of the input signal to x−xr,
gives a measure on the behavior of the system trajectories with respect
to xr. Notice that the input signal is smoothly time varying.
It is reasonable to assume that the reference signals have such a mag­

nitude that they can be achieved by the system output without violating
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Figure 4.5 Output and control signal when no saturation is present.

the saturation constraints in stationarity. This way all the equilibrium
points of the system remain in the linear region. Using this assumption,
it is enough to use only the xr defined by (4.22) in the synthesis.
Thus, a solution to the considered anti­windup problem is given by

Proposition 4.1, with i = 1, 3 and j = 2 using the definition in (4.19) and
(4.20). Unfortunately, if one is searching also for the parameters Λ1, Λ2
in the same time as solving for P, the matrix inequality becomes a BMI
(bilinear matrix inequality). Iterative approaches can be used to solve
this kind of problems, however no guarantee for convergence exists. The
iteration scheme could contain the following steps:

• fix Λ and search for T , Si j , while minimizing γ ,

• fix T and search for Λ, Si j , while minimizing γ .

These steps are repeated, passing the optimal T , respectively Λ from
one step to the other until they converge to a constant value.

EXAMPLE 4.1
To demonstrate the method, a simple SISO example with a PI controller
will be used. This example has been studied also in [Mulder and Kothare,
2000; Turner and Postlethwaite, ]. The plant and controller are:

P(s) =
0.5s2 + 0.5s+ 1
s2 + 0.2s+ 0.2

K (s) = 2
(

1+
1
s

)
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Figure 4.6 Output and control signal when saturation is acting on the control
signal.

The saturation on the control signal is set to ±0.5. The output in
the case when there is no saturation acting on the plant is shown in
Figure 4.5, while in the case of saturation acting on the control output
the performance deteriorates considerably (see Figure 4.6). The reference
signal in both cases is a square wave filtered by a first order linear system
with a time constant of 0.1 seconds.
Due to the integrator in the controller the LMIs are not strictly feasible

as long there is no anti­windup compensation. In this case, where the
compensator is a scalar, it is easy to choose an initial guess for the anti­
windup compensator, to start with. However, in case the compensator is
in form of a matrix (e.g. multivariable systems), this choice is no longer
straightforward. In those cases a “forgetting factor” can be introduced
in the controller, that is the controller pole in the origin can be slightly
moved to the left complex half­plane.
In the scalar case, no iteration is necessary for solving the BMI. In­

stead, one can grid all Λ for which the LMIs are feasible and then pick
the optimal.
Applying this method, a static compensator of the form Λ1 = −0.41,

Λ2 = 0 is found. Piecewise quadratic Lyapunov functions are used in the
algorithm. The best upper bound found on the L 2 gain from ṙ to x− xr is
5.0691. For a lower bound on this L 2 gain, a local analysis in the linear
region can be carried out. This way, a lower bound of 3.8639 is obtained.
The output of the compensated system is shown in Figure 4.7. Notice the
significant improvement in the performance of the control system.
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Figure 4.7 Output and control signal when saturation is acting on the control
signal. Anti­windup compensation is applied on the control system.

It is interesting to notice that the anti­windup tracking­time constant
Tr = −1/Λ1 = 2.439, is in this case higher than the well­known heuristic
choice Tr = Ti = 1 (see [Åström and Wittenmark, 1997]).

4.6 Conclusions

Trajectory convergence in presence of constant and time varying inputs
has been studied. Quantitative result has been established for a suffi­
cient condition regarding trajectory convergence for a class of nonlinear
systems, where one of the parameters (r) is time varying. This result has
been used for piecewise linear systems, where Proposition 4.1 in combi­
nation with Theorem 4.2, give a tool for computing an upper bound on
the L 2 gain from ṙ to x − xr, characterizing the servo problem for such
systems.
The theory can be naturally applied to anti­windup compensation. An

example is presented for a scalar system. The theory provides scalability,
so that the same method can be applied for systems with multiple satu­
rations. However, this will result in combinatorial increase of the number
of analysis regions.
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Appendix – Anti-Windup Compensated System

System matrices

Ā1 =





Ap 0 Bpum

−BcCp Ap −BcDpum

0 0 0



 , B̄1 =





0

Bc

0



− Λ̄





0

Dc

0



 ,

C̄1 = [Cp 0 Dpum ] , D̄1 = 0,

A2 =

[
Ap − BpJ2DcCp BpJ2Cc

−BcCp + BcDpJ2DcCp Ac − BcDpJ2Cc

]

,

B2 =

[
BpJ2Dc

Bc − BcDpJ2Dc

]

,

C2 = [−Cp + DpJ2DcCp −DpJ2Cc ] , D2 = −DpJ2Dc,

Ā3 =





Ap 0 BpuM

−BcCp Ap −BcDpuM

0 0 0



 , B̄3 =





0

Bc

0



− Λ̄





0

Dc

0



 ,

C̄3 = [Cp 0 DpuM ] , D̄3 = 0,

Λ̄ =





0 0 0

0 Λ1(I + Λ2)
−1 0

0 0 0





J̄1 =





0 0 0

DcDp −Cc um + DcDpum

0 0 0





J2 = (I + DcDp)
−1

J̄3 =





0 0 0

DcDp −Cc uM + DcDpuM

0 0 0





The Obtained Piecewise Quadratic Lyapunov Function

P̄1 =










27.1175 −7.8885 −69.9081 1.0217 2.5541

−7.8885 13.5924 65.9505 2.6048 6.5120

−69.9081 65.9505 439.1050 −2.2092 −5.5230

1.0217 2.6048 −2.2092 −0.5597 −1.3992

2.5541 6.5120 −5.5230 −1.3992 −3.4979









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P2 =





28.9654 −3.1184 −73.8381

−3.1184 25.7025 55.5776

−73.8381 55.5776 447.2053





P̄3










27.1175 −7.8885 −69.9081 1.0217 −2.5541

−7.8885 13.5924 65.9505 2.6048 −6.5120

−69.9081 65.9505 439.1050 −2.2092 5.5230

1.0217 2.6048 −2.2092 −0.5597 1.3992

−2.5541 −6.5120 5.5230 1.3992 −3.4979









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5

Voltage Stability Control in

Power Systems

This chapter aims at the study of voltage stability in power systems.
A simple model of a power system will be considered and analyzed. In
addition, a hybrid control law will be derived that is shown to improve
the stability properties of the considered power grid.

5.1 Power Systems

Modern day society requires a large amount of electrical energy. It is the
backbone of our technological society.
A power system consists of several electrical components (e.g. genera­

tors, transmission lines, loads) connected together, its purpose being gen­
eration, transfer and usage of electrical power. Power systems are referred
to as the largest machines built by man. Geographically they stretch over
entire continents including hundreds of generators and millions of con­
sumers.
Currently, most of the electrical energy is obtained from fossil fuels

(e.g. coal, oil). Renewable energy resources such as hydro, solar, wind are
used to lesser extent. However, environmental issues force a continuously
growing use of the latter resources.
An important feature of electrical energy is that it cannot easily be

stored in large quantities. This basically means that at any instant in
time the energy demand has to be met by corresponding generation. This
is a difficult task if no prediction of the consumption is available. Although
the connected users, loads, are of different types and capacity, and some
can vary quite rapidly and unpredictably, the combined load pattern of a
power system normally changes in a relatively predictable manner. This
predictable demand governs the daily generation schedule [Machowski
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et al., 1997].
In case of special events in the network such as faults or sudden in­

crease of power demand, the balance between the generation and con­
sumption can be easily disturbed. Such disturbances can lead to catas­
trophic consequences, such that major parts of the grid can be lost. In the
year 2003 the US, Sweden and Italy suffered major blackouts.

The Structure of a Power System

Conventionally, the basic structure of a power system consists of three
parts: generation, transmission, and distribution [Machowski et al., 1997].

• Generation: electrical energy is obtained by converting mechanical
energy from the output shaft of a turbine. The mechanical energy
is obtained from fossil or non­fossil fuels. The generator produces
energy at 10–20 kV. However, this voltage is increased by an order
of magnitude before transmission.

• Transmission: The produced electrical energy is usually transmitted
on long distances to the load centers. The energy losses are pro­
portional to the current squared, and to minimize the losses, the
transmission lines operate at high or very high voltages (100−1000
kV). The transmission network is usually connected in a meshed
structure such that many possible routes are available from a gen­
erating point to a costumer. This structured adds to the flexibility
and redundancy of the grid.

• Distribution: As the electrical energy is getting closer to the load
center, it is taken over by the distribution network. This network
has usually a radial structure as opposed to the transmission system.
Finally, before the end­user is connected to the network, the voltage
is transformed to lower values as requested by the consumer.

Usually, 8% of the produced energy is lost through the transmission
and distribution systems from the generator to the consumer.

Transformers

One of the most important components in power networks is the trans­
former. It is used to connect different parts of the network that are op­
erating at different voltage levels. The transformers are equipped with
taps, in order to adjust the transformation ratio. Moreover, since the
power demands of the load are continuously changing, the transformers
are equipped with tap changers to adjust the transformed voltages. The
tap changing at distribution level is typically automatic and it aims to
keep the voltage at a desired level.
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The tap changing facilities can be made to operate either off­load or
on­load. That is, the off­load tap changer requires the transformer to be
de­energized while the tap changing takes place. The on­load tap changer
(OLTC) can change the taps while the transformer is energized. OLTCs
are one of the control elements used in a power network.

The Load

In a mature power system there can be millions of loads connected to
the grid simultaneously. These loads have different characteristics and
capacities. In addition, some loads will connect and disconnect in an un­
predictable manner (e.g. household consumers).
These factors make it difficult to build a good model of the aggregate

load connected to the grid. Within the power system community, there is a
considerable effort put into modeling of aggregate loads and identification
of existing models.
Load models are important both for analysis and synthesis of power

systems. One of the major research areas where load modeling is impor­
tant is that of voltage stability of power systems.

5.2 Stability of Power Systems

Due to the complexity of a power system, instabilities can be manifested
in different ways. In general, power system stability can be defined as the
property of the power system that enables it to remain in a state of equi­
librium under normal operating conditions and to regain an acceptable
state of equilibrium after being subject to a disturbance [Kundur, 1993].
Power system stability can be categorized in angle stability and voltage

stability.

Angle Stability

The generation of electrical power in a power system relies on synchronous
machines. A necessary condition for satisfactory system operation is that
all synchronous machines in the network remain in synchronism. Tradi­
tionally, the stability of power system treated the problem of maintaining
synchronous operation. This is the so called angle stability problem. An
important factor in angle stability problems is the relationship between
the power interchange and angular position of the rotors of synchronous
machines. This relationship is highly nonlinear being most of the time
the principal cause for this kind of instabilities.
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Voltage Stability

Instability in power system may also appear without loss of synchronism.
One such instability scenario is the collapse of load voltage.
Voltage at the load end of a power system has to be controlled within

prescribed tolerances, to guarantee a satisfactory voltage for the con­
sumers. Even in case of normal operation, this task is not trivial due
to the ever­changing load conditions. Moreover, in case of emergencies
this task can be very difficult and sometimes impossible.
Voltage stability of a power system is defined by the IEEE Power Sys­

tem Engineering Committee as being the ability of the system to maintain
voltage such that when load admittance is increased, load power will in­

crease so that both power and voltage are controllable. A voltage collapse
is defined as being the process by which voltage instability leads to a very
low voltage profile in a significant part of the system [IEEE, 1990; Begovic
et al., 2001].
Voltage stability in power networks is a widely studied problem. Sev­

eral voltage collapses resulting in system­wide blackouts made this prob­
lem of major concern in the power system community.
The voltage dynamics in power systems appear on two time scales.

The short­term dynamics act on a time scale of seconds or shorter (e.g.
effect of generator excitation control). The long­term dynamics are on a
scale of minutes (e.g. effect of recovery dynamics in heating loads, effect
of tap changers). In the latter category falls the effects of the OLTC, the
main control tool considered in this work, for improving stability of the
power system.
It is accepted that voltage instability is caused by the load character­

istics, as opposed to the angular instability, which is caused by the rotor
dynamics of the generators [Begovic et al., 2001]. It is also known that
voltage instability is closely related to the maximum loadability of the
transmission network [Julian et al., 2000]. The closer the power trans­
mitted by the system is to its maximum transferable power, the risk of
voltage collapse increases. However, it has been established that voltage
instability can not be attributed solely to such static arguments. Voltage
instability is a dynamic phenomenon [Hill, 1993].
The major concern of this work is the situation when in stationarity

the load power request does not exceed the maximum loadability of the
network. However, voltage collapse occurs due to some dynamic effects
in the load and tap­changer. This phenomenon will be presented in more
detail in Section 5.4.
Although it is natural to call this instability phenomenon dynamic in­

stability, the author refrains from this designation. The reason is that in
the power system community, the term dynamic instability has been used

110



5.3 Previous and Related Work

in the context of angle stability. In addition, the term has been used quite
inconsistently denoting for different authors different aspects of the an­
gle stability, causing much confusion. Therefore, whenever the instability
phenomenon in question arises, it will be designated as instability due to
dynamic effects.

5.3 Previous and Related Work

By now there is an extensive literature on analysis of voltage stability
in power systems. There exist both static and dynamic approaches which
are more or less mathematically involved.
As the load characteristics is important for voltage stability studies,

considerable effort has been put into developing aggregate load models.
In the following some of the most well known models and analysis

approaches will be summarized [Machowski et al., 1997].

Load Models

Due to high diversity of the existing loads and the purpose of their mod­
eling, several alternatives of load models have been proposed. Generically
they can be split in two groups, static models and dynamics models.

Static Load Models A traditional way of describing aggregate loads
is by static models. In the following, two of the most popular static load
models will be presented.

• ZIP model. This model is a linear combination of three sub­models:
constant impedance (Z), constant current (I), and constant power
(P). For a constant impedance load, the load power changes propor­
tionally with the square of the voltage. A constant current model
gives a power demand that is linearly dependent on the voltage. In
the case of a constant power load, the model is voltage independent
and describes a system with power demand that does not depend on
voltage (so called stiff load).

P = P0

(

a1

(
V

V0

)2

+ a2

(
V

V0

)

+ a3

)

Q = Q0

(

a4

(
V

V0

)2

+ a5

(
V

V0

)

+ a6

)

P0, Q0, V0 are values at initial operating conditions and a1−6 are
model parameters.
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• Exponential load model. These models are of the form:

P = P0

(
V

V0

)np

Q = Q0

(
V

V0

)nq

where np, nq are parameters of the model. Notice that by setting the
parameters to 2, 1, and 0, one obtains constant impedance, constant
current, and constant power models, respectively.

Dynamic Load Models In most of the voltage stability studies, static
load models can not capture, explain the behavior of the power system.
In these situations, dynamic load models are required.
One of the most popular load models for voltage stability studies is an

exponential dynamic load model of the form:

ẋp = −
xp

Tp
+ P0

((
V

V0

)as

−

(
V

V0

)at)

ẋq = −
xq

Tq
+ Q0

((
V

V0

)bs

−

(
V

V0

)bt
)

P =
xp

Tp
+ P0

(
V

V0

)at

Q =
xq

Tq
+ Q0

(
V

V0

)bt

(5.1)

where in addition to the static exponential load model the following vari­
ables are introduced: xp, xq are the active and reactive power recovery, Tp,
Tq are time constants of the dynamic model, as, bs are the steady state
active and reactive load­voltage dependence, at, bt are the transient active
and reactive load­voltage dependence. This model has been introduced in
[Karlsson and Hill, 1994], together with an identification method for the
variables in question.

Voltage Stability in Power Networks

The analysis methods used in voltage stability studies can be classified in
two groups: static methods and dynamic methods. In the static methods,
the analysis is carried out using steady state models. This problem is
closely related to the ability of the network to transfer the power demand
of the load [Schlueter et al., 1990]. Here can be included the work done
on the VIP (voltage instability predictor) method [Begovic and Novosel,
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2002], [Julian et al., 2000]. This method devises a measure for critical
operation of the power system. In [Vu and Novosel, 2001] this method
is used for devising control actions when the system arrives in a critical
operating regime.
The other approach for stability analysis is dynamic, where also the

dynamic evolution of the voltage is examined. In [Zaborszky and Baohua,
1989] dynamic analysis together with bifurcation theory is used to analyze
the behavior of a simple power system. This article models the power
system with a differential­algebraic equation (DAE).
An illustrative use of both static and dynamic analysis approaches is

given in [Morison et al., 1993].
In [Vu and Liu, 1992], dynamic analysis is carried out using a sim­

ple dynamic reactive­load model. For this model, the region where the
power system is guaranteed to maintain voltage stability is explicitly
given. Based on this stability region, control actions are also proposed.
Bifurcation theory is a popular tool in the analysis of power systems.

In [Rosehart and Cañizares, 1999] it is used for the analysis of differ­
ent load models. Bifurcation theory is used also for control synthesis. In
[Shahrestani and Hill, 2000] a multilevel nonlinear control scheme is pro­
posed. Here the state space is divided in operating regions. Bifurcation
analysis is used for establishing the bounds of the regions with different
control requirements.
In [Guo et al., 2000], robust backsteping is used for the synthesis of

decentralized controllers for a large scale power systems.

5.4 Problem Description

The considered power system is shown in Figure 5.1. It is a radial sys­
tem containing a generator E, a transmission line with impedance Z̃LN , a
transformer with an on­load tap changer (OLTC) and a load with impedance
Z̃LD . The system can be thought of as having two nodes, generation (i.e.
the generator source) and consumption (i.e. the load). The on­load tap
changer regulates the voltage on the load side at a desired value Vref .
In a power system, the loads have a built­in control system that tries to
achieve some control objective. Usually this control objective is to keep
the absorbed power at a given value. In turns this means that the load
will dynamically change its impedance.
For ease of reference a list of used variables is compiled below:

• Z̃LD = ZLD e
jΦ – load impedance,

• ỸLD = 1/Z̃LD – load admittance,
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Z̃LD

Z̃LN
Ṽ1 Ṽ2

n

Ẽ
OLTC

Ṽref

Figure 5.1 The considered two­node system with generator, transmission line,
transformer, and load.

• Z̃LN = ZLN e
jΘ – transmission line impedance,

• Ẽ = Eej0 – generator voltage,

• Ṽ1 – voltage on the primary side of the transformer,

• Ṽ2 – voltage on the secondary side of the transformer,

• n – transformer ratio,

• Vref – reference voltage,

• Ĩ1 – current in the primary winding of the transformer,

• Ĩ2 – current in the secondary winding of the transformer

The system in Figure 5.1 models a very simple power system. Nev­
ertheless, it will be shown that the system captures some of the major
instability behaviors of a power system.

Mathematical Modeling – The Two-Node System

In the following, mathematical models will be developed for the study of
voltage stability in power systems.
Consider at first a system without dynamics in the load and without

the OLTC control system.This simplification is useful to understand the
underlying structure and behavior of the system.
Using basic circuit theory, the following relations can be stated [Kun­
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O

V̄

j ĪZLN

Ē

Ī

δ

Φ

Figure 5.2 Phasor diagram for the considered power system.

dur, 1993]:

Ṽ2

Ṽ1
=

Ĩ1

Ĩ2
= n (5.2)

Ẽ = Ĩ1 Z̃LN + Ṽ1 = Ĩ2

(

nZ̃LN +
1
n
Z̃LD

)

(5.3)

P = h Ĩ22 Z̃LD h cosΦ = E2
ZLD/n

2

∣
∣Z̃LN + Z̃LD/n2

∣
∣
2

︸ ︷︷ ︸

f (ZLD/n2)

cosΦ (5.4)

Q = h Ĩ2 Z̃LD h sinΦ = E2
ZLD/n

2

∣
∣Z̃LN + Z̃LD/n2

∣
∣
2

︸ ︷︷ ︸

f (ZLD/n2)

sinΦ (5.5)

V2 = h Ĩ2 Z̃LD h = E
ZLD/n

∣
∣Z̃LN + Z̃LD/n2

∣
∣

(5.6)

To further simplify the studied problem, consider at first only the case
when n = 1. This will imply Ṽ2 = Ṽ1 = V and Ĩ2 = Ĩ1 = I.
Using phasor representation, the considered system is described by

the phasor diagram shown in Figure 5.2. The angle between the voltage
and the current on the load side is Φ, while the angle between the voltage
at the generation node and the load is δ .
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Figure 5.3 Active power with respect to load impedance. For a particular
impedance the transfered active power reaches a maximum.

The function f (ZLD) is a nonlinearity with a particular structure. This
nonlinearity gives the typical shape of the active power with respect to the
load admittance (see Figure 5.3). It is predominantly linear for small load
admittance and will increase up to a value where the transfered active
power reaches its maximum. For higher load admittance the transfered
active power will gradually decrease.
By further algebraic manipulations, the function f can be expressed

as:

f (ZLD) =
ZLD

Z2LD + 2ZLDZLN cos(Θ − Φ) + Z2LN
Taking the derivative of f with respect to ZLD , gives the expression:

f ′(ZLD) =
Z2LN − Z

2
LD

(
Z2LD + 2ZLDZLN cos(Θ − Φ) + Z2LN

)2

This gives that the maximum active power transfer (i.e. the top of the
function f ) is obtained for

ZLD = ZLN . (5.7)

Thus the value of the maximum transferable active power is,

Pmax =
E2

2ZLN(1+ cos(Θ − Φ))
cosΦ. (5.8)

116



5.4 Problem Description

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P

YLD

Φ = 0

Φ = π /8

Φ = π /4

Φ = 3π /8

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P

YLD

ZLN = 0.5

ZLN = 0.75

ZLN = 1

ZLN = 1.25

Figure 5.4 Active power with respect to load impedance. In the left plot the power
factor cosΦ is varied and ZLN = 0.5. Notice that the bigger the power factor is, the
higher the transferable maximum active power becomes. In the right plot, the line
impedance is varied while cosΦ = 1. Observe that the smaller the line impedance
is the higher the transferable maximum active power becomes.

Similarly, the maximum reactive power to be transmitted through the line
is

Qmax =
E2

2ZLN(1+ cos(Θ − Φ))
sinΦ. (5.9)

It is interesting to notice that the argument of the load (Φ) will in­
fluence only the value of the maximum active power and not the actual
admittance for which this will happen. However, Φ will change also the
function f , that is the dependence of the active power with respect to the
load. Figure 5.4 shows the active power for different Φ in a system with
E = 1, Θ = 10, ZLN = 0.5. The plot clearly shows that the maximum ac­
tive power that can be transfered is proportional to the power factor cosΦ.
Notice that the maximum active power is achieved at YLD = 1/ZLN = 2,
in each of the four cases of the power factor. In the right plot of Figure 5.4
the line impedance is varied. The behavior of the curve is similar to that
of varying cosΦ. However, in this case the higher the line impedance is
the smaller the transferable active power becomes.
From voltage stability point of view it is of increasing interest to study

the relation between the voltage on the load side and the transfered power.
From (5.6) the load admittance is obtained as:

YLD =
−V cos(Θ − Φ) ±

√

V 2 (cos(Θ − Φ)2 − 1) + E2

ZLNV
,
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Figure 5.5 Active power with respect to load voltage. In the left plot Φ is varied
taking the values 0,π /8,π /4, 3π /8 . The bigger the power factor is, the higher the
transferable maximum active power becomes. In the right plot, the line impedance
takes the values ZLN = 0.5, 0.75, 1.The bigger the line impedance is, the smaller
the transferable maximum active power becomes.

and thus:

P =
−V 2 cos(Θ − Φ) ± V

√

V 2 (cos(Θ − Φ)2 − 1) + E2

ZLN
cosΦ.

The positive, real values of P give an important connection betwen the
active power and the load voltage. This relationship is commonly used in
the power system community, under the name of P­V curve or “nose curve”
(see Figure 5.5). The power factor has an important influence on this
relationship, i.e. the higher the power factor is the higher the maximum
active power becomes. This maximum point can be further increased for
lead power factors, by injecting reactive power into the system (i.e. using
capacitor banks). However, this will make the system more sensible to
disturbances.
The P­V curve reveals another important property, from the graphical

representation. It can be easily seen that a given power can be transfered
at two different voltages. This property will have an increased importance
when dynamic loads will be considered.
In a similar fashion, variations of ZLN will result in changes in the P­

V curve and the maximum transferable power. The larger ZLN becomes,
the smaller the maximum transferable power is (see Figure 5.5).
The transformation ratio n introduces another degree of freedom in the

system that helps to deliver the requested power at a specific voltage. The
above presented analysis can be carried out in a similar fashion. An easy
way to introduce the transformer ratio in the analysis is by interpreting
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Figure 5.6 Active power with respect to load impedance for transformer ratios n
ranging between 0.8 and 1.2 with an increment of 0.1. Notice that the maximum
active power remains constant while the coordinate of maximum power transfer
YLD = 1/(n2ZLN) changes.

ZLD/n
2 as an apparent load impedance as seen through the transformer.

This gives:

f (ZLD/n
2) =

ZLD

Z2LD/n
2 + 2ZLDZLN cos(Θ − Φ) + Z2LNn

2
(5.10)

and the maximizer of this function is:

ZLN =
ZLD

n2
(5.11)

However, the maximum transmitted power remains the same as in
(5.8) and (5.9). Figure 5.6 shows the active power for transformer ratios
n between 0.8 and 1.2 with an increment of 0.1. The system parameters
are E = 1, tanΘ = 10, ZLN = 0.5, cosΦ = 1. Notice that the coordinate
of the maximum active power changes according to equation (5.8).
The load voltage V2 also has an interesting dependence on the load

impedance and the transformer ratio n. Figure 5.7 is obtained from equa­
tion (5.6) for n = 0.8, 1, 1.2. The point of intersection for two curves with
transformer ratios n1 and n2 can be found by equating:

f (ZLD/n
2
1) = f (ZLD/n

2
2) (5.12)
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Figure 5.7 Load voltage with respect to load impedance for transformer ratios
n = 0.8, 1, 1.2. For two curves with transformer rations ni and n j the intersection
point is given by nin jY = 1/ZLN . After this value of the load admittance the effect
of increasing n is reversed.

which gives the second order equation:

Y2LD(n
2
1 − n

2
2)Z

2
LN +

1
n21
−
1
n22
= 0

with the positive solution satisfying:

n1n2YLD =
1
ZLN

(5.13)

As Figure 5.7 reveals, after the point of intersection of two curves the
effect of increasing n is reversed. This means that if the load admittance
is greater then 1/(ZLNn1n2) then increasing the transformer ratio from
n1 to n2 will have inverse effect (i.e. the load voltage will be decreased).
Naturally, this behavior has a major impact on control of load voltage as
it will be shown later. This phenomenon is the so called “reverse action”
and has been discussed also in [Ohtsuki et al., 1991].
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Figure 5.8 Simulation of a two­node system with recovery mechanism in the load.
A fault is simulated at t = 30 by increasing the line impedance. The load is trying
to achieve the desired active power 0.75 (dashed line) by decreasing its impedance.
Since the maximum achievable active power is greater than 0.75, the system can
achieve a stable equilibrium. At t = 75 the line impedance is further increased such
that the achievable active power is just below 0.75. The system becomes unstable
and the voltage collapses.

Two-Node system with Recovery in the Load

Consider now a time varying load. This variation is due to recovery mech­
anism embedded in the load. The simplest example for such dynamics is:

ẎLD = Pref − P = Pref − E
2 ZLD
∣
∣Z̃LN + Z̃LD

∣
∣
2 cosΦ. (5.14)

That is, the load tries to absorb a desired active power by modifying
its own impedance. YLD is the absolute value of the load admittance, i.e.
YLD = 1/ZLD . According to this adaptation law, the load will decrease its
impedance at an increase in power demand or load voltage drop.
Simulation results for the above model are shown in Figure 5.8. The

variables in the plot are the maximum transferable active power, the
transfered active power, the load admittance and the load voltage. The
simulation starts when the system is at rest, with transfered active power
at 0.75 and load voltage at nominal value.
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In this scenario the load is trying to absorb an active power of 0.75
(dashed line). The initial value for the line impedance is 0.5. At t = 30
a fault is simulated in the line by changing its impedance to 0.75. As
shown in the figure, this implies that the maximum power that can be
transferred through the line will drop to a value above 0.75. The load
tries to absorb the desired active power by reducing its impedance. After
a transient the system will attain a new equilibrium point at a lower
voltage level. At t = 75 the line impedance is further increased to 0.75.
This will have as effect the decrease of Pmax to a value just below 0.75.
Thus the load tries to absorb an active power that can not be maintained
by the network and the system ends up in a voltage collapse. The other
system parameters used in the simulation are E = 1.1, tanΘ = 10, and
cosΦ = 1.
The load considered up to now controls the power to the requested

level independently of the load voltage. These types of load are called stiff
loads. These type of loads exert an increased stress on the power system
and voltage instability phenomena can arise much easier.
Consider now a voltage dependent load. In particular consider a load

that has its power reference depending on the load voltage. Take first
the case of a quadratic dependence on the load voltage. Then the model
becomes:

ẎLD = Pref V
2 − P = E2

ZLD
∣
∣Z̃LN + Z̃LD

∣
∣
2 (Pref ZLD − cosΦ) (5.15)

Figure 5.9(a) shows simulation results for such loads, in the same scenario
as before. At t = 30 a primary fault arises which will result in a voltage
and active power drop. Since the load is not stiff, it will not demand the
same power as before the fault. At t = 75 when ZLN = 0.75 the stability of
this system is maintained, however, the load voltage is further decreased.
It is apparent from the structure of equation (5.15) that once in sta­

tionarity, the load impedance is insensitive to line faults. On the other
hand, there is no dynamic recovery of the active load power. This can be
modeled by introducing constant current, constant power terms or both
in the load, similarly to the ZIP model.

ẎLD =Pref
(
a1V

2 + a2V + a3
)
− P

=E2
ZLD

∣
∣Z̃LN + Z̃LD

∣
∣
2 (a1Pref ZLD − cosΦ)

+a2E
ZLD

∣
∣Z̃LN + Z̃LD

∣
∣
Pref + a3Pref

(5.16)

Simulation results are shown in Figure 5.9(b). The simulation scenario
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Figure 5.9 Simulation of a two­node system with recovery mechanism in the load.
The load model is voltage dependent according to equation (5.15) in plot (a) respec­
tively (5.16) in plot (b). A fault is simulated at t = 30 and t = 75 by increasing the
line impedance. The load is trying to attain an active power equal to Pref V 2 in (a)
respectively 0.5(Pref V 2 + Pref ) in (b). Stability is maintained at load voltage levels
below the nominal value.
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is identical to those presented before. Notice the dynamic recovery of the
active power at each simulated line fault. This type of behavior is similar
to those obtained from experiments and measurements as reported in
[Hill, 1993].

Two-Node System with Recovery in the Load and OLTC

Consider now also the OLTC control system dynamics included in the
model. A common way to approximate the OLTC dynamics is by an in­
tegrator. Thus, for a constant Φ the model that describes our system
becomes:







ẎLD = Pref − P = Pref − E
2 ZLD/n

2

∣
∣Z̃LN + Z̃LD/n2

∣
∣
2 cosΦ

ṅ = Vref − V2 = Vref − E
ZLD/n

∣
∣Z̃LN + Z̃LD/n2

∣
∣

(5.17)

The OLTC will try to keep the load voltage at the desired level Vref .
Simulation results are shown in Figure 5.10. In this scenario the system
is at rest with E = 1.1, n = 1, V2 = 1, YLD = 0.45, ZLN = 1. In plot
(a) the reference active power is Pref = 0.45 while in plot (b) Pref =
0.46. At 10 seconds, a fault in the transmission network is simulated,
increasing ZLN by 20%. In plot (a), after a transient the requested power
is restored as well as the load voltage is restored to its reference value.
Notice that during the transient the n2YLD had a significant increase,
however it did not exceed 1/ZLN � 0.83, and the system recovers to
a stable operating regime. In Figure 5.10(b), the same simulation had
been carried out except that the desired active power was set to Pref =
0.46. Before the fault to occur, the system is at equilibrium where both
the desired power and the desired load voltage are achieved. However,
following the fault in the transmission line, after an initial recovery, the
system loses stability and voltage collapse occurs.
The same behavior can be observed for voltage dependent loads as long

the OLTC is forcing the system back to the nominal voltage. However,
in case there is a dead zone on the voltage control error, the voltage
dependent loads can exhibit a “milder stress” on the network. Moreover,
in case of real life systems, the tap changer has a limited number of steps,
which bounds the achievable load voltage.
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Figure 5.10 A two­node system with recovery mechanism in the load and OLTC.
A fault is simulated at 10 seconds by increasing the line impedance by 20%. The load
is trying to achieve the desired active power by decreasing its impedance. Without
the OLTC system, the voltage V2 would decrease. The OLTC system increases the
voltage in the secondary side of the transformer. In plot (a) the desired active power
is 0.45 and stability is maintained. In plot (b) the desired active power 0.46. After
an initial recovery the system loses stability and voltage collapse occurs.
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E cosΦ
P

YLD Pref∫

Figure 5.11 Block diagram for the model in equation (5.14). It is easily seen that
the system can have multiple equilibria.

Stability of the Two-Node System

Consider first a two­node system without the OLTC but with dynamics in
the load. The model in equation (5.14) can also be represented using the
block diagram in Figure 5.11. It can be easily seen from the block diagram
that the system can have multiple equilibria, one or no equilibrium point
depending on the operating point.
Consider the scenario simulated in the previous section (Figure 5.8),

in particular the case when the line impedance has been increased to
0.75. This lead to instability and voltage collapse. Figure 5.12 shows the
active power with respect to load admittance respectively load voltage. In
both plots the dashed line represents the desired active power. It is clear
from the figure that there is no equilibrium point satisfying the system
equations. This will clearly lead to instability. Such instability scenarios
are commonly studied in the literature. They can be analyzed by static
arguments and have clear connection to the maximum loadability of the
network.
In case of voltage dependent load, the analysis is carried out in a

similar manner. However, since Pref V 2 is quadratic in V , in case of a line
fault, the equilibrium point will change its location in a different manner
(see Figure 5.13). The loci of the equilibrium point is now a quadratic
function of V as in contrast to the stiff load where the equilibria are
found on a line parallel to the voltage axis. This explains the “milder”
behavior of the non­stiff loads.
As shown in the previous section, the tranformer ratio n does not

change the total transferable active power. Thus the conclusions of the
stability analysis will not change significantly when the dynamics of the
OLTC is included in the system.
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Figure 5.12 Active power with respect to load admittance (left) respectively nor­
malized load voltage with respect to active power (right). There are no intersection
points between the desired active power (dashed line) and the power characteris­
tics, that is there are no real equilibrium points of the system. This will result in
instability and voltage collapse.

Instability due to Dynamic Effects In the simulations in Figure 5.8,
after the line fault occures, equilibrium is regained. This means that at
least one stable equilibrium point exists. Figure 5.14 shows that there
are two equilibrium points. In the active power vs. load admittance char­
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Figure 5.13 Active power with respect to load voltage for various line impedances.
The quadratic characteristics Pref V 2 corresponds to a voltage dependent load. Such
loads will achieve a stable equilibrium point even when a stiff load will be unstable
(dashed line).
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Figure 5.14 Active power with respect to load admittance (left) respectively load
voltage (right). The intersection points between the desired active power (dashed
line) and the power characteristics, gives the equilibrium points of the system. The
equilibrium to the left of (respectively above) the peak of the characteristics is
stable. The other is unstable.

acteristics the equilibrium point to the left of the peak is stable (this
corresponds to the equilibrium point above the peak of the P­V curve).
The other equilibrium point is unstable (the arrows in the figure indicate
the derivative of the load admittance). One way to rigorously show this
has been presented in Section 2.6. This structure, naturally give rise to
situations when instabilities occur due to transients in the load admit­
tance. If th load admittance increases such that the unstable equilibrium
point is surpassed, the system ends up in voltage collapse. In this work,
this phenomenon is referred to as instability due to dynamic effects.
Consider now the two­node system having dynamics both in the load

and the OLTC. A convenient way to investigate the stability properties of
this system is by inspecting the phase plot (see Figure 5.15). The qual­
itative behavior of this system is similar to the scalar case. Figure 5.15
shows the vector field near the two equilibrium points (marked with as­
terisks). The dashed line is given by the curve n2YLDZLN = 1, i.e. the loci
of maximum power transfer (this happens if the line impedance and the
load impedance are equal). As in the scalar case, one of the equilibrium
points are stable (the one to the left of the dashed line) while the other
one is unstable. A region of attraction of the stable equilibrium point,
obtained by simulation is the shaded region in the figure.
Notice the unstable behavior to the right of the loci of maximum power

transfer. From this point on, the region to the left of this curve is referred
to as the stable region and the region to the right will be referred to as
the unstable region. Obviously there is an abuse of language in these
designations since from some small area of the unstable region the sys­
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Figure 5.15 Vector field for the model (5.17). The dots mark the two equilibrium
points. The dashed curve is the loci for maximum power transfer, n2YLDZLN = 1.

tem will return to the stable equilibrium point. Similarly from an area
of the stable region the trajectories will escape to infinity. However, it is
considered to be useful to differentiate between the region that contains
the stable respectively unstable equilibrium point. This will be especially
convenient in the controller synthesis section, where the loci of maximum
power transfer will act as a natural switching surface between qualita­
tively different control actions.
In case of voltage dependent loads (Figure 5.16), the region of attrac­

tion of the stable equilibrium point can be considerably larger than in case
of stiff loads. In such systems, dynamic instabilities can be compensated
for much easier.
As shown above, even when the power network could, in stationarity,

deliver the requested power, the system can still become unstable. The
phenomenon that occurs is most suggestively shown in the phase­plot
(Figure 5.15). Although a stable equilibrium point exists, some trajecto­
ries starting in the stable region, will escape to infinity. This practically
means that there will be an overshoot in the equivalent load admittance
n2YLD such that the unstable equilibrium point on the nonlinear curve f
is passed.
The main contribution of this chapter is a compensator that will reduce

the risk for such instabilities to appear.
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Figure 5.16 Vector field for the model (5.16), with a1 = 1, a2 = a3 = 0. The
dots mark the two equilibrium points. The dashed curve is the loci for maximum
power transfer, n2YLDZLN = 1. Notice that the region of attraction of the stable
equilibrium point is larger than for the stiff load.

5.5 Synthesis of an Emergency Load-Voltage Controller

As shown in the previous section, there are two main type of voltage
instabilities:

1. The system is not able to transfer the requested active power. This
corresponds to the situation when the system has no real equilibrium
points.

2. Another instability scenario is when a stable equilibrium point ex­
ists, but where the system ends up in instability due to some tran­
sients.

In today’s state­of­the­art practice it is mainly the first type of insta­
bility that is accounted for. The actions taken by the power company is
usually one or both of the following:

1. Locking of tap­changers. It is typical to lock the tap­changer when
the load voltage achieves a given lower threshold. This measure can
in some cases restore stability of the power system. However, usually
the operating point is at an unacceptable load voltage level [Larsson,
2000].

2. Connect capacitor banks, to increase the active power that can be
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consumed by the load. If this is done in time, a voltage collapse
can sometimes be avoided. A disadvantage of this method is that it
makes the network more sensible to load variations.

3. Disconnect certain amounts of load (load shedding). This is a very
“expensive’’measure, and therefore avoided for as long as possible by
the power company. However, this measure can prevent the whole
power net from collapsing.

In the method proposed in this chapter, both types of instabilities are
addressed. The proposed control scheme is supposed to act as an emer­
gency controller that is activated in case of potentially dangerous situa­
tions.

Detection of Instabilities

An important part of a successful emergency­control strategy is detection
of the potentially dangerous situations. In todays practice, the following
methods are used to detect that the system is close to voltage instability:

1. As too much power is requested by the load, the generators will
start using their rotational energy, implying that the frequency of
the voltage (50/60 Hz) will start to decrease. Detecting a low fre­
quency has been a too slow measure to stop the voltage collapse in
for example Eastern US in 2003. On the other hand, as mentioned in
the introduction, it is not always the case that significant frequency
variations occur at the early stage of a voltage collapse phenomenon.

2. Another sign of instability is that the load voltage drops. However, it
has been shown that neither this is a good measure for the instabil­
ity of the grid. This can be specially misleading in case of a networks
that have significant reactive compensation. Such situations are typ­
ical to occur when capacitor banks are connected to the load end of
the system in order to increase the active power transfer limit. Fig­
ure 5.17 shows variations in the P­V curve when the aparent power
factor is increased. The shaded region depicts typical, acceptable de­
viation limits from the nominal voltage. The distance from the tip
of the curve to the peak of the P­V curve can be considered as a
measure of the system robustness. In case of overcompensation, the
lead power factor will move the tip of the curve closer to the normal
operating region. This way the system is brought to a potentially
dangerous operating regime.

It has been shown in the previous section that the loci of maximum
active power (i.e. when ZLD/n2 = ZLN) acts as a natural barrier be­
tween two qualitatively different behaviors of the system. Since the load
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Figure 5.17 P­V curve for Φ = π /8, 0,−π /8 . The shaded region shows typical,
acceptable deviation limits from the nominal voltage. Notice that in case of lead
power factors, the normal operating region is close to the tip of the curve. This is a
dangerous operating regime.

impedance can be computed from the measurements and the equivalent
line impedance can also be considered measurable, it is natural to use
the distance ZLD/n2 − ZLN as a measure of stability for the power net­
work. This distance has been proposed as measure for stability in a power
system also in [Julian et al., 2000].

Structure of the Proposed Controller

As mentioned above, the proposed controller will deal with both instabili­
ties caused by dynamics phenomena and also the inability of the network
to transfer the power demand of the load. This way the controller can be
split in two parts:

• Compensation for dynamic effects, is the part of the controller
that compensates for dynamic instabilities.

• Compensation for static effects, increases the steady state trans­
fer capability of the network by various methods (i.e. capacity bank
coupling, load shedding).

The main contribution of this section is the compensator for dynamics
effects. The two controllers can act both independently or in synchroniza­
tion with each­other, that is either or both of the controllers can be added
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to existing, state­of­the­art voltage control systems.

Compensation for Dynamic Effects

As mentioned before, this control structure is meant to operate in case of
dynamic instabilities. This means that after a line and/or load impedance
change (for example due to a line failure or an increase of power request
from the load) the power grid is still statically capable of transferring the
load power request.
A general method will be proposed that momentarily, changes the be­

havior of the OLTC when the line and/or load impedance changes such
that the system is driven into the critical operation regime. Thus the used
control variable is the transformation ration n.
As can be seen in Figure 5.15, it is desirable to move the system away

from the unstable region above the stability limit marked by the dashed
curve (by stability limit is meant that the stability measure ZLD/n2 −
ZLN = 0). Since the load dynamics cannot be changed (except by load
shedding), the proposed method suggests to momentarily alter the trans­
former ratio n so as to avoid the unstable region. However, the transfor­
mation ratio n is not directly accessible for control purposes. Nevertheless,
it is indirectly controllable by changing the voltage reference signal Vref ,
that is accessible in the standard OLTC.
The compensator consists of two subsystems. The first subsystems is

a feed­forward compensator and the second is a feedback controller. A
block diagram over the structure of the proposed compensator is shown
in Figure 5.18. As seen in the figure, the informations used for control
are: the line impedance ZLN , the load impedance ZLD , and the actual
transformation ratio n.
The following sections describe how to obtain these regulator subsys­

tems, and outlines some suitable tuning rules. It is interesting to notice
that also these two subsystems can be used separately or both together.
They can be implemented as an upgrade unit to existing OLTC systems.

Subsystem 1: Feed­Forward The goal of the feed­forward compensa­
tion is to improve the convergence ratio of the system in case of a fault
in the transmission line. In other words, the compensator will drive the
system to the stable equilibrium point in case of a line fault. However,
this method works only if, after the fault, the system is still the stable
region (i.e. n2YLDZLN < 1).
The idea of using such compensation is suggested by the structure of

the presented simplified model. It is rather straightforward to show that
the line impedance ZLN acts as a load disturbance on the system, similarly
to Pref . This can be shown rigorously in a similar way as in Section 2.6.
There the surface conditions acted as a load disturbance on the system
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Figure 5.18 Two­node system with generator, transmission line, transformer and
load. Compensation of the reference voltage is introduced through the blocks FF
and FB.

modifying the friction curve in the same way as the line impedance ZLN
changes the active power characteristics.
In addition, the line impedance can be considered measurable. It is

natural then to use a feed­forward compensation from the line impedance
to diminish the influence of line faults. If the transformer ratio n would
be directly accessible for control purposes, the transient influence of line
fault could be (at least theoretically) completely removed. Although only
Vref is accessible, it is still possible to considerably improve the line­fault
behavior of the system.
This compensating subsystem aims to prevent the grid from entering

an unstable operating regime. For this it uses information about the line
impedance.
A suitable feed­forward compensation is given by the first order filter

H f f (s) = sTd/(sT + 1), where T , Td are tuning parameters. Then the
control signal Vf f (s) = H f f (s)ZLN(s).
In case the system enters the unstable region (i.e. n2YLDZLN > 1),

another control strategy has to be applied, which is described in the fol­
lowing.

Subsystem 2: Feedback When the system is in the unstable region,
it is desirable to drive it back to the stable operation regime. This can
be done by reducing the reference voltage as long as the system is in the
unstable region. Such a compensation can be achieved by a static nonlin­
ear feedback. In Figure 5.15, as a result of the compensation, the vector
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Figure 5.19 Vector field for the design model (5.17) with compensation. The dot
marks the stable equilibrium point. The dashed curve is the loci for maximum power
transfer, n2YLDZLN = 1. The shaded region represents the region of attraction of
the equilibrium point. It has been considerably increased in comparison to the initial
system in Figure 5.15.

field above the line n2YLDZLN = 1 will point inwards (see Figure 5.19).
It results from the the plots that the region of attraction for the stable
equilibrium point has been considerably increased.
It is to be mentioned here that the idea of using the distance from

the peak of the function f in voltage stability studies has been recently
proposed in [Julian et al., 2000]. However, it has never been used (to the
best of the authors knowledge) for dynamic compensation of the voltage
reference signal.
Thus the second control subsystem aims to drive the grid from the

unstable operation regime to the stable operation regime. For this it uses
information about the line impedance, load impedance, and transformer
ratio.
A suitable feedback controller is: Vf b = −max

(
0,α

(
n2YLD − 1/ZLN

))
,

where α is a tuning parameter that is influencing the region of attraction
of the equilibrium point. Figure 5.19 shows the phase plot of the system
when the reference voltage is augmented by Vf b. Notice that the region
of attraction (the shaded region) of the compensated system has been
significantly increased in comparison to the initial system (see Figure
5.15).
It has been shown in the previous sections that the system does not
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necesseraly becomes unstable as the stability limit n2YLDZLN = 1 is
passed. However, this stability limit gives a margin up to those values
of the load admittance where instabilities appear. This problem has two
components:

• from the power control point of view, the critical point is the un­
stable equilibrium point as shown in Figure 5.14. Since the desired
operating point is the stable equilibrium point, the proposed control
structure will have no negative effect on the system.

• from the voltage control point of view, the problem is more inter­
esting. Consider the voltage versus load impedance characteristics
shown in Figure 5.7. According to equation (5.13), increasing n will
have a reversed effect on the load voltage if YLD > 1/(ZLNn1n2)
(where n1 < n2 are two transformation ratios). Since 1/n22 < 1/(n1n2)
< 1/n21, if the stability margin is surpassed, the inversion effect will
appear. Thus a decrease of n is in place if an increase of the load
voltage is desired. This is the same type of action that the proposed
feedback loop will exhibit.

The two augmenting control signals Vf f and Vf b can be combined in
different ways. The simplest scheme is when they are summed together
with the nominal reference value Vref . This way the resulting reference
voltage signal that is applied to the OLTC is the sum Vf f + V f b+ Vref ,
as shown in Figure 5.18.

Compensation for Static Effects

This control structure should be activated, ideally, only if the maximum
loadability of the network is surpassed. However, this depends greatly on
the control actions that succeeds the fault. In case of the compensator
for dynamic effects proposed above, this would mean that for all possible
impedance changes, as long as a stable equilibrium point exists, the con­
troller should stabilize the system. Obviously this means that all these
points should be included in the region of attraction of the equilibrium
point for the compensated system. Using the above suggested feedback
control law, no such guarantees are given, although the region of attrac­
tion is enlarged.
As suggested in [Vu and Novosel, 2001], one can use the stability mea­

sure (ZLD/n2 − ZLN) as variable to drive this stage of the controller. A
simple control law can be an integrator that once a given threshold on
the stability margin is exceeded will disconnect a part of the load.

u̇LS =
1
TLS
dzn(ZLD/n2 − ZLN) (5.18)
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The function dzn denotes the dead­zone nonlinearity. In a similar fashion
one can use the same idea to connect capacitor banks:

u̇CB =
1
TCB
dzn(ZLD/n2 − ZLN) (5.19)

In this case, the connected capacitor bank will change the apparent load
impedance, increasing this way the power throughput of the system.

Putting it all together

As shown above, there are basically, three available control signals for
the system: the transformer ratio n, the capacitor bank, and the load
shedding.
An important objective is to keep the amount of disconnected load at

minimum. A secondary goal is to keep the number of connected capacitor
banks as low as possible. This basically means that there is hierarchy of
preferred control:

• The less expensive control input is the transformation ratio n. It
is desirable to exploit this signal to maximum before any other ac­
tion is taken. The “Compensator for dynamic effects” introduced in
this work uses n as the mean to improve the stability of the power
system.

• If the system is not stabilizable by means of altering n, it is desirable
to connect capacitor banks to the power system, this way increasing
that transferable active power.

• When capacitor banks fail to stabilize the system, as a last resort,
parts of the load can be disconnected. This is the so called load
shedding.

Depending on the complexity of the objective function these three
stages can be combined in different ways. However, since the study of
this mechanism is not the main scope of this work, in the following a sim­
ple structure will be used that highlights the usefulness of the proposed
compensator for dynamic effects.
The main idea is that if the compensator for dynamic effects fails to

stabilize the system, the next stage of control is activated (the considered
stage is the load shedding, that is, no capacitor banks are available). The
failure to stabilize the system of the first stage is quantized by a threshold
on the stability limit. That basically means if ZLD/n2 − ZLN < ∆ < 0, it
is assumed that stability can not be regained by dynamic compensation
and the load shedding is activated.
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5.6 Simulation Results

In order to obtain more realistic simulation results the initial design model
has been modified as follows:

• the dynamics have been scaled according to the benchmark model
[Larsson, 2003],

• additional dynamics have been introduced for the load argument, Φ,

• load shedding input k has been added,

• saturation and quantization is introduced on the transformer ration
n. The latter is intended to simulate the mechanical tap­changer,

• the tap­changer is inherently a discrete system. It changes the trans­
former ratio n in discrete steps. However, in the time domain, the
system can not be viewed as sampled system in the classical sense.
The time instances when an actual change of the transformer ratio
n occurs, depend on mechanical factors in the tap changer and it can
vary from one step to other. Therefore, in the following model the
sampling time is denoted hi and in reality it can vary. In the sim­
ulations however hi is fixed. Moreover, the tap­changer can make
only one step at the time.

• to avoid chattering, an OLTC system usually contains a dead­zone
on the control error.

This way the simulation model is the following:







ẎLD =
1
T

(

(1− k)Pref − E2
ZLD/n

2

∣
∣Z̃LN + Z̃LD/n2

∣
∣
2 cosΦ

)

Φ̇ = (1− k)Qref −
1
T

Φ − E2
ZLD/n

2

∣
∣Z̃LN + Z̃LD/n2

∣
∣
2 sinΦ

η(t+ hi) = η(t) + q sign(e(t))

e(t) = dzn

(

Vref − E
ZLD/n

∣
∣Z̃LN + Z̃LD/n2

∣
∣

)

n = sat(η)

(5.20)

The saturation on n has the limits nmin = 0.75, nmax = 1.25 and
the dead­zone has the limits ±0.03. The chosen quantization step q is
0.027. The chosen sampling time is 30 seconds, which approximates the
mechanical delay of the tap­changer and the OLTC delay timer.

138



5.6 Simulation Results

0 500 1000 1500 2000 2500
0

0.5

1

0 500 1000 1500 2000 2500
0

0.2

0.4

0.6

0.8

0 500 1000 1500 2000 2500
0

5

10

0 500 1000 1500 2000 2500

0.8

1

1.2

V
2

P
n
2
Y
L
D

n

time [sec]

Figure 5.20 At t = 100 seconds, a line tripping is simulated by a 20% increase of
the line impedance ZLN . The system becomes unstable although a stable equilib­
rium point exists.

Figure 5.20 shows simulation results fo the before presented model.
The model parameters are Vref = 1, Pref = 0.78, Qref = 0.15, T = 60,
E = 1.5, and Θ = 1.47 radians. Although a stable equilibrium point existe,
the system becomes unstable and voltage collapse occurs.
The three­stage control system consists of the following compensator:

• Feed­forward compensation: H f f (s) = 30s/(20s + 1) has a “dirty­
derivative” character with the low­pass filter having its time con­
stant comparable with that of the controlled system.

• Feedback compensation: Vf b = −max
(
0,α

(
n2YLD − 1/ZLN

))
. The

parameter α influences the region of attraction of the equilibrium
point. In the simulations α = 1.1.

• Load shedding is done according to the following adjustment rule:
k̇ = −1/TLSdznVf b. The limits of the dead­zone are design parame­
ter. In the simulation ±0.2 has been used. This parameter has been
tuned by simulations although good physical interpretation exists.
The used integrator time constant is TLS = 10. The load shedding
is based on the VIP.

The first two control signals (Vf f and Vf b) augment the reference
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Figure 5.21 At t = 100 seconds, a line tripping is simulated by a 20% increase
of the line impedance ZLN . By momentary changes of the reference value by aug­
mentation with V f f (dashed line) and V f b, stability is maintained without shedding
load. In case the reference voltage had been kept constant, the system would become
unstable.

value as follows:

e(t) = dzn

(

Vref + Vf f + Vf b − Es
ZLD/n

∣
∣Z̃LN + Z̃LD/n2

∣
∣

)

.

However, a more complex augmentation is also possible, e.g. Vf f is con­
ditioned by Vf b.
In the simulations, the following parameters have been used: Vref = 1,

Pref = 0.78, T = 60, E = 1.5, and Θ = 1.47 radians. In addition, in the
simulation from Figure 5.21 the reference reactive power is Qref = 0.15.
The scenario consists of a line tripping at t = 100 seconds, when the line
impedance ZLN is increased from 1 to 1.2. At the moment of the fault, Vf f
shows a significant increase. However, since the new equilibrium point is
not achieved the system ends up in the unstable operating region (at
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Figure 5.22 At t = 100 seconds, a line tripping is simulated by a 20% increase of
the line impedance ZLN . The loads power demand can not be met by the network
and load shedding is applied at around 1600 seconds.

around 400 seconds). This will trigger the second stage of the controller,
decreasing Vf b. This will result in a decrease of the overall voltage ref­
erence value such that the system is brought back in the stable region.
Notice that throughout the entire control sequence, the third control stage
(load shedding) is not engaged, i.e. k = 0.
It is important to remark that the first step (i.e. Vf f ) is sensitive to the

fault timing due to the low sampling frequency. Similarly if multiple steps
(e.g. two) would be possible, the performance would increase significantly.
Nevertheless, even in the case of the state­of­the­art OLTCs, where the
delay timer is inversely proportional to the control error, considerable
improvements can be obtained in compensating for line tripping.
In the next simulation (Figure 5.22), the reference reactive power is

increased to Qref = 0.2. This will result in a power demand from the load
that can not be satisfied by the network after the line tripping. Conse­
quently load shedding has to be used. This can be seen at approximately
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1100 seconds, when one step load shedding is applied. After the load shed­
ding, the secondary control stage is still active, improving the convergence
properties of the system.

5.7 A Test-System Illustrating Load-Voltage Dynamics in
Power Systems

This test system has been proposed by ABB within the European project
CC. It is a benchmark illustrating voltage instability phenomena in a
simplified power systems. The load model used is a dynamical model of the
form (5.1). Coupled to the network this model give rise to a differential­
algebraic form for the studied power system:







ẋ = f (x, y,u)

0 = n(x, y,u)

f (x, y,u) =

[
−
xp
Tp
+ P0(V

as
2 − V

at
2 )

−
xq
Tq
+ Q0(V

bs
2 − V

bt
2 )

]

n(x, y,u) =

[
V2E
nZLN

sin(δ ) + (1− k)
(
xp
Tp
+ P0V

at
2

)

−
V2E
nZLN

cos(δ ) +
V22

n2ZLN
− B0V

2
2 + (1− k)

(
xq
Tq
+ Q0V

bt
2

)

]

(5.21)

where xT = [xp, xq], yT = [V2, δ ], u = [n, k].
Similarly to model (5.20), the system has two dynamic states x. Addi­

tionally, this model has two algebraic states, the voltage on the secondary
side of the transformer V2 and the angle between the generator and the
load voltages δ .
Furthermore, this system has an auxiliary capacitor B0, connected

at the load side in order to increase the power transfer capacity of the
network. This term can be used as a control input if capacitor bank con­
nections are to be simulated. Naturally, this will mean that the reactance
introduced by the capacitor has to be taken into account in the control
law. The feedback control law becomes:

Vf b = −max
(
0,α

(
n2(YLD + B0) − 1/ZLN

))

That is the equivalent admittance of the load incorporates the capacitor.
The OLTC dynamics is basically governed by an integrator. For sake

of simplicity, consider first a continuous dynamics. The integrator time
constant Ti is set equal to the some of the mechanical delay Tm and a
control delay Td in the OLTC. The control delay time is a tuning parameter
in the OLTC. It is used as a timer until the first control action is taken

142



5.7 A Test­System Illustrating Load­Voltage Dynamics in Power Systems

V2

n

P

ZLD

time [sec]

Figure 5.23 At t = 100 seconds, a line tripping is simulated by an increase of the
line impedance from 0.25 to 0.5. After some transients the system converges to a
stable equilibrium point.

after a deviation in the load voltage. Typical values are Tm = 1 − 5 sec,
Td = 30− 120 sec.
Similarly to (5.20), after a fault in the line, the system becomes un­

stable or reattains stability depending on the operating point. Figure 5.23
shows a scenario where after a line fault the system converges to a stable
equilibrium point. The parameters used in the simulation are: P0 = 1,
Q0 = 0.27, B0 = 0.2, E = 1.05, Tp = Tq = 60, Ti = 31, as = bs = 0,
and at = bt = 2. At t = 100 seconds, a line tripping is simulated by an
increase of the line impedance from 0.25 to 0.5. After some transients the
system converges to a stable equilibrium point.
The same simulation scenario is repeated in case the desired reac­

tive power is set to Q0 = 0.28. In this case the system becomes unsta­
ble after the line fault, despite a stable equilibrium point at (δ , n) =
(−0.634, 1.25).
If the dynamic compensation in the reference voltage is used the sta­
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Figure 5.24 At t = 100 seconds, a line tripping is simulated by an increase of the
line impedance from 0.25 to 0.5. After an initial recovery the voltage will collapse,
and the system becomes unstable.

bility can be re­attained. Figure 5.25 shows simulation results in case
the reference signal is dynamically adjusted. At the time instant the
fault is detected, the feed­forward term will increase the reference sig­
nal. This compensation turns out to be sufficient to attain a stable equi­
librium point. In this scenario the stable equilibrium point is achieved
although the loci n2(YLD + B0)ZLN = 1 is surpassed. If the reference is
decreased once this barrier is passed, the control action will contribute for
a better performance (see Figure 5.26). Notice the typical behavior of the
compensated reference signal. When the fault appears, the voltage refer­
ence signal is abruptly increased, followed by a mild decrease. If the loci
n2(YLD+B0)ZLN = 1 is surpassed and the system arrives in the unstable
region, the reference signal is again modified, however, in this case it is
decreased. After the system arrives to its equilibrium point the reference
signal is left unchanged, at its nominal value.
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Figure 5.25 At t = 100 seconds, a line tripping is simulated by an increase of the
line impedance from 0.25 to 0.5. The reference voltage is dynamically changed such
that stability is re­attained.
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Figure 5.26 At t = 100 seconds, a line tripping is simulated by an increase of the
line impedance from 0.25 to 0.5. The reference voltage is initially increased and once
n2YLDZLN > 1 the reference voltage is decreased. The stable equilibrium point is
achieved.
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Figure 5.27 At t = 100 seconds, a line tripping is simulated by an increase of the
line impedance from 0.25 to 0.5. The reference voltage is initially increased and once
n2(YLD + B0)ZLN > 1 the reference voltage is decreased. Due to the high sampling
time and the quantization step of the control signal the system becomes unstable.

A more realistic model for an OLTC is:

n(k+ h) =







n(k) + 1, if V2 − Vref < DB/2 and n(k) < nmax
n(k), if DB/2 < V2 < DB/2

n(k) − 1, if (V2 − Vref ) > DB/2 and n(k) > nmin

This model only gives a good approximation for constant delay time, and
the sample time of the discrete­time system should then be chosen as
h = Td+Tm. DB denotes a dead­band on the control error which prevents
the chattering that can appear due to the quantized control output n. The
default values used in simulation are: h = 30+ 1 = 31 sec. , DB = 0.03.
The step size of the OLTC is 0.02.
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Figure 5.27 shows the case with Q0 = 0.27 with a discrete OLTC
model. Although this case was easy to stabilize in the continuous case, the
influence of the high sampling time together with the quantized control
output will result in an unstable system.
Not even the tested compensator is able to stabilize the system. How­

ever, by reducing the control delay Td the compensated system will achieve
a stable operating point. Figure 5.28 shows a simulation when the control
delay is reduced from 30 to 18 seconds.
Similarly, if the step size of the control output n is increased, stability

can be achieved. Figure 5.29 shows a simulation result when the step size
of the tap changer is increased from 0.02 to 0.04.
Both changes in the OLTC dynamics aims to a quicker response. Nev­

ertheless, it is to point out that without the compensation of the reference
voltage the system would still become unstable.
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Figure 5.28 At t = 100 seconds, a line tripping is simulated by an increase of the
line impedance from 0.25 to 0.5. The reference voltage is initially increased and once
n2(YLD + B0)ZLN > 1 the reference voltage is decreased. The control time delay is
reduced from 30 sec. to 18 sec. The system is stabilized.
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Figure 5.29 At t = 100 seconds, a line tripping is simulated by an increase of
the line impedance from 0.25 to 0.5. The reference voltage is initially increased and
once n2(YLD + B0)ZLN > 1 the reference voltage is decreased. The step size of the
tap changer is increased from 0.02 to 0.04 . The system is stabilized.
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5.8 Conclusion

This work proposes a method for improving the stability properties of
power networks. The main concern is the situation when instabilities oc­
curs due to dynamic effects.
The proposed method consists of momentary change of the transformer

ratio n so as to avoid the critical operating region. Since in practice the
reference voltage Vref is the available signal for compensation the method
changes n by means of Vref.
In case the network capacity is exceeded, the method can be easily

combined with coupling of capacitor banks and load shedding. This way
a complete emergency control scheme is obtained.
Simulation results with different models show the utility of the intro­

duced control structure. The method stabilizes the system returning the
voltage to its nominal value while minimizing the amount of disconnected
load.
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