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Abstract

Based on energy conservation, an optical theorem is constructed for a slab

having an arbitrary periodic microstructure in a plane. A sum rule for low

pass structures is derived using analytic properties of Herglotz functions based

on causality and passivity. The sum rule relates the extinction cross section to

the static polarizability per unit cell, and quanti�es the interaction between

the slab and electromagnetic �elds possible over all wavelengths. The results

are illustrated with several numerical and experimental examples.

1 Introduction

The optical theorem relates the forward scattering from an object to the extinc-
tion (or total) cross section [22]. It was �rst discussed more than a century ago
by Rayleigh [36] and later extended to quantum mechanics, acoustics, and elasto-
dynamics. There are also formulations of the optical theorem for inhomogeneous
backgrounds [19, 20], waveguides [24], corrugated surfaces [39], and in the time do-
main [16]. The corresponding forward scattering sum rule shows that the extinction
cross section integrated over all wavelengths is proportional to the polarizability of
the object. It was introduced for dielectric spheroids by Purcell [27] and generalized
to arbitrary objects in [6, 34].

The forward scattering sum rule shows that the all-spectrum interaction between
the electromagnetic �eld and an object is proportional to the (static) polarizability
of the object. This identity is useful since the solution of a relatively simple static
problem provides physical insight in the dynamic scattering over a bandwidth. It
also gives physical limitations on the extinction cross section bandwidth product
expressed in the polarizability of the object. The sum rule has recently been used to
derive an antenna identity and several physical bounds on antennas [7�9, 33]. It has
also been used to show bounds on metamaterial scatterers [35] and extraordinary
transmission [10].

In this paper, the optical theorem and the forward scattering sum rule are gen-
eralized to periodic structures. This version of the optical theorem shows that
the extincted power from an incident plane wave is proportional to Imh(k), where
h(k) = i2(1 − T (k))A is a Herglotz function [1], A denotes the cross section area
of the unit cell and T the co-polarized part of the lowest order transmission coe�-
cient. The low-frequency asymptotic expansion of h(k) is used to derive the forward
scattering sum rule according to the general procedure in [1]. The derivation is
solely based on the assumptions that the periodic structure does not support global
currents in the low-frequency limit and that the micro structure is made of linear,
passive, and time-translational invariant materials.

Moreover, we show that the forward scattering sum rule for isolated objects is
retrieved by extending the unit cell length to in�nity. An intermediate forward
scattering sum rule for two dimensional objects and objects that are periodic in
one dimension by letting the unit cell increase in one direction is also derived. The
theoretical results are illustrated by numerical simulations and measurements for
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Figure 1: Illustration of a screen with a periodic microstructure. The incident,
re�ected, and transmitted electric �elds are denoted by E(i), E(r), and E(t), respec-
tively. The lattice lengths in the xy-plane are denoted by `x and `y, and d is the
thickness of the supporting dielectric substrate. The entire structure is assumed to
be in the half space z ≤ 0.

the scattering of a periodic sheet of split ring resonators (SRR) in free space and for
a cylinder of SRRs in a parallel plate waveguide.

The new sum rule is instrumental in the understanding of interaction between
electromagnetic �eld and periodic structures with applications for frequency selective
surfaces [21], electromagnetic band gap structures [40], and metamaterials [3, 32]. It
also provides new insight about the forward scattering sum rule for �nite scatter-
ers [6, 34] and its associated antenna identity [8, 9].

This paper is organized as follows. The optical theorem for periodic structures is
presented in Sec. 2. A Herglotz function and its high and low-frequency asymptotic
expansions are presented in Sec. 3. The forward scattering sum rule is derived in
Sec. 4. In Sec. 5, we present numerical and experimental veri�cations of the sum
rule. The paper is concluded in Sec. 6.

2 Optical theorem for periodic structures

We consider a planar periodic structure in otherwise free space. The material and
microstructure are modeled with arbitrary linear and temporally dispersive consti-
tutive relations, restricted to causal and passive dispersion models such as, e.g., the
Debye, Lorentz, and Drude models [14]. The array is also assumed to not support
currents in the low-frequency limit and be su�ciently large to be modeled as an
in�nite array [12]. This is, e.g., the case for arrays with disjoint metallic inclusions
printed on a bulk material with negligible static conductivity.

The array lattice is described by two basis vectors `xx̂ and `yŷ, and the entire
heterogeneous structure is contained in the interval −d ≤ z ≤ 0, with a unit cell
lying in the xy-plane, see Fig. 1. Consider a time harmonic linearly polarized plane
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wave impinging at normal incidence on the array, i.e., E(i)(r) = E0eikz, where
E0 = E0ê, ê is a real valued unit vector along the polarization direction of the
incident �eld, r = xx̂ + yŷ + zẑ = ρ + zẑ is the position vector, k denotes the
wavenumber, and time convention e−iωt is used.

A spectral decomposition of the transmitted �eld, E(t), in Floquet modes is used
outside the array

E(t)(k; r) =
∞∑

m=−∞

∞∑
n=−∞

E(t)
mn(k)eikmn·ρeikz,mnz, (2.1)

for z ≥ 0, where kmn = m2π/`xx̂ + n2π/`yŷ, and kz,mn =
√
k2 − |kmn|2 is the

wavenumber in the z direction for the mn mode. For m or n large enough, kz,mn is
an imaginary number indicating an evanescent wave. The expansion coe�cients are
expressed in the electric �eld behind the structure as

E(t)
mn(k) =

1

`x`y

`y/2∫
−`y/2

`x/2∫
−`x/2

E(t)(k;x, y, 0)e−ikmn·ρ dx dy. (2.2)

The re�ected �eld, E(r)(k; r), is similarly expanded in the region z ≤ −d. The ex-
pansion coe�cients of the transmitted and re�ected �elds are related to the incident
�eld via the linear mappings E(t)

mn = Tmn · E0 and E(r)
mn = Rmn · E0. It is only

a �nite number of modes that propagate for a �xed frequency, and, speci�cally, it
is only the zeroth order modes (m = n = 0) that propagate for frequencies below
the �rst grating lobe [21], i.e., f < c0/max{`x, `y}. In the following we use the
short-hand notation T = ê ·T00 · ê for the co-polarized transmission coe�cient T .

We use energy conservation to show an optical theorem for periodic structures,
see also [24]. The incident power per unit cell is Pi = A|E0|2/(2η0), where A = `x`y

is the cross section area of the unit cell. The re�ected power, Pr, can be written as
a square sum of the expansion coe�cients. The corresponding transmitted power,
Pt = |T |2Pi + Pt1, is decomposed into the contributions from the co-polarized part
of the lowest order mode, |T |2Pi, and from the remaining modes, Pt1. The absorbed
power, Pa, is the di�erence between the incident and the sum of the re�ected and
transmitted powers, i.e.,

Pa = Pi − Pr − Pt = Pi − Pr − |T |2Pi − Pt1. (2.3)

The scattered power, Ps, is the sum of the re�ected power, Pr, and the power in the
scattered part of the transmitted �eld. This scattered power consists of the power
in the co-polarized forward scattered �eld, i.e. the di�erence between the total �eld
and the incident �eld, |1 − T |2Pi, and transmitted power in the remaining modes,
Pt1, i.e.,

Ps = Pr + |1− T |2Pi + Pt1. (2.4)

The extincted power is �nally the sum of the absorbed and scattered powers

Pext = Pa + Ps = Pi − Pr − |T |2Pi − Pt1 + Pr + |1− T |2Pi + Pt1

= 2 Re{1− T}Pi (2.5)
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that after normalization with the incident power �ux, |E0|2/(2η0), gives the extinc-
tion cross section

σext = σa + σs = 2 Re{1− T}A. (2.6)

This is the optical theorem for the periodic structure. The derivation is based
only on energy conservation and the use of a power orthogonal mode decomposition
outside the structure, where one mode is singled out and considered fundamental.
This calls for two remarks: 1) Since nothing in the derivation changes if we choose
an arbitrary Floquet mode Emn instead of E00, the optical theorem (2.6) is valid
for any Floquet mode. 2) The optical theorem is valid for any structure where a
similar mode decomposition can be made, for instance in a waveguiding system.

3 Low- and high-frequency expansions

We use causality and passivity of T (k) to de�ne a Herglotz function that is used
to construct sum rules. The transmission coe�cient T (k) is holomorphic in k for
Im k > 0 due to causality, and bounded in magnitude by unity due to passivity,
i.e., |T | ≤ 1. The logarithm [4, 12, 28], the Cayley transform [5] and many other
combinations of T can be used to construct Herglotz functions [1, 11]. Here, we
follow the extinction cross section (2.6) and use

h(k) = i2
(
1− T (k)

)
A (3.1)

This is a Herglotz function [1, 25], i.e., h(k) is holomorphic and Im{h(k)} ≥ 0 for
Im k > 0.

It is illustrative to use the mode expansion (2.1) and (2.2) in the free space
z ≥ 0 and express h(k) in the electromagnetic �elds. The expansion coe�cients (2.2)
simplify for the transmission coe�cient, which is given by the average of the electric
�eld behind the structure. This gives the explicit expression

h(k) = i2

(
1− ê ·E

(t)
00 (k)

E0

)
`x`y =

−2i

E0

∫ `y/2

−`y/2

∫ `x/2

−`x/2
ê ·E(s)(k;x, y, 0) dx dy

=
−i

E0

∫ `y/2

−`y/2

∫ `x/2

−`x/2
ê ·E(s)(k;x, y, 0) + η0(ẑ × ê) ·H(s)(k;x, y, 0) dx dy, (3.2)

where the scattered �eld E(s) = E(t)−E(i) is used. The last line is obtained by using
the fact that the zeroth order modes are plane waves propagating in the positive z
direction, and all higher modes integrate to zero.

For a low-pass structure, the low-frequency asymptote of T is obtained from
the Maxwell equations by an expansion of the �elds in powers of k as discussed
in [12, 17, 30], i.e.,

h(k) ∼ kγ = k
(
ê · γe · ê+ (k̂ × ê) · γm · (k̂ × ê)

)
(3.3)

as k → 0. The electric and magnetic static polarizabilities γe and γm provide
the induced electric and magnetic dipole moments per unit cell, p = ε0γe · E and
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m = γm ·H , when the structure is subjected to constant electric and magnetic
�elds E and H , respectively. More precisely, γe is de�ned as [34, 35]

ê · γe · ê =
1

E0

∫
Ω×[−d,0]

ê · (ε(0; r)/ε0 − I) ·E(0; r) dV, (3.4)

where the zero-frequency �eld E(0; r) has the prescribed mean value ê and satis�es
the electrostatic equations

∇×E(0; r) = 0, ∇ ·
(
ε(0; r) ·E(0; r)

)
= 0, (3.5)

in the unit cell Ω × R, with periodic boundary conditions in the xy-plane. Here,
ε(0; r) is the static permittivity dyadic (which is real-valued, symmetric, and positive-
de�nite), and ε0 is the free space permittivity. This system of partial di�erential
equations can be solved using the Finite Element Method, typically by representing
the electric �eld with a scalar potential as E(0; r) = êE0 −∇ϕ(r) and solving the
elliptic equation ∇ · [ε · (êE0 − ∇ϕ)] = 0, where the scalar potential ϕ is periodic
in the plane and decays to zero as z → ±∞ if ê is in the plane. The elliptic na-
ture of the problem means this numerical solution provides an upper bound to the
polarizability; solving the problem with a vector potential instead provides a lower
bound [31]. Integral equation solvers such as the method of moments (MoM) are
sometimes preferred, particularly due to their e�ciency in model problems involving
only metal structures and no materials.

The static problem (3.5) possesses some variational properties, which can be used
to show that the polarizability dyadic is monotone in ε in the respect that if ε is
increased anywhere in Ω×[−d, 0], then the quadratic form ê·γe ·ê (simply referred to
as the polarizability throughout this paper) does not decrease [15, 31]. The magnetic
polarizability dyadic, γm, is de�ned analogously, by substituting (E, ε)→ (H ,µ).

The high-frequency asymptotic is h(k) = O(1) as k→̂∞, where →̂ denotes limits
taken inside the upper half complex plane. This follows from passivity |T (k)| ≤ 1
and hence |h(k)| ≤ 4A for all k.

4 Forward scattering sum rules

Sum rules are equations stating that the sum or integral of a certain quantity has a
given value. In particular, a large variety of sum rules can be derived for Herglotz
functions [1], where typically the integrand is the imaginary part of the Herglotz
function weighted by some function of frequency k, and the integral is related to
the low- and high frequency expansions of the function. In the present case where
the Herglotz function is given by the extinction cross section (3.1), the asymptotic
expansions are

h(k) ∼

{
kγ as k→̂0

O(1) as k→̂∞
(4.1)

and the relevant sum rule is [1]

2

π

∫ ∞
0

σext(k; k̂, ê)

k2
dk = ê · γe · ê+ (k̂ × ê) · γm · (k̂ × ê), (4.2)
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Figure 2: Scattering geometries. a) periodic in two directions. b) periodic in one
direction. c) single object.

where σext = Imh is used. It is convenient to rewrite the sum rule in the wavelength
variable, λ = 2π/k, that transforms (4.2) into

1

π2

∫ ∞
0

σext(λ; k̂, ê) dλ = ê · γe · ê+ (k̂ × ê) · γm · (k̂ × ê), (4.3)

where the symbol σext(k; k̂, ê) is reused as the extinction cross section as a function
of the wavelength. We observe that (4.2) is identical to the forward scattering sum
rule with σext being the extinction cross section for an object in free space [6, 34].
The identity (4.3) is bounded to derive a physical limitation on the product between
the bandwidth and extinction cross section

λ2 − λ1

π2
min

λ∈[λ1,λ2]
σext(λ) ≤ ê · γe · ê+ (k̂ × ê) · γm · (k̂ × ê). (4.4)

The sum rule is valid for arbitrary periodic structures that do not support cur-
rents in the static limit and is composed by linear and passive materials. In the
following, we show that the forward scattering sum rule [6, 34] for isolated objects is
obtained by extending the unit cell in two directions, i.e., by letting `x = `y → ∞,
see Fig. 2c. We also obtain an intermediate sum rule for two-dimensional objects
and for objects that are periodic in one direction, see Fig. 2b.

As `x = `y = ` → ∞, the low-frequency limit is obtained by replacing Ω with
R2 in (3.4) and (3.5) and observing that the potential ϕ(r) vanish as |r| → ∞. The
decay of the potential follows from the expression of the potential as a sum over the
induced dipole moments, i.e.,

ϕ(r) =
∞∑

m=−∞

∞∑
n=−∞

r − rmn
4π|r − rmn|3

· γe ·E0 (4.5)

where rmn = m`xx̂+n`yŷ+ζẑ. Note, that the monopole term vanishes as the objects
are uncharged. The sum is convergent for r 6= rmn and it shows that the potential
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between the objects decay, e.g., for r = r11/2, to zero as `→∞. The polarizability
dyadic γe approximates hence the free space polarizability dyadic [17, 34] as `→∞.

The entire periodic structure contributes to the scattered �eld for a �nite unit
cell. However, the contributions from the neighboring objects decrease as ` →
∞. The integral representation (3.2) is used to express h in the �elds behind the
structure as

h(k)→ h3(k) =
−i

E0

∫
R2

ê ·E(s)(k;x, y, 0) + η0(ẑ × ê) ·H(s)(k;x, y, 0) dx dy (4.6)

in the limit `→∞. The right-hand side of (4.6) is recognized as the surface integral
representation of the electromagnetic �eld expressing the far �eld in the scattered
�eld on the surface z = 0, i.e., h3(k) = 4π limz→∞ ze−ikzê ·E(s)(k, zẑ)/(kE0), see [6].
This shows that Imh3(k) = σext(k), where σext denotes the extinction cross section
for an object in free space. This forward scattering sum rule has been extensively
veri�ed [6, 34, 35] and is useful in the analysis of small antennas [8, 9].

The case with `y → ∞ corresponds to a situation with periodicity in the x-
direction, see Fig. 2b. This scattering con�guration is found in scattering of elon-
gated objects that can be approximated by two dimensional scattering. Following
the analysis above, we let `y →∞ in (3.2), to get the Herglotz function

h(k) = i2`x`y

(
1− T (k)

)
→ h2(k)`x

=
−i

E0

∫
R

∫ `x/2

−`x/2
ê ·E(s)(k;x, y, 0) + η0(ẑ × ê) ·H(s)(k;x, y, 0) dx dy (4.7)

After dividing with `x, we recognize the �rst term in the right-hand side of (4.7)
as the mean electric �eld on the line described by z = 0 and −∞ < y < ∞, and
correspondingly for the magnetic �eld. The right hand side is then seen to be the
line integral representation of the electromagnetic �eld expressing the 2D far �eld in
the scattered �eld at z = 0, i.e., h2(k) = limz→∞(i8πkz)1/2e−ikzê ·E(s)(k, zẑ)/(kE0),
see [2, p. 6] and [29, p. 207]. This shows that Imh2(k) = σext,2D(k), where σext,2D

denotes the extinction cross section per unit length of an in�nite cylindrical object.

5 Examples

We demonstrate the sum rule (4.3) in four applications: transmission through di-
electric slabs, arrays of lossy split ring resonators, perfectly conducting split ring
resonators on a dielectric substrate, and a resonant cylinder structure.

5.1 Dielectric slabs

The transmission and re�ection coe�cients of a homogeneous isotropic slab with
thickness d are

T =
(1− r2

0)ei(n−1)kd

1− r2
0e2inkd

and R = r0
1− e2inkd

1− r2
0e2inkd

, (5.1)
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Figure 3: Simulated values for the absorption σa, scattering σs, and extinction σext

cross sections of dielectric slabs with the Lorentz models εr(k) = 1 + 1/(1− i0.1k −
0.2k2) and εr(k) = 2 + 1/(1− i0.1k − 0.2k2) in a) and b), respectively.

respectively, where n =
√
εrµr is the refractive index, r0 = (1 − ηr)/(1 + ηr), and

ηr =
√
µr/εr is the relative impedance. The generalized scattering, absorption, and

extinction cross sections are σs = A(|R|2 + |1 − T |2), σa = A(1 − |R|2 − |T |2), and
σext = 2ARe{1− T}, respectively, see also the optical theorem (2.6).

Consider a dielectric slab with thickness d = 1 and the permittivity modeled by
the Lorentz model εr(k) = ε∞ + (εs − ε∞)/(1 − 0.1ik − 0.2k2), where d and k are
dimensionless quantities. The absorption, scattering, and extinction cross sections
are depicted in Fig. 3 for {ε∞ = 1, εs = 2} and {ε∞ = 2, εs = 3}. The left hand sides
of the sum rule (4.3) are determined numerically to A and 2A. This agrees with the
polarizability (εs − 1)dA and con�rms the sum rule (4.3). Note the oscillations at
low λ/d for the case {ε∞ = 2, εs = 3}, corresponding to the positive insertion delay
with respect to the background in the high-frequency limit for this case.

An experimental demonstration is obtained as follows. Transmission is measured
from 20MHz to 20GHz using an Agilent E8363B network analyzer and a coaxial �x-
ture with length 50.81mm, and inner and outer diameters of 3.05mm and 6.97mm,
respectively. Two material samples �lling the cross section are used, having lengths
d1 = 9.11 mm and d2 = 8.94 mm, and relative permittivities ε1r ≈ 2.1 + 0.01i and
ε2r ≈ 2.7 + 0.02i almost constant throughout the band, respectively. The transmis-
sion coe�cient T is calculated as the insertion loss S21 for the �xture with a sample
present normalized by the insertion loss for the empty �xture, T = S

(sample)
21 /S

(empty)
21 .

Two di�erent con�gurations are investigated: 1) with the two dielectric sam-
ples adjacent to each other, and 2) separated by a distance of 8.77mm. These two
con�gurations are chosen since they have the same static polarizability per unit
area, γ/A = (ε1r − 1)d1 + (ε2r − 1)d2, but di�erent frequency dependence due to
their di�erent geometric structure. The polarizability for each case is calculated
from measurement data by determining the e�ective permittivity for the two con-
�gurations using the Nicolson-Ross-Weir algorithm [23, 38] at 20MHz, and using
γ = (Re(εeff)− 1)Ad.
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Figure 4: Measured values (solid curves) and simulated values (dashed curves) of
extinction cross sections for two di�erent con�gurations of layered slabs. The length
d = 26.82 mm is chosen as the total length of con�guration 2, i.e., where the two
dielectric slabs are separated by air. The theoretical curves are computed using
lossless slabs with ε1r = 2.1 and ε2r = 2.7.

The resulting extinction cross sections are depicted in Figure 4, where the mea-
sured polarizabilities are γ1 = 3.14 cm3 and γ2 = 3.13 cm3 for the two con�gurations,
respectively. The left hand side of (4.3) is estimated to 2.98 cm3 and 2.94 cm3 re-
spectively for two cases, which shows that the right hand side and the left hand side
of (4.3) are essentially the same for the two cases.

5.2 Array of lossy split ring resonators

Consider a quadratic split ring resonator (SRR) with unit cell length ` = 2.5 mm.
The design of the microstructure is similar to the split ring resonators discussed
in [32]. The line width and distances in the SRR are `/10, see also [12] and Sec. 5.3.
The SRRs are modeled as a resistive sheet having sheet resistance Rs = 1/(ςd0) =
1 Ω, where ς and d0 denote the bulk conductivity and thickness of the SRR [37]. The
supporting dielectric structure is d = 0.3 mm thick and has the relative permittivity
εr = 2.

The transmission and re�ection coe�cients are simulated using CST Microwave
Studio for 0.1 GHz ≤ f ≤ 200 GHz. The absorption, σa, and scattering, σs, cross
sections are determined from the transmission and re�ection coe�cients in analogy
with (2.3) and (2.4), see Fig. 5. The extinction cross section is determined both as
the sum σext = σa + σs and from the optical theorem (2.6), see Fig. 5.

The integrated extinction (4.3) is determined to 1.6`3, which is close to the low-
frequency limit σext(k)/k ≈ 1.7`3 for k ≈ 0 and the polarizability γ ≈ 1.7`3 as
determined using Comsol multiphysics, see also [12].
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Figure 5: Simulated values for the absorption σa, scattering σs, and extinction σext

cross sections of an array of 1 Ω split ring resonators on a dielectric slab with εr = 2
using CST.

5.3 Array of split ring resonators on a FR4 substrate

A �nite periodic array of split ring resonators composed of 240× 240 split ring res-
onators etched in 18µm thick copper and supported by a 0.6 × 0.6 m2 and 0.3 mm
thick dielectric substrate is used, see Fig. 6b. The experimental setup consists of
a pair of wideband ridged horn antennas facing each other at a distance of 0.70 m
with the sample placed at the midpoint, see also [12]. The sample measurement is
divided into two frequency intervals motivated by the necessity to use two di�er-
ent antenna pairs for the frequency bands [1, 22] GHz and [16, 40] GHz. The sample
measurement is normalized with a free space measurement and the resulting trans-
mission coe�cient is gated with a 2.3 ns window in the time domain. The size of
the window is chosen to minimize the in�uence of the background, and it reduces
the useful frequency range to [2.5, 38] GHz.

The transmission coe�cient is also determined numerically using the �nite ele-
ment solver in CST Microwave Studio for the horizontal and vertical polarizations.
Since the sheet resistance of the copper layer is very low, Rs = 1/(ςd) ≈ 1 mΩ, the
copper is modeled as an in�nitely thin perfect electric conductor, and the dielectric
substrate is modeled with an isotropic temporally dispersive relative permittivity
decreasing from 4.45 at 0.1 GHz to 4.30 at 10 GHz. The overall loss factor is 0.02
according to the technical data sheet from the manufacturer. Fig. 6a depicts the real
and imaginary parts of h = i2A(1− T ), and the results from numerical simulations
are in good agreement with the measured values.

The polarizability per unit area, ê·γe ·ê/A, is estimated by solving (3.4) and (3.5)
using the �nite element solver from Comsol Multiphysics, where the static relative
permittivity εr = 4.35 is used. The result is ê · γe · ê/A = 7.2 mm and ê · γe ·
ê/A = 7.1 mm for the horizontal and vertical polarizations, respectively, see [12].
By numerically integrating the curves in Fig. 6, this integral is estimated to 6.3 mm
and 6.0 mm for the horizontal and vertical polarizations, respectively. These values
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Figure 6: a) Measured values (solid curves) and simulated values (dashed curves)
for the forward scattering of an array of split ring resonators on a FR4 substrate. b)
Geometry of the split ring resonators on a 0.3mm thick FR4 substrate with εr = 4.35.

are comparable with the right-hand side of (4.3) normalized by the cross section
area of the unit cell. From (4.3) the slope of the real part at low frequencies is the
static polarizability.

5.4 Resonant cylinder structure in a parallel plate waveguide

The forward scattering is determined for a set of SRRs on a cylindrical structure in
a parallel plate waveguide [18]. The cylindrical structure is constructed by rolling
up a 21.3 × 63.9 mm2 and 0.51 mm thick Arlon CLTE-XT sheet with 4 × 12 split
ring resonators around an expanded polystyrene cylinder. The SRRs are etched in
18µm thick copper as in Fig. 6b, but here with a unit cell length of ` = 5.32 mm (the
line width and distances are `/10) giving a resonance frequency around f = 5 GHz.
The outer radius of the cylinder is 10.2 mm. The experimental setup consists of a
pair of TEM horn antennas facing each other at a distance 0.98 m with the sample
placed in the center of the waveguide [18]. The sample measurement is normalized
with a free space measurement [18]. The �uctuations at low frequencies in Fig. 7 are
due to noise and interferences introduced in the measurement setup [18]. It is also
noted that the setup is too small to use the time gating as used in the free space
measurements in Fig. 6.

The forward scattered �eld is also determined numerically using the �nite element
solver in CST Microwave Studio as in Sec. 5.3 with the Arlon substrate modeled by
the relative permittivity εr = 2.94 and loss tangent 0.0025. The boundary conditions
are modeled with periodic boundaries at the top and bottom of the cylinder and open
boundaries for the other directions. It is observed that the numerical results resemble
the measured values, see Fig. 7. The right hand side of (4.3) from simulations is
calculated to 17.8 cm3 which is the slope of the real part of the h function at low
frequencies and the left hand side is estimated to 13 cm3 over the frequency range
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Figure 7: Measured values (solid curves) and simulated values (dashed curves) for
the forward scattering of a resonant structure on an ARLON CLTE-XT substrate
supported by an expanded polystyrene cylinder.

f = [1 − 10] GHz. The measurement is noisy at low frequencies and not reliable
to calculate the integral value in (4.3). Therefore the left hand side of sum rule
is integrated from 2 GHz to 20 GHz and this value is estimated to 13.8 cm3. The
measured values follow the simulated values and the areas under the σext = Imh
curves are almost the same. The di�erence between the resonance frequencies is
probably due to errors in the material modeling.

5.5 Periodicity in one direction

The one-dimensional periodic case in Fig. 2b and its corresponding sum rule is
illustrated with the scattering of square PEC patches. The square patches have
side lengths ` and are repeated periodically in the x̂-direction with inter-element
distances `x = n`, for n = 2, 5, 10, 20. An in house method of moments (MoM)
code is used to compute the forward scattering (4.7) for the incident wave E(i)(r) =
êE0eikz, see also App. A. The resulting extinction cross sections for the polarizations
ê = x̂ and ê = ŷ are depicted in Fig. 8. The extinction cross sections σext,n for the
periodic structures (n = 2, 5, 10, 20) are compared with the extinction cross section
for a single square patch (n =∞).

The curves for n = 10, 20,∞ are indistinguishable for the copolarized case, ê =
x̂, depicted in Fig. 8a illustrating that σext,n approaches σext,∞ fast as n increases.
This fast convergence follows from the weak mutual coupling due to the null of the
scattering pattern from the patches in the ê = x̂-direction. It is also observed that
σext ≈ 2`2 for short wavelength in agreement with the extinction paradox [26].

The convergence is much slower for the cross polarized case ê = ŷ as depicted
in Fig. 8b, where interference patterns are seen for inter-element distances equal to
an integer number of wavelengths, i.e., n` = mλ, m = 1, 2, .... This is similar to
Wood's anomaly [13] and can be explained by the logarithmic singularity in the one
dimensional periodic Green's function, see App. A. However, the in�uence of the
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singularities decay with the inter-element distance, `x = n`, due to the division with
`x in (A.2) and therefore σext,n approaches σext,∞ as n→∞.

The sum rule (4.3) is veri�ed using MoM calculations for the electric polarizabil-
ity dyadic giving γe ≈ (1.08x̂x̂ + 1.00ŷŷ)`3 for n = 2, γe ≈ (1.03x̂x̂ + 1.02ŷŷ)`3

for n = 5, and γe ≈ (1.03x̂x̂ + 1.03ŷŷ)`3 for n = 10, 20. There is no contribution
from the magnetic polarizability dyadic in the ẑ direction. Numerical integrations
of the left-hand side of the sum rule (4.3) over the �nite range λ/` ∈ [0.2, 30] give
approximately 97% of the corresponding right-hand side.

6 Conclusions

We have presented an optical theorem for an arbitrary structure being periodic in
a plane, which relates the extinction cross section per unit cell to the co-polarized
transmission coe�cient. For low pass structures this is used to derive a sum rule,
which restricts the integral of the extinction cross section over all wavelengths by
the static polarizability per unit cell. Sum rules for scatterers bounded in three and
two dimensions (cylinders) are obtained as limits when the unit cell is taken to be
very large in both or one directions, respectively. The theoretical results are shown
to be in good agreement with numerical and experimental tests.
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Appendix A One dimensional periodic Green's func-

tions

The free-space Green's function is G = eikR/(4πR), where R denotes the distance
between the source and observation point. Consider a one-dimensional periodic array
in the x̂-direction with inter-element distance `x. Here, we sum over all distances
Rn = ((x − x′ − n`x)2 + (y − y′)2 + (z − z′)2)1/2 for integers n. The distance is
asymptotically Rn ∼ |x− x′ − n`x| and R−1

n ∼ 1/(|n|`x) as |n| → ∞. Use that

∞∑
n=1

eik(n`x+x′−x)

n`x

= −e−ik(x−x′)

`x

ln(1− eik`x) (A.1)

to rewrite the periodic Green's function as

G =
eikR0

4πR0

− 2
cos (k(x− x′))

4π`x

ln(1− eik`x) +
∑
n6=0

(
eikRn

4πRn

− eik|x−x′−n`x|

4π|n|`x

)
, (A.2)

where the logarithmic singularities for k`x = m2π or equivalently `x = mλ, m =
1, 2, .. are observed.
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