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Abstract—A recursion for sequences of spectra of truncated as well as tailbitten convolutional
codes and their duals is derived. The order of this recursion is shown to be less than or equal to
the rank of the weight adjacency matrix (WAM) for the minimal encoder of the convolutional
code. It is enough to know a finite number of spectra of these terminated convolutional codes
in order to obtain an infinitely long sequence of spectra of their duals.
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1. INTRODUCTION

Following [1] we define a rate R = b/c binary convolutional code over the field F2 as the image
set of the linear mapping represented by

v(D) = u(D)G(D)

where the code sequence v(D) and information sequence u(D) are c- and b-tuples over the fields of
Laurent series, Fc2((D)) and Fb2((D)), respectively, and the generator matrix G(D), over the field
of rational functions F2(D), has full rank.

Convolutional codes are often thought of as nonblock linear codes over a finite field. Sometimes,
however, it is an advantage to regard convolutional codes as block codes over certain infinite fields;
that is, as the F2(D) row space of G(D) or, in other words, as a rate R = b/c block code over the
infinite field of Laurent series encoded by G(D). From this point of view it seems rather natural that
convolutional codes would have similar properties as block codes and satisfy proper reformulations
of theorems valid for block codes.

Let the free distance be denoted by dfree. Then the path weight enumerator of a convolutional
encoder introduced by Viterbi [2] is the generating function T (W ) =

∑∞
i=0 ndfree+iW

dfree+i of the
Hamming weights of the paths which diverge from the allzero path at the root in the trellis repre-
sentation of the encoder and terminate in the zero state, but do not merge with the allzero path
until their termini. In the sequel we call the sequence ndfree+i, i = 0, 1, 2, . . ., the free distance
spectrum or Viterbi spectrum in order to distinguish it from the spectrum of block codes. It is well-
known, starting with the paper by Shearer and McEliece [3], that MacWilliams identity [4] does not

1 Supported in part by the Swedish Research Council, Grant no. 621-2007-6281.
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2 BOCHAROVA et al.

hold for the free distance spectra of convolutional encoders. In [5], [6], and [7], MacWilliams-type
identities were established, not for the free distance spectrum but for the so-called weight adja-
cency matrix (WAM) [8]. In particular, a MacWilliams-type identity with respect to WAMs for the
encoders of an arbitrary convolutional code and its dual was formulated in [6] and proved in [7] by
Gluesing-Luerssen and Schneider. Their work inspired Forney, and in [9] and [10] he proved their
results in terms of the “constraint” code corresponding to each node of the trellis diagram and its
dual. Moreover, he generalized them to the complete WAM (CWAM) and to group codes defined
on graphs.

In [11] we showed that the MacWilliams identity is valid for the spectra of truncated convolu-
tional codes and their reverse-truncated duals. Forney [12] extended this approach to tailbiting as
a termination procedure. The recursive nature of convolutional encoders led us to study an infi-
nite sequence of spectra of truncated or tailbitten convolutional codes and a relation between the
infinite sequences of spectra obtained by truncating or tailbiting a convolutional code and its dual.
Since in practice we always deal with some kind of terminated convolutional code it is important
to know the spectra of the corresponding terminations (block codes) of different lengths. Certainly,
they can be computed for both the parent convolutional code and its dual via their encoder WAMs
with complexity of order |Σ| = 2ν , where ν is the overall constraint length of the minimal encoder.
However, the sparsity of WAMs, that is, the number of nonzero terms in each row of a WAM can
be very different for convolutional codes and their duals. This circumstance motivated us to search
for a procedure which would yield an arbitrary long sequence of spectra of terminations of a dual
code by using only the WAM of the encoder of the corresponding convolutional code and applying
a MacWilliams-type identity to the finite sequence of spectra of its terminations.

The rest of the paper is organized as follows. Notions of duality for convolutional codes as well
as different MacWiliams-type identities valid for convolutional codes are revisited in Section 2. In
Section 3, we prove that the spectra of a truncated or tailbitten convolutional code and the spectra
of the corresponding terminations of its dual satisfy recursions of an order less than or equal to the
rank r of the WAM of the minimal encoder of the convolutional code. It is shown that it is enough
to know 2r consecutive spectra of block codes obtained by truncating or tailbiting a convolutional
code at lengths c, 2c, . . . , 2rc in order to find the infinite sequence of spectra of block codes which are
terminations of the corresponding dual and vice-versa. Some final remarks are given in Section 4.

2. MACWILLIAMS-TYPE IDENTITIES

We start with recalling MacWilliams identity for block codes [4]:

Let C be a binary block code of rate R = k/n and let C⊥ be its dual of rate R = (n − k)/n.
Then their spectra satisfy

SC⊥(x, y) =
1

2k
SC(x+ y, x− y) (1)

where

SC(x, y) =
∑
v∈C

xn−wH(v)ywH(v)

and wH(v) is the Hamming weight of the sequence v.

Consider the rate R = b/c convolutional code C encoded by the semi-infinite generator matrix
G of memory m

G =

 G0 G1 G2 · · · Gm
G0 G1 · · · Gm−1 Gm

. . .
. . .

. . .
. . .

. . .
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where Gi, i = 0, 1, . . . ,m, is a binary matrix of size b× c. The corresponding polynomial generator
matrix is given by

G(D) = G0 +G1D + · · ·+Gm−1D
m−1 +GmD

m.

A natural approach to study duality and MacWilliams-type identities for convolutional codes
is based on obtaining sequences of block codes from a parent convolutional code and applying the
MacWilliams identity to these block codes. The simplest method is called truncation and yields a
block code with codewords corresponding to the paths of code trellis starting in the zero state at
time 0 and ending in any state after t branches. The corresponding generator matrix is

G
(tr)
t =



G0 G1 G2 · · · Gm
G0 G1 · · · Gm−1 Gm

. . .
. . .

. . .
. . .

. . .

G0 G1 G2 · · · Gm
G0 G1 · · · Gm−1

. . .
. . .

...
G0


.

Zero-tail termination produces a block code whose codewords are represented by the paths starting
in the zero state and ending in the zero state after t + m branches. Its generator matrix has the
form

G
(zt)
t =


G0 G1 G2 · · · Gm

G0 G1 · · · Gm−1 Gm
. . .

. . .
. . .

. . .
. . .

G0 G1 · · · Gm−1 Gm

 .

Finally, using tailbiting [1] at length t, we obtain a block code whose generator matrix is given by

G
(tb)
t =



G0 G1 G2 · · · Gm
G0 G1 · · · Gm−1 Gm

. . .
. . .

. . .
. . .

. . .

G0 G1 G2 · · · Gm
Gm G0 G1 · · · Gm−1
...

. . .
. . .

. . .
...

G1 · · · Gm G0


.

This code contains the codewords corresponding to the paths in the code trellis starting in any
state at time 0 and ending after t branches in the same state as they started in.

Next we discuss two definitions of duality for convolutional codes [13].

Definition 1. A dual code C⊥ to a rate R = b/c convolutional code C is the set of all c-tuples
of sequences v⊥ such that the inner product

(v,v⊥) = v(v⊥)T = 0 (2)

that is, v and v⊥ are orthogonal for all v in C.
The dual code C⊥ of a rate R = b/c convolutional code is a rate R = (c− b)/c convolutional code
encoded by the semi-infinite generator matrix G⊥ which satisfies

G
(
G⊥

)T
= 0. (3)

Moreover, it is a vector space of dimension c − b over F2((D)). In [7], the dual code C⊥ is called
sequence space dual.

3



4 BOCHAROVA et al.

Definition 2. The convolutional dual code C⊥ to a convolutional code C, which is encoded
by the rate R = b/c generator matrix G(D), is the set of all codewords encoded by any rate
R = (c− b)/c generator matrix G⊥(D) such that

G(D)GT
⊥(D) = 0. (4)

In [7], the convolutional dual code C⊥ is called module-theoretic dual.

In other words, Definition 1 is related to the orthogonality of the vectors (G0,G1,. . . ,Gm) and
(G⊥0 ,G⊥1 ,. . . , G⊥

m⊥) while Definition 2 is based on the orthogonality of the polynomials G(D) and
G⊥(D). Notice that for two arbitrary polynomials a(x) = a0 + a1x + · · · + an−1x

n−1 and b(x) =

b0 + b1x+ · · ·+ bn−1x
n−1 it follows from the equality a(x)b(x) = 0, that (a,

←−
b ) = 0 but in general

(a, b) 6= 0, where a = (a0, a1, . . . , an−1) and
←−
b = (bn−1, bn−2, . . . , b0).

Since we deal with a particular case of the above statement, it can be easily shown that the poly-
nomial generator matrix G⊥(D) of the dual code C⊥ is the reversal with respect to the polynomial
generator matrix G⊥(D) of the convolutional dual code C⊥, that is,

G⊥(D) = G⊥(D−1)Dm⊥ =
←−
G⊥(D)

where
G⊥(D) = G⊥0 +G⊥1 D + · · ·+G⊥m⊥D

m⊥

and ←−
G⊥(D) = Gm⊥,⊥ +Gm⊥−1,⊥D + · · ·+G0,⊥D

m⊥

from which G⊥j = Gm⊥−j,⊥, j = 0, 1, . . . ,m⊥ and m⊥ = m⊥ follow. In general, the dual code and
the corresponding convolutional dual code are different.

Next, we show that MacWilliams identity for convolutional codes can be interpreted in different
ways. First, we consider how it can be applied to the sequence of terminated codes Ct and analyze
which termination procedure does not violate (2).

It is easy to verify that for zero-tail terminating as well as tailbiting (2) is not violated. However,
duals of zero-tail terminated convolutional codes are not zero-tail terminated convolutional dual
codes since terminations to length t + m and t + m⊥ of G and G⊥, respectively, yield generator
matrices of the two block codes of rates tb/(t+m)c and t(c− b)/(t+m⊥)c which are not duals of
each other.

At the same time, it can be easily shown that truncation by t of G and G⊥ yields the t × t
matrices G

(tr)
t and G

(tr)⊥
t , respectively, such that

G
(tr)
t (G

(tr)⊥
t )T 6= 0

that is, the truncated versions of C and C⊥ are not orthogonal since the last t − m + 1 rows of

G
(tr)
t as well as the last t −m⊥ + 1 rows of G

(tr)⊥
t are not complete, that is, they do not contain

all submatrices Gi, i = 0, 1, . . . ,m, and not all submatrices G⊥i , i = 0, 1, . . . ,m⊥, respectively. The
products of these incomplete rows are equal to incomplete matrix convolutions.

Let

←−
G

(tr)⊥
t =



G⊥
m⊥

G⊥
m⊥−1

G⊥
m⊥

...
...

. . .

G⊥0 G⊥1 · · · G⊥
m⊥

G⊥0 · · · G⊥
m⊥−1

G⊥
m⊥

. . .
. . .

. . .
. . .

G⊥0 · · · G⊥
m⊥−1

G⊥
m⊥


(5)
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MACWILLIAMS IDENTITIES 5

be the generator matrix of the dual code C⊥ reverse-truncated by t. Then we obtain

G
(tr)
t (
←−
G

(tr)⊥
t )T = 0.

Remark: Notice that
←−
G

(tr)⊥
t is not a generator matrix of a truncated convolutional code. However,

if we write both the rows and the columns of
←−
G

(tr)⊥
t in reversed order we obtain the truncated

reversal of G
(tr)⊥
t as 

G⊥
m⊥ · · · G⊥1 G⊥0

G⊥
m⊥ · · · G⊥1 G⊥0

. . .
. . .

. . .
. . .

G⊥
m⊥ · · · G⊥1 G⊥0

G⊥
m⊥ · · · G⊥1

. . .
...
G⊥
m⊥


which is a generator matrix of a truncated convolutional code.

Since terminated (truncated and tailbitten) convolutional codes and their duals are block codes,
clearly their spectra satisfy MacWilliams identity.

The spectra of the corresponding zero-tail terminated, truncated, and tailbitten convolutional
codes can be computed via the 2ν × 2ν weight adjacency matrix A(W ) ∈ Z[W ]|Σ|×|Σ|, |Σ| = 2ν of
the encoder of the parent convolutional code (see, e.g., [8]), whose entries are generating functions
of the formal variable W. Its (i, j)th entry is a sum of monomials,

∑
wW

w, whose degrees w are
determined by the Hamming weights w of all parallel branches connecting states i and j in the
state diagram. Such an entry is a monomial in case of only one connecting branch and zero if there
is no connection.

Since the (i, j)th entry of A(W )t is a generating function of the Hamming weights of paths of
length t branches going from state i to state j, the spectra of the corresponding zero-tail terminated,
truncated, and tailbitten convolutional codes are

B
(zt)
t (W ) = zA(W )tzT (6)

B
(tr)
t (W ) = zA(W )t1T (7)

B
(tb)
t (W ) = Tr

(
A(W )t

)
(8)

where z=(1 0 . . . 0) and 1=(1 1 . . . 1) are row vectors of length 2ν , B
(·)
t (W ) ∈ Z[W ].

It was shown in [11] that t-truncated convolutional codes and their duals, which are block codes
of rates b/c and (c− b)/c, respectively, satisfy (1) with n = ct and k = bt. Equivalently, (1) can be
written as

ct∑
i=0

A⊥i x
ct−iyi =

1

2bt

ct∑
i=0

Ai(x+ y)ct−i(x− y)i

with

zA(W )t1T =
ct∑
i=0

AiW
i (9)

and

1A⊥(W )tzT =
ct∑
i=0

A⊥i W
i (10)

5



6 BOCHAROVA et al.

where A(W ) and A⊥(W ) are WAMs obtained from the state-transition diagrams for the minimal
encoders of C and C⊥, respectively. In [10] it was shown that the same holds for tailbiting codes.

In [7] and [10] another interpretation of MacWilliams-type identities for convolutional codes is
considered. In particular, MacWilliams-type identities with respect to the WAMs of the minimal
encoders of the dual code C⊥ and convolutional dual code C⊥ are proven. For simplicity of notations
we present the results of [7], [10] for binary convolutional codes only. It is shown that

A⊥(W ) = 2−b(1 +W )cHA

(
1−W
1 +W

)
HT (11)

and

A⊥(W ) = 2−b(1 +W )cHAT
(

1−W
1 +W

)
HT (12)

where
H =

{
(−1)(ui,uj)

}
, i, j = 0, 1, . . . , 2ν − 1

is the Hadamard transform matrix, ν is the overall constraint length of the convolutional code C,
and ui is a binary row vector of length ν.

The following example illustrates the considered notions of duality for the convolutional code
analyzed in [3] where the absence of the MacWilliams identity for the free distance spectra was
stated.

Example 1. Shearer and McEliece [3] considered the rate R = 1/3 convolutional code encoded
by the polynomial generator matrix

G(D) =
(

1 D 1 +D
)

(13)

and its convolutional dual code encoded by the polynomial generator matrix

G⊥(D) =

(
1 1 1
D 1 0

)
. (14)

They showed that the MacWilliams identity does not hold for the free distance spectra of their
minimal encoders. We consider, however, the generator matrix of the dual of (13) given in minimal-
basic form

G⊥(D) =

(
1 1 1
0 1 +D 1

)
. (15)

It is easy to verify that G(D)(G⊥(D))T 6= 0 but for the corresponding codewords we have

v
(
v⊥
)T

= 0.

The WAM for (13) realized in controller canonical form is

A(W ) =

(
1 W 2

W 2 W 2

)
. (16)

Applying (11) and (12) with

H =
1√
2

(
1 1
1 −1

)
(17)

yields the WAM of the minimal encoder of the convolutional dual and dual of (13)

A⊥(W ) = A⊥(W ) =

(
1 +W 3 W +W 2

W +W 2 W +W 2

)
(18)

which are, in general, the transpose of each other.

6



MACWILLIAMS IDENTITIES 7

3. INFINITE SEQUENCES OF SPECTRA

In this section a recursion for spectra of sequences of truncated as well as tailbitten convolutional
codes is derived. It is proven that the order of this recursion is less than or equal to the rank of
the WAM of the minimal encoder of the parent convolutional code.

Let the sequence of (block code) spectra for both terminations be given by

Bt(W ) = B0 +B1W + · · ·+BctW
ct, t = 0, 1, 2, . . .

where

Bi =

{
Ai, for truncated codes

Ti, for tailbiting codes

with

Tr
(
A(W )t

)
=

ct∑
i=0

TiW
i.

Remark 1. The spectral components Bk can be obtained from the spectral components B⊥i ,
i = 0, 1, . . . , ct, of the dual code C⊥t as

Bk =
1

2ct

ct∑
i=0

B⊥i Pk(i), k = 0, 1, . . . , ct (19)

where Pk(i) is a Krawtchouk polynomial [4].

Then the following theorem holds:

Theorem 1. Let C be a rate R = b/c convolutional code whose minimal encoder WAM A(W )
has rank r and let Ct be a truncation or tailbiting of C. Then there exists an integer l ≤ r such that
the (block code) spectra of Ct satisfy

Bt(W ) =
l∑

i=1

ai(W )Bt−i(W ), t = l, l + 1, . . .

where ai(W ), i = 1, 2, . . . , r, are the coefficients of the characteristic equation for A(W ).

Proof. Any matrix over a commutative ring satisfies its Hamilton-Cayley (characteristic) equa-
tion [14, Ch. 7, p.62]. Since A(W ) has size 2ν × 2ν it satisfies the equation

det (A(W )− λI) = λ2ν −
2ν∑
i=1

ai(W )λ2ν−i = 0 (20)

where λ is a formal variable. Thus, we have

A(W )2ν =
2ν∑
i=1

ai(W )A(W )2ν−i. (21)

Multiplying both sides of (21) by A(W )k, k = 0, 1, 2, ..., yields the following recurrent equation

A(W )t =
2ν∑
i=1

ai(W )A(W )t−i, t = 2ν , 2ν + 1, . . .. (22)

Assuming A(W ) has rank r, all of its minors of order higher than or equal to r + 1 are zero and
there exists at least one nonzero minor of order r. It is straightforward to show that the coefficient

7



8 BOCHAROVA et al.

Table 1. Coefficients of the recursions in Example 2

i ai(W ) a⊥i (W )

1 1 +W 2 1 +W +W 2 +W 3

2 W 4 −W 2 2W 3 −W 5 −W
3 W 2 −W 6 W +W 2 −W 3 −W 4 −W 5 −W 6 +W 7 +W 8

4 3W 6 − 2W 4 −W 2 −W − 3W 2 −W 3 + 4W 4 + 2W 5 − 2W 6 + 2W 7+

4W 8 −W 9 − 3W 10 −W 11

5 W 12 +W 10 − 3W 8 −W 6 + 2W 4 3W 2 −W 3 − 5W 4 −W 5 − 2W 6 + 6W 7 + 6W 8 − 2W 9

−W 10 + 5W 11 −W 12 + 3W 13

6 −W 14 −W 12 + 2W 10 −2W 2 + 2W 4 + 6W 6 − 6W 8 − 6W 10

+2W 8 −W 6 −W 4 +6W 12 + 2W 14 − 2W 16

7 0 0

8 W 16 −W 14 − 2W 12 + 2W 10 −W 3 − 2W 4 + 6W 5 + 8W 6 − 8W 8 − 8W 9−
+W 8 −W 6 8W 10 + 6W 11 + 20W 12 + 6W 13 − 8W 14

−8W 15 − 8W 16 + 8W 18 + 3W 19 − 2W 20 −W 21

9 −W 18 + 3W 14 − 3W 10 +W 6 W 3 + 3W 4 − 8W 6 − 9W 7 − 3W 8 + 8W 9 + 24W 10

+18W 11 − 10W 12 − 24W 13 − 24W 14 − 10W 15 + 18W 16

+24W 17 + 8W 18 − 3W 19 − 9W 20 − 8W 21 + 3W 23 +W 24

ai(W ) of the characteristic equation (20) is completely determined by the
(2ν
i

)
principal minors of

order i. Thus, we can conclude that all ai(W ) for i = r+ 1, r+ 2, . . . , 2ν are zero and that (22) can
be reduced to

A(W )t =
r∑
i=1

ai(W )A(W )t−i, t = r, r + 1, . . .. (23)

Multiplying both sides of (23) by z and 1T from the left and right, respectively, we obtain that

the spectrum B
(tr)
t (W ) = zA(W )t1T satisfies the main statement of Theorem 1.

Denote by ek a row vector of length 2ν with a one in the kth position and zeros elsewhere.
Multiplying (23) by ek and eT

k from the left and right, respectively, we obtain that the statement
of Theorem 1 is valid for ekA(W )teT

k .

Taking into account that
2ν∑
k=1

ekA(W )teT
k = Tr

(
A(W )t

)
we obtain

Tr
(
A(W )t

)
=

r∑
i=1

ai(W ) Tr
(
A(W )t−i

)
, t = r, r + 1, . . .. (24)

Thus, we conclude that the main statement of Theorem 1 is valid for the spectra B
(tb)
t of

tailbiting codes. If a nonzero minor of order r is not a principal minor of A(W ), then the order of
(23) can be less than r. �

It follows from Theorem 1 that for the spectra of truncation as well as tailbiting both codes, Ct
and C⊥t , satisfy the recursion of the same order l but with different coefficients, namely the coeffi-
cients of the Hamilton-Cayley equations for A(W ) and A⊥(W ), respectively. Since the coefficients
of a recurrent equation over Z[W ] of order l can be found from 2l output values by solving a system
of l linear equations, 2l spectra of terminated codes are enough to find the recursion for the sequence

8



MACWILLIAMS IDENTITIES 9

of the spectra of their duals and vice versa. Notice that in general such a system of linear equations
can be solved with reduced complexity by applying the Berlekamp-Massey algorithm [15]1.

The following example illustrates the statement of Theorem 1.

Example 2. Consider a rate R = 1/3 convolutional code encoded by the generator matrix

G(D) =
(

1 +D +D2 +D3 +D4 1 +D +D4 1 +D3
)

.

The WAM of its minimal encoder realized in controller canonical form is

A(W ) =



1 0 0 0 0 0 0 0 W 2 0 0 0 0 0 0 0
W 3 0 0 0 0 0 0 0 W 0 0 0 0 0 0 0
0 W 2 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 W 0 0 0 0 0 0 0 W 3 0 0 0 0 0 0
0 0 W 0 0 0 0 0 0 0 W 0 0 0 0 0
0 0 W 2 0 0 0 0 0 0 0 W 2 0 0 0 0 0
0 0 0 W 0 0 0 0 0 0 0 W 0 0 0 0
0 0 0 W 2 0 0 0 0 0 0 0 W 2 0 0 0 0
0 0 0 0 W 2 0 0 0 0 0 0 0 W 2 0 0 0
0 0 0 0 W 0 0 0 0 0 0 0 W 0 0 0
0 0 0 0 0 W 2 0 0 0 0 0 0 0 W 2 0 0
0 0 0 0 0 W 0 0 0 0 0 0 0 W 0 0
0 0 0 0 0 0 W 0 0 0 0 0 0 0 W 3 0
0 0 0 0 0 0 W 2 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 W 3 0 0 0 0 0 0 0 W
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 W 2



.

The matrix A(W ) does not have full rank 2ν = 24 = 16, but rank r = 12. (The eight rows i and
i+ 1, i = 5, 7, 9, 11, of A(W ) are pairwise linearly dependent.) It is easy to verify that the spectra
of the sequence of the truncated convolutional codes satisfy the system of linear equations

Btr
t (W ) =

l∑
i=1

ai(W )Btr
t−i(W ), t = l, l + 1, . . . , 2l − 1 (25)

of order l = 9, where the spectrum Btr
t (W ) is computed according to (7). By solving (25) we

obtain the coefficients ai(W ), i = 1, 2, . . . , 9. Thus, according to Theorem 1, for any finite t the
spectra of the truncated sequence of the convolutional codes satisfy the equation of order l = 9
with coefficients ai(W ), i = 1, 2, . . . , 9, presented in the second column of Table 1.

By applying MacWilliams identity to the sequence of the spectra Btr
0 , Btr

1 ,. . . ,Btr
2l−1 we find

the sequence of the spectra Btr⊥
0 , Btr⊥

1 ,. . . ,Btr⊥
2l−1 of the corresponding reverse truncations of the

dual code. Inserting them into (25) with coefficients a⊥i (W ), i = 1, 2, . . . , 9, yields the coefficients
a⊥i (W ), i = 1, 2, . . . , 9. Thus, the dual spectra satisfy the equation of order l = 9 with coefficients
a⊥i (W ), i = 1, 2, . . . , 9, presented in the third column of the same table. Notice that the WAM of
the minimal encoder of the dual code which is not presented here contains four nonzero entries in
each row since the dual code has rate 2/3.

1 Although the coefficients ai(W ) belong to a polynomial ring, they can be found by computations over
the field of rational functions. Alternatively, the inversion-free modification of the Berlekamp-Massey
algorithm [16] can be used.

9



10 BOCHAROVA et al.

4. CONCLUSION

We have shown that it is enough to know the first 2r spectral components of truncated or
tailbitten convolutional codes, where r is the rank of the minimal encoder WAM of the parent
convolutional code, in order to find the coefficients of the recurrent equation generating an arbitrary
long sequence of spectra of dual truncated or dual tailbitten convolutional codes.
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