
LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

Beyond von Neumann: weakly programmable processor arrays and their programming

Andersson, Per; Kuchcinski, Krzysztof; Janneck, Jörn; Zhang, Chenxin

Published in:
[Host publication title missing]

2011

Link to publication

Citation for published version (APA):
Andersson, P., Kuchcinski, K., Janneck, J., & Zhang, C. (2011). Beyond von Neumann: weakly programmable
processor arrays and their programming. In [Host publication title missing] swedsoft. http://www.swedsoft.se/

Total number of authors:
4

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.
 • Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

Download date: 18. May. 2025

https://portal.research.lu.se/en/publications/de697d67-3f91-45a2-9822-883dae2f689c
http://www.swedsoft.se/

Beyond von Neumann: weakly programmable processor
arrays and their programming

P. Andersson, K. Kuchcinski, J. Janneck
Department of computer science

Lund University
P.O. Box 118

SE-221 00 Lund
Sweden

Email: Per.Andersson@cs.lth.se,
Krzysztof.Kuchcinski@cs.lth.se,

jorn.janneck@cs.lth.se

C. Zhang
Department of Electrical and Information

Technology
Lund University

P.O. Box 118
SE-221 00 Lund

Sweden
Email: Chenxin.Zhang@eit.lth.se

ABSTRACT
The age of parallelism is here. For a sustainable software de-
velopment for massively parallel architectures the von Neu-
mann model need to be replaced by one with native support
for parallelism. We suggest a data flow model for signal pro-
cessing applications. This will make it possible to reuse soft-
ware implementations for different targets and future plat-
form generations. We also outline our development tool flow
for compiling CAL, a data flow language, to parallel archi-
tectures. We also present our processor array, which can be
configured to handle massively parallel computations. We
demonstrate its power by implementing part of a software
radio receiver.

1. INTRODUCTION
When looking at the embedded system market. There are
emerging applications which require 2-3 magnitudes of more
processing power compared to todays systems, for example
communication over a 3G radio uses 10 Gops while a 4G
radio will need 1000 Gops. Increased computational power
also enables new applications, for example phased array an-
tennas for car radars which needs 10 Tops. To be competi-
tive we need the hardware capable to deliver these computa-
tions. However hardware is not enough. These applications
are increasing in complexity and to manage the develop-
ment cost we also need to make sure the implementations
are reusable, i.e. minimize the NRE.

Specialized hardware has traditionally played an impor-
tant roll for high performance embedded systems. They are
however becoming less important due to several reasons. 1)
high NRE, the integration and verification of a hardware
component is time consuming and costly for each new plat-
form. 2) lack of flexibility, an accelerator can only handle
one specific type of computations. 3) adoptability, the hard-
ware is often developed before standards are fixed and also
products are expected to manage new standards. Hardwired
accelerators are not suitable for this event though reconfig-
urable hardware can help.

Processors combined with well designed software have proven
to be a great solutions for manny problems. Software com-
ponents are much less problematic to reuse, over time or for
different hardware, compared to hardware. Modern proces-
sors provide sufficient computational power for many appli-
cations. A processor can take advantage of extra transis-

MC0

MC1

PC0

PC1

R

Interface controller

L2

G0

L4 L3

L1L0
L7

L6

L5

L6

G0

L4 L5

L7L0
L1

L2

L3

L2

G0

L0 L1

L3L4
L5

L6

L7

L6

G0

L0 L7

L5L4
L3

L2

L1

0
4

1

3 2

Branch

IF/ID EXE/WB

Operation

controller

L0 L1 ... Lx G

Local IO ports Global IO port

PC

Register

ID/EXE

... A
L
U

L0 L1 ... Lx G

Local IO ports Global IO port

Operation controller

D
S
C
 M

D
S
C
 1

...D
S
C
 0

D
e
s
c
ri
p
to
r
ta
b
le
 M

*9
6
-b
it

#
M

#
1

#
0

 #0

bank

 #M

bank

Memory array

...

Figure 1: The WPPA architecture developed at
EIT, Lund University.

tors to achieve parallelism in two ways 1) parallel instruc-
tions, issuing multiple instructions each clock cycle will give
fine grains parallelism 2) multi-core, concurrent execution of
multiple threads will provide coarse grained parallelism.

Limited instruction level parallelism in the application
and limited bus bandwidth in a multi core SMP architecture
are challenges that must be addressed for increased proces-
sor performance.

Weakly Programmable Processors(WPPA) is an promis-
ing family of architectures which can provide massively par-
allel and programmable computational resources. Our WPPA
developed at EIT, Lund University, proposed in [9], is con-
structed from a mesh of heterogeneous resource cells. The
architecture not only supports data sharing between differ-
ent processing elements, but also enables direct data trans-
fers between memory cells without additional control logic.
An example of the proposed cell array is shown in Figure 1.

The processing cell is a RISC core with support of SIMD
alike operations. The communication I/O port registers are
directly accessible in the same way as the general purpose
registers. Hence, clock cycle penalties associated with mem-
ory data movements as found in traditional load-store ar-
chitectures are eliminated. Each memory cell contains one
memory array that may be divided into one or more memory
banks. Each bank can be used as a random access memory,
or as a FIFO by dynamic reconfiguration.

To demonstrate the flexibility and processing power of the
proposed architecture, OFDM time synchronization have
been implemented onto a 2-by-2 cell array, supporting three
wireless radio standards (IEEE 802.n, 3GPP LTE, and DVB),
and is capable of processing two concurrent data streams
from any combination of the above 3 standards.

2. SOFTWARE
Software are becoming an increasingly important part of
embedded systems. There are many reasons for this. In
addition to the flexibility and possibility of update after de-
ployment one major advantage of software is ease of reuse.
Today a mobile phone contains millions of lines of code.
Writing this amount of code for each new model or platform
is not possible, but porting the existing code to a new target
is manageable.

The enabling technology which makes it possible to port
millions of lines of code to a new hardware platform is tar-
get independent high level languages. Well written software
do not need to be changed for each new processor or even
system architecture. The job of generating efficient exe-
cutables are handled by compilers. One major reason the
compilers can do a great job for different processors is that
they have a common foundation, the Von Neumann model.
Most processors behaves as if there is one global memory
which is manipulated by a sequence of operations. This is
also the view of processors for most software programmers.
The Von Neumann is a common model for both hardware
and software developers. It allows the software developer
to describe the functionality of the application without us-
ing specific features of the target architecture. At the same
time the von Neumann model gives the hardware architect
freedom to chose which operations to implement, the com-
piler will generate code for the rest. The model also allows
run-time optimizations, such as out of order execution and
branch prediction to improve performance. The von Neu-
mann model has liberated the software developer from the
target hardware for single threaded applications.

The von Neumann model specifies mathematical compu-
tations, memory accesses and program control flow. Pro-
grams that uses other constructs, such as threads and graph-
ical user interfaces, are hard and time consuming to port.

One of the problems facing todays software programmers
is how to develop efficient programs for multi core proces-
sors. For this problem the von Neumann model will not
help the programmer but rather makes things worse. The
von Neumann model is inherently sequential and the pro-
gram must be divide into several threads to generate effi-
cient executables for multi core processors. There are some
techniques for automating this, but in general the compiler
can not do this efficiently. Therefore the problem has been
moved to the programmer. The programer must divide the
program into threads which uses synchronization mecha-
nisms, such as semaphores or message passing, to ensure
the correct functionality when the threads are depending on
each other. It is known that developing threaded applica-
tions is much more time consuming and there are more bugs
compared to single threaded applications.

3. SOLUTIONS FOR MANY CORES
Researches have been working on parallelizing compilers for
languages derived from the von Neumann model for over 30
years. It is unlikely that this research will bring the im-
provements that are needed to generate efficient executables
for tomorrows many core architectures. For this we need a
radical change. The underlaying problem is that the target
hardware has deviated to far from the von Neumann model
for compilers to do a good job.

Today most WPPAs require special programs, either there

is a special language or an API the programmer must use to
develop efficient programs. This is an easy way to give the
programmer access to the full potential of the architecture.
However this will lead to problems in the future. The main
obstacle will be that the code is no longer portable, it is
locked to a target hardware. Furthermore it is likely not to
be very efficient on the next generation of the same target
platform leading to an explosion of software maintenance
costs.

Adding constructs to expose hardware characteristics in a
high level language leads to operations not known and ana-
lyzable by the compiler and will make optimizations impos-
sible. For example, the EIT architecture [9] support commu-
nication between parallel task by both shared memory and
point to point links. Which is best depends on the map-
ping of the tasks to the processing units. Not allowing the
compiler to make the choice of communication implementa-
tion, i.e. shared memory or direct link will lead to inefficient
compiled code.

Adding constructs and concept from an application do-
main to a language can simplify the work for the application
developer. In contrast to extensions which expose hardware
details to the programmer, these extensions can help the
compiler to do a good job while preserving the portability
of the implementation. Domain specific language extensions
normally is a combination of constructs already present in
the original language and can then be compiled to the inter-
mediate format used by the compiler.

4. SOFTWARE DEVELOPMENT
Considering the limitations of parallelizing compilers, we be-
lieve it is necessary for parallelism to be explicit in the appli-
cations. Introducing parallelism in high level software lan-
guages is a specialization for the target, parallel hardware.
These extensions can not be mapped to the intermediate
model, the von Neumann model, and will cause problems
for optimizing compilers. We believe all platforms in the
near future will have multi or many cores. For a sustain-
able software development where code can be reused on dif-
ferent targets we believe it is necessary to replace the von
Neumann model with one that allows concurrency and data
synchronizations between threads. Finding a general model
which is suitable for most programs is an attractive and am-
bitious goal. This is however beyond the goal of our current
work. For the moment we are focussing on one application
domain, namely DSP applications which include streaming
and multimedia applications.

4.1 Data Flow Languages
Data Flow Languages have proven to be suitable for im-
plementing signal processing, media and streaming applica-
tions. These applications are also among the ones requiring
most computations in embedded systems. Programs written
in data flow languages are by construct concurrent. Actors
with local state communicate trough FIFO-queues. Actors
fire concurrent and independent of each other. This model
provides the compilers with a great flexibility to map the
applications in an efficient way to a parallel processing ar-
chitecture.

CAL is a data flow languages where actors have local state
and communicate using unbounded FIFO-Queue [2]. The
syntax allows an easy implementation of manny real world
applications, for example the language supports guards and

schedules for easy implementation of state machines.
CAL is standardized and is supported by for example Er-

icsson, the mpeg consortsium, and Xilinx. CAL is open
source. The opendf.org compiler has backends for software [7]
and hardware [4]. In our work we are developing a backend
for WPPAs.

5. COMPILING CAL
We are developing a compiler for CAL in which we intend
to use an abstract actor machine as intermediate representa-
tion. This representations makes it possible for the compiler
to reason about static and dynamic ordering of communica-
tion, synchronization and scheduling decisions. We expect
to generate code with performance equal to hand written C
in more cases than current approaches for data flow compi-
lation, i.e. non static DFG. The compiler will also analyze
the code and generate suitable implementations for action
scheduling, communication and thread synchronization.

5.1 Data Centric Mapping
In a WPPA the amount of local memory is limited. It is
important to ensure that all data needed for a computa-
tion fit in the local memory. We intend to use data depen-
dence analysis to guide the mapping and scheduling. Careful
synchronization of producers and consumers in neighboring
nodes will ensure minimal needs for data buffers and min-
imize communication overhead. We have published a tech-
nique to minimize the amount of temporary data in [1]. The
idea is to analyze the data access patterns and schedule the
producer and consumer thread in sync.

A general data flow program do not have the static be-
havior needed for the technique outlined above. However it
is possible to detect static regions in a DFG and from this
derive the constraints and parameters needed for mapping
and scheduling [3].

5.2 Constraint Programming
Constraint programming is a technique, which is very pow-
erful for optimization of complex system composed of many
dependent parameters. It has proven efficient for, among
others, high level synthesis, scheduling, and selection con-
figurations in reconfigurable systems [8]. We have recently
used our JaCoP solver, implemented in Java [5], to map pro-
grams into a run-time reconfigurable architecture [6]. In this
work, we have used constraint programming to formalize the
architecture model together with a specific application pro-
gram. We have evaluated our approach using several mul-
timedia applications from the Mediabench set. In 78% of
cases, our system provides results that are proved optimal.
Our current mapping problems are similar to the problems
defined in the paper and we will use similar approach for
mapping of actors to the WPPA.

6. SUMMARY
The age of multi-core is here and tomorrow we have many-
core systems. In this paper we present our WPPA archi-
tecture. It provides the computational power and flexibility
required by tomorrows systems. To demonstrate this we
have implemented OFDM time synchronization for wireless
radio. The implementation supports processing of two con-
current streams from any of the supported standards.

Software is becoming an increasingly important part of em-
bedded systems. In the paper we argue for the need to
replace the von Neumann model with a model of computa-
tion that natively support parallelism. We suggest data flow
languages and we present our approach for compiling CAL
to our WPPA.

7. ACKNOWLEDGMENTS
This work is supported by VINNOVA trough the two in-
dustrial excellence centers EASE and SoS at Lund Univer-
sity. The work is also supported by SSF trough the HiPEC
project and the ELLIIT center.

8. REFERENCES
[1] P. Andersson and K. Kuchcinski. Automatic local

memory architecture generation for data reuse in
custom data paths. In International Conference on
Engineering of Reconfigurable Systems and Algorithms,
June 21–24 2004.

[2] J. Eker and J. W. Janneck. Cal: Cal actor language.
document edition 1, Electronics Research Laboratory,
University of California at Berkeley, Tech. Rep.
UCB/ERL M03/48, December 2003.

[3] R. Gu, J. W. Janneck, M. Raulet, and S. S.
Bhattacharyya. Exploiting statically schedulable
regions in dataflow programs. In ICASSP, pages
565–568. IEEE, 2009.

[4] J. W. Janneck, I. D. Miller, D. B. Parlour, G. Roquier,
M. Wipliez, and M. Raulet. Synthesizing hardware
from dataflow programs: An mpeg-4 simple profile
decoder case study. In Proceedings of the IEEE
Workshop on Signal Processing Systems, SiPS 2008,
October 8-10, 2008, Washington, D.C. Metro Area,
USA, pages 287–292, 2008.

[5] K. Kuchcinski and R. Szymanek. JaCoP Library. User’s
Guide. http://www.jacop.eu, 2009.

[6] E. Raffin, C. Wolinski, F. Charot, K. Kuchcinski,
S. Guyetant, S. Chevobbe, and E. Casseau. Scheduling,
binding and routing system for a run-time
reconfigurable operator based multimedia architecture.
In Conference on Design and Architectures for Signal
and Image Processing (DASIP), Edinburgh, United
Kingdom, October, 26-28 2010.

[7] G. Roquier, M. Wipliez, M. Raulet, J. W. Janneck,
I. D. Miller, and D. B. Parlour. Automatic software
synthesis of dataflow program: An mpeg-4 simple
profile decoder case study. In Proceedings of the IEEE
Workshop on Signal Processing Systems, SiPS 2008,
October 8-10, 2008, Washington, D.C. Metro Area,
USA, pages 281–286, 2008.

[8] C. Wolinski, K. Kuchcinski, and E. Raffin. Automatic
design of application-specific reconfigurable processor
extensions with UPaK synthesis kernel. ACM Trans.
Des. Autom. Electron. Syst., 15(1):1–36, 2009.

[9] C. Zhang, T. Lenart, H. Svensson, and V. Öwall.
Design of coarse-grained dynamically reconfigurable
architecture for dsp applications. In Proceedings of
International Conference on ReConFig, pages 338–343,
Dec. 2009.

