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Distributed Control of Positive Systems

Anders Rantzer

Abstract— Stabilization and optimal control is stud-
ied for state space systems with nonnegative coeffi-
cients (positive systems). In particular, we show that
a stabilizing distributed feedback controller, when it
exists, can be computed using linear programming.
The same methods are also used to minimize the
closed loop input-output gain. An example devoted to
distributed control of a vehicle platoon is examined.

I. INTRODUCTION

The study of matrices with nonnegative coefficients
has a long history dating back to the Perron-Frobenius
Theorem in 1912. A classic book on the topic is [2]. The
theory has been used in Leontief economics, where the
states denote nonnegative quantities of commodities,
in the study of Markov chains, where the states denote
nonnegative probabilities and compartment models,
where the states could denote quantities of chemical
species in an organism.

Positive systems have received increasing attention
in the control literature during the last decade. In
particular, stabilization of positive linear systems was
studied in [4], [7]. Basic control theory for monotone
systems, the nonlinear counterpart of positive sys-
tems, was developed in [1]. The importance of non-
negative matrices for consensus algorithms has been
widely recognized (see e.g. [6]) and can be traced back
to the fact that stability of a nonnegative matrix can
be verified using a linear Lyapunov function [5].

A recent remarkable result by [8] shows that de-
centralized controllers can be optimized for positive
systems using semi-definite programming. The crite-
rion is the closed loop H,, norm and the authors show
that diagonal quadratic storage functions can be used
without conservatism.

This paper can be viewed as an extension and al-
ternative to [8]. First we demonstrate that stability
analysis and synthesis of stabilizing controllers can
be performed by distributed linear programming. Sec-
ondly, we show that several notions of system gain are
equivalent for positive systems and can be optimized
using the same methods that solved the stabilization
problem.

II. NorATION AND PRELIMINARIES
Let R, denote the set of nonnegative real numbers.
The inequality X > 0 (X > 0) means that all elements
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of the matrix (or vector) X are positive (nonnegative).
For a symmetric matrix X, the inequality X > 0
means that the matrix is positive definite. The matrix
A € R™™ is said to be Schur if all eigenvalues
are strictly inside the unit circle. It is Hurwitz if all
eigenvalues have positive real part. Finally, the matrix
is said to be Meizler if all off-diagonal elements are
nonnegative.

ITI. DISTRIBUTED STABILITY VERIFICATION

Proposition 1: Let A € R}*". Then the following
statements are equivalent:

(i)  The matrix A is Schur
(it)  There is a x € R such that Ax < «.
(iit) There is a diagonal matrix P > 0 such that

ATPA< P

Remark 1. If A is Schur, then the same is true for AT,
so the proposition guarantees existence of p € R/} with
ATp < p. Hence the linear function V(x) = pTx is a
Lyapunov function for the dynamics x™ = Ax.
Proposition 1 is well known [2, Theorem 6.2.3], but we
give a proof for completeness:

Proof. If A is Schur, take any vector £ > 0 and define
x=I—A)"1E . Then x = E+ AE+ A%+ A3+ >0
and x—Ax = & > 0, so (i7) holds. On the other hand, if
(Zf) holds, choose € > 0 such that Ax < (1 —¢)x. Then
for every z € R™ with 0 < z < x we have

0<Az<Ax<(l—¢)'x fort=1,23,...

In particular, lim;_,,, A’z, so A must be Schur.

The implication from (Zi7) to (i) is standard, so it re-
mains to prove the opposite direction. Hence, assuming
that A (and therefore AT) is Schur, we use (ii) to pick
x and y in R?*! with

Ax <x ATy <y

Define the matrix P = diag{p1,...,pn} by Dr = /%
and the vector z € R" by z;, = /xpy, for k =1,...,n.
Then

P 12ATPAP~ Y2, = p~12AT PAx
<P PATPx =P PATy < PPy =2

so the symmetric matrix P~/2AT PAP~'/2 is Schur.
Hence

P 12ATpAP12 4
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Fig. 1. A one-dimensional graph of interconnected systems.

and (iii) follows. O

The corresponding continuous time result can be
stated as follows:

Proposition 2: Let A € R"" be Metzler. Then the
following statements are equivalent:

(i)  The matrix A is Hurwitz
(ii)  There exists a x € R"*! such that Ax < 0.
(Zit) There is a diagonal matrix P > 0 such that

ATP+PA<O

Example 1 Consider a dynamical system intercon-
nected according to the graph illustrated in Figure 1:

%1 = a1x1 + L12(x2 — x1)
Ko = Qoxg + Lo1(x1 — x2) + Lag(x3 — x2)
X3 = Qgx3 + 532(362 — x3) + 634(364 — x3)
X4 = sy + La3(x3 — x4)

(1)

The model could for example be used to describe a
platoon of four vehicles using distance measurements
for position adjustment. The parameters ¢;; > 0 can be
used stabilize the dynamics even in situations where
some of the a;-parameters are positive. Notice that the
dynamics can be written as x = Mx where M is a
Metzler matrix. Hence, by Proposition 2, stability is
equivalent to existence of numbers x1,...,x4 > 0 such
that

(O(l — 812)961 + l19%9 < 0
lo1x1 + (g — fo1 — La3)xe + fogxs3 < 0
39%3 + (03 — 32 — £34)x3 + £34%4 < 0
Lygxs + (g — L43)x4 < 0

This can be implemented as a distributed test where
the first node verifies the first inequality, the second
node verifies the second inequality and so on. O

IV. DISTRIBUTED STABILIZATION BY LINEAR PROGRAMMING

Given the distributed stability test, the next step
is to search for stabilizing feedback laws using dis-
tributed optimization. This can be done using the
following theorem:

Theorem 1: Let A € R*", E € R}, F ¢ R™*"
and let D be the set of m x m diagonal matrices with
entries in [0, 1]. Suppose that A+ ELF is non-negative
for all L € D. Then, the following are equivalent:

(i)  Thereis L € D such that A+ ELF is Schur.

(ii) There exist p € R?, ¢ € R with ¢ < ETp

and ATp+ FTq < p.

Proof. Suppose (i) holds. Let A + ELF be Schur and
define p € R’ with (A + ELF)Tp < p. Let g= LE"p.
Then ¢ < ETp and ATp+ FTq=(A+ ELF)"p < p.

Conversely, suppose that (i) holds. Choose L € D
to get ¢ = LFTp. Then

(A+ELF) 'p=ATp+Flqg<p
so A+ ELF is Schur. O

A continuous time version can be stated as follows:

Theorem 2: Let A € R"**, E € R}*™, F €¢ R™*"
and let D be the set of m x m diagonal matrices with
entries in [0, 1]. Suppose that A + ELF is Metzler for
all L € D. Then, the following are equivalent:

(i)  There exists L € D such that A + ELF is
Hurwitz.

(ii) There exist p € R?, g € R with ¢ < ETp
and ATp+ FTg <o.

Remark 2. It is natural to compare the expression
A + ELF with the “state feedback” expression A +
BK of standard linear quadratic optimal control. A
major difference is the matrix F, which makes the
optimization of A + ELF into a problem of “static
output feedback” rather than state feedback. Another
difference is the diagonally structured L instead of
the full matrix K. The diagonal structure gives a
much higher degree of flexibility, particularly in the
specification of distributed controllers.

Remark 3. If the diagonal elements of D are restricted
to R, instead of [0,1], then the condition ¢ < E7p is
replaced by 0 < ETp.

Remark 4. Each row of the inequalities ¢ < ETp and
ATp + FTq < 0 can be verified separately to get a
distributed test.

Example 2 Given «a1,...,a4 consider the system (1)
and the problem to find feedback gains ¢;; € [0, 1] that
stabilize the system. The problem can be solved by
applying distributed linear programming to condition
(Zi) in Theorem 2 with

A = diag{a1,09,03,04}

1 0 0O
0100
0100
E= 0 010
0 010
0 0 01

L = diag{¢12,401, 23, {32, €34, 443}

-1 1 0O o0 o0 0

1 -1 -1 1 0 0

F= 0 0 1 -1 -1 1
-1

o o o0 0 1
M = A+ ELF is the state space matrix of (1). O



V. DiSTRIBUTED PERFORMANCE OPTIMIZATION

Given the formulas for stabilizing feedback found
in the previous section, it is natural move beyond
stability and also optimize input-output performance.
This can be done using the following theorem.

Theorem 3: Let G(z) = C(zI — A)™'B + D where
Aec RV, Be R, Ce R and D € R,. Then
the following two conditions are equivalent:

(i)  The matrix A is Schur and |G|, < ¥.

(i1) The matrix { ] is Schur.

A B
y—'C y7'D
Moreover, |G|l = C(I—A)"'B+D .

Proof. First note that the maximum max, |G(e®)|
must be attained at @ = 0 since

|G ()| = |D + Z C(e7™”A)'B
=1

<|D|+) |CA™'B|=C(I-A)"'B+D=G(1)
t

Hence |G|l < ¥ may equivalently be written
CI-A)'B+D<y

Suppose that (i) holds. By Proposition 1 there exists
& € R such that A < . Definex =&+ (I—A)71B.
Then x > 0 and

Ax+B—x=A-¢<0

If £ is sufficiently small, we also get Cx + D < ¥ so

e o] 1] <[]

and (ii) holds. Conversely, (i) implies that Ax < x and

(I-A)'B<x
0<C(I-A)"'B+D<Cx+D<y

so (i) follows. O

A continuous time version is given without proof:

Theorem 4: Suppose that G(s) = C(sI —A)"'B+D
where A € R"*" is Metzler, while B € R?*!, C € R}*"
and D € R,. Then the following two conditions are
equivalent:

(i)  The matrix A is Hurwitz and |G|l < 7-
.. . |A B
(i1) The matrix [C D—y

Moreover, |G|l.c =D — CA™'B .
Combining this theorem with Theorem 2 gives a

linear programming formulation of the problem to
minimize input-output gain:

} is Hurwitz.

Theorem 5: Let G(s) = C(sI — A — ELF)™'B+ D
where B € R?*1, C € R**, D € Ry, E € R™™ and
F € R™*". Let D be the set of m xm diagonal matrices
with entries in [0, 1]. Suppose that A+ ELF is Metzler
for all L € D. Then the following two conditions are
equivalent:

(i)  There exists L € D such that A + ELF is
Hurwitz and |G|l < 7.

(it)  There exist p € R%, g € R} with

ATp+FTg+CT <0
BTp+D—-y<0
q—E"p<0

Moreover, if the conditions of (ii) are satisfied for some
D,q, then the conditions of (i) hold for every L such
that ¢ = (EL)"p.

Proof. According to Theorem 4, condition (i) holds if
and only if the matrix

A+ELF B
C D-—y

is Hurwitz, or equivalently, there exists p € R’} with

ER i PP

Given (2), the inequalities of (ii) hold with ¢ = ETp.
Conversely, given (ii) , the inequalities of (2) follow
provided that ¢ = (EL)Tp. This proves the desired
equivalence between (i) and (if) in Theorem 5. O

Example 3 Consider the problem to find ¢;; € [0,1]
such that the system

X1 = 01X1 +€12(.’X12 — x1) +u

Ko = Qaxg + fo1(x1 — x2) + Log(x3 — x2)
(2 — x3) + €34(x4 — x3)
(

X4 = Qa4 + Ly3(x3 — %4)

X3 = 003x3 + 39

is stabilized, while the gain from u to x; is mini-
mized. The solution is obtained by distributed linear
programming solving the inequalities of condition (i)
in Theorem 5 with matrices A, E, F' and L specified
in Example 2 and

BT = |

100 0
1 0 0 0
0

C
D

Once p and q are determined, L can be obtained from
the equation ¢ = (EL)Tp. O



VI. ArLL INDUCED NORMS ARE THE SAME

In this section we will verify that for positive sys-
tems, several notions of system gain are equivalent.
For a sequence w = {w(t)}2, define the norms

o0 1/p
lwll, = <Z IW(t)I”> llwlloo = sup lw(t)]
=0

for 1 < p. Given matrices A, B, C, D, define the
transfer function G(z) C(zI — A)™'B + D with
corresponding impulse response g = {g(¢)}2, =
(D,CB,CAB,CA?B,...). Let g * w denote the convo-
lution of g and w and define

llg * wll,
l[wll»

for p =1, 2 and co. It is well known that if A is Schur
and g scalar, then ||g|jz_ina = max, |G(e?)|. Another
notation for this norm is |G|l. When g(¢) > 0, the
maximum must be attained at @ = 0 since

l9lp-ina = sup
w

D+ C(e7A)™'B

Z a(t) =

ID|+> |CA™'B| =
t
In fact, all p-induced norms are equal for 1 < p < oco:
Theorem 6: Suppose that g = {g(¢)}2, is nonnega-
tive with ",° g(t) < co. Then

lgllp—ina = " g(#)

Proof. Let y =g *w. Then

|G ()| =

IN

G(1)

for1<p<oo

lly (@)l

9(t — 7)w(r)

I
M8
MN

~
Il
o

T

(t T ot =) ) o(e)

oo
9 ) [[wllx
t=

(t for all ¢. Moreover,

IA
1M
M2 &

<

SA

with equality when

[e¢] [ee]

ly(2)] Z Ow(t—1)| <> g(0)|w(t—1)|
7=0

Zg(f)llwlloo

with equality if w is constant. Hence the desired

equality
lgllp-ina =Y 9(t)
t

has been proved for p = 1 and p = oo and it follows
for intermediate values of p from the Riesz-Thorin
convexity theorem [3, Theorem 7.1.12]. O
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