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Opinion fluctuations and persistent disagreement in so@bdlorks

Daron Acemoglu, Giacomo Como, Fabio Fagnani, Asuman Oadag|

Abstract— Disagreement among individuals in a society, even
on central questions that have been debated for centuriess the
rule; agreement is the rare exception. How can disagreement
of this sort persist for so long? Most existing models of com-
munication and learning, based on Bayesian or non-Bayesian
updating mechanisms, typically lead to consensus provided
that communication takes place over a strongly connected
network. These models are thus unable to explain persistent
disagreements, and belief fluctuations.

We propose a tractable model that generates long-run disage-
ments and persistent opinion fluctuations. Our model involes
a stochastic gossip model of continuous opinion dynamics ia
society consisting of two types of agentstegular agents who
update their beliefs according to information that they receive
from their social neighbors; and stubborn agents who never
update their opinions and might represent leaders, politial
parties or media sources attempting to influence the beliefs
in the rest of the society. When the society contains stubbor
agents with different opinions, the belief dynamics neverdad to
a consensus (among the regular agents). Instead, beliefs time
society almost surely fail to converge, the belief profile keps
on oscillating in an ergodic fashion, and it converges in lavto
a non-degenerate random vector.

The structure of the graph describing the social network and
the location of stubborn agents within it shape the long run
behavior of the opinion dynamics. We prove that, when the
society is highly fluid, meaning that the mixing time of the
random walk on the graph describing the social network is
small relative to the inverse of the relative size of the linkges
to stubborn agents, a condition of homogeneous influence
emerges, whereby the ergodic beliefs of most of the regular
agents have approximately equal marginal distributions. This
clearly need not imply approximate consensus and in fact we
show, under mild conditions, the ergodic belief distributon
becomesapproximately chaoticmeaning that the variance of the
aggregate belief of the society vanishes in the large poptian
limit while individual opinions still fluctuate significant ly in an
essentially uncorrelated way.

I. INTRODUCTION

Disagreement among individuals in a society, even o
central questions that have been debated for centuries,
the norm; agreement is the rare exception. How can di
agreement of this sort persist for so long? Notably, suc
disagreement is not a consequence of lack of communicatig
or some other factors leading to fixed opinions. Disagreeme{b
remains even as individuals communicate and sometimsg1

change their opinions.
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Existing models of communication and learning, based on
Bayesian or non-Bayesian updating mechanisms, typically
lead to consensus provided that communication takes place
over a strongly connected network [20], [5], [2], [4], [11],
[8], [12], [3]. They are thus unable to explain persistent
disagreements. In this paper, we investigate a possibleesou
of persistent disagreement in social networks. We propose a
tractable model that generates both long-run disagreement
and opinion fluctuations so that a consensus fails to emerge
even as individuals communicate and sometimes change their
opinions.

We consider a stochastic gossip model of communication
combined with the assumption that there are saet®born
agents in the network who never change their opinions. We
show that the presence of these stubborn agents leads to
persistent opinion fluctuations and disagreement among the
rest of the society.

More specifically, we consider a society envisaged as
a social network ofn interacting agents (or individuals),
communicating and exchanging information. Each agent
starts with an opinion (or belief)X,(0) € R and is then
activatedaccording to a Poisson process in continuous time.
Following this event, she meets one of the individuals in her
social neighborhoodaccording to a pre-specified stochas-
tic process. This process represents an underlgiogjal
network We distinguish between two types of individuals,
stubbornand regular. Stubborn agents, which are typically
few in number, never change their opinions (they might thus
correspond to media sources or political leaders wishing to
influence the rest of the society). In contrast, regular tggen
which make up the great majority of the agents in the social
network, update their beliefs to some weighted average of
their pre-meeting belief and the belief of the agent they. met
The opinions generated through this information exchange

rocess form a Markov process over the graph induced by
1e social network. Much of our analysis characterizes the
Ié%g—run behavior of this Markov process.
We show that, under general conditions, these opinion
namics never lead to a consensus (among the regular
ents). In fact, regular agents’ beliefs almost surely fai
converge, and keep on oscillating. Instead, the belief of
ch regular agent converges in law to a non-degenerate
random variable and thus has a limiting ergodic distributio
(and similarly, the vector of beliefs of all regular agents

jointly converge to a non-degenerate random vector). This
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persistent disagreements.
We then study the long-run dynamics of opinion$ighly
fluid social networks, defined as networks where the product



between the fraction of edges incoming in the stubborn agentOur work is also related to work on consensus and gossip
set times the mixing time of the associated random wal&lgorithms, which is motivated by different problems, but
is small. We show that in highly fluid social networks, thetypically leads to a similar mathematical formulation [21]
expected value and variance of the ergodic opinion of mof22], [13], [18], [19], [10], [16]. In consensus problembget
of the agents concentrate around certain values in the larfpeus is on whether the beliefs or the values held by differen
population limit. We refer to this result asomogeneous units (which might correspond to individuals, sensors, or
influenceof stubborn agents on the rest of the society—distributed processors) converge to a common value. Our
meaning that their influence on most of the agents in thanalysis here does not focus on limiting consensus of values
society are approximately the same. but in contrast, characterizes the ergodic fluctuations in

Finally, we show that, if the presence of stubborn agentslues.
in the society issignificant then the variance of the er- The rest of this paper is organized as follows: In Section
godic aggregate belief of the society vanishes in the lar@d we introduce our model of interaction between the agents
population limit, and the ergodic opinion distribution isdescribing the resulting evolution of individual belietsd
approximately chaoticlf, moreover, the influence of any we discuss two special cases, in which the arguments sim-
stubborn agent does not dominate the influences of thpdify particularly, and some fundamental features of the
rest, then the mean squared disagreement, i.e., the averggaeral case are highlighted. Secfioh Il presents coeves
of the expected squared differences between the agentssults on the evolution of agent beliefs over time, for a
ergodic beliefs, remains bounded away from zero in the larggven social network: the beliefs are shown to converge in
population limit. distribution, and to be an ergodic process, while in general

Our analysis uses several new approaches to the stulfigy do not converge almost surely. Sectlod IV presents
of belief dynamics. First, convergence in law of the regulaa characterization of the first and second moments of the
agents’ beliefs is established by first rewriting the dynamergodic beliefs in terms of the hitting probabilities of two
ics in the form of an iterated affine function system, and@oupled random walks on the network. Sectidn V provides
studying the corresponding time-reversed process; ther latbounds on the level of dispersion of the first two moments of
is converging almost surely and, at each time instant, halse ergodic beliefs: it is shown that, in highly fluid netwsrk
the same marginal distribution as the actual beliefs pcegnost of the agents have almost the same ergodic belief and
Second, we use a characterization of the expected values aradiance. Sectiofi VI studies the mean square oscillations
correlations of the ergodic beliefs in terms of the hittimglp  and disagreement in highly fluid networks: if there is a
ability distribution of a pair of coupled random walks mogin significant presence of stubborn agents, the variance of the
on the directed graph describing the communication stractuergodic aggregate belief of the society vanishes in theelarg
in the social network. Third, we use the characterization giopulation limit, and the joint distribution of the ergodic
these hitting distributions as solutions of a Laplace equat beliefs is close to a chaotic law. SectibnlVIl contains some
with boundary conditions on the stubborn agents set in ordeoncluding remarks. All the statements will be presented
to find explicit solutions for the expected ergodic beliefs i without proof, which are presented in the longer version of
some social networks with additional structure. Fourth, wéhis work [1].
derive bounds on the behavior of the expected values al@fore proceeding, we establish some notational convesitio
variances of the ergodic beliefs in large population sizgt]i and terminology to be followed throughout the paper. We
by showing that, on highly fluid networks, these expectationshall typically label the entries of vectors by elements of
and variances are almost equal for most of the agents. THisite alphabets, rather than non-negative integers, hBfce
is a consequence of the fact that the hitting probabilities owill stand for the set of vectors with entries labeled by
the stubborn agents set of the associated random walk havelaments of the finite alphab& An index denoted by a
weak dependence on the initial state, which is in turn provddwer-case letter will implicitly be assumed to run over the
by combining properties of fast-mixing chains, includihgt finite alphabet denoted by the corresponding calligraphic
approximate exponentiality of the hitting times. upper-case letter (e.g> , will stand for ), ;). For a

In addition to the aforementioned works on learning angrobability distribution,, over a finite setZ, and a subset
opinion dynamics, our model is closely related to the work7 C Z we will write p(J) := Zj 1.
by Mobilia [15], which propose a variation of the discrete Let V(¢) andV'(¢) be continuous-time random walks on
opinion dynamics model, also called the voter model, witla finite set), defined on the same probability space, both
“zealots” (equivalent to our stubborn agents). This workvith marginal transition probability matri’. We use the
generally relies on heuristic mean-field approximatioatidy  notationP, (- ), andP,, (- ), for the conditional probability
for certain graphical structures, and numerical simufetjo measures given the eveni§(0) = wv, and, respectively,
to characterize belief dynamics. In contrast, we prove corfd’(0),V’(0)) = (v,v’). Similarly, for some probability
vergence in distribution and characterize the propertiglsed distribution7 over) (possibly the stationary on€l,. (- ) :=
limiting distribution for general finite graphs. Even thdug Zw/ T Py (+) Will denote the conditional probability
our model involves continuous belief dynamics, we shath alsmeasure of the Markov chain with initial distributian while
show that Mobilia’s model can be recovered as a special caBg|- |, E, ,/[-], and E.[-] will denote the corresponding
of our general framework. conditional expectations. For two non-negative sequences
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Fig. 1. A social network with seven regular agents (coloredriey), and Fig. 2.  Typical sample-path behavior of the beliefs, andrtleegodic
five stubborn agents (colored in white, and black, respelgjiv Links are  averages for a social network with population size= 4. The topology is
only incoming to the stubborn agents, while links betweeinspaf regular ~ a line graph. The stubborn agents corresponds to the tweregt of the
agents may be uni- or bi-directional. line, S = {0, 3}, while their constant opinions arey = 0, andz3 = 1.
The regular agent set igl = {1,2}. The confidence parameters, and the
interaction rates are chosen to Bg, = 1/2, andrq, = 1/3, for all

a = 1,2, andv = a £ 1. In picture (b), the trajectories of the actual
beliefs X, (¢), for v = 0,1, 2, 3, are reported, whereas picture (c) reports

{an}, {bn}, we will write a, = O(bn) if for some positive the trajectories of their ergodic averaggg, (t) ==t~ [ X, (u)du}.

constantk, a,, < Kb, for all sufficiently largen.

Il. BELIEF EVOLUTION MODEL

We consider a finite populatiol of interacting agents, be the subset of stubborn agents which are reachable from
of possibly very large sizenw := |V|. The connectivity « by a path inG with no intermediate steps i§. We refer
among the agents is described by a simple undirected gragghS, as the set of stubborn agenisfluencinga. For every
G = (V,&), whose node set is identified with the agenstubborn agent € S, A; :={a: s € S,} C A will stand
population, and wheré€ stands for the set of links among for the set of regular agenisfluencedby s.
the agents. The pairA/ = (G, #) contains the entire information about

At time ¢t > 0, each agent € V holds abelief (or patterns of interaction among the agents, and will be referr
opinion) about an underlying state of the world, denotedo as thesocial network Together with an assignment of
by X,(t) € R. The full vector of beliefs at time¢ will a probability law for the initial belief vector, the social
be denoted byX (¢) := {X,(t) : v € V}. We distinguish network designatessociety Throughout the paper, we make
between two types of agents: regular and stubborn. Reguléie following assumptions regarding the underlying social
agents repeatedly update their own beliefs, based on thetwork.
observation of the beliefs of their neighborsgn Stubborn Assumption 1:Every regular agent is influenced by some
agentsnever change their opinions. Agents which are nagtubborn agent, i.e§, is non-empty for every: in A.
stubborn are callegegular. We shall denote the set of regular Assumption 2:Every stubborn agent influences some reg-
agents byA, the set of stubborn agents By so that the set ular agent, i.e., A is non-empty for every in S.
of all agents is¥ = AU S (see Figurd]l). For a given social network, we associate a transition

More specifically, the agents’ beliefs evolve according t@robability matrix P € RY*Y, and a probability vectorr
the following stochastic update process. At time 0, each whose entries are defined by
agentv € V starts with an initial beliefX,(0). The beliefs 1d, i {vu)ee
of the stubborn agents stay constant in time: P, = { 0 it {0} ¢ € Ty 1= du/;du/ .

Xs(t) = X5(0) =: s, seS. ) . . . .
Observe thatP is a reversible matrix, and is its unique
In contrast, the beliefs of the regular agents are updated &tionary probability vector.

follows. To every pair of agents of the forifa, v), where

necessarilya € A, v € V, and {a,v} € &, a clock is 1. CONVERGENCE IN DISTRIBUTION AND ERGODICITY
associated, ticking at the times of an independent Poisson OF THE BELIEFS
process of ratd /d,, whered, is the degree of: in G. If This section is devoted to studying the convergence prop-

the (a,v)-th clock ticks at timet, agenta meets agent  erties of the random belief vectof(t) for the general update
and updates her belief to a convex combination of her owodel described in SedEl Il Figu@ 2 reports the typical
current belief and the current belief of agent sample-path behavior of the agents’ beliefs for a simple
1 - - social network with population size = 4, and line graph
Xat) = (1= 0au) Xa(t7) + 0Xu(t7) @ topology, in which the two stubborn agents are positioned
where X, (t~) stands for the left limitim,; X, (v). Here, in the extremes and hold beliefs, < 3. As shown in
the scalarf € (0,1] is a trust parameterthat represents Fig.[A(b), the beliefs of the two regular ageni$, (¢), and
the confidence that each regular agent A puts on her Xs(¢), oscillate in the intervalzg, 23], in an apparently
neighbors’ beliefs. For every regular agert A, letS, C S chaotic way. On the other hand, the time averages of the



two regular agents’ beliefs rapidly approach a limit valok,
2x0/3 4 x3/3 for agentl, andxz(/3 + 223/3 for agent2.

As we shall see below, such behavior is rather general. In /
our model of social network with at least two stubborn agents
having non-coincident constant beliefs, the regular agent /
beliefs almost surely fail to converge. On the other hand,
we shall prove that, regardless of the initial regular agent
beliefs, the belief vectoX (¢) is convergent in distribution
to a random asymptotic belief vectdf, and in fact it is an @ ®)
ergodic process.

Theorem 1:Let Assumptiond]1l an@l2 hold. Then, forFig. 3. In (a), a network topology consisting of a line withret
every value of the stubborn agents' belidis, : s € 5}, [5G agerts and o subbom agens placed i the exemd) e
there exists afRY-valued random variablé&(, such that, for are absorbing states. The coupled random w@aK¢), V' (¢)) moves on

every initial belief distribution satisfyin(X;(0) = ;) =1 9o, its two components jumping independently to neighborestatinless
for everys € S. and they are either on the diagonal, or one of them isSinin the former case,
y ! there is some chance that the two components jump as a unigyehus
. _ inducing a direct connection along the diagonal; in thesfatiase, the only
t~13+moo ]E[QO(X(t))] o E[tp(X)] ’ component that can keep moving is the one which has nd hithile the
one who hitS is bound to remain constant from that point on.

for all bounded and continuous test functions RY — R.
Moreover, the probability law of the asymptotic belief wact
X is invariant for the system.

Using standard ergodic theorems for Markov chains, an Theorenfdl and Theorelh 2 are two of the central results of
immediate implication of Theoref 1 is the following corol-our paper. Even though beliefs converge in distributioe, th
lary, which shows that time averages of any continuousresence of stubborn agents with different beliefs ensures
bounded function of agent beliefs are given by their expechat almost surely they fail to converge. Moreover there
tation over the limiting distribution. Choosing the relava will not be a consensus of beliefs in this society. Both of
function properly, this enables us to express the empiricéiese are a consequence of the fact that each regular agent
averages of and correlations across agent beliefs in tefmsig continuously being influenced —directly or indirectlyy b
expectations over the limiting distribution, highlightinthe  stubborn agents with different beliefs.
ergodicity of agent beliefs.

Corollary 1: For all initial distributionsX (0) € RY, with
probability one, IV. EMPIRICAL AVERAGES AND CORRELATIONS OF

1 AGENT BELIEFS

Jim 5 [ o) = Elp(x)],

In this section, we provide a characterization of the
empirical averages and correlations of agent beljéfs(¢) :
v € V}, i.e., of the almost surely constant limits

for all continuous and bounded test functians RY — R.
Motivated by CorollanfdL, for any agent € V, we refer
to the random variablé&, as theergodic belief of agent.
Theoren(dl, and Corollarid 1, respectively, show that the .
beliefs of all the agents converge in distribution, and that j;;, l/ X,(u)du,  lim 1
their empirical averages converge almost surely, to a nando t—+> t Jo t—too t
asymptotic belief vectorX. In contrast, the following the-
orem shows that the asymptotic belief of a regular age®y Corollary [1, these limits are given by the first two
which is connected to at least two stubborn agents witfioments of the ergodic beliefs, i.&€[X,| and E[X, X,/],
different beliefs is a non-degenerate random variable. Asrgspectively, independently of the distribution of irlitrag-
consequence, the belief of every such regular agent keedr agents’ beliefs.
on oscillating with probability one. Moreover, the theorem We next provide explicit characterizations of these limits
shows that, with probability one, the difference betweey anin terms of hitting probabilities of a pair of coupled random
pair of distinct regular agents which are influenced by morevalks onG = (V, £). Specifically, we consider a coupling
than one stubborn agent does not converge to zero, so tfi&k(t), V'(¢)) of continuous-time random walks oA, such
disagreement between them persists in time.dar A, let that bothV(¢), and V'(¢), have marginal state transition
X, = {zs : s € S} denote the set of stubborn agents’ beliefates P,,,, as defined in[{l). In fact, one may interpret
values influencing agent. (V(t),V'(t)) as a random walk on the Cartesian power graph
Theorem 2:Let Assumption§ll and 2 hold, and ke A G, whose node set is the produgétx ), and where there
be such thatX,| > 2. Then, the asymptotic belieX, is a is an edge from(v,v’) to (w,w’), if and only if either
non-degenerate random variable. Furthermore, if € A, {v,w} € £ andv’ = w', orv = w and {v',w'} € &, or
with a’ # a are such thatX, N X,/| > 2, thenP(X, # v = v andw = w’ (See Figurd]3). The transition rates
Xa) > 0. K (v, (w,w) Of the coupled random walkd/(t), V’(t)) are

/0 t X (1) X (u)du.



given by V. HOMOGENEOUS INFLUENCE IN HIGHLY FLUID SOCIAL

Py ifv#£v, vtw, v=u NETWORKS

Py ifv£v, v=w, v £u In this section, we present estimates for the ergodic belief
0 if v£v, w#v, w #£wv expectations and variances as a function of the underlying
0P, if v=0", w=w social network. Our estimates will prove to be particularly
(1-0)P,, fo=0v,v=uw relevant for large-scale social networks satisfying tH¥o
(1-0)Pyy fo=0v,v=w ing condition.

0 ifo=0v, wuw, w#ov, W #£0. Definition 1: Given a reversible social network, |g?

(2)  denote its transition probability matrix, and denote its
The first three lines of[j2) state that, conditioned ORtationary distribution. Define, := min, m,, and let
(V(t),V'(t)) being on a pair of non-coincident nodesv’),
each of the two componentd/(¢) (respectively,V'(t)), +.—mininf {t >0: 3 |PU(V(t)—w)—Pv/(V(t)—w)|S%}
jumps to a neighbor nodev, with transition rate P,,, v’ w
(respectively, to a neighbor node’ with transition raté genote the (variational distance) mixing time of the
Pyry), whereas the probability that both components jump &ontinuous-time random walk (t) with transition rate ma-
the same time is zero. On the other hand, the last four linggx p. we say that a sequence of social networks of

of (@ state that, once the two components have met, i.¢acreasing population size is highly fluidif it satisfies
conditioned onV (¢t) = V’(t) = v, they have some chance

to stick together and jump as a single particle to a neighborr=(S) = o(1), liminf nm, >0, asn — +oo,
nodew, with ratedP,,,, while each of the component&(t) 3)
(respectively,V’(t)) has still some chance to jump alone towhere

a neighbor nodev with rate (1 — 0)P,.,, (resp., tow’ with 7(S) := Z o Z ds/(nd). (4)
rate (1 — 6)Pyur). In the extreme case wheh= 1 for all Our estimates will show that for large-scale highly fluid

v,w, the last three lines of the righthand side Of (2) equadocial networks, the ergodic beliefs of most of the regular
0, and in fact one recovers the expression for the transitiofyents in the population can be approximated (at least in

rates of two coalescing random walks: oric¢) andV’(t)  their first and second moments) by a ‘virtual’ random belief
have met, they stick together and move as a single particlg, whose distribution is given by

never separating from each other.

We use the notatiofi’s := inf{t > 0: V(¢t) € S} and P(Z =x5) =7,, = Z Yo s se8. (5)
Tk := inf{t > 0 : V'(t) € S}. Further, for allv,v’ € V, T
we define thenitting probability distributions,” overS, and e refer to the probability distributiofy, : s € S} as the

n*"" over S2, whose entries are respectively given by stationary stubborn agent distributiorDbserve thaty, =
P.(V(Ts) = s) coincides with probability that the random

V=P (V(Ts)=s), s€S, walk V(t), started from the stationary distributian hits

Ny =Py (V(Ts) = s, V/(Th) = s'), 5,8 €8. the stubborn agentbefore any other stubborn ageiite S.

) ) In fact, as we shall clarify below, one may interprgt as
The follewmg lemma characterizefgy; : v € V} and 4 relative measure of the influence of the stubborn agent
{nss, : v,v" € V} as solutions of harmonic equations @n g the society compared to the rest of the stubborn agents

and.A?, with boundary conditions o and1? \ A2. s eS.
Lemma 1:For all s, s" € S, one has that More precisely, let us denote the expected value and
>y P72 —72) =0, Vae A, variance of the virtual belie by
=1, 45=0, Vs’ € S\ {s}, E[Z] := Zsms . oL = st (zs — E[Z])? . (6)
> Ka,a) (v (7735// - 77??) =0, Va,a' € A, Let o2 denote the variance of the ergodic belief of agent
ey =y V(v,0') ¢ A2, 0? == E[X2] — E[X,]2.

The next theorem provides a fundamental characterization
of the expected values and correlations of ergodic beliel#/e also use the notatiofi, to denote the maximum differ-
in terms of the hitting probabilities of the coupled randonence between stubborn agents’ beliefs, i.e.,
walks V' (t) and V' (t). ,

Theorem 3:For all v, v’ € V, Av = max{zs -y : 5,5 € S} ()

E[X,] = Z Yz, E[X,X,] = Z nﬁ;’//:vsws/ . The next theorem presents the main result of this section.
s ! Theorem 4:Let Assumptiond]l anfl2 hold, and assume

Remark 1:As a consequence of TheorSE]% 3, one gets thathatw(S) <1/4. Then, for alle > 0

if X, = {z.}, thenX, = x,, and, by Corollan[11,X,(¢)
converges tar* with probability one. This can be thought 1 77(8S)
of as a sort of complement to Theor&in 2. n H“ : ‘E[XU] - E[Z]‘ =z A*EH <9(e) )

N4




with 1(e) := 18 log(2¢?/£). Furthermore, if the trust param- positive constant such thatsclogn < d, < 4clogn for

eters satisfyd,, = 1 for all (a,v) € &, then each noder [9, Lemma 6.5.2]. In particular, it follows that,
1 (S) with high probability, (r.n)~! < 4/6. Hence, using[{4),

~ Hv: o? — a%‘ > Afs}‘ < WE)? (9) one finds that the resulting social network is highly fluid,

This theorem implies that in large-scale highly fluid sociaProvided thatS| = o(n/logn), asn grows large.
networks, as the population sizegrows large, the expected Example 2:(Fixed degree distribution) Consider a ran-
values and variances of ergodic beliefs of regular agents codom graphg = 7D(n, A), with n vertices, whose degre&,
centrate around fixed values corresponding to the expect@tf independent and identically distributed random viegb
virtual belief E[Z], and, respectively, its variancel. We With P(d, = k) = A, for k € N. We assume that; =
refer to this as arhomogeneous influenas the stubborn A2 =0, thatAs, > 0 for somek > 2, and that the first two
agents on the rest of the society—meaning that their infltomentsd := >, A¢k, and }-, \yk* are finite. Then, the
ence on most of the agents in the society is approximately tiobability of the eventt, := {3_  d, is ever} converges
same. Indeed, it amounts to homogeneous (at least in thér 1/2 as n grows large, and we may assume tigat=
first two moments) marginals of the agents’ ergodic beliefs" P(n, A) is generated by randomly matching the vertices.
This shows that in highly fluid social networks, most of theResults in [9, Ch. 6.3] show that = O(logn). Therefore,
regu]ar agents feel the presence of the stubborn agentsqﬂe finds that the reSUlting social network is hlghly fluidhwit
approximately the same way. high probability provided tha}> ds = o( %)

Intuitively, if the setS and the mixing timer are both ~ Example 3:(Preferential attachment) The preferential
small, then the influence of the stubborn agents will be fefttachment model was introduced by Barabasi and Albert [6]
by most of the regular agents much later then the time i@ model real-world networks which typically exhibit a pawe
takes them to influence each other. Hence, their beliefaw degree distribution. We follow [9, Ch. 4] and consider
empirical averages and variances will converge to valugs vethe random graply = P.A(n, m) with n vertices, generated
close to each other. The proof of TheorEn 4 relies on they starting with two vertices connected by parallel edges,
characterization of the mean ergodic beliefs in terms of th@nd then subsequently adding a new vertex and connecting
hitting probabilities of the random walk (). The definition it to m of the existing nodes with probability proportional
of highly fluid network implies that the (expected) time itto their current degree. As shown in [9, Th. 4.1.4], the
takesV/(t) to hit S, when started from most of the nodes ofdegree distribution converges in probability to the poveev |
G, is much larger than the mixing time. Hence, before P(dv = k) = Ay = 2m(m + 1)/k(k + 1)(k + 2), and the
hitting S, V (¢) looses memory of where it started from,graph is connected with high probability [9, Th. 4.6.1]. In
and approache$ almost as if started from the stationaryparticular, it follows that, with high probability, the anage

distribution 7. degreed remains bounded, while the second moment of the
Before proving Theorerl 4, we present some examples g¢gree distribution diverges angrows large. On the other
highly fluid social networks in Sedi_A. hand, results by Mihail et al. [14] (see also [9, Th. 6.4.2])

_ _ ) imply that the mixing timer = O(logn). Therefore, thanks
A. Examples of large-scale highly fluid social networks ¢, @), the resulting social network is highly fluid with high
We now present some examples of family of social netrobability if ) s d, = 0(1o§n .
works that are highly fluid in the limit of large population Example 4:(Watts & Strogatz’s small world) Watts and
size n. Before proceeding, let us observe thatn < 1, Strogatz [23], and then Newman and Watts [17] proposed
with equality if and only ifr is the uniform measure over simple models of random graphs to explain the empir-
V. Hence, one has.n = 1 for regular graphs, while, for ical evidence that most social networks contain a large
general undirected graphsr.n)~! < d, whered is the number of triangles and have a small diameter (the latter
average degree of the graph. has become known as the small-world phenomenon). We
We shall focus on four examples of random graph sesonsider Newman and Watts’ model, which is a random
quences which have been the object of extensive researghaph G = NW(n, k,p), with n vertices, obtained start-
Following a common terminology, we say that some propertyng from a Cayley graph on the ring, with generator

of such graphs holds with high probability, if the probatgili {—k, -k +1,...,—1,1,...,k — 1,k}, and adding to it a
that it holds approaches one in the limit of large populatioPoisson number of shortcuts with meakrn, and attaching
sizen. them to randomly chosen vertices. In this case, the average

Example 1:(Connected Erdds-Reny) Consider the degree remains bounded with high probability ragrows
Erdos-Renyi random grapi = ER(n,p), i.e., the random large, while results by Durrett [9, Th. 6.6.1] show that the
undirected graph withn vertices, in which each pair of mixing time 7 = O(log®n). This, and [#) imply that[{3)
distinct vertices is an edge with probabilily independently holds provided thad . . ds = o(
from the others. We focus on the regime= cn~'logn,
with ¢ > 1, where the Erdos-Renyi graph is known to V1. OPINION OSCILLATIONS AND DISAGREEMENT
be connected with high probability [9, Thm. 2.8.2]. In this We have seen in the previous section that in highly fluid
regime, results by Cooper and Frieze [7] ensure that, witbocial networks a condition of homogeneous influence is
high probability, 7 = O(logn), and that there exists a achieved, with the expected values and variances of the

_n_
seS log3n/*



ergodic opinions of almost all the agents close to thos® the intensity of the interactions between typical paifs o
of the virtual belief. It is worth stressing how the con-regular agents (quantified by(D)). If such a ratio grows
dition of homogeneous influence may significantly diffeffast enough (precisely, Definitidi 2 requires it to grow dast
from an approximate consensus. In fact, the former onlthan the relaxation time of the network, but in fact, one
involves the (the first and second moments of) the marginalay expect that in many cases such ratio going to infinity
distributions of the agents’ ergodic beliefs, and does nahould suffice), then one may expect that the ergodic beliefs
have any implication for their joint probability law. A of a typical pair of regular agents in the network should be
chaotic distribution in which the agents’ ergodic beliefdirectly influenced by the stubborn agents’ beliefs, withau
are all mutually independent would be compatible with theignificant coupling between themselves. Hence, in a social
condition of approximately equal influence, as well as anetwork with a significant presence of stubborn agents, the
approximate consensus condition, which would require thergodic beliefs of most of the regular agents’ pairs are
ergodic beliefs of most of the agents to be close to ea@xpected to be weakly coupled, so that the variance of the
other with high probability. In this section, under addii@d ergodic aggregate belief should vanish in the large pojoulat
assumptions, we show that the ergodic belief distribution ilimit. Indeed, this is formalized in the following:

highly fluid social networks is closer to a chaotic distribat Theorem 5:For any family of highly fluid social net-
than to an approximate consensus. For the sake of simplicityorks, satisfying Assumptioid [ 2, afid 3, with a significant
throughout this section, we restrict our attention to theewo presence of stubborn agents, it holds

model.

Assumption 3:For everye € &, 6, = 1. 0% =o(1), A? = UQZ_‘F o(l),  asm—+oo.

We start by introducing two quantities measuring the‘r_he(_)renﬂi shows that in highly fluid social netwqu with a
amplitude of the aggregate population’s oscillations ave t S|gn|f|pant presence of stubborn agents, t.he amphtudeeof t_h
average disagreement among the agents. Specifically, ftgodic oscillations _of the aggregate belief \_/anlshes,le_whl
us consider theergodic aggregate belief of the system, the mean square disagreement is asymptotically equivalent

X:=n"1Y, X,, and let to the variance of the virtual belief, in the limit of large
population size. Hence, under these conditions the ergodic
0% :=E [(7 — ]E[Y])Q} (10) belief distribution achieved in this setting is close to aatic
distribution.
be its variance. Also, define thrrean squared disagreement  An immediate consequence of TheorBim 5 is thatZifis
as 1 bounded away from zero in the large population limit, then so
A2 .= 33 Z E {(Xv - XU/)Q] , (11) isthe mean squared disagreement. Observe that the conditio
(L 0% = o(1) is equivalent to the fact that the probability

measuré)_, 7,0, (where7, is defined in[(b), and, stands

for the Dirac’s measure centered in some R) concentrates

in one single point. We can think of this as the as the presence
gg a dominating stubborn agents’ belidflence, we may say
that Theorenid5 implies that, on highly fluid social networks
daleth a significant presence of stubborn agents, none of whose
heliefs is dominating, a significant disagreement persists
the large population limit.

the reason for the factar/2 being mere notational conve-
nience. Observe that, if the ergodic distribution of therage
beliefs is chaaotic (i.e., it is the product of its marginathen
X is the arithmetic average of independent random variabl
with finite variance, and thus'Qy = o(1). On the other
hand, an approximate consensus condition, with the ergo
beliefs of most of the agents close to each other with hig
probability, would imply thatA? = o(1).

In this section, we focus on highly fluid social networksA
satisfying the following:

Definition 2: Given a family of reversible social networks

. Examples of highly fluid social networks with significant
presence of stubborn agents

of increasing population size, we say that there Egmifi- Observe that one has
cant presence of stubborn agetits Z ) Z ) Z d2 2
(D) =Y m < T = 2= ——n
a v 2 2
T o), 0o, (12) <5 STed 9
™

. o . whered is the average degree, afdd:= n=*3" d2 is the
wherers is the relaxation time, i.e., the inverse of the spectral d d 9 ng . h nh ZU. v
gap. and average squared degree,@fNotice that the ratio

(D) := 2 d? 1 dy ’
Za —_1+Ezv(j_1)

is the invariant measure of the diagonal get= {(a,a) : (d)?
a € A} is minimal for regular graphs, where it equalsand grows

In order to obtain some intuition on Definitidd 2, onewith the normalized variance of the degree distribution. In
should think of the ratior(S)/#(D) as a measure of the particular, for a family of social networks with bounded
relative intensity of the interactions of the regular agentfirst and second moment of the degree distributiofy) =
with the stubborn agents (quantified byS)), as compared O(n~!), so that, in order to have a significant presence of



stubborn agents, its is sufficient that(S) = (d)~' )", ds
grows faster than the relaxation time.

Let us return to the examples of Sdci_V-A.

Example 5:(Connected Erdds-Reny) Consider the
Erdods-Renyi random grap§ = ER(n,p), in the regime

limit of large population size, and the ergodic distribatio

of the agents beliefs approaches an approximately chaotic
condition. This implies that, if the influence of any of the
stubborn agents’ opinions does not dominate the influence of
the rest, then the mean square disagreement does not vanish

p = cn”tlogn, with ¢ > 1, as in Exampld€]1l. Then, with in the large population size.

high probability,@2/(d)? = O(1), while 7, < 7 = O(logn).

It follows that the associated social network is highly fluid
and with a significant presence of stubborn agents providet]
that |S| grows faster thatogn, and slower tham/ logn.

Example 6:(Fixed degree distribution) Considerg =
FD(n, ), as in Exampldd2. Then, with high probability,
since the expected square degree is bounded, ong(fgs=
O(n~1), while 7, < 7 = O(logn). It follows that the asso-
ciated social network is highly fluid and with a significant [4]
presence of stubborn agents provided thatd, grows faster [5]
thanlogn, and slower tham/ logn.

Example 7:(Preferential attachment) Consider the pref-  [6]
erential attachment model of Exam@lE 3. Then, with highm
probability, » < 7 = O(logn), while, according to [9,
pag. 180],7(D) < n~'logn. It follows that the associated [8]
social network is highly fluid and with a significant presence
of stubborn agents provided that, d, grows faster than
log® n, and slower tham/ log n.

Example 8:(Watts & Strogatz’s small world) For the
small-world model of Exampl&l4, one has that both the

(2]

El
[10]
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