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Opinion fluctuations and persistent disagreement in socialnetworks

Daron Acemoglu, Giacomo Como, Fabio Fagnani, Asuman Ozdaglar

Abstract— Disagreement among individuals in a society, even
on central questions that have been debated for centuries, is the
rule; agreement is the rare exception. How can disagreement
of this sort persist for so long? Most existing models of com-
munication and learning, based on Bayesian or non-Bayesian
updating mechanisms, typically lead to consensus provided
that communication takes place over a strongly connected
network. These models are thus unable to explain persistent
disagreements, and belief fluctuations.
We propose a tractable model that generates long-run disagree-
ments and persistent opinion fluctuations. Our model involves
a stochastic gossip model of continuous opinion dynamics ina
society consisting of two types of agents:regular agents, who
update their beliefs according to information that they receive
from their social neighbors; and stubborn agents, who never
update their opinions and might represent leaders, political
parties or media sources attempting to influence the beliefs
in the rest of the society. When the society contains stubborn
agents with different opinions, the belief dynamics never lead to
a consensus (among the regular agents). Instead, beliefs inthe
society almost surely fail to converge, the belief profile keeps
on oscillating in an ergodic fashion, and it converges in lawto
a non-degenerate random vector.
The structure of the graph describing the social network and
the location of stubborn agents within it shape the long run
behavior of the opinion dynamics. We prove that, when the
society is highly fluid, meaning that the mixing time of the
random walk on the graph describing the social network is
small relative to the inverse of the relative size of the linkages
to stubborn agents, a condition of homogeneous influence
emerges, whereby the ergodic beliefs of most of the regular
agents have approximately equal marginal distributions. This
clearly need not imply approximate consensus and in fact we
show, under mild conditions, the ergodic belief distribution
becomesapproximately chaotic, meaning that the variance of the
aggregate belief of the society vanishes in the large population
limit while individual opinions still fluctuate significant ly in an
essentially uncorrelated way.

I. I NTRODUCTION

Disagreement among individuals in a society, even on
central questions that have been debated for centuries, is
the norm; agreement is the rare exception. How can dis-
agreement of this sort persist for so long? Notably, such
disagreement is not a consequence of lack of communication
or some other factors leading to fixed opinions. Disagreement
remains even as individuals communicate and sometimes
change their opinions.
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Existing models of communication and learning, based on
Bayesian or non-Bayesian updating mechanisms, typically
lead to consensus provided that communication takes place
over a strongly connected network [20], [5], [2], [4], [11],
[8], [12], [3]. They are thus unable to explain persistent
disagreements. In this paper, we investigate a possible source
of persistent disagreement in social networks. We propose a
tractable model that generates both long-run disagreement
and opinion fluctuations so that a consensus fails to emerge
even as individuals communicate and sometimes change their
opinions.

We consider a stochastic gossip model of communication
combined with the assumption that there are somestubborn
agents in the network who never change their opinions. We
show that the presence of these stubborn agents leads to
persistent opinion fluctuations and disagreement among the
rest of the society.

More specifically, we consider a society envisaged as
a social network ofn interacting agents (or individuals),
communicating and exchanging information. Each agenta
starts with an opinion (or belief)Xa(0) ∈ R and is then
activatedaccording to a Poisson process in continuous time.
Following this event, she meets one of the individuals in her
social neighborhoodaccording to a pre-specified stochas-
tic process. This process represents an underlyingsocial
network. We distinguish between two types of individuals,
stubbornand regular. Stubborn agents, which are typically
few in number, never change their opinions (they might thus
correspond to media sources or political leaders wishing to
influence the rest of the society). In contrast, regular agents,
which make up the great majority of the agents in the social
network, update their beliefs to some weighted average of
their pre-meeting belief and the belief of the agent they met.
The opinions generated through this information exchange
process form a Markov process over the graph induced by
the social network. Much of our analysis characterizes the
long-run behavior of this Markov process.

We show that, under general conditions, these opinion
dynamics never lead to a consensus (among the regular
agents). In fact, regular agents’ beliefs almost surely fail
to converge, and keep on oscillating. Instead, the belief of
each regular agent converges in law to a non-degenerate
random variable and thus has a limiting ergodic distribution
(and similarly, the vector of beliefs of all regular agents
jointly converge to a non-degenerate random vector). This
model therefore provides a new approach to understanding
persistent disagreements.

We then study the long-run dynamics of opinions inhighly
fluid social networks, defined as networks where the product



between the fraction of edges incoming in the stubborn agent
set times the mixing time of the associated random walk
is small. We show that in highly fluid social networks, the
expected value and variance of the ergodic opinion of most
of the agents concentrate around certain values in the large
population limit. We refer to this result ashomogeneous
influenceof stubborn agents on the rest of the society—
meaning that their influence on most of the agents in the
society are approximately the same.

Finally, we show that, if the presence of stubborn agents
in the society issignificant, then the variance of the er-
godic aggregate belief of the society vanishes in the large
population limit, and the ergodic opinion distribution is
approximately chaotic. If, moreover, the influence of any
stubborn agent does not dominate the influences of the
rest, then the mean squared disagreement, i.e., the average
of the expected squared differences between the agents’
ergodic beliefs, remains bounded away from zero in the large
population limit.

Our analysis uses several new approaches to the study
of belief dynamics. First, convergence in law of the regular
agents’ beliefs is established by first rewriting the dynam-
ics in the form of an iterated affine function system, and
studying the corresponding time-reversed process; the latter
is converging almost surely and, at each time instant, has
the same marginal distribution as the actual beliefs process.
Second, we use a characterization of the expected values and
correlations of the ergodic beliefs in terms of the hitting prob-
ability distribution of a pair of coupled random walks moving
on the directed graph describing the communication structure
in the social network. Third, we use the characterization of
these hitting distributions as solutions of a Laplace equation
with boundary conditions on the stubborn agents set in order
to find explicit solutions for the expected ergodic beliefs in
some social networks with additional structure. Fourth, we
derive bounds on the behavior of the expected values and
variances of the ergodic beliefs in large population size limit,
by showing that, on highly fluid networks, these expectations
and variances are almost equal for most of the agents. This
is a consequence of the fact that the hitting probabilities on
the stubborn agents set of the associated random walk have a
weak dependence on the initial state, which is in turn proved
by combining properties of fast-mixing chains, including the
approximate exponentiality of the hitting times.

In addition to the aforementioned works on learning and
opinion dynamics, our model is closely related to the work
by Mobilia [15], which propose a variation of the discrete
opinion dynamics model, also called the voter model, with
“zealots” (equivalent to our stubborn agents). This work
generally relies on heuristic mean-field approximations, valid
for certain graphical structures, and numerical simulations,
to characterize belief dynamics. In contrast, we prove con-
vergence in distribution and characterize the properties of the
limiting distribution for general finite graphs. Even though
our model involves continuous belief dynamics, we shall also
show that Mobilia’s model can be recovered as a special case
of our general framework.

Our work is also related to work on consensus and gossip
algorithms, which is motivated by different problems, but
typically leads to a similar mathematical formulation [21],
[22], [13], [18], [19], [10], [16]. In consensus problems, the
focus is on whether the beliefs or the values held by different
units (which might correspond to individuals, sensors, or
distributed processors) converge to a common value. Our
analysis here does not focus on limiting consensus of values,
but in contrast, characterizes the ergodic fluctuations in
values.

The rest of this paper is organized as follows: In Section
II, we introduce our model of interaction between the agents,
describing the resulting evolution of individual beliefs,and
we discuss two special cases, in which the arguments sim-
plify particularly, and some fundamental features of the
general case are highlighted. Section III presents convergence
results on the evolution of agent beliefs over time, for a
given social network: the beliefs are shown to converge in
distribution, and to be an ergodic process, while in general
they do not converge almost surely. Section IV presents
a characterization of the first and second moments of the
ergodic beliefs in terms of the hitting probabilities of two
coupled random walks on the network. Section V provides
bounds on the level of dispersion of the first two moments of
the ergodic beliefs: it is shown that, in highly fluid networks,
most of the agents have almost the same ergodic belief and
variance. Section VI studies the mean square oscillations
and disagreement in highly fluid networks: if there is a
significant presence of stubborn agents, the variance of the
ergodic aggregate belief of the society vanishes in the large
population limit, and the joint distribution of the ergodic
beliefs is close to a chaotic law. Section VII contains some
concluding remarks. All the statements will be presented
without proof, which are presented in the longer version of
this work [1].
Before proceeding, we establish some notational conventions
and terminology to be followed throughout the paper. We
shall typically label the entries of vectors by elements of
finite alphabets, rather than non-negative integers, henceR

I

will stand for the set of vectors with entries labeled by
elements of the finite alphabetI. An index denoted by a
lower-case letter will implicitly be assumed to run over the
finite alphabet denoted by the corresponding calligraphic
upper-case letter (e.g.

∑

i will stand for
∑

i∈I). For a
probability distributionµ over a finite setI, and a subset
J ⊆ I we will write µ(J ) :=

∑

j µj .
Let V (t) andV ′(t) be continuous-time random walks on

a finite setV , defined on the same probability space, both
with marginal transition probability matrixP . We use the
notationPv( · ), andPvv′( · ), for the conditional probability
measures given the eventsV (0) = v, and, respectively,
(V (0), V ′(0)) = (v, v′). Similarly, for some probability
distributionπ overV (possibly the stationary one),Pπ( · ) :=
∑

v,v′ πvπv′Pvv′( · ) will denote the conditional probability
measure of the Markov chain with initial distributionπ, while
Ev[ · ], Ev,v′ [ · ], and Eπ[ · ] will denote the corresponding
conditional expectations. For two non-negative sequences
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Fig. 1. A social network with seven regular agents (colored in grey), and
five stubborn agents (colored in white, and black, respectively). Links are
only incoming to the stubborn agents, while links between pairs of regular
agents may be uni- or bi-directional.

{an}, {bn}, we will write an = O(bn) if for some positive
constantK, an ≤ Kbn for all sufficiently largen.

II. B ELIEF EVOLUTION MODEL

We consider a finite populationV of interacting agents,
of possibly very large sizen := |V|. The connectivity
among the agents is described by a simple undirected graph
G = (V , E), whose node set is identified with the agent
population, and whereE stands for the set of links among
the agents.

At time t ≥ 0, each agentv ∈ V holds a belief (or
opinion) about an underlying state of the world, denoted
by Xv(t) ∈ R. The full vector of beliefs at timet will
be denoted byX(t) := {Xv(t) : v ∈ V}. We distinguish
between two types of agents: regular and stubborn. Regular
agents repeatedly update their own beliefs, based on the
observation of the beliefs of their neighbors inG. Stubborn
agentsnever change their opinions. Agents which are not
stubborn are calledregular. We shall denote the set of regular
agents byA, the set of stubborn agents byS, so that the set
of all agents isV = A ∪ S (see Figure 1).

More specifically, the agents’ beliefs evolve according to
the following stochastic update process. At timet = 0, each
agentv ∈ V starts with an initial beliefXv(0). The beliefs
of the stubborn agents stay constant in time:

Xs(t) = Xs(0) =: xs , s ∈ S .

In contrast, the beliefs of the regular agents are updated as
follows. To every pair of agents of the form(a, v), where
necessarilya ∈ A, v ∈ V , and {a, v} ∈ E , a clock is
associated, ticking at the times of an independent Poisson
process of rate1/da, whereda is the degree ofa in G. If
the (a, v)-th clock ticks at timet, agenta meets agentv
and updates her belief to a convex combination of her own
current belief and the current belief of agentv:

Xa(t) = (1 − θav)Xa(t−) + θXv(t−) , (1)

whereXv(t
−) stands for the left limitlimu↑t Xv(u). Here,

the scalarθ ∈ (0, 1] is a trust parameterthat represents
the confidence that each regular agenta ∈ A puts on her
neighbors’ beliefs. For every regular agenta ∈ A, letSa ⊆ S
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Fig. 2. Typical sample-path behavior of the beliefs, and their ergodic
averages for a social network with population sizen = 4. The topology is
a line graph. The stubborn agents corresponds to the two extremes of the
line, S = {0, 3}, while their constant opinions arex0 = 0, andx3 = 1.
The regular agent set isA = {1, 2}. The confidence parameters, and the
interaction rates are chosen to beθav = 1/2, and rav = 1/3, for all
a = 1, 2, and v = a ± 1. In picture (b), the trajectories of the actual
beliefs Xv(t), for v = 0, 1, 2, 3, are reported, whereas picture (c) reports
the trajectories of their ergodic averages{Zv(t) := t−1

R

t

0
Xv(u)du}.

be the subset of stubborn agents which are reachable from
a by a path inG with no intermediate steps inS. We refer
to Sa as the set of stubborn agentsinfluencinga. For every
stubborn agents ∈ S, As := {a : s ∈ Sa} ⊆ A will stand
for the set of regular agentsinfluencedby s.

The pairN = (G, θ) contains the entire information about
patterns of interaction among the agents, and will be referred
to as thesocial network. Together with an assignment of
a probability law for the initial belief vector, the social
network designates asociety. Throughout the paper, we make
the following assumptions regarding the underlying social
network.

Assumption 1:Every regular agent is influenced by some
stubborn agent, i.e.,Sa is non-empty for everya in A.

Assumption 2:Every stubborn agent influences some reg-
ular agent, i.e.,As is non-empty for everys in S.

For a given social network, we associate a transition
probability matrixP ∈ R

V×V , and a probability vectorπ
whose entries are defined by

Pvv′ =

{

1/dv if {v, v′} ∈ E
0 if {v, v′} /∈ E

πv := dv/
∑

v′

dv′ .

Observe thatP is a reversible matrix, andπ is its unique
stationary probability vector.

III. C ONVERGENCE IN DISTRIBUTION AND ERGODICITY

OF THE BELIEFS

This section is devoted to studying the convergence prop-
erties of the random belief vectorX(t) for the general update
model described in Sect. II. Figure 2 reports the typical
sample-path behavior of the agents’ beliefs for a simple
social network with population sizen = 4, and line graph
topology, in which the two stubborn agents are positioned
in the extremes and hold beliefsx0 < x3. As shown in
Fig. 2(b), the beliefs of the two regular agents,X1(t), and
X2(t), oscillate in the interval[x0, x3], in an apparently
chaotic way. On the other hand, the time averages of the



two regular agents’ beliefs rapidly approach a limit value,of
2x0/3 + x3/3 for agent1, andx0/3 + 2x3/3 for agent2.

As we shall see below, such behavior is rather general. In
our model of social network with at least two stubborn agents
having non-coincident constant beliefs, the regular agent
beliefs almost surely fail to converge. On the other hand,
we shall prove that, regardless of the initial regular agents’
beliefs, the belief vectorX(t) is convergent in distribution
to a random asymptotic belief vectorX , and in fact it is an
ergodic process.

Theorem 1:Let Assumptions 1 and 2 hold. Then, for
every value of the stubborn agents’ beliefs{xs : s ∈ S},
there exists anRV -valued random variableX , such that, for
every initial belief distribution satisfyingP(Xs(0) = xs) = 1
for everys ∈ S, and

lim
t→+∞

E[ϕ(X(t))] = E[ϕ(X)] ,

for all bounded and continuous test functionsϕ : R
V → R.

Moreover, the probability law of the asymptotic belief vector
X is invariant for the system.

Using standard ergodic theorems for Markov chains, an
immediate implication of Theorem 1 is the following corol-
lary, which shows that time averages of any continuous
bounded function of agent beliefs are given by their expec-
tation over the limiting distribution. Choosing the relevant
function properly, this enables us to express the empirical
averages of and correlations across agent beliefs in terms of
expectations over the limiting distribution, highlighting the
ergodicity of agent beliefs.

Corollary 1: For all initial distributionsX(0) ∈ R
V , with

probability one,

lim
t→+∞

1

t

∫ t

0

ϕ(X(u))du = E[ϕ(X)] ,

for all continuous and bounded test functionsϕ : R
V → R.

Motivated by Corollary 1, for any agentv ∈ V , we refer
to the random variableXv as theergodic belief of agentv.

Theorem 1, and Corollary 1, respectively, show that the
beliefs of all the agents converge in distribution, and that
their empirical averages converge almost surely, to a random
asymptotic belief vectorX . In contrast, the following the-
orem shows that the asymptotic belief of a regular agent
which is connected to at least two stubborn agents with
different beliefs is a non-degenerate random variable. As a
consequence, the belief of every such regular agent keeps
on oscillating with probability one. Moreover, the theorem
shows that, with probability one, the difference between any
pair of distinct regular agents which are influenced by more
than one stubborn agent does not converge to zero, so that
disagreement between them persists in time. Fora ∈ A, let
Xa = {xs : s ∈ S} denote the set of stubborn agents’ belief
values influencing agenta.

Theorem 2:Let Assumptions 1 and 2 hold, and leta ∈ A
be such that|Xa| ≥ 2. Then, the asymptotic beliefXa is a
non-degenerate random variable. Furthermore, ifa, a′ ∈ A,
with a′ 6= a are such that|Xa ∩ Xa′ | ≥ 2, then P(Xa 6=
Xa′) > 0.

(a) (b)

Fig. 3. In (a), a network topology consisting of a line with three
regular agents and two stubborn agents placed in the extremes. In (b), the
corresponding graph productG� . The latter has25 nodes, four of which
are absorbing states. The coupled random walk(V (t), V ′(t)) moves on
G� , its two components jumping independently to neighbor states, unless
they are either on the diagonal, or one of them is inS: in the former case,
there is some chance that the two components jump as a unique one, thus
inducing a direct connection along the diagonal; in the latter case, the only
component that can keep moving is the one which has not hitS, while the
one who hitS is bound to remain constant from that point on.

Theorem 1 and Theorem 2 are two of the central results of
our paper. Even though beliefs converge in distribution, the
presence of stubborn agents with different beliefs ensures
that almost surely they fail to converge. Moreover there
will not be a consensus of beliefs in this society. Both of
these are a consequence of the fact that each regular agent
is continuously being influenced –directly or indirectly– by
stubborn agents with different beliefs.

IV. EMPIRICAL AVERAGES AND CORRELATIONS OF

AGENT BELIEFS

In this section, we provide a characterization of the
empirical averages and correlations of agent beliefs{Xv(t) :
v ∈ V}, i.e., of the almost surely constant limits

lim
t→+∞

1

t

∫ t

0

Xv(u)du, lim
t→+∞

1

t

∫ t

0

Xv(u)Xv′(u)du.

By Corollary 1, these limits are given by the first two
moments of the ergodic beliefs, i.e.,E[Xv] and E[XvXv′ ],
respectively, independently of the distribution of initial reg-
ular agents’ beliefs.

We next provide explicit characterizations of these limits
in terms of hitting probabilities of a pair of coupled random
walks onG = (V , E). Specifically, we consider a coupling
(V (t), V ′(t)) of continuous-time random walks onV , such
that both V (t), and V ′(t), have marginal state transition
rates Pav, as defined in (II). In fact, one may interpret
(V (t), V ′(t)) as a random walk on the Cartesian power graph
G�, whose node set is the productV × V , and where there
is an edge from(v, v′) to (w,w′), if and only if either
{v, w} ∈ E and v′ = w′, or v = w and {v′, w′} ∈ E , or
v = v′ and w = w′ (See Figure 3). The transition rates
K(v,v′)(w,w′) of the coupled random walks(V (t), V ′(t)) are



given by






































Pvw if v 6= v′ , v 6= w , v′ = w′

Pv′w′ if v 6= v′ , v = w , v′ 6= w′

0 if v 6= v′ , w 6= v , w′ 6= v
θPvw if v = v′ , w = w′

(1 − θ)Pvw if v = v′ , v′ = w′

(1 − θ)Pvw′ if v = v′ , v = w
0 if v = v′ , w 6= w′ , w 6= v , w′ 6= v′ .

(2)
The first three lines of (2) state that, conditioned on
(V (t), V ′(t)) being on a pair of non-coincident nodes(v, v′),
each of the two components,V (t) (respectively,V ′(t)),
jumps to a neighbor nodew, with transition ratePvw

(respectively, to a neighbor nodew′ with transition rate
Pv′w′), whereas the probability that both components jump at
the same time is zero. On the other hand, the last four lines
of (2) state that, once the two components have met, i.e.,
conditioned onV (t) = V ′(t) = v, they have some chance
to stick together and jump as a single particle to a neighbor
nodew, with rateθPvw, while each of the componentsV (t)
(respectively,V ′(t)) has still some chance to jump alone to
a neighbor nodew with rate (1 − θ)Pvw (resp., tow′ with
rate (1 − θ)Pvw′ ). In the extreme case whenθ = 1 for all
v, w, the last three lines of the righthand side of (2) equal
0, and in fact one recovers the expression for the transition
rates of two coalescing random walks: onceV (t) andV ′(t)
have met, they stick together and move as a single particle,
never separating from each other.

We use the notationTS := inf{t ≥ 0 : V (t) ∈ S} and
T ′
S := inf{t ≥ 0 : V ′(t) ∈ S}. Further, for allv, v′ ∈ V ,

we define thehitting probability distributionsγv overS, and
ηvv′

overS2, whose entries are respectively given by

γv
s := Pv(V (TS) = s) , s ∈ S ,

ηvv′

ss′ := Pvv′(V (TS) = s, V ′(T ′
S) = s′) , s, s′ ∈ S .

The following lemma characterizes{γv
s : v ∈ V} and

{ηvv′

ss′ : v, v′ ∈ V} as solutions of harmonic equations onA
andA2, with boundary conditions onS andV2 \ A2.

Lemma 1:For all s, s′ ∈ S, one has that
∑

v Pav(γv
s − γa

s ) = 0 , ∀a ∈ A ,

γs
s = 1 , γs

s′ = 0 , ∀s′ ∈ S \ {s} ,

∑

v,v′

K(a,a′)(v,v′)

(

ηvv′

ss′ − ηaa′

ss′

)

= 0 , ∀a, a′ ∈ A ,

ηvv′

ss′ = γv
sγ

v′

s′ , ∀(v, v′) /∈ A2 .
The next theorem provides a fundamental characterization

of the expected values and correlations of ergodic beliefs
in terms of the hitting probabilities of the coupled random
walks V (t) andV ′(t).

Theorem 3:For all v, v′ ∈ V ,

E[Xv] =
∑

s
γv

sxs , E[XvXv′ ] =
∑

s,s′

ηvv′

ss′ xsxs′ .

Remark 1:As a consequence of Theorem 3, one gets that,
if Xa = {x∗}, thenXa = x∗, and, by Corollary 1,Xa(t)
converges tox∗ with probability one. This can be thought
of as a sort of complement to Theorem 2.

V. HOMOGENEOUS INFLUENCE IN HIGHLY FLUID SOCIAL

NETWORKS

In this section, we present estimates for the ergodic belief
expectations and variances as a function of the underlying
social network. Our estimates will prove to be particularly
relevant for large-scale social networks satisfying the follow-
ing condition.

Definition 1: Given a reversible social network, letP
denote its transition probability matrix, andπ denote its
stationary distribution. Defineπ∗ := minv πv, and let

τ :=min
v,v′

inf

{

t ≥ 0 :
∑

w

|Pv(V(t)=w)−Pv′(V(t)=w)|≤ 2
e

}

denote the (variational distance) mixing time of the
continuous-time random walkV (t) with transition rate ma-
trix P . We say that a sequence of social networks of
increasing population sizen is highly fluid if it satisfies

τπ(S) = o(1) , lim inf nπ∗ > 0 , asn→ +∞ ,
(3)

where
π(S) :=

∑

s
πs =

∑

s
ds/(nd̄) . (4)

Our estimates will show that for large-scale highly fluid
social networks, the ergodic beliefs of most of the regular
agents in the population can be approximated (at least in
their first and second moments) by a ‘virtual’ random belief
Z, whose distribution is given by

P(Z = xs) = γs , γs :=
∑

v
πvγ

v
s , s ∈ S . (5)

We refer to the probability distribution{γs : s ∈ S} as the
stationary stubborn agent distribution. Observe thatγs =
Pπ(V (TS) = s) coincides with probability that the random
walk V (t), started from the stationary distributionπ, hits
the stubborn agents before any other stubborn agents′ ∈ S.
In fact, as we shall clarify below, one may interpretγs as
a relative measure of the influence of the stubborn agents
on the society compared to the rest of the stubborn agents
s′ ∈ S.

More precisely, let us denote the expected value and
variance of the virtual beliefZ by

E[Z] :=
∑

s
γsxs , σ2

Z :=
∑

s
γs (xs − E[Z])2 . (6)

Let σ2
v denote the variance of the ergodic belief of agentv,

σ2
v := E[X2

v ] − E[Xv]
2 .

We also use the notation∆∗ to denote the maximum differ-
ence between stubborn agents’ beliefs, i.e.,

∆∗ := max {xs − xs′ : s, s′ ∈ S} . (7)

The next theorem presents the main result of this section.
Theorem 4:Let Assumptions 1 and 2 hold, and assume

that π(S) ≤ 1/4. Then, for allε > 0,

1

n

∣

∣

∣

{

v :
∣

∣

∣
E[Xv] − E[Z]

∣

∣

∣
≥ ∆∗ε

}∣

∣

∣
≤ ψ(ε)

τπ(S)

nπ∗
, (8)



with ψ(ε) := 16
ε

log(2e2/ε). Furthermore, if the trust param-
eters satisfyθav = 1 for all (a, v) ∈ E , then

1

n

∣

∣

∣

{

v :
∣

∣

∣
σ2

v − σ2
Z

∣

∣

∣
≥ ∆2

∗ε
}∣

∣

∣
≤ ψ(ε)

τπ(S)

nπ∗
. (9)

This theorem implies that in large-scale highly fluid social
networks, as the population sizen grows large, the expected
values and variances of ergodic beliefs of regular agents con-
centrate around fixed values corresponding to the expected
virtual belief E[Z], and, respectively, its varianceσ2

Z . We
refer to this as anhomogeneous influenceof the stubborn
agents on the rest of the society—meaning that their influ-
ence on most of the agents in the society is approximately the
same. Indeed, it amounts to homogeneous (at least in their
first two moments) marginals of the agents’ ergodic beliefs.
This shows that in highly fluid social networks, most of the
regular agents feel the presence of the stubborn agents in
approximately the same way.

Intuitively, if the setS and the mixing timeτ are both
small, then the influence of the stubborn agents will be felt
by most of the regular agents much later then the time it
takes them to influence each other. Hence, their beliefs’
empirical averages and variances will converge to values very
close to each other. The proof of Theorem 4 relies on the
characterization of the mean ergodic beliefs in terms of the
hitting probabilities of the random walkV (t). The definition
of highly fluid network implies that the (expected) time it
takesV (t) to hit S, when started from most of the nodes of
G, is much larger than the mixing timeτ . Hence, before
hitting S, V (t) looses memory of where it started from,
and approachesS almost as if started from the stationary
distributionπ.

Before proving Theorem 4, we present some examples of
highly fluid social networks in Sect. V-A.

A. Examples of large-scale highly fluid social networks

We now present some examples of family of social net-
works that are highly fluid in the limit of large population
size n. Before proceeding, let us observe thatπ∗n ≤ 1,
with equality if and only ifπ is the uniform measure over
V . Hence, one hasπ∗n = 1 for regular graphs, while, for
general undirected graphs(π∗n)−1 ≤ d, where d is the
average degree of the graph.

We shall focus on four examples of random graph se-
quences which have been the object of extensive research.
Following a common terminology, we say that some property
of such graphs holds with high probability, if the probability
that it holds approaches one in the limit of large population
sizen.

Example 1:(Connected Erd̈os-Renyi) Consider the
Erdös-Renyi random graphG = ER(n, p), i.e., the random
undirected graph withn vertices, in which each pair of
distinct vertices is an edge with probabilityp, independently
from the others. We focus on the regimep = cn−1 logn,
with c > 1, where the Erdös-Renyi graph is known to
be connected with high probability [9, Thm. 2.8.2]. In this
regime, results by Cooper and Frieze [7] ensure that, with
high probability, τ = O(log n), and that there exists a

positive constantδ such thatδc logn ≤ dv ≤ 4c logn for
each nodev [9, Lemma 6.5.2]. In particular, it follows that,
with high probability, (π∗n)−1 ≤ 4/δ. Hence, using (4),
one finds that the resulting social network is highly fluid,
provided that|S| = o(n/ logn), asn grows large.

Example 2:(Fixed degree distribution) Consider a ran-
dom graphG = FD(n, λ), with n vertices, whose degreedv

are independent and identically distributed random variables
with P(dv = k) = λk, for k ∈ N. We assume thatλ1 =
λ2 = 0, thatλ2k > 0 for somek ≥ 2, and that the first two
momentsd :=

∑

k λkk, and
∑

k λkk
2 are finite. Then, the

probability of the eventEn := {
∑

v dv is even} converges
to 1/2 as n grows large, and we may assume thatG =
FD(n, λ) is generated by randomly matching the vertices.
Results in [9, Ch. 6.3] show thatτ = O(log n). Therefore,
one finds that the resulting social network is highly fluid with
high probability provided that

∑

s ds = o
(

n
log n

)

.
Example 3:(Preferential attachment) The preferential

attachment model was introduced by Barabasi and Albert [6]
to model real-world networks which typically exhibit a power
law degree distribution. We follow [9, Ch. 4] and consider
the random graphG = PA(n,m) with n vertices, generated
by starting with two vertices connected bym parallel edges,
and then subsequently adding a new vertex and connecting
it to m of the existing nodes with probability proportional
to their current degree. As shown in [9, Th. 4.1.4], the
degree distribution converges in probability to the power law
P(dv = k) = λk = 2m(m + 1)/k(k + 1)(k + 2), and the
graph is connected with high probability [9, Th. 4.6.1]. In
particular, it follows that, with high probability, the average
degreed remains bounded, while the second moment of the
degree distribution diverges ann grows large. On the other
hand, results by Mihail et al. [14] (see also [9, Th. 6.4.2])
imply that the mixing timeτ = O(log n). Therefore, thanks
to (4), the resulting social network is highly fluid with high
probability if

∑

s∈S ds = o
(

n
log n

)

.
Example 4:(Watts & Strogatz’s small world ) Watts and

Strogatz [23], and then Newman and Watts [17] proposed
simple models of random graphs to explain the empir-
ical evidence that most social networks contain a large
number of triangles and have a small diameter (the latter
has become known as the small-world phenomenon). We
consider Newman and Watts’ model, which is a random
graph G = NW(n, k, p), with n vertices, obtained start-
ing from a Cayley graph on the ringZn with generator
{−k,−k + 1, . . . ,−1, 1, . . . , k − 1, k}, and adding to it a
Poisson number of shortcuts with meanpkn, and attaching
them to randomly chosen vertices. In this case, the average
degree remains bounded with high probability asn grows
large, while results by Durrett [9, Th. 6.6.1] show that the
mixing time τ = O(log3 n). This, and (4) imply that (3)
holds provided that

∑

s∈S ds = o
(

n
log3 n

)

.

VI. OPINION OSCILLATIONS AND DISAGREEMENT

We have seen in the previous section that in highly fluid
social networks a condition of homogeneous influence is
achieved, with the expected values and variances of the



ergodic opinions of almost all the agents close to those
of the virtual belief. It is worth stressing how the con-
dition of homogeneous influence may significantly differ
from an approximate consensus. In fact, the former only
involves the (the first and second moments of) the marginal
distributions of the agents’ ergodic beliefs, and does not
have any implication for their joint probability law. A
chaotic distribution in which the agents’ ergodic beliefs
are all mutually independent would be compatible with the
condition of approximately equal influence, as well as an
approximate consensus condition, which would require the
ergodic beliefs of most of the agents to be close to each
other with high probability. In this section, under additional
assumptions, we show that the ergodic belief distribution in
highly fluid social networks is closer to a chaotic distribution
than to an approximate consensus. For the sake of simplicity,
throughout this section, we restrict our attention to the voter
model.

Assumption 3:For everye ∈ E , θe = 1.
We start by introducing two quantities measuring the

amplitude of the aggregate population’s oscillations and the
average disagreement among the agents. Specifically, let
us consider theergodic aggregate belief of the system,
X := n−1

∑

v Xv, and let

σ2
X

:= E

[

(

X − E[X ]
)2

]

(10)

be its variance. Also, define themean squared disagreement
as

∆2 :=
1

2n2

∑

v,v′

E

[

(Xv −Xv′)
2
]

, (11)

the reason for the factor1/2 being mere notational conve-
nience. Observe that, if the ergodic distribution of the agents’
beliefs is chaotic (i.e., it is the product of its marginals), then
X is the arithmetic average of independent random variables
with finite variance, and thusσ2

X
= o(1). On the other

hand, an approximate consensus condition, with the ergodic
beliefs of most of the agents close to each other with high
probability, would imply that∆2 = o(1).

In this section, we focus on highly fluid social networks
satisfying the following:

Definition 2: Given a family of reversible social networks
of increasing population size, we say that there is asignifi-
cant presence of stubborn agentsif

π(D)τ2
π(S)

= o(1) , n→ +∞ , (12)

whereτ2 is the relaxation time, i.e., the inverse of the spectral
gap, and

π(D) :=
∑

a
π2

a

is the invariant measure of the diagonal setD := {(a, a) :
a ∈ A}.

In order to obtain some intuition on Definition 2, one
should think of the ratioπ(S)/π(D) as a measure of the
relative intensity of the interactions of the regular agents
with the stubborn agents (quantified byπ(S)), as compared

to the intensity of the interactions between typical pairs of
regular agents (quantified byπ(D)). If such a ratio grows
fast enough (precisely, Definition 2 requires it to grow faster
than the relaxation time of the network, but in fact, one
may expect that in many cases such ratio going to infinity
should suffice), then one may expect that the ergodic beliefs
of a typical pair of regular agents in the network should be
directly influenced by the stubborn agents’ beliefs, without a
significant coupling between themselves. Hence, in a social
network with a significant presence of stubborn agents, the
ergodic beliefs of most of the regular agents’ pairs are
expected to be weakly coupled, so that the variance of the
ergodic aggregate belief should vanish in the large population
limit. Indeed, this is formalized in the following:

Theorem 5:For any family of highly fluid social net-
works, satisfying Assumptions 1, 2, and 3, with a significant
presence of stubborn agents, it holds

σ2
X

= o(1) , ∆2 = σ2
Z + o(1) , asn→ +∞ .

Theorem 5 shows that in highly fluid social network with a
significant presence of stubborn agents, the amplitude of the
ergodic oscillations of the aggregate belief vanishes, while
the mean square disagreement is asymptotically equivalent
to the variance of the virtual belief, in the limit of large
population size. Hence, under these conditions the ergodic
belief distribution achieved in this setting is close to a chaotic
distribution.

An immediate consequence of Theorem 5 is that, ifσ2
Z is

bounded away from zero in the large population limit, then so
is the mean squared disagreement. Observe that the condition
σ2

Z = o(1) is equivalent to the fact that the probability
measure

∑

s γsδxs
(whereγs is defined in (5), andδx stands

for the Dirac’s measure centered in somex ∈ R) concentrates
in one single point. We can think of this as the as the presence
of a dominating stubborn agents’ belief. Hence, we may say
that Theorem 5 implies that, on highly fluid social networks
with a significant presence of stubborn agents, none of whose
beliefs is dominating, a significant disagreement persistsin
the large population limit.

A. Examples of highly fluid social networks with significant
presence of stubborn agents

Observe that one has

π(D) =
∑

a

π2
a ≤

∑

v

π2
v =

∑

v

d2
v

(nd)2
=

d2

(d)2
n−1 ,

whered is the average degree, andd2 := n−1
∑

v d
2
v is the

average squared degree, ofG. Notice that the ratio

d2

(d)2
= 1 +

1

n

∑

v

(

dv

d
− 1

)2

is minimal for regular graphs, where it equals1, and grows
with the normalized variance of the degree distribution. In
particular, for a family of social networks with bounded
first and second moment of the degree distribution,π(D) =
O(n−1), so that, in order to have a significant presence of



stubborn agents, its is sufficient thatnπ(S) = (d)−1
∑

s ds

grows faster than the relaxation timeτ2.
Let us return to the examples of Sect. V-A.
Example 5:(Connected Erd̈os-Renyi) Consider the

Erdös-Renyi random graphG = ER(n, p), in the regime
p = cn−1 logn, with c > 1, as in Example 1. Then, with
high probability,d2/(d)2 = O(1), while τ2 ≤ τ = O(log n).
It follows that the associated social network is highly fluid
and with a significant presence of stubborn agents provided
that |S| grows faster thanlogn, and slower thann/ logn.

Example 6:(Fixed degree distribution) ConsiderG =
FD(n, λ), as in Example 2. Then, with high probability,
since the expected square degree is bounded, one hasπ(D) =
O(n−1), while τ2 ≤ τ = O(log n). It follows that the asso-
ciated social network is highly fluid and with a significant
presence of stubborn agents provided that

∑

s ds grows faster
than logn, and slower thann/ logn.

Example 7:(Preferential attachment) Consider the pref-
erential attachment model of Example 3. Then, with high
probability, τ2 ≤ τ = O(log n), while, according to [9,
pag. 180],π(D) ≤ n−1 logn. It follows that the associated
social network is highly fluid and with a significant presence
of stubborn agents provided that

∑

s ds grows faster than
log2 n, and slower thann/ logn.

Example 8:(Watts & Strogatz’s small world ) For the
small-world model of Example 4, one has that both the
average degree and the average square degree are bounded,
so thatπ(D) = O(n1), while τ2 ≤ τ = O(log3 n), with
high probability. This implies that (3) holds provided that
∑

s∈S ds grows faster thanlog3 n and slower thann/log3 n.

VII. C ONCLUSION

In this paper, we have studied a possible mechanism
explaining persistent disagreement and opinion fluctuations
in social networks. We have considered a stochastic gossip
model of continuous opinion dynamics, combined with the
assumption that there are some stubborn agents in the
network who never change their opinions. We have shown
that the presence of these stubborn agents leads to persistent
oscillations and disagreements among the rest of the society:
the beliefs of regular agents do not converge almost surely,
and keep on oscillating according to an ergodic distribution.
First and second moments of the ergodic beliefs distribution
can be characterized in terms of the hitting probabilities of a
random walk on the network, while the correlation between
the ergodic beliefs of any pair of regular agents can be
characterized in terms of the hitting probabilities of a pair
of coupled random walks. We have shown that in highly
fluid, reversible social networks, whose associated random
walks have mixing times which are sufficiently smaller than
the inverse of the stubborn agents’ set size, the vectors of
the expected ergodic beliefs and of the ergodic variances are
almost constant, so that the stubborn agents have approxi-
mately the same influence on the society. Finally, we have
also shown that in highly fluid social networks in which there
is a significant presence of stubborn agents, the variance of
the ergodic aggregate belief of the system vanishes in the

limit of large population size, and the ergodic distribution
of the agents beliefs approaches an approximately chaotic
condition. This implies that, if the influence of any of the
stubborn agents’ opinions does not dominate the influence of
the rest, then the mean square disagreement does not vanish
in the large population size.
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