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Populärvetenskaplig
sammanfattning

Idag tar de flesta för givet att man när och var som helst kan komma åt sin
e-post, ladda upp bilder till Facebook eller söka kunskap p̊a Wikipedia fr̊an sin
mobiltelefon eller dator. Den tr̊adlösa teknologi som gjort detta möjligt har
utvecklats oerhört det senaste årtiondet, men behöver utvecklas ännu mer för
att möta det ökande behovet av tr̊adlös kommunikation.

I denna avhandling har vi undersökt hur man p̊a ett effektivare sätt kan ut-
nyttja de begränsade resurser som finns tillgängliga i form av radiospektrum.
Mer specifikt s̊a har vi tittat p̊a s.k. iterativa metoder för att i en motta-
garenhet, t.ex. en basstation, p̊a ett effektivt sätt separera information skickad
samtidigt fr̊an flera användare eller flera antenner. Flerantennssystem, eller
MIMO-system (fr̊an engelskans multiple-input-multiple-output), är en relativt
ny teknik som kan ge en avsevärd ökning i överföringskapacitet. För att fullt
ut ta del av denna kapacitetsökning behöver man utveckla mottagaralgoritmer
som p̊a ett effektivt och tillförlitligt sätt kan separera signalerna fr̊an de olika
sändarantennerna. De algoritmer som vi har utvecklat och undersökt i denna
avhandling kan användas för att i framtiden skapa tr̊adlösa nätverk med större
datakapacitet.

De iterativa mottagaralgoritmer som vi utvecklat best̊ar av tre komponen-
ter, som alla samarbetar p̊a ett iterativt sätt för att detektera informatio-
nen som skickats fr̊an de olika användarna eller antennerna. De tre delarna
är kanalestimator, fleranvändardetektor och avkodare. Fleranvändardetektorn
separerar signalerna fr̊an de olika användarna och avkodaren avkodar de olika
skickade meddelandena. För att man ska kunna separera användarna behöver
man känna till hur kanalen mellan sändare och mottagare ser ut, d.v.s. hur
den har p̊averkat de olika signalerna.

Den tr̊adlösa kanalen best̊ar av alla objekt som befinner sig runt och emellan
sändare och mottagare. Dessa objekt kommer att ge upphov till ekon av de
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vi Populärvetenskaplig sammanfattning

sända signalerna som sedan adderas ihop hos mottagaren. Kanalestimatorn
har till uppgift att räkna ut hur dessa ekon ser ut och sedan meddela detta
till fleranvändardetektorn. För att kunna beräkna ekonas utseende skickar
man vanligtvis kända referenssignaler, tillsammans med de p̊a förhand okända
informationsbärande signalerna. För att f̊a hög tillförlitlighet kan man behöva
skicka många referenssignaler, speciellt om man har många användare. Dessa
signaler tar d̊a upp plats för de informationsbärande signalerna, vilket leder till
en förlust i överföringskapacitet. I denna avhandling har vi tittat närmare p̊a en
teknik där vi även använder de skickade informationssignalerna, tillsammans
med referenssignalerna, för att beräkna kanalen. Detta innebär att vi kan
minska den förlust i datakapacitet som uppst̊ar när referenssignaler skickas.
Eftersom informationssignalerna är okända fr̊an början måste man beräkna
ungefärliga värden p̊a dessa. Detta görs med hjälp av fleranvändardetektorn
och avkodaren. De tre komponenterna i mottagaren skickar sedan iterativt
signaler fram och tillbaka mellan varandra ett flertal g̊anger, för att till slut f̊a
fram p̊alitliga värden p̊a den skickade informationen.

I de publikationer som utgör stommen i denna avhandling har vi undersökt
olika typer av kanalestimator och fleranvändardetektor. Vi har sett att relativt
enkla s̊adana kan leverera bra prestanda. Det är ocks̊a tydligt i v̊ara resultat
att man genom att använda de informationsbärande signalerna i kanalestima-
torn kan f̊a högpresterande system med en begränsad mängd referenssignaler.
Framtida tr̊adlösa system kan med denna typ av mottagaralgoritmer göras än
mer effektiva, vilket allts̊a behövs för att möta det ökande behovet av tr̊adlös
kommunikation.



Abstract

The traffic in wireless networks has been showing an exponential growth over
the last decade. In order to meet the demand, and support a continuation of
this growth, the scarce radio resources need to be efficiently used. The use of
multiple antenna (MIMO) systems and iterative (turbo) receivers have signifi-
cantly improved the realizable system performance. Still, many challenges exist
in the development of efficient wireless receivers. In this thesis, which is writ-
ten in the form of a collection of papers, we have investigated and developed
iterative receivers with channel estimation for multi-user systems.

Paper I investigates different iterative receiver algorithms for an uplink
multi-user MIMO orthogonal frequency division multiplex (OFDM) system.
For the given receiver structure, different combinations of multi-user detectors
(MUD) and decision-directed channel estimators are compared. The compari-
son focuses on the complexity-performance tradeoff for the receiver configura-
tions. The results show that low complexity algorithms, despite requiring more
receiver iterations, tend to have the lowest overall complexity for a given bit
error rate (BER).

Paper II presents how the convergence behavior of an iterative receiver with
channel estimation for an uplink multi-user MIMO-OFDM system can be mod-
eled through multi-dimensional extrinsic information transfer (EXIT) charts.
Although single-input single-output EXIT charts have been well studied, the
multiple input-output case has generally been overlooked in the literature. Such
charts are suitable for studying multi-user systems. The presented EXIT chart
predictions show good correspondence with the true convergence behavior of
the receiver.

Paper III discusses the use of channel measurement data in system evalua-
tions. We discuss and exemplify a number of issues related to the use of such
data, and also provide potential solutions. The issues include problems with
measurement noise and measurement antenna directivity.

Paper IV investigates the performance gains that can be harvested through
base station cooperation in an uplink multi-user MIMO-OFDM system. An
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viii Abstract

iterative receiver with channel estimation is evaluated using unique mobile
dual-link MIMO channel measurement data. The results point at the large
performance gains which can be harvested through cooperative processing in a
real environment.

Paper V presents and evaluates a number of channel estimation algorithms
for an OFDM interleave division multiple access (IDMA) system. We look at
different pilot based algorithms as well as decision-directed algorithms being
part of the iterative process of the receiver. As for paper I, the comparison
focuses on the complexity-performance tradeoff, and the results show that low-
complexity algorithms can be competitive alternatives when looking at the
overall receiver complexity.



Preface

The journey towards this thesis started with the underlying question: How
can we design efficient channel estimation algorithms for future MIMO-OFDM
systems? A short bit into the journey, it stood clear that just looking at
the estimator was not enough in the quest for high performing systems. The
estimator is an important part of the wireless receiver, but treating it as a
stand-alone unit is not sufficient for future systems aiming at high spectral
efficiencies achieved through spatial multiplexing. Instead, by allowing it to
cooperate with other parts of the wireless receiver the performance, as well
as the spectral efficiency, can be improved. Therefore, the question that this
thesis is trying to shed some light on is: How can we design efficient iterative
receivers incorporating channel estimation?

Answering this question is not straightforward. Designing a wireless receiver
is a complicated task, which involves much more than what can be covered by a
single thesis. We are therefore restricting the investigations to three functions of
the receiver; channel estimation, multi-user/multi-antenna detection and data
decoding. More specifically, we have looked at iterative receiver algorithms,
where the channel estimator is exploiting decisions on the transmitted data
symbols along with pilot symbols. Our work has involved receiver design with
a focus on the complexity versus performance tradeoff. This has also included
the development and assessment of strategies for performance evaluation.

This thesis thus concludes my work as a Ph.D. student, and consists of
two parts. The first part provides an overview of the research field in which I
have been working, as well as a brief summary of the included papers and my
contributions to these. The second part contains five scientific papers which
constitute the main part of my scientific work. The included papers are the
following:

[1] P. Hammarberg, F. Rusek and O. Edfors, “Iterative Receivers with Chan-
nel Estimation for Multi-User MIMO-OFDM: Complexity and Perfor-
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mance,” to appear in EURASIP Journal on Wireless Communications
and Networking.

[2] P. Hammarberg, F. Rusek, P. Salvo Rossi, and O. Edfors, “EXIT Chart
Evaluation of a Receiver Structure for Multi-User Multi-Antenna OFDM
Systems,” in Proc. IEEE Global Communications Conference (GLOBE-
COM), Dec. 2009.

[3] P. Hammarberg, F. Tufvesson and O. Edfors, “Using Measured Channels
in Performance Evaluations of Multi-User OFDM Systems,” manuscript,
Jan. 2012.

[4] P. Hammarberg, P. Salvo Rossi, F. Tufvesson, O. Edfors, V.-M. Kolmonen,
P. Almers, R.R. Muller, A.F. Molisch, “On the Performance of Iterative
Receivers for Interfering MIMO-OFDM Systems in Measured Channels,”
in Proc. Asilomar Conference on Signals, Systems, and Computers, Oct.
2008.

[5] P. Hammarberg, F. Rusek and O. Edfors, “Channel Estimation Algo-
rithms for OFDM-IDMA: Complexity and Performance,” to appear in
IEEE Transactions on Wireless Communications.

The following papers, which are not included in the thesis, have also been
published during, or in conjunction with, my Ph.D. studies at Lund University:

[6] P. Hammarberg and O. Edfors, “A Comparison of DFT and SVD Based
Channel Estimation in MIMO OFDM Systems,” in Proc. IEEE Interna-
tional Symposium on Personal, Indoor and Mobile Radio Communications
(PIMRC), Sept. 2006.

[7] P. Salvo Rossi, P. Hammarberg, F. Tufvesson, O. Edfors, P. Almers, V.-
M. Kolmonen, J. Koivunen, K. Haneda, R.R. Muller, “Performance of an
Iterative Multi-User Receiver for MIMO-OFDM Systems in a Real Indoor
Scenario,” in Proc. IEEE Global Communications Conference (GLOBE-
COM), Dec. 2008.

[8] P. Hammarberg, W. Shuang, X. Chen, J. Wang, O. Edfors, “Coded IDMA
System Performance with Parallel Interleavers,” in Proc. Wireless Ad-
vanced (WiAD), Jun. 2010.

[9] Y. Zhang,O. Edfors, P. Hammarberg, T. Hult, X. Chen, S. Zhou, L. Xiao,
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agation.
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Chapter 1

Introduction

1.1 Background

The history of wireless communication started in the late 19th century, with
the work of Marconi, Lodge, Popov, Tesla, Hertz and others [1]. With the
groundbreaking technology of radio transmissions, it was possible to transmit
signals without cables, e.g., between ships or other moving objects. Further-
more, messages could be broadcasted to many people at the same time, in the
form of radio and later TV transmissions. During the 20th century, wireless
communication has gone through a remarkable development, which has gone
hand in hand with the progress in electronic circuit design. Today, there is
a large number of wireless communication systems, both public, military and
commercial, sharing the available radio resources.

Over the last few decades, there has been an exponential increase in the
amount of information being transmitted over the air. Looking at the first
commercial mobile wireless networks, they were only providing analog voice
services requiring relatively small portions of the radio spectrum. The break-
through of personal computers, and more importantly the Internet revolution,
has dramatically changed the way people use wireless services. Today, con-
sumers are expecting high-speed Internet access in their mobile devices, wher-
ever they are, which comes at an increased use of radio spectrum. The wireless
industry foresees that the mobile data traffic will increase by 35 times between
year 2009-2014 [2]. In order to support this rapid growth, larger chunks of radio
spectrum need to be made available, and at the same time more efficiently used.
The challenge of making more efficient use of the radio spectrum has been taken
on by researchers at companies and research institutions around the world, and
large improvements have been obtained over the last few decades.
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4 Overview of the Research Field

A significant breakthrough came in late 1980’s when the adaptive use of
multiple-input multiple-output antenna (MIMO) systems was proposed. By
using multiple antennas at both transmitter and receiver side, it was shown
that parallel channels can be created, all using the same radio spectrum [3,4].
In theory, the channel capacity increases linearly in the minimum of the number
of receive and transmit antennas.

Another important breakthrough occurred around the same time, which
was the invention of turbo codes and iterative decoding [5]. With these new
codes, performance close to the the Shannon limit can be obtained. The de-
coding of these codes could be performed iteratively, with several decoding
units exchanging information between iterations. The obtained performance
was shown to be close to optimal decoding, but with a realizable complexity
as compared to optimal algorithms. Since the discovery of turbo codes, the
“turbo principle” has been used to reduce complexity of other tasks in the
wireless receiver, e.g., equalization, channel estimation and multi-user detec-
tion [6]. These methods have further improved the performance and efficiency
of wireless receivers.

In the last decade there has been intensive research performed on iterative
receivers of various kinds, both for single and multiple antenna systems. The
research has provided improvements, and additional understanding, of this type
of receivers in various system settings. Furthermore, iterative receivers are
already being used in the latest wireless networks being deployed. Never the
less, there are still things that have not been fully investigated, e.g., aspects
related to low-complexity channel estimation and iterative receiver processing.

In this thesis we are providing additional insight into the performance and
behavior of iterative receivers employing channel estimation based on both pi-
lots and detected data symbols. We have investigated the convergence behavior
of this type of receivers, and also look at how complexity and performance are
related. Furthermore, we have investigated the use of wireless channel mea-
surements when used for performance evaluation of receiver algorithms.

1.2 Outline

In the rest of Part I, we will provide additional background to the area of
wireless communication, and to the research field of iterative receivers. The
purpose is to give a general introduction to the type of systems that have been
investigated in the research papers included in the thesis. For a reader who is
familiar with the area of modern wireless communication systems, Part I will
mainly serve as a refresher.

In Chapter 2 we present the basics of orthogonal frequency division mul-
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tiplexing (OFDM), MIMO and multi-user communication. The purpose is to
provide an introduction to OFDM and MIMO communication, which have
become popular choices for high speed wireless communication systems, and
which have been the main technologies for the investigations in the included
papers. Furthermore, we go through different ways in which multiple users can
share the available radio channel. In this thesis, we have investigated systems
exploiting both the code domain and the spatial domain for this purpose.

In Chapter 3, we discuss the multi-user receiver, with a focus on multi-user
detection and channel estimation. We discuss ways of achieving these two tasks
both with, and without, prior information of the transmitted data symbols.
Since we in the included papers in Part II are investigating various iterative
receivers for multi-user systems, the purpose of the chapter is to provide a
background to this area. Therefore, we also introduce an iterative receiver
structure which, in various configurations, has been under investigation in the
thesis.

In Chapter 4 we discuss the evaluation of iterative receivers. We briefly
discuss the choice of channel models, the use of channel measurements, and
means of investigating the convergence behavior of the receiver.

Finally, in Chapter 5, we provide a summary of the included papers, and
also point out the specific contributions of the author.
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Chapter 2

OFDM, MIMO and
multi-user systems

During the last century, a number of different approaches have been proposed
for efficiently utilizing the available radio spectrum. In order to support multi-
ple simultaneous users in a system, methods for exploiting the frequency, time,
code and more recently the spatial domain have been presented. In this chap-
ter we present a subset of these ideas, related to wideband transmissions. The
purpose is to provide an introduction to the transmission systems which have
been under investigation in the thesis, as well as a general overview of the area.
In all of the included papers we are looking at multi-user OFDM communica-
tion. In papers I-IV we investigate multiple antenna systems, while Paper V
addresses an interleave division multiple access (IDMA) system.

We start this chapter by presenting OFDM, which has become a popular
wideband transmission technology in later years. We then review the area
of multiple-antenna systems, which can provide large performance gains as
compared to traditional single antenna systems, before the basics of multi-user
communication is introduced.

2.1 Orthogonal Frequency Division Multiplex-
ing (OFDM)

For high data rate systems, the transmission of wideband signals is necessary,
which creates challenges for the receiver due to channel induced inter-symbol
interference (ISI). For wideband transmissions, the received signal is a super-
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position of a number of cyclically shifted and attenuated replicas of the trans-
mitted signal. Delayed replicas of earlier symbols will therefore interfere with
the current symbol, creating ISI. As the transmission bandwidth increases, the
number of interfering symbols can grow large. This adds significantly to the
complexity of equalizer, which needs to handle the ISI. A popular technology
to handle ISI channels, and to reduce the equalizer complexity, is OFDM.

The main idea behind OFDM is to divide a frequency selective channel
into a set of narrowband subchannels. Over these subchannels, or subcarriers,
orthogonal narrowband signals are transmitted in parallel. Since each of these
signals experiences flat fading, a simple scalar channel equalization can be per-
formed. Furthermore, since the subcarriers are orthogonal there is essentially
no cross talk between signals (for a well designed system), which simplifies the
detection process.

In Figure 2.1 a discrete time baseband model of an OFDM system is shown.
Starting with the transmitter at the left of the figure,M complex symbols x[m]

ID
F
T

P
/S CP

S
/P

D
F
T

CP

Figure 2.1: A baseband OFDM system model.

are fed to the M -point inverse discrete Fourier transform (IDFT) block. The
IDFT performs the OFDM modulation, where each column of the underlying
IDFT matrix corresponds to one of the subcarriers of the OFDM symbol. After
a parallel to serial conversion, the time domain signal yields

s[l] =
1√
M

M−1∑

m=0

x[m]ej2π
lm
M , (2.1)

for l = 0, . . . ,M − 1. As can be seen, this is nothing but a sum of complex
exponentials, i.e., sine and cosine functions.

The structure of an OFDM symbol is exemplified in Figure 2.2, where a
continuous OFDM signal is shown in time and frequency. The time domain
signal also contains the CP. Note that all the signal components are orthogonal
over an interval T .

After the addition of a cyclic prefix (CP), the signal is transmitted over
a time dispersive channel with impulse response g[l], which is assumed to be
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TCP

Figure 2.2: Frequency and time representation of a OFDM signal.

no longer than the CP. Then, white Gaussian noise (WGN) is added. At the
receiver, assuming accurate synchronization and after the removal of the CP,
the received time domain signal r̃[l] contains a superposition of delayed replicas
of the transmitted OFDM symbol.

In a time dispersive channel, the CP is needed in order to preserve the
orthogonality between the subcarriers. The requirement for orthogonality is
that all delayed replicas of a transmitted OFDM symbol overlap in an ob-
servation interval of length M (or T in continuous time). This is achieved
through an addition of a CP. Orthogonality is required for a discrete Fourier
transform (DFT) to perfectly separate the different signal components of the
OFDM symbol at the receiver. Without the CP, replacing it with an empty
guard interval, the delayed signals would partly fall outside the observation
interval, and orthogonality between subcarriers would be lost. It should be
noted that this orthogonality problem can be solved through post-processing
at the receiver [7].

An alternative mathematical view of the guard interval is that it turns the
linear convolution of the signal and the channel impulse response into a cyclic
convolution. The received signal can then be written as

r = DFT (IDFT (x)⊛ g + w̃) = x⊙ h+w , (2.2)

where r, x, g, w̃ andw are vectors collecting theM samples of the received and
transmitted symbols, channel impulse response, noise, and transformed noise,
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respectively. Furthermore, h = DFT (g) is the channel frequency response,
and ⊛ and ⊙ represent circular convolution and element wise multiplication,
respectively.

2.2 Multiple antenna systems

Even though multiple antennas have been used almost since the invention of
radio to achieve directive antennas and to harvest diversity [8,9], a fundamental
breakthrough came in the late 1980’s [3] with the discovery of spatial multi-
plexing. Several important contributions on the properties of MIMO systems
were made during the 1990’s [4, 10], and the area is still heavily researched.

As mentioned above, multiple antennas can be used for beamforming, di-
versity or spatial multiplexing. By applying suitable transmission schemes,
e.g., space-time codes, these different techniques can be exploited in different
ways. A transmission scheme can be designed to harvest one, or a combination
of, three different gains; array gain, diversity gain and multiplexing gain. It
should be noted that the three gains cannot simultaneously be fully exploited.
The choice of transmission scheme therefore involve a tradeoff between the
three, where focus is often placed on the latter two who potentially have larger
gains [11]. Below, we briefly go through the different gains one at a time. For
a more detailed discussion on MIMO and space-time codes we refer, e.g., to [8]
or [12].

For the presentation of the gains of multiple antenna systems we consider
a narrowband baseband model. Note that in the case of a wideband system,
OFDM can be used to obtain a set of parallel narrowband sub MIMO systems.
For a system with K transmit and N receive antennas, the received signal can
be expressed as

r =Hx+w , (2.3)

where r ∈ C
N×1 is the received signal, H ∈ C

N×K the MIMO channel matrix,
x ∈ C

K×1 the transmitted symbols, and w ∈ C
N×1 is the receiver noise (∼

CN (0, σ2
wI) distributed). If nothing else is stated, we will assume that H has

independent zero mean complex Gaussian distributed entries.

2.2.1 Array gain

With multiple antenna elements at the receiver, more of the transmitted energy
can be collected, thus creating an antenna array gain. By coherently collecting
the signal received at the different antennas, the average SNR as compared to a
single receive antenna system is increased. Assuming K = 1 transmit antenna,
the optimal operation is maximum ratio combining (MRC) where the signal
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at the different antennas are combined coherently and weighted according to
strength, i.e.,

z =HHr = ‖H‖2x+HHw . (2.4)

With this type of receive beamforming, an SNR gain equal to the number of
antennas can be achieved, as compared to a single antenna systems.

If we instead have multiple antennas at the transmitter only, along with
channel state information (CSI), maximum ratio transmission (MRT) can be
performed where transmit beamforming focus the energy towards the receiver.
The maximum achieved array gain is in this case equal to the number of trans-
mit antennas. With multiple antennas at both ends, MRC and MRT can be
combined to achieve dominant eigenmode transmission In this case, an SNR
gain equal to the strongest eigenmode of the channel is achieved.

2.2.2 Diversity gain

In a multi-path channel, the delayed replicas of the transmitted signal will
either add constructively or destructively, depending on their relative phase. If
the phase changes, e.g., due to motion, the received power level will fluctuate,
which is generally referred to as fading. When an antenna is in a fading dip
the instantaneous signal-to-noise ratio (SNR) will be low, resulting in unreliable
communication. If multiple antennas are used, spatial diversity techniques can
be used to reduce the destructive fading of the channel. The probability that
multiple independent antenna channels simultaneously are in a fading dip is the
product of their individual fading probabilities. Through the use of diversity
schemes, the average symbol-error-rate (SER) is therefore reduced for a given
average SNR. At high SNR, we have that [8]

SER ∝ SNR−µ , (2.5)

where µ is referred to as the diversity order. In the single antenna case the
diversity order is unity.

With multiple antennas at the receiver, a number of diversity combining
techniques can be used to increase the diversity order, e.g., MRC or antenna
selection, where the antenna with the best signal is selected. A diversity order
equal to the number of receive antennas can be achieved. Transmit diversity
can, e.g., be achieved through the use of space-time codes, with the most famous
being the Alamouti code which can achieve full diversity with two transmit
antennas [13]. It should be noted that the maximum achievable diversity order
is limited by the product of the number of transmit and receive antennas, i.e.,
µ ≤ K ·N .
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Figure 2.3: An example of a MIMO link, where the transmitting base
station creates three different spatial beams towards the intended user.

2.2.3 Multiplexing gain

The multiplexing gain is the most recent discovery of multiple antenna usage,
and is exploited in spatial multiplexing. The gain refers to the increased de-
grees of freedom made available for communication through the use of multiple
antennas. For a system composed of K transmit, and N receive antennas, a
maximum multiplexing gain of min(K,N) can be achieved [14]. Even though a
tradeoff between multiplexing gain and diversity gain can be obtained through
appropriate transmission schemes, we will for the rest of this section focus on
pure spatial multiplexing.

The idea behind spatial multiplexing is to exploit the spatial properties of
the wireless channel to transmit multiple data streams simultaneously over the
same bandwidth, which is illustrated in Figure 2.3. Since the transmit antennas
are located at different spatial positions, they will be given different spatial
signatures by the channel. Under the assumption of a rich scattering channel,
and with antennas being sufficiently separated in space, each of the transmitted
signals from each antenna will experience a unique spatial signature. A receiver
equipped with multiple antennas can then separate the different signals through
their spatial signatures. In this way several signals can be spatially multiplexed,
which can significantly increase the transmission capacity.
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The potential gains of spatial multiplexing can be exemplified by performing
a singular value decomposition (SVD) of the channel matrix. LetH = UΣV H ,
where U and V are unitary matrices, Σ a diagonal matrix collecting the sin-
gular values of H, and (·)H denotes the Hermitian transpose operation. The
number of non-zero singular values of H equals min(M,N), given that H is
full rank. By multiplying the transmitted vector with V , and the received
vector with UH , the resulting input-output model becomes

r̃ = UHr = UH
(
(UΣV H)V x+w

)
= Σx+ w̃. (2.6)

As seen, through the transmit and receive filtering, the channel becomes trans-
formed into a number of parallel, orthogonal, subchannels which can be used
for communication.

From an information theoretic point of view, the capacity of a MIMO chan-
nel can be increased by a factor of min(K,N), as compared to a single antenna
case. For the case of no channel state information at the receiver, the capacity
is given by [10]

C = log2 det
(

I +
ρ

N
ΣΣH

)

=

r∑

i=1

log2

(

1 +
ρ

N
Σ2
r

)

bits/s/Hz, (2.7)

where r is the rank of the channel, Σr the r:th entry of Σ, and ρ is the average
SNR per receiver branch. If the channel is full rank we reach a capacity increase
of r = min(K,N) at high SNR. Due to this potential gain in capacity, MIMO
has become a key technology for future high speed wireless systems.

2.3 Multi-user systems

In most wireless communication systems, multiple users are to be served with
data. To avoid that inter-user interference deteriorates the system performance,
suitable communication strategies need to be applied. The purpose of these is
to allow the different user signals to be separated at the receiver. The receiver
can either be a base station, who’s task is to detect the signals of all users, or
individual users who are only interested in their own data.

The separation of the different signals can be performed in any of the avail-
able dimensions, i.e., time, frequency, code or space. Below we will go through
the basics for the different transmission strategies exploiting the mentioned
dimensions.
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Figure 2.4: The separation of users can be performed in, e.g., a) time,
b) frequency, c) a combination of time/frequency and d) code domains.

2.3.1 TDMA and FDMA

The conceptually simplest domains for user separation are time and frequency.
In time-division multiple-access (TDMA), different users are scheduled to trans-
mit at different time slots. That is, each user is given a short (recurring) time
slot, and transmit their signal within this time frame having the full system
resources available. The users are thus transmitting successively, orthogonal in
time, as shown in Figure 2.4a. In a time dispersive channel, guard intervals may
be needed between the users to avoid inter-user interference. Furthermore, ap-
propriate synchronization is needed, especially if the difference in propagation
delay is large between users.

As an alternative to TDMA, frequency division multiple access (FDMA)
can be used. In FDMA the available frequency spectrum is divided into a
number of parallel subchannels, as illustrated in Figure 2.4b. The users are then
assigned to different spectral subchannels, and thus separated in frequency. In
general, e.g., due to spectral broadening caused by transceiver imperfections,
the channels need to be separated by guard bands which reduce the spectral
efficiency. One way to overcome this, and to further add resistance to channel
delay, is to separate the users through the use of OFDM.

As seen in Section 2.1, OFDM divides the available spectrum into a num-
ber of orthogonal subchannels. A subset of these subchannels can then be
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assigned to a specific user, thus allowing multiple users receiving/transmitting
within the same OFDM symbol. Such approaches, generally referred to as
orthogonal-FDMA (OFDMA), also have the advantages that the extension to
two dimensional resource sharing in time/frequency comes natural. In Fig-
ure 2.4c such sharing is exemplified, where different users are assigned certain
regions in the resulting time-frequency grid. This strategy is, e.g., used in
LTE [15]. Furthermore, a flexible scheduling also opens up the possibility to
obtain a multi-user diversity gain by assigning users to grid points where their
respective channels are good [15].

2.3.2 Spread spectrum systems

An alternative to sharing the available resources in the time or frequency do-
mains is to exploit the code domain, by using spread spectrum techniques. In
TDMA/FDMA each user is transmitting with as high data rate as possible
within the given orthogonal subchannel. For spread spectrum type of systems,
the users transmit simultaneously at low data rates within the same time frame
and bandwidth, as illustrated in Figure 2.4d. This can be interpreted as if the
users are consuming more spectrum than they “need” in order to support a
given data rate. This is achieved by performing a bandwidth expansion of the
original data signal before transmission. For a definition of, and a discussion
on, spread spectrum communication see [16].

Since these type of systems tend to be wideband in nature, they will expe-
rience ISI. One way to handle the ISI channel, as discussed earlier, is to use
OFDM. In that case the spreading is performed over the different subcarriers,
and possibly over several OFDM symbols [17]. This is, e.g., performed in Paper
V, where we investigate an OFDM-IDMA system.

Below, two different, yet similar, approaches to spread spectrum commu-
nication will be briefly discussed; code division multiple access (CDMA) and
interleave division multiple access (IDMA).

CDMA

In CDMA the bandwidth expansion is most commonly achieved by assigning
unique, ideally uncorrelated, wideband spreading sequences to the users. The
users then multiply their data symbols with the spreading sequence before
transmitting the resulting wideband signal. At the receiver, user separation
can, e.g., be achieved by a correlating filter matched to the specific spreading
sequence. Under the assumption of an pure additive WGN (AWGN) channel
and perfectly uncorrelated spreading sequences, the outputs are noisy versions
of the original data symbols.
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Figure 2.5: A baseband IDMA system model.

Many other receiver algorithms exist, ranging from the optimal joint maxi-
mum likelihood (ML) detector to suboptimal low-complexity approaches based
on, e.g., successive interference cancellation and iterative decoding. Please re-
fer [18] and [19] for detailed overviews. There also exists proposals for CDMA
systems where the entire bandwidth expansion is devoted to coding [20,21]. For
example, in [21] low-rate codes together with user specific scrambling codes are
proposed. Despite being optimal1, such CDMA systems will require more com-
plex receiver structures.

IDMA

An alternative spread spectrum technology, being born out of the increased
understanding of turbo-like systems and iterative decoding in the early 2000’s,
is IDMA [23]. In IDMA user separation is obtained through user-specific in-
terleavers, rather than spreading/scrambling as in CDMA. An illustration of a
baseband uplink IDMA system is shown in Figure 2.5.

At the transmitter, spreading is achieved by a low rate code, often a sub-
optimal choice of a concatenation between an error correcting code and a rep-
etition code. The code bits are then interleaved by a user specific interleaver
Πk, followed by symbol mapping, before transmitted over the wireless chan-
nel. In this way the entire bandwidth expansion can, potentially, be used
for coding. With this structure of the transmitted signal, a relatively simple

1The capacity of the multiple access channel is maximized if the entire bandwidth expan-
sion is devoted to coding [22].
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iterative multi-user receiver structure can be constructed, showing close to sin-
gle user performance [23]. The details of the receiver structure is outlined in
Section 3.1.2. As mentioned earlier, in Paper V an OFDM-IDMA system is
considered, where we compare low-complexity channel estimation approaches
in terms of complexity and performance.

2.3.3 SDMA

The separation of multiple users can also be performed in the spatial domain,
through space division multiple access (SDMA). One direct way to achieve
this, which has been used since the early days of radio, is directive antennas.
In its simplest form, a base station with narrow beam antennas can direct the
antenna towards a specific user, obtaining a good signal-to-interference ratio
(SIR) given that no co-located users exist (in the angular domain). In cellular
systems, directional antennas are commonly used to divide a cell into different
sectors in the angular domain, thus achieving user separation.

More recently with the increased research on array processing, and with
improved digital signal processing capabilities, antenna arrays arose as po-
tential tools for adaptive user separation in the spatial domain [24]. With so
called smart antenna arrays, the effective antenna array pattern can be changed
adaptively. This is achieved through appropriate pre- or post-processing, where
complex-valued weights are used to steer the amplitude and phase at the dif-
ferent antenna elements. The array pattern can then be formed in order to,
e.g., maximize SNR or to minimize interference for a specific user.

Since the breakthrough of MIMO communication, in particular spatial mul-
tiplexing, the area of multi-user MIMO (MU-MIMO) has received considerable
attention (see, e.g., [25–27]). In such systems, the base station is equipped with
multiple antennas, and the users with one or more antennas. If the users are
assumed to be synchronized, the uplink may be seen as a conventional point-
to-point MIMO system. Obviously the properties of the resulting equivalent
MIMO channel are different as compared to a conventional MIMO system. For
example, users distributed over a larger area potentially result in larger power
variations and lower inter-antenna correlation. Additionally, the physical sepa-
ration between users restrict the use of cooperative transmissions. Nevertheless,
most of the receiver algorithms available for MIMO can generally be applied
to the MU-MIMO uplink, which will be further discussed in Chapter 3. As
mentioned previously, we consider MU-MIMO-OFDM communication in the
included papers I-V where we, e.g., compare different receivers incorporating
channel estimation in Paper I.

For the downlink channel, the design of efficient transmit schemes has gen-
erated a large amount of research. The proposed transmission schemes range



18 Overview of the Research Field

from the optimal dirty paper coding, to the simple zero-forcing precoding. For
an overview, please consult, e.g., [28].



Chapter 3

Multi-user receivers for
wireless systems

Finding the data symbols transmitted simultaneously, by a number of users,
over a wireless channel is a challenging task. The receiver, e.g., a base station,
commonly separates the task of finding the transmitted data bits into synchro-
nization, channel estimation and detection/decoding. As previously mentioned,
uplink multi-user systems based on both MIMO-OFDM and OFDM-IDMA
have been investigated in the included papers. More precisely, we have investi-
gated iterative receiver algorithms incorporating channel estimation, multi-user
detection (MUD) and data decoding, where focus has been placed on the for-
mer two. This chapter therefore focuses on providing a brief overview of these
two tasks, where we restrict the discussion to OFDM communication. For
more details on synchronization and coding/decoding we refer to standard text
books, such as [29] and [30].

We will start by describing MUD strategies for MU-MIMO systems, ranging
from the optimal ML detector to low complexity suboptimal approaches. Then
we proceed with a description of the IDMA specific MUD. We then take a
closer look at pilot based and decision-directed channel estimation. At the end
of the chapter we describe the type of iterative receiver structure used in the
included papers.

3.1 Multi-User Detection (MUD)

For multi-user systems based on TDMA and FDMA, an advanced MUD is not
needed as long as the orthogonal properties of the user channels are preserved.

19
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On the other hand, for non-orthogonal systems, such as spread spectrum and
MU-MIMO, a well designed MUD can significantly improve performance. In
this section we first consider MUD schemes for MU-MIMO systems, before the
specific IDMA MUD is presented. For MUD in CDMA we refer to, e.g., [18,19].

3.1.1 Uplink MU-MIMO detection

As mentioned before, most detection algorithms developed for MIMO are ap-
plicable to synchronous uplink MU-MIMO systems. In this section we start
by briefly reviewing MIMO detection algorithms producing hard decisions on
the transmitted symbols. Then, algorithms producing soft decisions, exploit-
ing prior information about the received information bits. The latter class is
suitable to use as part of an iterative receiver, exchanging information with the
data decoders. We assume that the MIMO detection and data decoding tasks
are separated, with a note that joint processing could be performed, at the cost
of an increased receiver complexity. Since the presented detection approaches
are applicable to both single and multi-user systems, we will interchangeably
use the words transmit antenna and user. For the presentation of the different
algorithms, we use the narrowband model given in (2.3).

Hard decisions

If we have no prior information available, the optimal detector is the ML detec-
tor which, for the model given in (2.3), selects the transmitted symbols which
minimize the Euclidean distance metric

x̂ML = min
x∈XK

‖r −Hx‖2 , (3.1)

where XK is the set of all possible transmitted sequences. In order to find
x̂ML, the receiver needs to compute ‖r −Hx‖2 for all possible sequences.
This process can be visualized through a tree search [31], where each sequence
corresponds to a path leading from the root up to a leaf node, as illustrated in
Figure 3.1 for binary phase shift keying (BPSK), and two transmit and receive
antennas. The tree can be obtained by first performing a QL-factorization
of the channel matrix, H = QG, where Q is a unitary matrix, and G a lower
triangular matrix. By multiplying the received signal with QH , the equivalent
received signal is given by

r̃ = Gx+ w̃ , (3.2)
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Root node

Leaf node

Figure 3.1: Code tree

where r̃ = QHr, and w̃ = QHw. Since Q is unitary, w̃ and w have the same
Gaussian distributions. For the example in Figure 3.1, (3.2) can be written

[
r1
r2

]

=

[
g11 0
g21 g22

] [
x1
x2

]

+

[
ñ1
ñ2

]

. (3.3)

In Figure 3.1, we have included the branch metrics for the transitions between
pair of nodes. The solution to (3.1) is then found by summing the branch
metrics from the root to all of the different leaf nodes, before choosing the path
with the smallest distance value.

The number of leaf nodes to visit equals n = 2qK , where q is the number
of bits per constellation point, and K the number of transmit antennas. If
the number of users is high, and large constellations are used, finding the ML
solution by visiting all leaf nodes becomes infeasible. One popular approach to
avoid this is sphere decoding, where the code tree is searched under a constraint
R on the total distance [32]. In principle, sphere decoding works as follows.
If the accumulated distance of a branch, before reaching a leaf node, is larger
than than R, all sequences corresponding to that branch are discarded. If
R is chosen well, only a small number of leaf nodes are visited, leading to a
largely decreased complexity as compared to an exhaustive search. Despite the
reduction, the average complexity is still exponential [33].
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As an alternative to the tree search based algorithms, sub-optimal linear
receiver algorithms are attractive due to their low complexity. These include the
minimum mean square error (MMSE) detector, and zero-forcing (ZF) detector
[8]. Taking a look at the ZF detector, it minimizes the same Eucledian distance
metric as the ML detector, but without being constrained to the valid symbol
positions. That is, the ZF detector is derived as

x̃ZF = min
x∈ℜK

‖r −Hx‖ = (HHH)−1HHy . (3.4)

The final decision is then given by mapping x̃ZF to the closest valid data
vector. One of the drawbacks with this simple approach is the well known
noise enhancement problem for ill conditioned channel matrices. The problem
can, e.g., be somewhat alleviated through the use of the MMSE detector [8].

Soft decisions

If the MU-MIMO detector is to be used as part of an iterative receiver, it is
essential that it can exploit and produce soft values on the transmitted infor-
mation bits. In general, the soft information is exchanged between the different
components of an iterative receiver in the form of log-likelihood-ratio (LLR)
values on the transmitted bits. More precisely, extrinsic LLRs are exchanged
as discussed below.

With prior information available, the optimal detector is given by the sym-
bol wise maximum a posteriori probability (MAP) detector. Considering soft
outputs, the detector produces conditional a posteriori LLR values on the
transmitted information bits bi, for i = 1 . . . qK, i.e.,

Λ(bi|r) = ln
p(bi = 1|r)
p(bi = 0|r) (3.5)

= ln
p(r|bi = 1)p(bi = 1)/p(r)

p(r|bi = 0)p(bi = 0)/p(r)
(3.6)

= ln
p(r|bi = 1)

p(r|bi = 0)
︸ ︷︷ ︸

Λext(bi)

+ ln
p(bi = 1)

p(bi = 0)
︸ ︷︷ ︸

Λa(bi)

, (3.7)

where Λext(bi) and Λa(bi) are the extrinsic and a priori LLR values, respec-
tively. The extrinsic values play an important role in iterative decoding, since
they are exchanged between the decoding units. The values correspond to the
independent information produced in each unit, and becomes a priori values
for the next unit.
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For the considered system model, the extrinsic LLR values can then be
evaluated as

Λext(bi) = ln





∑

x:bi=1 exp
(

−‖r−Hx‖2

σ2
w

)

∑

x:bi=0 exp
(

−‖r−Hx‖2

σ2
w

)



 . (3.8)

As for the ML detector, the MAP detector has a prohibitive complexity in most
situations, and more practical approaches are therefore needed.

An attractive set of low-complexity alternatives to the MAP detector is
given by interference canceling detectors. Instead of solving the joint detec-
tion problem, a per transmit antenna solution is obtained. We restrict the
presentation to parallel interference cancellation (PIC), where outputs on all
transmitted symbols are produced in parallel. The alternative is successive in-
terference cancellation, where one transmitted symbols is processed at a time.

From the perspective of the j:th user, (2.3) can be rewritten as

r = hjxj +
∑

k 6=j

hkxk +w , (3.9)

where hk is the k:th column of H. If we set rj = hjxj the soft interference
canceled output for user j, at the i:th iteration, is given by

r̂
(i)
j = r −

∑

k 6=j

hkx̃
(i−1)
k , (3.10)

where x̃
(i−1)
k are the soft information symbols available from the previous iter-

ation. The cancellation is performed in parallel for all users/antennas.
Once the interference canceled outputs are available, different combining

filter techniques can be applied to obtain the symbol outputs. Appropriate
filters range from the simple spatial matched filter, which maximizes the useful
received power, to the interference aware MMSE filter. For the former, we have
that

x̂
(i)
j =

hHj

‖hk‖2
r̂
(i)
j , (3.11)

with LLRs produced as (in case of BPSK)

Λ
(i)
j =

2 ‖hk‖2
σ2
j

x̂
(i)
j , (3.12)
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where σ2
j is the variance of the residual interference plus noise term for user j,

given by

σ2
j = σ2

w +
∑

k 6=j

∣
∣hHk hj

∣
∣ 2
(

1− |x̃(i−1)
k |2

)

. (3.13)

In Paper I, we evaluate the performance and complexity of the matched filter
approach, along with other MUDs when used in an iterative receiver.

3.1.2 IDMA detection

As mentioned in Section 2.3.2, in IDMA the different users are assigned different
unique interleavers. User separation can then be performed by a relatively
simple iterative interference canceling MUD, exploiting a priori information
made available by the channel decoders. An illustration of a baseband uplink
IDMA system with K users can be found in Figure 2.5.

At the IDMA receiver, multi-user detection is obtained through an iterative
symbol-by-symbol based soft interference cancellation detector. The detector,
commonly referred to as an elementary signal estimator (ESE) [23], derives ex-
trinsic LLRs ΛESE(bk) on the transmitted (coded) bits, assisted by soft symbol
estimates provided by a block of K data decoders. The LLR outputs are then
fed to the data decoders, and the receiver continues to iterate between the two
LLR producing units.

The LLR outputs of the ESE are derived under the assumption that the
noise plus interfering signals follow a Gaussian distribution. In Paper V we
consider an OFDM-IDMA transmitting QPSK symbols over a frequency se-
lective channel. In this section, for notational clarity we assume a real valued
narrowband single receive/transmit antenna system. The received baseband
signal at time instance s is then given by

r[s] =
K∑

k=1

hkxk[s] + w[s] , (3.14)

where r[s] is the received signal, hk the channel attenuation for the k:th user,
xk[s] the symbol transmitted by the k:th user, and w[s] is noise. In the per-
spective of the j:th user, the received signal may be written

r[s] = hjxj [s] +
∑

k 6=j

hkxk[s] + n[s] = hjxj [s] + ξj [s] , (3.15)

where ξj [s] ∼ N (mξj [s], σ
2
ξj [s]

), is collecting both noise and interference. Esti-

mates of the mean, mξj [s], and variance, σ2
ξj [s]

, can be derived from a priori
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information provided by the data decoders [23, 34]. For the given Gaussian
model, the LLRs are given by (in case of BPSK)

ΛESE(xj [s]) = 2hj
r[s]−mξj [s]

σ2
ξj [s]

. (3.16)

The ESE is here presented for a real valued ISI free channel, but has been
derived for ISI channels in [23], and complex multi-path channels with complex
symbols in [35]. The extension to multi-carrier communication is found in,
e.g [36], and to multiple antenna systems in [37]. As we have mentioned before,
Paper V investigates decision-directed channel estimation for an OFDM-IDMA
system, where we consider QPSK transmission over a complex channel.

3.2 Channel estimation

In most communication systems the wireless channel needs to be estimated at
the receiver in order to allow for decoding of the transmitted message. An
efficient channel estimator is thus an important part of the wireless receiver.
As we have seen, the MUD techniques we have reviewed make use of CSI, i.e.,
knowledge of H, when performing user separation. If the CSI is unreliable, so
will the separation and detection be. The design of the estimator is therefore
an important piece of the receiver puzzle.

Even though there exists so called blind channel estimation techniques
which only exploit statistical properties of the transmitted signal [38–40],
known pilot symbols are generally transmitted for practical reasons. These
reasons include high complexity and slow convergence. Furthermore, pilot
symbols are also exploited for time and frequency synchronization. In addition
to using known pilot symbols, decisions on transmitted data symbols can be
used to improve the quality of the channel estimate. This can also help to
reduce the amount of pilot symbols which are needed, leading to an improved
spectral efficiency. The cost of such decision-directed estimation is generally
an increase in the estimator complexity. This is seen, e.g., in papers I and V,
where we compare a number of decision-directed channel estimation algorithms
in terms of complexity and performance.

In Sections 3.2.1 and 3.2.2, we go through the basics of pilot based channel
estimation, and iterative decision-directed estimation, respectively, for single
antenna systems. The discussion is then extended to multi-user and MIMO
systems in Section 3.2.3. We will focus on channel estimation for OFDM sys-
tems.
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3.2.1 Pilot based estimation

A model for the received baseband signal in a single antenna OFDM system
was given in (2.2), which can be written equivalently as

r =Xh+w , (3.17)

where X is a diagonal matrix collecting the transmitted complex symbols on
all M subcarriers, h the complex valued frequency response, and w a vector
containing complex WGN. For simplicity, we assume that all entries of X are
known to the receiver, i.e., it contains only known pilot symbols. It should
be noted that pilot symbols are often transmitted on dedicated subcarriers in
specific OFDM symbols, and we briefly discuss pilot symbol placement later in
this section.

A simple least square (LS) estimate of the frequency response can be ob-
tained by multiplying the received vector with the inverse of the transmitted
symbols. That is, the estimate is given by

ĥLS =X−1r . (3.18)

The LS estimator, as presented above, does not exploit the frequency correla-
tion inherent in OFDM systems.

A more potent alternative is to produce an MMSE estimate of the frequency
response. This is achieved by solving

ĥMMSE = argmin
ĥ(r)

E

{∥
∥
∥h− ĥ(r)

∥
∥
∥

2
}

, (3.19)

where ĥ(r) indicates that the estimate is based on the received signal r. Re-
stricting to linear solutions of this problem, and assuming that h is zero mean,
it can be shown that [41]

ĥMMSE = RhrR
−1
rr r , (3.20)

where Rhr = E{hrH} and Rrr = E{rrH} are correlation matrices.
For the received signal in (3.17), we have that

Rhr = RhhX
H (3.21)

Rrr =XRhhX
H +Rww , (3.22)

where Rhh = E{hhH} and Rww = σ2
wI. Equation (3.20) then yields,

ĥMMSE = Rhh
(
Rhh + σ2

w(X
HX)−1

)−1
X−1r . (3.23)



Chapter 3. Multi-user receivers for wireless systems 27

As seen from (3.23), the estimator requires knowledge of the channel cor-
relation properties, represented by Rhh. For non-stationary channels, this in-
formation needs to be updated frequently. By pre-selecting a fixed correlation
matrix, the entire estimator can be pre-designed, avoiding this update. It has
been shown that a robust choice is to assume the correlation of a channel with
uniform power delay profile (PDP) equal to the length of the cyclic prefix [42].

As compared to the LS estimator, the MMSE estimator requires that the
received signal is multiplied by an M ×M estimation matrix. Actually, the
MMSE estimate can be performed as a filtering of the LS estimate. That is,
we can write (3.23) as

ĥMMSE = AX−1r = AĥLS , (3.24)

where A = Rhh
(
Rhh + σ2

w(X
HX)−1

)−1
. The complexity of the MMSE esti-

mator can be reduced by considering transform based low-rank approximations
of the filter A. We discuss such approaches below.

Before that, it should be noted that the LS and MMSE estimators can
easily be expanded to incorporate several OFDM symbols by concatenating
the different data structures in (3.17). Also, the MMSE estimator can be
modified to support pilots which are scattered in time and frequency [43].

Low-rank MMSE estimators

Simplifications to the MMSE estimation process can be obtained by assuming
a low-rank model of the channel frequency response, i.e.,

h = Qf , (3.25)

where Q is an M × L unitary transform matrix, and L ≪ M . The optimal
low-rank estimator can be shown to use the SVD of the channel correlation
matrix [42], Rhh = UΣUH , where Σ is collecting the singular values {Σj}
on its diagonal. The obtained matrix U is in this case the Karhunen-Loeve
transform basis [42]. The optimal low-rank estimator is then given by

ĥMMSE,LR = U∆LU
H ĥLS , (3.26)

where ∆L is a diagonal matrix with entries

δl =

{
Σl

Σl+γ̄−1 , if l = 1, 2, . . . , L

0 elsewhere,
(3.27)

where γ̄−1 is the average SNR per symbol. The low-rank estimator, as ex-
pressed in (3.26), can be seen as a three stage process. First an LS estimate
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is produced, before being transformed to a suitable domain where the energy
is concentrated to a few dimensions. The dimensions with insignificant signal
energy are then removed. The values which are left would correspond to the
vector f in (3.25). Finally, the values are transformed back to the frequency
domain. The potential save in complexity, as compared to the MMSE esti-
mator, will depend on the number of required dimensions L needed to obtain
acceptable performance. Comparing (3.24) and (3.26), U∆LU

H can be seen
as a low-rank approximation of the filter A.

As mentioned above, a robust estimator can be obtained by designing for
a fixed Rhh corresponding to a channel with a uniform PDP. In that case
the transform matrix can be observed to become equivalent to the discrete
prolate spheroidal (DPS) sequences [44]. The DPS sequences are commonly
referred to as Slepian base functions, and have been the choice for the channel
estimation algorithms considered in this thesis. An alternative transform which
has been frequently used for low-rank channel estimation is the DFT [45, 46].
The benefit of the DFT is that it can be efficiently implemented through the
fast Fourier transform (FFT). The complexity can therefore be reduced as
compared to other transforms. On the other hand, as compared to, e.g., the
DPS sequences, the energy is not as well concentrated in the transform domain
for realistic channels. Therefore, a larger number of transform coefficients are
needed for a given estimation error level as, e.g., observed in our paper [47].
In Figure 3.2, originally found in [47], the symbol error rate is shown for an
uncoded 4× 4 MIMO-OFDM system using a low-rank channel estimator. The
estimator is using either a DFT basis or an SVD (Karhunen-Loeve) transform
basis, with different number of coefficients. As can be seen, an error floor is
present when using the DFT transform, and for the SVD transform basis with
too few transform coefficients.

Pilot placement

The amount of pilot symbols and their placement depend both on the properties
of the wireless channel as well as on the specific system in mind. For OFDM
systems, the channel is usually sampled in time and frequency by placing the
known pilot symbols at certain subcarrier and OFDM symbol positions. The
placement of the pilot symbols can be seen as two-dimensional sampling in time
and frequency domain, and as for any sampling the Nyquist sampling criteria
has to be met for perfect reconstruction. The distance between two (complex)
samples in the time domain Ts, and frequency domain Fs, is related to the
maximum Doppler frequency νmax and delay spread τmax, respectively. More
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Figure 3.2: The performance of an uncoded 4×4 MIMO-OFDM system
with channel estimation. The symbol error rate is shown for different
types and number of transform coefficients, p. SVD refers to a Karhunen-
Loeve transform basis. (Figure originally found in [47].)

specific, the sampling needs to fulfill

Ts ≤
1

2νmax
and Fs ≤

1

τmax
. (3.28)

Since the wireless receiver contaminates the samples with noise, oversam-
pling is most often performed in order to facilitate accurate estimates. The
sampling can be performed in a number of ways, and system specific require-
ments have a large affect on the choice of pilot pattern. Design of pilot patterns
and sequences are out of the scope of our work, and for those aspects we refer
to, e.g., [48].

It should be noted that if iterative decision-directed channel estimation
algorithms are used, pilot sampling below the Nyquist rate can be sufficient
as, e.g., observed in papers I and V. In that case, the requirement is that the
initial pilot sampling leads to a channel estimate which is “good enough”, so
that the receiver starts to converge. The receiver then provides estimates on
the transmitted data symbols, which can be used as additional pilots.
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3.2.2 Decision-directed channel estimation

To allow for a sufficiently accurate channel estimate at the receiver, a large
number of pilot symbols may be required. This will reduce the spectral effi-
ciency of the system, since less data symbols can be transmitted. Ideally, from
a spectral efficiency point of view, only data carrying symbols should be trans-
mitted, given that the transmitted information can be retrieved. As mentioned
earlier, blind algorithms exist but are impractical in most applications.

A more practical approach is semi-blind algorithms, which only require a
small amount of pilot symbols. Iterative algorithms performing joint channel
estimation and data detection, exploiting both pilot symbols and estimates
of the data symbols, has shown good performance with realizable complexity
[49–52]. Similar to iterative decoding, the estimator exploits the turbo principle
to produce accurate channel estimates. With such iterative systems, reliable
channel estimates can be provided with only a small amount of pilot symbols.

In Figure 3.3, originally found in Paper I, the benefits of using decision-
directed channel estimation are shown for a MU-MIMO system with N = 4
receive antennas andK = 4 users. As the figure illustrates, the potential gain of
using an iterative decision-directed channel estimation algorithm is significant.
For the investigated receiver, more than 50% of all transmitted symbols have to
be pilots if close to single user performance with perfect CSI is to be achieved.
For the decision-directed algorithm the same number is 5%.

In most iterative algorithms, channel estimation and data detection are
performed sequentially. Initially, the estimator obtains an estimate based on
the pilot symbols alone. The detector uses this estimate to produce hard or
soft decisions on the transmitted symbols, which are fed back to the estimator
and used as additional pilots. If hard decisions are fed back, without any
additional information on their reliability, essentially any conventional pilot
based estimator can be used. Even though using hard decisions is suboptimal,
the performance loss can be small as, e.g., observed in papers I and V.

To illustrate how the soft information can be used in the channel estimator,
we revisit the MMSE estimator in (3.20). If prior information on the transmit-
ted symbols X are available, the correlation matrices become

Rhr = E
{
h(Xh+w)H

}
= RhhE

{
XH

}
(3.29)

Rrr = E
{
(Xh+w)(Xh+w)H

}
=

= E
{
XhhHXH

}
+ E

{
wwH

}
= Rhh ⊙Rxx + σ2

wI , (3.30)

where Rxx = E{xxH}, and x = diag(X). The soft information based MMSE
channel estimate can therefore be written as

ĥMMSE = RhhE
{
XH

} (
Rhh ⊙Rxx + σ2

wI
)−1

r . (3.31)
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Figure 3.3: The BER at different SNR for a MU-MIMO system with
N = 4 receive antennas and K = 4 users. Different number of pilot
OFDM symbols are used, Sp = 1, 2 and 10, where the total number of
symbols is S = 20. Also shown is the performance obtained when using
the channel estimator in the loop of the iterative receiver, as well as
single user performance when the channel is perfectly known, and the
case of orthogonal boosted pilots. (From Paper I.)

Assuming that the symbols on different subcarriers are independent, the
entries of Rxx equal

rij =

{
E{x[i]x∗[i]} if i = j ,
E{x[i]}E{x∗[j]} if i 6= j ,

(3.32)

where (·)∗ denotes the complex conjugate operation. If we for simplicity assume
BPSK signaling, the detector provides the symbol probabilities p0,i = p(x[i] =

−1|r, ĥ) and p1,i = p(x[i] = +1|r, ĥ). In that case, (3.32) becomes

rij =

{
(−1)2 · p0,i + (1)2 · p1,i = 1 if i = j ,
((−1) · p0,i + 1 · p1,i) ((−1) · p0,j + 1 · p1,j) if i 6= j .

(3.33)
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The same type of calculations can be performed for higher order constellation
types, but leads to more complex expressions.

3.2.3 Multi-user and Multi-antenna channel estimation

So far we have only discussed channel estimation in the case of single antenna
systems. For multiple antenna and multi-user systems, which are considered
in this thesis, the challenges for estimating the channel increases. For exam-
ple, the number of channel parameters to estimate increases linearly with the
number of users. A large number of estimation algorithms have been proposed,
exploiting various properties of the specific systems. Here, we will restrict the
discussion to OFDM systems, where all users transmit synchronously and si-
multaneously. For practical systems, perfect synchronization can be difficult to
obtain. Fortunately, OFDM is insensitive to time synchronization errors which
are smaller than the CP minus the maximum channel delay.

If multiple antennas are used, and are assumed independent, per antenna
estimates are optimal. Algorithms for the single receive antenna case can then
directly be applied to multiple receive antenna systems. Furthermore, for the
design of channel estimation algorithms such assumption is a robust choice,
since the true spatial correlation of the channel is unknown in the general case.
Due to this, we restrict the presentation to the single receive antenna case.

We will in this section discuss two types of estimation approaches; joint
estimation of all user channels, and per user estimation obtained through in-
terference cancellation.

Joint estimation

The presentation in the previous sections for the single transmit antenna case
can be extended to the multi-user channel in a straightforward way. By ex-
pressing the received signal, for S consecutive OFDM symbols from K users,
using the classical linear model [41] we have that
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(3.34)

where Xk[s] are diagonal matrices corresponding to the transmitted OFDM
symbols, and hk[s] is the frequency response, of user k at time instance s.
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Furthermore, r[s] and w[s] collect the received signal and noise, respectively,
on all subcarriers at time instance s. In a more compact form (3.34) can be
written as

r̄ = X̄h̄+ w̄ , (3.35)

where r̄, X̄, h̄ and w̄ correspond to the vectors and the matrix in (3.34).
Using the model in (3.35), we can apply the same channel estimation ap-

proaches as in the single antenna case, e.g., the estimators in (3.23) and (3.31).
A large number of joint channel estimation algorithms have been proposed
in the literature [47, 51, 53, 54], and in papers I, II, IV and V a joint MMSE
estimator of this type is evaluated as part of an iterative receiver structure.

Separate estimation

Performing a joint estimate for all users can be a highly complex task. A simpler
approach is to first separate the users, and then perform per user estimates.
Since the channel needs to be known in order to separate the users, iterative
algorithms are needed.

In order to see how such estimation can be performed, (3.35) may be rewrit-
ten as a sum of the per user signal components, i.e.,

r̄ = X̄jh̄j +
∑

k 6=j

X̄kh̄k + w̄ , (3.36)

where X̄k are block-diagonal matrices with entries Xk[s], for s = 1, . . . , S,
and h̄k = [hTk [1], . . . ,h

T
k [S]]. Furthermore, we have separated out the signal

component of the j:th user. The second term on the right hand side of (3.36)
is the sum of all interfering users, with respect to user j. If this interference
can be canceled perfectly, the channel of user j can be estimated with single
user performance.

For the problem at hand, one algorithm which indirectly performs such in-
terference cancellation is the expectation maximization (EM) algorithm [55].
The EM algorithm is an efficient iterative method for computing the ML es-
timate in the presence of hidden data. In our case, the hidden data is the
received signal components for the different users, i.e., S̄k , X̄kh̄k. Each it-
eration of the EM algorithm consists of two steps; the expectation, or E-step,
and maximization, or M-step. In the E-step, the missing data is estimated
given the observed data and the current estimate of the model parameters.
This is achieved using conditional expectation. In the M-step, the likelihood
function is maximized under the assumption that the estimates of missing data
correspond to the true values.

For the model in (3.36), the i:th iteration of the EM algorithm can be shown
to yield [55,56]
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• E-step: for k = 1, . . . ,K

ˆ̄S
(i)
k = X̄k

ˆ̄h
(i)
k (3.37)

ˆ̄r
(i)
k = ˆ̄S

(i)
k + βk

(

r̄ −
K∑

k=1

ˆ̄S
(i)
k

)

(3.38)

• M-step: for k = 1, . . . ,K

ˆ̄h
(i+1)
k = argmin

h̄k

{∥
∥
∥ˆ̄r

(i)
k − X̄kh̄k

∥
∥
∥

2
}

. (3.39)

In (3.38), βk are real-valued scaling parameters, satisfying
∑K
k=1 βk = 1, of-

ten conveniently chosen as βk = 1/K. The algorithm also requires an initial

estimate, or guess, ˆ̄h
(0)
k , of the different user channels. The accuracy of the

initial guess influences the speed on convergence as, e.g., illustrated in Paper
V where we look at a few initial estimators with different complexity for an
OFDM-IDMA system.

Looking at the expression in (3.38), it can be seen as an interference cancel-
lation operation. Thus, for this specific problem at hand, the EM algorithm can
be interpreted as performing a parallel interference cancellation, followed by a
per user ML estimation. An alternative version of the EM algorithm is the space
alternating generalized EM (SAGE) algorithm [57], which has shown to have
better convergence properties. The SAGE algorithm performs the estimates of
the individual users sequentially, with the most resent channel estimates being
used in each step for the interference cancellation process. As compared to the
EM algorithm, SAGE can be interpreted as performing successive interference
cancellation, where a per user ML estimate is performed at each stage.

In the derivation above, we have assumed that {X̄k} are perfectly known
through the transmission of pilot symbols. Decision-directed channel estima-
tion can, e.g., be performed in a straightforward way through the use of hard
decisions. In papers I and V, we compare estimators based on SAGE with other
types of estimators, for the use in an iterative receiver. Furthermore, in Paper
V we propose a modified SAGE based algorithms in order to incorporate the
use of soft symbol decisions. This is done by changing from an ML estimate to
an MMSE estimate in the M-step of (3.39).

3.3 An iterative multi-user receiver structure

So far in this chapter we have discussed both multi-user detection and channel
estimation for the considered uplink system. A receiver needs to perform both
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these tasks, along with decoding of an error correcting code. Optimally, these
three tasks should be performed jointly, but such an operation is not tractable
for most practical systems. Therefore this task is commonly solved iteratively,
by exchanging information between the three receiver components. This ad-hoc
way of iteratively performing joint multi-user detection and channel estimation
has become a de facto standard approach [50, 51, 58]. This approach is also
adopted for the iterative receivers investigated in this thesis.

Many receiver structures in the literature rely on a separate channel esti-
mator [46, 48, 53, 56], providing reliable estimates based on pilot symbols only.
But, as discussed in the previous section, decision-directed channel estimation
can help to improve system performance and spectral efficiency. Ideally, the
channel estimator should provide information about the reliability of the chan-
nel estimate, which could be used by the MUD. Even though such algorithms
exist [50, 59], we have not considered the exchange of such information for the
investigated receivers in this thesis.

SISO

decoder

Channel 
estimator

SISO

decoder

.
.
.

.
.
.

.
.
.

Multi-user 

detector
.
.
.

Figure 3.4: An iterative receiver structure with channel estimation

The principle of an iterative receiver as discussed above is shown in Fig-
ure 3.4. Going through the receiver, an initial channel estimate is first obtained
based on the transmitted pilot symbols. With this initial channel estimate, the
MUD performs user separation and delivers extrinsic LLR values (Λmud

k ) as
input to the channel decoders, after deinterleaving. The interleaver between
the two is needed in order to break up dependencies between symbols. The
channel decoders then decode the received sequences, and produce extrinsic
LLR values (Λsiso

k ) which are fed back to the MUD and channel estimator1,

1In Paper IV, the channel estimator is fed a posteriori LLR values, as proposed in [51].
But as we observed in Paper II, feeding back extrinsic values has a negligible impact on
performance.



36 Overview of the Research Field

after reinterleaving. The channel estimator then computes an updated esti-
mate, which is fed to the MUD which performs a new user separation with the
updated information. The iterations then continue up till a maximum number,
or until a stopping criterion is met. After that, the channel decoder produces
hard decisions on the transmitted information bits.



Chapter 4

Performance and
complexity evaluations

The purpose of this chapter is to provide a brief overview of, and a discussion
on, the tools and models which have been used and proposed in the included
papers. We start by considering the choice of channel model, and also discuss
the alternative approach of using channel measurement data. The latter is
further discussed in Paper III. We then continue by discussing how convergence
analysis of iterative receivers can be performed, before we look at how the
algorithm complexity can be estimated. The relation between convergence
and complexity is, e.g., investigated in papers I and V, where we consider the
performance versus complexity tradeoff for different iterative receivers.

4.1 Channel models and measurement data

When evaluating receiver algorithms, appropriate channel models need to be
chosen, which capture the properties of the wireless channel. An inappropriate
choice can lead to inaccurate algorithm performance, potentially leading to bad
design choices. For example, when designing channel estimation algorithms,
assumptions on the channel statistics is often exploited. If the chosen channel
model does not have the same statistics as the real channel, but the same as
falsely assumed by the algorithm, the simulations could deceitfully show a good
estimation performance.

When it comes to choosing a channel model, a large number of them exists
(see, e.g., [60,61]), often designed with specific systems in mind. They typically
model the behavior of the channel in terms of path loss, shadowing, multipath,

37
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Doppler spread and spatial statistics. If we restrict the discussion to wideband
models, the European cooperation in science and technology (COST) and the
International telecommunications union (ITU) have provided a number of in-
dustrial standard channel models. Amongst these we have, the COST 207
model used in GSM, COST 231 and ITU-R used for UMTS, and extended ITU
models for LTE [62,63].

The multi-user systems which we are investigating in this thesis are assumed
to be operating over large bandwidths in indoor environments, where we can
expect rich scattering, small time variations and large frequency correlation.
We also assume that line-of-sight is generally blocked which, together with the
rich scattering, leads to a low spatial correlation. Additionally, we assume
that appropriate power control is performed, leading to equal average power
amongst the users.

Even though the latest channel models, e.g., COST 2100, have support
for multiple antenna terminals and multiple base stations, we have in papers
I, II and V adopted a simpler and more tractable channel model suitable for
the considered systems. As for most of the standardized models, we adopt a
tapped-delay line model with wide sense stationary uncorrelated scattering [64],
whos impulse response is given by

g(τ) =

P−1∑

p=0

αpδ(τ − τp) , (4.1)

where {αp} are zero-mean complex Gaussian random variables with an expo-
nential PDP, E{|αp|2} = Ce−τp/τrms , where C is a normalization constant, and
the delays {τp} are uniformly distributed between zero and a maximum channel
delay τmax. For a large P , the model describes a rich scattering environment,
and a strong frequency correlation is given if τmax or τrms are small, as com-
pared to the symbol length. Furthermore, using the assumption of low spatial
correlation, the different user/antenna channels are generated independently of
each other. We also assume transmission of short data packets, so that Doppler
effects can be neglected, thus leading to a block fading channel.

An alternative to using a statistical model of the wireless channel is to use
channel measurements performed in a relevant environment. Channel measure-
ments are often performed in order to gain understanding of the properties of
the propagation channel, and are the basis of channel modeling. One of the
benefits of using measurement data, rather than a channel model, is that they
provide a snapshot of the true environment without any underlaying assump-
tions on the channel properties. Furthermore, in the early design phase of novel
wireless systems, models may not be available or properly verified. The use of
measurements can therefore speed up the design process. At the same time,
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there are a number of measurement related issues which needs to be commented
on. Measurement imperfections can reduce validity of the measured channel.
These include the presence of measurement noise, and synchronization errors.
Measurement noise leads to reduced correlation in the channel, which can lead
to erroneous performance evaluations. In Paper III the use of measurements
for system evaluations are discussed in more detail, and the impact of a number
of issues is illustrated through system simulations. Additionally, we perform a
system evaluation based on unique dynamic dual-link MIMO measurements in
Paper IV.

4.2 Receiver convergence and complexity
analysis

For iterative systems, evaluating the convergence properties is of importance.
From a receiver algorithm design point of view, it is important to under-
stand when, and how, the algorithm converges. Furthermore, slow convergence
can increase processing latency, computational effort and power consumption,
which grow with the number of iterations. The convergence speed, in combina-
tion with the per iteration algorithm complexity, therefore have an impact on
the algorithm choices. In this section we provide a brief overview of the tools
we have used for convergence evaluation, as well as for complexity analysis.
More details can be found in papers I and V, where the convergence properties
of different multi-user receivers are evaluated. In the papers, the impact of
convergence on the receiver complexity is discussed, with the aim of finding
the receiver with the lowest overall complexity.

4.2.1 Convergence analysis

Analytical evaluations on performance can be performed for simplified and
idealized receivers, but for more advanced receiver designs such evaluations are
in general infeasible. We therefore need to resort to computer based system
simulations. The convergence properties of a receiver can be visualized, e.g., by
looking at the evolution of the BER and estimation MSE with iterations. This is
a good tool for comparing the performance of different receiver algorithms, and
shows the overall performance. An alternative tool which has become popular
for the design and evaluation of iterative algorithms is extrinsic information
transfer (EXIT) charts [65]. These charts provide additional information on
the interactions between the involved components of the receiver.

EXIT charts have shown to be helpful tools for visualizing convergence
behavior and aid the design and performance evaluation of iterative systems.
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These charts were initially proposed for the evaluation of concatenated codes,
and visualize the exchange of mutual information between the components of an
iterative decoder. They have also shown useful for visualizing the exchange of
soft information between other receiver components, such as channel equalizer
[66], MUD [67] and channel estimator [59]. Even though EXIT charts are
derived under certain limiting assumptions, such as perfect interleaving and
Gaussian distribution of LLRs, they have been shown to model the behavior
of practical systems quite well.

In order to produce an EXIT chart, information transfer functions of the
receiver components have to be produced. Each unit is seen as an LLR trans-
former (Λa → Λext), where the transfer function measures the improvement of
the LLR-transformation in terms of mutual information between the LLRs and
the underlying variables, i.e.,

Iext = T (Ia) , (4.2)

where Ia = I(x; Λa) and Iext = I(x; Λext) are the input a priori mutual infor-
mation and output extrinsic mutual information, respectively. The extrinsic
information of one unit then becomes the a priori input for the other.

Once the transfer functions for the components have been obtained, their
exchange of information can be visualized in a graph. Figure 4.1, which is
based on the results in Paper I, shows an EXIT chart for an MU-MIMO-
OFDM system for the case of N = 4 receive antennas, K = 4 users. The upper
curve is the transfer function of the MUD and channel estimator part of the
receiver, while the lower curve is the inverse of the transfer function of the soft-
input soft-output (SISO) data decoder. The zig-zag line shows how the two
components exchange information, and provides an estimate of the convergence
behavior of the iterative receiver. The receiver is estimated to converge to its
final value in around five iterations for the given scenario.

In the above presentation, we have omitted the discussion on how one would
actually produce the transfer functions. Instead, we refer to papers I or II for
an introduction. In Paper II, we also present a multi-dimensional EXIT chart
model for an iterative receiver structure for MIMO-OFDM systems. Alterna-
tively, the reader may consult tutorial papers on EXIT charts, such as [68].

4.2.2 Receiver complexity

As we have mentioned, the algorithm complexity is an important aspect in
receiver design. In the quest for increased system performance and bandwidth
utilization, the receiver algorithms inevitably become more and more complex.
The complexity represents itself in terms of an increased chip area and power
consumption of the final hardware. For the design of iterative receivers, which
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Figure 4.1: EXIT chart for a MU-MIMO-OFDM system for the case
of N = 4 receive antennas, K = 4 users. The chart shows the exchange
of information between the MUD with channel estimation, and the data
decoders. (See Paper I for more details.)

is the objective in this thesis, the complexity will depend on the choice of the
individual components. As mentioned, the convergence speed of the receiver
also plays an important role in the overall computational complexity of the
receiver. In papers I and V, we investigate the performance versus complexity
tradeoff for different systems and receiver configurations. An ultimate tradeoff
analysis would require implementing the algorithms on a hardware platform,
requiring a huge work effort not allowed by the time frame of this thesis. An
estimate of the complexity can be obtained by counting the required number of
arithmetic operations. Amongst these, additions and multiplications are most
commonly encountered, and thus have a central role. Furthermore, since the
complexity of the multiplier is significantly larger than that of the adder [69],
the multiplications tend to dominate the overall complexity. To get a tractable
and reliable measure of complexity when performing the tradeoff analysis in
the included papers, we therefore restrict to the required number of (complex)
multiplications.
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Chapter 5

Contributions and
discussion

This chapter provides a summary of my contributions to the research field. In a
separate section, we also give some concluding remarks and comments on future
work. To begin with, the five papers, which constitutes the core of this theses,
are summarized and the contributions highlighted. The papers are not listed
in a chronological order, but are ordered based on on their content. For all of
these papers, I am the main contributor, and was taking part in all steps in the
scientific process: implementing algorithms, performing simulations, evaluating
the results and writing the papers.

5.1 Research contributions

5.1.1 Paper I: “Iterative Receivers with Channel Estima-
tion for Multi-User MIMO-OFDM: Complexity and
Performanc”

In the first of the included papers, an evaluation of iterative receiver structures
for an uplink multi-user MIMO-OFDM systems is conducted. The considered
receivers are composed of three main components; a MUD unit, a channel
estimation unit and a SISO data decoder. Three different MUD algorithms and
three channel estimation algorithms are considered, and compared on an equal
footing. The paper studies the trade-off between complexity and performance
for different combinations of these algorithms. The investigation is restricted
to the case of N = 4 receive antennas, and single antenna users. The main

43
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contributions are summarized as follows:

• A tradeoff analysis between complexity and performance is performed.
Three transform based channel estimation algorithms are considered; one
based on SAGE, one performing a joint MMSE estimation of all user
channels, and one low-complexity approximation of the joint MMSE es-
timator based on a Krylov subspace projection method. The latter is, to
the best of our knowledge, evaluated for the first time in a MIMO-OFDM
system. Three MUDs are considered; two PIC based detectors and one
full maximum a-posteriori probability (MAP) detector. The latter being
a natural performance benchmark.

• In the tradeoff analysis, the total complexity, in terms of complex mul-
tiplications, required to reach a given bit error rate is computed for all
algorithm combinations. The analysis is performed for different SNRs,
and for different number of users. The total complexity is given by the
sum of the derived complexities of the receiver components, multiplied by
the number of required iterations obtained through system simulations.

• The convergence of the different receiver configurations are investigated
by looking at the system BER, estimator MSE, and an EXIT chart.

Our results show that low-complexity receiver components can be competi-
tive when looking at the total complexity versus performance tradeoff. Despite
having a slower convergence, the overall computational effort is lower in most
of the considered scenarios. Furthermore, our investigations also show that
the proposed low-complexity Krylov subspace based estimator shows perfor-
mance close to that of the joint MMSE algorithm, but with significantly lower
complexity.

5.1.2 Paper II: “EXIT Chart Evaluation of a Receiver
Structure for Multi-User Multi-Antenna OFDM
Systems”

In this paper an iterative receiver for multi-user MIMO-OFDM systems, in-
corporating iterative MUD and channel estimation (CE), is evaluated. The
evaluation is performed through the use of EXIT charts, which model the flow
of mutual information between the components of the receiver, in our case be-
tween the data decoders and the combined MUD/CE. In the paper we restrict
the evaluation to the case of two single antenna users and a receiver with two
antennas. The contributions of the paper are as follows:
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• We illustrate how the convergence properties of the multi-user receiver
can be modeled through the use of multi-dimensional EXIT charts. For
the given system configurations, paired 3D EXIT charts illustrate the
exchange of information between the two SISO decoders and and the
combined MUD/CE.

• A modification of the receiver is also proposed, where the SISO decoders
feed back extrinsic, rather than a posteriori LLRs, as earlier proposed, to
the CE. An insignificant performance loss is observed. The modification
removes the dependencies between the transfer functions of the SISO
decoders and the MUD/CE, which simplifies EXIT chart based receiver
design.

The results illustrate a good correspondence between the EXIT chart pre-
diction and the true decoding trajectory. The charts provide an improved
understanding of the convergence behavior of the iterative receiver, and can,
e.g., be used for investigations on iteration scheduling between the involved
components.

5.1.3 Paper III: “Using Measured Channels in Perfor-
mance Evaluation of Multi-User OFDM Systems”

The paper provides a tutorial overview of the use of channel measurement
data in wireless communication system evaluations. Channel measurements
are generally used as a basis for generating channel models, but can also be
used directly in system simulations to provide a close to reality channel scenario.
With this paper we summarize our experiences gained from using channel mea-
surement data in system simulations, and we also provide illustrative examples
of certain aspects. The focus is on wideband multi-user MIMO systems, but
most observations are applicable to other scenarios and systems. The main
contributions are as follows:

• A number of measurement specific issues related to the data is described,
and ways to alleviate these problems are discussed. The issues include,
e.g., the presence of measurement noise, directive antennas, and propa-
gation delay.

• Illustrations of a number of the issues are provided, e.g., by looking at the
performance of an iterative receiver for a MU-MIMO-OFDM system with
cooperative base stations. For the evaluation, the performance obtained
with the true channel is compared with that of a measurement impaired
channel. The true channel is given as the output of the COST 2100
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dynamic multi-link MIMO channel model. In the case of measurement
noise, we illustrate that both improved as well as reduced performance
can be obtained, depending on the considered system.

Due to the discussed issues, measurements need to be handled with care if
used for system evaluations. If doing so, being aware of the problems, measure-
ment data can be a good alternative for system evaluations. Especially in the
early design phase of novel wireless systems, before appropriate models have
been made available.

5.1.4 Paper IV: “On the Performance of Iterative Re-
ceivers for Interfering MIMO-OFDM Systems in
Measured Channels”

This paper presents the first ever evaluation of a MU-MIMO system based on
real measurement data from a dual link MIMO scenario. In the paper, which
was performed in the early part of my Ph.D. studies, we investigate the gains
that can be harvested through base station cooperation in an uplink multi-user
MIMO-OFDM system in a real environment. The system is comprised of two
mobile users and two base stations, all equipped with two antennas, where
the receivers either perform iterative joint multi-user detection incorporating
channel estimation, or independent processing for each base station and user
pair. The performance is evaluated using unique channel measurements from
an indoor dual-link mobile MIMO measurement campaign.

The contributions of the paper are as follows:

• The performance of base station cooperation in a MU-MIMO system
is investigated through the use of real indoor mobile dual-link MIMO
measurements. System simulations are performed over 700 measurement
points along the routes of the two mobile users. In the results we illustrate
the large gain that can be achieved through cooperation, where interfering
power is turned into useful power. The BER performance at different
signal-to-interference ratios (SIR) is also presented.

• We also exemplify the benefits of using soft estimates of the transmitted
data symbols as additional pilot symbols, where the BER performance is
seen to improve by orders of magnitude as compared to when using pilots
only.

This paper point at the large gains which can be obtained through base
station cooperation, when used in a real multi-link MIMO environment, repre-
sented by channel measurements. Furthermore, it also illustrates that decision-
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directed channel estimation can help to significantly improve the performance
of these systems.

5.1.5 Paper V: “Overview of Channel Estimation Algo-
rithms for OFDM-IDMA: Complexity and Perfor-
mance”

This paper presents a study of a number of channel estimation algorithms
suitable for single antenna, uplink OFDM-IDMA systems. The considered al-
gorithms cover both an initial pilot based estimation, as well as the following
iterative decision-directed channel estimation. The presented estimation algo-
rithms, ranging from simple per user LS to joint multi-user MMSE estimators,
are mainly modifications of previously presented algorithms, but a more novel
SAGE based approach is also presented. In a similar way as in Paper I, a
performance versus complexity tradeoff analysis is performed.

The contributions of the paper are as follows:

• Three different transform based decision-directed channel estimation al-
gorithms are compared in an OFDM-IDMA system for the first time.
One of the algorithms jointly estimates the channels for all users, while
the others perform per-user estimates based on the SAGE algorithm.

• In one of the estimation algorithms we propose a novel approach to in-
corporate the use of soft decisions into the SAGE framework, where an
MMSE estimate is performed in the M-step instead of an ML estimate.

• Different algorithms for obtaining an initial pilot based channel estimate,
which provide a starting point for the iterative receiver, are also evaluated.
The algorithms effect on the overall system performance and convergence
is studied, along with their complexities.

• A complexity versus performance analysis is performed, where the total
number of complex multiplications needed to reach a bit error rate (BER)
target is evaluated. For the evaluation, the complete receiver complexity
incorporating channel estimation, MUD and data decoding is considered.
The analysis is performed at different SNRs, and for different user loads.

In the paper we have presented a number of suitable decision-directed chan-
nel estimation algorithms for OFDM-IDMA systems, and compared them on
an equal footing. The tradeoff analysis indicate that low-complexity channel
estimation algorithm can be competitive alternatives. Despite leading to a
slower receiver convergence, the overall computational effort required by the
receiver can be decreased.
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5.2 Discussion and future work

As mentioned in the beginning of the thesis, the question that we are trying
to shed some light on is: How can we design efficient iterative receivers incor-
porating channel estimation? The answer to that question depends very much
on the specific system under consideration. In this thesis we have considered
algorithms both for MU-MIMO-OFDM (papers I, II and IV), as well as OFDM-
IDMA systems (Paper V), transmitting over block fading channels. For both
systems we have seen that by using algorithms with relatively low complexity,
receivers can be designed which have competitive performance. The consid-
ered algorithms with reduced complexity will in general lead to more receiver
iterations, but still require less total computational effort.

Even though the presented receiver algorithms show good performance in
the investigated systems, there are a number of underlying assumptions and
limitations which deserve to be discussed. In the rest of this section we therefore
reflect over the following aspects: time fading channels, symbol constellation
sizes, time and frequency synchronization, unequal user powers and hardware
implementation aspects.

To start with, we have limited this thesis to communication over block fad-
ing channels. This choice is motivated by the fact that we mainly consider
indoor communications. The degree of channel variations is highly coupled
to the terminal velocities. For indoor environments, these velocities can be
assumed to be small, which implies that the channel variations occurs slowly
in comparison to the symbol rate. Hence, making the block fading assump-
tion valid. For outdoor environments and at high terminal velocities, channel
variations within a block can occur. In such scenario the presented channel
estimation techniques need to be modified accordingly, and the resulting per-
formance has to be investigated. Further on, we have restricted the scope of this
thesis to QPSK signaling, and instead achieve spectral efficiency through, e.g.,
spatial multiplexing. For systems aiming at higher spectral efficiencies, larger
constellation sizes are required. An extension of the presented algorithms is
conceptually straightforward, but would inevitably lead to increased algorithm
complexities. For the case of larger constellations, we still expect that low
complexity approaches would be competitive. With this in mind, a natural
extension of our work would therefore be to consider algorithms supporting
large constellations and time varying channels.

Furthermore, we have assumed that the users are well synchronized in time
and frequency. Achieving this can be both challenging and may require consid-
erable signaling overhead, reducing the efficiency of the system. Synchroniza-
tion can, e.g., be obtained through dedicated signals transmitted regularly from
the base station, in combination with individual timing information (timing ad-
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vance). If large enough synchronization errors exist, performance degradation
will occur since the orthogonality between subcarriers and consecutive OFDM
symbols are lost. Further on, we have assumed that the received power from
all users are equal. In general, large power variations amongst users can occur
due to difference in path loss. Power control, where the base station informs
the users how to adjust their transmit power, can partly compensate for these
imbalances.

Finally, as indicated in Section 4.2.2, counting the number of required mul-
tiplications only provide a rough estimate of the hardware complexity. The
actual complexity will depend on the final hardware design, where the choice
of architecture, memory usage, word lengths, and hardware reuse are important
parameters. Implementing the investigated algorithms on a hardware platform,
to more thoroughly investigate their properties and implementation complexi-
ties would be an interesting extension of our work.
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Iterative receivers with channel

estimation for multi-user

MIMO-OFDM:

Complexity and performance

Abstract

A family of iterative receivers is evaluated in terms of complexity and performance

for the case of an uplink multi-user (MU) multiple-input multiple-output orthogonal

frequency division multiplexing (MIMO-OFDM) system. The transmission over block

fading channels is considered. The analyzed class of receivers is performing channel

estimation inside the iterative detection loop, which has been shown to improve es-

timation performance. As part of our results we illustrate the ability of this type of

receiver to reduce the required amount of pilot symbols. A remaining question to ask

is which combinations of estimation and detection algorithms that provide the best

trade-off between performance and complexity. We address this issue by considering

MU detectors and channel estimators, with varying algorithm complexity. For MU

detection, two algorithms based on parallel interference cancellation (PIC) are consid-

ered and compared with the optimal symbol-wise maximum a-posteriori probability

(MAP) detector. For channel estimation, an algorithm performing joint minimum

mean square error (MMSE) estimation is considered along with a low complexity

replica making use of a Krylov subspace method. An estimator based on the space

alternating generalized expectation-maximization (SAGE) algorithm is also consid-

ered. Our results show that low-complexity algorithms provide the best trade-off,

even though more receiver iterations are needed to reach a desired performance.
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1 Introduction

In future wireless systems high data rate transmissions need to be supported,
requiring larger bandwidths to be used. At the same time, spectral efficiency
is becoming increasingly important. A technology that has become popular
in later years, and also found its way into many wireless standards such as,
e.g. LTE [1], is the use of multiple-input multiple-output (MIMO) antenna sys-
tems in combination with orthogonal frequency division multiplexing (OFDM).
OFDM is used to efficiently combat inter-symbol interference (ISI), inherent
in broadband transmissions, while MIMO is used for improving the channel
spectral efficiency and/or suppress interference.

Introducing multiple users (MU) into such systems, a MU-MIMO-OFDM
system is created. In the uplink, accurate multi-user receivers are needed to
harvest the available gains. A significant number of algorithms, with varying
complexity, have been proposed for this task; ranging from the simple zero-
forcing detector to the high complexity maximum-likelihood (ML) detector.
Please refer [2] for an overview.

The degree of channel state information (CSI) available at the receiver plays
an important role in the design of the receiver structure. While it is convenient
for theoretical investigations to assume that perfect CSI is available, practical
receivers need to obtain CSI via, e.g. noisy pilot symbol observations. In the
case of a large coherence time, the accuracy of the channel estimate can be
made high since many symbols can be dedicated for pilot information without
any significant effect on the spectral efficiency. In fast fading environments,
or packet-based systems, the number of pilot symbols must, however, be kept
small to maintain a reasonable spectral efficiency. To this end, other more
sophisticated transceiver structures have been developed [3–5]. These receivers
jointly detect the data symbols and estimate the transmission channel, which
allows for a lower number of inserted pilot symbols as compared to traditional
pilot based transceiver systems. While the prospect of reducing the number of
pilot symbols is important, these receivers are of limited utility since they have
grossly larger computational complexity than traditional pilot based receivers.
This complexity amplifies dramatically if the data is coded.

The discovery of the turbo principle [6] brought radical changes to the en-
tire communication field. It is today understood that highly complex problems,
such as jointly detecting coded data and estimating the underlying transmis-
sion channel, can be efficiently handled by iteratively solving much simpler
sub-problems. In particular, during the last decade there has been a growing
interest in iteratively solving the joint coded data detection and channel es-
timation problem [7–10]. The receiver is alternating between decoding of the
outer error correcting code, performing multi-user detection (MUD), and esti-
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mation the transmission channel, in an iterative manner. In [10], a theoretical
framework is presented for this, elsewhere ad-hoc, choice of receiver design;
strengthening the motive for this choice.

Even though iterative algorithms can reduce the complexity of the digital
receiver, they may still be of prohibitive complexity in many practical scenarios;
representing itself in a large chip area and high power consumption. It is
therefore important to find low-complexity algorithms that are both power
efficient and can deliver performance required to reach high spectral efficiencies.

In the current literature, an impressive number of low-complexity algo-
rithms have been proposed for the different components of an iterative receiver,
see e.g. [11]. However, few have studied the trade-off between complexity and
performance for the entire receiver, including MUD, channel estimation and
channel decoder. One exception being [12], where the complexity and perfor-
mance of a set of receiver algorithms for MIMO multi-carrier code division
multiple access (MC-CDMA) systems are investigated. In contrast to [12], this
paper evaluates a family of iterative receivers for an uplink MU MIMO-OFDM
system, operating over block fading channels. Furthermore, we have tried to
place a greater focus on the convergence properties of the different receiver con-
figurations. The convergence speed is important since more iterations require a
larger computational effort. Also worth mentioning is the work in [13], where a
performance-complexity comparison of receivers for down-link MIMO-OFDM
systems is performed. Unlike in our comparison, the investigated receivers does
not contain any channel estimator.

In our evaluation, the complexity of all the building blocks of the itera-
tive receiver is derived, and related to the system performance. Our results
show that low-complexity algorithms are generally sufficient, but more com-
plex schemes may be needed if convergence speed, measured in iterations, is at
focus. The main contributions are summarized as follows

• A tradeoff analysis between complexity and performance is performed
for a MU MIMO-OFDM system incorporating iterative channel estima-
tion and MUD. Two popular channel estimation algorithms, one based
on expectation maximization [14], and one performing a joint MMSE
estimation of all user channels [8,9], are evaluated. A low-complexity ap-
proximation of the latter based on a Krylov subspace projection method,
as presented in [12], is also evaluated. Three popular MUDs are consid-
ered; two parallel interference cancellation based detectors and one full
maximum a-posteriori probability (MAP) detector. The latter being a
natural performance benchmark.

• In the tradeoff analysis, the total complexity, in terms of complex mul-
tiplications, required to reach a given bit error rate is derived for all
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algorithm combinations at different signal-to-noise ratios and number of
users. The results show that low-complexity schemes are generally pro-
viding the best tradeoff.

• The convergence properties of the different receiver combinations are pre-
sented, both in terms of bit error rate, mean square estimation error, and
through the use of extrinsic information transfer (EXIT) charts [15]. The
EXIT charts visualize the exchange of extrinsic information between the
outer code and the rest of the receiver incorporating channel estimation
and MUD.

The rest of this paper is organized as follows. In Section 2, a description of the
considered MU-MIMO-OFDM system is given. The algorithms for obtaining
the channel estimate are presented in Section 3, and the MUD algorithms in
Section 4. In Section 5 the complexity of the algorithms is discussed, and in
Section 6 the performance of different algorithm combinations is investigated.
A complexity versus performance analysis is performed in Section 7, before the
paper is summarized in Section 8.

2 System Description

2.1 MU-MIMO-OFDM system overview

The MU-MIMO-OFDM system under consideration is shown in Fig. 1. It
consists of K single-antenna users, transmitting to a receiver (the base-station)
equipped with N antennas. The users transmit blocks of S OFDM symbols,
each containing M sub-carriers. The first Sp OFDM symbols are reserved for
pilot symbols, which are known to the receiver. The following Sd = S − Sp
OFDM symbols contain coded data. The total number of information bearing
signal constellation points per block, transmitted from each user, then becomes
L = SdM . A forward error correcting code (FEC) with rate R is used to
generate codewords, which after interleaving, are mapped onto the L signal
constellation points. We restrict our investigations to the case of QPSK. An
extension to other constellations is conceptually straightforward, but in general
non-trivial [16].

After OFDM modulation and pilot insertion, the users transmit their sig-
nals over a frequency selective block fading channel, where the different multi-
antenna links are independent and identically distributed (IID). The block
fading assumption holds if the transmitted data blocks are much shorter than
the channel coherence time. Thus, a system with short data blocks transmitted
over a channel with moderate Doppler spread is considered. Furthermore, to
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Figure 1: A baseband model of a MIMO-OFDM system with K users.
The receiver implements an iterative multi-user receiver with channel
estimation (CE), multi-user detection (MUD) and a bank of SISO de-
coders.

allow for correct OFDM demodulation at the receiver, the users are assumed to
be synchronized both in time and frequency. In frequency, the synchronization
requirement is strict, but due to the use of a cyclic prefix, the time requirement
is somewhat relaxed to the case where the difference in arrival times is less
than the duration of the cyclic prefix minus the channel delay spread.

At the receiver, the signal is demodulated into the complex baseband, where
an iterative receiver is implemented. The complexity-performance trade-off of
this receiver is the focal point of this paper. The receiver consists of three
blocks; a channel estimator, a MUD, and a bank of soft-input-soft-output
(SISO) channel decoders. First, an initial channel estimation is done, based
on the transmitted pilot symbols. This estimate is then used in the MUD to
separate the different user streams, which are then fed to the SISO decoders.
The output of the decoders are then used in the next iteration to update the
channel estimate, and to further improve the user separation in the MUD. Mul-
tiple iterations are then performed in the same way. The different components
are described in detail in later sections.

2.2 Input-output relationship of the channel

Next we turn the attention to a description of the input-output relationship
of the channel used in this paper. The notation introduced here will also be
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used for the description of the various algorithms. Furthermore, a low-rank
description of the channel, being used by the channel estimation algorithms, is
also introduced in section.

Under the assumption of block-faded channels, the discrete-time model for
the received signal at the mth subcarrier, during the transmission of OFDM
symbol s, can be written as

r[m, s] =H[m]x[m, s] +w[m, s] . (1)

where H[m] denotes the composite N ×K channel matrix

H[m] =






h1,1[m] . . . h1,K [m]
...

. . .
...

hN,1[m] . . . hN,K [m]




 ,

from the K autonomous users to the N -antenna base-station at subcarrier m.
For later use, we define h :,k[m] = [h1,k[m], . . . , hN,k[m]]T and similarily for
hn, :[m] and hn,k[:]

1. Note that due to the block-fading assumption, the matrix
H[m] does not depend on s. Furthermore, r[m, s], x[m, s], and w[m, s] are
column vectors which contain the received signal, the composite transmitted
vector from the K users, and the noise vector (∼ CN (0, σ2

wI) distributed)
respectively, at subcarrier m and OFDM symbol s.

Let rn[m, s] denote the nth element of the vector r[m, s]. For later use, we
define the vector

rn[s] = [rn[1, s], rn[2, s], . . . , rn[M, s]]T,

which collects the received signals at antenna n and OFDM symbol s, across
all subcarriers. Further, this vector equals

rn[s] =

K∑

k=1

Xk[s]hk,n[:] +wn[s] , 1 ≤ n ≤ N, (2)

whereXk[s] ∈ C
M×M is a diagonal matrix which contains user k’s transmitted

data in OFDM symbol s along its diagonal, and wn[s] ∈ C
M×1 is a vector

collecting the noise at receive antenna n across subcarriers.
All channel estimation algorithms to be evaluated in this paper are based

on low rank approximations of the wireless channel. The assumption made is
that the channel is limited in the delay domain, and can therefore be accurately

1In general the notation will be that sub-indices state which user and receive antenna is
considered, while the time and frequency position will be given in brackets.
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represented by a relatively small number of base functions. The optimal set of
base functions are presented in [17], and are known under the name discrete
prolate spheroidal (DPS) sequences. Their use for low-complexity channel es-
timation were proposed in [18], and estimators using the same type of base
functions have also been proposed in, e.g. [19].

Forming a base with I base functions, the frequency response between user
k and antenna n of the block fading channel may be expressed as

hk,n[:] = Uψk,n , (3)

in a notation similar to the one used in [19], where U ∈ C
M×I is a matrix

collecting I orthonormal base functions in its columns and ψk,n ∈ C
I×1 is

a vector containing the corresponding channel DPS coefficients. Note that
ψk,n can be interpreted as the impulse response of the channel, though not
mathematically correct unless U is the Fourier base. Using this model of the
channel, the received signal in (2) may be expressed as

rn[s] =
K∑

k=1

Xk[s]Uψk,n +wn[s] . (4)

Now, by collecting the received signal for all S OFDM symbols, and all
receive antennas, in a vector, and in a similar way collecting the channel coef-
ficients, ψk,n, for all users and antennas, the received signal may be expressed
using the classical linear model [8, 20]. It then becomes

r = X̄N ŪNψ +w = Ξψ +w , (5)

where r ∈ C
SMN×1 is collecting the received signal in all time-frequency

positions and at all receive antennas, Ξ ∈ C
SMN×KNI is an observation

matrix collecting the transmitted symbols and channel base functions, ψ ∈
C
KNI×1 is collecting the channel coefficients for all users, and w ∈ C

SMN×1

is collecting noise. More explicitly, the data structures are given by: r =
(
rT[1], . . . , rT[S]

)T
, r[s] =

(
rT[1, s], . . . , rT[M, s]

)T
, Ξ = X̄N ŪN , X̄N =

X̄ ⊗ IN , X̄ = (X1, . . . ,XK), Xk =
(
XT
k [1], . . . ,X

T
k [s]

)T
, ŪN = U ⊗ INK ,

ψ =
(
ψT

1 , . . . ,ψ
T
N

)T
, ψn =

(
ψT
n,1, . . . ,ψ

T
n,K

)T
.

The DPS base functions are obtained from solving the eigenvalue equation
[8,17,19], Cui = λiui, where C ∈ C

M×M is a channel correlation matrix. For
later use, the eigenvalues λi are collected in a vector, λ = [λ1, . . . , λI ]

T. For
I ≥ ⌈τmaxM⌉+ 1, the energy of the eigenvalues are small and can in general
be neglected [17]. This value sets a bound on the number of DPS sequences
that are needed to represent the channel in an accurate way.
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3 Channel estimation algorithms

In order to achieve satisfactory detection performance, high-accuracy channel
estimates need to be made available at the receiver. A large number of ap-
propriate algorithms has been proposed in the literature. Amongst these, two
popular families of algorithms have received a great deal of attention; algo-
rithms performing joint estimation for all users [8,21,22], and algorithms based
on interference cancellation [14,23]. In this paper, two algorithm from the first,
and one from the second family is considered. The algorithms make use of the
transmitted pilot symbols, as well as decoded data symbols. Thus, they are
all using the turbo principle to iteratively improve the channel estimate as the
reliability of the decoded data symbols increases. Furthermore, the algorithms
have in common that they all use the same underlying low-rank channel model,
the one given in Section 2.2.

The first algorithm, previously presented for MC-CDMA systems in [8, 24]
and later for MIMO-OFDM in [21], performs a joint minimum-mean-square-
error (MMSE) estimate of the composite channel matrices H[m] based on the
model in (3). The second algorithm, presented in [12], uses a Krylov subspace
method to approximate a costly matrix inverse in the joint MMSE estimator.
The third algorithm, based on [14], is using the expectation maximization (EM)
framework, and iteratively performs per-user channel estimation, i.e., estimates
of the columns of H[m]. We slightly modify the second algorithm by using the
improved space alternating generalized EM (SAGE) [25] algorithm. The three
algorithms are described below.

3.1 Joint MMSE estimator using soft decisions (Joint
MMSE)

The optimal channel estimation approach is to estimate all user channels jointly,
making use of both pilots and soft estimates of the transmitted symbols, along
with the channel correlation properties. Based on the model for the received
signal given in (5), the optimal estimate of the channel coefficients ψ (in the
MMSE sense) can be derived as [9]

ψ̂ =
(

Ξ̂H∆−1Ξ̂+C−1
ψ

)−1

Ξ̂H∆−1r , (6)

where Ξ̂ has the same structure as Ξ, but contains both known pilot symbols
and soft estimates of the transmitted data carrying symbols; ∆ = diag(ϑ) +

σ2
wINMS , with ϑ =

(
ϑT[1], . . . ,ϑT[S]

)T
, ϑ[s] = (ϑ[1, s], . . . ,ϑ[M, s])

T
,

ϑ[m, s] =
(
∑K
k=1

(
1− |x̂k[m, s]|2

))

1N , and x̂k[m, s] are either pilots or soft
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symbol outputs from the decoder, and 1N is the all-ones column vector of
length N . Further, note that diag(ϑ) = E{ΞψψHΞH} − Ξ̂CψΞ̂

H , and Cψ is
the covariance matrix of the DPS sequences.

Due to the sizes of the matrices involved in (6), the computational complex-
ity can be expected to be significant. The computational burden is significantly
decreased, but still large, if the sparsity and regularity of Ξ̂ is taken into ac-
count. We will elaborate more on this in Section 5.

3.2 Krylov subspace reduced joint MMSE estimator us-
ing soft decisions (Krylov MMSE)

As mentioned above the implementation of the joint MMSE estimator embeds a
significant computational cost. Multiplication of matrices of large dimensions,
along with a costly matrix inversion, adds greatly to the receiver complexity.
In [12] an approach to reduce these costs was proposed. The algorithm is
making use of a Krylov subspace method, more precisely the unconditional
conjugate gradient method [26], to iteratively solve (6). The method iteratively
finds the solution to the linear equation system x = Ab, based on an initial
guess x0, using that A−1 =

∑R
r=1 arA

r ≈ ∑SK

r=1 arA
r. The number of terms

SK gives the dimensionality of the Krylov subspace, and equals the number of
iterations in the algorithm.

Looking at (6), it can be rewritten as b = Aψ̂, where b = Ξ̂H∆−1r and

A = Ξ̂H∆−1Ξ̂ +C−1
ψ . Without going into any further details, the algorithm

for obtaining the approximate solution ψ̂s, based on an initial guess ψ̂0 and the
subspace order Sk, is outlined in Table 1 as given in [26]. In the first receiver

iteration, ψ̂0 is set to be the all one vector, while in the following iterations, the
estimate from the previous receiver iteration is used. Note that the subspace
order can either be fixed, or an error threshold ǫ could be used as a stopping
criteria. The former is chosen here in order to get a fixed algorithm runtime
and complexity.

3.3 SAGE based estimator (SAGE ML)

Even though the Krylov subspace method can significantly reduce the complex-
ity of the joint MMSE estimator, the complexity is still high, since large matrix-
vector multiplications are required in each Krylov iteration. A low-complexity
alternative, which has shown good performance, is to use an algorithm based
on EM/SAGE. In SAGE, given a received signal, the ML solution is iteratively
generated based on an underlying subspace model of the data. In [14] one such
algorithm was presented, producing an optimal low-rank MMSE estimate of the
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Table 1: Outline of the Krylov subspace projection method.

Steps

Input: A, b and ψ̂0

r = b−Aψ̂0

ρ0 = rHr
p = r
q = Ap
α = ρ0/p

Hq

ψ̂1 = ψ̂0 + αp
r = r − αq
for s = 2, . . . , Sk (or while ρs > ǫ)
ρs = r

Hr

β = ρs/ρs−1

p = r + βp
q = Ap
α = ρs/p

Hq

ψ̂s = ψ̂s−1 + αp
r = r − αq

end

Output: ψ̂Sk

channel. The details of that algorithm are outlined below, where a conversion
from EM to SAGE has been performed.

The algorithm is processing one receive antenna channel at the time, based
on the following underlying model for the channel between user k and receive
antenna n,

rk,n[s] =Xk[s]Uψk,n +wk[s], k = 1, 2, ...,K , (7)

where w[s] =
∑

kwk[s] is the complete noise vector. As can be seen, rk,n[s]
is the signal contribution from user k, and summing over all users gives (2).
For the problem at hand, the SAGE algorithm is formulated as [25]

• Initialization: For all k and s

ŝ
(0)
k,n[s] = X̃k[s]Uψ̂

(0)
k,n. (8)

• For each iteration i:
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for k = 1 + [i modulo K], and for all s, compute

E-step: r̂
(i)
k,n[s] = ŝ

(i)
k,n[s] +



rn[s]−
K∑

j=1

ŝ
(i)
j,n[s]



 (9)

M-step: ψ̂
(i+1)
k,n [s] = arg min

ψk,n[s]

(∥
∥
∥r̂

(i)
k,n[s]−Xk[s]Uψk,n[s]

∥
∥
∥

2
)

(10)

= ∆mU
HX̂H

k [s]r̂
(i)
k,n[s], (11)

ψ̂
(i+1)
k,n =

1

S

S−1∑

s=0

ψ̂
(i+1)
k,n [s] =

1

S
∆mU

H
S−1∑

s=0

X̂H
k [s]r̂

(i)
k,n[s],

(12)

ŝ
(i+1)
k,n [s] = X̃k[s]Uψ̂

(i+1)
k,n . (13)

for all j, j 6= k,

ŝ
(i+1)
j,n [s] = ŝ

(i)
j,n[s]. (14)

In (11), the matrix ∆m = diag( λ1

λ1+σ2
w
, . . . , λI

λI+σ2
w
) stems from the low-rank

MMSE estimator, and in (12) averaging is performed to make use of the as-
sumption that the channel is static over one block.

The value of Xk[s] is only perfectly known at time instances where pilots
are transmitted. On all other positions, symbol estimates must be used. The
estimates are updated by the SISO decoders in every iteration, using the most
recent channel estimate. Here, hard decisions X̂k[s] = sign(X̃k[s]) of the
decoded soft symbols are used for channel estimation, and soft for interference
cancellation.

At the very first receiver iteration, no channel estimate is available. There-

fore, the algorithm is initialized with ŝ
(0)
k,n[s] = Xk[s]1M . Furthermore, to

improve the accuracy of the initial estimate, several internal iterations can be
performed within the estimator itself. This can be seen as the algorithm be-
ing reinitialized with its own updated channel estimate, without waiting for
updates on the symbol estimates. In this paper, this is only performed at the
initial pilot based stage, where the gain is observed to be the largest. In later
stages, multiple internal iterations are not producing any significant gain, thus
mainly adding to the computational complexity.

4 Soft-Input Soft-Output Multi-user detectors

With estimates of the transmission channel having been made available by the
channel estimator, the next stage of the iterative receiver structure is to produce
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likelihood-ratios of the coded data symbols. This operation is performed by the
MUD, which apart from the received signal and channel estimate, uses a-priori
information of the transmitted symbols. This information is provided, from
the previous iteration, by the channel decoder. The optimal SISO detector
is the symbol-wise MAP detector, implemented through the BCJR algorithm
[27]. Unfortunately, the complexity of the MAP detector in the MIMO case is
prohibitive in most situations, except for the cases when the number of users K
is small. Therefore, reduced complexity techniques have to be considered for
most practical applications. Furthermore, although optimal detection is not
generally feasible in practice, it remains important as a benchmark reference,
and will therefore be considered in this paper. The principles behind the MAP
algorithm are outlined in Section 4.1.

Many reduced complexity detection algorithms have been proposed in the
literature [2]. To restrict the investigations, two such algorithms have been
selected and are presented in Section 4.2. Both algorithms are based on parallel
interference cancellation (PIC). The first algorithm applies a matched filter
after the cancellation, while the other applies an MMSE filter, in an attempt
to further suppress the inter-user interference. While the latter approach yields
better performance it is also more complex. In later sections we shall investigate
whether the performance gain motivates the increased complexity.

4.1 MAP

As stated previously, the optimal MUD is the symbol-wise MAP detector.
While the PIC-based algorithms, being introduced in Section 4.2, only make
use of the mean values x̃k[m, s], the symbol-wise MAP detector works with the
probability mass function of x[m, s], denoted Pa(x[m, s]).

In the case of QPSK transmission, the data vector x[m, s] contains 2K code
bits, c1, . . . , c2K . The MAP detector computes the marginal mass functions,
represented by LLR values, for these 2K bits:

Λ(cq) = log





∑

x:cq=1 exp
(

− |r[m,s]−H[m]x|2

σ2
w

)

Pa(x)

∑

x:cq=0 exp
(

− |r[m,s]−H[m]x|2

σ2
w

)

Pa(x)



 , q = 1 . . . 2K. (15)

As was discussed above, the complexity of the symbol-wise MAP detector
(15) may in many cases be prohibitively large, showing the demand for low
complexity schemes.
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4.2 PIC based detectors

A popular low-complexity approach is to make use of interference cancellation.
Though simple in their implementation, PIC based detectors have shown good
performance [8,10,28]. The interference cancellation is operating separately on
each subcarrier and OFDM symbol, and makes use of the most recent channel
estimate Ĥ[m], and soft symbol estimates x̃[m, s] from the SISO decoders.
Following the notation in (1), the interference cancelled output for user k is
given by

r̃k[m, s] = r[m, s]− Ĥ[m] x̃ 6=k[m, s] , (16)

where x̃ 6=k[m, s] is equal to x̃[m, s], except for element k, which is set to zero.
A filtering of the signal r̃k[m, s] is then applied to produce an estimate of the
transmitted symbol xk[m, s]. A mapping to LLR values then follows.

The first algorithm, which will be referred to as PIC-MF, applies a matched
filter (MF) to the interference canceled output, i.e.

x̂k[m, s] =
ĥH
k,:[m]

∥
∥
∥ĥk,:[m]

∥
∥
∥

2 r̃k[m, s] , (17)

where ĥk,:[m] is an estimate of the channel between user k and the base-station.
In case of QPSK, the complex valued LLRs (with one symbol per complex
dimension) are produced as

Λk[m, s] =
2
∥
∥
∥ĥk,:[m]

∥
∥
∥

2

σ2
k

x̂k[m, s] . (18)

where

σ2
k = σ2

w +
∑

j 6=k

∣
∣
∣ĥ

H
k,:[m]ĥj,:[m]

∣
∣
∣

2
(
1− |x̃j [m, s]|2

)
. (19)

is the variance of the residual interference plus noise for user k.
The drawback of PIC-MF is that the noise and residual interference is not

taken into account when performing user separation. To alleviate this problem,
an MMSE filter can be applied instead of the MF. The resulting algorithm will
be referred to as PIC-MMSE. An appropriate MMSE filter can be shown to
yield [8]

x̂k[m, s] =
i
(k)T
K

(

ĤH[m]Ĥ[m] + σ2
wV

−1
(k) [m, s]

)−1

ĤH[m]

i
(k)T
K

(

ĤH[m]Ĥ[m] + σ2
wV

−1
(k) [m, s]

)−1

ĤH[m]ĥk,:[m]
r̃k[m, s] ,
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where i
(k)
K is the kth column of IK , and V(k)[m, s] = diag(dk,1[m, s], . . . , dk,K [m, s])

is a diagonal matrix with elements

dk,k′ [m, s] =

{
1− |x̃k′ [m, s]|2 , k′ 6= k
1 , k′ = k.

The output of the MMSE filter can be modeled as x̂k[m, s] = xk[m, s] +
vk[m, s], with vk[m, s] ∼ CN (0, η2k), where

η2k[m, s] =

(

i
(k)T
K

(

HH[m]H[m] + σ2
wV

−1
(k) [m, s]

)−1

HH[m]hk,:[m]

)−1

− 1. (20)

The complex LLR output is then produced as

Λk[m, s] =
2

η2k[m, s]
x̂k[m, s] . (21)

5 Complexity analysis

When it comes to practical implementations of iterative multi-user receivers,
complexity considerations are of great importance. Since several receiver iter-
ations are generally needed to reach a desired performance, the total compu-
tational effort can grow very large. To get an estimate of this cost, we have
chosen to present and compare the complexity of the addressed algorithms in
terms of the required number of complex-valued multiplications. This mea-
sure is chosen since it provides a reasonable estimate of the complexity, while
being analytically tractable. Obviously, the final computational and hardware
complexity depends on a large number of parameters, such as memory require-
ments, parallelization, hardware reuse, word lengths, etc.

In the following sections, the complexities of the algorithms for both MUD
and channel estimation are presented. The expressions for the complexity of
the SISO decoder, not being treated in a separate section, is given as derived
in [29]. The expressions for the complexity per user of the various algorithms
are given in Table 2, where the required number of complex multiplications per
user is shown. Furthermore, in Table 3, an example of the required number of
multiplications per information bit is given, assuming QPSK modulation and
rate 1/2 convolutional code, for the following system settings; N = 4 receive
antennas, K = 4 users, S = 20 OFDM symbols, Sp = 1 OFDM pilot symbol,
M = 256 subcarriers and I = 36 DPS sequences. Note that the DPS sequences,
which are used for channel estimation, are assumed to be precalculated and read
from memory, thus their construction does not contribute to the computational
complexity.
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Table 2: Expresions for the complexity per user for the different receiver
components.

Algorithm Total no. of complex mult.*

Channel estimators

SAGE ML 2MNS + 2MNL+ IN

Joint MMSE MS(3 +K) +KMI(1 + I) +K2I3 +N(MS + 2MI +KI2)

Krylov MMSE 3MS +MSN + 2IMN + CAx(Sk + 1) + IN(5Sk + 2) + 3NSk/K

with CAx = 3MSN + IN(M + 1)

MUD

PIC-MF 2MSN + 4MS +MNK

PIC-MMSE 4SM + 3SMN + SMNK + SMK3 +MNK

MAP SMN 22K /K

SISO decoder

MAP **
(42M(S − Sp)) /3

* The expressions are given per user and per transmitted data block.
** Expression valid for QPSK and a code rate of R = 1/2, and a factor of
3 is included for conversion between real and complex multiplications.

5.1 Channel estimator complexity

Three different channel estimation algorithms were presented in Section 3, joint
MMSE, Krylov MMSE and SAGE ML. As seen in Table 3, the difference
in complexity is significant. For the discussions below, we will assume that
the number of OFDM symbols in each block is smaller than the number of
subcarriers, i.e., S < M .

Looking at the first algorithm, the optimal joint MMSE algorithm, the com-
plexity is large, as previously discussed. Since all user channels are estimated
jointly, using all available frequency and time samples, the dimensionality of
the problem to solve becomes very large. Looking at (6), a straightforward
implementation would be very costly due to the dimensionality of the involved
data structures. Fortunately, considerable reductions can be achieved. Firstly,
under the assumption of independent receive antenna channels, the same esti-
mator can be used independently on each antenna. Secondly, under the block
fading assumption, the matrix Ξ = X̄N ŪN is the product of a block diagonal
matrix and a block matrix with diagonal sub-matrices. Thus, the operations
involving this structure can be computed efficiently. It should be noted that
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Table 3: Numbers for the required number of complex multiplications per
information bit. The numbers are obtaind by evaluating Table 2, and are given
for the case of N = 4 receive antennas, K = 4 users, M = 256 subcarriers,
S = 20 and Sp = 1 OFDM symbol, and I = 36 DPS sequences. Further, QPSK
and a code rate of 1/2 is assumed. The subspace order in Krylov MMSE is set
to SK = 5.

Algorithm Complex mult. per info. bit

Channel estimators

SAGE ML 24
Joint MMSE 465
Krylov MMSE 145

MUD

PIC-MF 13
PIC-MMSE 97
MAP 256

SISO decoder

MAP 56

under the assumption of independent receive antennas, Ξ is block diagonal
with identical sub-matrices. The estimator only involve one of these SM ×KI
submatrices. In the end, the main part of the complexity is related to two oper-
ations; the product of Ξ̂H∆−1Ξ̂ and the inverse operation of aKI×KI matrix.
The computational complexity of the former is approximately M(IK)2, while
approximately (KI)3 for the latter. For the system settings considered in this
paper the two are of comparable size. Also note that the hermitian properties
of the data structures can be exploited to further reduce complexity.

The second algorithm make use of a Krylov subspace method to avoid the
explicit matrix inversion in (6). At the same time the explicit computation of

Ξ̂H∆−1Ξ̂ can be avoided. This will be beneficial as long as S < M . Referring
back to Section 3.2 and Table 1, the main part of the complexity lies in calcu-
lating Avs, which is performed once for every subspace dimension SK . From
a complexity point of view, its preferable to keep SK low. On the other hand,
a too small value will provide a poor approximation of the matrix inverse, and
thus poor performance. The value thus needs to be chosen with care, trading
complexity for performance. An upper limit on the number of dimensions may
be set by timing constraints in the receiver.
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The last algorithm, based on SAGE, has the lowest complexity and per-
forms a separate channel estimate for each user channel. SAGE ML has less
then half the complexity of Krylov MMSE with SK = 1. This suboptimal
approach has an attractively low complexity and, as will be seen in Section 6,
also delivers good performance. The complexity is linear in the number of user,
i.e. the complexity per user is constant. The main part of the complexity is
shared between the per symbol estimate, the interference cancellation, and the
subspace filtering, i.e., the utilization of the frequency correlation. The former
two is proportional to the number of OFDM symbols S, while the latter to the
subspace order I, all with the same proportionality constant. The complexity
can thus be reduced by lowering the number of OFDM symbols taken into ac-
count when performing the estimation, or by reducing I. Both actions would
come at the price of a performance loss.

5.2 MUD complexity

As for the different channel estimation algorithms, the complexity of the con-
sidered MUDs differ significantly, as seen from Table 3. The one with the lowest
complexity is the PIC-MF, which due to its simplicity requires relatively few
arithmetic operations. The complexity is shared between the interference can-
cellation plus matched filter, and generating the LLRs. The former requiring
a bit more computational effort. Despite its low complexity, as will be seen in
Section 6, the performance is still competitive at low user loads.

Using a soft information based MMSE filter instead of the matched filter,
the performance will be shown to improve. This comes at a cost of an increased
complexity due to the MMSE filter in (20) which needs to be calculated for each
user and for each data symbol. The filter includes an inverse of a K×K matrix.
At high user loads, computing the inverse will dominate the complexity. If the
number of users grow very large, subspace methods as the one used in the
Krylov MMSE estimator could be used to reduce the complexity.

If the optimal MAP receiver is considered, the complexity is significantly
increased. The complexity, as derived in [30], grows exponentially in the num-
ber of users. For few users, the complexity is manageable but, as the number of
users grows, it rapidly becomes prohibitive. It should be noted that there ex-
ist a number of reduced complexity MAP-like detectors which are based upon
searching trees [31, 32], which are not included in our comparison.
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6 Simulation results

In order to investigate the receiver performance under the use of the different al-
gorithms, computer simulations were performed. In the simulations, each user
transmits S = 20 OFDM symbols, each with M = 256 subcarriers. If nothing
else is stated, a single OFDM symbol is dedicated for training information,
i.e. Sp = 1, which is generated randomly for each user. Non-orthogonal trans-
mission of the pilot symbols are assumed, i.e. all users transmit their pilot
symbols simultaneously in time and frequency. This may incur a loss in perfor-
mance, but is motivated by the flexibility it brings to the system configuration
if varying number of users is to be supported. A rate 1/2 convolutional code
with generator polynomial (7, 5)8 is used to generate the code bits, which af-
ter random interleaving are mapped to QPSK symbols. For the receiver, we
are restricting the investigation to N = 4 antennas, while different number of
transmitting users are considered.

A fading multi-path IID channel is assumed, mimicking a rich scattering
environment. The channel impulse response between user k and receive antenna
n is given by [33]

gk,n(τ) =

P−1∑

p=0

αp,k,nδ(τ − τp,k,n),

where αp,k,n are zero-mean complex Gaussian random variables with an expo-
nential power delay profile, θ(τp,k,n) = Ce−τp,k,n/τrms , where C is a constant,
and the delays τp,k,n are uniformly distributed within the cyclic prefix (CP).
In this paper, the length of the channel, normalized to the symbol duration,
is τmax = 0.1, the root mean square delay spread set to τrms = 0.03, and the
number of multi-path components P = 100. The channel delay is assumed to
be no longer than the cyclic prefix, and the block fading channel is generated
independently for each user and receive antenna link. The number of DPS
sequences used in the channel estimation process is chosen as I = 36, guided
by the discussion in Section 2.2, and adding a few for improved performance
at high SNR. The subspace order in Krylov MMSE estimator is set to SK = 5,
if nothing else is stated.

In the following, the motive behind performing the complex operation of
channel estimation in the loop of an iterative receiver is first illustrated with
an example. In the example, the average bit error rate (BER) performance at
different Eb/N0 is compared for receivers using the channel estimator inside or
outside of the iterative loop. It will be seen that the gains by performing the
estimation inside the loop can provide significant performance gains. Here, Eb
is the average bit energy at the receiver. Furthermore, the impact of the array
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gain has been removed by scaling the noise variance by N .
We then study the evolution of the BER and mean squared error (MSE) of

the channel estimate, over the receiver iterations. This is done for different user
loads. The results illustrate the difference in convergence speed of the different
receiver configurations, which is important when assessing the total compu-
tational complexity needed to reach a certain level of performance. Finally,
the convergence analysis is extended with the use of EXIT charts; providing
additional insight on the receiver.

6.1 Illustration of the gains of using channel estimation
inside the detection loop

As was seen in Section 5, performing channel estimation adds significantly to
the total receiver complexity. Furthermore, having the estimation inside the
loop of an iterative receiver, this costly operation needs to be performed mul-
tiple times. It would therefore, from a complexity point of view, be attractive
to move the estimation outside the loop, only performing it once for each code
block based on the transmitted pilot symbols.

To illustrate the motive behind using the channel estimation inside the iter-
ative receiver, simulations were performed for a system with N = 4 receive an-
tennas and K = 4 users. Two different receiver configurations were considered.
The first is performing pilot based channel estimation only, while the other is
performing channel estimation inside the iterative loop. For both receivers, the
MAP MUD was used in combination with the joint MMSE channel estimator.
In Fig. 2, the BER performance is shown for different number of pilot symbols
transmitted. For the purely iterative receiver, only one pilot OFDM symbol
is used, while for the other receiver Sp = 1, 2 and 10 pilot symbols are trans-
mitted. For comparison, single user performance when perfect channel state
information (PCSI) is available at the receiver is also shown. Also, an example
with orthogonal pilots is provided, where the users consecutively transmit one
pilot symbol each during the first four symbol intervals. Each pilot have been
boosted, containing the equivalent energy of four regular symbols.

As seen from the figure, if only pilot based estimates are used, there is a
significant performance loss, as compared to when using channel estimation in
the iterative loop. For few pilot symbols, a loss in performance of 1 − 3 dB
is observed, while if the number of pilot symbols is increased to Sp = 10, the
loss is small. Remember that the total number of OFDM symbols in a block
is S = 20, thus transmitting 10 symbols yields a 50% pilot overhead, which
is unacceptable for most applications. Transmitting orthogonal boosted pilots
also result in a loss of up to 1 dB. The performance achieved with orthogonal
pilots is only slightly better than when transmitting Sp = 4 non-orthogonal
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Figure 2: The BER at different Eb/N0 for N = 4 receive antennas
and K = 4 users. Different number of pilot OFDM symbols are used,
Sp = 1, 2 and 10, where the total number of symbols is S = 20. Also
shown is the performance obtained when using the channel estimator in
the loop of the iterative receiver, as well as single user performance with
PCSI, and the case of orthogonal boosted pilots. The MAP MUD and
joint MMSE estimator is used.

pilots, since joint channel estimation is performed. Furthermore, if iteratively
updating the channel estimates, close to single user performance with PCSI
is achieved. It can therefore be concluded that the use of channel estimation
inside an iterative receiver can give significant performance gains, as compared
to pure pilot based approaches. This means that pilot density can be kept low,
without sacrificing performance, thus improving the system throughput.
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6.2 Convergence performance: BER and MSE

In the previous section we illustrated how iterative channel estimation can
provide a significant performance gain. At the same time, the complexity can
be significant, as seen in Section 5. Since the computational cost increases
linearly with iterations, the convergence properties of the different receiver
configurations are therefore important. To illustrate their properties, the BER
as well as the MSE is shown, as a function of the number of iterations, in Fig. 3
and Fig. 4, respectively. The results are shown for the cases of K = 4 and 7
users, at an Eb/N0 = 10dB.

Figure 3: The BER convergence for the different algorithms for N = 4
receive antennas, K = 4 and 7 users, at an Eb/N0 = 10dB.

Starting with the BER in Fig. 3, it is clear that convergence properties
differ between algorithm combinations. At the smaller user load, i.e. K = 4,
the difference in convergence is relatively small, with all algorithms reaching
roughly the same BER within 3 − 8 iterations. The fastest convergence is
achieved using the MAP based MUD with joint MMSE channel estimation,
while the slowest is obtained if using the PIC-MF detector with SAGE ML
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Figure 4: The MSE convergence for the different algorithms for N = 4
receive antennas, K = 4 and 7 users, at an Eb/N0 = 10dB.

estimation. By using the MMSE Krylov estimator with SK = 5, a small
performance loss as compared to joint MMSE is observed. Increasing this value
to SK = 10, close to joint MMSE performance has been observed. Looking at
a system load of K = 7 users, a similar behavior as with K = 4 is seen.
Comparing the performance achieved when using the different MUDs, the best
performance is given by the MAP. A gain of 1−5 iterations over the PIC-MMSE
detector is observed. There is a large difference in convergence depending on
which estimator is used, and additional insight on this will be given when
looking at the EXIT charts in the next section. Furthermore, at this high user
load, the PIC-MF can not provide sufficient detection performance for receiver
convergence. It is also interesting to note that performance close to that of a
single user with PCSI at the receiver is achieved for all receiver configurations,
except for PIC-MF at K = 7 users. This illustrate the good performance
obtained by the iterative receiver.

Looking at the average MSE, as shown in Fig. 4, similar trends as for the
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BER are seen. The convergence speed of the joint MMSE estimator is bet-
ter than that of SAGE ML, and the difference increases with the user load.
Furthermore, in the first iteration, only pilot symbols are used for channel es-
timation, and a large MSE is obtained due to the relatively small number of
available pilots. In the iterative process, as the reliability of the symbol esti-
mates increases with iterations, so does the accuracy of the channel estimate.

6.3 Convergence performance: EXIT charts

Even though the BER and MSE convergence provide some insight on the be-
havior of the different algorithms, they have some limitations. One significant
drawback is that the performance of the channel estimation and detection al-
gorithms cannot be separated from that of the code. Other means are therefore
of interest for the receiver evaluation.

One popular technique for visualizing the convergence behavior of iterative
decoders is the extrinsic information transfer (EXIT) charts [15]. The charts
are used to visualize the exchange of extrinsic information between the SISO
units making up an iterative decoder. In [34], it was shown that the MUD
could be seen as SISO unit being serially concatenated with the outer channel
decoder. In our case, we have three units, the MUD, the channel estimator and
the decoder. Even though it is possible to visualize the exchange between all
three SISO units [35, 36], it is more convenient to combine the estimator and
the MUD into a single SISO unit [37], referred to as MUD/CE.

In order to produce an EXIT chart, information transfer functions of the
SISO units have to be produced. Each unit can be seen a LLR transformer
(Λa → Λext), where the transfer function measures the improvement of the
LLR-transformation in terms of mutual information between the LLRs and the
underlying variables x. The transfer function is given as [38]

Iext = T (Ia) , (22)

where Ia = I (X; Λa) is the a priori input mutual information and Iext =
I (x; Λext) is the output extrinsic information.

When producing the transfer functions, all elements of Λext (becoming Λa

for the next component decoder) are assumed independent and to follow a
Gaussian distribution, N

(
xµext, σ

2
ext

)
, with consistency condition µext = σ2

ext/2
and where x = ±1. With this distribution of the LLRs, there is a one-to-one
mapping between the mutual information Iext and the variance σ2

ext given by

Iext = J (σext) , (23)

with the J-function defined in [15]. When generating the transfer functions,
the J-function is used for generating input sequences with different a priori
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information content. More specifically, given an input symbol x, and a value
for the a priori information Ia, the input LLRs are given by

Λext(Ia) =
σ2
ext

2
x+ wσext , (24)

where w ∼ N (0, 1), and σ2
ext = J−1 (Ia).

For the MUD/CE, as shown in Fig. 1, the transfer function is now de-
rived for a number of Iext ∈ [0, 1]. We first generate the soft input symbols
x̃k = tanh(Λext(Ia)/2) and the known pilot symbols for all users. After QPSK
mapping, channel estimation and MUD is performed. The LLR output gen-
erated by the MUD is then feed to a sink, where the mutual information is
computed through [38]

Iext =
1

2

∑

x=±1

∫ ∞

−∞

p(x̂|x) log2
(

2p(x̂|x)
p(x̂| − 1) + p(x̂|1)

)

dx̂, (25)

where the probability density function, p(d̂|d), is approximated using histogram
calculations. The transfer functions are then averaged over 20 channel realiza-
tions. The transfer function for the SISO decodercan is obtained in a similar
way.

When generating the transfer function for the MUD/CE, the initial guess
for the Krylov MMSE and SAGE ML has to be provided. In the receiver
this value is given by the estimate obtained in the previous iteration. Since
this value is unknown, we solve it by running the channel estimator twice, first
initialized with the all one channel then reinitialized with the new output. This
potentially leads to an over estimated performance at high Iext. For SAGE ML
this also leads to an under estimated performance at low values.

In Fig. 5 the EXIT chart is shown for the different receiver combinations
for the case of N = 4 receive antennas and K = 4 users at Eb/N0 = 10dB.
The transfer functions in the case of PCSI is also shown. Furthermore, the
convergence path for PIC-MF with SAGE ML estimation is shown as a dashed
line, and the receiver is estimated to converge in 5 iterations. This coincide
with the observation for the BER in Fig. 3. For the receivers where SAGE
ML is used, a dip is seen in the transfer function at low Ia. This occurs since
the algorithm is not taking the quality of the soft symbols into account, thus
producing estimates based on very unreliable hard estimates of the transmitted
symbols. This dip could be partly removed if only pilots are considered (Ia = 0)
in the estimator if the reliability of the produced soft symbols are low.

Comparing the channel estimation algorithms, Krylov MMSE, used with
SK = 5, delivers performance identical to Joint MMSE. For SAGE ML, the
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Figure 5: EXIT chart for the case of N = 4 receive antennas, K = 4
users, Sp = 1 and S = 20 OFDM symbols, M = 256 subcarriers and
I = 36 DPS sequences.

performance is much worse, but the performance at low Ia is somewhat un-
derestimated as discussed above. Looking at the MUDs, the MAP obviously
has the best performance, followed by PIC-MMSE and PIC-MF. We also see
the impact of inaccurate channel state information. When the SNR reduced,
essentially leading to downward shift of the transfer functions of the MUD/CE,
of when increasing the user load, essentially changing the slope of the trans-
fer functions, the PIC-MF will be the first MUD closing the gap to the SISO
decoder transfer function, and thus failing to converge.

Overall, we see that the insight given by the EXIT chart matches fairly
well with what was observed for the BER. Furthermore, observing the MAP
detector for K = 7 users in Fig. 3, large difference in convergence performance
between using the MMSE estimators or SAGE ML was observed. This could
be explained by the fact that the gap in the EXIT chart is smaller for the
latter estimator. From a algorithm design point of view, it is also interesting
to observe that for the case presented in Fig. 5 there is still room for further
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simplifications of the receiver structure. Additionally, by replacing the transfer
function for the chosen convolutional code in Fig. 5, the performance when
using other codes can be estimated.

7 Complexity versus performance trade-off

From a receiver design point of view, the trade-off between performance and
complexity is an important aspect. In an attempt to shed some light on this
aspect, the total receiver complexity, in terms of the number of complex mul-
tiplications, needed to reach a specific target BER is investigated. The total
complexity depends both on the choice of channel estimator and MUD, as well
as on the number of iterations needed to reach the target. For the evaluation,
a target BER of 10−3 is chosen. The system settings are the same as described
in Section 6, i.e. N = 4 receive antennas, Sp = 1 and S = 20 OFDM symbols,
M = 256 subcarriers and I = 36 DPS sequences. The subspace order in Krylov
MMSE is set to SK = 5.

To start with, the case of K = 4 users, signaling at an Eb/N0 = 10 dB, is
considered. In Fig. 6, the BER is plotted versus the number of complex multi-
plications, for the different combinations of the MUD and channel estimation
algorithms.

As was previously seen in Fig. 3, under these system settings, all receivers
reach the same BER performance of ∼ 10−4. On the other hand, looking at
the number of multiplications needed to reach this value, there is more than
an order of magnitude difference between the receiver configurations. The re-
ceiver configurations using the MAP detector is found on the right, requiring
the largest number of multiplications to reach convergence. To the left, we
find the PIC based MUDs using SAGE ML, providing the cheapest alterna-
tive. Looking at the target BER of 10−3, the algorithms with the lowest total
complexity is PIC-MF followed by PIC-MMSE. Reaching the target in about
70 and 100 complex multiplications per information bit, respectively. When us-
ing the MMSE Krylov estimator, we see that PIC-MF and PIC-MMSE reach
the target using approximately the same number of multiplications, though
PIC-MF require one more iteration.

Finally, an overview of which algorithm combinations to choose in different
scenarios is given. In Fig. 7, the receiver configuration with the lowest total
complexity, at different user loads and Eb/N0, is shown for a target BER of
10−3. The shape indicates which MUD that is used, while the color indicates
the choice of channel estimation algorithm. Due to their large complexity,
neither the MAP detector, nor the joint MMSE estimator are competitive in
any of the evaluated scenarios – not even at high system loads. Note that 8 users
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Figure 6: The complexity in terms of the number of complex multi-
plications per information bit plotted versus the BER. The results are
shown for N = 4 receive antennas, K = 4 users, Sp = 1 and S = 20
OFDM symbols, M = 256 subcarriers and I = 36 DPS sequences.

is at the border of what the system can handle, still, even with sub-optimal
algorithms, low BER can be achieved. Overall, the most favorable receiver
configuration to use, from a complexity point of view, is the PIC-MF MUD
combined with the SAGE ML estimator. At higher user loads though, the PIC-
MMSE detector gives the best trade-off between complexity and performance.
For channel estimation, using anything but SAGE ML is in general not required
for the considered system.

The results shown in Fig. 7 take overall computational complexity into
account and may therefore fail to show other interesting trade-offs. An example
of this is seen in Fig. 3, where the difference in convergence speed between the
algorithms is large. Depending on the hardware architechture used, this may
affect the latency of the system, and for time critical systems, the choice of
algorithm combinations may therefore be another. We believe, however, that
our evaluation shows that combinations of algorithms with low computational
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Figure 7: Complexity-performance trade-off for the different algo-
rithms, when N = 4 receive antennas, at different Eb/N0 and user loads.
The figure show the algorithm combination reaching a BER threshold
of 10−3 in the fewest number of complex multiplications. The shape
indicates the MUD algorithm, while color indicates channel estimation
algorithm.

complexity, in an iterative receiver, can deliver very competitive performance
for a large range of scenarios.

8 Conclusion

In this paper, we have studied the trade-off between complexity and perfor-
mance for uplink receivers in a packet based multi-user MIMO-OFDM system.
The considered iterative receivers contained three main components; a MUD,
a channel estimator and a convolutional decoder. Three different MUD algo-
rithms were considered, two suboptimal approaches based on PIC and one op-
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timal based on MAP. For channel estimation, three algorithms were evaluated,
one optimal joint MMSE based estimator, a low complexity Krylov subspace
based version of the same, and one sub-optimal based on SAGE. The difference
in complexity between the algorithms were shown to be large.

When only considering performance, the high complexity algorithms natu-
rally showed the fastest convergence. The low-complexity algorithms showed
similar BER performance as the more complex ones, when converging, but at a
generally slower convergence speed. More insight on the convergence was also
provided through EXIT charts. When also taking complexity into account,
we demonstrate that the sub-optimal low-complexity algorithms often are the
most attractive choice. Even though a larger number of receiver iterations were
needed, the total number of complex multiplications was still lower, due to a
significantly lower computational cost per-iteration. At the same time, it should
be noted that the most simple receiver failed earlier than the others at high
user loads, which indicates that an appropriate balance between complexity re-
duction and performance needs to be achieved. Furthermore, for time critical
systems where convergence speed is at focus, high complexity algorithms may
be a better choice.
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EXIT Chart Evaluation of a

Receiver Structure for Multi-User

Multi-Antenna OFDM Systems

Abstract

In this paper we evaluate, by means of Extrinsic Information Transfer (EXIT)
charts, an iterative receiver that has emerged as a promising candidate for non-
coherent multi-user multi-antenna OFDM systems. The receiver performs parallel
interference cancellation (followed by linear filtering) and channel estimation, using
soft symbols obtained from a bank of single-user decoders. For the sake of conceptual
clarity we study a system with two single antenna users and a receiver with two
antennas, and we demonstrate how the convergence behavior of the receiver can be
visualized using paired three dimensional EXIT surfaces. Our results show that the
actual decoder trajectories obtained through simulations are well predicted from the
EXIT charts.

For the iterative receiver under investigation we identify a very specific prob-
lem with EXIT chart generation; the EXIT curve for the inner component decoder
depends on the outer encoder. To handle this problem we propose a modification
to the iterative receiver which solves the aforementioned problem; the performance
degradation is demonstrated to be small.
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1 Introduction

In the last few years we have seen a large growth in data traffic over wire-
less networks. With increasing traffic, capacity of wireless networks must scale
proportionally. Future systems thus need to make better use of the available,
limited, spectrum and/or search for available resources elsewhere. A number
of technologies that provide increased spectral efficiency have been proposed;
in particular, multi-antenna systems have received much attention lately. With
the use of multi-antenna systems large gains can be harvested due to multi-
plexing in the spatial domain alongside the frequency and time domains. Mul-
tiple antennas at the receiver can also be used to perform multi-user detection
(MUD) or interference cancellation, allowing improved resource utilization.

In order to harvest the promised gains, some form of advanced coding
method must be used in conjunction with the multi-antenna system. The in-
vention of turbo codes made it possible to implement capacity achieving codes
with a reasonable decoding complexity. The convergence behavior of turbo
codes can be visualized by the use of EXtrinsic Information Transfer (EXIT)
charts, as proposed in [1]. These charts visualize the exchange of mutual in-
formation between concatenated code blocks and have become a valuable tool
for designing turbo codes.

Since the invention of turbo codes, the turbo principle has successfully been
applied to channel equalization [2] and estimation [3] [4], further improving
performance of wireless receivers. Also for these applications, EXIT charts
have shown to be a helpful tool for visualizing convergence behavior and aid
performance evaluation. In, e.g., [5] the convergence behavior of an iterative
MIMO receiver is evaluated using EXIT charts, assuming perfect channel state
information (PCSI) and a single code stream multiplexed over the antennas.
Kansanen [6] treats the case with multiple code streams and shows paired
three dimensional (3D) EXIT surfaces for a turbo equalizer, again assuming
PCSI. Sand et al. [7] evaluate a receiver with iterative channel estimation and
equalization, analyzing the convergence behavior. In [8] a 3D EXIT chart is
used to show the information flow between the code, equalizer and channel
estimator for a single antenna link.

In this paper we evaluate an iterative receiver, as proposed in [9], by means
of EXIT charts. The receiver is intended for multi-user multi-antenna OFDM
systems performing parallel interference cancellation and channel estimation,
using soft symbols obtained from a block of single user decoders. That is, unlike
in above cited work, we look at a system with imperfect channel state informa-
tion, and multiple code streams. We show how the convergence behavior of the
receiver can be visualized using EXIT surfaces. The case of two single antenna
users, and a receiver with two antennas, is treated. For this system we show
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that the corresponding EXIT chart can be visualized using paired 3D charts,
one for each user code stream. We also propose changes to the receiver simpli-
fying EXIT chart generation, and look at the convergence region, represented
as projections onto a plane. Our results show that the convergence trajectory
obtained through simulations are close to the one obtained by the EXIT chart.

The outline of the paper is as follows; in section 2 the system model and
the receiver structure is briefly introduced, followed by a presentation of the
EXIT chart representation in section 3. Our results are presented in section 4
before we conclude our findings in section 5.

2 System Model

A multi-user OFDM system with K users equipped with a single antenna each,
and a receiver with N antennas is considered. The users are assumed non-
cooperative, i.e. they transmit independent data, but for simplicity we assume
them to be synchronous. For the sake of clarity we restrict the presentation to
the case K = N = 2 with the remark that the extension to arbitrary N and K
is straightforward.

Figure 1: The structure of the iterative receiver.

The transmit/receive chain is depicted in Fig. 1 for the case considered.
Each stream is encoded via convolutional coding and interleaved using an s-
random interleaver [10]. QPSK mapping, serial to parallel conversion, and
OFDM modulation follows. To provide the iterative receiver with an initial
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channel estimate, Sp pilot OFDM symbols are inserted. We assume (small) fi-
nite packet transmission, with S denoting the total number of OFDM symbols
sent from the transmitter within a frame (not to confuse with the interleaver
s-parameter); the number of information carrying symbols is thus S−Sp. Con-
sequently, each user transmits 2(S−Sp)MRc information bits, where M is the
number of subcarriers, Rc is the rate of the encoder and the factor 2 stems
from the QPSK modulation. The frame structure is shown in Fig. 2.

Figure 2: M subcarrier OFDM frame structure with, in this case, one
pilot symbols followed by S-1 data symbols.

Referring to the mth subcarrier during transmission of the sth OFDM sym-
bol, we denote the transmitted vector, the channel matrix, the AWGN vector
(∼ CN (0, σ2

wI)), and the received vector as

x[m, s] = (x1[m, s], . . . , xK [m, s])
T
,

H[m, s] =






H1,1[m, s] . . . H1,K [m, s]
...

. . .
...

HN,1[m, s] . . . HN,K [m, s]




 ,

w[m, s] = (w1[m, s], . . . , wN [m, s])
T
, and

r[m, s] = (r1[m, s], . . . , rN [m, s])
T
.

The discrete-time model for the received signal can then be written as

r[m, s] =H[m, s]x[m, s] +w[m, s] . (1)

Note that H is the multi-user channel, containing the coefficients for all users.
At the receiver, as illustrated in Fig. 1, OFDM symbols are demodulated

and sent to the iterative decoder, performing MUD, Soft-Input Soft-Output
(SISO) decoding and channel estimation (CE). The multi-user detector and
SISO decoders exchange extrinsic information on symbols xk, denoted x̃k (resp.
z̃k) when going to the multi-user detector (resp. the SISO decoders). The SISO
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decoders also provide a posteriori information of the transmitted symbols xk,
denoted x̂k, to the channel estimator, and a posteriori information on source
bits. The channel estimator provides channel coefficient estimates (Ĥn,k).

2.1 MUD

Multi-user detection is a demanding task and a number of strategies can be ap-
plied. When there is a large number of users K and/or the modulation order
grows beyond QPSK, optimum MUD (BCJR-type) is not a viable approach
due to its enormous complexity. Therefore, reduced complexity MUDs should
be looked into; these can roughly be categorized into linear and non-linear
methods. In this paper we adopt a linear approach: Soft interference cancella-
tion + linear MMSE filtering. The associated computational complexity scales
linearly with K and is independent of the modulation order. The MUD un-
der investigation was first proposed in [3] for CDMA systems, and adapted to
MIMO-OFDM systems in [11].

The received signals (1) are processed separately for each subcarrier and
OFDM symbol. Parallel interference cancellation is performed using x̃ from
the SISO decoders and Ĥ from the channel estimators. The residual term from
the interference cancellation for the kth transmit antennas, r̃(k) = r − Ĥ(x̃−
x̃ki

(k)
K ), with i

(k)
K being the k:th column of the K ×K identity matrix IK , is

then MMSE filtered to reduce multi-user interference, giving the soft output
symbols

z̃k =
i
(k)T
K

(

ĤHĤ + σ2
w(V

(k))−1
)−1

ĤHr̃(k)

i
(k)T
K

(

ĤHĤ + σ2
w(V

(k))−1
)−1

ĤHĥ
(tx)
k

, (2)

with V (k) = diag
(
(1− |x̃1|2, . . . , 1− |x̃k−1|2, 1, 1− |x̃k+1|2,

. . . , 1− |x̃K |2)
)
and h

(tx)
k [m, s] denoting the channel vector from the kth user.

For the derivation we refer to [3].

2.2 SISO Decoding

The demapped and deinterleaved output of the MUD is assumed to be de-
scribed by the equation

zk[l] = xk[l] + vk[l], k = 1..K, (3)

where vk[l] ∼ N (0, η2k) with the variance estimated as

η2k =
1

i
(k)T
K

(
HHH + σ2

w(V
(k))−1

)−1
HHh

(tx)
k

− 1. (4)
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The interpretation of (3)-(4) is that the multi-user interference at the output
of the MUD is approximated as a Gaussian variate, which validity has been
shown in [12]. We now face a classical decoding problem, namely a posteriori
probability (APP) decoding of a convolutional code in additive white Gaus-
sian noise. Since low-memory convolutional codes will be used subsequently,
optimum decoding is feasible and we have deployed the log-domain BCJR al-
gorithm [13].

2.3 Channel Estimation

Assuming that the maximum normalized delay spread (η
(d)
max) is within the

cyclic prefix, and the channel to be static over a code block, the receiver im-
plements a low-complexity estimator using a discrete prolate spheroidal basis
representation [14] of the channel. Using the proposed model, an MMSE chan-
nel estimator is derived that uses both known pilot symbols, as well as soft data
symbols based on a posteriori information from the SISO decoders. We omit a
detailed presentation of the estimator here, and instead refer to [11] replacing
Doppler domain with delay domain.

3 EXIT Chart Representation

In order to produce an EXIT chart, information transfer functions of the differ-
ent decoding blocks have to be produced. Each component decoder is viewed as
a statistical Log-Likelihood-Ratio (LLR) transformer; it takes an LLR-sequence
as input and outputs another (hopefully improved) version. The transfer func-
tion measures the improvement of the LLR-transformation in terms of mutual
information between the LLR’s and the variables that the LLR’s represent. To
be more specific, assume that a component decoder produces extrinsic LLR’s
Λext on variables X given a priori information Λa and possibly a set of ob-
servations. The quality of the a priori information is, in terms of mutual
information, measured by Ia = I (X; Λa) while the quality of the output is
Iext = I (X; Λext). The transfer function can now be statistically established
as [15]

Iext = T (Ia) . (5)

When producing the transfer functions, all elements of Λext (becoming Λa

for the next component decoder) for both users are assumed independent and
to follow a Gaussian distribution, N

(
xµext, σ

2
ext

)
, with consistency condition

µext = σ2
ext/2 and where x = ±1 is the transmitted symbol. With the above

given distribution of the LLR’s, there is a one-to-one mapping between the
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Figure 3: System setup for producing EXIT chart for the SISO decoder.

mutual information Iext and the variance σ2
ext which is given by the J-function

defined in [1]
Iext = J (σext) . (6)

The J-function is useful when generating sequences with different a priori in-
formation content, which is needed when generating transfer functions. In the
following sections, we describe the procedure for generating transfer functions
for the SISO decoder and the MUD/CE.

3.1 SISO Decoder

The framework for computing the SISO EXIT curve in this paper differs from
the standard approach due to the assumed channel model at the front-end of
the SISO decoder ((3)-(4)), though the principles and outcome are the same.
We provide a brief summary in section.

The system setup used for generating the SISO decoder transfer function is
given in Fig. 3. First a number of data symbols d are generated, coded with the
convolutional encoder and mapped to binary symbols c ∈ {−1, 1}. Zero-mean
Gaussian noise with variance σ2

n is added to the symbols to produce the signal,
y = c + n, feed into the SISO decoder. The variance σ2

n is chosen to match a
given input mutual information value Ia, and some manipulations give that

σ2
n =

(
2

J−1(Ia)

)2

.

After the SISO decoder the soft extrinsic output symbols are feed to the
sink where the mutual information is computed through [15]

Iext =
1

2

∑

d=±1

∫ ∞

−∞

p(d̂|d) log2

(

2p(d̂|d)
p(d̂| − 1) + p(d̂|1)

)

∂d̂, (7)

where the probability density function, p(d̂|d), is approximated using histogram
calculations, and the integral thus becoming a summation.

The procedure is repeated for a number of evenly spaced values of Ia ∈]0, 1].
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3.2 MUD/CE

For the MUD/CE, the system model used for obtaining the information transfer
function is shown in Fig. 4. Since the system under investigation has multiple
inputs and outputs, a generalized multi-dimensional transfer function must be
used. The transfer function is dependent on the channel realizations and the
noise variance of the system, apart from the input a priori mutual information,
and is for K = 2 given by

[

I
(1)
ext, I

(2)
ext

]

= Te

(

I(1)a , I(2)a ,H, σ2
w

)

(8)

assuming equal noise variance at both antennas.
We will shortly show that the EXIT chart depends on the specific code being

used, since the input to the channel estimator is the a posteriori output symbols
of the SISO decoder. This is a major difference compared to conventional
EXIT charts. Consequently, the problem of finding suitable codes to a certain
modulation scheme is no longer a “curve-matching” problem since the outer
code impacts both EXIT curves. Note that this problem is solely a consequence
of the considered MUD/CE design and not of the multi-dimensional EXIT chart
technique itself. To overcome this problem we propose a modification to the
MUD/CE and evaluate the impact on performance.

The transfer function is obtained in the following way. First two sets of
code and pilot symbols are generated, one per user. These are then mapped
to QPSK symbols, OFDM modulated, and sent through the channel. Then,

given the pair of input information values, (I
(1)
a , I

(2)
a ), extrinsic and a posteriori

based LLR’s are generated for each of the code symbols, mapped to soft QPSK
symbols (tanh(Λx/2) followed by a QPSK mapper) before being sent to the
MUD and CE, respectively. The LLR’s are obtained as described above making
use of the J-function.

Let Λext,c and Λapp,c in Fig. 4 and in the text below refer to the LLR’s
at the output of the decoder. To generate a sequence of input extrinsic based
LLR’s, given the input information values, is straightforward. However, the
same does not hold for the corresponding a posteriori based LLR’s Λapp,c (fed
to the CE). Instead, the EXIT function calculated for the SISO decoder has to
be used. Assuming some a priori information Ia, Λapp,c are related to Λext,c

through
Λapp,c = Λext,c + Λa,c, (9)

where Λext,c and Λa,c are independent by the definition of extrinsic informa-
tion (under the assumption of large interleaver length) and Λa,c is the input
LLR’s to the SISO decoder. Since we are assuming an information content
Ia in Λext,c, we know that Λext,c must have been produced from Λa,c with an
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Figure 4: System setup for producing EXIT charts for the receiver
structure.

information content T−1
c (Ia). Thus, again making use of the J-function, Λa,c

can be generated independently from Λext,c.
In order to simplify the evaluation of the receiver, we propose a modifica-

tion that decouples the SISO decoder from the MUD/CE. By simply replacing
Λapp,c by Λext,c in the feedback loop to the CE, the generated a priori infor-
mation input, used for obtaining the EXIT surfaces, may be generated inde-
pendently from the code/decoder being used. We will demonstrate that this
has a minimal impact on the EXIT surface of the MUD/CE.

4 Results

The system under consideration consists of two users with one antenna each
transmitting independent codewords, interleaved over time and frequency, over
a frequency fading channel to a receiver having two antennas. The codewords
span S OFDM symbols including Sp OFDM pilot symbols, where each OFDM
symbol contains M = 64 subcarriers (see Fig. 2). Code bits are generated
using a rate 1/2 recursive systematic convolutional encoder [16] with generators
(7, 5)8 and with two tail bits forcing the encoder to terminate in the all-zero
state. A tapped delay line model with an exponential power delay profile is used
to generate the channel coefficients [17], where the different transmit-receive
links are generated independently of each other. Each impulse response consist
of NMPC = 100 randomly arriving multi-path components, and the normalized
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delay spread of the channel is set to η
(d)
max = 0.15. The coherence time of the

channel is assumed to be much larger than the duration of a code block; thus
no variations in time are considered. Noise is added at the receiver to obtain
Eb/N0 = 7dB, where Eb denotes the average total available energy per bit at
the receiver and N0 = σ2

w.
EXIT surfaces are generated, using the above settings, for both the SISO

decoder and the MUD/CE for a particular channel realization. In Fig. 6
and Fig. 7 the EXIT charts are shown, corresponding to the two different
user streams, with S = 100 and Sp = 1. The upper surfaces of the figures
correspond to the MUD/CE, and the lower s-shaped surfaces correspond to
the SISO decoder.

When generating the EXIT surfaces for the CE/MUD shown in Fig. 6 and
Fig. 7, extrinsic, instead of a posteriori, information are used as input to the
CE. In Fig. 5 the diagonal of an EXIT surface for one user is shown for both
the case of extrinsic (dashed line), and a posteriori (solid line), input. Clearly
the discrepancy between the two is insignificant, motivating the use of extrinsic
information in the CE when creating EXIT surfaces for the considered receiver.

Figure 5: Diagonal values of an EXIT surface for the CE/MUD for
when extrinsic and a posteriori information is used in CE.

Moreover, since the SISO decoders are working in parallel independent of
each other, the performance of one user is independent of the information
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Figure 6: EXIT chart for user 1. The solid line show an actual decoding
trajectory and the dashed line the EXIT chart prediction.

content of the other, as clearly seen in Fig. 6 and Fig. 7. Looking at the
surfaces corresponding to the MUD/CE; when the mutual information is zero,
meaning that there is no soft information available, the output is produced
without interference cancellation and only based on the initial channel estimates
obtained from the pilot symbols. The starting point of the convergence path
is thus dependent of the quality of the initial estimate, closely dependent on
the amount of available pilot symbols. As the input information grows, Fig.
6 show that the performance of user 1 is mainly a function of the information
content of the other user, with the reversed valid for user 2. This is because
the accuracy of the interference cancellation is only dependent on the amount
of knowledge about the interfering user. If varying the SNR, the EXIT surfaces
of the MUD/CE are shifted up or down, essentially with a preserved shape.
These results are not shown here.

The two paths included in the two figures show an actual decoding trajec-
tory (solid line) and the EXIT chart prediction (dashed). The two trajectories
show some differences, but they converge to the same point. For the first few it-
erations, there is a gap between the trajectory obtained by simulations and the
surface of the MUD/CE. This discrepancy is most likely due to the mismatch
between the statistics used for the LLR’s, when deriving the the chart and
the ones obtained from the simulations. The true LLR’s show a non-Gaussian
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Figure 7: EXIT chart for user 2. The solid line show an actual decoding
trajectory and the dashed line the EXIT chart prediction.

behavior, with a large variance, the first few iterations. With iterations the
output LLR’s become more and more Gaussian, and the gap between the chart
and the decoding trajectory decrease.

In Fig. 8 the convergence area of the receiver is plotted as obtained from
the EXIT charts. The area is given by

(

T−1
c,1 (I

(1)
a , I(2)a ) < Te,1(I

(1)
a , I(2)a )

)

∪
(

T−1
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(1)
a , I(2)a ) < Te,2(I

(1)
a , I(2)a )

)

where the numbers in T·,1 and T·,2 refer to the separated per user transfer
functions. The figure also shows the decoding trajectory and the EXIT chart
prediction (with the paths of the two users superimposed on each other). As
seen, the two paths follow roughly the same track, though the one obtained
from simulations is lagging behind in terms of iterations. It is also worth
pointing out that the point of convergence is the intersection of the four 3D
surfaces. The similarities between the two trajectories changes depending on
the channel realization, the block length and SNR. Our experience is that larger
block lengths and higher SNR improve the fit.

As a final result, we present an analysis of the impact of the multi-user
channel on the performance of the receiver algorithm. We look at the EXIT



112 PAPER II

Figure 8: Convergence area for the receiver. The figure also show the
decoding trajectory and the EXIT chart prediction (with the paths of
the two users superimposed on each other).

curve of the MUD/CE in two points; in the initial stage when no soft informa-
tion is available from the SISO decoders (Te(0, 0)) and when perfect knowledge
about the transmitted symbols are available (Te(1, 1)). Fig. 9 shows the cu-
mulative distribution functions (CDFs) of the extrinsic information output of
the MUD for one of the users at an SNR (Eb/N0) of 0 and 5dB, for the two
cases considered. The CDFs are computed over 200 channel realizations, for
the case of S = 40 and Sp = 1. The total multi-user channel power is con-
stant over the different channel realizations. As is seen the information output
show large variation depending on the quality of the channel. Though the total
channel gain is constant, it will be distributed unevenly between the two users,
depending on the outcome of the channel realization. Unless this is combated
using an appropriate power control, the outage probability of the system will
be large. If looking at the curves corresponding to the starting point (Te(0, 0))
we see that with an increasing SNR the quality of the initial channel estimate
improve, at the same time as the number of noise induced errors decreases;
thus providing a better starting point for the iterative process.
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Figure 9: The CDF of the extrinsic information output from the
MUD/CE for two points, Te(0, 0 and Te(1, 1). Results are shown for
SNR values of 0 and 5dB.

5 Conclusions

In this paper we have studied a promising receiver candidate for non-coherent
multi-antenna OFDM systems. For the considered multi-user receiver we have
seen that the convergence path, and the point of convergence, can be estimated
using multi-dimensional EXIT charts. We have proposed a modification of the
receiver structure, simplifying the generation of the transfer function of the
MUD/CE; making it possible to generate the transfer function independent of
the code/decoder. This greatly simplifies the work of finding a suitable outer
code for the receiver; making it into a curve fitting problem. The modifications
are seen to have an insignificant impact on the transfer function.
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Using Measured Channels

in Performance Evaluations of

Multi-User OFDM Systems

Abstract

In this paper we provide a tutorial overview of the use of channel measurement data

in wireless communication system evaluations. Channel measurements are mainly

used as a basis for generating channel models, but can also be used directly in system

simulations to provide a close to reality channel scenario. This paper describes a

number of measurement specific issues, and provide suggestions on how these prob-

lems can be alleviated. The main focus is on wideband multi-user multiple antenna

(MU-MIMO) systems, but most observations are applicable to other scenarios and

systems. At the end of the paper, we provide illustrations of some of the discussed

issues through performance evaluations of an iterative receiver structure. For the

evaluation, the performance with the true channel is compared with that of the mea-

surement impaired channel. The true channel is given as the output of the COST

2100 multi-link MIMO channel model.
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1 Introduction

When developing algorithms for wireless receivers, appropriate system evalua-
tions need to be performed. The ideal procedure would be to implement the
algorithms in an actual wireless receiver, and perform field tests in various en-
vironments. Such operations are in general both costly and time consuming,
and are therefore in most cases not an alternative in the early development
phase. Furthermore, since the properties of the wireless channel differ signifi-
cantly from location to location, or from one time to another, fair comparisons
between different algorithms and parameter settings may become difficult. Fur-
thermore, it is not possible, in general, to reproduce specific channel realizations
for deeper analysis of algorithm behavior.

For practical reasons, as the ones stated above, system level computer sim-
ulations are usually performed for algorithm evaluations. In order to catch
the behavior of the wireless channel, and to investigate its effect on system
performance, an accurate channel model is needed. The models are designed
to mimic the properties of the wireless channel, often with a specific system in
mind. Based on measurements of the wireless channel, the statistical (and pos-
sibly geometrical) properties of the channel are modeled and parameterized.
Typical channels can then be generated based on this underlying statistical
model. Apart from enabling accurate and realistic computer based system
simulations, the output of the models are reproducible, which helps when com-
paring different systems or receiver structures.

An alternative to the use of channel models, or real life field trials, is the use
of measured channels. Commonly, channel measurements are performed with
the purpose of being used for channel modeling and characterization. Such
measurements could, as well as being used for these purposes, be used directly
for system evaluation. The idea is that the measurements provide an accurate
description of the environment, catching all properties of the wireless channel.
Properties that might be overlooked in the design of a channel model. Fur-
thermore, for novel system designs channel models may not be available, or
the available models have not been properly verified. In such situations mea-
surements could be an attractive option to speed up the design and evaluation
process.

Despite the potential benefits of using measurements in system evaluations,
there are a number of issues to keep in mind. The main contribution of this
paper is to provide a tutorial overview of the issues encountered when using
channel measurement data in wireless communication system evaluations. The
paper summarize our experiences when working with measurements within the
WILATI+ project, which focuses on channel modeling and modem design for
wireless LAN applications, primarily for wideband dual-link multiple trans-
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mit/receive antenna (MIMO) systems. Therefore, the issues described here are
related to the dual-link MIMO measurements performed within the project,
even though most observations are applicable to other types of measurements.
We believe that the information provided in this tutorial will be helpful both for
someone using measurements for simulations, as well as for people performing
measurements.

The paper is organized as follows. First the basics of channel sounding is
presented. We then go through a number of issues that relates to channel mea-
surements when used for system evaluations. The cause and consequences are
described, as well as potential solutions. We then provide system simulation
examples in order to further illustrate some of these issues. The evaluated sys-
tem is an uplink multi-user orthogonal frequency division multiplexing (OFDM)
MIMO system, with cooperative base stations using an iterative receiver struc-
ture. Finally, we provide a summary with concluding remarks.

2 The basics of channel sounding

Channel sounding is the term used for measurements performed with the aim
of understanding and estimating the properties of the wireless channel, and is
the basis of channel modeling. A channel sounding system may be seen as an
ordinary communication system, with the difference that only known signals,
usually with good statistical properties, are transmitted. Furthermore, the
receiver is generally synchronized to a common clock, which is, e.g., required
for estimation of the propagation delay. Positioning systems may also be used
if the (absolute) location of the transmitter/receiver is of interest.

The sounder may be designed either to estimate the channel impulse re-
sponse or frequency response. The estimate in the delay domain can be achieved
by the transmission of an impulse like signal, where the received signal is the
actual impulse response of the channel, or a pseudo-random sequence could be
transmitted, with the impulse response being obtained through a correlating
matched filter. A frequency domain estimate can be obtained by transmit-
ting a chirp signal, i.e., sweeping the frequency domain, or by performing “one
shot” estimation by using an OFDM type of signal. In many cases the multi-
ple antenna or angular properties are also of interest, requiring antenna array
measurements to produce an estimate of the directional channel. For more
information on channel sounding, please refer [1], and references therein.
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3 Issues when using measurements in receiver
evaluations

As mentioned above, using channel measurement data for evaluating wireless
receivers is not always straightforward. There are a number of aspects that
need to be kept in mind. In this section we go through a few of these, and also
discuss their implications and possible counter measures.

3.1 Additive measurement noise

One of the largest problems when it comes to measurements is the presence
of measurement noise. Like in any wireless receiver, the channel sounding
equipment will add noise to the received signal. This noise will contaminate the
estimated channel, which has consequences when using the channel for system
evaluations. In most cases, the additive measurement noise is uncorrelated and
follows a Gaussian distribution.

The presence of noise will inevitably affect the properties of the channel. For
example, the noise may hide correlation properties of the channel, e.g., spatial
correlation (rank deficiency) in MIMO channels [2], time domain correlation
(limited Doppler spread), and frequency correlation (limited delay spread) of
wideband channels. The latter is illustrated in Figure 1, where an impulse
response is shown with and without the presence of additive measurement
noise. As can be seen the impulse response has energy in all delay positions,
which is generally not the case for wireless channels.

The delay and Doppler limited nature of wireless channels are often ex-
ploited when designing low-complexity channel estimation algorithms [3–5].
Evaluating such algorithms using measured channels will inevitably lead to
the presence of an irreducible error floor, since the measurement noise does
not show this behavior and thus can not be completely estimated. Such effect
would not be seen when using the estimator in a real channel. We will illustrate
this phenomena through system simulations in Section 4.3.

Though measurement noise can never be removed, a number of counter
measures can be taken to minimize its effect. The simplest solution is of course
to increase the transmit power during measurements, which would improve the
measurement signal-to-noise ratio (SNR). Due to regulatory restrictions, the
transmit power is generally restricted, which sets a limit on the achievable SNR.
Furthermore, power limitations also set a limit on the distance over which the
channel can be accurately measured.

An alternative strategy to improve the SNR is to increase the length of the
transmitted measurement signal, leading to an increase in the total received en-
ergy. For a perfectly static channel an arbitrarily high SNR could be achieved,
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Figure 1: Illustration of an impulse response, with and without mea-
surement noise. The measurement SNR is 10 dB.

but for most wireless scenarios the coherence time of the channel sets a limit
on the length of the measurement signal. This is especially evident when per-
forming mobile measurements, in which the coherence time, depending on the
speed, can be very short. More specifically, to meet the Nyquist sampling crite-
ria the following restriction is placed on the duration between two consecutive
samples, i.e., between two transmitted measurement signals, Ts ≤ 1/(2νmax),
where νmax is the maximum Doppler shift.

Direct actions for improving the measurement SNR are not always sufficient.
In addition, post-processing of the estimated channel can be used to further
improve the situation. Several approaches can be used. Most common is to
utilize assumed correlation properties in time/frequency of the (over-sampled)
channel, applying some form of low-pass filter, e.g., Wiener filters [6]. Similarly,
by estimating the maximum channel delay, all energy above this value can be
nulled in the impulse response, i.e., applying an ideal low-pass filter in the
frequency domain. Alternatively, if the noise power level can be estimated,
all values in the impulse response below this level can be set to zero [7]. An
alternative sub-space based method, based on singular value decomposition of
the multi-dimensional channel matrix, has also shown good performance [8].
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3.2 Phase noise

One other type of noise that is added in wireless transceivers is phase noise
[9]. Due to oscillator instabilities at transmitter and receiver, the received
signal will show unwanted phase variations. These variations are unknown,
and can therefore in general not be separated from a channel induced phase
shift2. For a communication system, such phase variation can be handled by a
channel estimator in combination with an equalizer. But, for the case of channel
measurements and characterization, phase noise is a more severe problem.

When measuring the behavior of the wireless channel, presence of phase
noise will unavoidably cause measurement errors, since the transceiver and
channel induced phase variations can not be separated. The presence of phase
noise is generally a smaller problem when measuring time varying channels,
where short sounding signals are used. On the other hand, when measuring
static channels with long sounding signals (or averaging over many short sig-
nals), the phase noise has a larger impact.

Phase noise is also an issue in MIMO channel measurements, if time domain
switching over the antenna elements is performed. For large antenna arrays,
the switching time can be relatively long, thus catering for large noise induced
phase variations over the measurement interval. The resulting phase errors
has the largest impact if the MIMO channel is of low rank, leading to an over
estimation of the channel capacity [9, 10].

In general, the only way to reduce phase noise is to use more stable os-
cillators, adding to the cost of the measurement equipment. From the above
discussion we can deduce that from a system evaluation point of view, extra
caution is needed when using MIMO measurements from scenarios where low
rank channels can be expected, and where low quality measurement equipment
has been used.

3.3 Sampling and interpolation

As when sampling any signal, the channel has to be sampled sufficiently often
in both time/space and frequency/delay, to allow for perfect reconstruction.
As stated previously, the maximum Doppler frequency in the channel sets an
upper limit on the duration between samples. Similarly, the maximum channel
length τmax sets a lower limit, i.e., τmax ≤ Ts. Below this limit, inter-symbol
interference becomes present, and consecutively measured impulse responses
can not be separated.

If care is not taken when performing the measurements, the sampling crite-
ria is not met, and the measurements may become useless. This is for example

2If the two have significantly different statistical properties, separation may be possible.
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important when evaluating algorithms making use of time variations of the
channel, e.g., channel tracking algorithms. Evaluation of such systems may
also require that interpolation is performed to achieve sufficient resolution in
time, which is not possible if the channel is under-sampled.

3.4 Antenna configurations

One other important aspect to consider is the choice of antennas used dur-
ing measurements. For direct use of measurement data, the properties of the
antenna is not possible to separate from those of the channel. The measured
channel will therefore inevitably depend on the antennas and their radiation
pattern. For example, if the antenna is directive, the measured channel output
in a specific location may differ significantly depending on the orientation of
the antenna. Directive antennas are often used in array measurements, where
the end goal is to model the directive properties of the channel [1].

In Figure 2 the problem with directive antennas is exemplified with data
from real array measurements. The measurements are performed in a scenario
where a 16 element circular antenna array is placed on a roof top, and a single-
antenna transmitter is located on a parking lot in a north-east direction. The
illustration in the center of Figure 2 shows the relative received power at the
different patch antenna elements of the circular antenna array. As can be seen,
for this line of sight scenario, the received power differs up to 20dB depending
on which antenna element is considered. Due to the directivity of the patch
antenna elements, who’s radiation pattern is shown at the center of Figure 2
for a northbound antenna (without exact scale), the strongest channel is seen
in the direction of the transmitter. Furthermore, the channel impulse response
at four different antenna positions is shown in the sub-figures of Figure 2.
The direction, and receive power, of the four elements are indicated by red
circles. As can be seen the impulse responses for the antenna elements are quite
different; the one pointing towards the transmitter have a dominant line-of-sight
component, while the one facing the opposite direction lacks such dominant
component.

As the example of Figure 2 shows, the choice of antennas used during the
measurements are an important aspect when planing the measurements. Mea-
surements which are used for system simulations should preferably be obtained
using the same type of antennas as intended for the final system. In Section 4.3,
we will exemplify how the choice of measurement antennas can effect the system
performance.

A solution to the problem of directive antennas can be found through the use
of antenna array measurements, followed by directional analysis [1]. By using
an appropriately designed antenna array at the receiver, the spatial properties
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Figure 2: In the center of the figure, the received power at the differ-
ent patch antenna elements of a circular array is shown. The impulse
responses corresponding to the antenna elements circled in red is shown
in the sub-figures.

of the channel can be estimated based on the resulting vector valued observa-
tion. Based on the directional analysis, the channel may be described as a sum
of incoming plane waves with certain delays and directions (possibly together
with a dense tail of multipath components). Based on this description, the
resulting channel for an arbitrary antenna geometry, and radiation pattern,
can be generated. Unfortunately, the directional analysis require significant
computational effort, and the method also contains model assumptions, which
may possibly hide properties of the channel.

3.5 Delay synchronization

Depending on how the channel measurement equipment is designed, the mea-
sured impulse response can be shifted in the delay domain. A natural delay
shift occurs due to the propagation delay between the transmitter and receiver.
This shift is of importance for channel characterization and modeling, and may
also be useful if evaluating receiver algorithms dealing with synchronization.
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Unwanted delay shift can also occur due to synchronization errors caused by,
e.g., clocks drift if a common reference not used for transmitter and receiver.

In Figure 3, an illustration of a measured impulse response is shown, as
evolved over time. As time progresses, a shift of the channel power is seen in
the delay domain. The source of the delay could, as mentioned, be distance
related, or caused by synchronization related errors.
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Figure 3: Illustration of an impulse response measured over time as
the transmitter moves away from the receiver. The impulse response
is obtained from the inverse discrete Fourier transform of a computer
generated frequency response.

Such shift in the delay can cause problems in system evaluations, since a
common assumption in algorithm design is that the system is perfectly syn-
chronized. Using such measurements may in those cases cause problems. For
example, as will be illustrated in Section 4.3, for low-complexity channel esti-
mation algorithms which make use of the delay limited, low-pass nature of the
channel, significant errors can occur.

The propagation delay can easily be removed through post-processing. That
is, by performing an appropriate shift in the delay domain so that the energy of
the impulse response becomes located at, e.g., zero delay. Note that for noisy
measurements, finding the start of the impulse response may not be possible,
since early week components may be hidden in the noise.
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3.6 Creating “virtual” multi-user channels

Multi-user channel measurements require that a number of receiving, or trans-
mitting, units are used [11]. Since high quality receiving units can be quite
expensive, such measurements can become costly. Furthermore, if multi-point
measurements are to be considered, e.g., a system with multiple base stations
and users, the technical challenges are huge.

A more simple way to create multi-user channels is to combine a number
of single-user measurements [12]. In that way a “virtual” multi-user channel
is created where users can be added and removed dynamically. When doing
so, it is important that the measurement environment stays the same between
measurements, otherwise, the different user channels can not be approximated
as co-located in time. This is also important when representing joint shadow-
ing effects or other correlation effects. Therefore, creating virtual multi-user
channels in highly dynamic environments should be avoided, since the channel
may change significantly between the different single-user measurements.

4 System simulation examples

In this section we will exemplify three of the discussed issues with using channel
measurements in system evaluations, i.e., measurement noise, directive anten-
nas and delay synchronization. To visualize the effects, system simulations are
performed, where an iterative receiver structure for multi-user MIMO-OFDM
systems is used. The considered uplink system, consisting of two users and two
collaborating base stations, is briefly described in Section 4.1.

The channels used for the demonstration are obtained using the COST2100
multi-link channel model [13]. Modifications are then performed on the output
of the model to obtain channels which contain the given measurement artifacts.
The reasoning behind using the output of a channel model, rather than using
actual measurements, is that we by doing so have the true channel to compare
with. In this way the effect of the artifacts can be clearly visualized. The
considered channel scenario is introduced in Section 4.2.

4.1 System description

The considered multi-user multi-link MIMO-OFDM system is shown in Fig-
ure 4. Two mobile users (MU) are transmitting independent, synchronized,
coded signals to two cooperating base stations (BS). Both users and base sta-
tions are equipped with two antennas each. The channel is assumed to be
block-fading, i.e., the channel is considered constant in time over a transmitted
block consisting of S = 20 OFDM symbols, including Sp = 2 pilot symbols.
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The system bandwith of 20 MHz, at 5.3 GHz, is divided into 128 subcarriers.
Before transmission, the data bits are encoded using a rate 1/2 convolutional
code, and mapped to QPSK symbols.
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Figure 4: Schematic view of the system under consideration, consisting
of two users and two cooperating basestations.

At the receiver side, the two base stations are cooperating, using an iterative
multi-user receiver with soft interference cancellation and channel estimation,
described in detail in [14]. The receiver consists of three parts; a channel
estimator, a parallel interference canceling multi-user detector (PIC-MUD),
and soft-input-soft-output (SISO) decoders for the convolutional code. The
three parts exchange information iteratively, and jointly converge towards an
estimate on the transmitted information bits.

The channel estimation algorithm, which has a central part in the follow-
ing illustrations, produces an estimate based on a low-rank approximation of
the channel. In the channel estimator, the channel is assumed to be accu-
rately described by a limited number of delay-limited base functions, more
precisely discrete prolate spheroidal (DPS) sequences. Based on this model for
the multi-user MIMO channel, a minimum mean square error (MMSE) esti-
mate is produced, making use of the pilot symbols transmitted from all users
and antennas, as well as soft estimates of the transmitted code symbols. As we
will demonstrate, this type of low-rank channel estimators, with their assump-
tion on the frequency correlation of the channel, show a reduced performance
when evaluated using noisy channel measurement data.
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4.2 Channel scenario

The COST 2100 model, which is used for generating the channel, is a geometry
based stochastic channel model, where the environment is stochastically gener-
ated based on a number of parameters. The environment consists of a number
of clusters, which scatter the transmitted signal, creating a group of impulses
in the impulse response. Each cluster has certain spatial/angular properties,
and is visible within a specific region. For a more detailed description of the
model, please refer [13]. For the implementation we have used the parameters
corresponding to case RS-BS1 in [15], and dense multipath components have
been added as described in [16].

In the considered model scenario, two BSs located 20 meters apart, and two
MUs are moving along a route according to Figure 5. The two MUs are seen
to change place with each other, traveling about 20 m. The wideband MIMO
channel is sampled 400 times along the route (making the samples essentially
uncorrelated in time). Both the BSs and MUs are equipped with two antennas,
spaced half a wave length apart. Furthermore, the channels are generated with
both omnidirectional antennas, as well as directional patch antennas, at the
MUs. The directive antennas are pointing in the direction of travel of the two
users. For both antenna types, the underlaying channel before applying the
antenna pattern is identical, thus allowing for a fair comparison between the
two cases.

BS1

2 m

20 m BS2

MS1

MS2

Figure 5: The considered scenario for the model, consisting of two base
stations 20 m apart and two mobile users moving in opposite direction
along the route.

The power of the resulting channel will show large variations depending
on the position of the MUs. In Figure 6 the average receive power, for each
of the 400 time snapshots, of the links between the MUs and BSs are shown.
Averaging is performed over the subcarriers and antennas. The power levels
are shown for both omnidirectional (top) and directional MU antennas (bot-
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tom). The figure also shows the 10 and 20 dB power levels of the noise signals
which are added in order to simulate measurement noise. These will be further
discussed in 4.3. As Figure 6 shows, the receive power will change when using
directive antennas, as compared to the omnidirectional case. This occurs since
the reflected power from some objects in the environment will be significantly
attenuated by the directive antenna array. This phenomena can, e.g., be ob-
served by comparing the received power of the link between MU1 and BS1
during the first 50 samples, in the two cases.

Figure 6: The sub-channel powers between the different users and base
stations for the case of omnidirectional antennas (top), and directional
patch antennas pointing in the direction of travel (bottom).

When using the channel in the coming examples, the power variations be-
tween the different MU-to-BS links are preserved. At the same time, for each
snapshot the average channel power is normalized to unity. That is, power
control is used in each snapshot so that the total receive power is constant
over the snapshots. It should be noted that the powers levels of the individ-
ual users could, alternatively, be scaled according to some appropriate power
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control scheme.

4.3 Results

In this section we will illustrate the impact on system performance caused by
three of the measurement related issues discussed in Section 3. We first look at
the presence of measurement noise, before the impact of directional antennas
is exemplified. Finally the performance degradation due to the presence of
propagation delay is illustrated.

Measurement Noise

As discussed in Section 3.1, the presence of measurement noise is one of the
main problems encountered when using channel measurements. It may dis-
tort the correlation properties of the channel, which are often exploited when
designing wireless receiver algorithms.

To begin with, the impact of measurement noise on the spatial correlation
of the channel is considered, where we restrict the investigation to omnidirec-
tional antennas. Two noisy measurements are produced based on the original
computer generated channel. This is achieved by adding complex white noise,
obtaining an overall average measurement SNR of 10 and 20 dB. The noise
is added as illustrated in Figure 6, where the power of both the channels and
the noise is plotted. Due to the chosen normalization, the instantaneous mea-
surement SNR will change over the snapshots, as would be expected in most
channel measurement systems. As seen in Figure 6, at the center of the routes
the measurement SNR is significantly lower than the average.

Before looking at the bit error rate (BER) performance of the iterative
receiver in the different channels, we take a look at the information theoretic
channel capacity. In Figure 7 the empirical cumulative distribution functions
(CDF) of the average channel capacities at the different snapshots are shown.
For each snapshot, the averaging is performed over all OFDM subcarriers. The
capacity is given for the case of no channel state information at the transmitter
[1], and is evaluated at an average receiver SNR of 10 dB. The cases of no
measurement noise, along with 10 and 20 dB measurement SNR are shown.
Furthermore, the capacities of the directional antenna case, further discussed
in Section 4.3, and of a channel with independent identically distributed channel
(IID) coefficients is shown for comparison.

As can be seen in Figure 7, the presence of measurement noise will change
the capacity distribution of the channel. The impact is most visible for the
10 dB measurement SNR, where the noise is strong enough to falsely increase
the richness of the measured channel, leading to an increased channel capacity.



134 PAPER III

Figure 7: The CDF of the frequency averaged channel capacity, in case
of omnidirectional and directional antennas, is shown for the multi-user
MIMO link over the different snapshots. The for the omnidirectional
antenna, capacity is shown for different measurement noise levels. The
capacity for an IID channel also is shown for comparison, and the ca-
pacity is evaluated at a receiver SNR of 10 dB.

If the measurement noise is increased even more, the capacity will converge
towards that of the IID channel. Furthermore, due to the large variations in
received power over snapshots, as seen in Figure 6, the capacity increase due
to measurement noise is largest at the center of the route. At the beginning
and end of the routes, the MIMO channel matrix is dominated by two of the
sub-channels. A low measurement SNR on the weak sub-channels will therefore
not significantly effect the channel capacity.

Having looked at the capacity expressions, the BER performance at the
output of the iterative receiver is considered next. In Figure 8, the CDFs of
the instantaneous BER obtained at each snapshot is shown for the omnidirec-
tional antenna case. The BER is shown after 15 receiver iterations, and at
an average Eb/N0 = 10 dB, where Eb and N0 are the received bit energy and
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noise power spectral density, respectively. Furthermore, the performance when
using channel estimation, and when assuming perfect channel state information
(PCSI) at the receiver, is evaluated.

Figure 8: CDF of the BER as taken over 400 channel snapshots. The
BER is shown for the case of PCSI and when the channel estimator is
used, both after 15 receiver iterations, and at an average system Eb/N0 =
10 dB. Furthermore, the performance at different levels of measurement
SNR is shown.

Starting with the case of PCSI, as seen in Figure 8, the BER is improved
when the measurement noise is present. In this case, the same conclusions as
for the capacity can be made; increasing the measurement SNR will improve
system performance. The noise reduce the spatial correlation of the channel,
thus making it easier for the MUD to separate the different user streams.

If we instead consider the use of the channel estimator, which is exploiting
the delay limited nature of the wireless channel, the situation changes. Due to
the presence of measurement noise, the frequency correlation of the channel is
altered, i.e., the channel is no longer delay limited as discussed in Section 3.1.
Therefore, the estimator will fail to obtain an accurate estimate, since a large
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portion of the channel energy is outside the assumed maximum delay. In Fig-
ure 8 this can be clearly observed. Already at 20 dB measurement SNR, a
performance loss is seen as compared to the noise free channel. Increasing the
measurement noise power even more, achieving a 10 dB average measurement
SNR, the performance almost collapses due to the inaccurate channel estimates.

It is interesting to note that the noise will have a different impact depending
on which system we are investigating. For the case of PCSI, the measurement
noise will cause an overestimate of the system performance, while the opposite
is true when using the low-rank estimator.

Directional antennas

As mentioned in Section 3.4, the choice of measurement antennas will inevitably
change the properties of the measured channel. In this section we exemplify
this by looking at the system performance when using either directional, or
omnidirectional, antennas at the MUs. As previously seen in Figure 7, the
use of directional antennas, in the chosen configuration, significantly reduced
the channel capacity. This occurs since the directive antennas mainly receive
energy coming from one direction, leading to a reduced spatial diversity in the
measured channel.

We now take a look at how the BER performance is affected. In Figure 9
the CDFs of the instantaneous BER obtained at each snapshot is shown for
both omnidirectional, and directional, antennas. As before, the BER is shown
after 15 receiver iterations, and at an average Eb/N0 = 10 dB. As seen from
the figure, the performance is significantly lower for the case of directional
antennas. The performance is also significantly worse when channel estimation
is performed, as previously discussed.

Delay synchronization

We now proceed by exemplifying how the presence of a delay shift in the mea-
surements can affect system performance. As mentioned in Section 3.5, a shift
of the impulse response due to propagation delay, or synchronization errors,
can affect the performance of algorithms exploiting the delay limited nature of
the wireless channel. This is, e.g., the case for the channel estimator in our
iterative receiver. To achieve a channel with suitable properties, we generate a
channel for the presented scenario, and then added an artificial delay, which is
increasing for each snapshot. It should be noted that the obtained channel is
not entirely realistic, but it has properties which allow us to clearly visualize
the effect of a delay shift.

In the lower part of Figure 10, the impulse response of one of the multiple
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Figure 9: CDF of the BER, obtained with directional and omnidi-
rectional antennas, taken over the 400 channel snapshots. The BER is
shown for the case of PCSI and when the channel estimator is used, both
after 15 receiver iterations, and at an average system Eb/N0 = 10 dB.

antenna links is shown. The maximum delay, assumed by the channel estima-
tor, is shown with the solid black line. As seen from the figure, as the snapshot
number increases, so does the delay. At the same time, more and more of the
channel power end up outside the maximum delay supported by the channel
estimator. The effect this has on the estimator performance is shown in upper
part of Figure 10, where the mean square estimation error (MSE) is shown.
The figure shows the MSE when signaling at an Eb/N0 = 10 and 20 dB.

As seen in Figure 10, as the impulse response slides outside the supported
delay the MSE increases. The effect is becoming visible around snapshot num-
ber 150 when signaling at Eb/N0 = 20 dB, but not until snapshot number 230
at 10 dB. As long as the errors due to the delay shift is small enough, the
errors due to noise will dominate. Therefore, the delay shift induced errors be-
come visible later in the 10 dB case, as compared to the 20 dB case. A similar
behavior can be seen when using this type of estimator over noisy measured
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Figure 10: Impact of the propagation delay on MSE performance. The
upper part of the figure is showing the MSE, while the lower is showing
the shift of the impulse response over time/distance.

channels, as in section 4.3. In that case, the measurement SNR needs to be
well below the signaling SNR in order to hide the estimation errors caused by
noisy measurements.

5 Summary and Conclusion

In this paper we have discussed the use of channel measurements in wireless
communication system evaluations. A number of issues related to measure-
ments is presented, and potential solutions are pointed out. We have also
demonstrated three of the issues by looking at the performance of an itera-
tive multi-user MIMO-OFDM receiver. One of the most important problem is
the presence of additive measurement noise, which can hide correlation prop-
erties of the channel. Though appropriately designed measurements can keep
the noise levels low, filter based post-processing of the measurements may be
needed. Other aspects that needs to be kept in mind is the presence of phase
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noise, propagation delay, and the use of directive antennas during measure-
ments.

As we have discussed and illustrated, the use of channel measurements for
system evaluation is not necessarily straightforward. In general, it is important
to design the measurements well, and take into account the requirements of the
specific system in mind. Specifically when evaluating algorithms exploiting the
correlation properties of the wireless channel. A critical eye is also important
when looking at potential measurement data. Plotting the data in various
ways and domains (delay/frequency, Doppler/time, power, phase) is important
to make sure that no obvious measurement errors exist. If something looks
strange, it is important to find out why.

Finally, if handled with care, measurement data can be a good alternative
for system evaluations since it provides a direct snapshot of a real life scenario.
For novel wireless systems, measurements can help to speed up the design pro-
cess, by providing a good test environment at an early stage, before appropriate
models are available.
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1 Introduction

Multiple-Input Multiple-Output (MIMO) systems in combination with Orthog-
onal Frequency Division Multiplexing (OFDM) and iterative receivers have
gained interest in current wireless communication research. MIMO-OFDM [1]
systems can simultaneously mitigate inter-symbol interference and enhance sys-
tem capacity through increased diversity, spatial multiplexing or interference
suppression. At the same time iterative receivers, implementing Multi-User
Detection (MUD) and channel estimation, achieve near-optimum performance
with reasonable complexity [2].

In this paper we evaluate an iterative receiver for MIMO-OFDM systems
using real channel measurements from an indoor dynamic dual-link scenario
assuming a “quasi-static”, i.e. block-fading, channel. The receiver performance
has earlier been evaluated in [3], were focus was on analyzing Bit-Error Rate
(BER) performance at different Signal-to-Interference Ratios (SIR). This paper
focus on how the receiver can be used for interference mitigations through base
station cooperation. By combining the received signals from two base stations
a virtual antenna array is created that allow for joint detection of the two
users. In this paper a system with two users and two base stations, each with
two antennas, is considered. The system is shown in Fig. 1. Evaluation of the
BER performance at different SIR levels is performed both with and without
cooperating base stations. Additionally, an analysis of the impact of using
soft information, obtained by decoding the received symbols, in the channel
estimator is performed.

Figure 1: The considered multi-user system with cooperative detection.
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2 System Model

AMIMO-OFDM system withK transmit andN receive antennas is considered,
where each transmit antenna sends an independent data stream. The trans-
mit/receive antennas may belong to different users/base stations. Each stream
is encoded via convolutional coding and random interleaving, with codewords
spanning both time and frequency dimensions. OFDM symbols with pilot data
are inserted for channel estimation at the receiver. QPSK modulation is con-
sidered, and each frame (codeword + pilots) consists of L bits grouped in S
OFDM symbols ofM subcarriers each. The frame structure is shown in Fig. 2.

Sub-
carrier

OFDM 
symbol

0

M-1

S-1

Pilots

Data

0

Figure 2: M subcarrier OFDM frame structure with, in this case, two
pilot symbols followed by S-2 data symbols.

Referring to the mth subcarrier during transmission of the sth OFDM sym-
bol, we denote the transmitted vector, the channel matrix, the AWGN vector,
and the received vector as

x[m, s] = (x1[m, s], . . . , xK [m, s])
T
,

H[m, s] =






H1,1[m, s] . . . H1,K [m, s]
...

. . .
...

HN,1[m, s] . . . HN,K [m, s]




 ,

w[m, s] = (w1[m, s], . . . , wN [m, s])
T
, and

r[m, s] = (r1[m, s], . . . , rN [m, s])
T
.

The discrete-time model for the received signal can then be written as

r[m, s] =H[m, s]x[m, s] +w[m, s] . (1)
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Note that H contains the coefficients for both useful and interfering channels
and that synchronous transmissions are assumed. The channel vector from the

kth transmit antenna is denoted h
(tx)
k [m, s].

At the receiver, as illustrated in Fig. 3, OFDM symbols are demodulated
and sent to the iterative decoder, performing MUD, Soft-Input Soft-Output
(SISO) decoding and channel estimation. The multi-user detector and SISO
decoders exchange extrinsic information on symbols xk, denoted x̃k (resp. z̃k)
when going to the multi-user detector (resp. the SISO decoders). SISO de-
coders also provide a posteriori information on symbol xk, denoted x̂k, to the
channel estimator, and a posteriori information on source bits. The channel
estimator provides channel coefficient estimates (Ĥn,k).

Figure 3: The structure of the iterative receiver.

2.1 MUD

The received signals (1) are processed separately for each subcarrier and OFDM
symbol. Parallel interference cancellation is performed using x̃ from the SISO
decoders and Ĥ from the channel estimators. The residual term from the
interference cancellation for the kth transmit antennas, r̃(k) = r − Ĥ(x̃ −
x̃ki

(k)
K ), is then MMSE filtered, to reduce noise and multi-user interference,

giving the extrinsic information

z̃k =
i
(k)T
K

(

ĤHĤ + σ2
w(V

(k))−1
)−1

ĤHr̃(k)

i
(k)T
K

(

ĤHĤ + σ2
w(V

(k))−1
)−1

ĤHĥ
(tx)
k

, (2)
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with V (k) = diag
(
(1− |x̃1|2, . . . , 1− |x̃k−1|2, 1, 1− |x̃k+1|2,

. . . , 1− |x̃K |2)
)
. For the derivation we refer to [2].

2.2 SISO Decoding

After collecting {zk[ℓ]}Lℓ=1, each transmit antenna can be decoded indepen-
dently using the log-domain BCJR algorithm. The SISO decoder for the kth
transmit antenna uses the model zk = xk + vk, with vk ∼ NC(0, η

2
k) and

η2k = 1

i
(k)T
K

(HHH+σ2
wIN )−1HHh

(tx)
k

.

2.3 Channel Estimation

Assuming that the maximum normalized delay spread (η
(d)
max) is known, the

receiver implements a low-complexity estimator based on the Slepian expansion

Hn,k[m] ≈
I∑

i=1

ψn,k[i]vi[m] ,

where ψn,k[i] is the ith Slepian coefficient for the link between the kth trans-
mit antenna and the nth receive antenna; vi[m] is the mth sample of the ith
time-shifted Discrete Prolate Spheroidal (DPS) sequence associated to the

interval m = 1, . . . ,M with time support [0, η
(d)
max] with corresponding eigen-

value λ
(d)
i ; the approximate signal space extension is

⌈

η
(d)
maxM

⌉

+ 1 ≤ I ≤M .

See [4] for more details. Also, we denote v[m] = (v1[m], . . . , vI [m])
T
, λ(d) =

(

λ
(d)
1 , . . . , λ

(d)
I

)T

, Ξ[m, s] = IN⊗(x[m, s]⊗ v[m])
T
, ψn,k = (ψn,k[1], . . . , ψn,k[I])

T
,

where ⊗ denotes the Kronecker product. The signal model for channel estima-
tion is

r = Ξψ +w ,

with r, Ξ, ψ and w appropriately collecting received signals, transmitted sig-
nals, Slepian coefficients and noise.

A linear MMSE estimate is performed

ψ̂ =
(

Ξ̂H∆−1Ξ̂+C−1
ψ

)−1

Ξ̂H∆−1r ,

where Cψ is the diagonal correlation matrix of the Slepian coefficients depend-

ing on the eigenvalues; Ξ̂ contains the expected transmitted symbols computed
via a posteriori information from SISO decoders; ∆ is a diagonal matrix de-
pending on the a posteriori information from the SISO decoders and the SNR.
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3 Dynamic Multi-link MIMO Channel Mea-
surements

3.1 Dynamic Multi-link MIMO Channel Measurements

The channel measurements [5] used in this evaluation were carried out in
September 2007 in the CS-building at Helsinki University of Technology, Fin-
land. The building is a modern four story building with corridors and offices
surrounding a large atrium in the middle, resembling an airport terminal or a
shopping mall. A mobile transmitter and two stationary receivers were used to
measure the behavior of the dynamic multi-link channel. Fig. 4 shows a photo-
graph of the building with both the receiver locations and the two transmitter
routes marked.

Figure 4: Photograph of the measurement location. The receivers (Rx1
and Rx2) are static, while the transmitters (Tx1 and Tx2) move along
the paths indicated by arrows.

The measurement setup is summarized here, and the basic measurement
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parameters are found in Table 1. In order to capture the behavior of the multi-
link MIMO scenario, a single signal was transmitted from the transmitter to
both receiving channel sounders. The transmitter was moved along several
routes with a speed of about 1 m/s, and the MIMO channel transfer func-
tion was sampled each 39 ms. Sixteen dual-polarized antennas were used at
each link end and local rubidium clocks in the channel sounders were used for
synchronization.

Table 1: Measurement parameters.

Center frequency 5.3 GHz
Bandwidth 120 MHz
TX power 0.5 W (27 dBm)
Gap between MIMO blocks 39.3216 ms

In order to create a scenario with multiple users and base stations, mea-
surements from two different routes of the mobile transmitter were combined.
Even though these measurements were performed at different time instances,
the environment is considered static between the measurements; thus the mea-
surements are treated as co-located in time. The resulting channel data files
from the measurements include two 32×32 MIMO channels per receiver. From
these, four 2×2 MIMO channels were extracted, two for each receive and trans-
mit combination. The combined channel represent the links between two mobile
users and two base stations, with two antennas each.

The upper part of Fig. 5 displays a map of the considered scenario, showing
the location of the static transmitters and moving receivers. The light gray
area is the atrium area and the white area indicate the second floor where the
measurements took place.

3.2 Processing of Channel Measurements

Post processing of the data has been performed in order to reduce the mea-
surement noise present in the channel data. Further, interpolation has been
performed in order to change the original frequency spacing in the measure-
ments (0.6250 MHz) to a subcarrier spacing of 0.3125 MHz, in accordance with
the recent IEEE 802.11n WLAN proposal [6]. The processing was performed
using an interpolating Wiener filter [7] in the frequency domain, assuming a
rectangular power delay profile. In essence, the filter removes all energy beyond
a certain delay. The maximum delay was chosen in such way that a reasonable
noise reduction was obtained, while still preserving the channel energy.

A simple power control scheme was used in the simulation. The principles
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Figure 5: Part (a) displays a map of the measurement location showing
the position of the receivers (Rx) and the routes of the transmitters
(Tx). The arrows represent the signal paths from the transmitters to
the receivers. In part (b) the average power in the different links, for the
different channel realizations, after power control.

of the schemes were as follows; the average powers in the links between the
users and their intended base station were normalized to unity for each channel
realization. That is, the receive power from the primary user was held constant
at the base stations. At the same time the interfering links were scaled by the
same amount, preserving the relative power levels of the measured channel.
Fig. 5 shows the average power in each link, as indicated on the map, after the
power control scheme has been applied.
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4 Results

As mentioned above, the system under consideration consists of two mobile
users and two base stations, each with two antennas. The two users send in-
dependent codewords from each antenna spanning S = 10 OFDM symbols,
including Sp = 2 OFDM pilot symbols, where each OFDM symbol contains
M = 64 subcarriers (see Fig. 2). The channel is considered to be static over
several frames, and each frame covers one code word. Code bits are generated
by a rate 1/2 recursive systematic convolutional encoder [8] with generators
(7, 5)8 and with two tail bits forcing the final state into 1, giving 1020 informa-
tion bits per frame and user. Assuming an OFDM symbol duration of 4µs [6],
each user in the considered system transmits at a rate of 25.6 Mbps.

System simulations have been conducted in order to investigate the gains
harvested through base station cooperation. Both the case of no cooperation,
meaning that the inter-user interference is ignored at the receiver, and the
case of full cooperation are treated. Results are presented in terms of the
BER as a function of SIR, as well as in terms of the Cumulative Distribution
Function (CDF) of the instantaneous BER at each channel realization. In the
simulations a fixed receiver noise variance is set to give an Eb/N0 of 5dB per
receiver branch.

It is worth noting that for the case of base station cooperation, it is in this
case somewhat misleading to talk about SIR, since the interference actually
becomes useful signals power that can be used for detecting the transmitted
signals. This additional power will also cause the effective Eb/N0 to vary
depending on the received power in the interfering link.

In Fig. 6 the performance for the user with the most favorable interfer-
ence situation (Rx2 in Fig. 5) is shown for both with and without base station
cooperation, after the 0th (when performing spatial filtering only) and 2nd
iteration. As a comparison, the performance with Perfect Channel State Infor-
mation (PCSI) at the receiver is shown. A sliding window mean taken over the
different instantaneous SIR values has been performed to obtain the presented
results.

Additional insight of the behavior of the system can be found by looking
at the CDF of the instantaneous BER. Fig. 7 shows the CDF calculated from
230 individual channel realizations, corresponding to different positions of the
users. The figure shows the performance after the 0th, 1st and 2nd iteration,
both with and without cooperation. Again the case of PCSI is shown for
comparison.

Considering the performance with no cooperation, the interference and noise
levels are so severe that the performance of the system is very poor. From Fig. 6
it is seen that the BER only reach values in the order of 10−1. Looking at Fig. 7,
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Figure 6: BER versus SIR with and without base station cooperation.
The results shows the performance after the 0th and 2nd iteration. The
case of PCSI is shown with dashed lines.

it is seen that the variance of the BER values is small; thus the performance
is relatively independent of the individual channel realizations in the evaluated
scenario. It is also seen that with PCSI the performance is still poor, though
slightly better than when estimating the channel. Further, the gain obtained
by performing iterations in the receiver is small. One iteration gives a small
gain, but performing yet another iteration has an insignificant impact.

If instead the two base stations are allowed to cooperate, joint detection
of the two users greatly improve performance. As can be seen in Fig. 6 the
performance after two iterations are almost two orders of magnitude better
than for the case of no cooperation. From Fig. 7 it can be seen that there
is a significant performance difference between different channel realizations.
Depending on the structure of the channel, and the total available power in the
link, the instantaneous BER performance is seen to differ more than one order
of magnitude between different measured channel realizations. This difference
is growing considerably with iterations, while the average BER decreases.

It can also be seen that the difference in BER performance between PCSI
and an estimated channel decreases with iterations. This is explained by the
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Figure 7: CDF of instantaneous BERs, with and without base station
cooperation. The performance after the 0th, 1st and 2nd iteration is
shown. The case of PCSI is shown with dashed lines.

reduction of the channel estimation error due to improvements of the soft in-
formation with iterations.

In order to show the impact of using soft information in the channel esti-
mation, performance simulations have been performed using only the known
pilots in the estimator. Fig. 8 shows the CDF of the BER when using, and not
using, soft information. The results are for the case of base station cooperation,
after the 0th, 1st and 2nd iteration. The performance is, as expected, identical
before starting iterations, differing only due to independent noise realizations.
When using only known pilots, the gain of performing more than one itera-
tion is insignificant. If instead soft information is used to update the channel
estimate, performance improve with every iteration. When designing MIMO-
OFDM systems, this property can be used to decrease the amount of pilots
transmitted, thereby decrease pilot overhead and increase spectral efficiency.
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Figure 8: CDF of the BER when using (dashed lines), and not using
(solid lines), soft information in the channel estimator. The results are
for the case of base station cooperation, and shows performance after the
0th, 1st and 2nd iteration. As expected, the performance is identical for
the two cases after the 0th iterations.

5 Conclusion

A performance evaluation of an iterative receiver for MU-MIMO-OFDM has
been performed, focusing on how the algorithm can be used for base station
cooperation in the up-link. Computer simulations have been performed using
real channels from an indoor dynamic dual-link MIMO measurement campaign.
The considered system has two users and two base stations, all with two an-
tennas.

It has been seen that by allowing the two base stations to cooperate in the
detection of the two users, large gains are achieved. When there is no cooper-
ation, the interference and noise severely limits performance and iterations in
the receiver do not give any significant performance gains. On the other hand,
if base stations are allowed to cooperate a significant performance increase is
achieved. Especially if iterations are performed, making use of soft information
for channel estimation and interference cancellation. The performance gain in
terms of BER is orders of magnitude. Using soft information in the estimator
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also open up the possibility of reducing the overhead in terms of transmitted
pilot symbols, yielding increased spectral efficiency.
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Abstract

In this paper, a number of channel estimation algorithms for iterative receivers are

compared for an up-link orthogonal frequency division multiplexing interleave divi-

sion multiple access (OFDM-IDMA) system. Both pilot based algorithms, used to

obtain an initial estimate, as well as semi-blind decision-directed algorithms work-

ing as a component of the iterative receiver are considered. Algorithms performing

either joint minimum mean square error (MMSE) channel estimation, or iterative

estimation using space-alternating expectation maximization (SAGE), are evaluated.

The considered algorithms differ in terms of complexity, as well as performance. The

main contribution of this paper is to give an overview of different channel estimation

approaches for OFDM-IDMA, where the complexity versus performance tradeoff is

at the focal point. There is no single channel estimator providing the best tradeoff

and our analysis shows how the number of users and the SNR influence the estimator

choice.
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1 Introduction

In recent years a new multiple access technique, where the users are separated
through their unique interleaving patterns, has generated a large interest in the
research community. The technique, referred to as interleave-division multiple-
access (IDMA) [1], has been shown to mitigate multiple access interference
while simultaneously achieving a high spectral efficiency. IDMA shares many
properties with code division multiple access (CDMA), where user separation
is obtained through user-specific spreading codes, and has shown similar per-
formance but with a reduced receiver complexity [1–4].

When the system bandwidth grows in single carrier systems, the equal-
ization process becomes increasingly challenging due to the increase in the
number of resolvable paths. Introducing orthogonal frequency division mul-
tiplexing (OFDM) simplifies this task by transforming the wideband channel
into a set of orthogonal narrow band sub-channels. A simple scalar equalization
can then be performed separately for every sub-channel. By combining IDMA
and OFDM, an efficient multi-user system is formed which efficiently combats
ISI and also reaches a high spectral efficiency [5, 6].

For interference cancellation and equalization in such systems, reliable chan-
nel estimates are needed. Channel estimates are usually obtained solely based
on pilot symbols, which are known to the receiver. With the breakthrough of
turbo-like receivers, however, iterative decision-directed3 approaches to channel
estimation have received increasing attention [7–13]. By using decoded symbols
as pilots, more reliable estimates are obtained, at the same time as the pilot
overhead is reduced. For a multi-user system that performs iterative MUD,
such as OFDM-IDMA, iterative channel estimation can be incorporated in a
straightforward way into the receiver structure.

There has only been limited research conducted on the performance of
OFDM-IDMA systems employing channel estimation. For example, in [11]
an estimator based on the least mean square algorithm is used, and in [12] a
least square (LS) estimate is performed in every iteration. Both methods iter-
atively perform per-user channel estimation using symbol estimates from the
channel decoder. As in the above mentioned papers, iterative decision-directed
channel estimation algorithms are at focus in this paper, and an evaluation of
different algorithms is performed.

Even if only a few channel estimation algorithms have been evaluated for
OFDM-IDMA, algorithms for other transmission technologies provide many
candidates. For the case of single carrier systems, [8] propose a number of dif-
ferent algorithms for IDMA, both making use of soft interference cancellation

3In the following, the term decision-directed will be used to refer to semi-blind schemes
making use of both pilot symbols and estimates on the transmitted data symbols.
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to estimate the different user channels independently, as well as performing
joint MMSE estimation. Unlike in our this paper, where pilot symbols are
time-multiplexed, pilot layers are added on top of the data symbols. In [13] an
algorithm is derived based on Gaussian message passing for single carrier sys-
tems. The expectation maximization (EM) like algorithm is performing MMSE
based estimates on soft interference canceled single-user streams. Furthermore,
due to shared properties with OFDM-CDMA, and multiple transmit antenna
system, algorithms available for these technology may be adopted, as will be
discussed below. In [14] a discrete Fourier transform (DFT) based estimator for
an OFDM system with transmit diversity is developed. The estimator jointly
estimates the channels to all antennas. To reduce complexity, a related esti-
mator based on the EM algorithm is proposed in [15], where the channels are
estimated per user through indirect interference cancellation. Related to this
work, a similar algorithm is proposed for multi-carrier CDMA systems in [16],
and for multiple antenna systems in [17]. In [9] a channel estimator that jointly
estimate all user channels is developed for OFDM-CDMA, based on a low rank
discrete prolate spheroidal (DPS) sequence approximation of the channel. The
algorithm is extended to multiple-input multiple-output (MIMO) OFDM sys-
tems in [10] and further developed to utilize time and frequency correlation
in [18].

In this paper, the algorithm in [18] is evaluated, alongside two EM based
algorithms, for an OFDM-IDMA system. The first EM based algorithms is
based on [15], with the DFT base functions replaced by DPS sequences, and
with support for using data symbol estimates along with pilot symbols, similar
to [17]. The second one can be interpreted as a multi-carrier extension of the
algorithm in [13], here derived from an EM perspective. Again, DPS sequences
are used to efficiently exploit the frequency correlation. The algorithms all
make use of estimates on the transmitted symbols, and the receiver therefore
needs to acquire an initial channel estimate. Three pilot based algorithms,
based on well known principles, are evaluated for this purpose. The aim is not
only to investigate algorithm performance, but also how their implementation
complexity relates to performance. Due to limitations in power consumption
and chip area, complexity considerations are of high importance when algo-
rithms are implemented in real systems. The main contributions of this paper
may be summarized as follows

• Three different decision-directed channel estimation algorithms are evalu-
ated in an OFDM-IDMA system for the first time. One of the algorithms
jointly estimates the channels for all users, while the others perform per-
user estimates based on the space-alternating EM (SAGE) algorithm.
Different algorithms for obtaining an initial pilot based channel estimate
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are also evaluated. The algorithms effect on the overall system perfor-
mance and convergence is studied, along with their complexity.

• A complexity versus performance analysis is performed, where the total
number of complex multiplications needed to reach a bit error rate (BER)
target is evaluated. For the evaluation, the complete receiver complexity
incorporating channel estimation, MUD and data decoding is considered.

The rest of this paper is organized as follows. In Section 2, a description
of the considered OFDM-IDMA system is given. The algorithms for obtaining
the initial pilot based estimate are presented in Section 3, and the decision-
directed algorithms in Section 4. In Section 5 the performance of the different
algorithms is investigated, and in Section 6 the complexity of the algorithms is
discussed. Finally, the paper is summarized in Section 7.

2 System Description

In order to perform a comparison between the channel estimation algorithms,
the studied system needs to be defined. First the OFDM-IDMA model is
presented, followed by the channel model and its low-rank approximation. The
latter needed for deriving the channel estimators.

2.1 OFDM-IDMA system model

The system considered in this paper is an uplink OFDM-IDMA system, as
shown in Fig.1. It consists of K users transmitting blocks of S OFDM symbols,
each with M sub-carriers. The first Sp OFDM symbols are reserved for pilots,
known to the receiver, while the following S − Sp OFDM symbols contain
data. The total number of signal constellation points per block becomes L =
(S − Sp)M . Low rate code words are formed by concatenating a forward error
correcting code (FEC) with a repetition/spreading code. The code words are
interleaved using, randomly generated, user specific interleavers, Πk, of length
2L, before mapped to QPSK symbols. Although QPSK is chosen here, the
extension to other constellation sizes is conceptually straightforward.

After OFDM modulation and pilot insertion, the users transmit their sig-
nals over a frequency selective block fading channel. Furthermore, to allow
for correct OFDM demodulation at the receiver, the users are assumed to be
synchronized so that the difference in arrival times is less than the duration of
the cyclic prefix minus the channel delay spread.
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Figure 1: A baseband model of an OFDM-IDMA system with K users.
The receiver implements an iterative multi-user receiver with channel es-
timation (CE). The CE is consisting of one pilot based and one decision-
directed part.

The received signal, after appropriately demodulated into the complex base-
band, is given by

r [m, s] =

K−1∑

k=0

hk [m, s]xk [m, s] + w [m, s] , (1)

where hj [m, s], xj [m, s] and w[m, s] represent the complex valued channel coef-
ficient, transmitted symbol and noise, respectively, at sub-carrier m in OFDM
symbol s. The complex valued noise is distributed according to CN (0, σ2

w). Col-
lecting the signal for all subcarriers, an equivalent description of the received
signal is

r[s] =
∑

k

Xk[s]hk[s] +w[s] , (2)

whereXk[s] is anM×M diagonal matrix containing the transmitted symbols,
on all subcarriers, from user k, hk the channel frequency response for user k,
and w[s] a vector containing noise.
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Using the received baseband signal, the receiver implements an iterative
MUD with channel estimation. Going through the receiver structure, as shown
in Fig. 1, an initial pilot based estimate is first obtained. Using this, the
receiver implements a per-symbol parallel interference canceling ESE (PIC-
ESE) [4]. The ESE, as detailed in Appendix 8, models the interference plus
noise as a complex Gaussian process and produces extrinsic log-likelihood ratio
(LLR) outputs of the transmitted code bits. After the ESE, the per-user LLR
streams are deinterleaved and despread before being fed to the soft-input soft-
output (SISO) decoders. The extrinsic information output of the decoders are
then respread and reinterleaved before fed back to the ESE and to the second
stage of the channel estimation process. The soft symbols are then used to
update the channel estimates and LLRs. The channel estimation process is
divided into two parts, one pilot based, and one decision-directed. Algorithms
for these two parts are presented in Sections 3 and 4.

2.2 Channel approximation

The algorithms evaluated in this paper are all based on a low rank approxi-
mation of the channel. Therefore, a model for the received signal based on the
channel approximation has to be defined before the channel estimation algo-
rithms can be derived. The approximation made is that the channel is limited
in the delay domain, and can thus be accurately represented by a limited set
of base functions. The optimal base functions in such scenario are presented
in [19], and are referred to as DPS sequences. Alternatively, a DFT base could
be used but, as seen in e.g. [20], spectral leakage may create an error floor if
used for channel estimation.

Using the chosen base, consisting of I base functions, the frequency response
for a block fading channel may be expressed as

hk[s] = Uψk[s] = Uψk , (3)

whereU is anM×I matrix collecting the base functions, satisfyingUHU = II ,
and ψk is a vector of length I collecting the channel DPS coefficients. In (3),
the second equality holds for a block fading channel. Using this model, the
received signal in (2) may be expressed as

r[s] =

K∑

k=1

Xk[s]Uψk +w[s] . (4)

Now, by collecting the received signal for all S OFDM symbols in a vector,
and in a similar way collecting the channel coefficients for all users, the received
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signal may be expressed using the classical linear model [18, 21]

r = Ξψ +w . (5)

In (5) r is a vector of length SM collecting the received signal at all time-
frequency positions, Ξ is a SM ×KI observation matrix collecting the trans-
mitted symbols and channel base functions, ψ is a vector of lengthKI collecting
the channel coefficients for all users, and w a vector of length MS collecting
noise. More explicitly, the data structures are given by:

r =
(
rT[1], . . . , rT[S]

)T

Ξ =
(
ΞT[1], . . . ,ΞT[S]

)T

Ξ[s] =
(
ΞT[1, s], . . . ,ΞT[M, s]

)T

Ξ[m, s] = (x[m, s]⊗ u[m])
T

u[m] = (u1[m], . . . , uI [m])
T

U = (u1, . . . ,uI)

x[m, s] = (x1[m, s], . . . , xK [m, s])
T

ψ =
(
ψT

1 , . . . ,ψ
T
K

)T

ψk = (ψk[1], . . . , ψk[I])
T

w = (w[1], . . . , w[S])
T

w[s] =
(
wT[1, s], . . . ,wT[M, s]

)T
,

where ⊗ denotes the Kronecker product.
The DPS sequences are obtained from solving the eigenvalue equation [9,

19, 20], Cui = λiui, where C is an M ×M correlation matrix. For later use,
the eigenvalues λi are collected in a vector , λ = [λ1, . . . , λI ]

T, in descending
order.

For any basis expansion, truncating the number of functions will lead to
an approximation error. For DPS sequences, the error is proportional to the
energy of the eigenvalues corresponding to the discarded sequences. As noted
in [19], for I ≥ ⌈τmaxM⌉+ 1 the energy of the eigenvalues are small, and rapidly
decreasing. Hence, this value can be seen as a bound on the number of DPS
sequences needed to adequately represent the channel. Based on the above
models, the channel estimation algorithms can now be derived, which is done
in Sections 3 and 4.
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3 Pilot based channel estimators

As was mentioned in Section 2, Sp pilot OFDM symbols are transmitted at the
beginning of each data block. The pilot symbols are used to obtain an initial
channel estimate, which is used as a starting point for the iterative process in
the receiver. It is assumed that the transmission is non-orthogonal in time-
frequency and that pseudo-random unit energy pilot symbols are transmitted.
Thus, optimal design of the pilot symbols is not considered.

Since the initial estimate can have a large impact on the convergence of an
iterative process, an accurate estimate is important. In the following sections,
three different algorithms for obtaining the initial estimate are presented. The
algorithms range from the simplest per-user LS estimate (ignoring interfer-
ence), via successive interference cancellation (SIC), to the most complex joint
MMSE estimate of all users channels. Note that we in this section only consider
transmission of the known pilot symbols, i.e., OFDM symbols s = 0, . . . , Sp−1.

3.1 Per-user LS estimation

The conceptually simplest and most straightforward estimation approach is to
perform a per-user LS estimate, based on the received signal and the trans-
mitted pilot symbols, while ignoring the interference from the other users. For
this purpose, (4) may be rewritten as

rk[s] =Xk[s]Uψk + w̃k[s] (6)

to represent the received signal for user k, where w̃k[s] collects the interference
plus noise of OFDM symbol s = 0, . . . , Sp−1. The LS estimates are then given
by

ψ̂k[s] = U
HXH

k [s]rk[s] , (7)

and equivalently for the frequency response

ĥk[s] = UU
HXH

k [s]rk[s] , (8)

Note that the operation of U followed by UH may be seen as a subspace
filtering, removing all received energy outside the channel space. If consecutive
pilot OFDM symbols are transmitted, time-averaging is used to further improve

performance, i.e., ĥk = 1
Sp

∑Sp−1
s=0 ĥk[s] =

1
Sp
UUH

∑Sp−1
s=0 XH

k [s]rk[s].

A low-complexity version of the algorithm is also considered. By using an
identity matrix instead of the DPS sequences in the algorithm, i.e., setting
U = IM in (6)-(8), the frequency filtering and its associated cost is removed.
Though this modification lead to a reduced complexity, the loss in performance
is also significant, as will be discussed in later sections.
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3.2 Per-user SIC based LS estimation

In the second pilot based algorithm, SIC is used in an attempt to decrease
the effect of inter-user interference. By estimating one user channel at the
time, and removing that users signal component, the interference will decrease
while going through the users. The procedure may be repeated in additional
iterations i, using the output of the last step to reinitialize the first, for improved
performance. The LS method as presented in Section 3.1 is used to estimate
the channels and the algorithm can be summarized as follows:

• Initialization: r̂[s] = r[s].

• For each iteration i:

for k = 1, · · · ,K

if i = 0: ĥ
(i)
k [s] = UUHXH

k [s]r̂[s] (9)

r̂[s] = r̂[s]−Xk[s]ĥ
(i)
k [s] (10)

else: r̂[s] = r̂[s] +Xk[s]ĥ
(i−1)
k [s] (11)

ĥ
(i)
k [s] = UUHXH

k [s]r̂[s] (12)

r̂[s] = r̂[s]−Xk[s]ĥ
(i)
k [s] (13)

Note that the signal component which was subtracted for user k in the previous
iteration is first added in (11), before the channel is re-estimated. Furthermore,
as for the LS algorithm, when transmitting consecutive pilot symbols, averaging
in time is carried out to improve performance.

3.3 Joint MMSE estimate

For the two previous algorithms, the channel is estimated per user, either by
ignoring interference, or by trying to cancel it. In the last pilot based algorithm,
the channels for all users are estimated jointly, taking inter-user correlation into
account. Based on the model of the received signal given in (5), the MMSE
estimate of ψ is produced as [18,21]

ψ̂ =
(

ΞHp C
−1
w Ξp +C

−1
ψ

)−1

ΞHp C
−1
w r , (14)

where Cw = σ2
wIMSp

is the noise covariance matrix, and Cψ = IK ⊗ diag (λ)
denotes the covariance matrix of the DPS sequences. The SpM ×KI observa-
tion matrix Ξp has the same structure as Ξ in (5), but only containing the Sp
pilot symbols.
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Since the pilot sequences are known at the receiver, so is the matrix Ξp in
(14). If the receiver is designed for a specific noise variance σ2

w, and a max-
imum channel delay spread τmax, the entire estimator can be precalculated.
Therefore, the estimate of the model coefficients can be obtained through a
straightforward matrix multiplication. From these estimates, the frequency re-
sponses are then created using (3). It can be noted that for a block fading
channel with consecutive pilot symbols, the resulting MMSE estimator is per-
forming an operation equivalent to symbol by symbol estimates followed by
averaging.

After obtaining our initial channel estimates, the attention is turned to the
decision-directed estimation performed in the iterative detector, as described
at the end of Section 2.1.

4 Decision-directed channel estimation

In this section different algorithms for performing decision-directed channel
estimation are presented. The first algorithm, referred to as Full MMSE, per-
forms a joint MMSE estimate of the channel coefficients for all users based
on both pilots and soft estimates of the data symbols. The second algorithm
iteratively obtains the maximum-likelihood (ML) solution, using SAGE [22],
based on pilots and hard decisions of the decoded data symbols, and is referred
to as SAGE ML. The third algorithm, SAGE MMSE, borrows ideas from the
first two and computes an estimate in a similar way as SAGE ML but using
soft estimates of the data symbols.

It can be noted that Full MMSE can be seen as an extension of the pilot
based MMSE estimator presented in Section 3. In a similar way, the LS algo-
rithms of Section 3 could be modified and used in a decision-directed mode,
but they would not be competitive from a performance and complexity point
of view. Similarly, SAGE ML and SAGE MMSE could in theory be used to
obtain the initial pilot based estimate, but would require a blind initial guess.
A detailed description of the considered algorithms follows.

4.1 Joint MMSE estimator using soft decisions (Full
MMSE)

When estimating the channel, the optimal and at the same time most costly
approach is to estimate the channel for all users jointly. In this section an
algorithm that computes a joint MMSE estimate based on (5), using both pilots
and soft estimates of the transmitted symbols, is presented. The algorithm has
previously been derived for MIMO-OFDM in [18].
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Based on (5), the linear MMSE estimate of the DPS channel coefficients is
given by [18]

ψ̂ =
(

Ξ̂H∆−1Ξ̂+C−1
ψ

)−1

Ξ̂H∆−1r , (15)

where Ξ̂ has the same structure and size as Ξ in (5), but contains both known
pilot symbols and soft estimates of transmitted symbols; ∆ = diag(ϑ) +

σ2
wIKMS , with ϑ =

(
ϑT[1], . . . ,ϑT[S]

)T
, ϑ[s] = (ϑ[1, s], . . . , ϑ[M, s])

T
,

ϑ[m, s] =
(
∑K
k=1

(
1− |x̂k[m, s]|2

))

, and {x̂k[m, s]} are either pilots or soft

symbol outputs from the decoder. Note that diag(ϑ) = E{ΞψψHΞH} −
Ξ̂CψΞ̂

H .

4.2 SAGE based estimator (SAGE ML)

The algorithm presented in the previous section requires the creation and multi-
plication of large matrices, and a matrix inversion, leading to a large algorithm
complexity. As a low complexity alternative, an algorithm based on SAGE is
presented. The SAGE algorithm iteratively computes the ML solution based
on an underlying subspace model for the received signal.

Based on (4), by distributing the noise vector over the different subspaces
the complete data set {rk[s]} can be written as

rk[s] =Xk[s]Uψk +wk[s], for k = 1, . . . ,K , (16)

where w[s] =
∑

kwk[s] is the complete noise vector. As can be seen, rk[s] is
the signal component received from user k, and summing over all users gives
(4). For the problem at hand, the SAGE algorithm is formulated as [22]

• Initialization: For all k and s

ŝ
(0)
k [s] =Xk[s]Uψ̂

(0)
k . (17)

• For each iteration i:
for k = 1 + [i modulo K], and for all s, compute

E-step:

r̂
(i)
k [s] = ŝ

(i)
k [s] +



r[s]−
K∑

j=1

ŝ
(i)
j [s]



 (18)
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M-step:

ψ̂
(i+1)
k [s]

= arg min
ψk[s]

(∥
∥
∥r̂

(i)
k [s]−Xk[s]Uψk[s]

∥
∥
∥

2
)

= UHXH
k [s]r̂

(i)
k [s], (19)

ψ̂
(i+1)
k =

1

S

S−1∑

s=0

ψ̂
(i+1)
k [s]

=
1

S
UH

S−1∑

s=0

XH
k [s]r̂

(i)
k [s], (20)

ŝ
(i+1)
k [s] =Xk[s]Uψ̂

(i+1)
k . (21)

for all j, j 6= k,

ŝ
(i+1)
j [s] = ŝ

(i)
j [s]. (22)

Since Xk[s] are initially unknown at the receiver, estimates must be used.
The estimates are then updated by the decoders in every iteration, using the
most recent channel estimate. Here, hard decisions X̂k[s] = sign(X̃k[s]) of the

decoded symbols are used. The initial ψ̂
(0)
k [s] is obtained from pilot symbols as

described in Section 3. Furthermore, all K user channels are updated, instead
of just one, before the data symbols are re-estimated.

As for the pilot based LS algorithm in Section 3.1, a low-complexity version
is considered where the frequency filtering is removed, i.e., setting U = IM in
(17)-(22). The modification leads to a reduced complexity, as well as a loss in
performance, as discussed in later sections.

4.3 Modified SAGE estimator (SAGE MMSE)

The drawback of SAGE ML is that it does not support direct use of soft symbol
estimates. In this section, an algorithm is proposed where SAGE ML is altered
to support the use of soft symbols by deriving the MMSE solution instead of
the ML solution in (19). The resulting algorithm share some properties with
the single-carrier algorithm presented in [13].

By appropriately collecting the received signal components from different
time instances s, the model for the received signal from user k may be written
in the same form as in (5), i.e.,

rk = Ξkψk + w̃k , (23)



172 PAPER V

where the definitions of Ξk and ψk are found in Section 4.1 using K = 1. Note
that w̃k ∼ CN (0, σ2

w̃) contains both noise and interference. An estimate of
the variance σ2

w̃ can be provided by the ESE. For the above model, the MMSE
estimate is given, similar to (15), by

ψ̂k =
(

Ξ̂H
k∆

−1
k Ξ̂k +C

−1
ψk

)−1

Ξ̂H
k∆

−1
k rk

= Akrk , (24)

where the sub-index k indicates that the data structures are user specific.
The proposed SAGE MMSE algorithm can now be summarized as follows:

• Initialization: For all k and all s

ŝ
(0)
k [s] =Xk[s]U ψ̂

(0)
k , (25)

ŝ
(0)
k = [ŝ

(0)T
k [0], . . . , ŝ

(0)T
k [S − 1]]T . (26)

• For each iteration i:

for k = 1 + [i modulo K] compute

E-step: r̂
(i)
k = ŝ

(i)
k +



r −
K∑

j=1

ŝ
(i)
j



 (27)

M-step: ψ̂
(i+1)
k = A

(i)
k r̂

(i)
k , (28)

ŝ
(i+1)
k [s] =Xk[s]U ψ̂

(i+1)
k . (29)

for all j, j 6= k,

ŝ
(i+1)
j [s] = ŝ

(i)
j [s] . (30)

5 Simulation results

The evaluation of the proposed algorithms are performed using system simula-
tions. In the simulations, each user transmits code words covering S−Sp = 19
OFDM symbols, with M = 256 subcarriers. One OFDM symbol is dedicated
for training information, i.e., Sp = 1, which is generated randomly for each
user. A rate 1/2 convolutional code with generator polynomial (7, 5)8 is used,
followed by a rate 1/8 repetition code (spreading). Since QPSK is used as
modulation, each code word consists of 608 information bits. With the chosen
coding and spreading rates, the maximum number of users is observed to be
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K = 17, given perfect channel state information (PCSI) at the receiver. Similar
numbers are observed in [6] and [5].

For the simulations, a fading multi-path channel model, mimicking a rich
scattering environment, is used. The channel impulse response for user k is
given by [23]

gk(τ) =

P−1∑

p=0

αp,kδ(τ − τp,k),

where αp,k are zero-mean complex Gaussian random variables with an expo-
nential power delay profile, θ(τp,k) = Ce−τp,k/τrms , where C is a constant,
and the delays τp,k are uniformly distributed within the cyclic prefix (CP). In
this paper, the length of the channel, normalized to the symbol duration, is
τmax = 0.1, the root mean square delay spread set to τrms = 0.03, and the
number of multi-path components P = 100. The channel delay is assumed to
be no longer than the cyclic prefix, and the block fading channel is generated
independently for each user. The number of DPS sequences used in the chan-
nel estimation process is given by I = ⌈τmaxM⌉+ 1 = 27, which is a sufficient
number as discussed in Section 2.2. It is interesting to note that for the given
choice of parameters, the channel is initially under-sampled if K > 9. But as
will be seen, with the assistance of estimated data symbols, accurate channel
estimates can be obtained.

To begin with, the impact of the initial pilot based estimate is investigated
by looking at the system performance. Then, the performance of the decision-
directed channel estimation algorithms is evaluated. The results show both
the BER, as well as mean square estimation error (MSE), after each receiver
iteration, averaged over all users in the system. Different number of users
K and SNR per bit, Eb/N0, are used to investigate the performance of the
algorithms. Here, Eb is the average received energy per bit.

5.1 Influence of the initial channel estimate

In Section 3 three different pilot based algorithms were presented. Here, the
effect of the initial estimates on the overall system performance is investigated,
and Fig. 2 shows the BER when different pilot based estimators are used. For
the comparison we are only presenting the performance obtained when using
SAGE ML in the decision-directed mode. Similar results are observed for the
other two algorithms.

To illustrate the impact of user load, results are shown for K = 6, 10 and 14
users, at an Eb/N0 = 6 dB. The SIC based estimator is set to perform 3 internal
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iterations, giving a tradeoff between reasonable interference cancellation at high
SNR and poor convergence at low SNR.

Figure 2: The BER is shown for the decision-directed SAGE-ML esti-
mator for 6, 10 and 14 users. Different algorithms are used to obtain the
initial pilot based estimate, and the results are shown for S = 20 OFDM
symbols, Sp = 1 OFDM pilot symbol, M = 256 subcarriers and at an
Eb/N0 = 6 dB.

As can be observed in Fig. 2, the difference between the algorithms is rel-
atively small for K = 6 users, with a possible save of 1 − 2 iterations. When
increasing the user load, the LS estimator not making use of the frequency cor-
relation, i.e., U = IM , is observed to degrade. Due to the poor initial estimate,
the convergence speed is decreased and the error floor is elevated by more fre-
quent convergence failures. This is especially evident at K = 14 users. Overall,
the joint MMSE algorithm shows the best performance, especially at high user
loads, followed by the LS-SIC. At a user load of K = 14, the interference can-
cellation process has an insignificant gain due to unreliable cancellation. Thus,
the LS and LS-SIC algorithms show a similar performance.
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5.2 Performance of the decision-directed algorithms

Having covered the pilot based estimators, the performance of the decision-
directed algorithms is investigated next. In this investigation, the initial esti-
mate is obtained using the joint MMSE approach. Again, S = 20 and Sp = 1
OFDM symbols, M = 256 subcarriers.

In Fig. 3, the BER is shown for K = 14 users, at Eb/N0 = 6 dB. For
comparison, single user performance with PCSI at the receiver is also shown.
As seen, with the chosen pilot density, using decoded data in the estimation
process greatly improves performance. The exception being for SAGE ML with
U = IM , where convergence is not observed. The other algorithms reach close
to single user performance after 20 − 30 iterations. Amongst these, the Full
MMSE has the fastest convergence. The SAGE MMSE, using soft decisions,
shows the best performance among the SAGE based estimators.

Figure 3: Convergence, when using the different decision-directed algo-
rithms, in terms of BER, when S = 20 OFDM symbols, Sp = 1 OFDM
pilot symbol, M = 256 subcarriers, K = 14 users and at an Eb/N0 = 6
dB. The initial estimate is obtained using the joint MMSE estimator, and
the case of PCSI and when pilots only are used in the CE, are shown for
comparison.

Now, looking at the MSE presented in Fig. 4, with the same system settings
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as above, the same general conclusions as for the BER can be drawn. The Full
MMSE estimator has the fastest convergence, followed by the SAGE based
estimators making use of the frequency correlation. If the channel correlation
is not exploited, the MSE is increasing due to divergence caused by unreliable
decisions on the transmitted symbols. For comparison, the analytical minimum
MSE [21] in the case of a single user is shown. The observed loss as compared
to this value is mainly due to the truncation of the number of DPS sequences
used. Furthermore, the two MMSE based estimators converge to a smaller
MSE since the noise variance is accounted for when producing the estimates.
This also shows that SAGE MMSE iteratively reach Full MMSE performance.
Further, the algorithms all reach comparable MSE values since they exploit the
strong correlation properties of the channel in similar ways.

Figure 4: Convergence, when using the different decision-directed al-
gorithms, in terms of MSE, when S = 20 OFDM symbols, Sp = 1
OFDM pilot symbols, M = 256 subcarriers, K = 14 users and at an
Eb/N0 = 6 dB. The initial estimate is obtained using the joint MMSE
estimator, and the case when pilots only are used in the CE, are shown
for comparison.

Next, the receiver performance at different Eb/N0 is considered. In Fig. 5
the BER is shown for the case of K = 14 users, at Eb/N0 = 6 and 8 dB. Again,
single user performance is shown for comparison. At this high system load,
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SAGE ML with U = IM does not converge. Amongst the other algorithms,
Full MMSE shows the best convergence performance, with larger gain at low
SNR. The gain as compared to SAGE MMSE is 1 − 4 iterations, and 2 −
9 iterations as compared with SAGE ML. Comparing the two SAGE based
estimators, there is a clear difference in convergence speed. By using soft
decisions in the estimation process, i.e., using SAGE MMSE, the convergence
speed is significantly improved. Furthermore, as seen in Fig. 5, when the noise
level decreases, so does the gain of using soft decisions. This occurs since the
soft and hard symbols are nearly the same at high SNRs. Again, close to single
user performance is observed.

Figure 5: Convergence, when using the different decision-directed algo-
rithms, in terms of BER, when S = 20 OFDM symbols, Sp = 1 OFDM
pilot symbol, M = 256 subcarriers, K = 14 users and at different noise
levels, i.e., Eb/N0 = 6 and 8 dB. The initial estimate is obtained using
the joint MMSE estimator.

Next, the impact of system load on performance is considered. In Fig. 6
the BER is shown for K = 6, 10 and 14 users, at an Eb/N0 = 6 dB. Single
user performance is presented for comparison. For the two lower user numbers,
looking at the algorithms making use of the frequency correlation, convergence
is relatively fast, with convergence after 5−10 iterations. The relative order of
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the algorithms is the same as previously observed, and as the number of users
decrease, so does the difference in convergence speed. When K = 6 users,
the difference is insignificant. As the number of users grows, the gain of using
soft decisions, i.e., the MMSE based estimators, increases. This is especially
evident for K = 14, as discussed earlier. The results indicate that the use of
soft decisions only provide a significant gain at high user loads.

Looking at SAGE ML with U = IM , no convergence is reached at high user
load. Reducing the number of users to K = 6, the algorithm is just starting to
converge. The BER performance is improved if the number of users is further
reduced, or if the SNR is increased. Though the BER performance is poor, for
systems operating at high SNR or with few users, the algorithm may still be
interesting due to its simplicity, as will be seen below.

Figure 6: Convergence, when using the different decision-directed algo-
rithms, in terms of BER, when S = 20 OFDM symbols, Sp = 1 OFDM
pilot symbol, M = 256 subcarriers, Eb/N0 = 6 dB and at different num-
ber of users, i.e., K = 6, 10 and 14. The initial estimate is obtained
using the joint MMSE estimator.
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6 Complexity analysis

When it comes to practical implementations of iterative multi-user systems,
complexity considerations are of importance. In this section the proposed al-
gorithms are compared based on their complexity in terms of the required
number of complex multiplications. This measure is chosen since it provides a
reasonable balance between accuracy and analytical tractability.

Below, the complexity of both the initial pilot based, as well as the decision-
directed algorithms, is presented. The expressions for the complexity per user
are given in Table 1. Note that the DPS sequences are assumed to be precal-
culated and read from memory. In Table 2, the expressions for the complexity
are evaluated for the same system settings as in Section 5, i.e., S = 20 and
Sp = 1 OFDM symbols, M = 256 subcarriers and I = 27 DPS sequences.
For later use, the complexity of the ESE operation and data decoding is also
shown. For the system under consideration, their complexity is approximated
to CESE+DEC ≈ 50MS complex multiplications. As seen from the two tables,
depending on the choice of estimator, the ESE and decoder will either dominate
the receiver complexity of constitute a small part.

Table 1: Complexity per user for obtaining the channel estimates

Pilot based estimators

Algorithm Multiplications

LS* MSp

LS+ 2IM +MSp

LS-SIC Nsic(2IM +MSp + 2M) −M

Joint MMSE**
IMSp + IM

Joint MMSE 3MSp +MKSp + IMK + 2IM + (M + 1)KI2 +K2I3

Decision-directed estimators (complexity per iteration)

SAGE ML*
3MS

SAGE ML 2IM + 3MS

SAGE MMSE 5MS + 3IM + (M + 1)I2 + I3

Full MMSE 3MS +MSK + IMK + 2IM + (M + 1)KI2 +K2I3

ESE + decoder ≈ 50MS

* Without using frequency correlation, i.e., U = IM .
+ Can be reduced to IM +MSp when Sp = 1.
** Assuming precalculated MMSE estimation matrix.
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Table 2: Number of complex multiplications per user for obtaining the channel
estimates. The numbers are given for Sp = 1 and S = 20 OFDM symbols,
M = 256 subcarriers and I = 27 DPS sequences. Also, the approximate cost
of performing the ESE operation and data decoding is shown.

Initial pilot based estimators

Algorithm Multiplications per user

LS* 256
LS 13824
LS-SIC (3 iterations) 43520
Joint MMSE** 13824
Joint MMSE K = 6 1890306
Joint MMSE K = 14 6595754

Decision-directed estimators

SAGE ML* 15360
SAGE ML 29184
SAGE MMSE 253372
Full MMSE K = 6 1934082
Full MMSE K = 14 6678442

ESE + decoder ≈ 256000

* Without using frequency correlation, i.e., U =
IM .

** Assuming precalculated MMSE estimation
matrix.

6.1 Pilot based estimators

In the following, the complexity of the different pilot-based channel estimation
algorithms presented in Section 3 is discussed. To begin with, the per-user LS
algorithm is considered, being the one with the lowest complexity. The com-
plexity is dominated by the frequency domain filtering, given that the number
of pilot symbols is smaller than the filter dimension, i.e., Sp < I. Removing the
frequency filtering, the complexity is significantly reduced. For the example in
Table 2, the complexity is reduced by a factor of 54. As seen in Section 5, this
come at a significant loss in performance, especially at high user loads.

Introducing interference cancellation, through the LS-PIC algorithm, will
only slightly increase the complexity, given that only one internal iteration is
performed. With internal SIC iterations, the complexity grows linearly with
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iterations. This is seen in the example in Table 2, where 3 iterations are used,
leading to a threefold increase in complexity as compared to the LS estimator.

The last algorithm considered is the joint MMSE estimator, performing
joint estimation of all user channels. For a fixed set of users the estimator can
be predesigned, assuming a certain Eb/N0. The choice of Eb/N0 may cause
a mismatch error, but as was seen in [20], the error is relatively small. If the
number of users and/or the pilot sequences changes, the estimator needs to
be updated. For a system with a flexible design, a large number of estimator
matrices has to be stored, increasing the memory requirements. Alternatively,
the estimator can be redesigned whenever needed. This causes a large increase
in the required number of multiplications, as seen in Table 2. The complexity is
related to creating the matrix ΞHp C

−1
w Ξp, and performing the matrix inversion,

in (14). The latter dominating when many users K in the system. Due to
the structure of Ξp under the block fading assumption, becoming a product
between a block diagonal matrix and a block matrix with diagonal sub-matrices,
increasing Sp turn out to have a small impact on complexity. Further, the
complexity can be lowered by reducing the number of DPS sequences I, which
at the same time would decrease performance. If the estimator is predesigned,
the complexity is comparable to that of the per-user LS estimator.

6.2 Decision-directed estimators

In this section the complexity of the different decision-directed channel esti-
mation algorithms from Section 4 is presented. As can be seen in Table 1 and
Table 2, there is a significant difference in complexity between the different
algorithms.

The one with the smallest complexity is SAGE ML, using hard symbol
decisions. The filtering in the frequency domain constitute a large part the
algorithm complexity. Therefore, by omitting this operation the complexity is
reduced, as seen in Table 2, where a reduction by a factor of 2 is observed.
As seen in Section 5, this complexity reduction comes at a significant loss in
performance, especially at high user loads. With an adaptive receiver design,
the frequency filtering could be turned on or off, depending on the current
user load. By doing so, the benefits of the two approaches could be combined.
At the same time, it should be noted that the cost of SAGE ML is small as
compared to the total receiver complexity, taking the ESE and decoder into
account, making the possible savings relatively small.

Considering the SAGE MMSE estimator using soft symbol decisions, per-
formance was improved as seen in Section 5.2. At the same time, complexity
increases significantly. For the example in Table 2, the complexity increases
by factor of 9 as compared to SAGE ML. This increase comes from creating
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the per-user MMSE estimator in (24), where the operation Ξ̂H
k∆

−1
k Ξ̂k is dom-

inating. Similar to the pilot based joint MMSE estimator, under the block
fading assumption, the impact of the block size S on this operation is small
due to the structure of Ξ̂H

k . The complexity can therefore primarily be low-
ered by reducing the number of DPS sequences I, also leading to a reduced
performance.

If the Full MMSE estimator is considered, the complexity increases even
further. As for the previously discussed MMSE estimators, the complexity
lies in creating the estimation matrix. The dominating operations relate to
creating ΞH∆−1Ξ, and performing the matrix inversion, in (15). For low user
numbers, the former operation dominate and complexity grows linearly in K.
As K grows, the cost of performing the inverse start to dominate, and the per
user complexity grows quadratic in K. As for SAGE MMSE, increasing the
block size S has a small impact on the complexity growth, assuming a block
fading channel. In Table 2, the per-user complexity is shown for the cases of
K = 6 and 14 users. Compared to the SAGE MMSE algorithm, the increase
in complexity is by a factor of 8 and 26, respectively.

6.3 Complexity versus performance tradeoff

From a receiver design point of view, the complexity-performance tradeoff is
important. In an attempt to shed some light on this aspect, the total receiver
complexity, in terms of the number of complex multiplications, needed to reach
a specific target BER is investigated. The complexity depends both on the
choice of pilot based algorithm and decision-directed algorithm, the cost of the
ESE and decoder, as well as on the number of iterations needed to reach the
target. For the evaluation, the chosen target is a BER of 10−3. The system
settings are the same as before, i.e., Sp = 1 and S = 20 OFDM symbols,
M = 256 subcarriers and I = 27 DPS sequences.

To start with, the case of K = 14 users, signaling at an Eb/N0 = 6 dB,
is considered. In Fig. 7, the BER is plotted versus the number of complex
multiplications per user, after every iteration, for all combinations of the pilot
based and decision-directed algorithms. As previously seen in Fig. 3, SAGE ML
with U = IM does not converge in this case. Amongst the other algorithms,
SAGE ML gives the lowest complexity, requiring ∼ 6× 106 multiplications per
user to reach the BER target.Note that the target is not reached if using the LS
algorithm with U = IM . Due to the simplicity of SAGE ML, the complexity
is in this case completely dominated by the ESE and decoder. Looking at
SAGE MMSE, the required multiplications increase with 50% to ∼ 9 × 106,
eventhough the per iteration complexity has doubled. This due to the faster
convergence of the algorithm. If Full MMSE is considered, the complexity



Channel estimation algorithms for OFDM-IDMA... 183

increases by an order of magnitude to ∼ 108. Its faster convergence can not
compensate for its large complexity. Finally, looking at the impact of the initial
pilot based algorithms, the difference between the algorithms are small, but the
joint MMSE estimator provide the best complexity performance tradeoff.

Figure 7: The BER versus the number of complex multiplications per
users for the different algorithms at an Eb/N0 = 6 dB and K = 14 users.
The BER is plotted after every iteration performed. The system settings
are Sp = 1 and S = 20 OFDM symbols,M = 256 subcarriers and I = 27
DPS sequences. The marker shape indicates which pilot based algorithm
is used.

Finally, an overview of which algorithm combinations to choose in different
scenarios is given, based on the previously stated system settings. In Fig. 8,
the algorithm combinations with the lowest complexity at different user loads
and Eb/N0 are shown for a target BER of 10−3. The color indicates which
decision-directed algorithm, and shape which pilot based algorithm, is used.
For the decision-directed algorithms, there are certain regions where different
algorithms are suitable, as highlighted by colored areas. At few users and high
SNR, the algorithm with the lowest complexity, i.e., SAGEML withU = IM , is
sufficient. But for higher system loads, making use of the correlation is needed
for convergence. Increasing the number of users towards the maximum system
load, SAGE MMSE is needed to reach the target. Hence, from a complexity
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point of view, using soft decisions in the estimation process is only needed in
extreme cases. Furthermore, Full MMSE is never considered due to its high
complexity. Amongst the initial pilot based algorithm, Fig. 8 shows that joint
MMSE is the best choice in most cases, though the gain as compared to the
LS algorithms is generally small.

Figure 8: The algorithm combinations with the lowest total complexity,
reaching a BER=10−3, at different user numbers and Eb/N0. Shape
indicates which pilot based algorithms were used, and color indicates
which decision-directed algorithms that were used. The system settings
are Sp = 1 and S = 20 OFDM symbols,M = 256 subcarriers and I = 27
DPS sequences.

7 Conclusion

In this paper a number of channel estimation algorithms for OFDM-IDMA have
been evaluated in terms of algorithm complexity and system performance. The
channel estimation procedure is divided into two parts, one initial part where
the estimate is obtained using pilot symbols, and one decision-directed part
where both pilots and estimates of the transmitted symbols are used. For the
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initial pilot based algorithms, the best performance is obtained by the joint
MMSE estimator, which jointly estimates the channel for all users. Overall,
the algorithm also gives the best tradeoff between complexity and performance,
given that the estimator matrices are precalculated and stored in memory. For
the decision-directed algorithms, the best performance, in terms of convergence
speed, is obtained using the Full MMSE estimator. Taking complexity into
account, SAGE ML is the best choice in most situations. If operating on the
limit of the maximal system load, the SAGE MMSE estimator provides the
best tradeoff. Overall, SAGE ML is most attractive due to its low complexity,
and by allowing the frequency filtering to be switched on/off, the complexity
can be further reduced at low user loads.

8 Appendix: The ESE in a complex scalar
channel

The ESE, being the core of the IDMA receiver, assumes that the interfer-
ence plus noise has a complex Gaussian distribution, and produces symbol-
by-symbol extrinsic log-likelihood outputs based on estimates of the mean and
variance of this process. The estimates are obtained using extrinsic information
on the transmitted symbols acquired from the SISO decoders. In this paper
an appropriately designed OFDM system is considered, which results in a per
tone complex scalar channel. The ESE procedure for such channel is briefly
summarized below. For a more detailed description of the ESE, the reader is
referred to [4].

Suppose that the signal transmitted from user j is to be handled. Rear-
ranging (1) by collecting the contribution from user j outside the summation,
the received signal may be expressed as

r[m, s] = hj [m, s]xj [m, s] + ξj [m, s], (31)

where ξj [m, s] is the collected interference plus noise term influencing user j.
With the above model, the extrinsic LLR output of the ESE is given by [4]

eESE [Re (xj [m, s])] = 2 |hk[m, s]|2 ·
Re
(
h∗j [m, s]r[m, s]

)
− E

{
Re
(
h∗j [m, s]ξj [m, s]

)}

Var {Re (hj [m, s]∗ξj [m, s])}
(32)

where closed form expressions of E {Re (hj [m, s]∗ξj [m, s])} and
Var {Re (hj [m, s]∗ξj [m, s])} are given in [4]. A similar expression can be derived
for eESE (Im (xj [m, s])).
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