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Abstract

Electromagnetic vector spherical waves have been used recently to model an-

tenna channel interaction and the available degrees of freedom in MIMO sys-

tems. However, there are no previous accounts of a method to estimate spher-

ical wave coe�cients from channel measurements. One approach, using a

3D positioner, is presented in this letter, both in theory and practice. Mea-

surement results are presented and discussed. One conclusion is that using

randomly positioned measurements within a volume is less sensitive to noise

than using only measurements on the surface.

1 Introduction

Real-world measurements and theoretical modelling of antennas and propagation
channels are crucial to wireless communication, and have been the focus of extensive
research for many years [10]. One way to the increase the capacity in wireless systems
is to use multiple-input multiple-output (MIMO) technology. MIMO requires several
degrees of freedom, and the degrees of freedom depend both on the mutual coupling
between antenna elements and the richness of the channel. It is therefore desirable to
separate the antenna and channel in�uence. One approach to do this is the double-
directional channel model, which describes the channel in terms of plane waves, or
multi-path components [7, 10].

Electromagnetic vector spherical waves provide a compact description of a single-
or multi-port antenna in terms of the antenna scattering matrix, which describes
the antenna receiving, transmitting and scattering properties [4]. One bene�t is
that only a few terms are needed for a small antenna. Furthermore, spherical waves
are used within spherical near-�eld antenna measurements, where they enable the
necessary probe corrections and near-�eld to far-�eld transforms [4, 8].

Spherical vector wave approaches to theoretically model antenna channel inter-
action and the available degrees of freedom have been given in [2, 3, 9], separating
the antenna from the channel in a compact and intuitive way. It is well known
that a small antenna only can excite a limited number of spherical waves [1], which
restricts the available degrees of freedom for a small multi-port antenna. It is not,
however well-known how many degrees of freedom a given propagation channel can
support. Furthermore, to the authors best knowledge there are no previous publi-
cations where spherical waves are estimated from channel measurements, although
some preliminary studies have been done [6].

The main objective of this letter is to present a method to estimate spherical
wave coe�cients from channel measurements. For this, a 3D positioner is used to
move the receiving antenna to di�erent positions and orientations within a cube, and
probe correction [4] is used to separate the in�uence of the receiving antenna. The
whole volume of the cube as well as di�erent subsets are used in separate estimations
to determine how the measurements points should be positioned.
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2 Preliminaries

In a source-free region enclosed by spherical surfaces, the electric �eld can be written
as a sum of regular (v) and outgoing (u(1)) vector spherical waves (time convention
e−iωt):

E(r, k) = k
√
η0
∑
ν

d(1)ν u(1)
ν (kr) + d(2)ν vν(kr). (2.1)

Here the free space parameters are wavenumber k = ω/c, speed of light c and
impedance η0. The spatial coordinate is denoted r, with r = |r| and r̂ = r/r. The
spherical waves are de�ned as in the book [4] by Hansen, but with slightly di�erent
notation (see Appendix A). The multi-index ν = 2(l2 + l− 1 +m) + τ is introduced
in place of the indices {τ,m, l}, where τ = 1 (odd ν) corresponds to a magnetic
2l-pole (TEl-mode), while τ = 2 (even ν) identi�es an electric 2l-pole (TMl-mode).
The basis function in the azimuth angle φ is eimφ.

The antenna source scattering matrix completely describes the antenna proper-
ties: (

Γ R′

T′ S′

)(
w(2)

d(2)

)
=

(
w(1)

d(1)

)
. (2.2)

Here d(2) = (d
(2)
1 d

(2)
2 . . . )T and w(2) are the coe�cients of the incident regular waves

and transmitted signal, whereas d(1) and w(1) are the coe�cients of the scattered
or transmitted outgoing waves and received signal. The transmitted and received
signals are vectors in the case of a multi-port antenna. The primes are included here
to indicate that the source scattering matrix formulation in (2.163) in [4] is used.
The transmitting coe�cients T ′ν and receiving coe�cients R′ν are included in T′ and
R′, respectively [4].

The main purpose of this letter is to determine the spherical wave coe�cients
d
(2)
ν from channel measurements. More precisely, consider a transmitting antenna in
a propagation channel, as in Figure 1a. Within any sphere containing no scatterers,
only the regular waves contribute to the sum in (2.1). The coe�cients d

(2)
ν will

be estimated from measurements with the receiving antenna placed in a number of
di�erent positions and orientations. It is assumed that the scattered �eld that is in
turn scattered back from nearby objects is negligible.

3 Method

In order to estimate the spherical wave coe�cients, the receiving antenna is placed
in a number of di�erent positions and orientations. When the antenna is placed
in the origin in its original orientation, it receives the signal w(1) given by (2.2).
When it is moved and/or rotated, expressions for w(1) are derived by expressing the
spherical waves in the original coordinate system {x, y, z} as sums over the spherical
waves in the translated and rotated coordinate system {xi, yi, zi}:

vν(kr) =
∑
νi

Bν,νi(pi, ẑi)vνi(kri). (3.1)
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(a) (b)

Figure 1: (a): A receiving antenna is used to estimate the coe�cients of the incident
�eld d(2). It is assumed that the scattered �eld (d(1)) that is in turn scattered
back from nearby objects is negligible. (b): The receiving antenna is placed in
a number of di�erent positions and orientations, described by the translated and
rotated coordinate systems {xi, yi, zi}. The original coordinate system {x, y, z} is
centered in the measurement sphere.

Here pi is the position of the translated origin, and ẑi is the orientation of the
zi−axis, see Figure 1b. Explicit expressions for Bν,νi can be found in [4]. From (2.2)
and (3.1) it follows that the antenna receives the signal

w
(1)
i = R′ BT(pi, ẑi) d(2) (3.2)

when positioned at pi and oriented along ẑi, whereB(pi, ẑi) is the in�nite-dimensional
matrix with elements Bν,νi(pi, ẑi), and

T denotes transpose. If the receiving antenna
had been an ideal dipole (i.e. R′ = [0 0 0 1/2 0 0 . . .]), the expression for the received
signal in (3.2) simpli�es to [4]

w
(1)
i =

√
3π

2k
√
η0
ẑi ·E(ri),

which is a good error-check for numerical implementations. The expansion in (2.1)
is truncated at ν = N = 2L(L + 2) by choosing a maximum order L = max l [4].
With M measurements, this leads to:

w
(1)
1

w
(1)
2
...

w
(1)
M


︸ ︷︷ ︸

w(1)

=


R′ B(p1, ẑ1)

T

R′ B(p2, ẑ2)
T

...
R′ B(pM , ẑM)T


︸ ︷︷ ︸

G


d
(2)
1

d
(2)
2
...

d
(2)
N


︸ ︷︷ ︸

d(2)

+e, (3.3)

where e is error due to the truncation. In practice, also noise is present in the
measurement.

The measurements were carried out with the 3D positioner in Figure 2a. An in-
house patch antenna, kept at �xed position, is used as transmitter at 5.15 GHz. A
Satimo 5.15 GHz sleeve dipole (SD5150) was chosen as receiving antenna; it is placed
on the 3D positioner as depicted in Figure 2b�2c and moved in a 10×10×10 cubical
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(a)

(b)

(c)

(d)

Figure 2: (a): The 3D positioner used in the measurements. (b)�(c): The Satimo
5.15 GHz sleeve dipole used as receiving antenna to estimate coe�cients, mounted in
(b): z-polarization and (c): x-polarization. The 3D positioner rotates the antenna
in x−polarization 90◦ to measure y−polarization. (d): The Skycross UWB antenna
used for validation.

grid with stepsize 15mm (≈ 0.26λ), measuring x, y, and z polarization at each point
for a total of 3000 measurements. Here the coordinates given to the 3D positioner
must �rst be corrected for the o�set in phase center as the antenna is rotated. The
transmitting and receiving antennas are connected to port 1 and 2 of an Agilent
E8361A vector network analyzer, which was calibrated and used to measure the
transfer function S21 = w

(1)
Rx/w

(2)
Tx . An ampli�er was used at the transmitter side.

For later use as validation of the estimated coe�cients, the Skycross UWB antenna
(SMT-2TO6MB-A) in Figure 2d (frequency range 2.3-5.9GHz) is used as receiving
antenna in place of the sleeve dipole in otherwise identical measurements; it is moved
along a subset of the points in the cubical grid for a total of 90 measurements.

For veri�cation purposes, data has also been simulated: 100 random plane waves
with independent polarization, complex Gaussian amplitude and angles of arrival
uniformly distributed over the sphere, distorted by zero mean white Gaussian noise.
In this case, closed form expressions of the coe�cients in d(2) are known [4], which
makes it possible to check the accuracy of the method as a function of SNR.

The matrix G in (3.3) is determined with in-house Matlab-scripts, using the po-
sitions pi and orientations ẑi from the 3D positioner and the receiving coe�cients
R′ν of the antennas. For this reason, both the sleeve dipole and UWB antenna have
been characterized in a Satimo Stargate-24 chamber where the antenna transmit-
ting coe�cients T ′ν are given as output. The receiving coe�cients R′ν are given by
R′{τ,m,l} = (−1)mT ′{τ,−m,l}/2 [4]. The sleeve dipole is very close to a Hertzian dipole,
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and the higher orders contribute little to the results of the 3D positioner mea-
surements. It is observed that the smallest errors are obtained when the receiving
coe�cients R′ν are truncated to contain only the dipole term.

An estimate d̄
(2)

of the unknown coe�cients in d(2) can be computed from the
system of equations in (3.3). A �rst approach is the least-squares solution

d̄
(2)
LSQ = arg min

d(2)
||Gd(2) −w(1)||2,

but the singular values of G suggest that this is an ill-posed problem. Furthermore,
when computing least-squares solutions from simulated data, it is seen that large
errors are introduced for the coe�cients of high orders l. Therefore, a more elaborate
method should be used. Here, a regularized solution by means of Tikhonov's method
is chosen [5]:

d̄
(2)

= arg min
d(2)

(
||Gd(2) −w(1)||2 + ||λregd(2)||2

)
.

The regularization parameter λreg is determined with the L-curve criterion [5]. The
regularization works well when tested on simulated data, and seem to work also for

measured data. It is also seen that the estimated coe�cients d̄
(2)

are independent
of the truncation order L, as long as it is chosen large enough. A rule of thumb is
L > krcirc ≈ 12.6, where rcirc is the radius of the smallest sphere circumscribing the
cube.

The measurement problem considered here show some similarities with near-
�eld antenna measurements, see e.g. [4, 8, 11]. However, none of these methods are
directly applicable here.

4 Results and Discussion

The measurement scenario is a small room with many scatterers and obstructed-line-
of-sight (OLOS), see Figure 3. It is chosen to get a rich channel, and a challenging
problem to estimate the spherical wave coe�cients. Measurements were also carried
out in a large, empty room under line-of-sight conditions, with similar results.

The spherical wave coe�cients d
(2)
ν are estimated from the measured data as

described above. For a �rst validation, 30 randomly chosen measurements out of the
3000 measurements are excluded from the estimation, and the estimated coe�cients
d̄
(2)
ν are used to predict those transfer functions S21,i = w

(1)
Rx,i/w

(2)
Tx,i. The results can

be found in Figure 4a. In the second validation, the same estimates d̄
(2)
ν are used

to estimate the transfer function for the UWB antenna, see Figure 4b. The errors
are slightly larger here; at 5.15 GHz the UWB antenna has a complicated radiation
pattern, and small errors in positioning and in�uence from nearby objects give large
errors for the received signal. However, the results in Figure 4 indicate that the
spherical wave coe�cients have been estimated with acceptable errors.

To investigate if, and how, the number of measurements can be reduced, the
spherical wave coe�cients are estimated using three di�erent subsets of the 3000
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Figure 3: The measurement scenario, a small room with many scatterers and
obstructed-line-of-sight (OLOS). The transmitting patch is mounted on the stand
to to the right, and the receiving sleeve dipole is mounted on the 3D positioner to
the left.

(a) (b)

Figure 4: (a): 30 randomly chosen measurements out of the 3000 measurements

are excluded, and the estimated coe�cients d̄
(2)
ν are used to predict those transfer

functions S21,i = w
(1)
Rx,i/w

(2)
Tx,i. The circle marks the measured transfer function, and a

line is drawn to the estimated value. (b): Same as (a), but the estimated coe�cients

d̄
(2)
ν are used to estimate the transfer function when the UWB antenna is receiving.

measurements: I) 1464 measurements on the surface of the cube, II) 1536 measure-
ments in the 8 × 8 × 8 inner cube, and III) 1500 measurements chosen at random.

The estimated coe�cients d̄
(2)
ν,sub for all three cases are compared to the estimated

coe�cients d̄
(2)
ν,cube when all the measurements are used, see Figure 5. It is seen

that I) introduces errors for all the coe�cients, II) introduces errors for high order
coe�cients (large multi-index ν), and III) seem to work well for all the coe�cients.

Some observations: I) In theory, it would su�ce to measure only on the sur-
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Figure 5: Top: Estimated coe�cients d̄
(2)
ν,cube using all the 3000 measurements in

the cube. The coe�cients are normalized so that maxν |d̄(2)ν,cube| = 1. The other

graphs depict the di�erence for the estimated coe�cients, |d̄(2)ν,cube − d̄
(2)
ν,sub| when the

subsets I)-III) are used.

face [4], but it seems to fail when noise is introduced. II) As expected, using the
inner points works equally well for the low order waves, but the high order waves
are not detectable since they vanish close to the origin in the middle of the cube. A
rule of thumb is that N = 2L(L + 1) coe�cients can be estimated (cf. [4]), where
L = krinsc and rinsc is the radius of the largest sphere inscribed in the cube. This
gives N = 126 for the 10×10×10 cube and N = 70 for the 8×8×8 cube. III) The
randomly chosen points cover the same volume as the whole cube, but the errors go
up slightly since fewer measurements are used.

To check the accuracy of the method as a function of SNR, simulated data with
SNR = 15 dB and SNR = 30 dB, respectively, is also used. For the lower SNR,
where also small errors have been introduced in the characterization of the UWB
antenna, similar results as those from the measurements are obtained, see Figure 6�
7. It is therefore expected that this simulation represent the measurements well,
and it is seen that the coe�cients up to ν = 126 (which corresponds to L = 7) are
estimated with less than 5% error, and that the coe�cients up to ν = 198 (L = 9)
are estimated with less than 10% error. For the high SNR (Figure 8), it is seen that
using either the surface of the cube or randomly chosen measurements work well,
and therefore it is expected that fewer measurement points are su�cient for high
SNR. However, using only the inner 8× 8× 8 cube fails for the high order waves as
expected.
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(a) (b)

Figure 6: Same as Figure 4, but using simulated data with SNR=15 dB and small
errors in the characterization of the UWB antenna.
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Figure 7: Simulated data, SNR = 15 dB. Top: Analytic solution for the coe�cients
d
(2)
ν , normalized so that maxν |d(2)ν | = 1. The other graphs depict the di�erence

|d(2)ν − d̄(2)ν | when the coe�cients have been estimated using the subsets I)-III) and
the whole cube.

5 Conclusion

A method to estimate spherical wave coe�cients from channel measurements was
presented in this letter. A 3D positioner was used to move the receiving sleeve dipole
antenna within a 10×10×10 cubical grid, measuring x−, y− and z−polarization at
each point. The receiving antenna was characterized, and expressions for translation
and rotation of spherical waves was then used to obtain a system of equations for the
unknown coe�cients d

(2)
ν , which is solved numerically with Tikhonov regularization.

The results are validated by using the estimated coe�cients to estimate the received
signal, both in the sleeve dipole and in a UWB antenna. Simulated data was also
used to check the accuracy of the method as a function of SNR.

Furthermore, di�erent subsets of the measurements was used to estimate the
coe�cients. It was seen that using only the surface gave large errors, using only inner
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Figure 8: Same as Figure 7, but with SNR = 30 dB.

points failed for high order waves, whereas a randomly chosen subset worked well.
With a comparison to simulated data, it can be expected that fewer measurement
points are su�cient for higher SNR, and in this case they can be placed uniformly,
randomly, or on the surface.

In future measurements, it would be desirable to use something else than the
rather slow 3D positioner. A real array that measures on a surface does not seem to
be feasible for low SNR. However, the good results for estimation using the randomly
chosen points indicate that it is not necessary to use a device that controls the
positions precisely, as long as they are measured correctly. Hopefully, this fact can
be taken advantage of in order to simplify and speed up the measurements.
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Appendix A De�nitions of vector spherical waves

The vector spherical waves are de�ned as in [4], but with di�erent notation. The
regular waves are de�ned as

v1sml(kr) = jl(kr)
∇× (rYsml(r̂))√

l(l + 1)

v2sml(kr) =
∇× v1sml(kr)

k
.
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Here jl denotes the spherical Bessel function of order l [4]. The Bessel function is
replaced with a spherical Hankel function of the �rst kind to get outgoing vector
spherical waves u

(1)
τsml. The spherical harmonics Ysml are given by

Ysml(θ, φ) = (−1)m

√
(2l + 1)

4π

(l −m)!

(l +m)!
Pm
l (cos θ)eimφ,

where Pm
l are associated Legendre polynomials [4]. The polar angle is denoted

θ while φ is the azimuth angle. The range of the indices are l = 1, 2, . . . and
m = −l,−l + 1, . . . l.
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