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9 Av. A. Savary, BP 47870
F-21078 DIJON Cedex,
France

All rights reserved

ISBN 978-91-7422-301-9
Printed by Media-Tryck, Lund University, Lund







i

List of Papers

This thesis is based on the following papers, which will be referred to in the
text by their Roman numerals. The papers are appended at the end of the
thesis.

I Paper I: Acid-Base Properties of 2:1 Clays. I. Modeling the Role of
Electrostatics
Maxime Delhorme, Christophe Labbez, Céline Caillet and Fabien Thomas
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and Bo Jönsson
Manuscript (2012)



ii

List of Contributions

All papers employed own in-house computer codes/programs. These were
developed together with the help and support from Bo Jönsson and Christophe
Labbez.

I I conducted the MC simulations and took part in writing the article.
MF calculation were conducted by C.L.

II I conducted all the simulations and participated in writing the article.

III I performed all the simulations and took part in writing the article.

IV I performed all calculations and had the main responsibility for writing
the manuscript.

V All the MC simulations in 3D were conducted by me. Other simulations
were done by B.J. I took part in the writing process of the manuscript.



CONTENTS iii

Contents

Populärvetenskaplig sammanfattning på svenska 1
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Populärvetenskaplig
sammanfattning på svenska

De flesta ser nog kemi som ett abstrakt och komplicerat ämne mestadels för
att det behandlar byggstenar så små att de inte kan ses med blotta ögat. Men
om man tänker på det så finns kemi överallt! Kemiska processer sker runtom
och inuti oss oavbrutet: i våra kroppar där proteiners kemi spelar en stor roll,
i produkter som schampo och tandkräm, i cement som används för att bygga
våra hus etc. Det borde därför inte komma som någon stor överraskning att
enormt mycket resurser läggs på att förstå olika kemiska processer.

Så vad är då dessa osynliga beståndsdelar som kemi handlar om? Jag tror
mig våga påstå att alla någon gång hört talas om atomer och molekyler
(varav de senare utgörs av en grupp sammanlänkade atomer). Atomer och
molekyler är inte alltid neutrala, d.v.s., dom kan bära en elektrisk laddning.
Övergången från en neutral till en elektriskt laddad enhet kan exempelvis ske
när atomer eller molekyler kommer i kontakt med ett lösningsmedel, vilket
är fallet när ett salt löses upp i vatten och blir till fria joner. Fler exempel
på molekyler som blir laddade i vatten är proteiner, virus, polyelektrolyter
etc. Liksom magneters positiva och negativa poler attraherar varandra, kom-
mer den erhållna elektriska laddningen i molekyler spela en viktig roll för
hur dessa interagerar. Bland många andra faktorer såsom tex partikelge-
ometrin, spelar laddningen en primär roll i kemiska processer. Fysikalisk
kemi fokuserar på att förstå de processer som äger rum när så kallade kol-
loidala partiklar interagerar i en lösning under olika förhållanden. Att utföra
experiment med partiklar i storleksordningen 1-1000 nanometer är inte triv-
ialt. Här kommer beräkningskemin in som en kraftfullt komplement. Genom
att använda matematiska och fysikaliska modeller, så eftersträvar man att
simulera de experimentellt erhållna resultaten och samtidigt förstå de under-
liggande mekanismerna och drivkrafterna på en nivå som ej är möjlig på
något annat sätt.

Den här avhandlingen behandlar Monte Carlo-simuleringar av diskformade
mineralpartiklar. I första projektet undersöktes hur antalet laddningar på en
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diskformad mineralpartikel varierar som funktion av pH i en saltlösning av
olika koncentrationer. Därefter studerades hur denna laddningsfördelning
påverkar bildandet av geler och flytande kristallina faser. Genom denna
studie upptäcktes nya termodynamiskt stabila faser vilket kan leda till utveck-
landet av nya material. Slutligen så studerades tillväxten av diskformade
nanopartiklar och deras interaktioner under förhållande jämförbara med de
förekommande i en cementblandning.
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Popular science summary in
English

Most people see chemistry as an abstract and complicated subject because it
deals with species that can not be seen with bare eyes. But if one think about
it, chemistry is everywhere! Chemical processes happen all around you and
inside you everyday : there is chemistry in the human body where proteins
play a great role, in shampoo bottles, the toothpaste, in the cement that is
used to build houses. Then it should not come as a surprise that so much
effort are put into understanding chemical processes.

So what are those invisible species that chemistry is dealing with ? I can say
with few doubts that everyone have heard about atoms and molecules (the
latter being an assembly of atoms). Atoms and molecules are not always neu-
tral species, i.e, they can carry an electrical charge (in this case atoms turn
into ions). This transition from a neutral to a charged species can occur when
the species are put into a solvent (like water). This is the case for example
with salt that dissolves in water and form ions. Examples of molecules that
becomes charged in an solvent are numerous : proteins, virus, polyeletrolytes
... But why is this electrical charge so important ? Like for magnets, where
a positive pole will attract a negative one, the species will start to interact
according to their charge. Among other factors like the shape of the particles,
the role played by the charges in chemical processes is fundamental.
Physical chemistry focuses on the understanding of the behavior of such small
particles (called colloı̈dal particles) in solution. Nevertheless, down to this
scale, the experimental study of colloı̈dal dispersions is not trivial. In this
context computational chemistry happens to be very useful. By the use of
mathematical and physical models, one tries to simulate the results obtained
by experiments and this way one can access properties that are not obtainable
by other means. Hence, it is a complementary technique to experiments.

This thesis deals with simulations, using Metropolis Monte Carlo method, of
mineral particles. In a first project I investigate how the number of charges
on mineral particles varies when emerged into a salt solution. In a second
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project the influence of the charge carried by the particles in the formation
of the gels and liquid-crystals is studied. One of the striking result is the
discovery of new liquid crystal phases which could lead to the development
of new materials. Finally I studied the growth of nanoplatelets and their
interaction in conditions comparable to the one encountered in cement paste.
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Résumé simplifié en français

Beaucoup de personnes voient la chimie comme un sujet abstrait et difficile
parce qu’elle concerne l’étude d’éléments invisibles à l’oeil nu. Mais, en y
réfléchissant, la chimie est partout! Des processus chimiques se déroulent
tout autour de nous et aussi en nous tous les jours : dans le corps humain
oú les protéines jouent un grand rôle, dans les bouteilles de shampoing, dans
le dentifrice, dans le ciment utilisé pour bâtir les maisons... Cela ne devrait
donc être une surprise pour personne qu’autant d’efforts soient employés
dans l’étude des processus chimiques.

Qu’elles sont ces epèces invisibles avec lesquelles la chimie fonctionne ? Je
pense pouvoir affirmer avec peu de doutes que vous avez tous entendu parlé
des atomes et des molécules (qui sont un assemblage d’atomes). Atomes et
molécules ne sont pas toujours des espèces neutres, c’est-à-dire, elles peu-
vent porter une charge électrique (dans ce cas, les atomes sont appelés des
ions). Cette transformation d’une espèce chargé à une espèce neutre peut
se dérouler lorsque la particule est plongée dans un solvant (comme l’eau).
C’est le cas par exemple lorsque l’on met du sel dans l’eau et que des ions
sont formés. Les exemples de particules qui deviennent chargées dans un
solvant sont nombreux: protéines, virus, polyélectrolytes ... Mais pourquoi
cette charge électrique est elle si importante ? Comme pour les aimants, où le
pôle positif attire le négatif, les espèces vont commencer à interagir selon leur
charge. Parmi d’autres facteurs, tel que la forme de la particule, le rôle joué
par les charges dans les processus chimiques est primordial.
La physico-chimie se concentre sur la compréhension du comportement de
telles petites particules (appelés particules colloı̈dales) lorsqu’elles sont im-
mergées dans une solution. Néanmoins, à cette échelle, l’étude expérimentale
des dispersions colloı̈dales n’est pas triviale. Dans ce contexte, les simu-
lations informatiques se trouvent être très utile. Elles ont pour but, par
l’emploi de modèles physiques et mathématiques, d’essayer de reproduire les
résultats obtenus expérimentalement et d’accéder à des valeurs qu’aucunes
autres techniques ne peuvent procurer. Elles sont donc complémentaires aux
expériences.
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Cette thèse traite de simulations moléculaires, réalisées à l’aide de l’algorithme
de Metropolis, de particules minérales en forme de disques. Dans un pre-
mier projet, l’évolution du nombre de charges sur une particule en fonction
de la concentration en sel est étudiée. Dans un second temps, l’influence
de la charge portée par les particules sur la formation des phases de gels et
de cristaux liquides est examinée. Un des résultats les plus marquant est la
découverte de nouvelles phases de cristaux liquides qui pourraient permet-
tre le développement de nouveaux matériaux. Enfin, la croissance de nano
particules et leurs interactions sont étudiées dans des conditions similaires à
celles rencontrées dans les pâtes de ciment.
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Chapter 1

Introduction

Nano-particles with a plate-like geometry are common in nature and synthetic
materials, or at least can well be approximated as such. The most common
examples are minerals like clays, gibbsite and calcium silicate hydrate (C-
S-H) the main hydrate found in hydrated cement paste. Plate-like particles
are also found in organic chemistry, where bonding molecules into a discotic
macromolecule is possible. Clays and C-S-H dispersions in aqueous solutions
is the main focus of this work. Their geometry combined, in some cases,
with a charge heterogeneity, e.g. clays, give rise to complex and nonisotropic
inter-particle potentials. The sign and the magnitude of the overall interpar-
ticle potential depends strongly on the anisotropy, concentration, and charge
heterogeneity of the particles as well as on pH of the aqueous solution, salt
nature and concentration. This results in a vast zoo of atypical macroscopic
states and behaviors when dispersed in aqueous solution. As an example,
clays are known to form gels at low particle volume fractions (φ) and liquid
crystals when concentrated. Many industrial applications take advantage of
these properties e.g. drilling, plastics [1], construction materials, papers, soft-
eners, photonics and photovoltaic cells. However, the understanding of those
systems is still in its infancy.

Clays and C-S-H particles belong to the domain of colloids as at least one
of their dimensions is in the nanometer range. Since the forties, the stability of
colloidal dispersions in aqueous solution has been rationalized with the help
of the DLVO theory [2,3], that combines a short range attractive (van der Waals)
potential with a long range electrostatic repulsion. Indeed, a strong attraction

[1] S. Laschat, A. Baro, N. Steinke, F. Giesselmann, C. Hägele, G. Scalia, R. Judele, E. Kapatsina,
S. Sauer, A. Schreivogel, and M. Tosoni, Angew. Chem. Int. Ed. 46, 4832 (2007).

[2] B. V. Derjaguin and L. Landau, Acta Phys. Chim. URSS 14, 633 (1941).
[3] E. J. W. Verwey and J. T. G. Overbeek, Theory of the Stability of Lyophobic Colloids (Elsevier

Publishing Company Inc., Amsterdam, 1948).
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can force particles to coagulate and lead to a phase separation, whereas a
dispersion under strong repulsion can remain stabilized for years [4]. Un-
fortunately, the DLVO theory is valid only for a limited range of conditions.
In particular, it is valid in the thermodynamic limit of infinite particle dilu-
tion and for weakly coupled systems, i.e. where ion-ion correlations are not
predominant. What is more, the DLVO theory focus on the simplest case: dis-
persions of charged isotropic particles. The lack of a generalized DLVO like
effective potential, on one hand, and of extensive computer simulations on
dispersion of anisotropic particles, on the other hand, best explains our poor
understanding of these complex systems and the motivations of this work.

Here, computer simulations are used to identify, at the microscopic scale,
the different chemical and physical processes when plate-like particles are
immersed into a salt solution in an attempt to rationalize macroscopic ob-
servables. In Paper I a detailed investigation of the charging process of the
titrable edges of natural clay particles is performed in comparison with poten-
tiometric titration experiments. In papers II - IV, the modeling of dispersions
of plate-like particles in 1-1 salt solutions in various conditions is considered.
Paper II deals with the formation of gels in the low φ range and discusses
in some details the similarities and differences of the model results with ex-
perimental observations on laponite and montmorillonite. Paper III prospects
the high φ range where several liquid crystal phases are found. In Paper
IV a detailed investigation of the geometry and charge anisotropy effects on
the formation of gel and nematic phases is performed and discussed in light
of recent experimental findings on dispersions of various mineral plate-like
particles. Finally, paper V describes the growth and interaction between ho-
mogeneously charged disc particles in presence of multivalent counterions in
relation to observations on C-S-H nano-hydrates.

The book is organized as follow. First the theoretical background and
simulation techniques are described and then in section VII conclusions on
this work are drawn. For those who do not want to dwell on a full length
article, a brief summary of the important results is also presented. The papers
are presented in the appendix at the end of the book.

[4] D. F. Evans and H. Wennerström, The Colloid Domain where Physics, Chemistry, Technology and
Biology meet (VCH Publishers Inc., New York, 1994).
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Chapter 2

System

An interesting point when one works with physical chemistry is the necessity
to connect the different scales. As a matter of fact, the connection between
a macroscopic system in a gel state (as obtained in an experiment) with the
organization of particles and the interparticle forces at a nanometer scale (as
obtained by computer simulation) is not trivial. One thing I would like to
point out in this book is the route one has to follow to be able to work this
way up through the different scales and to link a real experimental system
constituted of billions of particles moving around a solution to the hundreds
of platelets that are included in a computer simulation.

2.1 Structure

This thesis deals with the simulation of plate-like particles and the results are
compared, when possible, to experimental systems of mineral disk-like par-
ticles from diverse origin (clays[5], gibbsite [6], cement [7]...). Montmorillonite
and laponite clays and C-S-H particles (found in cement paste) are classified
as phyllosilicates. It means that their crystalline structure is constituted of
an octahedral layer sandwiched by two tetrahedral layers of silicate. In the
case of clays, the layers are made of covalently bonded silicate atoms that or-
ganize in tetrahedral or octahedral sites. The tetrahedral sites share three of
their apex while the last one is linked to the octahedral site. Exchangeable
metal ions are present in both type of sites, and can be substituted by ions

[5] G. W. Brindley and J. J. Comer, THE STRUCTURE AND MORPHOLOGY OF A KAOLIN
CLAY FROM LES EYZIES (FRANCE).

[6] H. Saalfeld and M. Wedde, Zeitschrift fur Kristallographie 139, 129 (1974).
[7] J. J. Chen, J. J. Thomas, H. F. W. Taylor, and H. M. Jennings, Cement and Concrete Research

34, 1499 (2004).
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of lower valency. This produces a negative structural charge. The cleavage of
the crystalline structure gives rise to titratable sites on the edges, which sign
and magnitude depend on pH, electrolyte nature and concentration. Natural
clays e.g. montmorillonite have a thickness of 1 nm but a diameter that can
vary between 100 and 1000 nm. Laponite, a synthetic clay, has a smaller di-
ameter than montmorillonite, typically 20-50 nm, for the same thickness. The
crystalline structure of gibbsite contains stacks of sheets formed by aluminum
hydroxide octahedral sites. The aluminum ions can be exchanged with anions
of lower valency introducing this way a structural charge. Titratable sites are
also present on the rims as a consequence of the cleavage of the crystalline
structure. Gibbsite particles are often of a hexagonal shape of thickness 10-
15 nm and diameter between 100-400 nm. The C-S-H particles are formed
through the conjugated reactions of dissolution of tricalcium silicate grains
(C3S) and of precipitation. These particles are in the form of nanoplatelets
with dimensions 60 x 30 x 5 nm3. The C-S-H particles carry titratable silanol
sites both on the edges and on the basal surface. At high pH and in presence
of calcium salt solutions they are found to be highly negatively charged [8].

2.2 Gels

A gel is a non-ergodic disordered state that displays no long-ranged order.
Macroscopically, it is reached when the solution do not flow any longer. The
gel phase originates from attractive interactions between particles and thus
are formed by percolated particles that form an infinite elastic network. The
characteristic length of the network between two adjacent junctions, is much
larger than the size of the particle. Moreover, if E is the depth of the attractive
potential between two junctions: E/kBT � 1 [9]. Experimentally gel phases
can be characterized by the static structure factor S(q) obtained from scattering
experiments. As a matter of fact, the S(q) curve presents two peaks, the first
at large q reflects the short interparticle distance between aggregated particles
and the second at low q, followed by a power law tail, reflects the characteristic
size and fractal nature of the growing network. Gel and glass present different
dynamic properties due to their different characteristic lengths. This can be
investigated with the help of dynamic light scattering (DLS) [10,11]. Note that,
from simulations, the static structure factor, and dynamic properties (through

[8] C. Labbez, B. Jönsson, I. Pochard, A. Nonat, and B. Cabane, J. Phys. Chem. B 110, 9219
(2006).

[9] H. Tanaka, J. Meunier, and D. Bonn, Phys. Rev. E 69, 031404 (2004).
[10] S. Jabbari-Farouji, G. Wegdam, and D. Bonn, Phys. Rev. Lett. 99, 021402 (2007).
[11] S. Jabbari-Farouji, H. Tanaka, G. Wegdam, and D. Bonn, Phys. Rev. E 78, 061405 (2008).



2.3 Attractive glass 11

time autocorrelation functions) are also reachable [12].

2.3 Attractive glass

Glasses are non-ergodic disordered states but unlike the gel, their elasticity
originates from caging effects. The formation of an attractive glass is then
possible when attractive interactions are at play in the colloidal system. Typ-
ically such a phase would form if the volume fraction φ is high enough and
if the depth of the attractive well E is of the order of kBT [9]. Neverthe-
less, even if attractive interactions are active, the repulsive interactions still
play the main role, contrarily to the gel phase. As experimental evidence of
the formation of a glass phase, the static structure factor presents only one
peak at a distance characteristic of the interparticle distance and shows only
a small change when the system ages. According to Jabbari-Farouji et al. [11],
attractive glass displays features of both glass and gel when experimentally
characterized. Their detection in computer simulations is not trivial.

2.4 Wigner glass

A glass phase can also be found at very low volume fraction and in the ab-
sence of attractive interactions. In this case the caging effect originates from
the double layer repulsion between the particles. Thus, the particles do not
form a network and are spatially disconnected. The formation of the repulsive
glass is favored by low ionic strengths as the double layer repulsion is known
to decrease when increasing salt. All experimental evidences discussed in the
previous section stay true for a Wigner glass. But, unlike the gel phase, a
Wigner glass should melt when a dilution is performed on it. Recently Ruz-
icka et al[13] and Jabbari-Farouji et al [11] reported the formation of a Wigner
glass for high volume fractions for a system of laponite platelets. This contro-
versial result is discussed in paper II.

2.5 Liquid crystals

Due to their geometry, plate-like particles have the ability to form liquid crys-
tals at high volume fractions. In these phases, particles present a long-ranged
positional and/or orientational order but the phase preserves the properties

[12] E. DelGado and W. Kob, Soft Matter 6, 1547 (2010).
[13] B. Ruzicka, L. Zulian, E. Zaccarelli, M. Sztucki, A. Moussaid, and G. Ruocco, Phys. Rev.

Lett. 104, 085701 (2010).
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of liquids. Onsager rationalized the formation of liquid crystal phases for un-
charged platelets [14,15] and explained, counter-intuitively, that their formation
had an entropic origin. Indeed the origin of these phase comes from the com-
petition between the orientational entropy, that tends to favor isotropic phase,
with the translational entropy that favors liquid crystals. The main classes of
liquid crystals encountered with plate-like particles are the nematic phase, the
smectic phase and the columnar phase, presented in figure 2.1.

Figure 2.1: Representation of the liquid crystal phases encountered with
platelets. a) Nematic phase, b) Smectic phase and c) Columnar phase.

While all of these phases present an orientational order they differ by the
positional correlation between the platelets. The nematic phase present no
positional order whereas the smectic phase, that is constituted of platelets
gathered in parallel sheets, has a one dimensional positional order. Finally,
the columnar phase, where the particles are organized in stacks including a
large number of platelets, have a two-dimensional positional order. While the
formation of such phases with uncharged platelets is now well understood
[16], the influence on the liquid crystal formation of charged platelets remains
unclear. This is investigated in papers II - IV.

2.6 Coarse graining

Ideally one would try to describe a system as accurately as possible. Unfortu-
nately, as described above, a mineral platelet has a minimum diameter of ∼ 50
nm which represents about 30000 atoms. With todays processors, computer
simulations can only be done with a limited number of species (around 105

species for Monte Carlo as an example). It becomes then mandatory to find

[14] L. Onsager, Phys. Rev. 62, 558 (1942).
[15] L. Onsager, Ann. N.Y. Acad. Sci. 51, 627 (1949).
[16] J. A. C. Veerman and D. Frenkel, Phys. Rev. A 45, 5632 (1992).
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a way to reduce the number of species in the simulations. The first way is
to consider smaller particles than the actual studied system. This is actually
not a big issue if one is interested in a qualitative description of the physical
phenomenon that happens in a system. A second way would be to vulgarize
the description of some species. That is where coarse graining comes into
play. It consists of gathering several units of any constituent of the system
into a single grain. The coarse graining has to be done with some care. While
decreasing the level of description of the model or the degrees of freedom of
the particles, one has to make sure to preserve the principal physical proper-
ties. For instance, the detailed description of a charge distribution can be lost
when merging several point charges into a single one. In all papers, several
different coarse grain models have been used : in paper I, the detailed de-
scription of the structure is replaced by hard grains to account for the finite
size of the particle. In papers II - IV, the description of the particles evolves
with the separation between themselves and in the last article, one platelet is
represented as a collection of charged grains. This method has been shown
to reduce the computing time up to several orders of magnitude and will be
further discussed in chapter 6.1.
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Chapter 3

Statistical Mechanics and
Thermodynamics

At a microscopic scale, a solution can be seen as an infernal mixture of species
in constant motion. How can one link this chaotic states to a macroscopic
thermodynamic property as obtained from experiments (pressure, tempera-
ture, ...) ? Statistical thermodynamics is the Rosetta stone that provides the
connection between the two scales. Originally from the 19th century, sta-
tistical thermodynamics is based on two postulates. The postulate about
equal a priori probability states that [17] ”an isolated system in equilibrium
is equally likely to be in any of its accessible microscopic quantum states”,
and links macroscopic properties of an isolated system to probability theo-
ries. Indeed, many of the macroscopic properties are time-averaged proper-
ties, which makes them difficult to access. Instead, the ergodic hypothesis
allows to access this properties by considering ensemble average. It states : ”
the time average of any mechanical variable is equal to the ensemble average
of the same variable”. An ensemble here is defined as an important number
of replica of the system.

3.1 Statistical mechanical ensembles

It is common to start looking into statistical thermodynamics [18,19] consid-
ering an isolated system with constant energy U, volume V, and number of

[17] R. Kjellander, The basis of statistical thermodynamics or My favorite path to thermodynamics and
beyond (University of Göteborg, Göteborg, Sweden, 1991).

[18] T. L. Hill, An Introduction to Statistical Thermododynamics (Dover Publications Inc., New York,
1986).

[19] D. A. McQuarrie, Statistical Mechanics (Harper Collins, New York, 1976).
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particles N. In this ensemble, defined as the microcanonical ensemble, the
entropy S is given by :

S = kB ln ΩU,V,N (3.1)

where kB is the Boltzmann constant, and ΩU,V,N is the microcanonical par-
tition function. It refers to the number of accessible quantum states of the
system. In an isolated system this function is sufficient to determine a large
amount of thermodynamic properties (P, T, µ, ...). Partition functions are ac-
cessible from other ensemble. In the canonical ensemble, where the number
of particles N, the volume V and the temperature T are kept constant, it is
defined from the microcanonical partition function as :

QN,V,T = ∑
U

ΩU,V,N e−βU (3.2)

where β = 1/kBT. QN,V,T is referred as the canonical partition function. Fi-
nally, in the grand canonical ensemble, where exchange in particles between
the system and a reservoir is allowed, the grand potential, takes the form :

Ξµ,V,T = ∑
N

QN,V,T eβµN (3.3)

where µ is the chemical potential of a particle in the system. As for the
microcanonical ensemble, thermodynamic properties are derivable from these
two last ensemble. This way, the Helmholtz’ free energy is defined in the
canonical ensemble as :

AN,V,T = −kBT ln QN,V,T (3.4)

While the product of the pressure and the volume can be related to the grand
potential:

PV = kBT ln Ξµ,V,T (3.5)

3.2 Classical statistical mechanics

When considering a continuum approach rather than a quantum mechani-
cal one, one has to integrate over all the classical ”states” of a system. The
canonical partition function becomes :

QN,V,T =
1

N!h3N

∫∫
e−βH(pN ,qN)dpNdqN (3.6)

where h is the Planck’s constant, H(pN , qN) the Hamiltonian of an N compo-
nents system of coordinates q and momenta p. As the particles are indistin-
guishable the factor N! comes into play in the denominator. The Hamiltonian
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of the system is indeed the total energy of the system and can be written as
the sum of kinetic energy K(pN) and a potential energy U(qN), which gives :

H(pN , qN) = U(qN) + K(pN) (3.7)

Then, if one integrates over the kinetic part, equation (3.6) can be simplified
as follow :

QN,V,T =
1

N!Λ3N

∫
e−βU(qN)dqN (3.8)

where Λ = h/
√

2πmkBT and m is the mass of one particle.

3.3 Protonation state

As stated in chapter 2, the studied minerals carry titrable groups, clays on
the edges and C-S-H on all surfaces. Several types of groups exist and are
formed by a metal atom (Me) linked to a hydroxyl group. The total charge
carried by those groups may vary and can be entire or fractional. A typical
protonation/deprotonation reaction can be written as:

−Me−OH ←→ −Me−O− + H+ (3.9)

The intrinsic dissociation constant of above reaction is defined by :

KMe−O =
aH+ aMe−O

aMe−OH
=

γH+γMe−O
γMe−OH

· cH+cMe−O
cMe−OH

(3.10)

where ai are the activities, ci the concentrations and γi activity coefficients of
the species i. One can then express the pKa in terms:

pKa = −log
γH+γMe−O

γMe−OH
− log

cH+cMe−O
cMe−OH

(3.11)

Let’s denote Γ = γH+γMe−O/γMe−OH and pH the negative logarithm of the
proton concentration, we obtain:

pKa = −logΓ− log
cMe−O

cMe−OH
+ pH ⇐⇒ −log

cMe−O
cMe−OH

= −logΓ− (pH − pKa)

(3.12)
where cMe−O

cMe−OH
is the probability of deprotonation of the group, and can be

written as a free energy difference:

β∆AMeOH→MeO = −ln
cMe−O

cMe−OH
= −lnΓ− ln10· (pH − pKa) (3.13)
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−lnΓ is defined as the sum of excess chemical potentials of all the species.
This can be used [20,21] to derive an MC move as explain in section 5.3.4 .

[20] M. Ullner, B. Jönsson, and P.-O. Widmark, J. Chem. Phys. 100, 3365 (1994).
[21] M. Lund and B. Jönsson, Biochemistry 44, 5722 (2005).
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Chapter 4

Intermolecular Interactions

The most accurate way to calculate the total interaction between two particles
would be to solve the Hamiltonian of this system. This quantum mechanical
calculation is at least very expensive and at worst impossible to carry out. It
is then necessary to use interactions like electrostatic interactions, exchange
repulsion or van der Waals interactions [22] to describe the behavior between
particles [23]. The aim of this chapter is not to give a full descriptions of all
the existing interactions but rather to give a brief description of those used in
papers I - V.

4.1 Coulombic interactions

Two charged species i and j sitting at a fixed distance rij from one another
will experience the field emitted by the other molecule. This strong and long-
ranged interaction is known as the Coulombic interaction [24] and reads :

u(rij) =
qiqj

4πε0rij
(4.1)

where q are the charges of the species and ε0 is the permittivity of vacuum
(ε0 = 8.854.1012 C2 J−1m−1). This description of the interplay between two
charged species does not take into account any influence of a surrounding
medium and remains only correct in vacuum. When the charged molecules
are immersed into a solvent, the solvent molecule rearrange according to the
total emitted field. The effect is particularly important in a highly polar sol-
vent like water. It can be derived that for purely dipolar solvent the electro-

[22] V. A. Parsegian, van der Waals Forces (Cambridge University Press, New York, 2006).
[23] J. Israelachvili, Intermolecular and Surface Forces (Academic Press, London, 1991), 2nd edn.
[24] J. D. Jackson, Classical Electrodynamis (John Wiley & Sons, Inc., New York, 1999).
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static interactions scale with a factor of ε−1
r , where εr is the dielectric constant,

changing the Coulomb interaction to its solvent average form :

w(rij) =
qiqj

4πε0εrrij
(4.2)

The most commonly used solvent is water and its dielectric constant is equal
to 80 at room temperature. Indeed, dielectric constant is known to be temper-
ature dependent as well as salt concentration dependent [25,26]. The averaged
Coulomb interaction is then a free energy. When salt is introduced in the
solution, it will influence the interactions the same way the solvent does. It
becomes possible to derive the expression of the Coulomb interaction when
a simple 1:1 salt is taken into account. This is known as the Debye-Hückel
potential [4] , derived from the linearized Debye-Hückel theory [27] :

u(rij) =
qiqj

4πε0εr

e−κrij

rij
(4.3)

where κ is the inverse Debye screening length and is defined as :

κ2 =
∑i(zie)2ci
ε0εrkBT

(4.4)

where ci and zi are the concentration and the valency of the ionic species i,
respectively. Scaling the Coulomb interaction with e−κrij simply represents
the decay of the electrostatic interactions due to the salt screening.
Note that in all papers included in the thesis, εr is considered constant through-
out space. This approximation is often used in simulation of colloı̈ds and is
known to give a good agreement between simulations and experiments for
several types of processes [28], like the charging process for instance.

4.2 Short ranged interactions

Due to Pauli’s exclusion principle, it is known that two particles repel one an
other at short separation. The simplest way to account for the finite size of
the particles in a simulation is to consider them as impenetrable hard spheres.
This is denoted as the hard sphere model :

u(rij) =

{
0 rij > σij

+∞ rij < σij
(4.5)

[25] J. Hubbard and L. Onsager, J. Chem. Phys. 67, 4850 (1977).
[26] J. M. Cailol, D. Levesque, and J. J. Weis, J. Chem. Phys. 85, 6645 (1986).
[27] P. Debye and E. Huckel, Z. Physik 24, 185 (1923).
[28] M. Lund, B. Jönsson, and C. E. Woodward, J. Chem. Phys. 126, 225103 (2007).
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where σij is the minimum separation between species i and j, σij = (di + dj)/2,
and d is the diameter. This potential presents inconvenience in the fact that
it is not a continuous function and causes problems when one want to derive
properties at contact, see e.g. force calculation in chapter 6.3. One way to
circumvent this problem is to use a soft repulsive interaction. One of them is
the 6-12 Lennard-Jones (LJ) potential expressed by :

u(r) = 4ε((
σij

rij
)12 − (

σij

rij
)6) (4.6)

where ε describes the strength of the interaction. This potential combines the
short range attractive part in r−6 from the van der Waals attraction with a
soft repulsion that decays as r−12. In fact, it is one of the most widely used
potentials in the literature. One way to get rid of the attractive part and to
preserve soft repulsion is to shift and truncate this potential. This gives rise
to the shifted and truncated LJ potential :

u(rij) =


4ε((

σij

rij
)12 − (

σij

rij
)6) + ε rij <

6
√

2σij

0 rij >
6
√

2σij

(4.7)

It has the advantage of being less long-ranged than a pure r−12 soft repulsive
potential.
Note that the combination of the Coulombic interaction and the hard sphere
model is called the primitive model [18] and is often used in simulations of
colloı̈dal systems.

4.2.1 Effective pair potentials

The use of effective pair potentials is an attractive and efficient way to model
/ simulate complex systems [29] like the ones of interest in this work. Indeed,
in such systems a brute force calculation that would involve, in addition to
the many atoms constituting the particles, a molecular description of the dense
solvent, i.e. water concentration is roughly 55 mol/l, and all the ions is ex-
tremely challenging if not stupid. The philosophy behind the term effective,
instead, consists in averaging over all the configurations of some of the com-
ponents. An effective pair potential has by its very nature, the characteristics
of a free energy. As an example, equation 4.2, introduced in preceding sec-
tion, is an effective pair Coulombs potential where the solvent molecules has
been averaged out and reduced to one single quantity that is the dielectric
constant εr. Similarly, equation 4.3 for the screened Coulombs interaction is a

[29] M. Turesson, B. Jönsson, and C. Labbez, Langmuir 28, 4926 (2012).
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effective potential between two point charges where the degrees of freedom of
the solvent molecules and ions have been averaged over.

On a more general ground, the effective pair potential, or the potential of
mean force between two macro-particles (w(2)(R)), defines the average work
needed to bring particles i and j from infinite separation to R,

w(2)(R) = −
∫ R

∞
Fij(r)dr (4.8)

where Fij(r) is the average force acting on the macro-particles i and j when
separated a distance r. w(2)(R) is also related to the probability P(R) of finding
two macro-particles a distance r,

P(R) ∝ exp(−w(2)(R)/kBT) (4.9)
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Chapter 5

Monte Carlo Simulations

Many different simulation techniques from diverse origin exist. Many of them
are based on statistical mechanics, like Molecular Dynamic (MD), Brownian
Dynamic (BD) or Monte Carlo (MC) [30,31,32]. The one of interest here is the
MC simulation technique. While MD and BD are dynamic simulations and
calculated properties are time-averaged properties, MC is a stochastic tech-
nique and works with ensemble average. From MC, it is possible to evaluate
definite multidimensional integrals, like eq. 3.8, which are intractable with
analytic techniques. It also provides several advantages inherent to this tech-
nique: i) the equilibrium is quickly reached, ii) it allows the use of a large
number of ensembles and iii) it allows unphysical displacements of the parti-
cles.

5.1 Thermal averages and importance sampling

Actually, MC simulations can not be used to evaluate directly integrals of the
form

∫
e−βU(qN)dqN but indeed they make reachable thermal average of any

observable ξ which expression is given by:

< ξ >=

∫
ξ(qN)e−βU(qN)dqN∫

e−βU(qN)dqN
(5.1)

Technically, this can be done by averaging over a high number of reproduc-

[30] D. Frenkel and B. Smit, Understanding Molecular Simulation (Academic Press, San Diego,
1996).

[31] M. P. Allen and D. J. Tildesley, Computer Simulation of Liquids (Oxford University Press,
Oxford, 1989).

[32] Landau and Binder, A Guide to Monte Carlo Simulations in Statistical Physics (Cambridge Uni-
versity Press, Cambridge, 2000).
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tions of the system which are representative of an ensemble. Those are gen-
erated stochastically with the help of random numbers. Obviously, the more
configurations of the system are generated and averaged over, the more accu-
rate the evaluation of the observable. Note that, it is important to use a good
random number generator if one wants to avoid bias in the sampling. This
will not be developed in this book, for more detailed information see reference
[32]. However, at this point, one problem emerges. Most of the generated con-
figurations of the system will not give any informations about the observable
of interest. Then an important number of reproductions would be needed to
evaluate correctly < ξ > and it would turn MC simulations into a slow and
useless technique. Indeed only configurations which gives informations of
interest should be sampled. This problem is solved with the method of the
Metropolis Importance Sampling [33]. The idea is to sample configurations
with a probability proportional to their Boltzmann weight :

P(qN
i ) =

e−βUi(qN
i )∫

e−βU(qN
i )dqN

i

(5.2)

where i, refers to the i:th configuration of the system. Then it follows that the
probability of going from the configuration i to j is defined as :

P(qN
i )

P(qN
j )

= e−β(U(qN
i )−U(qN

j )) (5.3)

Equation 5.3 is actually very useful as it defines the Metropolis acceptance
test in a MC simulation in the canonical ensemble, that is : the probability of
acceptance to go from configuration i to j is :

αacc(i→ j) = min(1, e−β(U(qN
i )−U(qN

j ))
) (5.4)

The use of this criteria will be detailed in the next section.

5.2 The procedure

In this section, the procedure for a typical MC simulation is described. The
first step is to choose a box of any form (cubic, cylindrical, ...), where the
model particles are placed (randomly or not). Unfortunately the number of
sites (including particles, or other species) that a MC simulation can handle
is relatively limited, i.e about 106. Hopefully the thermodynamic limit is
reached for really small systems, and few particles are needed to get a proper

[33] N. A. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. Teller, and E. Teller, J. Chem.
Phys. 21, 1087 (1953).
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statistical average. At this point a problem that may arise, depending on the
type simulation box used, is that the surface of the box will have a strong
influence on the particles. Or, when interested in bulk properties, one wants
to avoid this effect. One way to circumvent it, is to apply periodic boundary
conditions to the box. It consists of reproducing the main simulation box
in all directions. This creates an artificial periodicity that mimics the bulk
conditions. The next step is to run the Markov chain that consists of several
operations :

• Choose a particle at random in the simulation box.

• Apply a random move to the particle. Different kind of moves are de-
veloped in the next section.

• Calculate the energy difference (using the chosen potential(s)) between
the new and the old configuration. ∆U = Unew −Uold.

• Apply the Metropolis acceptance criteria. For that, one needs to generate
a random number, denoted Rand ∈ [0, 1]. The move is accepted if Rand
< αacc (Eq. 5.4), else rejected.

• If the move is accepted, sample the desired properties.

• Start again from first step.

Usually a first run is done without any sampling. This is called the equili-
bration run. The aim of this operation is to make sure that the system has
reached equilibrium before one starts sampling equilibrium properties. It is
actually in the second run, called the production run, that all properties are
sampled. On the paper, running MC simulations seems like an easy task. But
sometimes it is a bit more intricate. Highly concentrated systems or systems
in (semi-)crystalline phases might reveal themselves tricky to equilibrate due
to their slow ”natural” dynamics. As an example figure 5.1 shows the evolu-
tion of the total energy of a system constituted of 200 platelike particles build
of 199 sites at a high volume fraction of 21 % and at a salt concentration of 1
mM. The system needs between 2 and 2.5 106 cycles (= moves per particles)
to be equilibrated, which corresponds to 8 days of calculation time on 8 pro-
cessors. This is a typical behavior when one deals with simulations of liquid
crystal phases (papers II - IV). At higher volume fraction up to 4 months were
necessary to equilibrate the systems.
A way to help the simulations to converge faster is to implement in the
Markov chain the use of cluster moves, see after 5.3.2.

5.3 Monte Carlo moves

When a particle is moved in the simulation box, the detailed balance criteria
has to be fulfilled, i.e. in equilibrium the probability of accepting a move from
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Figure 5.1: Evolution of the total energy as a function of the number of cycles
for a system of 200 platelets constituted of 199 sites for a volume fraction of
21 % and a salt concentration of 1mM.

configuration 1 to 2 has to be the same as the reverse move (from 2 to 1). This
implies :

P(1)π(1→ 2) = P(2)π(2→ 1) (5.5)

where P(x) is the probability to be in state x and π(a → b) is the transition
probability to go from configuration a to b. Eq. 5.5 can be rewritten :

π(1→ 2)
π(2→ 1)

=
P(2)
P(1)

= e−β(U(2)−U(1)) (5.6)

5.3.1 Single particle displacements

Single particle displacements are the simplest move that exists in a MC sim-
ulation. They consist in choosing one particle at random and translate or
rotate it a certain distance or angle. The amplitude of the moves are usually
set as input parameters of the MC runs. As a rule of thumbs, displacement
parameters are usually set so that the acceptance ratio is between 20 and 40%.
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5.3.2 Cluster moves

Sometimes moving the particles and sampling the configurational space might
be difficult. A trick to help the sampling is to create a ”bias” in the MC sim-
ulation by using unphysical moves that are more likely to be accepted. A
cluster move [30,34]consists in gathering several particles into a cluster and to
make a collective displacement (translation or rotation) of all particles that
belong to the cluster. The acceptance criteria of such a move is :

αcluster
acc = min(1, e−β∆U ∏

kl

1− pnew(k, l)
1− pold(k, l)

) (5.7)

where p(k,l) is the probability for particle k (inside the cluster) and l (outside
the cluster) to be in the cluster. This simply means that the number of total
particles in the cluster should be the same before and after the move. The
criteria of affiliation of one particle to the cluster remains of the choice of
the user as the results do not depend on the cluster form. This is actually
satisfactory since it allows to adapt the cluster shape according to the structure
and geometry of the studied system. In papers II -IV, instead of using the
common spherical cluster, where all particles included in a sphere of radius
R from a random particle belong to the cluster, infinite thin slit and sphero-
cylindrical clusters have been developed. A 2D sketch of the cluster moves
with a sphero-cylinder is drawn in figure 5.2.

Figure 5.2: Schematic representation of a cluster move. The cluster described
is the sphero-cylindrical cluster and the figure on the left hand side describes
the result of a rotation while on the right hand side, the result of a translation.

The infinite slit cluster has a fixed thickness (defined in the input parameters).

[34] H. L. Gordon and J. P. Valleau, Mol. Simul. 14, 361 (1995).
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It allows the common displacement of aligned particles. This has been shown
to be efficient when dealing with layered liquid crystal phases, e.g. Smectic B
and columnar phases. The sphero-cylinder cluster has also a fixed thickness
but a variable radius taken at random and allows the displacement of close
proximity particles like aggregated particles. It has been shown to be efficient
for gel phases. Rotation moves of the slit cluster is, however, limited to small
angles, typically ∼ 5− 6◦, since artefacts in the cluster configuration can occur
due to the periodic boundary conditions, as illustrated in figure 5.3.

Figure 5.3: Schematic representation of the rejection of a rotation move of
an infinite cluster. In this case the periodic boundary conditions lead to the
creation of an artefact in the cluster.

In this particular example, particles 1 and 2 are moved out of the simulation
box after rotation of the cluster. Once the periodic boundary conditions ap-
plied, the particles are found in the new positions 1’ and 2’ with the new
interparticle distances inside the cluster different from the original ones, i.e.
d1 6= d1′ and d2 6= d2′ . In this case the detailed balance is not respected and
the MC move is rejected.

5.3.3 Addition or deletion of species

When simulating in the grand canonical ensemble, the simulation box is con-
nected to a reservoir of particles of appropriate species (salt, macroions ...).
This implies that besides of the normal moves, the species have to be allowed
to enter and leave the simulation box. This is done by trying random addi-
tions or deletions of the species in the box [35]. The acceptance criteria for
insertion is defined as :

[35] J. P. Valleau and K. Cohen, J. Chem. Phys. 72, 5935 (1980).
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αinsertion
acc = min(1,

V
Λ3(N + 1)

e(β(µ−∆U))) (5.8)

and for deletion as:

αdeletion
acc = min(1,

NΛ3

V
e(−β(µ+∆U))) (5.9)

where ∆U is the energy difference between the new configuration where the
species are added or removed and the old configuration, V is the volume of
the box, and N the number of species. When changing the number of charged
species, one has to be careful to keep electroneutrality in the box. This is done
by adding a number of molecules whose total charge is zero.

5.3.4 Grand canonical titration method

From the thermodynamic derivation in section 3.3 we extracted the free en-
ergy difference upon deprotonation of a titrable site. This can been used to
develop a MC titration move at the level of the primitive model where the pro-
tons are treated implicitly and for which the energy difference can be written
as:

∆U = ∆Uel ± kT ln 10(pH− pK0) (5.10)

where ∆Uel is the electrostatic part and the second term on the right hand
side accounts for the chemical effects through the log decimal of the intrinsic
dissociation constant (pK0) evaluated in the appropriate thermodynamic ref-
erence state (ideality). Note that the minus sign is for deprotonation and the
plus sign for protonation.
In practice, the method consists in (i) changing the charge status of the site
taken at random and (ii) moving an arbitrary salt ion in or out from the sim-
ulation box to maintain the electroneutrality of the system. Steps (ii) makes
eq. 5.10 incorrect by an energetic term associated with the move of the simple
salt ion. A grand canonical titration method has been proposed [36] to remedy
this problem. It relies on the idea that the titration can be decomposed in
several steps. As an example the (de)protonation can be decomposed in two
successive steps that involve i) the (de)protonation of the surface and ii) the
exchange of the ion couple (H+, B−) with the bulk. For deprotonation, the
acceptance rule thus reads:

αdeprotonation = min(1,
NB
V

e−βµB e−β∆Uel
e+ ln 10(pH−pK0)) (5.11)

[36] C. Labbez and B. Jönsson, Lect. Notes Comp. Sci. 66, 4699 (2007).
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and for protonation :

αprotonation = min(1,
V

NB + 1
e+βµB e−β∆Uel

e− ln 10(pH−pK0)) (5.12)

where µB− is the chemical potential of the simple salt anion B−.
This method was used in paper I.
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Chapter 6

Simulations Techniques

An important number of simulation programs (open source and commercial
codes) are available, e.g. Gromacs [37](MD), Faunus [38] (MC), Molcas [39]

(QM). These codes can, in principle, be handled by a large community of
expert and non-expert users. All the codes used during my PhD are in-house
written. It is relevant to mention here that a lot of effort were devoted into
code development and optimization to obtain the results presented in this
work. The purpose of this section is to highlight some of the techniques I
used to improve the efficiency of Monte Carlo simulations and to analyze the
results.

6.1 Distance dependent coarse graining

As stated in chapter 2, one of the most efficient way to decrease the comput-
ing time is to coarse grain the system. For this purpose, a distance dependent
coarse graining was developed and used in the simulations presented in pa-
pers II-IV. Its principle relies on the idea that at large inter-particle separation
the use of the same level of particle description as at short separation is not
necessary when calculating the inter-particle interactions. Indeed, a detailed
description at short separation and a punctual net charge at large separation
give almost the same degree of accuracy. Figure 6.1 illustrates the particle
description employed on the fly during simulations as a function of their sep-
aration for calculating the interactions.
In practice, three levels of description were used, as described in Fig. 6.1,
delimited by two cut-off distances, f1 and f2. These conveniently allow to

[37] http://www.gromacs.org/.
[38] http://faunus.sourceforge.net.
[39] http://www.molcas.org/.
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Figure 6.1: Description of a particle as a function of its separation with respect
to the others when calculating the interactions. At short separations, the full
description is used; at intermediate separations, the sites are gathered into a
collection of hexagonal patches and at large separations the particle is reduced
to a punctual net charge. f1 and f2 are user defined cut-off distances, see the
text for more details.

switch from one level of description to another during a simulation. f1 and f2
were determined by comparing the energy of interaction between two rings of
appropriate charge and size with those obtained with the level of description
described above for a large range of screening length. At a given κ, the cut-off
distance was defined as the distance that gives an energy difference of ∼ 10−6

kT. The obtained points were interpolated with a simple exponential function
as exemplified in Figure 6.2. Note that the procedure has to be repeated for
all particle sizes and net charges considered.

6.2 Phase characterization

6.2.1 Nematic order parameter

A convenient way to characterize a nematic phase in a simulation is to cal-
culate the nematic order parameter (S) which is a measurable quantity in an
experiment. S is bound between zero and unity and measures the long range
orientational order characteristic of a nematic phase. It takes the value of
unity in a sample where all the platelets are perfectly orthogonal to the sam-
ple director, n, defined as the spatial and ensemble average of the particle
normal vectors, u. S = 0 when they are randomly oriented. As a matter of
fact, S2 = P2(r → ∞) where P2(r) is the second Legendre polynomial of the
azimuthal angle between the normal vectors of two platelets. P2 = 1 when the
normals are parallel and P2 = −1/2 when perpendicular. Typically, S ∼ 0.4
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Figure 6.2: Cut-off distances, f1 and f2, as a function of the inverse screening
length κ for particles having a diameter of 150 Å, a net charge of -103 e and
patches with a net charge of -19e. The dashed lines show the result of the
exponential fits.

at the isotropic/nematic phase transition. In addition, S is found to increase
rapidly with φ at the isotropic/nematic phase transition which allows to de-
fine quite accurately its position, as exemplified in figure 6.3.
Although S can in principle be calculated from P2 extrapolated at large r it
is in most of the cases computationally cumbersome since this presupposes
that simulations are run on large systems. More conveniently, S may be ob-
tained from the evaluation of the director [40]. Indeed, S can be written as the
following ensemble average,

S =
1

2N
〈

N

∑
i

3ui ·n− 1〉 (6.1)

where N is the total number of particles. The length scale of director fluctu-
ations is large compared to a typical simulation box size, and, consequently,
a single director apply to the simulated sample at any instant. That is, the
typical length scale of a liquid crystal without defect is considerably larger

[40] M. Allen, G. T. Evans, and D. Frenkel, Hard Convex body fluids (John Wiley & Sons, Inc., New
York, 1993).
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Figure 6.3: Nematic order parameter as a function of φ calculated for a system
of 200 uncharged platelets constituted of 199 sites and of diameter 150 Å. S is
found to increase rapidly at the isotropic/nematic transition.

than what is so far possible to simulate. During the course of a simulation
the director, however, slowly fluctuates, i.e. change direction. The difficulty
to determine the nematic order parameter is, thus, to determine the director.
For this purpose two routes were followed. The first consists in calculating
the director for each configuration, since ui = −ui (no polarity), n can be cal-
culated like n = ∑±ui, and S from equation 6.1. The second is based on the
maximization of S with respect to rotation of n. It can be shown [40] that writ-
ing S = n ·Q ·n, where Q is the order parameter tensor, reduces the problem
to diagonalizing Q ·Q, and may be written as,

< Q >=
1
N
〈

N

∑
i=1

3
2

ui ·ui −
1
2

I〉 (6.2)

where I is the identity matrix. The eigenvalues of this tensor are λ+, λ0 and
λ− in order of decreasing size. They are directly related to the order nematic
parameter as : 

λ+ = S

λ0 = −S/2

λ− = −S/2

(6.3)
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The eigenvector corresponding to λ+ gives the director.

Figure 6.4 shows the behavior of the calculated nematic order parameter as a
function of the number of MC cycles at two different volume fractions using
the two methods described above. At low particle concentrations, i.e in the
isotropic phase (Fig. 6.4 left), S values obtained from equation 6.3 are con-
verged after ∼ 500 cycles. From the direct evaluation of the director, equation
6.1, the results converge more slowly. Equation 6.3 is more accurate at low
volume fraction but both techniques are equivalent at high volume fraction,
see Fig. 6.4 right). In this example, S obtained from λ+ and equation 6.1 are
indistinguishable and after a few cycles, converge to ∼ 0.9. From this com-
parison and further tests, not presented here, it was found that S determined
from λ+ was the more stable one. All the calculations of S presented in the
papers were thus determined from λ+.

Figure 6.4: Nematic order parameter obtained from equations 6.3 and 6.1,
see the text for more details. Simulations are performed for a system of 200
platelets constituted of 199 sites, of diameter 150 Å and net charge Znet=-151e.
The salt concentration is 10 mM and the particle volume fractions are chosen
such as φ=7% (left), and 18% (right).

6.2.2 Columnar phases

In paper III formations of columnar phases are described. In addition to the
usual radial distributions, several characteristic structural parameters were
determined to characterize them. These are the average inter-columnar dis-
tance, the average intra-columnar distance and the average angle of the parti-
cles with the columnar phase director as depicted in Figure 6.5
To do so, the following procedure is used and repeated for all particles of
a considered configuration. A “columnar” cylinder (dotted) and “planar”
sphero-cylinder (dashed lines) centered on a chosen particle are created ori-
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Figure 6.5: Schematic representation of the columnar structural parameters; h:
intra-columnar distance; l: inter-columnar distance, θ average particle angle.

ented according to its normal vector. The columnar cylinder is used to deter-
mine the nearest neighbors in the same column called intra-columnar (black
particles). The planar sphero cylinder (dashed line) is used to find the neigh-
bors in the adjacent columns belonging to the same or nearest planes desig-
nated as inter-columnar (red particles). The geometrical parameters are then
recorded as a function of the number of nearest intra- and inter-columnar
neighbors. The analysis is included in the Markov chain and takes place typ-
ically every 4000 cycles. At the end of the MC simulations the distribution of
the different structural parameters are determined. Note that the dimensions
of the two geometrical probes have to be adapted according to the columnar
phase studied.

6.2.3 Gels

As explained in chapter 5, MC simulations do not provide access to dynamic
quantities. Then to capture the gel formation from the simulations, two pa-
rameters are considered: the percolation and the elasticity of the system. The
percolation is studied through the connectivity of the particles in the simu-
lation box. Two platelets are considered to be ”connected” neighbors if the
separation between a site in one platelet is within 15Å of a site in the other.
Several connected platelets are said to form a cluster. From these definitions
several quantities are calculated like:

• The average number of neighbors for a platelet in a cluster (〈Nnei〉).

• The average number of platelets in a cluster (〈Ncl〉).

• The probability to find a particle in a cluster of size X (〈Pcl
X 〉).
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• The average fraction of particles in a cluster =
∫ N

2 Pcl
X dX (〈 f cl〉).

The elasticity of the suspension is evaluated calculating the average squared
force acting on a particle. For that, the squared force is calculated for the three
Cartesian components: 〈F2

x 〉, 〈F2
y 〉 and 〈F2

z 〉 where:

〈F2
x 〉 = −

〈(
∂w(R)

∂x

)2
〉

(6.4)

The total average squared force is then considered to be the arithmetic average
of the three Cartesian components.

6.3 Potential of mean force between two platelets

In paper V the potential of mean force, pm f , between two charged platelets
is studied at the level of the primitive model. The pm f is calculated within a
closed cylindrical cell where the particles are allowed to move along the axis
of revolution of the cell z.
The pm f calculation of two platelets quickly becomes computer demanding
as their size grow. This is related to the difficulty to move the platelets due
to their geometrical anisotropy, the number of species involved and the mag-
nitude of the interactions in play. For this reason the calculation of the pm f
from the platelet radial distribution function, c.f. equation 4.9, turns out to
be rather inefficient although cluster moves were employed and the sampling
was split into several windows. Alternatively, the pm f can be extracted from
the inter-particle force calculated at fixed positions R. The force can either be
calculated at contact with the colloids or at the cylinder mid-plane, see below.
The latter was found to be the more efficient mainly because the ion density
at the mid-plane is much lower than at contact with the colloids.
Figure 6.6 compares the calculated pm f between two platelets with 19 sites
(50 Å in diameter) immersed in a 10 mM 2:1 salt solution at φ = 0.013 using
the different approaches described above. In paper V the two last techniques
have been used to sample the free energy since they are either easier to use or
more accurate.

In the following we will assume two colloids decorated with ns charged sites,
immersed in a salt solution containing Ni ions. In addition, the sites and ions
are considered as charged Lennard-Jones (LJ) particles.

6.3.1 Contact force approach

The mean force between two platelets for a fixed colloid center-to-center sepa-
ration R can be evaluated at contact [30,31]. It can be written as the sum of four
distinct terms, see eq. 6.5. The two first terms are the direct Coulombs and LJ
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Figure 6.6: Potential of mean force between two platelets with 19 sites (50 Å in
diameter) immersed in a 10 mM 2:1 salt solution at φ = 0.013 obtained from
three different approaches. Full curve: mid-plane approach; symbols: contact
force approach; dotted curve: radial distribution function approach.

forces between the colloids. The two last terms are the ensemble average of
the electrostatic and LJ forces exerted on the colloids by the surrounding ions.

F(R) = −
〈

ns

∑
i=1

ns

∑
j=1

(
∂uel(rsisj)

∂R
+

∂uLJ(rsisj)

∂R

)〉

−
〈

Ni

∑
i=1

ns

∑
j=1

(
∂uel(risj)

∂R
+

∂uLJ(risj)

∂R

)〉
(6.5)

6.3.2 Mid-plane approach

The mean force can also be evaluated over the mid-plane [41,42] (z = 0) for
a fixed colloid center-to-center separation R along the main axis, z, of the
cylinder cell. By doing so, the total mean force can be divided into three

[41] P. Linse, Adv. Polym. Sci. 185, 111 (2005).
[42] J. Z. Wu, D. Bratko, H. W. Blanch, and J. Prausnitz, J. Chem. Phys. 111, 7084 (1999).
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terms according to 6.6.

F(R) = Fel(R) + FLJ(R) + Fid(R) (6.6)

The terms Fel(R) and FLJ(R), are calculated by summing all Coulomb and LJ
forces between species residing on different sides of the mid-plane. The last
term is the ideal contribution, which can conveniently be defined as

βFid(R) = [ρI(z = 0)− ρI(z = ±L/2)]A (6.7)

where ρI(z = 0) and ρI(z = ±L/2) are the ion densities at the mid-plane and
at the cylinder end walls of cross-sectional area A.
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Chapter 7

Summary of Results and
Concluding Remarks

7.1 Charging process of 2:1 clays

The role of electrostatic interactions on the acid-base titration of various nat-
ural clays is investigated in paper I. With a model that is shown to include
the main physics, we demonstrate that the observed pH shift in the titration
curves with the ionic strength originates from electrostatic interactions be-
tween the titratable edge charges and the permanent basal charge [43,44,45]. An
excellent agreement is found between simulations and experimental titrating
results. When looking at the titration of clay platelets stacks, like e.g. Illite, the
point of zero net proton charge (PZNPC) is found to decrease when increasing
the number of sheets in the stacks. These results are used to rationalize the
order of apparent PZNPC (or PZSE in the case of pyrophyllite) found in the
literature: Pyrophyllite (4 < PZSE < 4.5) < Illite < Montmorillonite. Finally
the mean field approach is shown to fail to describe the acid-base behavior of
clays for low pH and high salt concentration.

7.2 Gel and glass formations

When attractive interactions are at play in a clay suspension, gels form at low
volume fractions. They arise from the strong attraction between positively
charged edges and negatively charged basal planes. Their formation is shown

[43] B. Baeyens and M. Bradbury, J. Contam. Hydrol 27, 199 (1997).
[44] M. Duc, F. Gaboriaud, and F. Thomas, J. Colloid Interface Sci. 289, 148 (2005).
[45] E. Tombácz and M. Szekeres, Appl. Clay Sci. 27, 75 (2004).
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to be enhanced for large particle sizes, high charge anisotropy and low salt
concentration. A detailed study of the gel structure indicates that they are
formed by a network of platelets organized in a mixture of ”House of Cards”
and ”Overlapping Coins” configurations as experimentally observed [46].
For large platelets and high charge anisotropy, a phase separation between
an equilibrium gel and a isotropic liquid phase is predicted at low volume
fractions. The threshold volume fraction value at which the phase separation
occurs is further found to increase with salt concentration. The same ob-
servations made for aged laponite dispersions, although the phase separated
samples were found at lower volume fractions [46,47].
At intermediate charge anisotropy, a gel forms from a sol of clusters of in-
dividual particles randomly oriented that progressively grows with volume
fraction in qualitative agreement with observations in montmorillonite clay
dispersed in low pH and salt concentration aqueous solutions.
For entirely negatively charged platelets, a transition from an isotropic liq-
uid to a glass phase occurs. This transition is favored for small particles
in agreement with experimental observations on natural clay dispersions at
neutral pH [48]. Reversely, the sol-gel transition and liquid-gel separation
are found to be favored for large particles bearing a weak and strong charge
anisotropy, respectively.
Finally, in the case of strong charge anisotropy, the liquid-gel separation is
predicted to disappear in favor of a sol-gel transition upon decreasing the
size of platelets. This is depicted by papers II and III.

7.3 Liquid crystal formation

Several liquid crystal phases were encountered throughout the studies. Their
formation is studied as a function of charge anisotropy, ionic strength and size
of the platelets in papers II-IV.

• A smectic B phase is found for volume fractions between 1 and 7% and
low salt concentration (< 10mM). Its formation is only observed when
the particles bear a strong charge anisotropy. This phase dissolves at
high salt concentration. Note that, it is the first time that such a phase
is predicted for charged plate-like particles dispersed in an aqueous sol-
vent.

[46] P. Mongondry, J. F. Tassin, and T. Nicolai, J. Coll. Interface Sci. 283, 397 (2005).
[47] B. Ruzicka, E. Zacarelli, L. Zulian, R. Angelini, M. Sztucki, A. Moussaid, T. Narayanan, and

F. Sciortino, Nature Mat. 10, 50 (2011).
[48] L. J. Michot, C. Baravian, I. Bihannic, S. Maddi, C. Moyne, J. F. L. Duval, P. Levitz, and

P. Davidson, Langmuir 25, 125 (2009).
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• The formation of the nematic phase has been shown to be favored by
low aspect ratio for neutral platelets [16]. This result is also found in
our simulations. Its formation is predicted to be further favored for uni-
formly charged platelets. Reversely, the presence of a charge anisotropy,
i.e. positive charges on the edges, hinders the formation of a nematic
phase. The latest is shown to disappear when the charge anisotropy is
too strong. The isotropic-nematic transition is often close or pre-empted
by a liquid-solid transition. We found that a true liquid-nematic transi-
tion may occurs when the platelets carry a low charge anisotropy or are
entirely negatively charged.

• Finally, columnar phases are encountered for high volume fractions.
Their formation is found to be favored by high charge anisotropy and
low ionic strength. Depending on the positive charge distribution on the
edges and the salt concentration, new columnar phases were discovered
as the zig-zag columnar phase, the interpenetrated rectangular and hexagonal
columnar phases. The latter was also recently predicted by Morales-Andra
[49].

7.4 Growth and stability of nanoplatelets

In paper V, the growth of C-S-H nanoplatelets is shown to be limited by their
own internal electrostatic repulsions. We also study in some details the sta-
bility of such particles in calcium salt solutions and discuss the possible con-
sequences on the kinetic competition between the growth and aggregation of
C-S-H platelets. Finally, we investigate the different modes of aggregation
of these platelets onto C3S grain surfaces. In agreement with experimen-
tal observations[50,51], it is found that a high calcium concentration and pH
enhance the axial “growth” of the platelets, whereas opposite conditions en-
hance a lateral “growth”.

7.5 Concluding remarks

In this book, I present the results I obtained when investigating several scien-
tific problems by the use and development of computer simulations. The goal
was not only to create theoretical models but also to bridge experiments and
theories in order to give further insights into complicated physico-chemical

[49] L. Morales-Andra, H. H. Wensink, A. Galindo, and A. Gil-Villegas, J. Chem. Phys. 136,
034901 (2012).

[50] S. Garrault and A. Nonat, Langmuir 17, 8131 (2001).
[51] S. Garrault, E. Lesniewska, and A. Nonat, Material and Structures 38, 435 (2005).
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systems. The whole range of systems and chemical phenomena considered
clearly demonstrate the importance of the study of plate-like particles, more
especially as these results are relevant to many other systems.

The development of a model able to reproduce the main behavior and the
complete phase diagram of charged plate-like particle suspensions has been
an ongoing project for 30 years in physical chemistry. This thesis is a new
step in this direction. It shows that the underlying physics of clays and C-S-H
in aqueous solution can be partially captured by the use of simple models
and theories. Further investigations involving more sophisticated theories or
different techniques are of course needed to complete the picture.

An interesting aspect with computational physical chemistry is that computer
power increases rapidly with time. There is no doubt that, in few years time,
one will be able to approach scientific problems with a much more detailed
description of the systems. This is a good thing considering the number of
unanswered questions related to the behavior of dispersions of mineral plate-
like particles.

Finally, I hope that the reader has found some interest in the work presented
in this book and that the results will inspire further experimental and theo-
retical investigations.
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