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Pål Nilsson

Department of Communication Systems
Lund Institute of Technology



ii

ISSN 1101-3931
ISRN LUTEDX/TETS–1080–SE+138P
c©P̊al Nilsson
Printed in Sweden
Tryckeriet i E-huset
Lund 2006



iii

To my family



iv

This thesis is submitted to Research Board FIME - Physics, Informatics,
Mathematics and Electrical Engineering - at Lund Institute of Technology,
Lund University in partial fulfilment of the requirements for the degree of
Doctor of Philosophy in Engineering.

Contact information:
P̊al Nilsson
Department of Communication Systems
Lund University
Box 118
SE-221 00 LUND
Sweden

Phone: +46 46 222 03 68
Fax: +46 46 14 58 23
e-mail: paln@telecom.lth.se



v

Abstract

In communication networks, fair sharing of resources is an important issue
for one main reason. The growth of network capacity is in general not
matching the rapid growth of traffic. Consequently, the resources consumed
by each user have to be limited. This implies that users cannot always
be assigned the end-to-end bandwidth they ask for. Instead, the limited
network resources should be distributed to users in a way that assures fair
end-to-end bandwidth assignment among them.

Obtaining fairness between network users and at the same time assuring
efficient network utilization, is a source of non-trivial network optimization
problems. Complicating factors are that each user has limited access to the
(limited) network resources and that different users require and consume
different amounts and types of resources.

In this thesis different types of optimization problems associated with
fair resource sharing in communication networks are studied. Initially, the
notions of max-min fairness, proportional fairness, α-fairness etc., are put
in a formal framework of fair rational preference relations. A clear, unified
definition of fairness is presented.

The theory is first applied to different types of allocation problems. Fo-
cus is put on convex and non-convex max-min fair traffic allocation prob-
lems, and a difference in difficulty between the two groups of problems is
demonstrated.

The studies are continued by an investigation of proportionally fair di-
mensioning. Two different cases are studied – a simpler, when no resilience
to failures is required, and a more complicated, assuming the possibility of
link failures.

In the context of fair sharing of the resources of a communication net-
work, this thesis presents several original theoretical findings as well as so-
lution algorithms for the studied problems. The results are accompanied
by numerical results, illustrating algorithm efficiency for virtually all of the
studied problems.
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6 CHAPTER 1. INTRODUCTION

1.1 Background

The recent emergence of new, sophisticated Internet services, that lay claim
to an increasing amount of communication resources, have made the demand
on communication networks grow considerably. It has been observed that
the new data-oriented services exhibit a much higher growth rate, both in
terms of number of users and in terms of induced traffic per user, than
traditional voice services.

Internet, being the network of communication networks, is known to be
of a best-effort nature, where each service is completed to the level of quality
that transmission media (links, switches, routers etc.) can provide. This im-
plies that some applications (using a set of services) work well, while others
fail totally (or partially). The most common problem, when a certain ap-
plication fails, is lack of transmission bandwidth. If it were entirely known
which services are going to make use of the network resources in terms of
duration, location, and required capacity, the resources could of course be
adapted accordingly. In practice, this is however very rarely the case. In
fact, it is characteristic for the traffic of data networks that its distribution
changes rapidly, both over short and long time periods, and is for this rea-
son very difficult to predict. This statement can be argued more valid the
smaller is the scale of the network being considered, as the more aggregation
of sources, the more stable is the aggregated traffic. Nevertheless, lack of suf-
ficiently accurate predictions sometimes make resource provisioning through
overdimensioning the only tractable way of obtaining satisfactory network
operation. The overdimensioning strategy consists in, without any deeper
thought, just to add capacity sufficient to handle the most extreme traffic
situations. It is clear that overdimensioning is economically questionable,
since the strategy is intimately associated with poor resource utilization. On
the other hand, if the network does not match the maximal traffic demand
generated by the users, the network will be subject to overloads. Overloads
have the negative effect of deteriorating the quality of service perceived by
the users – the data transfer rates decrease because individual packets are
delayed or even lost.

Besides ensuring high connection acceptance rate, one of the most impor-
tant objectives for a network operator is to minimize the network overload.
This is because successful network management relies on continuos provi-
sioning of an acceptable quality of service to users. Instead of relying on the
so-called best-effort communication, the guaranteed quality of service can
be obtained by controlling the amount of traffic that enters the network.
The control process, usually referred to as traffic admission control, decides
how much traffic can be generated by each user and how many users can be
simultaneously served. In order for the traffic admission control to reduce
the aggregated stream of traffic that enters the network, a key mechanism is
that of partial or entire denial of service. On the other hand, low probability
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of service denial is another measure for the quality of service perceived by
users. It is therefore reasonable to require that the traffic admission control
imposes some fair sharing of network resources between its potential users.
This observation holds true both for small and large-scale networks. For a
small network a “user” may correspond to a single terminal, whereas in a
large backbone network a “user” may be constituted by thousands of ter-
minals connected to the backbone via a (smaller scaled) local network. The
problem of determining how much traffic of each traffic stream should be
admitted to the network, and how the admitted traffic should be routed so
as to satisfy the requirements of high network utilization and fairness, is a
challenging problem for the Internet solutions using admission control. This
thesis addresses this type of problems.

1.2 Backbone networks

In the communications community, a backbone network (or simply a back-
bone), is a network that realizes the connections between local networks,
as illustrated in Figure 1.1. From the backbone point of view, the local
networks can be seen as edge networks, to which the subscribers (traffic
sources) are connected. Consequently, the traffic can be regarded as gener-
ated in the local networks. Traffic from different users in a local network is
concentrated and forwarded to more distant places by the backbone.

A similar process takes place at practically every level of the network
hierarchy. For instance, the local networks are connected to a regional net-
work, which in turn is connected to a national network, and so on. As the
local networks induce the traffic, the traffic experienced by the backbone
is an aggregated version of its local network counterparts. Considered over
a sufficiently short time-period, the backbone network traffic is, compared
to an access network, predictable and stable (and of course very large) in
the sense of flow magnitudes. The hierarchical structure is present in tra-
ditional telecommunication networks, as well as in modern large-scale data
communication networks. When connecting a large set of users, the hier-
archical network topology arises because of geography, cost considerations,
and different communities of interest.

Traditionally, a large portion of the traffic in a communication network
is intended for local transmission. However, the pattern of traffic flows is in
a changing process, as the cost of long-distance transmission is decreasing
and the usage of distant servers increases, and accordingly, traffic load of
the backbone is increasing. The reduced long-distance transmission costs are
mainly due to the introduction of very efficient optical transmission tech-
niques, along with the substantial improvement of the computer-controlled
hardware, constituting network switches and routers.

To meet the need for transmission facilities that could handle optical
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local network

local network

local network

Figure 1.1: A backbone network interconnects the local networks (the de-
picted backbone is the swedish GigaSunet).

technology, the Synchronous Optical Network (SONET) standard was in-
troduced by Bellcore in 1984 [22]. SONET is a standard for optical com-
munication transport, providing framing as well as rate hierarchy and op-
tical parameters. The SONET standard became adopted by American Na-
tional Standards Institute (ANSI) in 1988 [22]. A slightly different ver-
sion, the Synchronous Digital Hierarchy (SDH), was later adopted by the
International Telecommunications Union - Telecommunication Standardisa-
tion Sector (ITU-T). Today, most high-speed digital backbone networks are
SONET/SDH-based [7]. Both SONET and SDH define signal hierarchies,
where the signals with the top rates are OC-192 (SONET) and STM-64
(SDH), both facilitating a data rate of 9953.28 Mb/s [13]. New techniques
for optical transmission are however being rapidly developed. An example
is the so-called Wave-Division Multiplexing (WDM) technology, which mul-
tiplies the transmission capacity of a SONET/SDH system by the number
of wavelengths supported by the WDM system (there are for instance ITU
standards defining 81 wavelengths [13]).

A backbone can be regarded as composed of a hierarchical set of distin-
guished resource layers. In today’s networks it is common to run IP (Internet
Protocol) over ATM (Asynchronous Transfer Mode), ATM over SDH, and
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SDH over WDM. Apparently, to optimize operation of this type of multi-
layer network, one has to take into account how the different layers interact.
Clearly, what concerns the design of an entire backbone, no layer can be
effectively treated as a stand-alone layer. However, the current trend is to
simplify this architecture, in order to reduce network equipment and man-
agement costs, as well as network complexity. It is commonly foreseen that
the service layers (the two packet layers, IP and ATM), will be integrated
into one resource layer based on Multi-Path Label Switching (MPLS). This
leads to a single packet layer control plane, instead of two. Furthermore, it
is predicted that IP packets will most likely be transported directly over the
WDM transport layer, enriched with a control plane (based on e.g. Gener-
alized MPLS (GMPLS) and/or Automatically Switched Transport Network
(ASTN)). Hence, the next generation backbone networks are most probable
to be built as IP-over-WDM networks [3].

1.3 Backbone network traffic

Roughly, traffic generated in an edge network can be put in one of two cat-
egories, namely i) elastic traffic, which is a type of best-effort traffic that
employs whatever resoruces it is assigned, and ii) non-elastic traffic which
is traffic that is typically sensitive to assigned bandwidth and transmis-
sion delays [49]. The data communications community is well aware of the
potential traffic property differences, as for instance the internet protocol
(IPv6) features the so called flow-labelling function [8], which accomodates
different Quality of Service (QoS) requirements. Examples of elastic traffic
are classical Internet applications as web, file transfer protocol (FTP), and
electronic mail. Real-time applications, as e.g., voice over IP (VoIP) and
video-conferencing, are on the other hand typically non-elastic. Since the
different types of traffic are generated in the edge networks, they are as in-
dicated above, multiplexed before transmitted into the backbone network.
Therefore, the aggregated backbone traffic flows consist of both elastic and
non-elastic traffic, and an appropriate denomination would be semi-elastic
traffic. This pushes forward the fact that the backbone traffic flows require
a minimal bandwidth level (constituted by the sum of the required band-
width for the non-elastic applications), but still are able consume bandwidth
exceeding this level (due to its elastic portion).

1.4 The multicommodity flow model

A convenient way of representing a communication network is by the notion
of a graph. A graph G is an object composed by a set of vertices V, and a
set of edges E , compactly written as G = (V, E). Using the graph to model a
network, we consider the network nodes as graph vertices, and the network
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links, connecting the different nodes, as graph edges. In the sequel we will
treat a given communication network as a graph with certain properties,
and use the words links and nodes to denote its vertices and edges. Each
link has a capacity that limits the commodity possible to transfer between
its two associated nodes. In the general setting, a link facilitates transfer of
various entities, i.e., it may carry several commodities simultaneously. This
is the key feature of the so called multicommodity flow model, which will be
exclusively used in this thesis. If a link enables the transfer of commodities
in both directions it is called undirected, and otherwise directed. In general,
we will treat all links as undirected.

The commodities transferred in a communication network are different
types of data. Such a transfer of data will be called a flow (or path-flow to
emphasize its path). Each flow is assumed to be induced by a demand, which
is a request for traffic between a node-pair. A demand can realize its total
flow on (potentially) several different paths (i.e., by several simultaneous
path-flows) connecting the node-pair.

1.5 Subject of the thesis

The main topic of this thesis is a study of how a set of different demands
(node-pairs) should share the network resources (link capacities) such that
it is assured that this is done in a fair way. Criteria that accompany the
primary fairness goal can be to keep a high network utilization and/or to
obtain a solution that is resilient to link failures. The introduced problems
are primarily intended to model large-scale networks.

1.6 Introductory examples

1.6.1 Fairness vs throughput

In order to establish some familiarity with the problems studied in this
thesis, and also to motivate a deeper knowledge, we will investigate some
very simple example problems.

Consider the simple 3-node network given in Figure 1.2. There are three
demands, i.e., three node-pairs that require transmission capacity to be able
to communicate, each with a single associated path. Demand 1 corresponds
to node-pair (1, 2), demand 2 to (2, 3), and demand 3 to (1, 3). Capacities of
the two links are both equal to 1.5. We want to allocate portions of the link
capacities to the demands, facilitating their flow transfer. Apparently, this
may be done in several ways, depending on what objective that we have in
mind. For a start, suppose that we want to maximize the total flow transfer,
also called maximizing the network throughput. Let xd be the flow allocated
to demand d, d = 1, 2, 3. It is not hard to see that the throughput maximal
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Figure 1.2: A simple linear network.

solution is to assign x1 = 1.5, x2 = 1.5, and x3 = 0, giving a total flow
throughput of

∑

d xd = 3.

The objective of throughput maximization means that we do not care
about the specific flow volume assigned to a demand, but rather that the
total flow, allocated to all the demands, is made as large as possible. Clearly,
this can be a desired property, especially from a network operator perspec-
tive. It is however evident that this objective treats the demands in an unfair
way, as the third demand is allocated zero flow. We may instead take the
opposite standpoint, and use as objective to share the two link capacities as
fairly as possible, intiuitively meaning that the three demands get an equal
share that is as large as possible. This results in a solution with x1 = 0.75,
x2 = 0.75, and x3 = 0.75, giving a total flow throughput of

∑

d xd = 2.25.
Thus, a maximally fair solution is obtained at the cost of reducing the total
throughput.

A natural question to ask is if there is an easy-accessible compromise
solution, i.e., a solution that is fairer than the one obtained by throughput
maximization but has a better throughput than the maximally fair one. In-
deed, such a soluton can be obtained by for instance maximizing the product
of flows,

∏

d xd. This yields a solution with x1 = 1, x2 = 1, and x3 = 0.5,
which is definitely more fair than the throughput maximal solution, and
more throughput effective (

∑

d xd = 2.5) than the maximally fair one.

To summarize, it is clear that in order to obtain a fair solution, one has to
relax the requirement of a high total throughput and vice versa. We can also
conclude that there is a lot of room for definitions of objectives that achieve
more fairness than throughput maximization and more throughput-effective
solutions than the maximally fair one.

1.6.2 The fairest solution

The notion of fairness is rather subjective, and we will therefore now try to
give an intuitive understanding of what we mean by a solution that is as fair
as possible. Consider the network given in Figure 1.3. There are 4 nodes
connected by 4 links, and there are 6 demands for communication; demand 1
between nodes 1 and 2, demand 2 between nodes 1 and 3, demand 3 between
nodes 2 and 3, demand 4 between nodes 3 and 4, demand 5 between nodes 3
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1 2

34

c = 2

c = 4

c = 3c = 5

1 2

3

4

5

6

Figure 1.3: A simple square network.

and 1, and demand 6 between 4 and 1. Link capacities are 2 between nodes
1 and 2, 3 between 2 and 3, 4 between 3 and 4, and 5 between 4 and 1.
Each demand has one predefined path, given by the figure. Suppose that
we want to let the 6 demands share the link capacities as fairly as possible,
i.e., that we want to obtain the fairest solution. We then start by assigning
all the demands an equal, as large flow as possible. This flow is equal to 1.
Demands 1 and 2 cannot be assigned a flow larger than 1 because the link
between nodes 1 and 2 blocks them. Now the critical question is, should all
the demands be assigned a flow of 1 as demands 1 and 2 cannot be assigned
more? There is really no non-naive reason for this. As can be seen in Figure
1.4(a), although demands 1 and 2 cannot be further increased, because of the
link between nodes 1 and 2 being saturated, there is still room to increase
all the other demands. As depicted in Figure 1.4(b) demands 3, 4, 5, and
6 can be increased to a flow of 2. At this level, the links between nodes 2
and 3 and nodes 3 and 4 become saturated. Hence demands 3, 4, and 5
cannot be further increased. However, there is still unused capacity on the
link connectiong nodes 1 and 4. We may thus finally assign a flow of 3 to
demand 6, which results in that the final link becomes saturated, and we
have reached what is often regarded as the fairest possible solution, called
the max-min fair solution. The concept of max-min fairness will be formally
introduced in the following chapter.

1.7 The framework

1.7.1 Mathematical programming

Most of the problems considered in this thesis will be formulated as con-
strained single-criteria optimization problems. Such problems are also re-
ferred to as mathematical programming problems. A problem of this type
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(a) Link between nodes 1 and 2 saturated.
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(b) Links between nodes 2 and 3 and nodes 3 and 4 satu-
rated.

demand1 2 3 4 5 6

1

2

3

assigned
bandwidth

(c) Link between nodes 4 and 1 saturated.

Figure 1.4: Successively obtaining the fairest solution. Black bars indicate
demands that cannot be increased more.
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is usually written as

max f(x) (1.1)

s.t. gi(x) ≤ ai i = 1, 2, . . . , k (1.2)

hj(x) = bj j = 1, 2, . . . , l (1.3)

x ∈ X, (1.4)

where f : X → R is called the objective function that should be maximized
over a set of constraints determined by the real valued functions gi and hj

and the set X. The constrained optimization problem thus specifies the
task of finding an x ∈ X such that gi(x) ≤ ai for all i, i = 1, 2, . . . , k and
hj(x) = bj for all j, j = 1, 2, . . . , l, and such that f(x) is maximal. To
simplify notation, we will use the “for all”-quantifier, ∀, when ranges for
the constraints of an optimization problem are known. Using this way of
writing, (1.1)-(1.4) can be put as

max f(x) (1.5)

s.t. gi(x) ≤ ai ∀ i (1.6)

hj(x) = bj ∀ j (1.7)

x ∈ X. (1.8)

A special type of constrained optimization problems are the linear program-
ming problems. A linear programming problem (LP) is a mathematical pro-
gramming problem where f , gi, and hj all are linear functions and X = Rn.
An integer programming problem (IP) is an LP, but with the set X re-
stricted further: X = Zn. Finally, a mixed-integer programming problem
(MIP) is an LP, but with the set X defined by x ∈ X if and only if xi ∈ R

for i = 1, 2, . . . , t, and xt ∈ Z, for i = t + 1, t + 2, . . . , n, for some positive
integer t, t < n.

1.7.2 Notation

For all the network optimization problems considered in this thesis we will
assume that the network graph is given. We will label the nodes of the
network with index v, v = 1, 2, . . . , V , and use e, e = 1, 2, . . . , E, to label
its links. Also assumed given will be the set of demands, labeled by index
d, d = 1, 2, . . . ,D. For each demand d we will assume that there is given a
set of paths labeled by p, p = 1, 2, . . . , Pd. The link-path incidence relation
will be expressed by the binary indicator δedp, which is 1 if link e belongs to
path p of demand d, and 0 otherwise. Of course, it is possible that we have
only one admissible path for each demand, i.e., Pd = 1 for all demands d; in
this case we can substitute the link-path incidence coefficient δedp by δed.

Example 1.1. Consider the network given in Figure 1.5. Nodes and links
are numbered in the figure. Suppose that there is one demand between
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nodes 1 and 3. There are 3 (simple) paths connecting this node-pair: path
1 constituted by links 1 and 2, path 2 constituted by link 3, and path 3
constituted by links 4 and 5. If we refer to the only demand as demand 1
we have δ111 = 1, δ211 = 1, δ312 = 1, δ413 = 1, and δ513 = 1.

1 2

34

1

2
3

4

5

Figure 1.5: Three different paths between node-pair (1,3).

An optimization problem is always associated with a set of decision vari-
ables, i.e., a set of variables that should be chosen such that the solution is
feasible and optimal. In the problems considered in this thesis, the decision
variables are usually the flows, corresponding to variable zdp, d = 1, 2, . . . ,D,
p = 1, 2, . . . , Pd, denoting flow allocated to demand d on path p. The total
flow for demand d is given by xd =

∑

p zdp. If for demand d, zdp is greater
than zero for more than one path p, we say that the flow for demand d is
bifurcated. On the other hand it is possible to require that for all demands d,
that zdp is greater than zero only for one path p, which defines an unsplittable
flow problem. The total flows for all demands are usually collected in the
so-called allocation vector, x = (x1, x2, . . . , xD). It is sometimes convenient
to consider a sorted version of x, written Θ(x), where Θ is the ordering
map.

Definition 1.1. The ordering map Θ is the function Θ : Rn → Rn, such
that Θ(x) = (θ1(x), θ2(x), . . . , θn(x)), where θ1(x) ≤ θ2(x) ≤ . . . ≤ θn(x)
and there exists a permutation π : {1, 2, . . . , n} → {1, 2, . . . , n} such that
θi(x) = xπ(i), for i = 1, 2, . . . , n.

Network design problems considered in this thesis can be roughly divided
into two categories – allocation problems and dimensioning problems. An
allocation problem is a network optimization problem where link capacities
are assumed to be given and the task is to allocate flows to demands. Such
a problem is also referred to as a capacitated problem. In a dimensioning
problem on the other hand, link capacities are treated as decision variables,
together with the path flows. Dimensioning problems are also called unca-
pacitated problems.
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Basic notation

Θ(x) the vector x sorted in non-decreasing order
θj(x) the j:th entry of Θ(x), 1 ≤ j ≤ n
x[k] The subvector (x1, x2, . . . , xk) of x = (x1, x2, . . . , xk, . . . , xn)
x ≥ x′ xi ≥ x′

i, i = 1, 2, . . . , n
x ≧ x′ xi ≥ x′

i, i = 1, 2, . . . , n, and xj > x′
j for at least

one coordinate j, 1 ≤ j ≤ n
ej the identity vector, ej = 1 and ei = 0, i = 1, 2, . . . , n, i 6= j
u the unit vector, ui = 1, i = 1, 2, . . . , n
0 the zero vector 0 = (0, . . . , 0)
R+, R++ the non-negative / strictly positive real numbers
Q+, Q++ the non-negative / strictly positive rational numbers
Z+, Z++ the non-negative / strictly positive integral numbers

1.8 Thesis outline

The thesis is organized as follows. We start the main presentation in Chapter
2 by giving a formal introduction to the theory of fairness in resource sharing,
which is fundamental for the problems considered in this thesis. This is
done by defining the concept of fair rational preference relations, providing
a unified perspective of fairness in general, and in communication networks
in particular. In that chapter different types of fairness, such as max-min
fairness, proportional fairness, α-norm fairness, etc., are viewed from the
formal fair rational preference relation perspective. Moreover, as the existing
literature is a bit ambiguous in the definition of the important max-min
fairness notion, we classify the different definitions in terms of their strength.
In the balance of Chapter 2, generic algorithms achieving max-min fairness
are given.

In Chapter 3 we use the knowledge about max-min fairness described
in Chapter 2 and apply it to allocation problems. Specifically, Chapter 3
deals with allocation problems that have convex structure, i.e., allocation
problems for which the associated optimization problems are convex. This
requirement excludes for instance the more complicated cases when decision
variables can be discrete (integer variables, binary variables). Allocation
problems are the network design problems that are characterized by the
property that network topology as well as link capacities are given a pri-
ori. Such problems consist in determination of how a number of different
(competing) users should share the network resources, so that some given
criterion is met (e.g., an objective function is optimized). Thus, an alloca-
tion problem is a capacitated problem.

We proceed by considering max-min fairness allocation problems with
non-convex sets of solutions, in Chapter 4. The studies of that chapter are
thus devoted to the same type of max-min fair allocation problems as before,
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but with complicating assumptions making the resulting optimization prob-
lems non-convex. Specifically, the problems considered in Chapter 4 do all
include integer variables. More precisely, we are still considering problems
that are classified under linear max-min fairness but with decision variables
being restricted to integers. The reason for this is that in practice, decision
variables, such as, e.g., flow allocated to a demand, cannot take on an ar-
bitrary value. Another realistic requirement might be that a flow between
a node-pair cannot be split arbitrarily between connecting paths, but can
only use one path, selected in the optimization process. Also this makes it
necessary to model the allocation problem with integer variables, rendering
substantially more complicated optimization problems.

In Chapter 5 we deal with fairness in dimensioning problems. It is signif-
icant for a dimensioning problem that, as opposed to an allocation problem,
the link capacities are assumed to be design variables. In the spirit of previ-
ous chapters, we consider dimensioniong problems for which fairness among
demands is the preliminary objective. In this chapter, the type of fairness
that is addressed is commonly known as proportional fairness, introduced
in Chapter 2.

The final chapter is dedicated to a summary of the previously obtained
results, along with a specification of which of the results that are contribu-
tions of this thesis.
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2.1 The notion of fairness

In order to define fairness of outcome vectors on some given set, we will
adopt the terminology used by Ogryczak and Wierzbicki in [39].

2.1.1 Fair rational preference relations

Consider an m-dimensional set Q, Q ⊆ Rm, on which there is defined a weak
preference relation, �. Such a weak preference states that if y′,y′′ ∈ Q,
and y′ � y′′ then the vector y′ is at least as good as vector y′′. A weak
preference will always be assumed to be complete, stating that it relates any
two vectors of Q. This is in fact all that is needed to construct the notion
of fairness. The relations of strict preference, ≻, and indifference, ∼=, are
defined as follows

y′ ≻ y′′ ⇔ ( y′ � y′′ and not y′′ � y′ ) (2.1)

y′ ∼= y′′ ⇔ ( y′ � y′′ and y′′ � y′ ) (2.2)

We will use preference relations to define fairness on a superset, Q, of the set
of outcome vectors, Y . The set Q will be assumed to have certain regularity:

Definition 2.1. A set Q ⊆ Rm is said to be transferable if for any y ∈ Q,
y − ǫei + ǫej ∈ Q for all i, j such that yi − yj ≥ ǫ ≥ 0

Note that if a transferable set contains a vector y, it must also contain all
the permutations of y.

Definition 2.2. A preference relation � defined on a transferable set Q is
a fair rational preference relation (or fair preference in short) on Q if for
any y,y′,y′′,y′′′ ∈ Q the following requirements are satisfied.

(i) Transitivity : y′ � y′′ and y′′ � y′′′ ⇒ y′ � y′′′.

(ii) Strict monotonicity : if y′ = y + ǫei for some ǫ > 0 and some i =
1, 2, . . . ,m, then y′ ≻ y.

(iii) Symmetry : for any permutation π : {1, 2, . . . ,m} → {1, 2, . . . ,m}, it
holds that (yπ(1), yπ(2), . . . , yπ(m)) ∼= (y1, y2, . . . , ym) = y.

(iv) Equitable transfers: if yi > yj then y−ǫei+ǫej ≻ y for 0 < ǫ < yi−yj.

Remark 2.3. The requirement of symmetry implies that a fair preference
is reflexive.

Remark 2.4. It is sometimes assumed that already a weak preference re-
lation is transitive and reflexive, making it a preorder.
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Remark 2.5. If � is a fair preference defined on the transferable set Q, it
can also be regarded as a fair preference on any set Y ⊆ Q, by inheriting
the fair preference defined on Q.

Example 2.1. Consider a preference relation, �×, called the product order
(or the Nash product [51]), defined by y �× y′ ⇔

∏m
i=1 yi ≥

∏m
i=1 y′i. If we

consider this preference relation on Rm
++, it is obviously transitive, strictly

monotonic, and symmetric. Let y ∈ Rm
++ be a vector that has entries i, j,

for which yi > yj. For any ǫ, such that 0 < ǫ < yi − yj, we have that
(yi − ǫ)(yj + ǫ) = yiyj + ǫ(yi − yj) − ǫ2 > yiyj. Hence the product order
defines a fair preference on Rm

++.

Definition 2.6. An outcome vector y is said to fairly dominate outcome
vector y′, y ≻e y′, if and only if y ≻ y′ for all fair rational preference
relations �.

In many cases it can be cumbersome to compare solutions in terms of vectors.
Typical solution concepts for multiple criteria problems are instead defined
by aggregation functions.

Definition 2.7. An aggregation function for a preference relation � is a
function g : Q → R for which y � y′ ⇔ g(y) ≥ g(y′).

This may of course be used in transforming a multi-criteria optimization
problem to a single-objective problem. Further, this gives a tool to specify
(implicitly) fair rational preference relations on a given set Q.

Property 2.1. For any strictly concave, strictly increasing function s : R →
R the function g(y) =

∑m
i=1 s(yi) defines a fair rational preference relation

�g on Q.

Proof. It is easy to see that g induces a preference relation that is transi-
tive and symmetric. The strict monotonicity follows from that s is strictly
increasing. For the equitable transfers, consider two entries j and i such
that yj > yi, and an ǫ such that yj − yi > ǫ > 0. Then there exists
a λ, 0 < λ < 1, such that yi + ǫ = λyi + (1 − λ)yj . After some ma-
nipulation, the same expression reads yj − ǫ = (1 − λ)yi + λyj. By the
strict concavity of s we have that s(yi + ǫ) > λs(yi) + (1 − λ)s(yj) and
s(yj − ǫ) > (1 − λ)s(yi) + λs(yj), respectively. Adding the two inequalities
yields s(yi + ǫ) + s(yj − ǫ) > s(yi) + s(yj).

Even though the idea of aggregation functions appears very practical
in defining fair preferences in general, it is not convenient for all types of
fairness.

Definition 2.8. The preference relation of leximin order on a set Q, �lex,
is given by, for any y,z ∈ Q, if y �lex z then the first non-zero element of
y − z is positive or y = z. If y ≻lex z we say that y is lexicographically
greater than z.
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It is quite obvious that the leximin order does not define a fair preference re-
lation, as it lacks the property of symmetry. However, imposing the ordering
map, Θ(·), provides the remedy.

Definition 2.9. The symmetrical leximin order, �symlex, is the preference
relation defined by y �symlex y′ ⇔ Θ(y) �lex Θ(y′).

The following assertion is easily verified.

Property 2.2. The symmetrical leximin order defines a fair rational pref-
erence relation on any transferable set Q.

2.1.2 Fairly nondominated vectors

The concept of obtaining fairness is usually concerned with, given a fair
rational preference relation, �, on a transferable set Q, finding a vector y∗ ∈
Y , Y ⊆ Q, such that y∗ � y for all vectors y ∈ Y . According to Definition
2.6, this is a matter of finding a (specific) fairly non-dominated vector. The
type of fair preference considered will determine which fairly non-dominated
vector that is desired, as there in general are several. In the case of a fair
preference, �g, defined by an aggregation function, g : Q → R, obtaining
fairness is a single-criteria optimization problem; max{g(y) : y ∈ Y }. As
established by Property 2.1, any strictly concave, strictly increasing function
s : R → R can be used to define a fair rational preference relation �g on
some superset of the outcomes, Q, through defining the aggregation function
g : Q → R, as g(y) =

∑m
i=1 s(yi). For instance, we may let Q = Rm

++,
and let s(yi) = log(yi), rendering g(y) =

∑m
i=1 log yi, which if maximized

is the principle of proportional fairness [15]. Note that the induced fair
preference, �g, is actually the product order, �×, considered in Example 2.1.
Similarly, restricting Q in the same way we may obtain the fairness principle
of minimum delay (dicussed in [24]), by letting s(yi) = − 1

yi
, and maximizing

g(y) = −
∑m

i=1
1
yi

. Clearly, the method of selecting an appropriate function
s, offers a straightforward way of defining a fair rational preference relation
on Q, and more examples of interesting (appropriate) functions s can be
found in [39]. It is however far from obvious how to physically interpret the
fair rational preference relation �g on Q, induced by an arbitrary strictly
concave, strictly increasing function s.

2.1.3 Fairness and Pareto-efficiency

From the ordered outcomes, Θ(y) = (θ1(y), θ2(y), . . . , θm(y)), we may de-
rive a linear cumulative map, called the cumulative ordering map,

Θ̄(y) = (θ̄1(y), θ̄2(y), . . . , θ̄m(y)),
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defined as

θ̄i =

i∑

j=1

θj(y) for i = 1, 2, . . . ,m. (2.3)

From the theory of majorization [23], the following result can be derived
[19]. However, the proof provided here is based on first-order principles.

Theorem 2.3 (Kostreva and Ogryczak, 1999). Outcome vector y fairly
dominates outcome vector y′, if and only if Θ̄(y) ≧ Θ̄(y′).

Proof. Suppose θ̄i(y) ≥ θ̄i(y
′) for i = 1, 2, . . . ,m, and that strict inequality

holds for at least one entry. First of all we point out that for any two vectors
y and y′, if θ̄j(y) = θ̄j(y

′), for j = 1, 2, . . . , n, n ≤ m, then θj(y) = θj(y
′)

for j = 1, 2, . . . , n. Now assume that k is the smallest index for which
θ̄k(y) > θ̄k(y

′). If k = m, then the monotonic increase Θ(y′) + em(θm(y)−
θm(y′)) is indifferent from y. Thus y ≻e y′ and we are done. On the
other hand, assume k < m. Assign y′′ = Θ(y′). If θ̄m(y) > θ̄m(y′), assign
y′′m = y′′m + (θ̄m(y)− θ̄m(y′)). We then have that θ̄m(y) = θ̄m(y′′), and that
θ̄k(y) > θ̄k(y

′′) for some k < m. Further it holds that θk(y) > y′′k , since k is
the first such entry. As θ̄m(y) = θ̄m(y′′), there must exist entries j > k, such
that θj(y) < y′′j . Because of that Θ is an ordering map (and the construction
of y′′), it holds that y′′j > y′′k , for all these entries j. We can thus perform
equitable transfers from these entries j to entry k, redefining y′′, until y′′k =
θk(y). Repeating this procedure (obviously finitely many times), we will
eventually get that y′′i = θi(y), for i = 1, 2, . . . ,m, implying that y′′ ∼= Θ(y).
Since y′′ is obtained from Θ(y′) as a series of (necessary) equitable transfers
and possibly a monotonic increase in the largest component, we have that
y ∼= Θ(y) = y′′ ≻e Θ(y′) ∼= y′. For the reversed implication we may
easily verify that the relation Θ̄(y) ≥ Θ̄(y′) defines a fair preference, �θ̄.
Specifically y ≻θ̄ y′ if θ̄i(y) ≥ θ̄i(y

′), for i = 1, 2, . . . ,m and θ̄k(y) > θ̄k(y
′)

for at least one entry k, 1 ≤ k ≤ m. Hence if y ≻e y′, it must hold that
y ≻θ̄ y′.

This gives the possibility of expressing all the fairly non-dominated solutions
as the Pareto-efficient solutions to a multiple criteria problem, namely

max{(η1, η2, . . . , ηm) : ηi = θ̄i(y) for i = 1, 2, . . . ,m, y ∈ Y }. (2.4)

A Pareto-efficient solution is a solution for which no Pareto improvements
can be done, i.e., a solution for which no entry can be increased without
making another entry worse off. Since quantities θ̄i(y) are quite complicated,
the usefulness of this formula relies on an elegant result concerning the
expressability of θ̄i(y) for a given outcome vector y [42]:

θ̄k(y) = max kt −
m∑

i=1

di (2.5)

s.t. t − yi ≤ di, di ≥ 0 i = 1, 2, . . . ,m. (2.6)
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Exploting this, we may thus rewrite (2.4) as

max (η1, η2, . . . , ηm) (2.7)

s.t. ηk = ktk −
m∑

i=1

dik k = 1, 2, . . . ,m (2.8)

tk − dik ≤ yi, dik ≥ 0 i, k = 1, 2, . . . ,m (2.9)

y ∈ Y. (2.10)

To summarize, any fairly non-dominated solution may be modeled as a
Pareto-efficient solution to (2.7)-(2.10).

2.2 General ways of defining fairness

Besides the general use of proper aggregation functions there are several
commonly used ways of defining different classes of fairness. Such a class
typically defines a generic type of fairness in which some easily accessible
parameters may be changed in order to vary the induced fair preference.
Examples of such generic types of definitions are p-norm fairness, fairness
induced by ordered weighted averaging, and α-fairness.

2.2.1 p-norm fairness

Consider the usual p-norm, || · ||p defined for arbitrary vectors y ∈ Rn;

||y||p =
( ∑n

i=1 |yi|
p

)1/p
,

where p is an integer, p ≥ 1. To derive the notion of p-norm fairness we will
need the following lemma:

Lemma 2.4. Consider arbitrary numbers c ≥ x > y ≥ 0 and an integer p,
1 < p < ∞. Let ǫ be any number such that 0 < ǫ < x − y. It holds that

(c − x)p + (c − y)p > (c − (x − ǫ))p + (c − (y + ǫ))p .

Proof. The function f(ǫ) = (c − (x − ǫ))p + (c − (y + ǫ))p, has exactly one
stationary point for ǫ ∈ [0, x − y], namely ǫ = x−y

2 . As f ′(ǫ) < 0 for
ǫ ∈ [0, x−y

2 ), and f ′(ǫ) > 0 for ǫ ∈ (x−y
2 , x − y], this stationary point must

be a minimum. Furthermore f(0) = f(x − y) = (c − x)p + (c − y)p, which
implies the result.

Consider a vector cu, c > 0, and let Q = {y ∈ Rn
+ : y ≤ cu}.

Definition 2.10. The preference relation �c
p, called the p-norm preference

with respect to c, is given by, for any y,y′ ∈ Q, y �c
p y′ ⇔ ||cu − y||p ≤

||cu − y′||p.
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Property 2.5. The p-norm preference (with respect to c > 0) defines a fair
rational preference relation on Q = {y ∈ Rn

+ : y ≤ cu}.

Proof. Verification of transitivity, strict monotonicity, and symmetry is quite
straightforward. The property of equitable transfers is though slightly harder
to establish. Consider any vector y ∈ Q for which yi > yj. Let ǫ be any
number suct that 0 < ǫ < yi − yj, and define y′ as y′ = y + ǫej − ǫei. We
then have that ||cu − y′||p =

=
( ∑n

i (c − yk)
p − (c − yi)

p − (c − yj)
p + (c − yi + ǫ)p + (c − yj − ǫ)p

)1/p
,

which, according to Lemma 2.4 and the fact that the root function is strictly

increasing, is strictly smaller than
( ∑n

i (c − yk)
p

)1/p
= ||cu − y||p. Thus

we have equitable transfers.

2.2.2 Ordered weighted averaging

The result that any Pareto-efficient solution y0 to (2.7)-(2.10) is a fairly
non-dominated solution implies that there exists at least one fair rational
preference relation �, such that y0 � y, for all y ∈ Q. We may thus use as
a single objective function the weighted sum,

m∑

i=1

wiηi =

m∑

i=1

wiθ̄i(y), wi > 0, for i = 1, 2, . . . ,m, (2.11)

which is certain to generate a Pareto-efficient solution to (2.7)-(2.10). As
θ̄i(y) =

∑i
j=1 θj(y), we have

m∑

i=1

wiθ̄i(y) =
m∑

i=1

wi

i∑

j=1

θj(y) =
m∑

i=1

viθi(y),

where vi =
∑m

j=i wj . Using
∑m

i=1 viθi(y) as the single objective function
is called Ordered Weighted Averaging (OWA), and was first introduced in
[54]. Note that if we use this single objective function the Pareto-efficiency
will be guaranteed if weights vi are strictly decreasing and positive. Besides
the direct consequence that if weights vi are chosen so that they are strictly
decreasing and positive then each solution to the OWA is a fairly non-
dominated solution, there is a reversed implication. Namely, in the case of
linear constraints, every fairly non-dominated solution can be identified as
an optimal solution to some OWA problem [39]. The importance of this
lies in that for any given fair rational preference relation � on Q, if for
some outcome vector y0 ∈ Q, it holds that y0 � y, for all y ∈ Q, then
y0 must be fairly non-dominated and therefore an optimal solution to some
OWA problem. Specifically, if the difference between the weights vi tend
to infinity, solving the OWA problem will be equivalent to finding a vector
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y0 ∈ Q such that y0 �symlex y, for all y ∈ Q, i.e., obtaining the fairness
associated with the symmetrical leximin order. This type of fairness is often
referred to as max-min fairness and will be extensively investigated in later
sections.

2.2.3 α-fairness

The notion of α-fairness was introduced by Mo and Walrand in [28], and it
defines a class of fairness relations through an aggregation function. In [28],
α-fairness is defined through maximization and is not put in the context of
preference relations. Hence they do not verify that its corresponding order,
here referred to as the α-order, defines a fair rational preference relation.

Definition 2.11. For a given α, α > 0, α 6= 1, the α-order, �α, is the
preference relation defined by

y �α y′ ⇔
m∑

i=1

y
(1−α)
i

1 − α
≥

m∑

i=1

y
′(1−α)
i

1 − α
.

Property 2.6. For a given α, α > 0, α 6= 1, the α-order defines a fair
rational preference relation on Rm

++.

Proof. By Property 2.1, it is only necessary to verify that s : R++ → R,

s(y) = y(1−α)

1−α , is strictly increasing and strictly concave for any proper choice

of α. Consider the case when 0 < α < 1. Then s(y) = Cy(1−α), for a
constant C = 1

1−α > 0, so obviously s is strictly increasing. To ensure

the concavity, we see that d2s
dy2 = −αy−(α+1) < 0, for any y ∈ R++. Now

consider the case when α > 1. Then s(y) = C 1
yγ , for some constant C < 0,

and γ > 0, so s is strictly increasing. Further, d2s
dy2 = −αy−(α+1) < 0, for

any y ∈ R++, so s is strictly concave.

Remark 2.12. In the original definition of α-fairness [28], the proportional
fairness is covered by defining y �α y′ ⇔

∑m
i=1 log(yi) ≥

∑m
i=1 log(y′i) for

α = 1.

Remark 2.13. If α = 2, then y(1−α)

1−α = − 1
y , so minimum delay fairness is a

special case of α-fairness.

Interestingly it is shown in [28] that if α tends to infinity, the solution y0 to

max

m∑

i=1

y
(1−α)
i

1 − α
(2.12)

s.t. y ∈ Y , (2.13)

will have the property that y0 �symlex y for all y ∈ Y , for nicely behaved
sets of outcome vectors Y ⊆ Rm

++ (see [28] for the exact restrictions put
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on Y ). However, this result may be misleading in the sense that one might
get the impression that for a sufficiently large α there will be equivalence
between y �α y′ and y �symlex y′, for y,y′ ∈ Y , which is not true. In fact,
if Y is a non-discrete set (for instance Y = { y ∈ Rm :

∑m
i=1 yi ≤ L }), an

α < ∞ will never suffice for the equivalence. On the other hand, if discrete
sets of outcome vectors are considered, and if it is possible to somehow
bound each coordinate from above, a more practical assertion can be posed.
More practical in the sense that we can find an upper bound on α for which
the equivalence holds, and also in the sense that discrete outcome sets, as
well as upper bound on coordinates, model real-world resource allocation in
communication networks realistically.

Proposition 2.7. If the set of outcome vectors Y has the property that for
each y ∈ Y , each coordinate yk, k = 1, 2, . . . ,m, must be a strictly positive
integer which can be bounded from above, yk ≤ U , then for any y,y′ ∈ Y ,
y �symlex y′ ⇔

∑m
i=1

1
(yi)β ≤

∑m
i=1

1
(y′

i)
β , for any β > log m

log U
U−1

.

Proof. If y ∼=symlex y′ then Θ(y) = Θ(y′) so it must be true that
∑m

i=1
1

(yi)β =
∑m

i=1
1

(y′
i)

β , for any β. Suppose that y ≻symlex y′. This implies that there

is a first non-zero coordinate of Θ(y) −Θ(y′), which is necessarily positive.
Let j be the index of this coordinate. We have that

m∑

i=1

1

(yi)β
=

j−1
∑

i=1

1

(θi(y))β
+

1

(θj(y))β
+

m∑

i=j+1

1

(θi(y))β
≤

≤

j−1
∑

i=1

1

(θi(y))β
+

m − j + 1

(θj(y))β
.

Further,

m∑

i=1

1

(y′i)
β

=

j−1
∑

i=1

1

(θi(y′))β
+

1

(θj(y′))β
+

m∑

i=j+1

1

(θi(y′))β
>

>

j−1
∑

i=1

1

(θi(y′))β
+

1

(θj(y′))β
.

Thus if

j−1
∑

i=1

1

(θi(y))β
+

m − j + 1

(θj(y))β
<

j−1
∑

i=1

1

(θi(y′))β
+

1

(θj(y′))β
, (2.14)

it must hold that
∑m

i=1
1

(yi)β <
∑m

i=1
1

(y′
i)

β . Noting that the first two terms

of the respective sides are equal, the requirement reads

m − j + 1

(θj(y))β
<

1

(θj(y′))β
, (2.15)
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which, after some manipulation, yields

β >
log(m − j + 1)

log(θj(y)) − log(θj(y′))
. (2.16)

Since m− j+1 ≤ m and
θj(y)
θj(y′) ≥

U
U−1 , it suffices to require that β > log(m)

log U
U−1

.

For the opposite direction, first assume that
∑m

i=1
1

(yi)β =
∑m

i=1
1

(y′
i)

β and

that j is the first coordinate for which θj(y) > θj(y
′). The assumption

∑m
i=1

1
(yi)β =

∑m
i=1

1
(y′

i)
β implies that

j−1
∑

i=1

1

(θi(y))β
+

1

(θj(y))β
+

m∑

i=j+1

1

(θi(y))β
= (2.17)

=

j−1
∑

i=1

1

(θi(y′))β
+

1

(θj(y′))β
+

m∑

i=j+1

1

(θi(y′))β
. (2.18)

As before, the first terms on the respective sides cancel out. The second
two terms on the left-hand side are not larger than m−j+1

(θj(y))β , and the second

two terms on the right-hand side are strictly larger than 1
(θj(y′))β . Hence,

according to the previous reasoning, insertion of β > log(m)

log U
U−1

will violate

the equality and we have a contradiction. Finally we have to prove that
∑m

i=1
1

(yi)β <
∑m

i=1
1

(y′
i)

β implies that y ≻symlex y′. This is however contra-

positive (equivalent) to y � y′ ⇒
∑m

i=1
1

(yi)β ≥
∑m

i=1
1

(y′
i)

β , which is already

proved.

It should be noted that Proposition 2.7 actually concerns the α-order as

m∑

i=1

1

(yi)β
≤

m∑

i=1

1

(y′i)
β
⇔

m∑

i=1

y
(1−α)
i

1 − α
≥

m∑

i=1

y
′(1−α)
i

1 − α
,

for α = β + 1.

2.3 Max-min fairness

The most thoroughly investigated type of fairness is undoubtedly the type
called Max-Min Fairness (MMF). There are several, more or less general,
ways of defining MMF. In order to give a non-ambigous introduction to
this topic, will we make a distinction between weak and strong MMF.
Throughout this section we will consider an m-dimensional outcome set Y ,
Y ⊆ Q ⊆ Rm, facilitating a superset Q on which there is defined a preference
relation.
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2.3.1 Weak and strong max-min fairness

Definition 2.14. A vector y0 ∈ Y for which it holds that y0 �lex y, for all
y ∈ Y , is called lexicographically maximal on Y , written

y0 = lex max{y : y ∈ Y }.

It is quite intuitive to state an algorithm that finds a lexicographically
maximal y0 = (y0

1 , y
0
2, . . . , y

0
m), y0 ∈ Y . Let y0

1 = max{y1 : y ∈ Y } and
define consecutively y0

j = max{yj : y1 ≥ y0
1, . . . , yj−1 ≥ y0

j−1,y ∈ Y }, for
j = 2, 3, . . . ,m. Carrying out this procedure, we successively get the entries
of y0. Apparently, in lexicographical maximization, maximization of the
first entry, y1, has the highest priority. Second highest priority is maximiza-
tion of y2, and so on. In fact, many practical applications, including the
ones adressed in this thesis, do not assume these priorities, but rather pre-
scribe equal (fair) treatment of all the entries (i.e., assume symmetry of the
preference relation). For this purpose we need the notion of sorted vectors
or the symmetrical leximin order, �symlex.

Although the introduction of the fair rational preference relation, �symlex,
fits the terminology of fairness well, we will stick to an equivalent consider-
ation of the original leximin order on the set ~Y = {Θ(y) : y ∈ Y }, i.e., for
each vector y ∈ Y , evaluate a sorted permutation Θ(y). This convention
is due to the leximin order as a well known and well accepted concept (as
opposed to the symmetrical leximin order). Lexicographical maximality for
sorted vectors is defined as follows.

Definition 2.15. A vector y0 ∈ Y for which it holds that Θ(y0) �lex Θ(y),
for all y ∈ Y , is called sorted lexicographically maximal on Y , written

Θ(y0) = lex max{Θ(y) : y ∈ Y }.

As this section will consider the preference relation of leximin order ex-
clusively, we will from now on omit the subscript and write only � for �lex.

Definition 2.16. A vector y0 ∈ Y which is sorted lexicographically maxi-
mal on Y , i.e., Θ(y0) = lex max{Θ(y) : y ∈ Y }, is called weakly max-min
fair (or just max-min fair) on Y .

This is the definition that will be intended whenever we speak about max-
min fairness without mentioning “weak” or “strong”, i.e., we will sometimes
denote weak max-min fairness only by “max-min fairness”. Note that this
type of fairness is exactly that induced by the symmetrical leximin order.
The alternative way of defining max-min fairness is more restrictive (thus
not equivalent), and is originally due to Bertsekas and Gallgaher [6]. Al-
though less general, this definition has been adopted by several authors,
e.g., [48],[46]. We will refer to this latter characteristic as strong max-min
fairness.
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Definition 2.17. The vector y0 is strongly max-min fair on Y if y0 ∈ Y
and ∀y ∈ Y , if ∃k ∈ {1, 2, . . . ,m} : yk > y0

k, then ∃j ∈ {1, 2, . . . ,m} : yj <
y0

j ≤ y0
k.

Property 2.8. A strongly max-min fair vector is unique.

Proof. Suppose that there exist two strongly max-min fair vectors, y1,y2 ∈
Y , y1 6= y2. Find the entry k for which y1

k > y2
k, such that y1

k is as small
as possible (if it does not exist, exchange the names of y1 and y2). Then,
since y2 is strongly max-min fair, there exists an entry j ∈ {1, 2, . . . ,m} :
y1

j < y2
j ≤ y2

k. However, since also y1 is strongly max-min fair there must

exist an entry i ∈ {1, 2, . . . ,m} : y2
i < y1

i ≤ y1
j , which implies existence of

an entry l ∈ {1, 2, . . . ,m} : y1
l < y2

l ≤ y2
i , and so on. Eventually, we will run

out of entries and get a contradiction.

Remark 2.18. In [48] a variation of Definition 2.17 is used to define a
preference relation to compare vectors. A vector y is said to be “relatively
fairer” than a vector y′ if either y ≧ y′ or if ∃k ∈ {1, 2, . . . ,m} : yk < y′k,
then ∃j ∈ {1, 2, . . . ,m} : y′j < yj ≤ yk (The term “relative fairness” was first
introduced in [47]). A feasible vector y for which there exists no feasible
vector y′ that is relatively fairer than y is called “maximally fair”. Even
though being closely related to the symmetrical leximin order, this does
not define a fair rational preference relation. Too see this, suppose that
the vectors (0, 2, 1) and (3, 0, 0) belong to a feasible (transferable) set. The
first vector is obtainable from the second one through an equitable transfer
followed by a permutation. To be a fair rational preference relation it must
thus hold that (0, 2, 1) is preferable to (3, 0, 0). However (0, 2, 1) is not
relatively fairer than (3, 0, 0).

The exact relation between weak and strong max-min fairness is de-
scribed by the following two properties

Property 2.9. If y0 is strongly max-min fair on Y , then it is also weakly
max-min fair on Y .

Proof. We may assume that y0 is sorted, since if it is not we may reenu-
merate coordinates such that they appear in non-decreasing order. For any
y ∈ Y , y 6= y0, pick the smallest k, such that yk > y0

k (if such an entry does
not exist, the result follows immediately as there then must exist an entry
k for which yk < y0

k ). If there are several entries e of y0 that are equal to
y0

k, then order them (i.e., order the coordinates) such that all entries e with
ye ≤ y0

e (= y0
k) appear before all entries e with ye > y0

e (= y0
k), which is

again achievable by alternative enumeration of the coordinates of y0. Now
redefine entry k as the first entry for which yk > y0

k. It then must hold
that y0

i ≥ yi for any entry i < k. Specifically, as y0 is strongly max-min
fair, there is an entry j, 1 ≤ j < k, such that y0

j > yj. Let y0[k − 1] be
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the subvector constituted by the k − 1 first entries of y0, and let y[k − 1]
be defined similarly. It is easy to see that y0[k − 1] ≥ y[k − 1] implies
y0[k − 1] ≥ Θ(y)[k − 1] and that existence of an entry j, 1 ≤ j < k such
that y0

j [k− 1] > yj[k− 1] implies that there exists an entry l, 1 ≤ l < k such

that y0
l [k − 1] > θl(y)[k − 1]. Thus y0[k − 1] ≻ Θ(y)[k − 1], which implies

that y0 = Θ(y0) ≻ Θ(y).

Property 2.10. If y0 ∈ Y and Y is convex, then if y0 is weakly max-min
fair on Y , it is also strongly max-min fair on Y .

Proof. We prove the equivalent statement: if y0 is not strongly max-min
fair on the convex set Y then Θ(y0) ≺lex lex max{Θ(y) : y ∈ Y }. Suppose
that y0 is not strongly max-min fair on Y . Then there exists a vector y ∈ Y ,
which has an entry k ∈ {1, 2, . . . ,m}, for which yk > y0

k but yj ≥ y0
j for all

entries j such that y0
j ≤ y0

k (if such entries j exist). Define z = (1−λ)y0+λy,
where λ is a constant, 0 < λ < 1. Assume that coordinates appear such
that y0 = Θ(y0) (if not rename coordinates). For sufficiently small λ it
also holds that z = Θ(z). Moreover, there exists an entry e such that such
that ze > y0

e and zi ≥ y0
i for all indices i < e. Thus Θ(z) ≻lex Θ(y0). By

convexity, z ∈ Y .

2.3.2 Max-min fairness in the solution space

Let X be an n-dimensional subset of Rn, X ⊆ Rn, and consider a vector of
real-valued functions f = (f1, f2, . . . , fm), with fj : X → R, j = 1, 2, . . . ,m.
Let the vector f be the vector of outcomes (sometimes also referred to as
objectives or criteria).

Definition 2.19. The vector x0 ∈ X is said to be a max-min fair solution,
if and only if Θ(f(x0)) = lex max{Θ(f(x)) : x ∈ X}, i.e., if and only if
f(x0) is (weakly) max-min fair on {f(x) : x ∈ X}.

Define the set Y as

Y = {y : y ≤ f(x),x ∈ X}. (2.19)

Property 2.11. Given a vector x0 ∈ X. If y0 = f(x0) is strongly max-min
fair on Y , then x0 is a max-min fair solution.

Proof. If y0 = f(x0) is strongly max-min fair on Y = {y : y ≤ f(x),x ∈
X}, then, according to Property 2.9, Θ(y0) = lex max{Θ(y) : y ∈ Y } =
lex max{Θ(y) : y ≤ f(x),x ∈ X} = lex max{Θ(f(x)),x ∈ X}. Moreover
y0 = f(x0) implies Θ(y0) = Θ(f(x0)), so x0 is a max-min fair solution.

Due to a relatively compact description, and possibly more appeal to intu-
ition, some authors use Property 2.11 in defining the concept of max-min
fairness (and associated solution) [46]. This would certainly be enough if
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the vectors specified to be max-min fair solutions by Definition 2.19 but not
by Property 2.11 were artificial and of no practical interest. However, the
following example shows that this is not the case.

Example 2.2. Let m = n and fj(x) = xj for j = 1, 2, . . . , n. Suppose
X = B2. This models an instance with two demands over one link with
capacity one, where demand flows must be integral. As the only solutions,
(0, 1) and (1, 0), are equal from a fairness viewpoint, we want a definition
that establishes that both of them are max-min fair. This is accomplished
by Definition 2.19. However, none of them are strongly max-min fair so
none of them can be concluded to be MMF through Property 2.11.

Property 2.12. If x0 is a max-min fair solution, x0 ∈ X, f1, f2, . . . , fm are
concave functions, and X is convex, then y0 = f(x0) is strongly max-min
fair on Y .

Proof. The facts that f1, f2, . . . , fm are concave and X is convex imply that
Y = {y : y ≤ f(x),x ∈ X} is convex. Further, x0 is a max-min fair solution
on X so Θ(y0) = Θ(f(x0)) = lex max{Θ(f (x)) : x ∈ X} = lex max{Θ(y) :
y ∈ Y }. The statement now follows from Property 2.10.

Linear max-min fairness

An important special case of MMF is when the functions f1, f2, . . . , fm are
linear and the feasible set X is a polyhedron (i.e, X is defined by linear
constraints). One such case is for instance when the max-min fair outcome
vector is the max-min fair solution, letting m = n and defining fj(x) =
xj , j = 1, 2, . . . , n (assuming linear constraints). In telecommunications,
this seemingly simple variant is by far the most thoroughly investigated.
Actually, some authors do not take any other possibilities into account, and
state their MMF definitions only for this case. We will denote this special
case as linear max-min fairness, and when there is no risk for confusion, just
max-min fairness. With the given assumptions, following Definition 2.19, a
solution x0 will be a max-min fair solution in the linear context if an only if

Θ(x0) = lex max{Θ(x) : x ∈ X}. (2.20)

Using the facts established by Property 2.12, and the fact that X is a poly-
hedron and thus convex, this will be equivalent to the statement that x0 is
strongly max-min fair on X.

2.4 Algorithms that achieve max-min fairness

Given the set X, which is a subset of Rn, X ⊆ Rn, and a vector of real-
valued functions f = (f1, f2, . . . , fm), with fj : X → R, j = 1, 2, . . . ,m,
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obtaining max-min fairness is a matter of finding a solution x0 ∈ X that
has the property that

Θ(f(x0)) = lex max{Θ(f(x)) : x ∈ X} .

There are certain generic algorithms for these kinds of optimization prob-
lems. For the case when the problem has convex structure we give algo-
rithms that are generalizations of the algorithms presented in [30], [50], [44],
and [43]. For the non-convex cases we essentially account for the general
techniques presented in [40].

2.4.1 The convex case

For the convex case, i.e., when the feasible set X is convex and the functions
fi, i = 1, 2, . . . ,m, are concave, the following algorithm, based on successive
convex programming, outputs a max-min fair solution.

Algorithm 2.1. (max-min fairness, convex case)

Step 0: Assign N := {1, 2, . . . ,m}. Solve

max t (2.21)

s.t. fi(x) ≥ t ∀ i (2.22)

x ∈ X , (2.23)

and let t∗ and x∗ be the optimal solution.

Step 1: For all j ∈ N solve

µj = max fj(x) (2.24)

s.t. fi(x) ≥ ti ∀ i /∈ N (2.25)

fi(x) ≥ t∗ ∀ i ∈ N (2.26)

x ∈ X . (2.27)

For all j ∈ N , if µj = t∗ then N := N \ {j} and tj := t∗. If N = ∅
then stop, x∗ is the max-min fair solution. Otherwise proceed to Step
2.

Step 2: Solve

max t (2.28)

s.t. fi(x) ≥ ti ∀ i /∈ N (2.29)

fi(x) ≥ t ∀ i ∈ N (2.30)

x ∈ X , (2.31)

and let t∗ and x∗ be the optimal solution. Go to Step 1.
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The above algorithm is completely relying on the convex structure of the
involved optimization problem. Note first of all that we are able to put a
constraint of the type

fi(x) ≥ ti, ti fixed, (2.32)

specific for entry i, only because of concavity of fi. The check of which
entries that can be increased, performed in Step 1, is valid only as long as
X is convex and the functions f1, f2, . . . , fm are concave. The function of
this step can be seen if we consider all i ∈ N such that µi > t∗. Denote this
set of indices by I. The value of the outcomes corresponding to i ∈ I can
all be increased simultaneously as there exists an x̄ ∈ X and a τ > t∗, such
that

fi(x̄) ≥ τ ∀ i ∈ I , (2.33)

fi(x̄) ≥ t∗ ∀ i ∈ N \ I , (2.34)

fi(x̄) ≥ ti ∀ i /∈ N . (2.35)

Such a solution x̄ is the convex combination, x̄ =
∑

j∈I
1
|I|xj, where xj is

the solution to the convex programme of Step 1, performed for entry j ∈ I.
Let τ = min{µi : i ∈ I}. Because of convexity of X, we have x̄ ∈ X and
because of concavity of functions f1, f2, . . . , fm, that

fi

( ∑

j∈I
1
|I|xj

)

≥
∑

j∈I

1

|I|
fi(xj) ≥ τ ∀ i ∈ I , (2.36)

fi

( ∑

j∈I
1
|I|xj

)

≥
∑

j∈I

1

|I|
fi(xj) ≥ t∗ ∀ i ∈ N \ I , (2.37)

fi

( ∑

j∈I
1
|I|xj

)

≥
∑

j∈I

1

|I|
fi(xj) ≥ ti ∀ i /∈ N . (2.38)

If it is possible to somehow access optimal dual multipliers for constraints
(2.30), λ∗

i , i ∈ N , the algorithm can be made substantially faster, as we then
can omit the time-consuming Step 1. Let t∗ and x∗ be the primal optimal
solution to (2.28)-(2.31), and let Λ∗ = [λ∗

i ]i∈N , be the corresponding vector
of optimal dual multipliers for constraints (2.30).

Proposition 2.13. If λ∗
i > 0 for i ∈ N , then fi(x

∗) = t∗ for any optimal
solution x∗ to (2.28)-(2.31).

Proof. For any optimal primal-dual pair (saddle-point), (x∗, t∗; Λ∗), because
of the convex structure, the complementary slackness property holds [20],

λ∗
i

(
t∗ − fi(x

∗)
)

= 0 , for each i ∈ N . (2.39)

Hence if λ∗
i > 0 then necessarily fi(x

∗) = t∗, for any optimal primal solution
x∗.
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The improved algorithm is as follows.

Algorithm 2.2. (max-min fairness, convex case)

Step 0: Assign N := {1, 2, . . . ,m}. Solve

max t (2.40)

s.t. fi(x) ≥ t ∀ i (2.41)

x ∈ X , (2.42)

and let t∗ and x∗ be the optimal solution, and Λ∗ = [λ∗
i ]i=1,2,...,m be

the optimal dual multipliers corresponding to constraints (2.41).

Step 1: For all i ∈ N : λ∗
i > 0 put N := N \ {i} and ti := t∗. If N = ∅

then stop, x∗ is the max-min fair solution. Otherwise proceed to Step
2.

Step 2: Solve

max t (2.43)

s.t. fi(x) ≥ ti ∀ i /∈ N (2.44)

fi(x) ≥ t ∀ i ∈ N (2.45)

x ∈ X , (2.46)

and let t∗ and x∗ be the optimal solution, and Λ∗ = [λ∗
i ]i∈N be the

optimal dual multipliers corresponding to constraints (2.45). Go to
Step 1.

Unfortunately, the fact that λ∗
j = 0 does not in general imply that fj(x)

can be increased further. Nevertheless, Algorithm 2.2 will keep such an
index in the set N , i.e., treating it as it potentially could be increased,
which of course is unnecessary if the corresponding constraint is binding.
Such a strategy will work since there will always be at least one binding
constraint i out of constraints (2.45) (and also out of constraints (2.41) in
Step 0), and, as will be shown,

∑

i∈N λ∗
i = 1 (and

∑

i λ∗
i = 1 in Step 0).

Property 2.14.
∑

i∈N λ∗
i = 1.

Proof. Dualize constraints (2.45), and form the Lagrangian,

L(x,Λ) = t −
∑

i∈N

λi

(
t − fi(x)

)
= t

(
1 −

∑

i∈N λi

)
+

∑

i∈N

λifi(x) ,

(2.47)
and the dual function,

W (Λ) = maxx∈X
L(x,Λ) , Λ ≥ 0 . (2.48)

Suppose that
∑

i∈N λ∗
i 6= 1. Then the bounded function W (Λ) may be made

infinitely large by assuming t = +∞ or t = −∞, which is a contradiction.
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The consequence of this treatment of indices j, for which λ∗
j = 0, will

result in that it may happen that we sometimes carry out Step 2 without
increasing t (i.e., not increasing with respect to the value of t obtained the
last time Step 2 was visited). For practical instances the occurence of λ∗

j = 0
has however shown to be quite rare.

2.4.2 Non-convex cases

Whenever the feasible set, X, is not convex or if the criteria f are not
concave, we cannot make use of neither Algorithm 2.1 nor Algorithm 2.2.
When this is the case the problem will have a more complicated non-convex
structure. This may for instance happen if X only contains integers.

Cumulated ordered outcomes

In the non-convex cases it is possible to make use of the expressability result
for cumulated ordered outcomes, given by (2.5)-(2.6). It is fairly easy to see
that a solution to

lex max{Θ̄(f(x)) : x ∈ X} ,

is also a solution to

lex max{Θ(f (x)) : x ∈ X} ,

and vice versa. The latter should be recognized as the general max-min fair-
ness problem. Given a vector of outcomes, f(x)) = (f1(x), f2(x), . . . , fm(x)),
the cumulated values, θ̄i(f(x)), i = 1, 2, . . . ,m, can be expressed as

θ̄k(f(x)) = max kt −
m∑

i=1

bi (2.49)

s.t. t − fi(x) ≤ bi ∀ i (2.50)

bi ≥ 0 ∀ i (2.51)

which makes it possible to write any max-min fairness problem as

lex max (η1, η2, . . . , ηm) (2.52)

s.t. ηk ≤ ktk −
m∑

i=1

bik ∀ k (2.53)

tk − bik ≤ fi(x) ∀ i, k (2.54)

bik ≥ 0 ∀ i, k (2.55)

x ∈ X (2.56)

where k = 1, 2, . . . ,m. This multi-criteria optimization problem can be
solved acccording to the following sequential algorithm.
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Algorithm 2.3. (max-min fairness, non-convex case)

Step 0: Assign k := 1. Solve

max η1 (2.57)

s.t. η1 ≤ t −
m∑

i=1

bi (2.58)

t − fi(x) ≤ bi ∀ i (2.59)

bi ≥ 0 ∀ i (2.60)

x ∈ X (2.61)

and let η∗1 be the optimal objective value, and x∗ the optimal solution.

Step 1: Assign k := k + 1. If k > m then stop, x∗ is the max-min fair
solution. Otherwise proceed to Step 2.

Step 2: Solve

max ηk (2.62)

s.t. η∗j ≤ jtj −
m∑

i=1

bij j = 1, 2, . . . , k − 1 (2.63)

ηk ≤ ktk −
m∑

i=1

bik (2.64)

tj − bij ≤ fi(x) j = 1, 2, . . . , k − 1, ∀ i (2.65)

tk − bik ≤ fi(x) ∀ i (2.66)

bij ≥ 0 j = 1, 2, . . . , k, ∀ i (2.67)

x ∈ X (2.68)

and let η∗k be the optimal objective value, and x∗ the optimal solution.
Go to Step 1.

Provided that the optimization problems of Step 0 and Step 2 can be
efficiently solved, Algorithm 2.3 actually provides a generic way of obtaining
a max-min fair solution. On the other hand, if the feasible set X is non-
convex, or if the outcomes f are non-concave, efficient solvers are rare.

Discrete feasible set

Some applications prescribe that the optimal outcomes f should belong to
a discrete, finite set, v = {0, v1, v2, . . . , vr}, where it assumed that 0 < v1 <
v2 < . . . < vr. Finding a max-min fair solution is then a matter of solving

lex max Θ(f(x)) (2.69)

s.t. fi(x) ∈ v ∀ i (2.70)

x ∈ X . (2.71)
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It can then in many cases be useful to put this formulation as a lexicograph-
ical minimization (see Definition 2.15 for the definition of lexicographical
maximization, lexicographical minimization is defined analogously), using
the following straightforward Property.

Property 2.15. A vector x∗ ∈ X is an optimal solution to (2.69)-(2.71) if
it is an optimal solution to

lex min
( ∑

i t1i,
∑

i t2i, . . . ,
∑

i tri

)
(2.72)

s.t. vk − fi(x) ≤ tki k = 1, 2, . . . , r, ∀ i (2.73)

tki ≥ 0 k = 1, 2, . . . , r, ∀ i (2.74)

x ∈ X (2.75)

fi(x) ∈ v ∀ i (2.76)

Proof. Let xa be an optimal solution to (2.69)-(2.71) and xb an optimal
solution to (2.72)-(2.76). Property 2.15 states that Θ(f(xa)) = Θ(f(xb)).
As we must have that Θ(f(xa)) � Θ(f(xb)), we only need to prove that
Θ(f(xb)) � Θ(f(xa)). Suppose that Θ(f(xa)) ≻ Θ(f(xb)). Then there
exists an entry j such that θj(f(xb)) < θj(f(xa)) = vt ∈ v, and θi(f(xb)) =
θi(f(xa)) for all indices i < j (if such indices exist). It then holds that

∑

i

max{vs − fi(x
a), 0} =

∑

i

max{vs − fi(x
b), 0},

for all s such that s < t, and that

∑

i

max{vt − fi(x
a), 0} <

∑

i

max{vt − fi(x
b), 0},

which contradicts that xb is a solution to (2.72)-(2.76).

2.5 Conclusions

In this chapter we have introduced the concept of fairness in a formal way.
Particularly, the concept of one vector being more fair than another has
been rigorously defined through the notion of preference relations. For a
preference relation to define fairness, we have assumed that it has to fulfill
certain regularity requirements, and is in this case called a fair rational
preference relation. From the associated rules we have developed a number
of important basic types of fairness.

The objective of obtaining fairness has been shown to be a matter of
finding a vector that is (weakly) preferred to all other vectors, with respect
to the considered fair rational preference relation. Such a vector is called
fairly nondominated, and is often obtainable through some kind of (pos-
sibly multicriteria) maximization. This provides a natural connection to
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Pareto-efficiency, as it could be shown that all fairly non-dominated vectors
can be seen as Pareto-efficient solutions to a special type of multi-criteria
maximization problem.

In order to define a fair rational preference relation there exist several
possible generic methods. The first, and probably most natural one, is to
use the idea of aggregation functions. Other types of generic fairness, i.e.,
classes of fairness where parameter-settings define the particular fairness,
have been presented. For example we have shown how to define fairness
through p-norms and ordered weighted averaging.

The most thoroughly investigated type of fairness is the one that is often
reasonably argued to be intuitively the most fair, namely max-min fairness.
We gave a formal definition of max-min fairness, using the fair rational
preference relation of the symmetrical leximin order. We then related this
definition to a stronger but less general definition, and showed that the
definitions are equivalent in the case of a convex outcome space. We did
also highlight that a solution that induces a max-min fair outcome vector is
sometimes called max-min fair itself. To the extreme it may even happen
that the solution variables are the outcomes, a case often referred to as linear
max-min fairness.

Finally, this chapter turned the focus to generic algorithms that achieve
max-min fairness. For the convex case we gave an algorithm that is based
on the use of dual multipliers, and for the non-convex case an algorithm
that makes use of cumulated ordered values. The presented algorithms will
be extensively used in the following chapters, as obtaining max-min fairness
will be one of the main objectives of the considered applications.
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In this chapter, we apply the material presented on max-min fairness in
Chapter 2 on communication network allocation problems. Specifically, this
chapter deals with allocation problems that have convex structure, i.e., al-
location problems for which the associated optimization problem is convex.
This requirement excludes for instance the more complicated cases when
decision variables can be discrete (integer variables, binary variables). Al-
location problems are the network design problems that are characterized
by the property that network topology as well as link capacities are given a
priori. Such problems consist in determination of how a number of different
(competing) users should share the network resources, so that some given
criterion is met (e.g., an objective function is optimized). Thus, an alloca-
tion problem is always a capacitated problem. As this chapter will address
max-min fairness, the preference relation of leximin order will be considered
exclusively, allowing us to drop subscript and use � to denote �lex.

3.1 Max-min fair allocation problems

3.1.1 Max-min fair flows on fixed paths

Assume given a graph G = (V, E), where each link e = 1, 2, . . . , E is assigned
a certain capacity ce. For each demand d = 1, 2, . . . ,D, suppose that we
are given a predetermined, connecting path, specified by the link-demand
incidence relation, δed. The simplest max-min fairness problem is concerned
with allocation of link capacity (bandwidth) to demands on their respective
paths such that the resulting allocation vector x = (x1, x2, . . . , xD) is max-
min fair on the feasible set X (where the feasible set X means the associated
set of constraints). Thus the flow variables xd, d = 1, 2, . . . ,D, are the
decision variables of this problem. Note that each flow variable is defined
as an outcome, so this is actually an application of linear max-min fairness.
The considered problem is described by

lex max Θ(x) (3.1)

s.t.
∑

d

δedxd ≤ ce ∀ e (3.2)

where Constraints (3.2) assure that for each link its load (left-hand side)
does not exceed the given capacity.

Definition 3.1. An allocation vector x = (x1, x2, . . . , xD) is said to be
max-saturating if each demand is maximal on a saturated link on its path,
i.e., if for each demand d′, d′ = 1, 2, . . . ,D there exists a link e such that
∑

d δedxd = ce and δed′ = 1 for which xd′ = max{xd : d = 1, 2, . . . ,D, δed =
1}.
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The following property is sometimes used for characterizing max-min fair-
ness [6], but is not generalizable as it is relevant only for the fixed paths
case.

Property 3.1. An allocation vector x0 = (x0
1, x

0
2, . . . , x

0
D) solves (3.1)-(3.2)

if and only if x0 is max-saturating. Moreover, such an allocation vector is
unique.

Proof. Suppose that x0 is not max-saturating. Then either there is a de-
mand for which there is no saturated link on its path, or there is a demand
that has saturated links on its path but is not maximal on any of them. The
first possibility clearly contradicts that Θ(x0) is lexicographically maximal.
The second possibility implies that on the demand’s path there only exist
saturated links on which another demand is dominating (is maximal). Hence
by decreasing these dominating demands it is possible to increase the origi-
nal smaller demand, which again contradicts that Θ(x0) is lexicographically
maximal. Thus if x0 is a solution to (3.1)-(3.2) it is certainly max-saturating.
Suppose that x0 is max-saturating and that there exists a feasible allocation
vector x1 such that Θ(x1) ≻ Θ(x0). Then there must exist a demand d such
that x1

d > x0
d. Let d be such a demand, with the smallest possible value of

x0
d. Define the set S as S = {d′ : x0

d′ ≤ x0
d}. It holds that x0

d′ ≤ x1
d′ for any

d′ ∈ S, because otherwise we would not have Θ(x1) ≻ Θ(x0). Consider the
saturated link e on which demand d is maximal (for allocation x0). Clearly,
x0

d +
∑

d′∈S δed′x
0
d′ = ce. However, this link load is strictly less than the one

implied by allocation x1, namely x1
d +

∑

d′∈S δed′x
1
d′ , which contradicts the

existence of x1. Concluding, if x0 is max-saturating it must be a solution to
(3.1)-(3.2). It is easily checked that the feasible set X is convex. According
to Property 2.12 if x0 is a solution to (3.1)-(3.2) (i.e., MMF on X), it must
be strongly max-min fair. A strongly max-min fair vector is, according to
Property 2.8, unique.

The unique solution of problem (3.1)-(3.2) can be found by a well known
procedure given by Algorithm 3.1. The algorithm is sometimes referred to as
“waterfilling” [46]. To simplify notation, we let N denote the set of demands
that can be further increased and S the set of saturated links.

Algorithm 3.1. (for solving (3.1)-(3.2))

Step 0: x := 0; N := {1, 2, . . . ,D}; S := ∅;

Step 1: t := min
{

ceP
d∈N δed

: e /∈ S
}

.

Step 2: ce := ce − t(
∑

d∈N δed) for all e : e /∈ S, xd := xd + t for all d such
that d ∈ N . For all e with ce = 0 and e /∈ S, S := S ∪ {e}. For
each link e′ that has been added to S, for each demand d′ for which
δe′d′ = 1, put δed′ = 0 for e = 1, 2, . . . , E and D := D \ {d′}.
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Step 3: If D = ∅, then stop, otherwise go to Step 1.

The function of Algorithm 3.1 is very simple: the flows allocated to each
demand are increased at an equal rate until a link is saturated. Then all
the demands that use this link become “blocked”, and cannot be increased
further. The flows of these demands have reached their final value. The
procedure is then repeated with the demands that are not blocked. This
continues until all demands are blocked, i.e., until all flows have reached
their final values. Thus Algorithm 3.1 constructs an allocation vector x

that is max-saturating and therefore, by Property 3.1, the only solution to
(3.1)-(3.2).

It should be noted that the quantity t, calculated in Step 1 of Algorithm
3.1, is the solution of the following LP:

max t (3.3)

s.t. t
( ∑

d δed

)
≤ ce ∀ e (3.4)

This simple observation will show to be useful later when more complicated
MMF problems are addressed. A more general version of problem (3.1)-(3.2)
is obtained if the constraints

hd ≤ xd ≤ Hd , d = 1, 2, . . . ,D , (3.5)

are added to the formulation. Here hd and Hd are lower and upper bounds on
the flow allowed to assign to demand d. There is an easy way of accounting
for the upper bounds Hd. This can be done by adjusting the network graph
before applying Algorithm 3.1. For each demand d an auxiliary leaf node
and an extra link of capacity Hd are added; the link is then added to the
path of demand d.

Example 3.1. Consider the network in Figure 3.1. Initially the network
has V = 5 nodes, E = 6 links and D = 3 demands. To account for the upper
bounds, Hd, d = 1, 2, 3, three new nodes, v = 6, 7, 8, and links, e = 7, 8, 9,
with appropriate capacities are added, resulting in the augmented network.

To cope with the lower bounds hd, modifications to Algorithm 3.1 have to
be done. Although using identical ideas, such a modified algorithm is more
difficult to describe as it involves more technical details. The algorithm can
however be informally outlined as follows: Start by assigning all demands,
d, their lower bound values, xd := hd. If for some link e,

∑

d δedhd > ce, the
problem is infeasible. Otherwise we let C = {C1, C2, . . . , CK} be the ordered
set of distinct values hd, d = 1, 2, . . . ,D. We define a set D of demands that
should be increased. Initially, let D = {d : hd = C1}. Then all the demands
contained in D are increased at the same rate until a demand gets blocked
or until the next element of C is reached. If a demand is blocked (by a
saturated link), we simply leave this demand behind by removing it from D
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v = 1 v = 2

v = 3

v = 8

v = 4

v = 6

v = 5
v = 7

e = 1 e = 2

e = 3

e = 4 e = 9

e = 8e = 6

e = 7

e = 5

demand node node path leaf node new path
d = 1 v = 1 v = 5 {1, 5, 6} v = 6 {1, 5, 6, 7}
d = 2 v = 1 v = 4 {1, 4, 6} v = 7 {1, 4, 6, 8}
d = 3 v = 2 v = 4 {3} v = 8 {3, 9}

Figure 3.1: Augmented network, c7 = H1, c8 = H2, c9 = H3.

and continue. This demand has reached its final value. If the next element
of C, call it Ck, is reached then all the demands d for which hd = Ck enter
D and we continue the procedure. It may happen that D becomes empty
before Ck is reached. In such a case we let D = {d : hd = Ck}. The
procedure is continued until all demands have reached their final values.

3.1.2 Max-min fair flows on optimized paths

In this section we investigate how to obtain max-min fairness if there are
several allowable paths on the routing list assigned to each demand, and
the flow associated with a demand is allowed to split over its paths. This
differs from the simpler problem considered in the previous section, as it
was then assumed that each demand is restricted to one single fixed path.
In general, flows realizing each demand volume, xd, being allowed to split
among the allowable paths will of course result in a sorted allocation vector,
Θ(x), lexicographically greater than the one solving the fixed paths case.
Formally we consider the following problem, where zdp, d = 1, 2 . . . ,D, p =
1, 2, . . . , Pd, are the considered variables.

lex max Θ(x) (3.6)

s.t.
∑

p

zdp = xd ∀ d (3.7)

∑

d

δedpzdp ≤ ce ∀ e (3.8)

The multi-criteria optimization problem formulated by (3.6)-(3.8) is sub-
stantially more difficult than its fixed path counterpart (3.1)-(3.2), because
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in general the quantity t can in this case not be computed by a unique-
solution LP, as is done by (3.3)-(3.4). Instead, to compute t, the following
LP has to be devised:

max t (3.9)

s.t.
∑

p

zdp = xd ∀ d (3.10)

t − xd ≤ 0 ∀ d (3.11)
∑

d

δedpzdp ≤ ce. ∀ e (3.12)

The following example shows that (3.9)-(3.12) may have several solutions.

Example 3.2. Consider the network in Figure 3.2. Assume given two de-
mands; d = 1 between v = 1 and v = 2, and d = 2 between v = 1 and v = 4.
Resolution of the LP formulated by (3.9)-(3.12) may result in two different
solutions: i) z11 = 1 on path {2}, z21 = 1 on path {1, 4}, and ii) z11 = 1 on
path {1, 3}, and z21 = 1 on path {2, 3, 4}. Solution ii) does not leave room
for any improvement. However, solution i) leaves room for further increment
of demand d = 1, facilitating the optimal (optimal for (3.6)-(3.8)) allocation
vector: z0

11 = 1 (on path {2}), z0
12 = 1 (on path {1, 3}), and z0

21 = 1 (on
path {1, 4}). The optimal allocation vector, x0, is equal to (2, 1).

xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx

xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx

xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxxc1 = 2

d = 2

d = 1

c4 = 1
v = 1

v = 3
v = 4

e = 1 e = 4

xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx

c3 = 2

c2 = 1
v = 2

e = 3
e = 2

Figure 3.2: Multiple optimal allocation vectors.

Hence we can conclude that Algorithm 3.1 cannot be generalized to solve
(3.6)-(3.8). Nevertheless, the feasible set is convex (and outcomes are linear
and thus concave), so the general method for convex MMF problems given
by Algorithm 2.1 can be applied. This general algorithm is application-
specified by Algorithm 3.2.

Algorithm 3.2. (for solving (3.6)-(3.8))
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Step 0: Assign N := {1, 2, . . . ,D}. Solve

max t (3.13)

s.t.
∑

p

zdp = xd ∀ d (3.14)

t − xd ≤ 0 ∀ d (3.15)
∑

d

∑

p

δedpzdp ≤ ce ∀ e (3.16)

and let t∗ and x∗ =
( ∑

p z∗1p,
∑

p z∗2p, . . . ,
∑

p z∗Dp

)
be the optimal

solution.

Step 1: For all d′ ∈ N solve

µd′ = max xd′ (3.17)

s.t. xd ≥ td ∀ d /∈ N (3.18)

xd ≥ t∗ ∀ d ∈ N (3.19)
∑

p

zdp = xd ∀ d (3.20)

∑

d

∑

p

δedpzdp ≤ ce ∀ e (3.21)

For all d′ ∈ N , if µd′ = t∗ then N := N \ {d′} and td′ := t∗. If N = ∅
then stop, x∗ =

( ∑

p z∗1p,
∑

p z∗2p, . . . ,
∑

p z∗Dp

)
is the max-min fair

solution. Otherwise proceed to Step 2.

Step 2: Solve

max t (3.22)

s.t. xd ≥ td ∀ d /∈ N (3.23)

xd ≥ t ∀ d ∈ N (3.24)
∑

p

zdp = xd ∀ d (3.25)

∑

d

∑

p

δedpzdp ≤ ce ∀ e (3.26)

and let t∗ and x∗ =
( ∑

p z∗1p,
∑

p z∗2p, . . . ,
∑

p z∗Dp

)
be the optimal

solution. Go to Step 1.

The function of Step 1 is to test whether a demand d ∈ N can be
increased above the latest obtained t∗ or not. Note that we are therefore
not interested in the actual value of µd, but only whether it is larger or equal
to t∗. It may of course happen that while solving (3.17)-(3.21) for a certain
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demand d′ ∈ N , the resulting solution will have xd′′ > t∗ for some other
demand d′′ ∈ N . In that case we may just assign µd′′ := xd′′ and neglect
solving (3.17)-(3.21) for d′′ ∈ N .

Obviously, the LP solving-procedure associated with Step 1 should be
performed using the basic LP solution resulting from Step 0 (or Step 2).
As indicated in Section 2.4, the tests performed by Step 1 can be very time
consuming. Particularly, with the application at hand, we may look at large
networks with, say, thousand demands. In such a situation more efficient
tests are called for. Besides the dual-multiplier based improvement described
by Algorithm 2.2, it is possible to base a more efficient test on the properties
of the Simplex tableau. The test of Step 1 of whether a demand d ∈ N can
be increased above the latest obtained t∗ or not can be done directly by
examining the Simplex tableau corresponding to the final solution of Step 0
(or Step 2). We just have to examine the slack variable associated with the
constraint in (3.15) (or (3.24)), corresponding to the currently considered
demand d′ ∈ N . We will not give the details for such a tableau-based
test, but instead give an application-specified version of Algorithm 2.2 for
the considered problem. However, before specifying the algorithm based on
dual multipliers we will make some assertions concerning the solution x∗ of
(3.6)-(3.8).

Property 3.2. The allocation vector, x∗ =
( ∑

p z∗1p,
∑

p z∗2p, . . . ,
∑

p z∗Dp

)
,

being the final solution of problem (3.22)-(3.26) in Step 2, is unique. In
general the unique vector x∗ can be achieved by more than one optimal con-
figuration of the individual flows, z∗dp, d = 1, 2, ...,D, p = 1, 2, ..., Pd.

This follows from the convexity of the constraint set (c.f. Property 2.12 and
Property 2.8). Another property, implied by the number of basic variables
in (3.22)-(3.26) and the operation of Simplex reads:

Property 3.3. There exists a solution of (3.22)-(3.26) with at most D +E
non-zero flows, z∗dp, d = 1, 2, ...,D, p = 1, 2, ..., Pd.

A more complicated result is considered with the number of distinct entries
of the optimal allocation vector x0, if all possible paths between node-pairs
can be used [31].

Property 3.4 (Nace and Doan, 2005). If for each demand d = 1, 2, . . . ,D
all possible paths can be used, then the optimal allocation vector, x0, has at
most V − 1 distinct entries.

Proof. The usefulness of this result depends on if for the considered instance
V −1 < D, since there can obviously not be more distinct entries than there
are entries. However, there are potentially as many as V (V − 1)/2 demands
in the network, so many important cases will be covered.
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Let φ1 be the smallest entry of x0, i.e., φ1 = θ1(x
0). Define X1 as the

set of all feasible solutions for which the smallest entry is not less than φ1,
i.e.,

X1 = {x ∈ X : θ1(x) ≥ φ1} , (3.27)

where X is the set of all feasible solutions. Define further s(x) as the set
of links that are saturated by a solution x ∈ X. For any x ∈ X1 suppose
that s(x) does not define a cut (for the notion of cuts, see [1]). Then it
will be possible to increase any coordinate of x, as subtracting the capacity
occupied by x will leave room for additional flow between any node-pair,
which contradicts that x ∈ X1. Hence s(x) defines a cut for any x ∈ X1.

Define further

S1 =
⋂x∈X1

s(x) . (3.28)

Generate a set Y1 as follows. Start by assigning Y1 = ∅. For each cut c that
is generated by some x ∈ X, i.e., a cut c for which c = s(x) for some x ∈ X1,
pick exactly one representative solution x′ ∈ X1 such that c = s(x′), and
add it to Y1, Y1 := Y1 ∪{x′}. This will give a finite set of solutions Y1 ⊆ X1

(as there are finitely many cuts in a graph), and it will hold that

S1 =
⋂x∈X1

s(x) =
⋂x∈Y1

s(x) . (3.29)

Suppose that S1 does not define a cut. This implies that s(xc), xc =
∑x∈Y1

1
|Y1|

x, does not define a cut. But since X1 is convex, xc ∈ X1 and xc

must define a cut, which is a contradiction. Thus S1 defines a cut.
Let φk be the k:th distinct entry of Θ(x0). For each φk define a set Xk

as

Xk =

{

x ∈ X :
θj(x) = θj(x

0) for j such that θj(x
0) ≤ φk

θj(x) ≥ φk for j such that θj(x
0) > φk

}

(3.30)

In other words, the set Xk is the set of solutions x ∈ X for which Θ(x) is
lexicographically greater or equal to

(θ1(x
0), θ2(x

0), . . . , θt(x
0), φk, . . . , φk) ,

where t is the largest index for which θt(x
0) < φk. Let

Sk =
⋂x∈Xk

s(x) . (3.31)

Now assume that x0 has more than n distinct entries and suppose that the
graph Gn = (V, E \Sn) has K components (disjoint subgraphs), and consider
any solution x ∈ Xn+1. Then it must hold that the graph (V, E \ s(x)) has
at least K + 1 components. Because suppose that it has K components.
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This must then be the K components induced by Sn, as x ∈ Xn+1 implies
x ∈ Xn. Clearly, such an x will be possible to increase in any coordinate for
which the corresponding node-pair is not cut by Sn. This contradicts that
x ∈ Xn+1.

Generate a set Yn+1 as follows. Start by assigning Yn+1 = ∅. For each
partition P of the graph generated by any solution x ∈ Xn+1, i.e., P = s(x),
x ∈ Xn+1, pick exactly one representative solution x′ ∈ Xn+1 such that
P = s(x′) and add it to Yn+1, Yn+1 := Yn+1 ∪ {x′}. This will give a finite
set of solutions Yn+1 ⊆ Xn+1, and it holds that

Sn+1 =
⋂x∈Xn+1

s(x) =
⋂x∈Yn+1

s(x) . (3.32)

As Sn ⊆ Sn+1 the graph Gn+1 = (V, E \ Sn+1) must have at least K com-
ponents. Suppose that Gn+1 has exactly K components. This implies that
s(xc), xc =

∑x∈Yn+1

1
|Yn+1|

s(x), induces K components. But due to con-

vexity of Xn+1, xc ∈ Xn+1, and s(xc) must thus induce at least K + 1
components, so this is a contradiction.

Per definition, every set Xk , k = 1, 2, . . . M , corresponds to a distinct
entry φk of Θ(x0). Suppose that M > V − 1 and that XM is non-empty
and thus that XV −1 is non-empty. If XV −1 is non-empty we have, for any
x ∈ XV −1, that s(x) induces V components, meaning that s(x) = E . Thus
there are no solutions x′ ∈ X such that Θ(x′) ≻ Θ(x), meaning that the
set XM must be empty, and we have a contradiction. This completes the
proof.

Improving the algorithm using dual multipliers

The vector Λ∗ = (λ∗
1, λ

∗
2, . . . , λ

∗
D) of the optimal dual variables corresponding

to constraints (3.15) (or the vector Λ∗ = [λ∗
d], d ∈ N , corresponding to

(3.24)) constitutes the key tool in improving Algorithm 3.2. The general
dual-multiplier based algorithm (Algorithm 2.2) is application-specified for
optimization problem (3.6)-(3.8) by the following algorithm.

Algorithm 3.3. (for solving (3.6)-(3.8))

Step 0: Assign N := {1, 2, . . . ,D}. Solve

max t (3.33)

s.t.
∑

p

zdp = xd ∀ d (3.34)

t − xd ≤ 0 ∀ d (3.35)
∑

d

∑

p

δedpzdp ≤ ce ∀ e (3.36)
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and let t∗ and x∗ =
( ∑

p z∗1p,
∑

p z∗2p, . . . ,
∑

p z∗Dp

)
be the optimal

solution, and Λ∗ = [λ∗
d]d=1,2,...,D be the optimal dual multipliers corre-

sponding to constraints (3.35).

Step 1: For all d ∈ N : λ∗
d > 0 assign N := N \ {d} and td := t∗. If N = ∅

then stop, x∗ =
( ∑

p z∗1p,
∑

p z∗2p, . . . ,
∑

p z∗Dp

)
is the max-min fair

solution. Otherwise proceed to Step 2.

Step 2: Solve

max t (3.37)

s.t. xd ≥ td ∀ d /∈ N (3.38)

xd ≥ t ∀ d ∈ N (3.39)
∑

p

zdp = xd ∀ d (3.40)

∑

d

∑

p

δedpzdp ≤ ce ∀ e (3.41)

and let t∗ and x∗ =
( ∑

p z∗1p,
∑

p z∗2p, . . . ,
∑

p z∗Dp

)
be the optimal

solution, and Λ∗ = [λ∗
d]d∈N be the optimal dual multipliers corre-

sponding to constraints (3.39). Go to Step 1.

As problem (3.6)-(3.8) is entirely linear, the optimzation problems solved
in Step 0 and Step 2 will be linear programming problems. This has the
obvious advantage that, since practically all LP solvers provide optimal dual
multipliers along with the primal optimal solution, we can assume that we
have easy access to dual multipliers, making Algorithm 3.3 an appealing
way of solving the considered problem. It is however a fact that examining
the numerical value of an optimal dual multiplier λ∗

d, d ∈ N , will be useful
only if λ∗

d > 0. In the case when λ∗
d = 0 we cannot say anything about the

possibilities of increasing xd. This is illustrated by the following example.

Example 3.3. Consider the network from Figure 3.3. In this case (3.6)-
(3.8) will be solved already by Step 0 of Algorithm 3.3, yielding x∗

1 = z∗11 =
x∗

2 = z∗21 = x∗
3 = z∗31 = 1 (there is only one path for each demand). Although

none of the three demands can be further increased, the Simplex algorithm
will always set to 0 one of the two first values in the vector Λ∗ = (λ∗

1, λ
∗
2, λ

∗
3),

of the optimal multipliers corresponding to constraints (3.35), yielding one
of the two optimal dual solutions: Λ∗ = (0, 1

2 , 1
2) or Λ∗ = (1

2 , 0, 1
2 ).

Summing up, investigating dual multipliers is really a method of detect-
ing the demands that are blocking (not possible to increase further), and not
the ones that are non-blocking (possible to increase further), which would
be even better. However, as is also explained in Section 2.4, assuming that
all demands that are not shown to be blocking by the dual multiplier test
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Figure 3.3: Two-link network.

are indeed non-blocking, will work even though we risk not to improve t∗ in
two consecutive iterations. This is because that

∑

d λ∗
d = 1, resulting in that

each iteration will reveal at least one blocking demand, so we will eventually
reach an iteration where every demand d for which λ∗

d = 0 is non-blocking.

Efficiency issues of Algorithm 3.3

Algorithm 3.3 combined with an efficient LP solver, provides a time-efficient
and easy to implement tool for solving (3.6)-(3.8). Moreover, the maximal
number of iterations of Algorithm 3.3, required to achieve the final solution is
theoretically equal to the number of demands, D. In practice the algorithm
rarely requires more than E (the number of links) iterations, as blocking
demands with λ∗

d = 0 occur very rarely.

In the problem formulations considered in this section we have used the
so called link-path formulation, assuming a limited list of paths currently
predefined for each demand (paths p = 1, 2, . . . , Pd for demand d). In gen-
eral, such lists do not contain (deliberately) all the paths allowable for the
demand. For instance, if the allowable paths are, say, all the paths with
up to ten hops, then there can exist thousands of such paths for a demand,
still, typically, the current path list will contain a relatively small number
of paths in order to limit the number of variables. Hence, it can happen
that the current set of lists of predefined paths is not sufficient for reaching
the optimal solution achievable within the full set of all allowable paths. To
avoid this problem, it is of course possible to instead put the optimization
problem in a so-called node-link formulation and account for each possi-
ble path for each demand, done e.g. in [30]. Taking each possible path
into account can however be done in an equivalent, and substantially less
computationally exhaustive way, using the efficient path generation1 [9].

1In general linear programming this is called column generation.
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Applying the algorithms on a numerical example

To illustrate the performance and function of Algorithm 3.3, we have con-
sidered a network with V = 12 nodes, E = 18 links, and D = 66 de-
mands (demands are all undirected S-D pairs, numbered in the natural
order: {1, 2}, {1, 3}, . . . , {11, 12}). Each demand is assigned the routing
sequence of all simple paths, resulting in Pd values ranging from 6 to 13.
To perform the numerical study, a large-scale interior-point solver provided
by MATLAB Optimization Toolbox is used. Both Algorithm 3.1 (single
pre-defined path case) and Algorithm 3.3 (optimized paths case) have been
implemented. Figure 3.4 shows the successive demand volume allocations
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Figure 3.4: Evolution of allocated demand volumes using Algorithm 3.3.

xd of Algorithm 3.3. In total, the experiment required 8 iterations and took
less than 6 seconds of the CPU time on a PC with an Intel PIII-1GHz CPU,
RAM of 256 MB, and Windows 2000 OS. The check of dual variables has
been sufficient in all iterations (i.e., each iteration gave improvement of t∗).
Note that the allocations are non-decreasing over the iterations, and that
after Step 0 approximately equal volume is allocated to all demands. The
benefit from using optimized paths for this network is illustrated in Fig-
ure 3.5. The left diagram illustrates the final demand volume allocation
after applying Algorithm 3.1 (the predefined paths are the shortest paths
in terms of the number of hops). This should be compared to the right
diagram, which is the final allocation pattern of Algorithm 3.3 (equal to the
last row in Figure 3.4). The throughput, standard deviation, and mean is
equal to 2.2e3, 10.9, 33.0 and 2.6e3, 10.0, 39.6, for single and flexible paths
cases, respectively. Notably, the total throughput of the flexible solution is
greater than the throughput of the fixed-path solution by 16%.
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Figure 3.5: Volume allocated to each demand using single (fixed) and flexible
(optimized) paths.

3.2 Max-min fair reallocation

Conventionally, research efforts targeting the issue of network robustness
focus either on imposing resilience in the network design phase, or on aug-
menting existing network resources. For a given backbone transport net-
work, both these approaches can be inadequate, simply because the network
is in an operational phase and augmenting its resources may not be feasible.
In this section we present ideas that take another approach, achieving ro-
bustness through a link protection mechanism, obtainable through reducing
and rerouting the existing nominal demand flows, without altering neither
network link capacities nor topology. We will show that the scheme of doing
this can in a natural way be based upon the notion of max-min fairness.

The problem addressed in this section occurs when a network, designed
and allocated in a non-robust way, encounters a link failure. Character-
istically, such a network can be highly vulnerable, i.e., large fractions of
connections disrupt due to events of this kind. The idea is to provide means
of protecting (make robust) this type of network within its given resources,
at the cost of fairly redistributing (reduce and possibly reroute) individ-
ual demand flows, still maintaining the overall demand volume relations.
With this as the desired goal, we formulate and solve an optimization prob-
lem, maximizing the resemblence beteween original and reduced demand
volumes, constrained on that the reduced demand volumes are fully pro-
tected for any single link failure. The solution to such an optimization
problem may be further improved, and therefore we introduce a max-min
fair improvement procedure. The suggested methodology is application of
the convex-case max-min fairness algorithms.
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3.2.1 Problem description

The methodology studied in this section is essentially concerned with in-
vestigating means for redistributing flows in an existing network with pre-
allocated flows, within given link capacities, so that network robustness to
link failures is introduced. Certain realistic assumptions about mean time
between failures and mean time to repair in transport networks, justify the
assumption that only one link fails at the time [53]. Adopting this rea-
soning advocates interpretation of the term “network robustness” as flow
survival upon single link failures. In the preallocated network each source-
destination (s-d) node pair is assigned a certain flow. The objective is to
uniformly scale (and if necessary reroute) the preallocated flows such that
in the event of a single failing link, each one of these (scaled) flows will be
entirely restored using the link protection mechanism. By scaling the flows,
we will obtain certain spare capacity on each link. This capacity, denoted
protection capacity, is used to protect failing links, i.e., if a link fails, flows
going through this link will be carried on protection capacity of other links,
between the two nodes connected by the failed link. The rearranged network
guarantees 100% Traffic Restoration Level (TRL) [2].

3.2.2 Notation and definitions

Consider a network given by a set of nodes and a set of connecting links that
are also specified in terms of capacity ce. It is assumed that we are given
a set of demands (node-pairs), a set of paths for each demand (implicitly
given by the link-path incidence relation, δedp), and a feasible allocation
x̂ = (x̂1, x̂2, . . . , x̂D). The allocation x̂ is assumed to be feasible, meaning
that there exists ẑdp such that

∑

p ẑdp = x̂d, d = 1, 2, . . . ,D and

∑

d

∑

p

δedpẑdp ≤ ce , e = 1, 2, . . . , E .

We want to find a number t > 0, uniformly scaling the preallocation and
thereby liberating link capacity, necessary to ensure full restoration of any
single link, i.e., to obtain compensation for the total failure of each link e,
e = 1, 2, . . . , E. We restrict ourselves to the study of pure link protection,
meaning that in case of link failure, the aggregated flow carried by the link is
rerouted on protection paths, thus requiring a link connectivity of at least 2
from the network, and that each link e is assigned a set of protection paths,
identified by q = 1, 2, . . . , Qe. The links used by each protection path are
determined by the link-path incidence relation, βfeq, where βfeq = 1 if link
f belongs to path q, protecting link e, and 0 otherwise. For link e, consider
a protecting flow, req, i.e., a flow that protects link e on path q.
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Definition 3.2. Let x be a feasible allocation. We say that x is fully
protected by flows req if

∑

d

∑

p

δedpzdp +
∑

q

βefqrfq ≤ ce , e, f = 1, 2, . . . , E, e 6= f (3.42)

and ∑

q

req ≥
∑

d

∑

p

δedpzdp , e = 1, 2, . . . , E . (3.43)

Note that (3.42) relies on the single link failure assumption, and that (3.43)
ensures that a fully protected allocation will have a TRL of 100%.

Definition 3.3. Assume a given feasible allocation x̂, and an allocation x

that is fully protected by flows req. We define the scaling factor, t(x), with
respect to x̂ as

t(x) = min
{ xd

x̂d
: d = 1, 2, . . . ,D

}

. (3.44)

For a given preallocation, x̂, we want to determine a protected allocation x,
including protecting flows, req, so that the the protected allocation resembles
the preallocation as much as possible. Therefore, maximization of the scaling
factor, t, will be of major importance.

3.2.3 A lower bound

Before formulating an appropriate optimization problem, certain conclusions
regarding how large scaling factor that can be obtained for a given allocation
x̂, may be drawn.

Proposition 3.5. For each link e, e = 1, 2, . . . , E, denote by ce the capacity
of link e, by v and u the two nodes connected by link e, v, u = 1, 2, . . . , V ,
v 6= u. In the unloaded network, let πe denote the largest flow possible to
transfer between v and u (the max-flow) on the protection paths of link e.
There exists a protected allocation x such that

t ≥ min
{ πe

ce + πe
: e = 1, 2, . . . , E

}

. (3.45)

Proof. First, we note that it is sufficient to prove the existence of a restora-
tion such that

t ≥
πe

ce + πe
, (3.46)

for all links e. Assume that we delete an arbitrary link e, of capacity ce,
carrying the flow ωe in the preallocation, and form an s − d cut between
v and w and over the residual network. Furthermore, assume that we can
measure the aggregated (preallocated) flow intersecting this cut, and that
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we are able to discern the share incident on paths protecting link e. Denote
this share by φ. Now, place the cut such that the share is minimal, and
denote this flow by φ∗ (cf. the notion of min-cuts [1]). By scaling all the
flows incident on the protection paths by πe

ce+πe
, we open up for a connection

between v and w of capacity

c′e = πe − φ∗ πe

ce + πe
. (3.47)

Moreover, from the Max-flow Min-cut theorem we know that it certainly
holds that φ∗ ≤ πe [1], so

c′e ≥ πe − πe
πe

ce + πe
= ce

πe

ce + πe
≥ ωe

πe

ce + πe
.

Thus we have a restoration satisfying (3.46).

It turns out that if the network is saturated by demands that each have
one, single, allowable path, then the bound given by Proposition 3.5 is exact.
Note that in this case the preallocated flows cannot be rearranged, but only
thinned.

Proposition 3.6. If the network is saturated by single-path demands, then
for any protected allocation x,

t = min
{

πe

ce+πe
: e = 1, 2, . . . , E

}
. (3.48)

Proof. For a saturated network we have φ∗ = πe, and ωe = ce. Pick a
link e for which min

{
πe

ce+πe
: e = 1, 2, . . . , E

}
is assumed. Assume that

we restore link e by a factor α1 > πe

ce+πe
. This implies that we are forced

to scale flows carried by links on link e’s protection paths by α2 < πe

ce+πe
,

since we must satisfy ceα1 + πeα2 = πe. By assumption these links realize
demands uniquely, so this would imply

t <
πe

ce + πe
, (3.49)

which contradicts Proposition 3.5.

Under certain circumstances it is possible to find a scaling factor, t, close
to 1, as the following example shows.

Example 3.4. Suppose that ce = C for all links e, and that for each link e
we have at least n disjoint protection paths, i.e., that none of these n paths
share a link. Then

t ≥ min
{ πe

ce + πe
: e = 1, 2, . . . , E

}

≥
Cn

C + Cn
=

n

1 + n
.
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If the number of protection paths, Qe, for each link is reasonably small,
determination of the corresponding max-flows, πe, is a fairly simple process,
requiring mere consideration of the network topology, with its corresponding
link capacities. However, in a more complex network, with a large number
of (possibly non-disjoint) protection paths for each link, we may have to
use e.g. the Ford-Fulkerson algorithm [6] (for the original algorithm, see
[11]). For its relative simplicity, the lower bound provided by Proposition
3.5 can be valuable in estimating a worst case redistribution loss. Given an
optimal scaling factor t∗ (see the corresponding LP in the following section),
it also exposes links constituting protectional bottlenecks, i.e., links e, for
which πe

ce+πe
= t∗. By improving these links’ protection properties, e.g. by

extension of corresponding sets of protection paths, (such that πe

ce+πe
> t∗

for all e = 1, 2, . . . , E), the proposition guarantees a larger optimal scaling
factor.

3.2.4 Optimal solutions

A linear programming formulation

The problem of resembling the preallocation, x̂, with the fully protected
allocation, x (with protecting flows req), can be addressed by formulation
of an appropriate optimization problem. Using the notation introduced
in the previous section, together with the auxiliary variables we and ye,
denoting protection capacity and nominal capacity for link e, e = 1, 2, . . . , E,
respectively, an LP with the decision variables zdp and req, can be formulated
in the following way (where f = 1, 2, . . . , E):

max t (3.50)

s.t. t ≤
xd

x̂d
∀ d (3.51)

xd =
∑

p

zdp ∀ d (3.52)

we + ye ≤ ce ∀ e (3.53)

ye ≤
∑

q

req ∀ e (3.54)

∑

q

βfeqreq ≤ wf ∀ f, e : f 6= e (3.55)

∑

d

∑

p

δedpzdp = ye ∀ e (3.56)

Here, x̂d =
∑

p ẑdp are the given preallocated demand volumes, and they are
without loss of generality assumed to satisfy x̂d > 0, for all d = 1, 2, . . . ,D.
Since this LP is bounded and feasible, it is clearly solvable, and will provide
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a protected allocation x and associated protecting flows req, with a maximal
protection factor t, with respect to the preallocation x̂.

A max-min fair improvement

Since the solution to (3.50)-(3.56) is usually non-unique, there is some free-
dom in which solution to choose. Note that rearranging the network strictly
according to the solution of (3.50)-(3.56), will most likely result in a poor
link utilization, because there will be a lot of unused capacity. However, for
the considered application, there is a natural way of improving this, exploit-
ing the idea of max-min fairness. In doing so we first define the constraint
set F . For simpler notation, denote by S a collection of flows, zdp, and pro-
tecting flows, req. We say that S ∈ F (S is feasible) if and only if it holds
that the associated flows, zdp, and protecing flows, req, satisfy (3.52)-(3.56).
The LP of (3.50)-(3.56) can then be rewritten as:

max t (3.57)

s.t. t ≤
xd

x̂d
∀ d (3.58)

S ∈ F (3.59)

Now assume that (t∗, S∗) is an optimal solution to (3.50)-(3.56), and that

t∗ =
x∗

d

x̂d
, for some demand d, and that there exists a demand ∆, ∆ 6= d,

such that t∗ <
x∗
∆

x̂∆
. We may then decrease x∗

∆ such that t∗ =
x∗
∆

x̂∆
, and still

have an optimal solution. This observation has the following implication
for our solutions: given an optimal solution (t∗, S∗) to (3.50)-(3.56), it may
be possible to further increase some aggregated flows (corresponding to de-
mands), x∗

d, (certainly not all of them), and still have an optimal solution.
We will refer to the demands possible to further increase as non-blocking.
Such an increment is of course desirable, and for this purpose we propose
the following algorithm, being an application-specified version of Algorithm
2.2, in order to obtain a better solution than that obtained by only solving
(3.50)-(3.56).

Algorithm 3.4.

Step 0: Assign N := {1, 2, . . . ,D}. Solve

max t (3.60)

s.t. t ≤
xd

x̂d
∀ d (3.61)

S ∈ F (3.62)

and let t∗, zdp∗ , and r∗eq be the optimal solution, and Λ∗ = [λ∗
d]d=1,2,...,D

be the optimal dual multipliers corresponding to constraints (3.61).
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Step 1: For all d ∈ N : λ∗
d > 0 assign N := N \ {d} and td := t∗. If N = ∅

then stop, x∗
d =

∑

p z∗dp, d = 1, 2, . . . ,D are the flows corresponding
to a maximal scaling factor, improved in a max-min fair way. Single
link failures are entirely protected by (protecting) flows r∗eq. Otherwise
proceed to Step 2.

Step 2: Solve

max t (3.63)

s.t. t ≤
xd

x̂d
∀ d ∈ N (3.64)

td ≤
xd

x̂d
∀ d /∈ N (3.65)

S ∈ F (3.66)

and let t∗, zdp∗ , and r∗eq be the optimal solution, and Λ∗ = [λ∗
d]d∈N be

the optimal dual multipliers corresponding to constraints (3.64). Go
to Step 1.

The function of this algorithm relies, as it is an application of Algorithm
2.2, on complementary slackness and the fact that

∑

d∈N

λd = 1. (3.67)

As all involved optimization problems are LPs, we may consider the optimal
dual multipliers easily accessible. Note that, just as was the case of Algo-
rithm 3.3, in the case of a demand d ∈ N for which λd = 0 we can not be
certain of that this demand can be increased further (i.e., that it really is
a non-blocking demand). This implies that it may happen that we do not
increase t∗ in two consecutive iterations. However, since (3.67) always holds,
each iteration will reveal at least one new blocking demand.

Algorithm 3.4 provides a max-min fair distribution of degree of resemb-
lence to the corresponding preallocated demand flows. This is conditioned
on that capacity has to be reserved so that in case of failure of any single
link, the link can be completely restored by protecting flows.

3.2.5 Numerical examples

To illustrate the sharpness of the lower bound provided by Proposition 3.5,
Table 3.1 gives a comparison between optimal t, computed by (3.50)-(3.56),
and the corresponding lower bound for t, for 11 different randomly generated
networks with different settings. For all the included networks, the individ-
ual link capacities are set according to ce = 30±ρ, e = 1, 2, . . . , E, where ρ is
randomly chosen. For networks 1-10 (denoted net 1-10), ρ ∈ {0, 1, 2, 3, 4, 5},
and for network 11 (denoted net 11), ρ ∈ {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10}. In all
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the cases, the preallocation saturates the network, since it is obtained by
application of the MMF allocation rule, as described in Section 3.1.2, to the
network with demands between all pairs of nodes. It should be noted that

net #nodes #links νmax νmin M L optimal t bound error (%)

1 6 8 3 2 1 2 0.4167 0.4167 0
2 8 10 3 2 2 2 0.4492 0.4333 3.5
3 10 17 4 2 3 3 0.4915 0.4237 14
4 12 19 4 2 4 4 0.5498 0.4407 25
5 14 23 4 2 5 4 0.4776 0.4444 7
6 16 30 5 2 5 5 0.4445 0.4333 3
7 18 25 5 2 6 5 0.3726 0.3265 14
8 20 35 5 2 7 5 0.4754 0.4386 8
9 22 39 5 2 7 5 0.4426 0.4426 0
10 24 46 5 2 7 5 0.4531 0.4333 5

11 13 23 5 2 5 4 0.4541 0.4032 13

Table 3.1: Example networks. M = maxd{Pd}, L = maxe{Qe}, ν =node
degree.

the first row of the table (network 1) verifies Proposition 3.6 (each demand
has one admissible path and the link capacities are saturated by the pre-
allocation, hence the optimal t and the lower bound must be equal). The
rightmost column of Table 3.1 suggests that the lower bound is rather sharp.

Figure 3.6 illustrates the dynamics of Algorithm 3.4. The algorithm is
applied to network 11 of Table 3.1. The bar diagram of Figure 3.6 shows
evolution of aggregated flows, xd, for all the demands, throughout the 5
required iterations. The innermost (white) row diplays the associated pre-
allocation. It should be noted, that for each demand the height of the bars
is non-decreasing, with the number of iterations. In the diagram of Figure
3.7, the resulting nominal and protection capacities – the auxiliary variables
ye and we – are shown together with the fixed link capacities ce. It should
be emphasized that link capacities are not always fully exploited. Since
we require 100% TRL (which is the most restrictive possible setting), we
cannot exploit the fraction of link capacity (ce) that is impossible to fully
protect. On average, 57.5% and 40.3% of the fixed link capacities are used
for nominal- and protection capacity, respectively. Further, for this example,
the fully protected allocated demand constitutes 56.8% of the preallocated
demand (on average, minimally by 45.4% and maximally by 74.5%).

3.3 Conclusions

This chapter has been devoted to a study of allocation problems where
the objective is (linear) max-min fairness. All of the considered allocation
problems have convex structure, meaning that the feasible set of solutions
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is convex and that the criteria are concave.
The most basic problem addresses max-min fairness of flow distribution

between demands that have one fixed path each. We showed that in this
case max-min fairness of flows is equivalent to that the allocation vector is
max-saturating, and gave an algorithm which is fundamentally dependent
on this equivalence. We then showed how this algorithm could be extended
in order to take prerequired upper- and lower flow-bounds of demands into
account.

A more difficult problem is encountered if each demand may use several
paths and is allowed to split its flow over them. In this case we say that
paths are optimized. It is then not possible to use the max-saturating prop-
erty, and more complicated LP-based algorithms have to be devised. It was
illustrated how the generic (convex-case) algorithms from Chapter 2 could
be applied, and we gave examples showing their operation. In addition, we
have derived some properties of the resulting problem solution, particularly
concerned with the relation between different demand flows. The section
was closed by giving an example that shows what can be gained in terms of
fairness if paths are optimized (i.e. flows may split) and not kept fixed.

In the balance, we have introduced a reallocation scheme with the pur-
pose of facilitating resilience. The reallocation scheme is based on max-min
fairness. Also in this problem we assume that all flows may split over several
paths. We assume that we are given a network that is preallocated, i.e., de-
mands’ flows and paths are given a priori, and that the task is to reallocate
and reroute these flows such that we facilitate a special type of resilience
to network failures. The type of resilience considered is full protection of
every possible single link failure. The goal is to reallocate the (preallocated)
flows such that they as much as possible resemble the preallocation, but also
such that we make room (reserve capacity) for protection paths for a failing
link. We gave a special measure for the resemblence and an accompanying
lower bound. The lower bound may be useful in approximate calculations
as well as in exposing weakly protected links. Finally, it has been shown
and examplified how Algorithm 2.2 solves the stated problem.
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Figure 3.6: The evolution of flows allocated to demands.
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In Chapter 3 we considered allocation problems that had convex struc-
ture, targeting max-min fair distributions of demand flows or max-min fair-
ness in sharing residual resources (after reducing original allocation). This
chapter is devoted to the same type of max-min fair allocation problems, but
with complicating assumptions making the resulting optimization problems
non-convex. Specifically, all the problems considered in this chapter do all
include the use of integer variables, in some form. More precisely, we are still
considering problems that are classified under linear max-min fairness but
with decision variables being restricted to integers. The reason for this is
that in practice, decision variables, such as e.g. flow allocated to a demand,
cannot take on an arbitrary value. Another realistic requirement might be
that a flow between a node-pair cannot be split arbitrarily between connect-
ing paths, but can only use one path, selected in the optimization process.
Also this makes it necessary to model the allocation problem with integer
variables, rendering substantially more complicated optimization problems.

4.1 Max-min fairness of modular flows

This section concerns max-min fair allocation of bandwidth to demands
(users) in a communication network, when one (fixed in advance) path per
demand is used, and when demands can be assigned bandwidth only in mul-
tiples of a predefined module. Although not to a great extent, this particular
problem has been studied before. In [48] a polynomial time approximation
(based on the notion of a preference relation induced by strong max-min
fairness, see Remark 2.18) was presented, and more recently in [21] a meta-
heuristic was proposed. Both these approaches suggest that the problem is
difficult to solve to optimality.

The consdidered problem is a practical extension of the frequently cited
MMF problem addressed in [6], which was the simplest problem treated in
Chapter 3 (more precisely the optimization problem formulated by (3.1)-
(3.2)). Integral flow volumes can be well motivated from a practical view-
point. This requirement takes into account that each demand volume must
be a multiple of a predefined module, and is a consequence of that in a real
network there is always a smallest trading unit, prohibiting flows from being
continuous. As in Section 3.1.1, it will be assumed that a problem instance
is given as a network with given link capacities, a set of source-destination
node-pairs (S-D pairs), where each S-D pair represents a requirement for
bandwidth (demand), and a path for each demand. For such an instance,
the demand between each S-D pair must be assigned a modular flow volume,
such that the sum of flows on each link does not violate the link capacity.
The distribution of flows among the S-D pairs should obey the MMF prin-
ciple.
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4.1.1 Problem description

For the considered problem each demand d is assumed to be associated
with one selected simple path. The binary indicator, δed, is used for the
link-demand incidence relation. The total flow allocated to demand d (on
its corresponding path) will be identified by xd, which will be the decision
variable. As earlier, we will let � denote the leximin order, �lex.

The study undertaken in this section concerns the problem of assigning
modular flows to demands in a capacitated network, such that the distribu-
tion of flows among demands is MMF. As has been described in Chapter 2,
the MMF principle is to first assure that the demand that gets the least flow
gets as much as possible, then that the demand that gets the second least
flow gets as much as possible, and so on. Recall that obtaining a (linear)
MMF allocation of flows is equivalent to solving

lex max{Θ(x) : x ∈ X}, (4.1)

where X is the set of feasible solutions. Put in words this means that in
an MMF allocation of flows each demand is assigned a flow such that it
holds for the sorted allocation vector that an entry can be increased only at
the cost of decreasing a previous entry, or by making the allocation vector
infeasible1. In this section, the set of feasible solutions X is defined by the
following two requirements:

∑

d

δedxd ≤ ce , e = 1, 2, . . . , E, and (4.2)

xd ∈ Z+ , d = 1, 2, . . . ,D, (4.3)

where Z+ is the non-negative integers. The above two constraints mean in
turn that the sum of flows on an link cannot exceed the link’s capacity, and
that each flow must assume a non-negative integer. Let x = (x1, x2, . . . , xD)
be an allocation vector feasible for (4.2), and let xz = (xz

1, x
z
2, . . . , x

z
D) be an

allocation vector feasible for (4.2) and (4.3). We will denote an allocation
vector x optimal for (4.1) constrained by (4.2) an optimal continuous solu-
tion (OCS), and allocation vector xz optimal for (4.1) constrained by (4.2)
and (4.3) an optimal integral solution (OIS). Note that solving for OCS is
precisely what is addressed in [6], and is well known to be accomplished by
Algorithm 3.1 (as it is exactly the problem described by (3.1)-(3.2)). Note
further that if x is the OCS and xz the OIS for the same instance, it must
hold that Θ(x) � Θ(xz).

Example 4.1. Consider the network given in Figure 4.1. One demand
between each node-pair is assumed. Paths are evident. Link capacities are
given in the figure. The sorted OCS is Θ(x) = (0.5, 0.5, 0.5), whereas the
sorted OIS is Θ(xz) = (0, 1, 1).

1Since this is a property of the sorted allocation vector entries and not for the specific
demands, it is valid even for non-convex versions of the problem.
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Figure 4.1: A simple instance.

4.1.2 The assumption of modular flows

In a communication network, a link typically cannot be assigned an arbitrary
capacity, but is installed in multiples of a predefined module, M (cf. the
standards of SONET/SDH [13]). Moreover, it is reasonable to assume that
for each demand d, d = 1, 2, . . . ,D, the demand’s flow, xd, must be a multiple
of the same module. Without loss of generality we may, just changing units,
assume that M = 1, and thus that ce ∈ Z++, and, as is accomplished by
(4.3), require that xd ∈ Z+ for all demands d = 1, 2, . . . ,D. Hence, modular
flows can be treated as integral flows.

4.1.3 Properties of the optimal integral solution

The properties of the optimal continuous solution are, mainly due to the
max-saturating characterization following from Property 3.1, very well known
and understood [6],[43],[44]. We will therefore in this section address char-
acterization of the optimal integral solution by comparing it to the optimal
continuous solution. We will assume that x is the OCS and xz is the OIS,
for some given instance of the problem.

Property 4.1. If Θ(xz) 6= Θ(x) then there exists an entry k for which
θk(x

z) > θk(x).

Proof. It is easy to see that Θ(xz) 6= Θ(x) implies that there exists a demand
d such that xd − ⌊xd⌋ > 0, because if xd ∈ Z+, for all d = 1, 2, . . . ,D,
then the OCS would be an OIS and necessarily Θ(xz) = Θ(x). Without
loss of generality we may assume that Θ(x) = x (this may be obtained
by alternative enumeration of demands). Consider the non-integral entries
xi, xi+1, . . . , xi+m for which it holds that for all entries k, k < i, (if any)
xk ∈ Z+, and if there exists an entry i+m+1 then xi+m+1 ∈ Z+. Construct
a solution xa by truncating all demand volumes of x, except demand i+m,
which is rounded up. The idea is illustrated in Figure 4.2. This solution
must be feasible since link capacities are integral. Moreover xa is an integral
solution with the property that xa = Θ(xa). As it must hold that Θ(xz) �
Θ(xa), we must have that either θj(x

z) > θj(x
a) for some j, i ≤ j < i+m, or

that θj(x
z) = θj(x

a) for all j, i ≤ j < i+ m and that θi+m(xz) ≥ θi+m(xa).
Both cases imply that there exists an index j, i ≤ j ≤ i + m, such that
θj(x

z) > θj(x).
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i i+1 i+m-1 i+mi-1 i+m+1

x
xa

Figure 4.2: How to obtain xa from x.

Property 4.2. If for some entry k, θk(x
z) > θk(x), then there exists a

demand d, such that xz
d > xd.

Proof. Without loss of generality assume that x = Θ(x) (if this is not true,
reenumerate the demands). Suppose x ≥ xz and consider all entries m and
n, 1 ≤ m < n ≤ D, such that xz

n < xz
m. Interchanging all such elements in

xz, we will eventually arrive at Θ(xz). However, we have that xm ≥ xz
m > xz

n

and xn ≥ xm ≥ xz
m, so it must be true that x = Θ(x) ≥ Θ(xz), which is a

contradiction.

Property 4.3. Let j be the largest integer for which it is true that θk(x)−
θk(x

z) ≥ 0, 1 ≤ k ≤ j. Then, j ≥ 1 and it holds that θk(x) − θk(x
z) < 1.

Proof. By definition such an entry j must exist. Suppose that for some
k, 1 ≤ k ≤ j, θk(x) − θk(x

z) ≥ 1. Then we can find a feasible integral
solution by just truncating the OCS. Call this solution xt. Apparently,
Θ(xt) ≻ Θ(xz), which is a contradiction proving the second part of the
statement.

The following two properties are analogies to the max-saturating prop-
erty of the OCS.

Property 4.4. For each demand d′, there exists at least one saturated link
e for which xz

d′ ≥ maxd{x
z
d : δed = 1} − 1.

Proof. It is obvious that it is possible to find at least one saturated link for
each demand, since otherwise that demand could be increased. Denote by

x̂z
e = max

d
{xz

d : δed = 1},

the flow of the maximal demand on link e, and suppose, contradictory to the
statement, that it holds for all such saturated links e, for demand d′, that
xz

d′ < x̂z
e − 1. Then, for these saturated links we have x̂z

e > xz
d′ +1. Thus for

each of the links with this property, reassigning the currently maximal flow
a value of x̂z

e − 1 and demand d′ a value of xz
d′ + 1 give a lexicographically

larger solution, which is a contradiction.
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It should be noted that Property 4.4 implies that for each demand d′, if
there does not exist a saturated link e for which xz

d′ = maxd{x
z
d : δed = 1},

then there must exist a saturated link e for which

xz
d′ = max

d
{xz

d : δed = 1} − 1.

Property 4.5. For a feasible allocation vector xm, xm ∈ ZD
+ , if it holds for

each demand d′, d′ = 1, 2, . . . ,D, that xm
d′ = maxd{x

m
d : δed = 1} on at least

one saturated link e for which δed′ = 1, then xm is the unique OIS.

Proof. According to Property 3.1 the result is valid for the continuous flows
case, i.e., a feasible allocation vector, x, for which it holds that for each
demand d′, xd′ = maxd{xd : δed = 1} on at least one saturated link e for
which δed′ = 1, is the unique OCS. Now since xm ∈ RD

+ , xm is the unique
OCS and therefore the unique OIS.

The following examples illustrate that it may happen, considering the
OCS (x) and the OIS (xz) for a given instance, that xz

d < ⌊xd⌋ and that
xz

d > ⌈xd⌉ for some demand d. They also show that there is no certain
throughput domination, i.e., there exist both instances for which

∑

d xz
d <

∑

d xd, and instances for which
∑

d xz
d >

∑

d xd.

Example 4.2. Consider the network given in Figure 4.3(a). There are 2
demands between nodes A and B, 2 between A and E, 2 between A and
D, 1 between C and B, 1 between C and E, and 1 between C and D. The
sorted OCS is Θ(x) = (7/3, . . . , 7/3

︸ ︷︷ ︸

6

, 16/3, 16/3, 31/3) and the sorted OIS is

Θ(xz) = (2, 2, 2, 2, 3, 3, 6, 6, 9). The throughput is 35 for both solutions.

Example 4.3. Consider the network given in Figure 4.3(b). There are 4
demands between verticess A and B, 2 between A and C, 4 between D and
B, 2 between D and C, and 1 between D and B. The sorted OCS is Θ(x) =
(8/3, . . . , 8/3
︸ ︷︷ ︸

12

, 22/3) and the sorted OIS is Θ(xz) = (2, 2, 2, 2, 3, . . . , 3
︸ ︷︷ ︸

8

, 10).

The throughputs are 391
3 and 42.

Example 4.4. Consider the network given in Figure 4.3(c). Edge capacities
are given in the figure. There is one demand between each vertex-pair.
Each demand is using the associated simple two-edge path. The sorted
OCS is Θ(x) = (5.5, 5.5, 5.5) and the sorted OIS is Θ(xz) = (5, 5, 6). The
throughputs are 161

2 and 16.

4.1.4 Computational complexity

In this section it will be shown that optimization problem (4.1)-(4.3) is NP-
hard. This was already stated in [48], although a complete proof was not
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Figure 4.3: Example instances comparing the OCS and the OIS.

given there. In their discussion, the authors of that paper suggest that a
transformation from INDEPENDENT SET shows this. The proof given here
does not use this assumption (and was derived independently).

The negative result of NP-hardness means that it is unrealistic to aim
for a general polynomial time algorithm that obtains an MMF flow dis-
tribution, when integer flows on fixed paths are required. Mind that the
considered optimization problem is exactly that considered in [6], but with
integer-valued flows. As can be verified in Examples 4.3 and 4.4, the ba-
sic “waterfilling” algorithm (Algorithm 3.1) is in general not applicable for
the integer flows case. An attempt to use this basic procedure will show
that certain non-trivial, discrete decisions occasionaly have to be taken. So
there are certainly reasons to conjecture that this multi-criteria optimiza-
tion problem is computationally hard. We will call the associated decision
problem FIXED PATHS MMF – MODULAR FLOWS (FIXMMF-MF):

Decision Problem 4.1 (FIXMMF-MF).

INSTANCE: A link capacity ce ∈ Z+ for each link e = 1, 2, . . . , E,
a binary link-demand incidence coefficient, δed, for each demand d =
1, 2, . . . ,D, and a target vector xT ∈ ZD

+ .

QUESTION : Is there an assignment of flow, xd ∈ Z+, for each demand
d, such that

∑

d δedxd ≤ ce for each link e, and such that if x =
(x1, x2, . . . , xD), then Θ(x) � Θ(xT )?

Proposition 4.6. FIXMMF-MF is NP-complete.

Proof. A nondeterministic algorithm needs only to guess an integral flow
for each demand and check if the links have the required capacity and if
it holds for the resulting allocation vector, x, that Θ(x) � Θ(xT ). Thus
clearly, FIXMMF-MF is in NP. We will transform the decision problem of
SET PACKING into an instance of FIXMMF-MF. It is trivial to verify NP-
completeness of the former, restricting it to EXACT COVER BY 3-SETS,
shown to be NP-complete in [12].
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Decision Problem 4.2 (SET PACKING).

INSTANCE: A collection C of finite sets and a positive integer K ≤
|C|.

QUESTION : Does C contain at least K mutually disjoint sets?

Consider an arbitrary instance of SET PACKING. A collection C of n finite
sets is given, C = {A1, A2, . . . , An}. We will let each set Ai constitute a
demand and the elements of each such set a chain of links that is a path
for that demand. Assume that there is N distinct elements in total in all of
the sets Ai. For each such element ak, k = 1, 2, . . . ,N , construct two nodes
connected by one link as in Figure 4.4. These links will be referred to as

a1 aNa3a2

Figure 4.4: Element links.

the element links. For each set Ai ∈ C perform the following operations.
Construct a source node si and a sink node ti. Label the elements of set Ai

such that Ai = {z1, z2, . . . , zm}, and note that there is one-to-one correspon-
dence between these labeled elements and m of the element links. Denote
the upper node of the element link corresponding to zj, j = 1, 2, . . . ,m by
vu
j , and the lower node by vl

j . Add new links connecting si to vu
1 , vl

1 to vu
2 ,

vl
2 to vu

3 , and so on. Finally, add a link that connects vl
m with the sink node

ti. This constitutes a path between si and ti, traversing all element links of
Ai. Note that all links on this path that are not element links can only be
used by node-pair (demand) (si, ti). Assign a capacity of 1 to all links. Let
xT = (0, . . . , 0

︸ ︷︷ ︸

n−K

, 1, . . . , 1
︸ ︷︷ ︸

K

). This constitutes an instance of FIXMMF-MF, with

n demands. Suppose that we have a positive answer to SET PACKING. This
implies that there exist at least K mutually disjoint sets Ai. Assigning a
flow of 1 to each of the corresponding node-pairs (si, ti), and 0 to the rest
will give Θ(x) = (0, . . . , 0

︸ ︷︷ ︸

n−H

, 1, . . . , 1
︸ ︷︷ ︸

H

), H ≥ K. Thus Θ(x) � Θ(xT ), and we

have a positive answer to FIXMMF-MF.
Conversely, suppose that we have a positive answer to FIXMMF-MF, i.e.,

that there exists a feasible allocation x, with Θ(x) � (0, . . . , 0
︸ ︷︷ ︸

n−K

, 1, . . . , 1
︸ ︷︷ ︸

K

).

Since capacities are equal to 1, no links can be shared by demands and
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xd ≤ 1 for all d = 1, 2, . . . ,D. This implies that paths of demands that
are assigned flow 1 must be disjoint. As constructed, these paths define at
least K mutually disjoint sets Ai, and a positive answer to SET PACKING

follows. Hence, since SET PACKING is NP-complete, FIXMMF-MF is NP-
complete.

Knowledge of Algorithm 3.1 and a bit of reflection reveals that the above
result will not hold (unless P = NP) if xT = c·u, where u is the unity vector
of size D, and c is a positive integer (corresponding to the optimization
problem of finding the maximal first entry of the sorted allocation vector).
Solving the problem is then just a matter of assigning xd = c for d =
1, 2, . . . ,D, and test feasibility. It is a bit more cumbersome to deduce
that if each demand’s path has at most one shared link, the problem is
also solvable in polynomial time. Algorithm 4.1, which is a modification of
Algorithm 3.1, solves this task. The function “any(A)” returns any element
of set A.

Algorithm 4.1.

for d := 1 to D do

xd := 0
end for

S := ∅
while |S| 6= D do

for all d such that d /∈ S do

xd := xd + 1;
end for

for all e such that
∑

d δedxd > ce do

A := {d : δed = 1, d /∈ S};
repeat

d :=any(A);
xd := xd − 1;
A := A \ {d};

until
∑

d δedxd = ce;
end for

for all e such that
∑

d δedxd = ce do

for all d such that δed = 1 and d /∈ S do

S := S ∪ {d};
end for

end for

end while

Algorithm 4.1 uses a set S to denote the set of blocked demands, and
a (temporary) set A to keep track of “violating demands”. The crucial
property for its operation is that only one link is shared per demand, which
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eliminates (makes arbitrary) the selection difficulty in distributing capacity
of a link to competing demands.

4.1.5 An algorithm

The proved difficulty of the considered problem slightly relaxes the require-
ments that are reasonable to put on its resolution methods. The approach
taken here is in essence exploiting the “distribution approach” described for
MMF problems that have discrete outcomes in general in [40]. Without us-
ing this naming convention, we have presented the idea, fundamental for the
distribution approach, in Section 2.4.2 of Chapter 2. Specifically, adjusting
parameters for the application at hand, Property 2.15 states that a solution
to

lex min
( ∑

d t1d,
∑

d t2d, . . . ,
∑

d trd

)
(4.4)

s.t. k − xd ≤ tkd k = 1, 2, . . . , r, ∀ d (4.5)

tkd ≥ 0 k = 1, 2, . . . , r, ∀ d (4.6)

xd ∈ {0, 1, . . . , r} ∀ d (4.7)

x ∈ X , (4.8)

is a solution to

lex max Θ(x) (4.9)

s.t. xd ∈ {0, 1, . . . , r} ∀ d (4.10)

x ∈ X . (4.11)

If we let r = maxe{ce} and define the feasible set X by the link-load con-
straints,

∑

d δedxd ≤ ce, e = 1, 2, . . . , E, problem (4.9)-(4.11) is equivalent
to the considered problem, (4.1)-(4.3). Hence by solving (4.4)-(4.8) by a
conventional, iterative procedure, we have a solution method for (4.1)-(4.3).
Such a procedure is described by the following algorithm.

Algorithm 4.2. (for solving (4.1)-(4.3))

Step 0: Assign k := 1. Solve

τ1 = min
∑

d

t1d (4.12)

s.t. 1 − xd ≤ t1d ∀ d (4.13)
∑

d

δedxd ≤ ce ∀ e (4.14)

t1d ≥ 0 (4.15)

xd ∈ Z+ ∀ d (4.16)

and let τ∗
1 be the optimal objective value, and x∗ the optimal solution.
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Step 1: If k > maxd{x
∗
d : d = 1, 2, . . . ,D} then stop, x∗ is the MMF

solution. Otherwise assign k := k+1. If k > max{ce : e = 1, 2, . . . , E}
then stop, x∗ is the max-min fair solution. Otherwise proceed to Step
2.

Step 2: Solve

τk = min
∑

d

tkd (4.17)

s.t. j − xd ≤ tjd j = 1, 2, . . . , k, ∀ d (4.18)
∑

d

tjd ≤ τ∗
j j = 1, 2, . . . , k − 1 (4.19)

δedxd ≤ ce ∀ e (4.20)

tjd ≥ 0 j = 1, 2, . . . , k, ∀ d (4.21)

xd ∈ Z+ ∀ d (4.22)

and let τ∗
k be the optimal objective value, and x∗ the optimal solution.

Go to Step 1.

Note that both (4.12)-(4.16) of Step 0 and (4.17)-(4.22) of Step 2 are
MIPs. They may thus be very difficult to solve efficiently for large in-
stances. As entirely integral solutions are desired, it is possible to substitute
constraints (4.19) by

∑

d

tjd ≤ ⌈τj⌉, j = 1, 2, . . . , k − 1. (4.23)

Such a substitution is useful if we relax the integrality requirements, by
omitting constraints (4.16) and (4.22), and solve what are called the linear
relaxations of optimzation problems (4.12)-(4.16) and (4.17)-(4.22), as we
then do not unnecessarily force a non-integral solution implied by a previous
iteration. Consider Algorithm 4.2 modified by the above substitution, and
linearly relaxed in its optimzation problems. We will call this the relaxed
version of the algorithm. Since Z+ ⊂ Q+, if the output x∗ of the relaxed
version of the algorithm is entirely integral, this will clearly be a solution
to (4.1)-(4.3). As will be shown in the following section, if the relaxed
problems are solved by Simplex (the relaxed optimization problems of Step
0 and Step 2 are LPs), entirely integral outputs of the relaxed algorithm
occur quite frequently.

There are some implementational issues of the relaxed version of Al-
gorithm 4.2 that ought to be mentioned. First of all, it is convenient to
recycle the sparse constraint matrices of the successive LPs, as they change
only marginally between consecutive steps. Secondly, special care should be
taken in the rounding of τ . For large instances (many variables), aggregation
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of small numerical errors in the computed variables may cause an erroneous
rounding of τ (typically making the right-hand side of (4.23) too large).

Finally, it is essential that the LPs are solved for vertex solutions, as is
done by Simplex. This is easily realized if one considers a network of two
vertices connected by one edge of capacity 1. Assume that there are two
demands between the vertices. As opposed to Simplex, an interior point
solution to this instance cannot belong to {0, 1}2.

4.1.6 A numerical experiment

In this section we apply the relaxed version of Algorithm 4.2 to randomly
generated problem instances ranging from 36 to 435 demands (correspond-
ing to demands between all node-pairs in a 9-node network to all node-pairs
in a 30-node network). In all instances r = 50 and each link capacity, ce,
e = 1, 2, . . . , E belongs to {5, 10, 15, . . . , 50}. The results can be found in Ta-
ble 4.1. The first 4 columns give, in turn, the number of nodes, the number
of links, the number of demands, and the average length (hops) of a path.
The fifth column indicates if the algorithm halts with an integral solution.
Column 6 gives the number of solved LP:s (iterations) that did not produce
an integral solution, and the 7:th column gives the number of iterations for
which τ was rounded up, i.e., when optimal τ was non-integral (due to round-
ing errors there is no one-to-one correspondence between rounded τ ’s and
non-integral solutions). The two final columns give the total running time
and the required number of iterations, respectively. The computations were
carried out on a PC with an Intel PIII-1GHz CPU, RAM of 256 MB, and
Windows 2000 OS. The algorithm was implemented in MATLAB6.5, and
the LPs are solved using a MATLAB interface (mex-function) to CPLEX 9
(Simplex LP-solver).

Although the relaxed version of Algorithm 4.2 performs satisfactorily on
all of the instances considered in Table 4.1, there exist instances for which
it fails, as e.g. the following example.

Example 4.5. Consider the network given in Figure 4.3(c). Suppose that
the same demands and paths as in Example 4.4 are given, and that link
capacities are all equal to 1. Then the (sorted) solution generated by Algo-
rithm 1 is Θ(x′) = (0.5, 0.5, 0.5) but the true OIS is Θ(xz) = (0, 0, 1).

4.2 Max-min fairness of unsplittable flows

In this section we study a difficult version of the MMF allocation problem
when only non-bifurcated (unsplittable) flows are allowed. This assump-
tion, also called requirement of single-path flows, leads, as mentioned in the
beginning of this chapter, to non-convex problem formulations which are
inherently hard [17] (general single-source unsplittable flow problems are



4.2. MAX-MIN FAIRNESS OF UNSPLITTABLE FLOWS 77

V E D E(|p|) t-int n-int roundings time (s) iterations

9 20 36 5.3 yes 0 0 2.50 26
10 20 45 4.7 yes 0 0 7.03 43
11 21 55 6.4 yes 1 1 9.47 46
12 27 66 6.8 yes 4 1 11.56 41
13 28 78 7.2 yes 0 7 14.16 48
14 34 91 7.7 yes 1 1 10.27 35
15 29 105 9.0 yes 0 0 11.29 37
16 34 120 8.6 yes 2 2 17.42 38
17 39 136 8.8 yes 0 0 16.86 34
18 43 153 10.3 yes 2 7 16.59 30
19 45 171 10.3 yes 0 0 18.74 36
20 41 190 10.8 yes 0 0 14.95 28
21 50 210 11.8 yes 1 1 47.22 42
22 55 231 11.7 yes 0 1 40.28 36
23 59 253 13.6 yes 1 14 53.77 40
24 54 279 13.7 yes 2 10 55.41 37
25 54 300 13.7 yes 0 0 43.43 32
26 72 325 14.4 yes 0 0 147.34 50
27 66 351 14.6 yes 0 0 38.77 26
28 69 378 15.7 yes 0 0 144.45 42
29 59 406 7.3 yes 0 0 351.72 49
30 65 435 8.5 yes 1 0 426.30 49

Table 4.1: Testing the algorithm.

studied in [17], continuing the work on single-source splittable flow prob-
lems carried out in [25]). Nevertheless, unsplittable flows is often a realistic
restriction due to the used routing protocol, or simply an explicit manage-
ment requirement, stipulating avoidance of packet resequencing in receiving
nodes. The network is assumed to be given in terms of topology and link
capacities, and the problem is to associate the demand between each S-D
node-pair with a single (optimized) path such that a sufficient volume of
flow can be routed on demands’ single paths simultaneously, without vio-
lating the link capacities. By “sufficient volume” a volume that is MMF
among different S-D pairs is addressed. Consequently, once each S-D pair
is assigned a single path, the problem is reduced to max-min fair sharing of
corresponding link capacities, for which Algorithm 3.1 can be used. Thus es-
sentially, the considered problem amounts to the difficult task of appropriate
single path selection.
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4.2.1 Problem description

The considered problem is characterized by a capacitated network, where
a set of demands is assumed to be given. As usual, a demand d is an
unspecified requirement for bandwidth (flow) between a node-pair in the
network, and ce is used to denote the capacity associated with link e. For
each demand d, d = 1, 2, . . . ,D, a list of allowable paths is predefined. Each
path p for demand d, p = 1, 2, . . . , Pd defines a cycle-free set of links that
connects vertex-pair d. The binary indicator, δedp, is used for the link-
path incidence relation. The flow allocated to demand d will be identified
by xd, and zdp is used to denote its part that is allocated to path p, i.e.,
∑

p zdp = xd. The decision variables of the considered problem will be the
flow variables zdp. As in Section 4.1, the problem is compactly described by

lex max{Θ(x) : x ∈ X}. (4.24)

However, in this section, the feasible set X is different – a solution x ≥ 0 is
considered feasible, x ∈ X, if and only if

∑

d

∑

p

δedpzdp ≤ ce , e = 1, 2, . . . , E, and (4.25)

for all d, d = 1, 2, . . . ,D, zdp′ = xd for some path p′, and

zdp = 0 for all other paths p, p = 1, 2, . . . , Pd, p 6= p′. (4.26)

So an allocation is feasible if and only if the sum of flows on a link does not
exceed the link’s capacity, and no demand has flows on more than one path.

4.2.2 Computational complexity

To motivate resolution techniques that are computationally heavy, this sec-
tion will have as main purpose to show that solving

lex max{Θ(x) : x ∈ X},

with the feasible set X constituted by (4.25) and (4.26), is NP-hard. This
is accomplished by proving that the decision problem corresponding to one
of its subproblems (or the problem itself) is NP-complete. Specifiaclly, we
will sometimes consider the subproblem of obtaining the largest possible
minimal value among the entries of the allocation vector. It will be conve-
nient to divide the problem into two cases: the case when a demand may
use any one path to connect its node-pair – the unlimited path-sets case,
and the case when a demand may select a path only from a limited, prede-
fined set of paths – the limited path-sets case. A somewhat different version
of the former decision problem was proven NP-complete in [18]. However,
that study concerned a directed graph with a single-source multiple-sinks de-
mand. Their proof is based on a nontrivial transformation from a scheduling
problem. Here we only consider undirected graphs.
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Unlimited path-sets

When a demand may use any (simple) path that connects its node-pair, there
is clearly no reason to predefine its path-set, as it is directly implied by the
network. This is the case for all demands if path-sets are unlimited. We
will refer to the decision problem corresponding to the optimization problem
of obtaining the maximal smallest demand (i.e., the smallest entry of the
allocation vector) on single paths with unlimited path-sets as MAXIMIZING

SMALLEST DEMAND- SINGLE PATH FLOW (MSD-SPF). If the set of feasible
solutions, X, admits usage of any (single) path for each demand, such an
optimization problem is equivalent to finding a maximal first entry of Θ(x),
x ∈ X, i.e., certainly a subproblem of (4.24).

Decision Problem 4.3 (MSD-SPF).

INSTANCE: Graph G = (V, E), a link capacity ce for each e, e =
1, 2, . . . , E, a set of demands (node-pairs), and a number K > 0.

QUESTION : Is there a set of simple paths, containing exactly one
path for each demand d, such that for each demand d it is possible to
assign a flow xd, with xd ≥ K, on the path corresponding to demand
d, without violating any link capacity ce, e = 1, 2, . . . , E?

As can be seen, MSD-SPF puts no restrictions on the number of admissible
paths, since any one (cycle-free) set of links that connects demand d, i.e.,
constitutes a simple path between the associated node-pair, may be selected.

Proposition 4.7. MSD-SPF is NP-complete.

Proof. A nondeterministic algorithm needs only to guess one of the paths
for each demand, assign flow xd = K to each demand and check if the links
forming these paths have the required capacity. Thus clearly, MSD-SPF is
in NP. If we restrict MSD-SPF to instances with K = 1 and ce = 1, for
all links e, e = 1, 2, . . . , E, we immediately get a decision problem which is
equivalent to the problem of LINK-DISJOINT PATHS.

Decision Problem 4.4 (LINK-DISJOINT PATHS).

INSTANCE: Graph G = (V, E) and a collection of node-pairs (s1, t1), . . . ,
(sk, tk).

QUESTION : Does G contain k mutually link-disjoint paths, one con-
necting si and ti for each i, 1 ≤ i ≤ k?

LINK-DISJOINT PATHS is known to be NP-complete [52], [26], and the
polynomial time restriction shows that LINK-DISJOINT PATHS ∝ MSD-SPF,
so MSD-SPF is also NP-complete.

As MSD-SPF is the decision version of a subproblem to the optimization
problem of (4.24), where the feasible set X admits usage of any path for
each demand, this result certifies that the latter problem is NP-hard.
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Limited path-sets

The complexity of a more specific version of the studied problem will now
be investigated. For unlimited path-sets the assumption was that the selec-
tion of a single path could be made from all possible paths for a demand.
In many cases such an assumption might be too generous and not practi-
cal. It may be more realistic to assume that each demand is given with a
predefined, bounded (in terms of cardinality) path-set. Clearly, if the sizes
of the predefined path-sets are very large, this will differ only academically
from the unlimited path-sets case. However, in practice this is rarely the
case. It will be shown that obtaining the maximal smallest demand (i.e., the
smallest entry of the allcoation vector) on single paths with a cardinality of
path-sets limited to as little as 3 is NP-hard. However, it is easier to prove
NP-hardness of the full problem (4.24), with X admitting cardinality of
path-sets being 2, so this is where we will start. Note that the subproblem
of determining the maximal smallest demand is, from a practical viewpoint,
an interesting problem in its own right, and we will return to this in a while.

The decision problem corresponding to (4.24), with X limiting (in both
directions) cardinality of path-sets to 2 is called MMF OF SINGLE PATH

FLOWS 2 (MMF-SPF2), and is formalized as follows.

Decision Problem 4.5 (MMF-SPF2).

INSTANCE: Graph G = (V, E), a link capacity ce for each e, e =
1, 2, . . . , E, a set of demands (node-pairs), two simple paths for each
demand, and a target vector, xT , of length D

QUESTION : Is there a set of paths, containing exactly one of the two
admissible paths for each demand d, d = 1, 2, . . . ,D, such that for each
demand d it is possible to assign a flow xd on the path corresponding
to demand d, without violating any link capacity ce, and such that if
x = [xd]d=1,2,...,D, then Θ(x) � Θ(xT ) ?

Proof. MMF-SPF2 belongs to NP since a nondeterministic algorithm needs
only to guess one of the two paths for each demand and apply Algorithm
3.1 (which is an algorithm of polynomial time) to obtain the allocation
vector x, and check if Θ(x) � Θ(xT ). We will transform PARTITION into a
single-source multiple-sinks instance of MMF-SPF2, essentially using an idea
from [16].

Decision Problem 4.6 (PARTITION).

INSTANCE: Finite set A of items, and a size s(a) ∈ Z+ for each
a ∈ A.

QUESTION : Is there a subset A′ ⊂ A such that
∑

a∈A′

s(a) =
∑

a∈A\A′

s(a)?
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Consider an arbitrary instance of PARTITION and construct a graph as
follows: let two “core nodes”, κl and κr, be connected by 2 “core links”, e
and e′, both of which have capacity 1

2

∑

a∈A s(a). For each element a ∈ A,
connect by a link of capacity s(a) a node ta, to the right core node, κr.
Let xT = [s(a)]a∈A. Now consider each (κl, ta)-pair, a ∈ A, in the result-
ing graph as a demand (see Figure 4.5). Each (κl, ta)-pair has exactly two

s(1)

s(2)

s(|A|)

t1

t2

t|A|

κl κr

e'

e

Figure 4.5: The resulting graph.

admissible paths – one traversing e and one traversing e′. This construc-
tion, which is apparently done in polynomial time, is a valid instance of
MMF-SPF2 (with |A| demands). Now assume that there is a positive an-
swer to PARTITION. This implies existence of a subset A′ ⊂ A such that
∑

a∈A′ s(a) =
∑

a∈A\A′ s(a). Assign to each (κl, ta)-pair a flow of xa = s(a).

If a ∈ A′ let the demand use link e′, and if a ∈ A\A′, let it use link e together
with its dedicated link connecting κr and ta. As ce = ce′ = 1

2

∑

a∈A s(a),
no link capacities are exceeded. We have thus an allocation x, for which
xa = s(a) for all a ∈ A, and consequently that Θ(x) = Θ(xT ), implying a
positive answer to MMF-SPF2. Conversely, suppose that there is a positive
answer for the constructed instance of MMF-SPF2, i.e., that there exists a
set of single paths for which an allocation vector x, with Θ(x) � Θ(xT ),
is obtainable. In particular, this means that there exist flows xa, such that
xa = s(a) for all a ∈ A. Thus the total flow between κl and κr is

∑

a∈A s(a).
But ce = ce′ = 1

2

∑

a∈A s(a) and flows are unsplittable so there must exist a
subset A′ ⊂ A, such that

∑

a∈A′ s(a) =
∑

a∈A\A′ s(a) = 1
2

∑

a∈A s(a), which
answers the PARTITION question positively. Therefore, since PARTITION is
NP-complete [12], MMF-SPF2 must also be NP-complete.

In the unlimited path-sets case it was possible to prove NP-hardnness
even of the subproblem of obtaining the maximal smallest demand (i.e., the
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smallest entry of the allcoation vector) on single paths. A natural question
to ask is if this is possible also if path-sets are limited. This is in fact pos-
sible if cardinalities of path-sets are limited to 3. There is obvious practical
importance in this subproblem – which is the largest amount of bandwidth
possible to assign to all demands? As mentioned, we have already shown
that if all possible paths are allowed, this problem is NP-hard. The ques-
tion is if the difficulty remains if we are more restrictive regarding possible
selection of paths. In order to show NP-hardness we define the associated
decision problem, denoted MAXIMIZING SMALLEST DEMAND - SINGLE

PATH FLOW 3 (MSD-SPF3) as follows:

Decision Problem 4.7 (MSD-SPF3).

INSTANCE: Graph G = (V, E), a link capacity ce for each e, e =
1, 2, . . . , E, a set of demands (node-pairs). For each demand d, d =
1, 2, . . . ,D, three simple paths. A number K > 0.

QUESTION : Is there a selection of exactly one of the three paths for
each demand d, such that for each demand d it is possible to assign
a flow xd, with xd ≥ K, on the path corresponding to demand d,
without violating any link capacity ce?

The requirement of simple paths is important here. Since a communication
network demand is for obvious reasons never assigned a path containing a
cycle, this is a reasonable assumption. If on the other hand cyclic paths were
allowed, it rather straightforward to see how an NP-completeness result
can be obtained even for path-set cardinalities restricted to 2, e.g. by a
transformation from INDEPENDENT SET [33]. To the best of our knowledge
it is an open question if this result holds in the case of 2 simple paths per
demand.

Proposition 4.8. MSD-SPF3 is NP-complete.

Proof. A nondeterministic algorithm needs only to guess one of the paths
for each demand, assign flow xd = K to each demand and check if the
links forming these paths have the required capacity, so clearly MSD-SPF3

is in NP. We will transform 3-SATISFIABILITY (3SAT) to MSD-SPF3. The
problem of 3SAT is one of the most fundamental NP-complete problems [12].
The proof starts by the construction of a polynomial-time transformation.
Then it is shown that the constructed instance of MSD-SPF3 will have a
positive answer if and only if 3SAT has a positive answer.

Consider an arbitrary instance of 3SAT. Such an instance consists of
a collection C = {C1, C2, . . . , Cm} of clauses on a finite set U of boolean
variables such that |Ci| = 3 for 1 ≤ i ≤ m. For each u ∈ U , let ku be
the number of appearances of variable u in the clauses of C, and kū be the
number of appearances of its negation, ū. For each variable u ∈ U , construct
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two associated nodes, su and tu. Each such node-pair will be connected by
three disjoint paths; they will be referred to as the left-path, the slack-path
and the right-path. The left-path and the right-path are constructed from
chains of links, whereas the slack-path will be one single link. The number
of links of the right-path, αu, and the left-path, αū, will depend on ku and
kū, respectively. Specifically, αu = 1 if ku = 0, and αu = ku otherwise.
Similarly, αū = 1 if kū = 0, and αū = kū otherwise. The subgraph made
up by node-pair (su, tu) and its three connecting paths is said to constitute
the truth-setting component for variable u. An example can be seen in
Figure 4.6. Clearly, there will be exactly |U | truth-setting components.

su

tu

right-path

slack-path

left-path

Figure 4.6: Truth-setting component for variable u ∈ U . It is assumed that
ku = 2 and that kū = 3.

Now consider a clause Ci ∈ C. Construct and associate with the clause two
nodes, vi and wi. These two nodes will be connected to exactly three of the
truth-setting components, namely those whose associated variables, negated
or non-negated, occur in clause Ci. For each literal l in Ci, connect them
as follows: if l is a non-negated variable, say u, connect vi and wi by one
link each to the right-path of the truth-setting component corresponding to
variable u, such that the created path between vi and wi has exactly three
links, and such that the end-nodes of the link of this path that is part of
the truth-setting component are not both connected to another (one) pair,
vj and wj , associated with some other clause, Cj ∈ C. If l is a negated
variable, say ū, take the corresponding action on the left-path of the truth-
setting component of u. Note that this will always be possible since there
are at least ku links on the right-path, and kū links on the left-path of
the truth-setting component of variable u. An example of the connection
associated with a clause is shown in Fig. 4.7. Making these connections
for every Ci ∈ C, completes the construction of the supply graph G for the
instance of MSD-SPF3. What remains is to specify demands and associated
paths, and also the link capacities. We impose a demand for each node-pair
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sa sb sc

ta tb tc

vi

wi

Figure 4.7: Subgraph corresponding to clause C = (ā, b, c) ∈ C, and truth-
setting components for variables a, b, c ∈ U .

(vi, wi), with three possible 3-link paths, all of which traverse exactly one
truth-setting component on that side (left or right) that is determined by
the corresponding variables’ appearance (negated or not) in the associated
clause Ci. These demands are referred to as the long demands. Further,
assume that there is a demand between each of the pairs (su, tu), u ∈ U ,
with the three obvious possible paths. These demands constitute what will
be called the short demands. In total, this gives |C|+ |U | demands. Finally,
let every link corresponding to a slack-path have capacity K/2. Assign to
all other links capacity K. This completes the transformation from 3SAT to
MSD-SPF3, which is carried out in polynomial time.

Suppose that we have a positive answer to 3SAT. This means that we
have a function, T : U → {true, false}, that satisfies every clause Ci ∈ C.
For each variable u ∈ U for which T (u) = true, assign the demand (su, tu)
the left-path of the truth-setting component for u. For each u ∈ U for
which T (u) = false, assign the demand (su, tu) the right-path. Since T is a
satisfying truth-assignment, there will be at least one literal in each clause
for which the corresponding short demand is assigned a path that is disjoint
with the path of the long demand associated with the clause. Thus chosing
an arbitrary such path for the long demand gives a single-path pattern with
neither shared links, nor usage of slack paths. This implies that a flow



4.2. MAX-MIN FAIRNESS OF UNSPLITTABLE FLOWS 85

xd = K may be allocated to each demand.
Conversely, suppose that we have a positive answer to the constructed

instance of MSD-SPF3, i.e., that there exists a single path routing for which
xd ≥ K is possible for each demand d. Since ce ≤ K for all links e, it can
immediately be deduced that no slack-paths are used. Consequently, every
short demand path corresponds to a truth assignment of the corresponding
variable u; if (su, tu) is routed on the right-path, then T (u) := false, and
if (su, tu) is routed on the left-path, then T (u) := true. As xd ≥ K for all
demands d, there must be at least one of the three paths for a long demand
with the property that this path does not coincide with a path used for a
short demand. In particular, this implies that this literal is set true by T .
Thus all clauses are satisfiable. Hence 3SAT ∝ MSD-SPF3 and MSD-SPF3

must be NP-complete.

In many cases it is easier to understand a problem transformation if a
complete example is given. We believe that this is indeed the case for the
proof of Proposition 4.8. A complete example of how an instance of 3SAT is
transformed into an instance of MSD-SPF3 is given in the following example.

Example 4.6. Consider the following instance of 3SAT;

U = {a, b, c, d, e, f, g} and C = {c1, c2, c3, c4},

where c1 = {ā, b, c}, c2 = {ā, d, g}, c3 = {ā, f, ḡ} and c4 = {c, e, f̄}. Table 4.2
is determined from the given clauses and provides sufficient information to
construct the supply graph of the MSD-SPF3 instance. The supply graph of

ku αu kū αū

a 0 1 3 3
b 1 1 0 1
c 2 2 0 1
d 1 1 0 1
e 1 1 0 1
f 1 1 1 1
g 1 1 1 1

Table 4.2: The information needed to transform 3SAT to MSD-SPF3 .

the MSD-SPF3 instance corresponding to the given instance of 3SAT, can be
seen in Figure 4.8. In this figure, every link is assigned a distinct number,
given immediately to the left of the link. Note that each (vi, wi)-node-
pair constitutes a long demand and corresponds to clause ci, and that each
(su, tu)-node-pair constitutes a short demand and corresponds to variable
u. Note also that each demand (node-pair) has exactly three allowed paths
(from which only one can be selected). The paths for each demand are
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Figure 4.8: Supply graph for the instance of MSD-SPF3, given by the 3SAT
instance.

listed in Table 4.3. A path is given as a set of integers, where each integer
corresponds to a link according to Figure 4.8.

4.2.3 Resolution algorithms

When the feasible set X models the single-path constraint, it is not at all
obvious how a resolution algorithm for

lex max{Θ(x) : x ∈ X}, (4.27)

should be formulated. Because of the non-convexity it is not possible to
exploit the notion of “blocked demands” as was done in Section 3.1.2 and
in Section 3.2.4. Note that with the complicating single-path constraint, a
demand may be blocking for a specific collection of single paths, but be pos-
sible to increase for another collection of single paths. We will restrict our
attempts to formulate resolution techniques to the problems where path-sets
are limited. The approach generally taken is greatly inspired by the reso-
lution techniques for the convex counterpart of the studied problem. Focus
will be put on representing subproblems of (4.27), as MIPs. Particularly,
each MIP is designed to compute a specific entry, say entry j, of Θ(x). We
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Demand Corresponds to Path 1 Path 2 Path 3

(v1, w1) clause c1 {25, 1, 37} {26, 8, 38} {27, 11, 39}
(v2, w2) clause c2 {28, 2, 40} {29, 15, 41} {30, 24, 42}
(v3, w3) clause c3 {31, 3, 43} {32, 21, 44} {33, 22, 45}
(v4, w4) clause c4 {34, 12, 46} {35, 18, 47} {36, 19, 48}
(sa, ta) variable a {1, 2, 3} {4} {5}
(sb, tb) variable b {6} {7} {8}
(sc, tc) variable c {9} {10} {11, 12}
(sd, td) variable d {13} {14} {15}
(se, te) variable e {16} {17} {18}
(sf , tf ) variable f {19} {20} {21}
(sg, tg) variable g {22} {23} {23}

Table 4.3: The demands and their allowed paths. Paths are given as sets of
integers, where each integer corresponds to a link in Figure 4.8.

will sometimes denote this entry by the j:th level, as Θ(x) is non-decreasing
in the coordinates. It will become clear that the full problem can be solved
(in some different ways) essentially by resolving a sequence of these MIPs.

The first level

The first level, i.e, the first element of Θ(x) (i.e, θ1), can be obtained by
solving

max θ1 (4.28)

s.t.
∑

p

udp = 1 ∀ d (4.29)

∑

d

∑

p

δedpudpθ1 ≤ ce ∀ e (4.30)

θ1 ≥ 0, udp ∈ {0, 1} ∀ p, d (4.31)

Apparently, this formulation has a difficulty of being nonlinear, containing
multiplication of two variables (constraint (4.30)). However, by defining a
new variable, µ = 1

θ1
, this problem can be avoided. Of course, it is then

necessary to presume that θ1 > 0, which is reasonable (if θ1 = 0 there
are demands that have no paths). Clearly, µ will be minimal when (and
only when) θ1 is maximal. Further, if we restate the problem in variable
µ, the nonlinearity is eliminated, making use of that neither θ1 nor µ are
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demand-dependent;

min µ (4.32)

s.t.
∑

p

udp = 1 ∀ d (4.33)

∑

d

∑

p

δedpudp ≤ µce ∀ e (4.34)

µ ≥ 0, udp ∈ {0, 1} ∀ p, d (4.35)

The last formulation is a (linear) mixed 0-1 program. The advantages of
the “inverted approach” taken in (4.32)-(4.35) have been exploited in [30],
although for the splittable paths case (which is convex).

Finding all levels – an application-specific approach

Assuming knowledge of levels 1, 2, . . . , k − 1 (i.e., entries θ1, θ2, . . . , θk−1), it
is possible to formulate a MIP that computes level k. Performed iteratively,
with the first level obtained from (4.32)-(4.35), this provides a resolution
technique for the considered problem. We will start by giving a MIP for-
mulation to compute the second level, assuming that the first level , θ∗1, is
known. For this purpose a variable, y2 = θ2 − θ∗1, describing adjacent level
difference, is defined.

max y2 (4.36)

s.t.
∑

d

∑

p

σdp = (D − 1)y2 (4.37)

∑

p

σdp ≤ y2 ∀ d (4.38)

σdp ≤ Mwdp ∀ p, d (4.39)
∑

d

∑

p

wdp = D − 1 (4.40)

wdp ≤ udp ∀ p, d (4.41)
∑

p

udp = 1 ∀ d (4.42)

∑

d

∑

p

δedp(udpθ
∗
1 + σdp) ≤ ce ∀ e (4.43)

udp ∈ {0, 1}, wdp, σdp, y2 ≥ 0 ∀ p, d (4.44)

where M is a sufficiently large number, e.g. M = maxe{ce}. Here, con-
straints (4.37) and (4.38) establish that D−1 demands reach θ2. Constraints
(4.39)-(4.42) assure that demands use only one path each, and constraint
(4.43) is the usual link-load constraint. Note that it is possible that y∗2 = 0,
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in which case θ∗2 = θ∗1. Given an optimal solution y∗2 to (4.36)-(4.44), the
second level is computed as θ∗2 = y∗2 +θ∗1. Defining yk = θk − (

∑k−1
i=2 y∗i +θ∗1),

this formulation can be extended to find an arbitrary level (provided that
the lower levels are known), generalizing the MIP of (4.36)-(4.44);

max yk (4.45)

s.t.
∑

d

∑

p

σdp = (D − (k − 1))yk (4.46)

∑

p

σdp ≤ yk ∀ d (4.47)

σdp ≤ Mw
(k)
dp ∀ p, d (4.48)

∑

d

∑

p

w
(k)
dp = D − (k − 1) (4.49)

w
(2)
dp ≤ udp ∀ p, d (4.50)

w
(r+1)
dp ≤ w

(r)
dp ∀ p, d, r (4.51)

∑

d

∑

p

w
(r)
dp = D − (r − 1) ∀ r (4.52)

∑

p

udp = 1 ∀ d (4.53)

∑

d

∑

p

δedp(udpθ
∗
1 +

k−1∑

r=2

w
(r)
dp y∗r + σdp) ≤ ce ∀ e (4.54)

udp ∈ {0, 1}, w
(r)
dp , σdp, yk ≥ 0 ∀ p, d, r (4.55)

Here, r = 2, 3, . . . , k − 1. It should be noted that the correctness of (4.45)-

(4.55) relies entirely on that w
(i)
dp is forced binary for all i = 2, . . . , k, although

there is no such explicit constraint.

Property 4.9. If θ∗1 and all y∗i , i = 2, . . . , k − 1, are optimal, then for

any feasible solution to (4.45)-(4.55) it holds that w
(i)
dp ∈ {0, 1}, for all i =

2, . . . , k.

Proof. Suppose that w
(r−1)
dp ∈ {0, 1}, for all p = 1, 2, . . . , Pd, d = 1, 2, . . . ,D,

for some r, 3 ≤ r ≤ k. As w
(r−1)
dp ∈ {0, 1}, and since

∑

d

∑

p w
(r−1)
dp =

D−r+2, there exist exactly D−r+2 non-zero variables w
(r−1)
dp , all of which

must be equal to 1. By (4.51), w
(r−1)
dp ≥ w

(r)
dp , so w

(r−1)
dp = 0 implies w

(r)
dp = 0.

Now for y∗r−1 to be optimal there must exist a (d, p), such that w
(r−1)
dp = 1 and

w
(r)
dp = 0 (otherwise y∗r−1 could be increased). Combined with the constraint

∑

p w
(r)
dp = D − r + 1, this implies that there must exist D − r + 1 non-zero
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variables w
(r)
dp , that sum up to D − r + 1. Since 0 ≤ w

(r)
dp ≤ 1, it follows

that w
(r)
dp ∈ {0, 1}. An identical argument can be used showing the same

relation beween w
(2)
dp and udp, implying that w

(2)
dp ∈ {0, 1} as udp ∈ {0, 1} by

definition. Thus by induction over r the general result follows.

Summarizing the above findings, it is possible to formulate a procedure
that solves

lex max{Θ(x) : x ∈ X}, (4.56)

as is done by the following algorithm.

Algorithm 4.3. (for solving (4.24)-(4.26))

Step 0: Assign k := 1. Solve (4.32)-(4.35) for the first level, θ∗1 = 1
µ∗ and

optimal udp. If D = 1 then stop. The MMF solution is x = θ∗1u, and
the used paths are given by optimal udp. Otherwise proceed to Step
1.

Step 1: Assign k := k + 1. If k > D then stop. Then the MMF allocation

is given by, for each demand d, x∗
d = θ∗1 +

∑

p

(
∑D

r=2 w
(r)
dp y∗r + σdp

)

,

and the optimal paths are given by optimal udp. The optimal levels

are given by θi(x) = θ∗1 +
∑i

j=2 y∗j . Otherwise proceed to Step 2.

Step 2: Solve (4.45)-(4.55) for optimal objective, y∗k, optimal variables w
(r)
dp ,

udp, and σdp. Go to Step 1.

Finding all levels – a generic method

The MIP model outlined in this section is application of the method of
formulating a non-convex MMF problem by cumulated ordered values, de-
scribed in Section 2.4.2. It is referred to as a generic method, since its
original form constitutes a general way of expressing a wide range of non-
convex MMF problems. Let us repeat the derivation of this formulation, for
the considered application. Define the k:th cumulated ordered value, θ̄k(x),
1 ≤ k ≤ D, as θ̄k(x) =

∑k
j=1 θj(x). Then, for a given outcome vector x,

this entity can be computed as

θ̄k = max krk −
∑

d

bkd (4.57)

s.t. rk − xd ≤ bkd ∀ d (4.58)

bkd ≥ 0 ∀ d (4.59)

which is linear even if x is a variable. Note that this is application of the
expressability result described by (2.5)-(2.6) in Section 2.1.3. Using the
possibility of rewriting (2.4) as (2.7)-(2.10) we may rewrite

lex max{Θ(x) : x ∈ X}
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as

lex max Θ̄(x) (4.60)

s.t. θ̄k = krk −
∑

d

bkd ∀k (4.61)

rk − xd ≤ bkd ∀ k, d (4.62)

bkd ≥ 0 ∀ k, d (4.63)

x ∈ X (4.64)

where k = 1, 2, . . . ,D. For the purpose of solving problem (4.60)-(4.64),
with X constituted by the single-path and the link-load constraints, we
may apply Algorithm 2.3, expressed for the considered application by the
following algorithm.

Algorithm 4.4. (for solving (4.24)-(4.26))

Step 0: Assign k := 1. Solve (4.32)-(4.35) for the first level, θ∗1 = 1
µ∗ and

optimal udp. If D = 1 then stop. The MMF solution is x = θ∗1u, and
the used paths are given by optimal udp. Otherwise proceed to Step
1.

Step 1: Assign k := k + 1. If k > D then stop. Then the MMF allocation
is given by, for each demand d, x∗

d =
∑

p zdp (optimal variables zdp),
and the optimal paths are given by optimal udp. Otherwise proceed
to Step 2.

Step 2: Let l = 1, 2, . . . , k, and let M be a sufficiently large number, e.g.
M = maxe{ce}. Solve

max θ̄k (4.65)

s.t. θ̄k ≤ krk −
∑

d

bkd (4.66)

θ̄∗l ≤ lrl −
∑

d

bld ∀ l : l 6= k (4.67)

rl −
∑

p

zdp ≤ bld ∀ l, d (4.68)

zdp ≤ udpM ∀ p, d (4.69)
∑

p

udp = 1 ∀ d (4.70)

∑

d

∑

p

δedpzdp ≤ ce ∀ e (4.71)

zdp ≥ 0, bld ≥ 0, udp ∈ {0, 1} ∀ p, l, d (4.72)

for optimal objective θ̄∗k and optimal variables zdp and udp. Go to Step
1.
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Finding all levels – assuming a finite outcome set

In many cases, especially in the communication network context, it is very
reasonable to assume that the flow volume allocated to demand d may take
on only a limited set of discrete values. This was the explicit requirement
in Section 4.1.5, where we on the other hand assumed predefined single
paths. Recall that the assumption of discrete flow values is very reasonable
if flows can only be assigned multiples of a predefined module. The restric-
tion results in essentially the same problem, but with a finite outcome set.
Introducing this restriction to the considered problem yields the following:

lex max Θ(x) (4.73)

s.t. x ∈ X (4.74)

xd ∈ v ∀ d (4.75)

where v = {0, v1, v2, . . . , vr}, 0 < v1 < v2 < . . . < vr, is a finite (ordered)
set of possible flow values. From Property 2.15 we know that a solution
to (4.73)-(4.75) is obtained through solving the following lexicographical
minimization:

lex min
( ∑

d t1d,
∑

d t2d, . . . ,
∑

d trd

)
(4.76)

s.t. vk − xd ≤ tkd k = 1, 2, . . . , r, ∀ d (4.77)

tkd ≥ 0 k = 1, 2, . . . , r, ∀ d (4.78)

x ∈ X (4.79)

xd ∈ v . ∀ d (4.80)

Intuitively, it is not hard to see that (4.76)-(4.80) first assures that as many
demands as possible are raised to the first non-zero level, v1. Keeping this
many demand volumes greater or equal than v1, it is then assured that as
many demands as possible are raised to v2, and so on. Now since our primary
interest is to enforce unsplittable flows, not necessarily requiring that flows
belong to the predefined set of values, the idea is to try to solve (4.76)-(4.80),
omitting the explicit value constraint (4.80). Such an approach may seem
far-fetched but is motivated from positive experience with running times
of this approach applied to related location problems [41]. Resolution of
(4.76)-(4.79) is accomplished by the following algorithm.

Algorithm 4.5. (for approximately solving (4.24)-(4.26))

Step 0: Assign k := 1. Let M be a sufficiently large number, e.g. M = v1.
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Solve

τ1 = min
∑

d

t1d (4.81)

s.t. v1 −
∑

p

zdp ≤ t1d ∀ d (4.82)

zdp ≤ udpM ∀ p, d (4.83)

udp = 1 ∀ d (4.84)
∑

d

∑

p

δedpxd ≤ ce ∀ e (4.85)

zdp ≥ 0, t1d ≥ 0, udp ∈ {0, 1} ∀ d, p (4.86)

and let τ∗
1 be the optimal objective value, zdp and udp the optimal

solution. If D = 1 then stop. The MMF solution is then given by
optimal variables zdp, and the used paths are given by optimal udp.
Otherwise proceed to Step 1.

Step 1: Assign k := k + 1. If vk−1 > maxd{
∑

p zdp : d = 1, 2, . . . ,D} or
k > r then stop, optimal zdp give the (approximate) MMF solution
and optimal udp give the used paths. Otherwise proceed to Step 2.

Step 2: Let l = 1, 2, 3, . . . , k − 1, and let M be a sufficiently large number,
e.g. M = vk. Solve

τk = min
∑

d

tkd (4.87)

s.t. vl −
∑

p

zdp ≤ tld ∀ l, d (4.88)

∑

d

tld ≤ τ∗
l ∀ l (4.89)

vk −
∑

p

zdp ≤ tkd ∀ d (4.90)

zdp ≤ udpM ∀ p, d (4.91)
∑

p

udp = 1 ∀ d (4.92)

∑

d

∑

p

δedpzdp ≤ ce ∀ e (4.93)

zdp ≥ 0, tld ≥ 0, udp ∈ {0, 1} ∀ l, p, d (4.94)

and let τ∗
k be the optimal objective value, zdp and udp the optimal

solution. Go to Step 1.

It should be noted that, since we are interested in the case where con-
tinuous flows are allowed, iteratively solving (4.87)-(4.94) will not give an
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exact solution to the considered problem, but, as we shall see, in many cases
a good approximation.

Upper and lower bounds

In a communication network, it is often a reasonable assumption that each
demand d is given with acceptation limits, hd and Hd, where it is required
that the allocation vector satisfies hd ≤ xd ≤ Hd, for all d, d = 1, 2, . . . ,D.
The upper limit, Hd, can be incorporated in a natural fashion in all of
the presented MIP models. This is just a matter of substituting the so-
called “big-M constraints”, zdp ≤ udpM , with zdp ≤ udpHd for all paths
p = 1, 2, . . . , Pd, for all demands d = 1, 2, . . . ,D. The lower limit, hd, has
to be added as explicit constraints, hd ≤ xd for all demands. Note that the
acceptation limits have to be carefully a priori determined, since otherwise
there is a large risk that they make the MIP model infeasible.

4.2.4 Numerical experiments

As has been shown, the studied problem suffers from heavy computational
complexity. This is mainly due to the single-paths requirement and the
fact that it embodies a multi-criteria optimization problem. Therefore, it is
interesting to study and compare computation times for different instances
and for different resolution techniques.

Exact methods

We will start by giving a flavour of the computation times associated with
solving

lex max{Θ(x) : x ∈ X},

where the feasible set X models the single-path and the link-load constraints,
in an exact manner. Two of the presented approaches solve the problem to
optimality – one is called application-specific (Algorithm 4.3), and the other
will be referred to as generic (Algorithm 4.4). Both methods require solution
of a sequence of MIPs. The frameworks of the algorithms are implemented
in MATLAB6.5, and the MIPs are solved using a MATLAB interface to
CPLEX 9 (mex-function), called CPLEXINT (downloadable freeware [5]).
This means that the generic CPLEX 9 MIP-solver is used for resolving MIPs
(4.32)-(4.35), (4.45)-(4.55), and (4.65)-(4.72). The computations were car-
ried out on a PC with an Intel PIII-1GHz CPU, RAM of 256 MB, and Win-
dows 2000 OS. Table 4.4 contains computation times for the two different
methods, for a number of small instances. The instances are characterized
by that there is a demand between every node-pair and that link capacities
are uniformly distributed over {10, 20, 30, 40, 50}. For the first 9 instances
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there are two paths per demand, and for the 5 last instances there are three
paths per demand.

#paths/ computation times (s)
#nodes #links demand app-specific generic

3 3 2 0.1090 0.0940
4 6 2 0.0940 0.0470
5 8 2 0.8130 0.4710
6 12 2 1.1230 1.3730
7 12 2 10.098 4.7190
8 13 2 16.420 21.139
9 18 2 1.62·103 327.92
10 18 2 1.61·103 327.11
11 19 2 1.92·103 107.41
4 6 3 0.4220 0.1080
5 8 3 1.1560 0.7020
6 12 3 8.8550 13.077
7 17 3 26.738 28.999
8 12 3 236.49 46.704

Table 4.4: Comparison of the application-specific and generic methods for
some small instances.

The results of Table 4.4 suggest that the generic method is slightly faster
than that of the application-specific method. We may sum up the usage of
variables and constraints for the MIP corresponding to iteration k in the two
different approaches, as is done in Table 4.5. Knowing that both algorithms
performs D − 1 iterations (2 ≤ k ≤ D), the generic method has a clear
advantage.

application-specific generic

B
∑

d Pd
∑

d Pd

R k
∑

d Pd + 1 k|D| + 2
∑

d Pd

C 1 + 2|D| + k
∑

d Pd + E k + (k + 1)D +
∑

d Pd + E

Table 4.5: Comparison of number of variables and constraints for step k
in the application-specific and generic methods. B, R, and C indicate the
number of binary variables, continuous variables, and constraints, respec-
tively.
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Assuming finite outcomes

The approach based on the assumption that the possible outcomes are finite
can be seen as an approximate method for solving the studied problem.
From this viewpoint it is interesting too see, if replacing an exact method
by Algorithm 4.5, how much computation time that can be saved, and to
what cost, in terms of deviation from optimum, this may be done. We then
have to predefine a set of values, v, which the method will use trying to assign
its values to flows. The hardware and software constellations are identical to
those of the numerical experiments of the exact methods. In Figure 4.9 the
(sorted) allocation vector for a 10-node, 18-link, 2 paths/demand instance is
shown (entry 8 of Table 4.4). Link capacities are uniformly distributed over
{10, 20, 30, 40, 50}. The lines with crosses are the allocation vectors obtained
by the exact generic algorithm (Algorithm 4.4), whereas the circled lines are
the allocation vectors obtained by the approximate approach (Algorithm
4.5) with 4 different set of values, v. In Figure 4.9(a), modules (resolution)
are of size 10, i.e., the elements of the predefined grid, v1, v2, . . . , vr, are all
the numbers vi that can be written as vi = 10·z, z ∈ Z, 0 ≤ vi ≤ 50. The grid
associated with Figures 4.9(b), 4.9(c), and 4.9(d) are defined analogously,
but with module sizes of 5, 2, and 1, respectively. It should be noted that
for the most dense grid considered (Figure 4.9(d)), the computation time is
merely 14.54 seconds. The exact method solves the same instance in about
5 minutes.

In Table 4.6, the approximate approach is applied to a number of differ-
ent instances. Again, link capacities are distributed over {10, 20, 30, 40, 50},
and there is a demand between every node-pair in the network. The compu-
tation times are given for Algorithm 4.5 with module size 2 (dist-2), module
size 5 (dist-5), and also for the best exact method – the generic method (Al-
gorithm 4.4). Dashed entries correspond to runs that did not finish within
half an hour. Comparison of the exact methods and the approximate ap-
proach, by the computation times given in Table 4.6, strongly suggests that
the approximate approach should be used whenever its deviation from the
optimum is acceptable. Certainly, such an error tolerance will depend on
the details of the application. From our numerical results it is tempting
to conjecture that for sorted allocation vectors, if we consider an arbitrary
entry, the absolute difference between distribution approach and the exact
solution can be at most the size of the module. It is however easy to come
up with a counterexample

Example 4.7. Consider the network given in Fig. 4.10. In this graph
there are two demands; (A,A′) and (B,B′). All link capacities are equal
to 15, except for link e that has a link capacity of 5. The exact solution is
Θ(x) = (7.5, 7, 5). Suppose that our predefined grid is {0, 5, 10, 15}. Then
the approximate approach solution is Θ(x∆) = (5, 15). Thus θ2(x

∆) −
θ2(x) = 7.5 > v = 5.
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(a) resolution=10, computation time=0.218s
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(b) resolution=5, computation time=0.766s
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(c) resolution=2, computation time=5.84s
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(d) resolution=1, computation time=14.54s

Figure 4.9: Comparison of different resolutions for the approximate ap-
proach. The exact solution was computed in 327 seconds.

4.3 Conclusions

In Chapter 4 we have considered (linear) max-min fairness allocation prob-
lems, with non-convex problem structure. The non-convexity of the studied
problems results from discrete solution spaces, and complicates both formu-
lation and resolution. In Chapter 3 we did not encounter this difficulty as all
decision variables were allowed to take on rational numbers, and we could in
fact exploit the convex problem structure to formulate solution algorithms.

The first non-convex MMF problem studied was almost identical to the
most basic one described in Chapter 3 – when each demand has exactly one
fixed path and flows have to be max-min fairly distributed. The difference
lies in that we now only allow flows to assume multiples of a predefined
module. It was shown that, changing units, this requirement can be viewed
as a requirement of flows being integral. We compared the solution of the
integral-flow problem with the basic problem, and derived a number of re-
lational properties. Moreover, an analogy to the max-saturating property
was given. In order to motivate suspicion of non-existence of polynomial
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A A'

B B'e

Figure 4.10: A contradicting example.

time algorithms we then proved that obtaining MMF of modular flows is
NP-hard. Nevertheless, using the classical approach of waterfilling (Algo-
rithm 3.1), some subproblems could be shown to be of polynomial time. For
resolution of the considered problem, we proposed an algorithm that solves
an application-specific linear relaxation of a lexicographical minimization
problem ((2.72)-(2.76)). Strictly speaking, since being a relaxation, this
consituted an approximation algorithm. However, it was shown to reach
an optimal solution in practically all of the randomly generated problem
instances, and this at acceptable running times, even for relatively large
instances.

We then took on the problem of obtaining a max-min fair distribution of
flows if each demand may use no more than one path that has to be selected
in the problem solution process. This problem is often refererred to as max-
min fairness of unsplittable flows. General unsplittable-flow problems are
known to be difficult, so it was reasonable to expect provable difficulty also
from this problem. We separated the problem into two cases – the case
when each demand may use any path, and the case when each demand may
use one path from a predefined list. With the objective of obtaining max-
min fairness, both cases were shown NP-hard. In fact we proved that just
obtaining the first entry of the sorted allocation vector is NP-hard in itself,
in both cases.

With a deeper understanding of the complexity of the unsplitabble flow
MMF problem, the focus was then put on resolution techniques. We pre-
sented two exact, MIP-based algorithms, where one was derived specifically
for this application, and the other a generic MMF problem resolution tech-
nique. In addition we gave an approximation algorithm that was based
on (a relaxation of) the assumption that the outcome set is discrete and
finite. The numerical experiment, which was carried out on network in-
stances ranging from 3 nodes and 3 demands to 20 nodes and 190 demands,
showed that, in general, the generic algorithm is usually faster than the
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application-specific one, if the problem should be solved to optimality. How-
ever, both approaches did indeed exhibit vast time-consumption when prob-
lem instances were scaled up. Finally, we applied the approximate method
to our randomly generated problem instances. Even though being based on
successive resolution of MIPs, this approach obtained suboptimal solutions
of quite high quality at acceptable running times in cases where the exact
methods did not solve the problem in less than half an hour.
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#paths/ computation times (s)
#nodes #links demand generic method dist-2 dist-5

3 3 2 0.1090 0.0940 0.0780
4 6 2 0.0940 0.0470 0.0770
5 8 2 0.8130 0.4710 0.2810
6 12 2 1.3730 0.5920 0.1550
7 12 2 4.7190 0.7490 0.2640
8 13 2 21.139 1.6750 0.2970
9 18 2 327.92 6.0000 0.7510
10 18 2 327.11 6.0630 0.7170
11 19 2 107.41 7.5480 0.5150
4 6 3 0.1080 0.2950 0.1560
5 10 3 0.9840 0.9380 0.2810
6 12 3 13.077 4.8110 0.4380
7 17 3 28.999 4.9530 1.6090
8 17 3 76.045 10.518 1.2370
9 16 3 1.239·103 31.809 0.6860
10 22 3 – 58.518 5.3940
11 23 3 – 180.81 2.5340
12 24 3 – 50.954 1.5780
13 26 3 – 51.781 2.5780
14 24 3 – 16.640 1.2200
15 25 3 – 47.485 2.4700
16 33 3 – 59.623 5.6410
16 34 3 – 29.400 3.1260
17 36 3 – 99.595 12.333
18 40 3 – 358.72 5.5310
19 38 3 – 1.838·103 4.9680
20 36 3 – 108.31 8.0770

Table 4.6: Comparison of computation times of the approximate approach
and the exact (generic) method, for various instances.
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This chapter deals with so-called dimensioning problems. It is signifi-
cant for a dimensioning problem that, as opposed to an allocation problem,
the link capacities are assumed to be design variables. The designation for
network optimization problems for which link capacities are to be deter-
mined, is uncapacitated problems. In the spirit of the previous chapters,
we will consider dimensioniong problems for which fairness among demands
is a preliminary objective. The type of fairness that will be addressed is
commonly known as proportional fairness, introduced in Section 2.1.2.

5.1 Proportionally fair dimensioning

The essence of Proportional Fairness (PF) is to assign flows to paths so that
the sum of logarithms of the total flows is maximized. The use of the loga-
rithmic function, instead of e.g., a linear function (which in particular could
lead to throughput maximization), makes it impossible to assign zero flow
to any demand and, on the other hand, makes it unprofitable to assign too
much flow to any individual demand. A more formal investigation (as was
carried out in Section 2.1.2) establishes that use of the logarithmic function
has the important property of defining a fair rational preference relation
on the strictly positive orthant, Rm

++. A number of studies considering the
capacitated flow allocation problems for PF have been carried out before
[10, 14, 15]. In the capacitated problems, link capacities are given and the
optimal flow allocation pattern is to be found. The capacitated problem
with a fixed path for each demand is considered in [15]. In [10] and [14], a
more general problem of simultaneously finding demands’ paths and a corre-
sponding flow allocation pattern is investigated. It is shown in [43] how the
capacitated problem can be approached by piece-wise linear approximation
of the logarithm. Here, we concentrate on the PF dimensioning problem,
assuming that we are given a set of demands (each with an associated list
of paths) and the topology of the network. The problem is to assign flows
to demands and capacity to links such that the resulting allocation vector
is proportionally fair, and such that the aggregated flow traversing a link
does not exceed the capacity. To bound the problem, we assume that we
are given a marginal cost for each link e, ρe, and some budget, B. It should
then hold for the link capacities, ye, (which now are decision variables) that

∑

e

ρeye ≤ B. (5.1)
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Assuming that each demand is given a fixed path, the basic PF dimensioning
problem takes the following shape:

f(x) = max
∑

d

wd log xd (5.2)

s.t.
∑

e

ρeye ≤ B (5.3)

∑

d

δedxd ≤ ye ∀ e (5.4)

x ≥ 0, y ≥ 0 . (5.5)

Here, y = (y1, y2, . . . , yE), and wd is the value of a unit of demand d (for
pure PF, wd = 1 for all demands d). We know from Chapter 2 that usage of
the logarithmic objective function induces a fair rational preference relation.
From a more intuitive perspective the interpretation of the objective function
(5.2) can be as follows. The client associated with demand d does not pay for
xd (assigned bandwidth) but for the logarithm of xd. This implies that the
revenue from a client can be negative if he is assigned too little bandwidth.
With function (5.2) this happens if the flow assigned to a client is less than
one.

The idea underlying the above interpretation was introduced as early
as in 1854 by Hermann Heinrich Gossen in his book ”The Development of
the Laws of Exchange among Men and of the Consequent Rules of Human
Action”. Gossen’s First Law states that the pleasure obtained from each
additional amount consumed by the same commodity diminishes until sati-
ety is reached [4]. Another side of this law could be a statement that the
pleasure approaches minus infinity as the amount of consumed commodity
tends to zero.

Proposition 5.1. Let x∗ and y∗ be the solution of (5.2)-(5.5). Then the
following equalities hold:

f(x∗) = log(B)
∑

d

wd −
∑

d

wd log(ξd) +

+
∑

d

wd log(wd) − log
( ∑

d wd

) ∑

d

wd , (5.6)

x∗
d =

wdB

ξd
∑

d wd
, and (5.7)

y∗e =
∑

d

δedx
∗
d , (5.8)

where ξd is the cost of the path realizing demand d, ξd =
∑

e ρeδed.

Proof. The formulae follow from the explicit solution of the dual. To obtain
the solution we note that for an optimal solution equalities must hold for
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(5.3) and (5.4), resulting in

∑

e

ρe

∑

d

δedxd = B . (5.9)

We dualize (5.9), and form the Lagrangian,

L(x;σ) = −
∑

d

wd log xd + σ
( ∑

e ρe
∑

d δedxd − B
)

, (5.10)

and rewrite it as

L(x;σ) =
∑

d

( (
σ

∑

e ρeδed

)
xd − wd log xd

)
− σB . (5.11)

The dual function is given by

W (σ) = minx≥0

L(x;σ) , (5.12)

which should be maximized with respect to the dual multiplier σ, in order
to find a solution to the dual. Let σ∗ be such an optimal multiplier, i.e.,

W (σ∗) = max
σ

W (σ) , (5.13)

where
W (σ) = minx≥0

∑

d

(
σξdxd − wd log xd

)
− σB . (5.14)

The flows, xd(σ), minimizing the Lagrangian for a fixed σ are obtained
from the stationary point of (5.14). The consecutive flows are obtained by
differentiating the terms of the sum in (5.14), and putting the consecutive
derivatives equal to zero,

wd

xd(σ)
− σξd = 0 , (5.15)

resulting in

xd(σ) =
wd

σξd
. (5.16)

Inserting (5.16) into (5.14) we finally arrive at

W (σ) =
∑

d

(

wd − wd log
(

wd

σξd

) )

− σB . (5.17)

The maximum of the dual function is attained at the stationary point of
(5.17) with respect to the multiplier σ, resulting in the equality

∑

d

wd

σ
− B = 0 . (5.18)
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Hence, the optimal multiplier σ∗ is given by

σ∗ =
∑

d

wd

B
, (5.19)

which immediately implies (5.6) and (5.7).

Of course, the maximum of the objective function (5.2) depends only on
B (provided that the rest of the constraints are fixed); (5.6) implies that
this maximum is of the form

f(B) = a log(B) + b . (5.20)

Furthermore, from formula (5.2) it is deduced that when paths are also
subject to optimization, i.e., when each demand is not restricted to a single
fixed path, then the optimal solution will assign each demand flow xd to its
shortest path. This is because only the second term on the right hand side
of (5.6) depends on path selection. The same term is minimized when the
shortest paths are used.

5.1.1 Bounded flows

As was discussed in the balance of Section 4.2.3, it is often very reasonable
to assume that a demand can be assigned a flow only within a predefined
range,

hd ≤ xd ≤ Hd , d = 1, 2, . . . ,D . (5.21)

To make sense, it must hold for such bounds that 0 ≤ hd < Hd, and further
that

∑

d hdξd < B <
∑

d Hdξd. We will continue the investigation of the PF
dimensioning problem by adding (5.21) to optimzation problem (5.2)-(5.5),
resulting in

f(x) = max
∑

d

wd log xd (5.22)

s.t.
∑

e

ρeye ≤ B (5.23)

∑

d

δedxd ≤ ye ∀ e (5.24)

hd ≤ xd ≤ Hd ∀ d (5.25)

x ≥ 0, y ≥ 0 . (5.26)

The solution of the optimization problem defined by (5.22)-(5.26) can, just
as (5.2)-(5.5), be successfully determined with the aid of dualization. The
additional constraints need not necessarily be dualized but can be taken into
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account explicitly in the minimization of the Lagrangian (5.14) for a fixed
multiplier σ. This implies that formula (5.16) takes the form

xd(σ) =







hd , wd

σξd
< hd

wd

σξd
, hd ≤ wd

σξd
≤ Hd

Hd , Hd < wd

σξd
.

(5.27)

In this case the dual function can be maximized in an exact way, but explicit
formulae like (5.6) and (5.7) are not available. To maximize the dual function
we first calculate the threshold σ:s following from (5.27):

σ1
d =

wd

Hdξd
, (5.28)

σ2
d =

wd

hdξd
. (5.29)

Note that, for a given demand d, σ1
d < σ2

d because hd < Hd, and also that
σ1

d = 0 if Hd = +∞, and σ2
d = +∞ if hd = 0. Now the relations (5.27) can

be rewritten as:

xd(σ) =







Hd , 0 ≤ σ ≤ σ1
d

wd

σξd
, σ1

d ≤ σ ≤ σ2
d

hd , σ ≥ σ2
d .

(5.30)

The next step is to sort all σ1
d and σ2

d, d = 1, 2, . . . ,D, in non-decreasing
order (in the sorted sequence some of the elements can be equal). Then,
from each subsequence of equal elements all but one elements are deleted.
This yields a shorter sequence (s1, s2, . . . , sn), with the property

s1 < s2 < . . . < sn , (5.31)

where s1 may be equal 0 and sn to +∞. Now we form the following n − 1
intervals:

[s1, s2], [s2, s3], . . . , [sn−1, sn] , (5.32)

and for each of them ([sj, sj+1], j = 1, 2, . . . , n − 1) we introduce three sets
of indices (demands);

Lj = { d : xd(σ) = hd for σ ∈ [sj, sj+1] } ,

Fj = { d : xd(σ) =
wd

σξd
for σ ∈ [sj, sj+1] } , and

Uj = { d : xd(σ) = Hd for σ ∈ [sj, sj+1] } . (5.33)

Note that Lj∪Fj∪Uj = {1, 2, . . . ,D} and Lj∩Fj = Lj∩Uj = Fj∩Uj = ∅ for
j = 1, 2, . . . , n − 1, i.e, the demands are partitioned into three disjoint sets.
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Note also that Fi 6= Fj for i 6= j, i, j = 2, 3, . . . , n− 2 (provided Fi, Fj 6= ∅).
For each interval [sj, sj+1] the dual function takes the form

W (σ) = minx≥0

{ ∑

d∈Fj

(
σξdxd − wd log(xd)

)
−

−σ
(

B −
∑

d∈Lj
ξdhd −

∑

d∈Uj
ξdHd

)

−

−
∑

d∈Lj
wd log(hd) −

∑

d∈Uj
wd log(Hd)

}

, (5.34)

or equivalently,

W (σ) =
∑

d∈Fj

(

wd − wd log( wd

σξd
)

)

−

−σ
(

B −
∑

d∈Lj
ξdhd −

∑

d∈Uj
ξdHd

)

−

−
∑

d∈Lj

wd log(hd) −
∑

d∈Uj

wd log(Hd) . (5.35)

Example 5.1. Figure 5.1 illustrates the dual function for optimization prob-
lem (5.22)-(5.26) for a simple network with D = 3 demands and with cost
coefficients ξ1 = ξ2 = ξ3 = 1, reward coefficients w1 = 1, w2 = 2, w3 = 10,
and the budget B = 13. The bounds are as follows: h1 = 3, h2 = 2, h3 = 0,
H1 = +∞, H2 = +∞, H3 = 5. The parameters imply that the intervals
(5.32) are: [0, 1

3 ], [13 , 1], [1, 2] and [2,+∞).

0  0.3333 1  2  2.5
−28

−27

−26

−25

−24

−23

−22

−21

−20

σ

W

Figure 5.1: The dual function for a simple network.

Of course, function (5.35), as the dual function of the convex problem
(5.22)-(5.26), is concave and thus continuous [27]. Figure 5.1 suggests that
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it is also differentiable, which is actually the case. Note that according to
(5.35), the first derivative of the dual function in interval [sj, sj+1] is equal
to

dW (σ)

dσ
= −B +

∑

d∈Lj

ξdhd +
∑

d∈Uj

ξdHd −
∑

d∈Fj

wd

σ
. (5.36)

Consider a point sj, (j ≥ 2). Because of (5.30), for all demands d that
change category from Uj to Fj at this point, the equalities

Hd =
wd

sjξd
(5.37)

hold, so the terms ξdHd and wd

sj
cancel out in (5.36). The same holds for

Fj and Lj and the lower bound hd at the point sj. Hence the left and right
derivatives of the dual fuction are equal at each point sj, j = 2, 3, . . . , n− 1.

Note that the dual function (5.35) is not twice differentiable. According
to (5.36), in interval [sj, sj+1] its second derivative is equal to

d2W (σ)

dσ2
=

∑

d∈Fj

wd

σ2
, (5.38)

so in general it is discontinuous at the ends of the intervals (5.32) where
sets Fj change. Note also that in the case when the set Fj is empty the

dual function W (σ) is linear in [sj, sj+1] implying that dW (σ)
dσ is constant

and d2W (σ)
dσ2 = 0, for σ ∈ [sj , sj+1] (cf. (5.36) and (5.38)).

The dual function is concave and differentiable, so its maximum is at-
tained at a stationary point σ∗ resulting from the equation

dW (σ)

dσ
= 0 , σ ∈ [0,+∞) . (5.39)

Of course, the stationary point σ∗ can belong only to one of the intervals
(5.32). Let j be the index of interval [sj, sj+1] such that σ∗ ∈ [sj, sj+1]. This
interval has the unique property that the stationary point(s) resulting from
(5.39) belongs to [sj , sj+1]. The considered stationary point is given by

σ∗|Fj 6=∅ =

∑

d∈Fj
wd

B −
∑

d∈Lj
ξdhd −

∑

d∈Uj
ξdHd

, and

σ∗|Fj=∅ =

{

any σ ∈ [0,+∞) , B =
∑

d∈Lj
ξdhd +

∑

d∈Uj
ξdHd

does not exist , B 6=
∑

d∈Lj
ξdhd +

∑

d∈Uj
ξdHd

. (5.40)

Note that the unique interval j with the property σ∗ ∈ [sj, sj+1] can be
identified by the properties

dW (σ)
dσ

∣
∣
∣
σ=sj

≥ 0 and dW (σ)
dσ

∣
∣
∣
σ=sj+1

≤ 0 , (5.41)

and that it can happen that in this interval the dual function is constant.
The optimal multiplier defines the optimal demand flows via formula (5.30).
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Example 5.2. Again consider the instance given by Example 5.1. It can
easily be verified that for the consecutive intervals [0, 1

3 ], [13 , 1], [1, 2], [2,+∞),
the respective stationary points given by (5.40) are: 3

8 , 2
5 , no stationary

point, and 5
4 . Thus, as can be expected considering Figure 5.1, only the sec-

ond interval has the property that the stationary point of the dual belongs
to it: 2

5 ∈ [13 , 1]. The corresponding optimal flows are x1 = 3, x2 = 5 and
x3 = 5. Note that the dual function is linear in interval [1, 2] and therefore
it has no stationary point there.

5.1.2 An objective function extension

A practical variation of the logarithmic objective function could be to ex-
tend it by a term that pennalizes the cost induced by installation of link
capacities. The influence of such an additional term can then be adjusted
by the reward coefficients wd.

Unbounded flows

Introducing the pennalizing term for the case when flows are unbounded
results in the following optimization problem,

f(x) = max
∑

d

wd log xd −
∑

e

ρeye (5.42)

s.t.
∑

e

ρeye ≤ B0 (5.43)

∑

d

δedxd ≤ ye ∀ e (5.44)

x ≥ 0, y ≥ 0 . (5.45)

Due to (5.6) and (5.20), the maximal value of objective function (5.42) is
attained at the maximum, with respect to variable B, of the one-variable
function (constant b in (5.20) is skipped)

g(B) = log(B)
∑

d

wd − B , (5.46)

over 0 ≤ B ≤ B0. The optimum of (5.46) is attained either at B =
∑

d wd

(if
∑

d wd ≤ B0) or at B0 (if
∑

d wd > B0). Clearly, the optimal B is the
optimal total cost of links

∑

e ρeye. Furthermore from (5.6) it follows that
if

∑

d wd ≤ B0 the optimal value of (5.43) is equal to

f∗ =
∑

d

wd log
(

wd

ξd

)

−
∑

d

wd , (5.47)

and the optimal flows are given by

x∗
d =

wd

ξd
, d = 1, 2, . . . ,D . (5.48)
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Note that an equivalent formulation of optimization problem (5.43)-(5.45)
is

f(x) = max
∑

d

(
wd log xd − ξdxd

)
(5.49)

s.t.
∑

d

ξdxd ≤ B0 (5.50)

x ≥ 0 . (5.51)

The objective function (5.49) is strictly convex and the unique solution, not
taking the budget constraint (5.50) into account, is obviously given by (5.48).
A problem arises, however, when the budget constraint is not satisfied at
such a solution, i.e. when

∑

d ξdx
∗
d > B0. If this is the case then, in order

to find the optimal solution for (5.49)-(5.51), we have to solve (5.2)-(5.5) for
the fixed budget B0.

Bounded flows

In the case of the bounded flows, constraints (5.21) are added to (5.49)-
(5.51). The unique solution of the resulting optimization problem, again
not taking the budget constraint (5.50) into account, is given by

x0
d =







hd , wd

ξd
< hd

wd

ξd
, hd ≤ wd

ξd
≤ Hd d = 1, 2, . . . ,D

Hd , wd

ξd
≥ Hd

. (5.52)

Again, a problem arises when the budget constraint is not satisfied at this
solution. Then the optimal solution is found by solving (5.22)-(5.26) for
the fixed budget B0. Of course, we will have to assume that

∑

d hdξd <
B <

∑

d Hdξd, in order to make this optimization problem feasible and
non-trivial.

5.1.3 Numerical examples

To show the character of the introduced solutions we will proceed by giv-
ing some larger numerical examples. We start, however, with an example
showing the difference between the concepts of Proportional Fairness and
Max-Min Fairness, in terms of throughput for a solution to a network di-
mensioning problem.

Comparison of PF and MMF in dimensioning

Consider optimization problem (5.2)-(5.5) for the special case when wd = 1
for all demands d, d = 1, 2, . . . ,D, and ρe = 1 for all links e, e = 1, 2, . . . , E,



5.1. PROPORTIONALLY FAIR DIMENSIONING 111

and suppose that B = D. Application of formula (5.7) yields the propor-
tionally fair flows,

x∗
d =

1

nd
, d = 1, 2, . . . ,D , (5.53)

where nd is the length of the shortest path of demand d. The form of
(5.53) justifies the name ”proportionally fair”, in the sense that the more
links that are needed for a demand to connect its node-pair, the less flow is
allocated to that demand. Now consider the max-min fairness counterpart
of optimzation problem (5.2)-(5.5), for the same special case. Trivially, the
solution to the corresponding MMF dimensioning problem will be to assign
an equal, maximal flow to all demands, resulting in

x∗
d =

D
∑

d nd
, d = 1, 2, . . . ,D . (5.54)

Summing up we get that the throughput associated with the PF solution is

∑

d

1

nd
,

whereas the throughput of the MMF solution is

D2

∑

d nd
.

Using a well known inequality,
( ∑

d
1
nd

) ( ∑

d nd

)
≥ D2 ,

it is established that, with the given presumptions, the PF solution dom-
inates the MMF solution counterpart in terms of throughput. Note that
equality will hold if and only if the shortest paths for all the demands are
of equal length.

A backbone network

Consider the 12-node (polish) backbone network depicted in Figure 5.2.
There are E = 18 links and D = 66 demands. Consider the special case
with all wd:s and ce:s equal to 1. For these coefficients, the objective function
(5.42) is shown in Figure 5.3, revealing that the maximum is attained at
B = 66. Optimal flows are equal to reciprocals of the lengths of the shortest
paths measured as the number of links in a path. The dual function (5.17)
for the optimal budget B = 66 is depicted in Figure 5.4. The optimal dual
multiplier is σ = 1. Note that f(66) = −W (1) − D.

In the next example, described in Tables 5.1 and 5.2, we consider the
backbone network with links’ unit costs proportional to their length (col-
umn 4 in Tables 5.1 and 5.2) resulting in the shortest paths of the length
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Figure 5.2: A backbone network.

given in column 7. Three experiments have been carried out for this case.
The first experiment corresponds to optimization problem (5.42)-(5.45) —
the unbounded case with the extended objective function and the budget
constraint (5.43) skipped. The optimal flows are given in column 3 (the
optimal budget is B = 66).

In the next two experiments bounds (5.21) have been added to (5.42)-
(5.45). The bounds have been generated randomly and are given in columns
5 and 6 (in effect,

∑

d hdξd = 245.64). In the second experiment we have
assumed B0 = 250. In this case the solution of (5.22)-(5.26) applies (for
B = 250). The optimal multiplier for budget B = 250 is σ = 2.12 (cf.
Figure 5.5) and the maximum of the primal function (5.2) is f(x) = −30.65
(the optimal flows are given in column 8). Note that assuming xd = hd for
d = 1, 2, . . . , 66, we would get f(x) = −47.09.

Finally, in the third experiment we have assumed the budget constraint
large enough (B0 = 300) and in the resulting solution of (5.42)-(5.45) ex-
tended by (5.21) (column 9) the optimal budget

∑

d ξdxd equals 259.49, and
the optimal primal solution is f(x) = −17.27.

Studying the numerical results of Tables 5.1 and 5.2, some useful obse-
vations can be made:

• It can be verified that flows with small lower bounds are likely to
exceed their lower bounds so that xd > hd. This is natural, looking at
the objective function.

• In experiments 2 and 3, the number of flows xd different from hd and
Hd in the optimal solution is approximately 30%. This relatively small
percentage should be compared to the objective function gain, using
optimal flows instead of the lower bounds.

• An obvious way to proceed if the solution of (5.42)-(5.45) with the
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Figure 5.3: The primal function of (5.42)-(5.45).

added bounds constraint (5.21) is addressed, is to first assign all flows
according to (5.52) and then compute

∑

d ξdxd and
∑

d ξdhd. If the
resulting budget Bopt =

∑

d ξdxd is acceptable, then the corresponding
solution can be applied. Otherwise some B0 >

∑

d ξdhd should be
chosen and (5.22)-(5.26) applied. It can then be checked what is the
actual loss with respect to the objective function choosing this B0

instead of Bopt.

5.2 Resilient PF dimensioning

In the dimensioning process it is quite common to require, apart from the
realization of the demands, robustness (resilience) to network failures. A
network failure can occur if capacity of a link is lost (through e.g., a duct
cut), either partially or completely. Another possible failure is that of a
node, which however through special topology modifications can be con-
sidered as a link failure. It is a reasonable and common methodology to
dimension the network such that i) the prescribed allocation requirements
are met, and ii) such that the function of the network is maintained (possibly
slightly deteriorated) under failure conditions. In this section we investigate
a network dimensioning problem that intends to allocate the demands in a
proportionally fair way, and at the same time forces resilience to certain pre-
defined, potential link failures. In fact, the combination of fair bandwidth
allocation and resilience is to the best of our knowledge novel in the context
of dimensioning problems.
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Figure 5.4: The dual function of (5.2)-(5.5) for the optimal budget B = 66.

The introduced problem formulation and its solution algorithms are
based on the concepts presented in Section 2.4 and combine the ideas of
the PF and the max-min fairness principles. To be strict, the considered
problem is a non-linear max-min fairness problem, i.e., a max-min fairness
problem for which the criteria are non-linear. To practically visualize the
methodology, one can think of a scenario where for each failure situation,
users and network operator agree to assign bandwidth to demands according
to the PF principle, i.e., through maximizing the logarithmic revenue. This
enables acceptable fairness as well as reasonable total network throughput.
Since besides this, the interest is to keep the bandwidth distribution fair
also over the failure situations, the total logarithmic revenue for individual
situations is allocated in the max-min fair way. In this manner, none of the
situations are favored. Technically put, the demand bandwidth allocation
generated by the resulting algorithm is proportionally fair over the demand
flows for the individual situations, and max-min fair for the logarithmic rev-
enues over all situations. The algorithm is based on linear programming
(using linear approximation of the logarithmic objective function implied by
PF) applied in an iterative way.

5.2.1 Problem formulation

To formulate the problem we will need some notation that has not been
previously used. Assume that a network is given in terms of topology. Also,
consider as given the set of demands, d = 1, 2, . . . ,D, (node-pairs). For
each demand, d, there is an associated set of paths, p = 1, 2, . . . , Pd. As
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Figure 5.5: The dual function for the optimal budget in (5.22)-(5.26).

usual, let δedp denote the edge-path incidence relation. Further, a set of
possible failure situations, indexed by s = 1, 2, . . . , S, is given. Predefined
are also the reward coefficients, wds, intended to be dependent on both
demand and situation, and a set of availability coefficients, αes, indicating
the availability of link e in situation s, 0 ≤ αes ≤ 1. As in Section 5.1,
we assume that each link is given with an associated marginal cost, ρe,
and that it is required that

∑

e ρeye ≤ B, for some given budget B. We
wish to determine zdps, i.e., the flow allocated to path p of demand d in
situation s, as well as the link capacities, ye. These will thus be the problem
decision variables. Let xds =

∑

p zdps, and define the allocation array x as
x = [xds : d = 1, 2, . . . ,D, s = 1, 2, . . . , S]. The revenue in situation s for
allocation array x is given by Rs(x) =

∑

d wds log(xds), and the revenue
vector, R, by R = (R1(x), R1(x), . . . , RS(x)).

The proportional fairness resilient dimensioning problem is defined as
the following optimization problem:
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1 2 3 4 5 6 7 8 9

node node x, ρ, h H ξ x, x,
no bounds direct link B0 = 250 B0 = 300

1 2 0.24 ∞ 0.56 10.0 4.15 h h
1 3 0.29 3.40 1.43 2.06 3.40 h h
1 4 0.22 ∞ 0.05 0.58 4.70 0.10 0.21
1 5 0.24 ∞ 1.03 100 4.15 h h
1 6 0.59 1.70 0.96 1.83 1.70 h h
1 7 0.32 ∞ 0.75 100 3.10 h h
1 8 0.18 ∞ 1.43 100 5.60 h h
1 9 0.32 ∞ 0.75 100 3.10 h h
1 10 0.54 ∞ 1.62 100 6.30 h h
1 11 0.50 1.85 0.40 100 1.85 h 0.54
1 12 0.19 ∞ 1.97 3.33 5.40 h h
2 3 1.00 1.00 0.77 2.23 1.00 h h
2 4 0.20 ∞ 1.86 3.75 5.00 h h
2 5 0.22 ∞ 1.15 100 4.60 h h
2 6 0.25 ∞ 0.98 100 3.95 h h
2 7 0.28 ∞ 1.47 2.79 3.55 h h
2 8 0.69 1.45 0.30 100 1.45 0.33 0.69
2 9 0.19 ∞ 0.67 10.0 5.35 h h
2 10 0.33 ∞ 0.72 100 3.00 h h
2 11 0.43 2.30 1.13 2.79 2.30 h h
2 12 0.36 ∞ 0.05 0.32 2.80 0.17 H
3 4 0.17 ∞ 2.14 3.23 6.00 h h
3 5 0.18 ∞ 0.97 10.0 5.60 h h
3 6 0.20 ∞ 0.05 0.89 4.95 0.10 0.20
3 7 0.22 ∞ 1.74 2.65 4.55 h h
3 8 0.41 ∞ 0.16 10.0 2.45 0.19 0.41
3 9 0.16 ∞ 2.23 3.65 6.35 h h
3 10 0.35 2.90 0.69 100 2.90 h h
3 11 0.30 ∞ 0.70 10.0 3.30 h h
3 12 0.26 ∞ 0.94 100 3.80 h h
4 5 1.00 1.00 0.05 0.05 1.00 H H

Table 5.1: Numerical results.

lex max Θ(R(x)) (5.55)

s.t. xds =
∑

p

zdps ∀ d, s (5.56)

∑

e

ρeye ≤ B (5.57)

∑

d

∑

p

δedp ≤ αesye ∀ e, s (5.58)

zdps ≥ 0, y ≥ 0 ∀ d, p, s (5.59)

5.2.2 Resolution methods

The resilient dimensioning problem formulated by (5.55)-(5.59) is non-trivial
as it involves lexicographical maximization of a sorted vector of non-linear
functions. Nevertheless, the formal defintion (Definition 2.19) of max-min
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1 2 3 4 5 6 7 8 9

node node x, ρ, h H ξ x, x,
no bounds direct link B0 = 250 B0 = 300

4 6 0.26 ∞ 0.96 100 3.90 h h
4 7 0.63 1.60 0.05 0.95 1.60 0.30 0.63
4 8 0.28 ∞ 0.44 10.0 3.55 h h
4 9 0.40 ∞ 0.05 0.63 2.50 0.19 0.40
4 10 0.20 ∞ 1.89 2.02 5.10 h h
4 11 0.35 ∞ 1.28 2.06 2.85 h h
4 12 0.45 2.20 0.05 0.44 2.20 0.21 H
5 6 0.34 ∞ 1.29 2.61 2.90 h h
5 7 0.38 ∞ 1.21 2.29 2.60 h h
5 8 0.22 ∞ 1.14 100 4.55 h h
5 9 0.67 1.50 0.31 100 1.50 0.31 0.67
5 10 0.16 ∞ 1.56 100 6.10 h h
5 11 0.43 2.30 0.05 0.57 2.30 0.21 0.43
5 12 0.31 ∞ 0.06 10.0 3.20 0.15 0.31
6 7 0.34 ∞ 0.05 0.21 2.90 0.16 H
6 8 0.19 ∞ 1.97 2.57 5.40 h h
6 9 0.71 1.40 0.05 0.53 1.40 0.34 H
6 10 0.14 ∞ 1.80 100 6.95 h h
6 11 0.61 1.65 0.35 100 1.65 h 0.61
6 12 0.19 ∞ 1.32 100 5.20 h h
7 8 0.27 ∞ 1.50 2.65 3.65 h h
7 9 0.24 ∞ 1.62 2.28 4.10 h h
7 10 0.19 ∞ 0.05 1.04 5.20 0.09 0.19
7 11 0.80 1.25 0.84 0.84 1.25 h h
7 12 0.43 2.30 0.38 10.0 2.30 h 0.43
8 9 0.17 ∞ 1.55 100 6.05 h h
8 10 0.65 1.55 0.92 2.28 1.55 h h
8 11 0.27 ∞ 1.52 1.59 3.75 h h
8 12 0.74 1.35 0.05 1.02 1.35 0.35 0.74
9 10 0.13 ∞ 0.05 0.40 7.60 0.06 0.13
9 11 0.33 ∞ 1.33 2.55 3.05 h h
9 12 0.21 ∞ 0.05 0.60 4.70 0.10 0.21
10 11 0.19 ∞ 0.84 10.0 5.30 h h
10 12 0.34 ∞ 0.25 10.0 2.90 h 0.34
11 12 0.28 ∞ 0.87 100 3.55 h h

Table 5.2: Numerical results, continued.

fairness applies. Moreover is it possible to make use of the convex structure
of the problem. Note that functions Rs(x), s = 1, 2, . . . , S are concave,
and that the feasible set is convex. We may thus use an application-specific
variant of either Algorithm 2.1 or Algorithm 2.2. We will omit the exact
adaptation of Algorithm 2.1 and concentrate on an application-specific ver-
sion of the more efficient Algorithm 2.2, which bases its function on the use
of dual multipliers.
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Algorithm 5.1. (for solving (5.55)-(5.59))

Step 0: Assign N := {1, 2, . . . , S}. Solve

max t (5.60)

s.t. xds =
∑

p

zdps ∀ d, s (5.61)

∑

e

ρeye ≤ B (5.62)

∑

d

∑

p

δedp ≤ αesye ∀ e, s (5.63)

Rs(x) =
∑

d

wds log(xds) ≥ t ∀ s (5.64)

zdps ≥ 0, y ≥ 0 ∀ d, p, s (5.65)

and let t∗, y∗ and x∗ be the optimal solution, and Λ∗ = [λ∗
s]s=1,2,...,S

be the optimal dual multipliers corresponding to constraints (5.64).

Step 1: For all s ∈ N : λ∗
s > 0 assign N := N \ {s} and ts := t∗. If N = ∅

then stop, the components of x∗ gives the max-min fair solution, and
y∗ holds the corresponding link cpacities. Otherwise proceed to Step
2.

Step 2: Solve

max t (5.66)

s.t. xds =
∑

p

zdps ∀ d, s (5.67)

∑

e

ρeye ≤ B (5.68)

∑

d

∑

p

δedp ≤ αesye ∀ e, s (5.69)

Rs(x) =
∑

d

wds log(xds) ≥ ts ∀ s /∈ N (5.70)

Rs(x) =
∑

d

wds log(xds) ≥ t ∀ s ∈ N (5.71)

zdps ≥ 0, y ≥ 0 ∀ d, p, s (5.72)

and let t∗, y∗ and x∗ be the optimal solution, and Λ∗ = [λ∗
s]s∈N be

the optimal dual multipliers corresponding to constraints (5.71). Go
to Step 1.

Notably, although it would be rather difficult to find optimal multipli-
ers for the optimization problems necessary to solve in Algorithm 5.1, a
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linear approximation makes this practicable, since many linear program-
ming solvers provide the optimal dual variables along with primal optimal
solution. As mentioned before in the context of applying Algorithm 2.2, in-
vestigating dual multipliers is really a method of detecting the situations for
which the corresponding revenue (Rs) is blocking (not possible to increase
further), and not the ones that are non-blocking (possible to increase fur-
ther), which would be even better. However, as is also explained in Section
2.4, assuming that all the situations for which the corresponding revenue is
not shown to be blocking by the dual multiplier test are indeed non-blocking,
will work even though we risk not to improve t∗ in two consecutive iterations.
This is because that

∑

s λ∗
s = 1, resulting in that each iteration will reveal at

least one blocking situtation, so we will eventually reach an iteration where
every situation s for which λ∗

s = 0 is non-blocking.

5.2.3 Linear approximation

In the implementations of Algorithm 5.1 a piece-wise approximation of the
logarithmic function is used, resulting in LP approximations of all the consid-
ered convex optimization problems. This is done by introducing additional
variables, rds, corresponding to total flows, xds, which along with additional
sets of constraints,

rds ≤ fkxds + gk ∀ d, s, k, (5.73)

replaces the logarithm of the flow, log(xds). Here, k = 1, 2, . . . ,K, and
K is the number of linear pieces of the approximation, and fk and gk are
the coefficients of the consecutive linear pieces. Figure 5.6 illustrates an
example of the approximation (actually the approximation that is used in
the numerical examples in Section 5.2.5).

Using this approximation the convex optimization problem of Step 0
assumes the following LP form:

max t (5.74)

s.t. xds =
∑

p

zdps ∀ d, s (5.75)

∑

e

ρeye ≤ B (5.76)

∑

d

∑

p

δedp ≤ αesye ∀ e, s (5.77)

Rs(x) =
∑

d

wdsrds ≥ t ∀ s (5.78)

rds ≤ fkxds + gk ∀ d, s, k (5.79)

zdps ≥ 0, y ≥ 0 ∀ d, p, s (5.80)
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Figure 5.6: Piece-wise approximation of the logarithmic function

5.2.4 Extensions of the basic problem

The proportional fairness robust dimensioning problem (5.55)-(5.59) can be
extended in several ways. Such variations of the problem can be achieved
by introducing additional constraints characterizing the solution set. First,
we may assume that the capacities of links, ye, are limited (e.g., because of
the shortage of transmission capacity), adding constraints

ye ≤ ce ∀ e , (5.81)

where ce are fixed upper bounds on link capacities. Secondly, we can intro-
duce lower and upper bounds on the total demand flows realized in failure
situations;

hds ≤ xds ≤ Hds ∀ d, s , (5.82)

where hds and Hds are the given bounds on total flows. Finally, we can
impose constraints on the flow reconfiguration in the case of failure. So far
we have assumed that individual flows, zdps, are only situation-dependent
and can be freely reconfigured using surviving resources. This allows us to
not explicitly distinguish the the normal state, i.e., the state with all αes

equal to 1), in the formulation of the problem. If we wish to prohibit flows
that are not affected by a failure (i.e., the flows that survive a given failure
situation s) to be disconnected and rerouted we proceed as follows. We label
the ”true” failure situations with s = 1, 2, ..., S, and use the index s = 0 for
the normal state. Then we assume that if a link fails then it fails totally
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(i.e., αes ∈ {0, 1}), and introduce the binary path availability coefficients:

θdps =
∏

{e:δedp=1}

αes ∀ d, p, s .

Now, the considered requirement for flow reallocation can be taken into
account by introducing new constraints:

zdps ≥ θdpszdp0 ∀ d, p, s

It should be noted that all the above described modifications allow for the
application of the introduced algorithm without any special adjustments.

5.2.5 Numerical results

The introduced algorithm has been implemented in three variants, all on the
same hardware, a Dell Precision 220 PC, with an Intel Pentium III-1GHz
CPU, RAM of 256 MB, a Quantum Atlas10K2-TY092L SCSI HDD and
the Windows 2000 Pro SP2 OS. The different software implementations are
given in Table 5.3. A number of experiments were carried out to test the al-

Reference code Programming environment Solver

C++ Microsoft Visual C++ 6.0; CPLEX 7.5.0
Callable CPLEX libraries

AMPL AMPL ver. 20010215 CPLEX 7.5.0

MATLAB
Matlab MATLAB 6.1 Optimization

toolbox

Table 5.3: Software implementations of the algorithms.

gorithm for different network examples. In fact, in order to have a reference,
a problem-specific version of Algorithm 2.1 has been implemeted in paralell.
The following subsections contain selected input data and the results of the
algorithms for three different-sized networks. The network instances used
are presented in Table 5.4. Obviously, the networks of particular interest are
the ”Polish backbone network”, N12, and the artificial network (randomly
generated), N41, shown in figures 5.7(a) and 5.7(b), respectively. To show
the dynamics of the considered algorithms we also study a small, triangular
(toy) network, N3, for which we will give complete numerical results. A
summary of selected numerical values obtained by the algorithms applied
to N12 will also be given. For N41 only execution time is reported. For
the problem instances associated with N3 and N12 the budget B is equal to
1000, while for N41 it is 1E6.
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ref. # paths
code # nodes # links # demands per # failure

demand situations

N3 3 3 3 2 4

N12 12 18 66 6-13 19

N41 41 72 100 3 35

Table 5.4: The networks used for experiments.
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Figure 5.7: Two larger example instances.

The simple network, N3

We start by presenting results achieved by the algorithms applied to the
simple 3-node network, N3. In this experiment the revenue coefficients wds,
and cost coefficients ρe are all put equal to 1. Tables 5.5 and 5.6 give the
input data. Results from these trials are found in Table 5.7 (empty entries

Demand d = 1 d = 2 d = 3
Nodes 1-2 1-3 2-3

Links (e) p = 1 1 2 3
p = 2 2,3 1,3 1,2

Table 5.5: Demands and paths for network N3

indicate that an entity remains unchanged with respect to the preceding
step). Values of flows, zdps, are given only if not equal to zero. Final
results (after the algorithm completion) are shown in the rightmost position.
Note that Rs′ (in contrast to Rs) is relevant only for the basic algorithm
(Algorithm 2.1), and that λs on the other hand is relevant only for Algorithm
5.1.
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αes

Links s = 1 s = 2 s = 3 s = 4 ρe

e = 1 1 0 1 1 1
e = 2 1 1 0 1 1
e = 3 1 1 1 0 1
wds 1 1 1 1

Table 5.6: αes, wds and ce for network N3

n 0 1 2

Instant After Step 0 After Step 1 After Step 2 After Step 1

t∗ 20.35 26.8

ts ts = 20.35 , t0 = 26.8 ,

s = 0, 1, 2, 3 ts = 20.35,

s = 1, 2, 3

Rs Rs = 20.35 , R0′ = 26.80 , R0 = 26.8 , R0′ = 26.8
s = 0, 1, 2, 3 Rs′ = 20.35 , Rs = 20.35,

s′ = 1, 2, 3 s = 1, 2, 3

y y1 = y2 = y3 = y1 = y2 = y3 =
= 333.33 = 333.33

zdps z110 = 24.81 z110 = 333.33
z210 = 24.81 z210 = 333.33
z310 = 283.72 z310 = 333.33
z320 = 308.53
z121 = 24.81 z121 = 24.81
z211 = 308.53 z211 = 308.53
z311 = 308.53 z311 = 308.53
z112 = 308.53 z112 = 308.53
z222 = 24.81 z222 = 24.81
z312 = 308.53 z312 = 308.53
z113 = 308.53 z113 = 308.53
z213 = 308.53 z213 = 308.53
z323 = 24.81 z323 = 24.81

Z1 s = 0, 1, 2, 3 s = 0 ∅

Z0 ∅ s = 1, 2, 3 s = 0, 1, 2, 3

λs For constraint For constraint
(5.64): λ0 = 0, (5.71): λ0 = 1
λ1 = λ2 = λ3 = 0.33

Table 5.7: Numerical results applying Algorithms 2.1 and 5.1 to instance
N3

The Backbone Network, N12

Already network N12 (medium-size Polish backbone network) is quite chal-
lenging for the algorithms in terms of computation times. Since for instance
the number of the non-zero flows, zdps, is quite big in this trial, only selected
numerical results are given. As in the N3 case, the revenue coefficients, wds,
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are all put equal to 1. Link costs are given in Table 5.8. Situations are
defined in accordance to the N3 case, i.e., each situation corresponds to one
exclusively, completely failed link, except for the normal situation, when
no links are broken. In effect, αes are simply obtained by expanding Ta-
ble 5.6. The evolution of Rs over (selected) iterations n, along with the
evolution of the auxiliary variable t and the resulting link capacities ye, is
illustrated in Table 5.9. Table 5.9 reveals at which iteration (n) each indi-

e 1 2 3 4 5 6 7 8 9
ρe 1.85 3.4 1 1.45 2.3 2.9 1 1.6 2.2

e 10 11 12 13 14 15 16 17 18
ρe 1.5 2.3 1.4 1.65 1.25 2.3 1.55 1.35 1.7

Table 5.8: Link marginal costs for network N12.

vidual situation was blocked. By studying the second column (t∗) and the
8th column (Rs, n = 15) it is concluded that situations 5,6,15 and 18 are
blocked at n = 0, t∗ = 91.62. Situation 8 is blocked for n = 1, t∗ = 92.15
and 17 and 3 for n = 2, 3, t∗ = 92.32, t∗ = 92.33, respectively, and so on.
It is of interest to illustrate the computational efficiency of the algorithms

Rs

n t∗ s n e ye

0 1 2 14 15

0 91.62 0 91.62 92.15 92.32 97.83 101.64 1 25.89
1 92.15 1 91.62 92.15 92.32 96.22 96.22 2 33.32
2 92.32 2 91.62 92.18 92.32 92.33 92.33 3 42.54
3 92.33 3 91.62 92.15 92.32 93.96 93.96 4 49.76
4 93.11 4 91.62 91.62 91.62 91.62 91.62 5 40.46
5 93.56 5 91.62 91.62 91.62 91.62 91.62 6 13.70
6 93.96 6 91.62 92.15 92.32 97.37 97.37 7 54.97
7 94.06 7 91.62 92.15 92.15 92.15 92.15 8 27.97
8 94.27 8 91.62 92.15 92.32 95.93 95.93 9 22.43
9 95.93 9 91.62 92.15 92.32 94.27 94.27 10 31.64
10 96.22 10 91.62 92.15 92.32 93.56 93.56 11 16.55
11 96.26 11 91.62 92.15 92.32 97.83 97.83 12 38.13
12 96.68 12 91.62 92.15 92.32 93.11 93.11 13 22.43
13 97.37 13 91.62 92.15 92.32 96.68 96.68 14 55.60
14 97.83 14 91.62 91.62 91.62 91.62 91.62 15 22.24
15 101.64 15 91.62 92.15 92.32 96.26 96.26 16 25.24

16 91.62 92.15 92.32 92.32 92.32 17 40.45
17 91.62 91.62 91.62 91.62 91.62 18 29.56
18 91.62 92.15 92.32 94.06 94.06

Table 5.9: Selected results and parameters for network N12

and their implementations in terms of execution time. The corresponding
data is found in Table 5.10. Tests for N41 have been performed using only
AMPL implementations. Therefore, some entries for N41 in Table 5.10 are
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Execution times (seconds)
Reference Implementations of Implementations of

code Algorithm 2.1 Algorithm 5.1
C++ AMPL Matlab C++ AMPL

N3 < 1 2 4 < 1 < 1

N12 3859 390 6.4e4 179 325

N41 24945 6960

Table 5.10: Execution times

left blank. The choice to use the AMPL implementations for these tests is
based on the observation that these implementations exhibited the smallest
difference between execution times of the basic and modified algorithms for
the other networks considered. Therefore, since the computation times for
large networks such as N41 are quite long for all the considered implemen-
tations, we have chosen to use the AMPL implementations to illustrate the
differences in time performance of the two considered algorithms.

Remarks

As can be seen in Table 5.10, for the network examples considered, Algo-
rithm 5.1 performs, as expected, much better than Algorithm 2.1. One can
also notice that the performance advantage of Algorithm 5.1 increases with
the size of the considered instance.

The revenues, Rs, for different situations after the final iteration (al-
gorithm completion) may differ only by a small number, although making
actual flow differences significant, since such a revenue difference is logarith-
mically related to the aggregated flow difference.

5.3 Conclusions

In this chapter we have dealt with so-called dimensioning problems. A di-
mensioning problem is, as oppposed to an allocation problem, concerned
with determination of link capacities. The two problems we have considered
both have convex structure, as they are aimed to distribute flows between
demands in the proportionally fair way. The objective of proportional fair-
ness was introduced in Chapter 2 and has been shown to define a fair rational
preference relation on Rm

++.

First we studied the problem of achieving a proportionally fair distribu-
tion of flows between demands, using both demand flows and link capacities
as variables. The problem is bounded from above by a predefined budget,
not to be exceeded by the aggregated cost of link capacity installation. We
derived an analytical solution for this problem, implying that optimal link
capacities and demand flows can be explicitly computed. As the optimal
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solution always will use the shortest paths (with respect to links’ predefined
marginal cost), this solution is valid both if each demand has one fixed path
and if each demand may split its flow over several paths. We then introduced
the assumption that each demand is given with associated lower and upper
flow bounds, and showed how the optimal flows can be computed in this
case. In the balance of this section we discuss how the logarithmic objective
function can be extended by a term that pennalizes on the link installation
cost, and how this affects the optimal solution. In order to illustrate that
the optimal solution is worthwhile finding, a large numerical example closes
this section.

We then concentrated on a dimensioning problem that, besides propor-
tionally fair distribution of flows, has the objective of obtaining a network
design that is resilient to link failures. For this purpose we introduced a
number of potential failure situations. The goal was to keep the network
operability for each situation, measured in sense of the value of the propor-
tional fairness objective function for that situation, max-min fair. For this
purpose we formulated a lexicographical maximization problem, and showed
how it could be solved by means of Algorithm 2.2, provided that the loga-
rithmic function is linearly approximated. The application-specific version
of Algorithm 2.2 was implemented in various settings, and evaluated on 2
different real-sized networks. The experiments exhibited acceptable running
times, relating them to the corresponding instance sizes.
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In this chapter we summarize the main results of this thesis. In addition,
we point out where and why the studies presented in this thesis contribute
to the general network optimization research knowledge. In case a presented
result has appeared in a published paper for which the author of this thesis
was co-author, we consider the result as a partial contribution of this thesis.
On the other hand, if a result did appear in a published paper for which the
author of this thesis was the first auhtor, we simply refer to it as contribution.
Finally, if a result has not been previously published it is denoted an original
contribution. In case a presented result is not due to the author this will be
clearly indicated.

6.1 Optimization models for fairness (Chapter 2)

In Chapter 2 we give a formal introduction to the concept of fairness. Par-
ticularly, the concept of one vector being more fair than another is rigorously
defined through the notion of preference relations. For a preference relation
to define fairness, we show that it has to fulfill certain regularity require-
ments, and is in this case called a fair rational preference relation. From
the associated rules we develop a number of important basic types of fair-
ness. The regularity requirements, as well as the idea of formalizing fairness
through preference relations are concepts borrowed from [39], which is also
true for the concept of fair domination (Definition 2.6). Property 2.1, giving
a possibility of evaluating fairness of a vector as one value, is well known
[23]. Although well known, the provided proof of Property 2.1 is an original
contribution.

The objective of obtaining fairness is shown to be a matter of find-
ing a vector that is (weakly) preferred to all other vectors, with respect
to the considered fair rational preference relation. Such a vector is called
fairly nondominated, and is often obtainable through some kind of (possibly
multicriteria) maximization. This provides a natural connection to Pareto-
efficiency, as it can be shown that all fairly non-dominated vectors can be
seen as Pareto-efficient solutions to a special type of multi-criteria maxi-
mization problem. The connection between fairness and Pareto-efficiency
was established in [19], and accordingly Theorem 2.3 is due to [19]. Never-
theless, the provided proof is an original contribution.

There exist several possible generic methods, for defining a fair rational
preference relation. The first, and probably the most natural one, is to
use the idea of aggregation functions. Other types of generic fairness, i.e.,
classes of fairness where parameter-settings define a particular fairness, have
been presented. For example we have shown how to define fairness through
p-norms and ordered weighted averaging. It is well known that p-norms
define a class of fairness, as is stated by Property 2.5. The provided proof
of this is due to the author. The α-fairness, first introduced in [28], is put
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in the formal fair preference relation context in Section 2.2.3, which has
not been done before and is therefore considered an original contribution.
Specifically, Property 2.6 and Proposition 2.7 are (along with their proofs)
due to the author. The discussion on ordered weighted averaging is on the
other hand entirely based on material from [39].

The most thoroughly investigated type of fairness is the one that is often
reasonably argued to be the most intutively fair, namely max-min fairness.
A formal definition of max-min fairness is given, using the fair rational
preference relation of the symmetrical leximin order. We then relate this
definition to a stronger but less general definition, and show that the defini-
tions are equivalent in the case of a convex outcome space. The distinction
between strong and weak max-min fairness is an original contribution of this
thesis. The properties relating these two notions (i.e., Properties 2.8, 2.9,
and 2.10) are known [46], still, to the best of our knowledge, have not been
published before, at least not accompanied with their proofs. Hence, their
collection, as well as their arrangement in a proper context, is considered an
original contribution.

Further on the topic of max-min fainess, we did also highlight that a
solution that induces a max-min fair outcome vector is sometimes called
max-min fair itself. To the extreme it may even happen that the solution
variables are the outcomes, a case often referred to as linear max-min fair-
ness.

Finally, Chapter 2 describes generic algorithms that achieve max-min
fairness. For the convex case we gave an algorithm that is based on the use of
dual multipliers. This algorithm (and the more basic algorithm constituting
its origin) is considered partially contributional for this thesis, as it has been
published by the author in the generic shape in [29], and in different applied
forms in [45] and [44]. For the non-convex case an algorithm that makes
use of cumulated ordered values, which is a concept borrowed from [40], has
been presented.

6.2 Convex allocation problems (Chapter 3)

Chapter 3 is devoted to a study of allocation problems where the objective is
(linear) max-min fairness. All of the considered allocation problems have so-
called convex structure, meaning that the feasible set of solutions is convex
and that the criteria are concave (actually in Chapter 3 all criteria are
linear).

The most elementary problem addresses max-min fairness of flow distri-
bution between demands that have one fixed path each. We show that in
this case max-min fairness of flows is equivalent to that the allocation vector
is max-saturating, and gave an algorithm which is fundamentally dependent
on this equivalence. Constituting the basis for the well known algorithm,
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the equivalence is a well understood result. However, the formal proof of
this was published by the author in [44], which makes it a partial contribu-
tion of this thesis. The fact that the algorithm could be extended in order
to take prerequired upper- and lower flow-bounds of demands into account,
was mentioned in [44] but the complete extension is given in this thesis, as
an original contribution.

A more difficult problem is encountered if each demand may use several
paths and is allowed to split its flow over them. In this case we say that
paths are optimized. It is then not possible to use the max-saturating prop-
erty, and more complicated LP-based algorithms have to be devised. It is
illustrated how the generic (convex-case) algorithms from Chapter 2 could
be applied, and we give examples showing their operation. In addition,
we derive some properties of the resulting problem solution, particularly
concerned with the relation between different demand flows. The most im-
portant (and complicated) relation is given by Property 3.4 and is due to
[31]. The provided proof is however due to the author, greatly inspired by
proof ideas stemming from the first author of [31]. Section 3.1 is concluded
by giving an example that shows what can be gained in terms of fairness if
paths are optimized (i.e., flows may be split) and not kept fixed.

Besides the exceptions mentioned above, the contents of Section 3.1 are
considered partial contributions of this thesis, as they have been published
by the author in [44].

In the second section of Chapter 3, we introduce a reallocation scheme
with the purpose of facilitating network resilience. All the material pre-
sented in this section has been published by the author in [35], and is thus
a contribution of this thesis. The reallocation scheme is based on max-min
fairness. Also in this problem we assume that all flows may be split over
several paths. We assume that we are given a network that is preallocated,
i.e., flows and paths are given a priori, and that the task is to reallocate
and reroute these flows such that we facilitate a special type of resilience to
network failures. The type of resilience considered is full protection of every
possible single link failure. The goal is to reallocate the (preallocated) flows
such that they as much as possible resemble the preallocation, but also such
that we make room (reserve capacity) for protection paths for a failing link.
We gave a special measure for the resemblence and an accompanying lower
bound. The lower bound may be useful in approximate calculations as well
as in exposing weakly protected links. Finally it is shown and examplified
how Algorithm 2.2 solves the stated problem.

6.3 Non-convex allocation problems (Chapter 4)

In Chapter 4 we study (mixed-integer) max-min fairness allocation prob-
lems, with non-convex problem structure. The non-convexity of the studied
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problems results from the discrete solution space, and complicates both for-
mulation and resolution. In Chapter 3 we did not encounter this difficulty
as all decision variables were allowed to take on continuous values, and we
could in fact exploit the convex problem structure to formulate resolution
algorithms.

The first non-convex MMF problem studied is in a way similar to the
most basic one described in Chapter 3 – when each demand has exactly
one predefined fixed path and flows have to be max-min fairly distributed.
The crucial difference lies in that we now only allow flows to assume mul-
tiples of a predefined module. Section 4.1 is devoted to this problem. As
the results of this section have previously been published by the author
in [38] (Algorithm 4.1 was published in [32]), the entire section is consid-
ered a contribution for the thesis. It should however be noted that the
idea of using lexicographical minimization to approach problems concerning
(discrete-valued) lexicographical maximization is borrowed from [40].

Considering the mentioned problem it was first of all shown that, chang-
ing units, the requirement of modular flows can be viewed as a requirement
of flows being integral. We compare the solution of the integral-flow problem
with the basic problem, and derive a number of properties that explain their
relation. Moreover, an analogy to the max-saturating property is given. In
order to motivate suspicion of non-existence of polynomial time algorithms
we then prove that obtaining MMF of modular flows is NP-hard (this was
suggested already in [48], although without a proof). Nevertheless, using the
classical approach of waterfilling (Algorithm 3.1), some subproblems can be
shown to be of polynomial time. For resolution of the considered problem,
we propose an algorithm that solves an application-specific linear relaxation
of a lexicographical minimization problem ((2.72)-(2.76)). Strictly speaking,
as it is a relaxation, this constitutes an approximation algorithm. However,
this relaxation is shown to reach an optimal solution in practically all of
the randomly generated problem instances, and this at acceptable running
times, even for relatively large instances.

We then take on the problem of obtaining a max-min fair distribution
of flows if each demand may use exactly one path that has to be selected in
the problem solution process. This problem is often referred to as max-min
fairness of unsplittable flows, being the main theme of Section 4.2. All the
findings presented in this section have appeared in publications due to the
author, namely [37], [36], and [33], and are thus contributions of the thesis.
However, which is also mentioned in the text, the ideas constituting the
fundaments of Algorithms 4.4 and 4.5, are due to [40] and [41].

General unsplittable-flow problems are known to be difficult, so it is
reasonable to expect provable difficulty also from this problem. We separate
the problem into two cases – the case when each demand may use any path,
and the case when each demand may use one path from a predefined list.
With the objective of obtaining max-min fairness, both cases are shown to
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be NP-hard. In fact we prove that just obtaining the first entry of the
sorted allocation vector is NP-hard in itself, in both cases.

With a deeper understanding of the complexity of the unsplitabble flow
MMF problem, the focus is then put on resolution techniques. We present
two exact, MIP-based algorithms, where one was derived specifically for this
application, and the other is a generic MMF problem resolution technique.
In addition we give an approximation algorithm that was based on the as-
sumption that the outcome set is discrete and finite. The numerical study,
which is carried out on network instances ranging from 3 nodes and 3 de-
mands to 20 nodes and 190 demands, shows that, in general, the generic
algorithm is usually faster than the application-specific one, if the prob-
lem should be solved to optimality. However, both approaches exhibit vast
time-consumption when problem instances are scaled up. Finally, we ap-
ply the approximate method to our randomly generated problem instances.
Even though being based on successive resolution of MIPs, this approach
obtained suboptimal solutions of quite high quality at acceptable running
times in cases where the exact methods do not solve the problem in less
than half an hour.

6.4 Dimensioning problems (Chapter 5)

In Chapter 5 we deal with so-called dimensioning problems. A dimensioning
problem is, as oppposed to an allocation problem, concerned with determi-
nation of link capacities. The two problems we consider both have convex
structure, and are aimed to distribute flows between demands in a propor-
tionally fair way. The objective of proportional fairness was introduced in
Chapter 2 and has been shown to define a fair rational preference relation
in Rm

++.

All the findings presented in this chapter have been previously published
by the author – Section 5.1 is based on [34], and Section 5.2 on [45]. Sec-
tion 5.1 and Section 5.2 are therefore considered contribution and partial
contribution, respectively.

First we study the problem of achieving a proportionally fair distribution
of flows between demands, using both demand flows and link capacities as
variables. The problem is bounded from above by a predefined budget,
not to be exceeded by the aggregated cost of link capacity. We derive an
analytical solution for this problem, implying that optimal link capacities
and demand flows can be explicitly computed. As the optimal solution will
always use the shortest paths (with respect to links’ predefined marginal
cost), this solution is valid both if each demand has one fixed path and if
each demand may split its flow over several paths. We then introduce the
assumption that each demand is given with associated lower and upper flow
bounds, and show how the optimal flows can be computed in this case. In
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the balance of this section we discuss how the logarithmic objective function
can be extended by a term that pennalizes on the link capacity cost, and
how this affects the optimal solution. A large numerical example closes this
section.

We then in Section 5.2 concentrate on a dimensioning problem that, be-
sides proportionally fair distribution of flows, has the objective of obtaining
a network design that is resilient to link failures. For this purpose we in-
troduce a number of potential failure situations. The goal is to keep the
network operability for each situation, measured in sense of the value of
the proportional fairness objective function for that situation, max-min fair.
For this purpose we formulate a lexicographical maximization problem, and
show how it could be solved by means of Algorithm 2.2, provided that the
logarithmic function is piece-wise linearly approximated. The application-
specific version of Algorithm 2.2 is implemented in various settings, and
evaluated on two different real-sized networks. The experiments exhibit
acceptable running times, relating them to the corresponding instance sizes.
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