Skip to main content

Lund University Publications

LUND UNIVERSITY LIBRARIES

Fault Behavior of Wind Turbines

Sulla, Francesco LU (2012)
Abstract
Synchronous generators have always been the dominant generation type in the grid. This fact affected both planning and operation of power systems. With the fast increase of wind power share in the grid in the last decade, the situation is changing. In some countries wind power represents already a consistent amount of the total generation. Wind turbines can be classified as non-synchronous generation and they behave differently than synchronous generation under many circumstances. Fault behavior is an important example. This thesis deals with the behavior of wind turbines during faults in

the grid. The first part focuses on the fault currents delivered by wind turbines with Doubly-Fed Induction Generators (DFIG). The second part... (More)
Synchronous generators have always been the dominant generation type in the grid. This fact affected both planning and operation of power systems. With the fast increase of wind power share in the grid in the last decade, the situation is changing. In some countries wind power represents already a consistent amount of the total generation. Wind turbines can be classified as non-synchronous generation and they behave differently than synchronous generation under many circumstances. Fault behavior is an important example. This thesis deals with the behavior of wind turbines during faults in

the grid. The first part focuses on the fault currents delivered by wind turbines with Doubly-Fed Induction Generators (DFIG). The second part investigates the impact of faults below the transmission level on wind turbine grid fault ride-through and the voltage support that wind turbines can provide in weak grids during faults.



A wide theoretical analysis of the fault current contribution of DFIG wind turbines with crowbar protection is carried out. A general analytical method for fault current calculation during symmetrical and unsymmetrical faults in the grid is proposed. The analytical method can be used to find the maximum fault current and its AC or DC components without the need to actually perform detailed simulations, which is the method used today. DFIG wind turbines may also be protected using a chopper resistance on the DC-link. A method to model the DC-link with chopper as an equivalent resistance connected to the generator rotor during symmetrical grid faults is presented. This allows to calculate the short-circuit currents of a DFIG with chopper protection as an equivalent DFIG with crowbar protection. This is useful since fault current calculation methods for DFIG with crowbar are available in the literature. Moreover, power system simulation tools include standard models of DFIG wind turbines with crowbar protection, but often not with chopper protection.



The use of an aggregate model to represent the fault current contribution of a wind farm has been analyzed through simulations. It has been found that the aggregate model is able to reproduce accurately the total fault current of the wind farm for symmetrical and unsymmetrical faults. The use of aggregate models simplifies simulation models and saves simulation time.



The Swedish grid code requires wind turbines at all voltage levels to ride through faults at the transmission network. For faults at voltage levels below transmission level fault clearing times are often longer and this could impact on fault ride-through of wind turbines. Simulation of study cases with faults at sub-transmission level, performed using the standard Nordic 32 test system, show that wind turbines should still be able to ride through such faults. Only in case of high dynamic load scenarios and failure of the protection system, wind turbines could disconnect from the grid. Load

modelling is important when carrying out this analysis. Faults on adjacent MV feeders seriously endanger grid fault ride-through (GFRT) of wind turbines.



Finally, an investigation on the voltage support of wind turbines in weak networks during faults has been carried out. A simplified model of the power system of the Danish island of Bornholm has been used as a test system. It has been found that the minimum requirements for voltage support set by grid codes do not result in satisfactory voltage recovery in weak grids after fault clearing. However, if properly controlled, wind turbines are able to provide a voltage support comparable to that supplied by power plants with synchronous generation. (Less)
Abstract (Swedish)
Popular Abstract in Swedish

Andelen vindkraft i elnätet har ständigt ökat under de senaste åren. I många länder utgör idag vindkraften en betydande del av den totala elproduktionen. Detta gäller även vid störningar då vindkraftverk – precis som vattenkraftverk och kärnkraftverk – måste fortsätta bidra till balansen mellan elproduktion och förbrukning. De nya reglerna för

anslutning av vindkraft till elnätet föreskriver att vindkraftverk måste klara specifika fel i elnätet med bibehållen nätanslutning, så kallad Grid Fault Ride Through (GFRT). En vanlig typ av fel är kortslutningar. Under ett sådant fel levererar ett vindkraftverk

kortslutningsströmmar och efter bortkopplingen av felet kan vindkraftverket... (More)
Popular Abstract in Swedish

Andelen vindkraft i elnätet har ständigt ökat under de senaste åren. I många länder utgör idag vindkraften en betydande del av den totala elproduktionen. Detta gäller även vid störningar då vindkraftverk – precis som vattenkraftverk och kärnkraftverk – måste fortsätta bidra till balansen mellan elproduktion och förbrukning. De nya reglerna för

anslutning av vindkraft till elnätet föreskriver att vindkraftverk måste klara specifika fel i elnätet med bibehållen nätanslutning, så kallad Grid Fault Ride Through (GFRT). En vanlig typ av fel är kortslutningar. Under ett sådant fel levererar ett vindkraftverk

kortslutningsströmmar och efter bortkopplingen av felet kan vindkraftverket hjälpa till för att snabbt återhämta spänningen i nätet. Denna avhandling handlar om beteendet av vindkraftverk under just sådana fel.



Ett fel kan orsaka höga kortslutningsströmmar som måste kopplas bort snabbt av reläskyddssystemet för att garantera personsäkerheten och skydda utrustning. Traditionellt ställs dessa reläskydd in med antagandet att all kortslutningsström levereras av synkrongeneratorer i stora kraftverk. Kortslutningsströmmar från vindkraftverk ser

annorlunda ut och beror dessutom på typen av vindkraftverk. Detta kan påverka korrekt funktion hos reläskyddssystemet. I denna avhandling studeras ingående felströmmarna från vindkraftverk med dubbelmatade asynkrongeneratorer, DFIG, som finns i majoriteten av de vindkraftverk som installeras idag. En analytisk metod för att beräkna

felströmmarna presenteras. En fördel med metoden är att den kan användas med mycket enkla datorprogram.



Felströmmen från en vindkraftanläggning bestående av många enskilda vindkraftverk har också studerats. Det visar sig att en modell av ett enskilt vindkraftverk med rätt storlek kan användas i en kortslutningsstudie istället för den detaljerade modellen av

vindkraftanläggningen med många vindkraftverk. Detta sparar beräkningstid och bidrar till att förenkla beräkningsmodellerna.



Kraven för GFRT i Sverige gäller för alla vindkraftverk under ett fel i stamnätet. När ett fel inträffar i det regionala elnätet eller i mellanspänningsnätet blir felbortkopplingstiderna ofta längre. Under särskilda förhållanden med hög motorbelastning och felfunktion i reläskyddssystemet, medför detta att vindkraftverk geografiskt nära felet kan kopplas bort.



Efter felbortkopplingen kan en kortvarig period med låg spänning uppstå innan den spänningsnivån normaliserats. Detta gäller särskilt för svaga nät med lång kabelanslutning. Moderna vindkraftverk kan skynda på återhämtningen av spänningen i nätet genom att oberoende styra aktiv och reaktiv effekt. I några länder utgör detta ett

GFRT-krav i form av en reaktiv ström-spänningskurva när spänningen sjunker under en viss nivå. I svaga nät är de minimala kraven om reaktiv effekt dock inte tillräckliga för en snabb spänningsåterhämtning. För att vindkraftverk ska prestera lika bra som

synkrongeneratorer, ska matningen av aktiv och reaktiv effekt under felet samordnas. Efter felet ska aktiv effekten snabbt återställas till värdet den hade före felet och reaktiv effekten levereras kontinuerligt som funktion av spänningen. (Less)
Please use this url to cite or link to this publication:
author
supervisor
opponent
  • Dr. Niiranen, Jouko, Aalto University/ABB OY, Finland
organization
publishing date
type
Thesis
publication status
published
subject
keywords
Wind Turbines, Short-Circuit Currents, Doubly-Fed Induction Generator, Grid Fault Ride-Through, Voltage Support, Weak Grid
defense location
Lecture hall M:B, M-building, Ole Römers väg 1, Lund University Faculty of Engineering
defense date
2012-06-07 10:15:00
ISBN
978-91-88934-55-0
language
English
LU publication?
yes
id
aa1e9821-9135-4868-a253-2de6a327ccc2 (old id 2536661)
date added to LUP
2016-04-04 13:03:39
date last changed
2018-11-21 21:12:00
@phdthesis{aa1e9821-9135-4868-a253-2de6a327ccc2,
  abstract     = {{Synchronous generators have always been the dominant generation type in the grid. This fact affected both planning and operation of power systems. With the fast increase of wind power share in the grid in the last decade, the situation is changing. In some countries wind power represents already a consistent amount of the total generation. Wind turbines can be classified as non-synchronous generation and they behave differently than synchronous generation under many circumstances. Fault behavior is an important example. This thesis deals with the behavior of wind turbines during faults in<br/><br>
the grid. The first part focuses on the fault currents delivered by wind turbines with Doubly-Fed Induction Generators (DFIG). The second part investigates the impact of faults below the transmission level on wind turbine grid fault ride-through and the voltage support that wind turbines can provide in weak grids during faults.<br/><br>
<br/><br>
A wide theoretical analysis of the fault current contribution of DFIG wind turbines with crowbar protection is carried out. A general analytical method for fault current calculation during symmetrical and unsymmetrical faults in the grid is proposed. The analytical method can be used to find the maximum fault current and its AC or DC components without the need to actually perform detailed simulations, which is the method used today. DFIG wind turbines may also be protected using a chopper resistance on the DC-link. A method to model the DC-link with chopper as an equivalent resistance connected to the generator rotor during symmetrical grid faults is presented. This allows to calculate the short-circuit currents of a DFIG with chopper protection as an equivalent DFIG with crowbar protection. This is useful since fault current calculation methods for DFIG with crowbar are available in the literature. Moreover, power system simulation tools include standard models of DFIG wind turbines with crowbar protection, but often not with chopper protection.<br/><br>
<br/><br>
The use of an aggregate model to represent the fault current contribution of a wind farm has been analyzed through simulations. It has been found that the aggregate model is able to reproduce accurately the total fault current of the wind farm for symmetrical and unsymmetrical faults. The use of aggregate models simplifies simulation models and saves simulation time.<br/><br>
<br/><br>
The Swedish grid code requires wind turbines at all voltage levels to ride through faults at the transmission network. For faults at voltage levels below transmission level fault clearing times are often longer and this could impact on fault ride-through of wind turbines. Simulation of study cases with faults at sub-transmission level, performed using the standard Nordic 32 test system, show that wind turbines should still be able to ride through such faults. Only in case of high dynamic load scenarios and failure of the protection system, wind turbines could disconnect from the grid. Load<br/><br>
modelling is important when carrying out this analysis. Faults on adjacent MV feeders seriously endanger grid fault ride-through (GFRT) of wind turbines.<br/><br>
<br/><br>
Finally, an investigation on the voltage support of wind turbines in weak networks during faults has been carried out. A simplified model of the power system of the Danish island of Bornholm has been used as a test system. It has been found that the minimum requirements for voltage support set by grid codes do not result in satisfactory voltage recovery in weak grids after fault clearing. However, if properly controlled, wind turbines are able to provide a voltage support comparable to that supplied by power plants with synchronous generation.}},
  author       = {{Sulla, Francesco}},
  isbn         = {{978-91-88934-55-0}},
  keywords     = {{Wind Turbines; Short-Circuit Currents; Doubly-Fed Induction Generator; Grid Fault Ride-Through; Voltage Support; Weak Grid}},
  language     = {{eng}},
  school       = {{Lund University}},
  title        = {{Fault Behavior of Wind Turbines}},
  url          = {{https://lup.lub.lu.se/search/files/6045125/2536750.pdf}},
  year         = {{2012}},
}