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Abstract

The focus of this work is on the development of new random field models and
methods suitable for the analysis of large environmental data sets.

A large part is devoted to a number of extensions to the newly proposed
Stochastic Partial Differential Equation (SPDE) approach for representing Gaus-
sian fields using Gaussian Markov Random Fields (GMRFs). The method is
based on that Gaussian Matérn field can be viewed as solutions to a certain SPDE,
and is useful for large spatial problems where traditional methods are too compu-
tationally intensive to use. A variation of the method using wavelet basis functions
is proposed and using a simulation-based study, the wavelet approximations are
compared with two of the most popular methods for efficient approximations of
Gaussian fields. A new class of spatial models, including the Gaussian Matérn
fields and a wide family of fields with oscillating covariance functions, is also con-
structed using nested SPDEs. The SPDE method is extended to this model class
and it is shown that all desirable properties are preserved, such as computational
efficiency, applicability to data on general smooth manifolds, and simple non-
stationary extensions. Finally, the SPDE method is extended to a larger class of
non-Gaussian random fields with Matérn covariance functions, including certain
Laplace Moving Average (LMA) models. In particular it is shown how the SPDE
formulation can be used to obtain an efficient simulation method and an accurate
parameter estimation technique for a LMA model.

A method for estimating spatially dependent temporal trends is also developed.
The method is based on using a space-varying regression model, accounting for
spatial dependency in the data, and it is used to analyze temporal trends in veget-
ation data from the African Sahel in order to find regions that have experienced
significant changes in the vegetation cover over the studied time period. The
problem of estimating such regions is investigated further in the final part of the
thesis where a method for estimating excursion sets, and the related problem of
finding uncertainty regions for contour curves, for latent Gaussian fields is pro-
posed. The method is based on using a parametric family for the excursion sets
in combination with Integrated Nested Laplace Approximations (INLA) and an
importance sampling-based algorithm for estimating joint probabilities.
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Introduction and summary

1 Background

Spatial statistics is the scientific discipline of statistical modeling and analysis of
spatially structured phenomena. One of the key features in spatial statistics is the
autocorrelation of data; observations at locations in close spatial proximity often
tend to be more similar than observations at locations far apart1. One of the earli-
est works involving spatially correlated data was done by R.A. Fisher in the 1920’s
(Fisher, 1926). Fisher studied design-based inference of agricultural field trials,
and noted that plots (rectangular experimental units in the field) close to each
other were more similar than plots farther apart, which violated the assumption
that the studied plots were mutually independent. Instead of modeling the spatial
dependence, Fisher proposed using randomization and blocking of the plots so
that larger blocks of plots where approximately independent.

Later, important work by Krige (1951) and Matheron (1963) laid the ground
for the field of geostatistics; a hybrid field of statistics, mathematics, mining en-
gineering, geology, and other subject matter areas. In their works, some of the
first methods for modeling spatial dependence were proposed, many of which
now are fundamental in spatial data analysis. Similar methods for modeling spa-
tial dependence were independently derived by the Swedish forestry statistician
Bertil Matérn (Matérn, 1960). The doctoral thesis by Bertil Matérn is one of
the most important contributions to the field of spatial statistics, and especially
it introduced a new class of spatial covariance functions, now bearing his name.
The Matérn covariance function is to this day the most popular model of spatial
dependence, and is the focus of a large part of this thesis.

Another important branch of spatial statistics is the study of discrete spatial
variation, where the models are defined on discrete domains, such as regular grids
or lattices. The most popular models in this area are the so-called simultaneous
autoregressive (SAR) models, introduced by Whittle (1954), and the conditional

1Tobler’s first law of geography: “Everything is related to everything else, but near things are
more related than distant things.” Tobler (1970)
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Introduction and summary

autoregressive (CAR) models, first introduced in the seminal paper by Julian Besag
(1974). These models have later been extended and there is now a large theory of
Markov Random Fields (MRF) and Gaussian MRFs (GMRFs) (Rue and Held,
2005) which is frequently used in this thesis.

Parallel to the development of spatial data analysis, there has also been much
progress in the theory of random fields (see for example Adler, 1981). In many
of the classical applications of random field theory in environmental sciences, the
cost for obtaining measurements limited the size of the data sets to ranges where
computational cost was not an issue. Therefore, the methods were typically de-
veloped without any considerations of computational efficiency. Today, however,
with the increasing use of remote sensing satellites, producing many large climate
data sets, computational efficiency is often a crucial property. Thus, in many
applications there is a need to balance the modeling desires with computational
limits. This has created an entire new area within random field methods where
the computational aspects are put at the center of interest.

It is this area where the common thread of the work constituting this thesis
belongs. Hence, the thesis contents lies somewhere in between the applied top-
ics in spatial data analysis and the theoretical studies of random fields, with the
emphasis on efficiency of computational methods. A large part of the work is
focused on the development of new random field models and methods, but all of
these are created with applications in mind and are intended to be applicable to
large environmental data sets. Because of this, there are a number of applications
to spatial data analysis presented throughout the thesis which serve as examples to
show that the developed method indeed can be used in practice.

1.1 Outline

The structure of this thesis summary is as follows. Section 2 gives an introduction
to continuous spatial modeling and random fields. Section 3 introduces hierarch-
ical models and the problem of spatial prediction. Section 4 introduces discrete
spatial modeling and GMRFs. Computational aspects are also discussed in this
section, and an application of a GMRF model taken from Paper A is presented.
Section 5 discusses the problem of estimating excursion sets for latent Gaussian
fields, which is the topic of Paper E. Section 6 presents some popular computa-
tionally efficient representations of continuous Gaussian fields, and Section 7 in-
troduces the stochastic partial differential equation (SPDE) approach which is the
main focus of this thesis. Extensions of the SPDE approach are given in Section 8

2



2. Modeling spatial data

and, in particular, the nested SPDE approach of Paper C is discussed in Sec-
tion 8.1 and the non-Gaussian extensions of Paper D are discussed in Section 8.2.
Finally, Section 9 concludes with comments on the five appended papers.

2 Modeling spatial data

A statistical model can be seen as a mathematical abstraction of a data-generating
mechanism; may it be a physical process, the financial market, or something else.
For spatial phenomena, the model is usually a random field.

Definition 2.1. A random field (or stochastic field), X (s,ω), s ∈ D, ω ∈ Ω , is a
random function specified by its finite-dimensional joint distributions

F (y1, . . . , yn; s1, . . . , sn) = P(X (s1) ≤ y1, . . . ,X (sn) ≤ yn)

for every finite n and every collection s1, . . . , sn of locations in D.

The set D is usually a subset of Rd , and for the special case d = 1, X (s,ω) is
called a random process (or stochastic process). At every location s ∈ D, X (s,ω)
is a random variable where the event ω lies in some abstract sample space Ω . It is
important to ensure that the random field has a valid mathematical specification.
In general, this is done using the Kolmogorov existence theorem which states
that the collection of finite-dimensional distributions defines a valid random field
if it is consistent under permutations and marginalization (see e.g. Billingsley,
1986, for details). To simplify the notation, one often writes X (s), removing the
dependency on ω from the notation.

An important special case is when the random field is Gaussian. The statistical
properties of a Gaussian random field are completely specified by its mean value
function, μ(s) = E(X (s)), and covariance function, C (s, t) = Cov(X (s),X (t)).
For existence of a Gaussian field with a prescribed mean and covariance it is
enough to ensure that the latter is positive definite.

Definition 2.2. A function C (s, t) is positive definite if for any finite set of loca-
tions s1, . . . , sn in D, the covariance matrix








C (s1, s1) C (s1, s2) · · · C (s1, sn)
C (s2, s1) C (s2, s2) · · · C (s2, sn)

...
...

. . .
...

C (sn, s1) C (sn, s2) · · · C (sn, sn)








is non-negative definite.
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Introduction and summary

The mean value function captures the large scale trends in the random field,
and is often modeled using a regression basis of some known functions of the spa-
tial coordinates. In accordance with Tobler’s first law, spatial covariance functions
often decrease with increasing spatial separation of the points s and t. The exact
form of the covariance function, however, has to be chosen to fit the data set at
hand. A common simplifying assumption is that the random field is stationary.

Definition 2.3. A random field X (s) is called strictly stationary if for any vector h

and for every collection s1, . . . , sn of locations in D

F (y1, . . . , yn; s1 + h, . . . , sn + h) = F (y1, . . . , yn; s1, . . . , sn).

Hence, a random field is strictly stationary if its finite dimensional distribu-
tions are shift invariant. In particular this implies that the mean value function
and the covariance function are shift invariant if they exist.

Definition 2.4. A random field X (s) is called weakly stationary if for any vector
h and any locations s, t ∈ D

μ(s + h) = μ(s), and C (s + h, t + h) = C (s, t) = C (s− t).

If the variance, V(X (s)), of a strictly stationary field is finite, it follows that
it is also weakly stationary. A weakly stationary field is in general not strictly
stationary; however, if the random field is Gaussian and weakly stationary, it is also
strictly stationary. Therefore, as there is no distinction between the two concepts
of stationarity in the Gaussian case, one simply writes that the field is stationary.

An important subclass of the weakly stationary fields are the isotropic fields.
These have covariance functions that depend only on distance, and not direction,
between points, i.e. C (s1, s2) = C (‖s1 − s2‖). Among the isotropic covariance
functions, the Matérn covariance function (Matérn, 1960) is one of the most
popular choices for modeling spatial data.

Definition 2.5. Let Kν(x) denote the modified Bessel function of the second kind
of order ν, and let ν, κ, φ > 0. The Matérn covariance function is then given by

C (h) =
21−νφ2

(4π)
d
2Γ(ν + d

2 )κ2ν
(κ‖h‖)νKν(κ‖h‖), h ∈ R

d . (1)

Here ν is a shape parameter for the covariance function, κ a spatial scale para-
meter, φ2 a variance parameter, and Γ is the gamma function.

4



2. Modeling spatial data

0 0.5 1
0

0.5

1

Figure 1: Matérn correlation functions shown for ν = 0.5 (solid line), ν = 1.5
(dashed line), and ν = 10 (dotted line), with κ =

√
8ν/0.5.

There are a few different parameterizations of the Matérn covariance function
in the literature, but the one used in the definition above is most suitable in our
context. With this parametrization, the variance of a field with this covariance is

C (0) =
φ2Γ(ν)

(4π)
d
2Γ(ν + d

2 )κ2ν
.

In Figure 1, the Matérn covariance function is shown for three different values
of ν. An important special case is the exponential covariance function; the solid
line in the figure obtained when ν = 0.5. The smoothness of the field increases
with ν, and another important special case is the Gaussian covariance function,
sometimes also called squared exponential, obtained in the limit as ν → ∞ if κ
is scaled accordingly. For more properties of the Matérn covariance function, see
e.g. Stein (1999).

Specifying a Gaussian random field through its covariance function is the
most popular method in spatial statistics; however, there are other representations
that, in some situations, are more convenient. One alternative is to specify the
random field in the frequency domain. By Bochner’s theorem (Bochner, 1955), a
function C is a valid covariance function if and only if it can be written as

C (h) =
∫

exp(ih⊤k) dΛ(k) (2)

5



Introduction and summary

for some non-negative and symmetric measure Λ. Equation (2) is called the spec-
tral representation of the covariance function, and if the measureΛ has a Lebesgue
density S, this is called the spectral density. The spectral density associated with
the Matérn covariance function (1) is

S(k) =
φ2

(2π)d

1

(κ2 + ‖k‖2)ν+
d
2

.

Another popular representation, first proposed by Matheron (1971), that can
be used instead of the covariance function is the (semi)variogram γ(h), that for a
stationary process is defined as

γ(h) =
1
2

V(X (s + h)− X (s)).

If a process has a constant mean value function (if it exists) and a variogram only
depending on h, and not on the location s, it is called intrinsically stationary. If
a random field is weakly stationary with covariance function C (h), one has that
γ(h) = C (0) − C (h). Hence, all weakly stationary processes are intrinsically
stationary. The converse is, however, not true and the class of intrinsically sta-
tionary processes is therefore larger than the class of weakly stationary processes.
An example of an intrinsically stationary process that is not weakly stationary
is the Brownian motion. The Brownian motion and its counterpart on R

d , the
Brownian sheet, can be defined using white noise. The following general definition
of white noise is taken from Walsh (1986).

Definition 2.6. Let (D,M, λ) be a σ-finite measure space. A Gaussian white
noise based on λ is a random set function W on the sets A ∈ M of finite λ-
measure such thatW(A) is a N(0, λ(A)) random variable and if A ∩ B = ∅, then
W(A) andW(B) are independent andW(A ∪ B) =W(A) +W(B).

In most cases, D is an Euclidian space such as R
d and λ is the Lebesgue

measure. The white noise is a Gaussian process defined on the sets inM with co-
variance function Cov(A,B) = E(W(A)W(B)) = λ(A ∩ B). It is straightforward
to check that this covariance function is positive definite, and it is therefore a well-
defined Gaussian process. There are other ways of defining white noise, and it is
often thought of as the derivative of a Brownian sheet. If we setD = R

d
+ and take

λ as the Lebesgue measure, the Brownian sheet is a process B(s), s ∈ R
d
+ defined

by B(s) = W((0, s]). If s = (s1, . . . , sd ) and t = (t1, . . . , td ), its covariance

6



3. Hierarchical models, inference, and kriging

function is given by Cov(B(s),B(t)) =
∏d

i=1 min(si, ti). Thus, the covariance
function is not stationary and the Brownian sheet is therefore not weakly station-
ary. For d = 1, the Brownian motion is intrinsically stationary since γ(h) = |h|,
but the Brownian sheet is not intrinsically stationary for d > 1.

Stationary and isotropic models are easy to work with, but may not be suffi-
cient in certain applications. Introducing non-stationary mean value functions is
in general not a problem since one can define the process as X (s) = μ(s) + Z (s),
where Z (s) is a stationary process. Introducing non-stationarity in the covariance
function is, on the other hand, more problematic since it is difficult to extend
stationary and isotropic covariance functions to non-stationary and non-isotropic
versions while preserving the crucial property of positive definiteness. One altern-
ative is the spatial deformation method by Sampson and Guttorp (1992) where
a stationary covariance model is defined on a transformed domain h(D) which
results in a non-stationary covariance function on the original domain D. Most
other methods for specifying non-stationary models do not use the covariance
representation directly but instead some other representation that induces a cer-
tain valid covariance function. We will get back to such alternative representations
in Section 6.

3 Hierarchical models, inference, and kriging

Geostatistical measurements are often sampled under measurement noise, and a
statistical model for the data thus has to take this into account. Another prob-
lem with geostatistical data is that the spatial domain, D, often is a continuous
region. Hence, even if one could measure the latent field X (s) exactly, it cannot
be sampled exhaustively. One of the most important problems in geostatistics
is, therefore, spatial reconstruction of X (s) given a finite number of observations
Y = (Y1, . . . ,Yn)⊤ of the latent field at locations s1, . . . , sn taken under meas-
urement noise.

The most popular method for spatial reconstruction in geostatistics was de-
veloped by Georges Matheron. Matheron based his work on the Master’s thesis
of Daniel G. Krige, and therefore named the method kriging. Depending on the
assumptions on the mean value function μ(s) for the latent field, linear kriging
is usually divided into three cases. The method is called Simple kriging if μ(s) is
known; Ordinary kriging if μ(s) = μ and μ is unknown; and Universal kriging if
μ(s) =

∑m
k=1 βkbk(s) where bk are known basis functions and the parameters βk

7



Introduction and summary

are unknown. The kriging estimator of X (s) at some location s0 is derived as the
minimum mean squared error linear predictor (for extensive details on kriging,
see Stein, 1999, Schabenberger and Gotway, 2005). There is, however, a close
connection between kriging and estimation in hierarchical models which we use.

A hierarchical model is constructed as a hierarchy of conditional probability
models that, when multiplied together, yield the joint distribution for all quantit-
ies in the model. Let X be a vector containing X (s) evaluated at the measurement
locations and any additional locations where the kriging prediction should be cal-
culated, and let γ be a vector containing all model parameters. At the top level
of the hierarchical model is the data model π(Y|X,γ), which specifies the distri-
bution of the measurements given the latent process. Here π(·) denotes a density
function. This level is sometimes also called the measurement equation since it
specifies how the data is generated as a function of the latent process. A typical
situation is when the latent field is measured under additive noise,

Yi = X (si) + ǫi .

A common assumption is that ǫ1, . . . , ǫn are independent identically distributed
with some variance σ2, uncorrelated with the latent process2. At the next level is
the process model π(X|γ), which typically is given by the model for the continuous
latent field of interest. The process model can in itself be written as a hierarchical
model, specified by a number of conditional sub-models. The final part of the
hierarchical model is the parameter model π(γ) which is the joint prior distribu-
tion of the parameters. If a parameter model is used, the model is called a Bayesian
hierarchical model. An alternative approach is to assume that the parameters are
fixed but unknown, in a frequentist setting, and estimate the parameters from
data. The model is then sometimes referred to as an empirical-Bayesian model, or
empirical hierarchical model (Cressie and Wikle, 2011).

Inference in hierarchical models is performed using the posterior distribution

π(X,γ|Y) ∝ π(Y|X,γ)π(X|γ)π(γ).

Kriging predictions are calculated from the marginal posterior distribution

π(X|Y) ∝
∫

π(X|Y,γ)π(γ|Y) dγ,

2In geostatistics, the variance σ2 is called the nugget effect, a somewhat curious name that has
its origin in mining applications where nuggets literally exist and varies on scales so small that they
cannot be distinguished from measurement noise.

8



3. Hierarchical models, inference, and kriging

and one typically reports the posterior mean E(X|Y) as a point estimator and the
posterior variance V(X|Y) as a measure of the uncertainty in the predictor. The
posterior distribution for X and γ generally have to be estimated using Markov
Chain Monte Carlo (MCMC) methods (see e.g. Robert and Casella, 2004). A
better alternative when the process model is Gaussian is to use the Integrated
Nested Laplace Approximations (INLA) introduced by Rue et al. (2009), which
allows for precise inference in a fraction of the computation time required by
MCMC inference for latent Gaussian models.

In an empirical hierarchical model, inference is instead performed using the
conditional posterior π(X|Y, γ̂). Here γ̂ is an estimate of γ obtained using for
example maximum likelihood estimation, or maximum a posteriori estimation in
the Bayesian setting3. The parameter model π(γ) can often be chosen so that
the posterior mean and variance of X agree with the classical kriging predictions
(see e.g. Omre and Halvørsen, 1989). Even if this is not done, we will throughout
this thesis refer to the conditional mean of the posterior distribution as the kriging
predictor.

Example 1. As an example, consider a purely Gaussian model with known para-
meters γ. Let X1 be a vector containing X (s) evaluated at the measurement loc-
ations and let X2 contain X (s) at the locations, t1, . . . , tm, for which the kriging
predictor should be calculated. With X = (X⊤

1 ,X
⊤
2 )⊤, one has X1 = A1X, and

X2 = A2X for two diagonal matrices A1 and A2, and a Gaussian hierarchical
model can be written as

Y|X,γ ∼ N(A1X,ΣE ), and X|γ ∼ N(0,ΣX ),

where ΣE is the covariance matrix for the measurement noise ǫ = (ǫ1, . . . , ǫn)⊤

and ΣX is determined by the covariance function r(s, t) for the latent field. It is
straightforward to show that the posterior is X|Y,γ ∼ N(Σ̂A1Σ

−1
E Y, Σ̂), where

Σ̂ = (Σ−1
X + A⊤

1 Σ
−1
E A1)−1, and the well-known expression for the kriging

predictor is given by the conditional mean

E(X2|Y,γ) = A2Σ̂A1Σ
−1
E Y = A2ΣX A⊤

1 (A1ΣX A⊤
1 +ΣE )−1Y

= ΣX2X1 (ΣX1 +ΣE )−1Y = ΣX2X1Σ
−1
Y Y, (3)

3Traditionally in geostatistics, the estimation is done in two steps using the variogram. In the
first step, the empirical variogram is estimated from data using a non-parametric estimator, and in
the second step, a parametric model is fitted to the empirical variogram.
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where the elements on row i and column j in ΣX2X1 and ΣY are given by the
covariances r(ti, sj) and r(si, sj) + Cov(ǫi, ǫj) respectively. The variance of the
kriging predictor is found using the Woodbury identity (Woodbury, 1950) on
the matrix Σ̂:

V(X2|Y,γ) = A2Σ̂A⊤
2 = A2

(

ΣX −ΣX A⊤
1 (ΣX1 +ΣE )A1ΣX

)

A⊤
2

= ΣX2 −ΣX2X1Σ
−1
Y Σ

⊤
X2X1

.

4 Lattice data and Gaussian Markov random fields

In Section 2, the domain D was a continuous region, typically a subset of Rd .
Another important branch of spatial statistics is the analysis of data on discrete
domains, such as lattices (regular grids) or more generally on any collection of
countably many spatial locations.

Models on discrete domains are naturally specified differently than those on
continuous domains. On discrete domains, a popular choice is to use GMRFs. A
random variable

x = (x1, . . . , xn)⊤ ∼ N(μ,Q−1)

is called a GMRF with respect to a given neighborhood system if the joint dis-
tribution for x satisfies π(xi|x−i) = π(xi|xNi ) ∀ i, where Ni is the neighborhood
of i and x−i denotes all elements in x except xi. The neighborhood of i typic-
ally consists of all points that, in some sense, are close to i. In theory, there are
no restrictions on the size of the neighborhood, and one could for example have
xNi = x−i which shows that any multivariate normal distribution with a symmet-
ric positive definite covariance matrix is a GMRF and vice versa. However, the
advantages of the Markov assumption naturally occurs when the neighborhood is
small, and on a regular lattice, the neighborhood can for example be chosen as the
four closest nodes.

Note that GMRFs are typically parametrized using the precision matrix Q,
which is the inverse of the covariance matrix. One of the reasons for this is the
following important implication of the GMRF condition. If i 6= j then:

xi ⊥ xj|x−{i,j} ⇐⇒ Qij = 0⇐⇒ j /∈ Ni.

This means that the following properties are equivalent: 1) xi and xj are condi-
tionally independent; 2) the corresponding element in the precision matrix, Qij ,
is zero; and 3) i and j are not neighbors.

10
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Simultaneous model specifications of GMRFs, or so-called SAR models, date
back to the work by Whittle (1954). A SAR model can be written as

xi −
∑

j:j 6=i

βijxj = ei, i = 1, . . . , n,

where ei ∼ N(0, κ−1
i ), ei ⊥ ej for i 6= j, and β = [βij] is a matrix determined by

the neighborhood structure. Following the work of Besag (1974), it is today far
more common to implicitly define GMRFs by specifying each of the conditional
distributions

xi|x−i ∼ N




∑

j:j 6=i

βijxj, κ
−1
i



 , i = 1, . . . , n.

These models are known as CAR models, and the conditional distributions must
satisfy certain regularity conditions to ensure that a joint model exists with the
specified conditional distributions (Rue and Held, 2005). One reason for the
popularity of the CAR models is that conditional specifications can be preferable
for estimation and model interpretation, and in fact, any simultaneously specified
model can be expressed as a conditionally specified model but not vice versa (see
Cressie, 1991, for details).

A disadvantage with the CAR models of Besag (1974) and Besag et al. (1991)
was that while they have been used for both lattices and spatially motivated
graphs, they were only spatially consistent for regular lattices, which limited their
applicability. However, recently Lindgren et al. (2011) derived the CAR models
in a new way that both removes the lattice constraint and allows for the construc-
tion of spatially consistent non-stationary CAR-like models. The method is based
on re-formulating the problem in terms of SPDEs in combination with the finite
element method from numerical analysis. We return to this method in Section 7.

4.1 Computational details

Since Qij 6= 0 only if i and j are neighbors, most GMRFs have sparse precision
matrices. The sparsity of the precision matrix facilitates the use of computation-
ally efficient techniques for sparse matrix operations when working with GMRFs.
This fact is used in all papers of this thesis, and in this section we will briefly dis-
cuss the computational advantages and some techniques that are used extensively
throughout the thesis.

11
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Consider, for example, a regular lattice in R
2 consisting of n locations. Simu-

lating a general Gaussian field x ∼ N(μ,Σ) on the lattice is done by first simulat-
ing a vector v of n independent identically distributed standard Gaussian variables
and then calculating

x = μ+ Lv, (4)

where L is the Cholesky factor ofΣ. For a positive definite matrixΣ, the Cholesky
factor is the unique lower triangular matrix with strictly positive diagonal elements
satisfying Σ = LL⊤. A simple algorithm for calculating the Cholesky factor of
a matrix is given in the following pseudocode, taken from Algorithm 2.8 in Rue
and Held (2005). To simplify the presentation, vector notation is used in the
algorithm, so vj:n ← Qj:n,j is short for setting vk = Qkj for k = j, . . . , n, and so
on.

Algorithm 4.1. Cholesky factorization of a positive definite matrix Q.

for j = 1→ n do

vj:n ← Qj:n,j

for k = 1→ j − 1 do

vj:n ← vj:n − Lj:n,kLjk

end for

Lj:n,j ← vj:n,j/
√vj

end for

return L

Several alternative algorithms exist for calculating the Cholesky factor, but as
for Algorithm 4.1, they all require n3/3 floating point operations in the overall
process. Simulating x using (4) requires one Cholesky factorization, a matrix-
vector multiplication, and a vector addition. The most expensive part is the
Cholesky factorization, so the cost for performing the simulation is thusO(n3).

To instead simulate a GMRF x ∼ N(μ,Q−1) on the lattice, one has to solve

x = μ+ L−⊤v, (5)

where L now denotes the Cholesky factor of Q. Since L is lower triangular, one
should not calculate its inverse but instead solve the system L⊤u = v in order to
evaluate L−⊤v. This method is called back substitution because the solution, u, is

12
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calculated in a backward loop

ui =
1

Lii



vi −
n∑

j=i+1

Ljiuj



 , i = n, . . . , 1.

Similarly if one were to calculate L−1v, this is done using a forward loop and is
therefore called forward substitution. Performing back substitution (and forward
substitution) in general requires n2 floating point operations, and if L is sparse
this number can be decreased by only evaluating the non-zero terms.

The computational cost for simulating a GMRF is thus determined by the
cost for calculating the Cholesky factor L. If Q is a sparse matrix, Algorithm 4.1
can be modified to take this into account. An easy example is if Q is a band matrix
with band width p. In this case, the bandwidth of L is p and the elements below
the pth diagonal in L do not have to be evaluated in the algorithm, resulting in a
reduction of the number of floating point operations to n(p2+3p), assuming that
p≪ n. In this situation, it is also easy to show that the number of floating point
operations required for performing the back substitution is 2np. Thus, both the
Cholesky factorization and the back substitution are linear in n.

For general sparse matrices Q, one can reorder the nodes so that the reordered
matrix has a small bandwidth and then use the methods for band matrices. This
technique is called bandwidth reduction, and is intuitively easy to understand
and rather easy to implement with simple changes to Algorithm 4.1. However, in
general there exist other methods, such as nested dissection or minimum degree
methods, that can reduce the number of non-zero elements in L, and therefore
the number of required floating point operations, further. For details, see Rue and
Held (2005) and the references therein. An example can be seen in Figure 2. In
Panel (a), a sparse 100 × 100 precision matrix Q is shown. The matrix reordered
using a bandwidth reduction method and a minimum degree method are shown
in Panels (b) and (c) respectively. The Cholesky factors of the matrices in Pan-
els (a-c) are shown in Panels (d-f ). The matrix Q has 1608 non-zero elements,
and the Cholesky factors in Panels (d-f ) have 3452, 1836, and 1616 non-zero
elements respectively.

Using an efficient Cholesky factorization method, the computational cost for
simulating a GMRF using (5) can be reduced from O(n3) to O(n3/2) given that
the neighborhood size is m≪ n (Rue and Held, 2005), a substantial reduction if
n is large. Given the Cholesky factor, many other operations, such as kriging and
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(a) (b) (c)

(d) (e) (f )

Figure 2: (a) A sparse precision matrix Q, and its corresponding Cholesky factor
in (d). Only nonzero elements are shown and these are indicated by a dot. (b) The
matrix Q reordered using a bandwidth reduction method, and its corresponding
Cholesky factor in (e). (c) The matrix Q reordered using a minimum degree
algorithm, and its corresponding Cholesky factor in (f ).

likelihood evaluations, can also be calculated efficiently using back substitutions
and sparse matrix multiplications, and the computational gain is therefore sub-
stantial for most steps of any statistical analysis if sparsity properties can be used.
A practical application of a GMRF model is given in the following section.

4.2 Estimation of spatially dependent temporal trends using GMRFs

The African Sahel is a region in northern Africa that has received much attention
regarding desertification and climatic variations (Olsson, 1993, Nicholson, 2000,
Lamb, 1982), and several authors have used satellite imagery to study vegetation
in the region (Tucker et al., 1985, Justice and Hiernaux, 1986, Seaquist et al.,
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4. Lattice data and Gaussian Markov random fields

Figure 3: Vegetation index data from the Sahel region 1983. Black denotes a low
index value, green a high value, and white missing data or water. Each pixel in
the image is of size 8 km × 8 km.

2003). Notably, Eklundh and Olsson (2003) observed a strong increase in sea-
sonal vegetation index over parts of the Sahel for the period 1982-1999, using Ad-
vanced Very High Resolution Radiometer (AVHRR) data from the NOAA/NASA
Pathfinder AVHRR Land (PAL) database (Agbu and James, 1994, James and Kal-
luri, 1994). The PAL dataset consists of calibrated vegetation index measurements
which are mapped to 8 km× 8 km pixels on a regular lattice consisting of approx-
imately 117 000 nodes over the Sahel region. The measurements for 1983 can be
seen in Figure 3. The study in Eklundh and Olsson (2003) was based on ordinary
least squares (OLS) linear regression on individual time series extracted for each
pixel in the satellite images, and a drawback with this method is that the spatial
dependencies in the vegetation cover are neglected in the estimation. Hence, im-
proved estimates can be obtained by correctly modeling the spatial dependency.
This is the focus of Paper A and a brief summary of the method is given in this
section as an example of an application where the ability to use efficient methods
for sparse matrices is crucial because of the size of the dataset.

Let Xt denote the latent vegetation field at time t and assume that the meas-
urements Yt at time t are generated as Yt |Xt ,Σǫt ∼ N(AtXt ,Σǫt ). Here At is
a diagonal matrix determined by which pixels are observed, Xt is restricted to
follow a spatially varying linear regression, Xt = K1 · t + K2, and Σǫt is as-
sumed to be diagonal. As a process model for the yearly vegetation Xt at times
t = 0, 1, . . . ,T − 1, a second-order polynomial intrinsic GMRF (Gamerman
et al., 2003, Rue and Held, 2005, Section 3.4.2) model is used. Assuming that
Xt1 ⊥ Xt2 if t1 6= t2, the corresponding distributions for the field of regres-
sion coefficients K = [K⊤

1 ,K
⊤
2 ] is K ∼ N(0, (κQ)−1). Here, κ determines the

strength of the spatial dependency and the precision matrix Q is sparse and de-
termined by the intrinsic GMRF prior and the regression basis.
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OLS

GMRF
 

Significant Negative Non−Significant Negative Non−Significant Positive Significant Positive

Figure 4: Significance estimates for the slope of the linear trends using the OLS
model (upper figure) and the GMRF model (lower figure). Note the large number
of significant positive linear trends in the GMRF estimate.

The parameter κ and the measurement noise variance at each pixel are es-
timated using the Expectation Maximization (EM) algorithm (Dempster et al.,
1977), and given the estimated parameters, the posterior distribution of K is
K|Y,Σε, κ ∈ N(μK |Y ,Q

−1
K |Y ) , with

μK |Y = Q−1
K |Y A⊤Σ−1

ε Y and QK |Y = κQ + A⊤Σ−1
ε A.

Based on the posterior distribution, standard hypothesis testing is used for each
pixel to find areas that have experienced a significant change in the vegetation
cover over the studied time period. The result can be seen in Figure 4. The GMRF
estimates (bottom panel) are smoother and exhibit larger contiguous regions with
significant trends than a comparable analysis using OLS (top panel). The larger
contiguous regions and smoother estimates will most likely aid interpretation of
the data, and make it easier to identify underlying reasons for the detected changes
in vegetation.

5 Estimating excursion sets for latent Gaussian models

In certain applications, such as the Sahel example from the previous section, one
is not only interested in point estimates of the latent field, but also wants to find
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regions where the field exceeds some given level. In Figure 4, the area that repres-
ents regions that have experienced a significant increase in vegetation is calculated
as Dm = {s : P(K1(s) > 0) ≥ 0.95}, where the probabilities are calculated under
the posterior distribution of K1. The problem with this definition of Dm is that
of multiple hypothesis testing; the confidence level (α = 0.05 in this case) does
not give us any information about the family-wise error rate. That is, the probab-
ility P(K1(s) > 0, s ∈ Dm) is, in general, not equal to 1 − α. How to construct
such excursion sets with a specified family-wise error is a difficult problem with ap-
plications in a wide range of scientific fields, including brain imaging (Marchini
and Presanis, 2003) and astrophysics (Beaky et al., 1992), and this is the focus of
Paper E.

Formally, we define the positive u excursion set, A+
u , for a function f (s),

s ∈ D, by A+
u (f ) = {s ∈ D; f (s) > u}. For a stochastic process X (s), the

excursion set E+
u,α(X ) is defined as the largest set D such that X (s) exceeds the

level u with a certain probability 1− α for all s ∈ D,

E+
u,α(X ) = arg max

D
{|D| : P(D ⊆ A+

u (X )) ≥ 1− α}.

There are several ways these sets can be estimated for latent Gaussian mod-
els. One method is to simulate from the posterior distribution using MCMC and
then find the largest region satisfying the probability constraint based on the sim-
ulations. Another method is to use a shape optimization method in combination
with a numerical integration method. Notably the quasi Monte Carlo methods
by Genz and Bretz (2009) can be used to estimate high-dimensional Gaussian
integrals, and therefore Gaussian probabilities. Both these methods are compu-
tationally intensive, and much more so than for example calculating kriging pre-
dictions. To be able to estimate these sets for large spatial problems, a different
strategy, based on a combination of a parametric family for the possible excursion
sets, sequential Monte Carlo integration, and Integrated Nested Laplace Approx-
imations is proposed in Paper E. The method is especially efficient if Markov
properties of the latent field can be used, and it can also be used for the related
problem of finding uncertainty regions for contour curves.

Using the method for the Sahel example, we are able to find regions that
have experienced an increase in vegetation while controlling the joint error. The
result for the western part of the Sahel region (a subset of the original domain)
can be seen in Figure 5. The estimated excursion set E+

0,0.05(K2) is shown in red
and the point-wise positive significant trends in green. The interpretation of the
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Excursion set

Figure 5: Results from the Sahel vegetation data. The estimated excursion set
E+

0,0.05(K1) is shown in red and the point-wise positive significant trends in green.

result is that one with high certainty can conclude that the areas indicated in red
have experienced an increase in vegetation over the studied time period. Hence,
conclusions drawn by Eklundh and Olsson (2003) seem valid, also when taking
the spatial dependency of the vegetation measurements into account and when
estimating the excursion sets controlling the family-wise error.

6 Efficient representations of continuous Gaussian fields

As mentioned in Section 2, continuous Gaussian models are traditionally specified
through the mean value function and the covariance function. This method for
specifying the models is difficult to use if non-stationary models are needed, and
inference using covariance-based models is in general computationally expensive.
One example was given in Section 4.1 where simulating Gaussian models was
discussed, and another is spatial prediction. For example, to calculate the kriging
prediction (3) in Example 1 requires inverting the n × n covariance matrix ΣY ,
which is not computationally feasible if the number of observations, n, is large.
The desire of using complicated non-stationary models under computational re-
strictions has led to a large number of new statistical methods, and a few of these
are introduced in this section.

6.1 Low-rank methods

In many of the techniques for building computationally efficient models, the
main assumption is that a latent zero-mean Gaussian process X (s) can be ex-
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pressed, or at least approximated, through some finite basis expansion

X (s) =
m∑

j=1

wjφj(s), (6)

where wj are Gaussian random variables and {φj}m
j=1 are some pre-defined basis

functions. To understand why this increases the computational efficiency, con-
sider the Gaussian hierarchical model in Example 1. Using the approximation
(6), X can be written as X = Bw ∼ N(0,BΣwB⊤), where column i in the matrix
B contains the basis function φi(s) evaluated at all measurement locations and all
locations where the kriging prediction is to be calculated. With B1 = A1B and
B2 = A2B, the kriging predictor can be written as

E(X2|Y,γ) = B2(Σ−1
w + B⊤

1 Σ
−1
E B1)−1B1Σ

−1
E Y. (7)

If the measurement noise is uncorrelated, ΣE is diagonal and easy to invert. If
Σ−1

w is either known, or easy to calculate, the most expensive calculation in (7)
is to invert the m× m matrix (Σ−1

w + B⊤
1 Σ

−1
E B1). This requires O(m3) floating

point operations, and by choosing m≪ n, the computational cost for calculating
the kriging prediction can thus be substantially decreased.

If the basis expansion (6) is used as a model approximation, a natural ques-
tion is how the basis functions {φj}m

j=1 should be chosen. One way to obtain an,
in some sense optimal, expansion of the form (6) is to use the eigenfunctions of
the covariance function for the latent field X (s) as a basis, which is usually called
the Karhunen-Loève transform. This is, however, seldom used in practice since
analytic expressions for the eigenfunctions are only known in a few simple cases.
In certain situations, numerical approximations of the eigenfunctions can be ob-
tained by performing principal component analysis on the empirical covariance
matrix which is estimated from data. These discrete approximations, sometimes
referred to as empirical orthogonal functions (EOFs), can however be poor ap-
proximations of the true eigenfunctions since the empirical covariance matrix is
affected by the measurement noise. Also, because the EOFs are discrete, they have
to be interpolated in some way to produce a continuous model approximation.

A popular method that fit in to the general construct of low-rank approxima-
tions is the fixed-rank kriging method by Cressie and Johannesson (2008). Their
recommendation is to use multiresolutional basis functions, such as wavelets, and
a related method for constructing non-stationary covariance models using wave-
lets is given in Nychka et al. (2002). There are many other methods that can be
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viewed as low-rank approximations, e.g. the predictive process method by Baner-
jee et al. (2008) and the process convolution method presented in the next section.
For additional details on the low-rank methods, see Gelfand et al. (2010).

6.2 Process convolutions

In the process convolution method, the Gaussian random field X (s) on R
d is

specified as a process convolution

X (s) =
∫

k(s,u)B( du), (8)

where k is some deterministic kernel function and B is a Brownian sheet. This
representation of stationary Gaussian processes is not new, but has become popu-
lar lately because it provides an easy method for producing non-stationary mod-
els by allowing the convolution kernel to be dependent on location (Barry and
Ver Hoef, 1996, Higdon, 2001, Cressie and Ravlicová, 2002, Rodrigues and
Diggle, 2010).

If, however, the process is stationary one must have k(s,u) = k(s−u) and the
covariance function for X is expressed in terms of the convolution kernel through

C (h) =
∫

k(u− h)k(u) du. (9)

Thus, the covariance function C , the spectrum S, and the kernel k are related
through (2π)d |F(k)|2 = F(C ) = S, where F(·) denotes the Fourier transform.
The method can also be used to define non-Gaussian models by replacing B with
some non-Gaussian process (see e.g. Åberg et al., 2009), and this is discussed
further in Paper D.

An approximation that is commonly used in practice for process convolution
models is to approximate the integral (8) by a sum

X (s) ≈
m∑

j=1

k(s− uj)wj,

where u1, . . . ,um are some fixed locations in the domain, and wj are independent
zero-mean Gaussian variables with variances equal to the area associated with each
location uj. Thus, with this approximation, the method can be used to obtain a
low rank approximation of the form (6), with basis functions φj(s) = k(s− uj),
of a Gaussian field.
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6.3 Covariance tapering

The covariance tapering method, introduced by Furrer et al. (2006), is not a
method for constructing covariance models, but a method for approximating a
given covariance model to increase the computational efficiency. The idea is to
taper the true covariance, C (h), to zero beyond a certain range, θ, by multiplying
the covariance function with some compactly supported, positive definite, taper
function rθ(h). Using the tapered covariance, Ctap(h) = rθ(h)C (h), the matrix
ΣY in the expression for the kriging predictor is sparse, which facilitates the use
of sparse matrix techniques.

The sparsity of ΣY increases as θ is decreased, but the taper function and
the taper range should, of course, also be chosen such that the basic shape of the
true covariance function is preserved, and of especial importance for asymptotic
considerations is that the smoothness at the origin is preserved. A popular choice
for taper functions are the Wendland functions (Wendland, 1995),

Wendland1: rθ(h) =

(

max

[

1− ‖h‖
θ

, 0

])4(

1 + 4
‖h‖
θ

)

,

Wendland2: rθ(h) =

(

max

[

1− ‖h‖
θ

, 0

])6(

1 + 6
‖h‖
θ

+
35‖h‖2

2θ2

)

.

These were for example used by Furrer et al. (2006) to study the accuracy and
numerical efficiency of tapered Matérn covariance functions.

6.4 Markov approximations

Although GMRFs are computationally efficient, they are seldom the most natural
model choices. One reason is that it is hard to specify the precision matrix such
that the corresponding covariance function is similar to some commonly used co-
variance function for a given data set. However, for regular lattices in R

2, Rue and
Tjelmeland (2002) showed that, for a large family of covariance functions, Gaus-
sian fields can be well approximated by GMRFs with small neighborhood struc-
tures. The second, more serious problem, is that spatial data is seldom located on
regular lattices. Several approaches for using lattice-based GMRFs for non-lattice
data have been suggested in the literature; notably, nearest neighbor mapping of
the data locations to the grid locations (Hrafnkelsson and Cressie, 2003), assum-
ing that the GMRFs values for non-lattice points are equal to the closest lattice
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point (Wikle et al., 1998), or using linear interpolation of the GMRFs lattice val-
ues to assign values to non-lattice locations (Werner Hartman, 2006). Although
these approaches are simple, a more general approach would be to use an efficient
continuous representation of the latent Gaussian field where Markov properties
could be used, and such a representation is the topic of the next section.

7 The SPDE approach

Recently, Lindgren et al. (2011) derived a method for explicit, and computation-
ally efficient, continuous Markov representations of Gaussian Matérn fields. As
previously mentioned, the method can be used to re-define the CAR models to
remove the lattice constraint and to allow for non-stationary extensions. How-
ever, the most important implication of the work is that it provides a spatially
consistent method for approximating continuous Gaussian fields using GMRFs
which thus enables the use of sparse matrix techniques for GMRFs when doing
inference for continuous Gaussian fields.

The method is based on the fact that a Gaussian Matérn field on R
d can be

viewed as a solution to the SPDE

(κ2 −Δ)
α

2 X = φW, (10)

whereW is Gaussian white noise, Δ is the Laplacian, and α = ν+ d/2, this was
first noted by Whittle (1963). An approximation of X (s) of the form (6) is then
constructed through Hilbert space approximations of the solution to the SPDE
with respect to the basis {φk}. The procedure can be viewed as a finite element
approximation of the solution to the SPDE, where the stochastic weights in (6)
are calculated by requiring the stochastic weak formulation of the SPDE to hold
for only a specific set of test functions {ψi, i = 1, . . . , n},

{

(κ2 −Δ)
α

2 X (ψi), i = 1, . . . , n
}

d
= {φW(ψi), i = 1, . . . , n} . (11)

To simplify the presentation, we only outline the procedure for the fundamental
case α = 2. Lindgren et al. (2011) then use ψi = φi, and using the basis expansion
(6) for X one has

(κ2 −Δ)X (φi) =
n∑

j=1

wj
〈
φi, (κ2 −Δ)φj

〉
,
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where 〈f , g〉 =
∫

f (s)g(s) ds is an inner product and the integral is taken over
the region of interest. The left hand side of (11) can then be written as Kw where
K is a matrix with elements Kij =

〈
φi, (κ2 −Δ)φj

〉
and w = (w1, . . . ,wn)⊤.

Under mild conditions on the basis functions, one has
〈
φi, (κ2 −Δ)φj

〉
= κ2 〈φi, φj

〉
+
〈
∇φi, ∇φj

〉
.

Hence, the matrix K can be written as the sum K = κ2C+G where C and G are
matrices with elements Cij =

〈
φi, φj

〉
and Gij =

〈
∇φi, ∇φj

〉
respectively. The

right hand side of (11) is a Gaussian vector with mean zero and covariance matrix
φ2C, so one has w ∼ N

(
0, φ2K−1CK−1

)
. The final step is to approximate C

with a diagonal matrix C̃ with diagonal elements C̃ii =
∑n

k=1 Cik =
∫
φi(s) ds,

which makes the precision matrix Q = φ−2KC−1K sparse if G is sparse.
A similar procedure is used for the case α = 1, and for higher order α/2 ∈ N,

the approximation is obtained by recursively using the two cases α = 1 and α = 2.

7.1 Wavelet basis functions and a comparison

A natural question is what type of basis functions one should use in the method.
Lindgren et al. (2011) use the standard finite element basis of piecewise linear
basis functions induced by some triangulation of the domain D. An example of
such a basis, taken from Paper C, on the sphere can be seen in Figure 6. Using
these basis functions produces a piecewise linear approximation of the continu-
ous field; however, there might be other types of basis functions that give better
approximations of the continuous field.

To investigate this, the procedure is extended using wavelet basis functions in
Paper B. Among the most widely used constructions in multiresolution analysis
are the B-spline wavelets (Chui and Wang, 1992) and the Daubechies wavelets
(Daubechies, 1992), that both have several desirable computational properties.
Explicit expression for the matrices C and G are derived for the Daubechies wave-
lets and the B-spline wavelets and the procedure is extended to the correspond-
ing wavelet bases on R

d , using tensor product functions generated by d one-
dimensional wavelet bases. By considering the covariance error when the method
is used for approximating Gaussian Matérn fields, it is shown that there is no gain
in using any more complicated basis functions than the piecewise linear first order
B-splines, unless the range of the covariance function is very large.

As opposed to the methods introduced in Section 6.1, the SPDE method
can be seen as a high-rank model approximation since the sparsity of the preci-
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Figure 6: The left part shows a triangulation of the Earth used to define a set
of piecewise linear basis functions. Each basis function is one at a node in the
triangulation, and decreases linearly to zero at the neighboring nodes. The right
part of the figure shows one of these functions.

sion matrix can be used to reduce the computational cost for inference even if
as many basis functions are used as there are measurements. To demonstrate the
accuracy of the method, a detailed comparison between the SPDE method using
different types of wavelet basis functions, the process convolution method, and
the tapering method is also performed in Paper B. The computational aspects of
the spatial prediction problem are studied, and the results show that the SPDE
method generally is more efficient and accurate than both the process convolu-
tion approach and the covariance tapering method when used for approximating
Gaussian Matérn fields.

8 Extensions of the SPDE method

Instead of defining Matérn fields through the covariance function (1), Lindgren
et al. (2011) used the solution to the SPDE (10) as a definition. Besides allow-
ing for the efficient Matérn approximations, the representation has several other
advantages: The definition is valid not only on R

d but on general smooth man-
ifolds, such as the sphere, and facilitates non-stationary extensions by allowing
the SPDE parameters κ2 and φ to vary with space. For example, logκ can be
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expanded using weighted smooth basis functions,

logκ(s) =
∑

i

βibi(s),

and similar expansions can be used for φ. This extension requires only minimal
changes to the method used in the stationary case, see Paper C for a detailed
explanation of this case. Spatially varying anisotropy can also be incorporated by
replacing the Laplacian Δ in (10) with the more general operator ∇ · (D(s)∇).
The model can be extended further by including a drift term b(s)·∇ and temporal
dependence, which leads to the general model

(
∂

∂t
+ κ(s, t)2

+ b(s, t) · ∇ −∇ · (D(s, t)∇)

)

X (s, t) = φ(s, t)W(s, t), (12)

where t is the time variable and b is a vector field describing the direction of
the drift. Further extensions are derived in Paper C and Paper D, and these are
discussed in Section 8.1 and Section 8.2 respectively.

8.1 Nested SPDE models

A limitation of the popular Matérn covariance family is that it does not contain
any covariance functions with negative values, such as oscillating covariance func-
tions. One way of constructing a larger class of stochastic fields is to consider a
generalization of the SPDE (10) of the form L1X = L2W for some linear dif-
ferential operators L1 and L2. In Paper C, the class of nested SPDE models is
introduced. The nested SPDE models are stochastic fields generated by the SPDE

(
n1∏

i=1

(κ2
i −Δ)

αi
2

)

X =

(
n2∏

i=1

(bi + B⊤
i ∇)

)

W, (13)

for some parameters αi ∈ N and κi > 0, bi ∈ R and Bi ∈ R
d . The class of

models contains a wide family of stochastic fields, including both the Gaussian
Matérn fields and fields with oscillating covariance functions. Some examples of
possible covariance functions that can be obtained with this model are shown in
Figure 7.

As for the standard Matérn SPDE, the class of models is easily extended to
non-stationary versions on general smooth manifolds by allowing the parameters
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Figure 7: Covariance functions of random fields obtained from the nested SPDE
model (13) with different parameters.

in the SPDE to vary with space. Using the Hilbert space approximation technique
for the nested SPDE models does not produce GMRF weights directly; however,
it is shown that Markov properties still can be used so that all computational
advantages are preserved when extending the method to the nested SPDE models.

8.1.1 An application to random linear wave theory

In Paper C, the nested SPDE models are used to analyze a large data set of global
total column ozone measurements. Another interesting application of this model
class, presented in Lindgren et al. (2010), is its use in random linear wave theory.
This is a theory for ocean surface waves that is widely used in, for example, naval
architecture and coastal engineering. The condition of the ocean surface is, in this
theory, modeled as a stochastic field (Holthuijsen, 2007). The most important
concept in random linear wave theory is the wave spectrum, which defines the sea
state, i.e. the most relevant properties of the ocean surface. The wave spectrum
is most often defined through the directional spectrum E(ω, θ) = S(ω)D(θ,ω).
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The function S(ω) is called the wave frequency spectrum, and does not contain
any information about the direction of the waves. The directional information is
contained in the angularly dependent part D(θ,ω), which is normalized such that

∫ 2π

0
D(θ,ω) dθ = 1, ∀ω ≥ 0. (14)

The most well-known parametric form of S(ω) is the so-called Pierson-Moskowitz
spectrum SPM (ω) = APM ω

−5 exp
(
−BPM ω

−4
)
, where APM and BPM are para-

meters related to the main sea state parameters4. As for the angularly depend-
ent part, an often used form is the cos-2s-distribution5 which can be written as
D(θ,ω) = c(s) cos2s

(
2−1(θ − θ1)

)
, where the constant c(s) is a normalization

factor such that the condition (14) is satisfied.
Lindgren et al. (2010) proved the following theorem, showing that the stand-

ard wave model with a Pierson-Moskowitz wave-frequency spectrum and a cos-2s
angular distribution can be obtained as a limiting case from a subclass of nested
SPDE models.

Proposition 8.1. The spectral density for X (s) given by the nested SPDE model

(
BPM g−2

s + 2
−Δ

) s+2
2

X (s) =
(

B⊤∇
)s
W(s)

converges to a random wave model with a Pierson-Moskowitz wave frequency spec-
trum and a cos-2s angular distribution D(θ) = c(s) cos2s(θ − θ1) as s → ∞. For a
fixed s, the nested SPDE model has an exact cos-2s angular distribution and an error
of APM

5BPM (s+1) in the wave frequency spectrum approximation measured in the L1-norm.

The nested SPDE representation of the wave model has two main advantages.
Firstly, since it is a local representation, non-stationary extensions are easy to ob-
tain by spatially varying the parameters of the SPDE. Secondly, the nested SPDE
formulation is valid on other domains than R

2, and one can therefore use it for
modeling waves on, for example, the globe. Another advantage with is that Hil-
bert space approximations can be used to obtain computationally efficient model
representations.

4Usually, one has APM = αPM g2(2π)4 and BPM = 5f 4
PM 4−1, where αPM and fPM are the energy

scale and peak frequency respectively.
5Note that s denotes the space variable in D, while s denotes the parameter in the cos-2s-

distribution. Also note that ω and θ in this section are used as parameters in the wave frequency
spectrum, and not as an event in the abstract sample space Ω and a tapering range respectively.
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Figure 8: A Pierson-Moskowitz wave frequency spectrum (blue curve) and ap-
proximations for the worst case s = 1 (dashed curves) and the frequently used
case s = 15 (solid curves). The green curves are the approximations from Propos-
ition 8.1 and the red curves are L1-optimal approximations for the given operator
orders.

The limitation is that the parameters in the cos-2s-distribution are connected
to the order of the approximation, since α = s+2 is used. This should not be a big
problem in practice since the convergence is reasonably fast. As shown in Figure 8,
the wave frequency spectrum is similar to the Pierson-Moskowitz spectrum even
for the worst case s = 1, and the difference for the, in practice popular, case
s = 15 will likely be smaller than the parameter estimation error if the model
is estimated from data. If one is not satisfied with the approximation, a better

approximation can be obtained using L1 =
∏s+2

i=1(κ2
i −Δ)

1
2 . Figure 8 also shows

the L1-optimal approximations assuming that L1 is on the product form. A last
thing to note is that, since the nested SPDE models are purely spatial models, the
angularly dependent part is always symmetric in the sense that D(θ+ π) = D(θ).
That is, one can obtain cos-2s distributions of the form cos2s(θ − θ0) but not of
the form cos2s( θ−θ0

2 ). To avoid this problem, one would have to include time
in the generating SPDE, which would require a spatio-temporal extension of the
nested SPDE models. This is likely possible using an extension similar to (12)
but is a subject for further research.
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8.2 Spatial Matérn fields driven by non-Gaussian noise

The fact that a Gaussian Matérn field on R
d can be viewed as a solution to the

SPDE (10) seems like a fairly straightforward statement; however, the formal
presentation of this connection is far from obvious and requires a detailed analysis.
In Paper E, this connection is studied for a more general class of models

(κ2 −Δ)
α

2 X =
.

M , (15)

where M is an arbitrary independently scattered L2-valued random measure with
E(|M( dx)|2) = C dx for some C < ∞. Examples of such measures are Laplace
measures and standard Brownian sheets. The most obvious problem with the
statement is that equation (15) has no point-wise meaning. Thus, (15) is viewed
as an equation for two random (tempered) distributions so the equation has to be
interpreted in the weak sense

T X (φ) =
.

M (φ), (16)

where φ is in some appropriate space of test functions and T = (κ2 − Δ)
α

2 .
To describe the solutions of (15), the Sobolev spaces Ht of fractional order t are
needed. These can be seen as an extension of the classical Sobolev space, of L2

functions with all partial derivatives of order n or less in L2, to fractional values of
n. The following characterization of the solutions to (15) is then shown.

Proposition 8.2. Assume that M is an independently scattered L2-valued random
measure with E(|M( dx)|2) = C dx. Then for κ > 0, α > 0, there exists a random
functional X : Hn × Ω → R such that for a certain set Ω0, P(Ω0) = 1 and for all
ω ∈ Ω0 and all φ ∈ Hn

X (φ,ω) =
∫

Gαφ(x)M( dx,ω),

where Gαφ(x) =
∫

Gα(s, x)φ(s) ds and

Gα(s, x) =
21− α−d

2

(4π)
d
2Γ(α2 )κα−d

(κ‖s − x‖) α−d
2 K α−d

2
(κ‖s − x‖).

This is the unique Hn-solution to (15) if n > d/2, and moreover we have X ∈ Hm

almost surely for m < α− d/2.
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Figure 9: A simulation of a stationary Laplace-driven SPDE (15) on R (lower
panel), its marginal density (upper left) and covariance function (upper right).

Using this proposition in combination with the Sobolev embedding theorem
(see e.g. Adams, 1975), one finds the solution can be identified with a random
function with a Matérn covariance function if α > d/2. This fact is then used
to extend the SPDE method by Lindgren et al. (2011) to a more general class
of non-Gaussian models with Matérn covariances. An example of such a non-
Gaussian process can be seen in Figure 9. As an application, the method is used
for the Laplace moving average (LMA) models with Matérn covariances by Åberg
and Podgórski (2011). The LMA model is specified as a process convolution
where a Matérn kernel function is used and the Brownian sheet is replaced with
a Laplace field. Parameter estimation for this model class has previously been
performed using method of moments estimation (see Podgórski and Wegener,
2011). However, using the SPDE representation of the LMA model, a maximum
likelihood parameter estimation method based on the EM algorithm is derived,
as well as an efficient sampling method for the model class.
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9 Comments on the papers

Paper A
Fast Estimation of Spatially Dependent Temporal Vegetation Trends
using Gaussian Markov Random Fields

Bolin, D., Lindström, J., Eklundh, L., and Lindgren, F.

A summary of the paper is given in Section 4.2. The main contribution of the
paper is the formulation of the spatially dependent regression model and the de-
rivation of the estimation procedure for the model. The paper also contributes to
the remote sensing community by using the spatially dependent regression model
to analyze vegetation data from the African Sahel.

The method was developed in collaboration with J. Lindström, who also did
parts of the writing. L. Eklundh wrote parts of the introduction. All other work
was done by me, including all implementations and the main part of the writing.

Paper B
How do Markov approximations compare with other methods for
large spatial data sets?

Bolin, D. and Lindgren, F.

A summary of the paper is given in Section 7.1. The paper contributes by ex-
tending the SPDE method using wavelet basis functions and provides a detailed
comparison between the SPDE method, the process convolution method, and the
covariance tapering method with respect to their ability to approximate Gaussian
Matérn models.

The setup for the comparison was designed in collaboration with the co-
author, who also did proofreading of the article and made several improvements to
the manuscript. All other work was done by me, including all implementations.

Paper C
Spatial models generated by nested stochastic partial differential equa-
tions, with an application to global ozone mapping

Bolin, D. and Lindgren, F.

A summary of the paper is given in Section 8.1. The main contribution of the
paper is the introduction of the class of nested SPDE models and the derivation

31



Introduction and summary

of its properties. Another contribution is a new representation of a basis that can
be used for modeling vector fields on the sphere. The paper also addresses remote
sensing problems by using the nested SPDE models to analyze total column ozone
data.

Parts of the model formulations and the data analysis were done in collab-
oration with the co-author, who also did proofreading of the writing and made
several improvements and clarifications to the text. All other work was done by
me, including all implementations and proofs.

Paper D
Spatial Matérn fields driven by non-Gaussian noise

Bolin, D.

A summary of the paper is given in Section 8.2. The paper contributes by ex-
tending the SPDE method to non-Gaussian models using a careful analysis of a
general class of SPDEs. It is also shown that the SPDE representation can be used
to derive a maximum likelihood estimator and an efficient simulation method for
Laplace moving average models.

Paper E
Excursion and contour uncertainty regions for latent Gaussian models

Bolin, D. and Lindgren, F.

A summary of the paper is given in Section 5. The main contributions of the
paper are the definitions of the various excursion sets and uncertainty sets for
level curves and the introduction of the excursion functions as a visual tool that
can be used for illustrating uncertainty in these quantities. A new method for
calculating these sets in practice is also introduced and the method is used to
analyze the Sahel vegetation data and air pollution data from the Piemonte region
in northern Italy.

The problem formulation was done in collaboration with the co-author, who
also provided many of the various definitions, and made several improvements
and clarifications to the text. All other work was done by me, including the
construction of the method used for calculating the sets and all implementations.

32



References

References

Åberg, S. and Podgórski, K. (2011). A class of non-Gaussian second order random
fields. Extremes, 14:187–222.

Åberg, S., Podgórski, K., and Rychlik, I. (2009). Fatigue damage assessment for
a spectral model of non-Gaussian random loads. Probab. Eng. Mech., 24:608–
617.

Adams, R. A. (1975). Sobolev Spaces. Academic Press.

Adler, R. J. (1981). The Geometry of Random Fields. Wiley, New York.

Agbu, P. and James, M. (1994). The NOAA/NASA Pathfinder AVHRR Land Data
Set User’s Manual. Goddard Distributed Active Archive Center, NASA, God-
dard Space Flight Center, Greenbelt.

Banerjee, S., Gelfand, A. E., Finley, A. O., and Sang, H. (2008). Gaussian pre-
dictive process models for large spatial data sets. J. Roy. Statist. Soc. Ser. B Stat.
Methodol., 70(4):825–848.

Barry, R. P. and Ver Hoef, J. M. (1996). Blackbox kriging: Spatial prediction
without specifying variogram models. J. Agr. Biol. Environ. Statist., 1(3):297–
322.

Beaky, M. M., Scherrer, R. J., and Villumsen, J. V. (1992). Topology of large-scale
structure in seeded hot dark matter models. Astrophys. J., 387:443–448.

Besag, J. (1974). Spatial interaction and the statistical analysis of lattice systems
(with discussion). J. Roy. Statist. Soc. Ser. B Stat. Methodol., 36:192–225.

Besag, J., York, J., and Mollié, A. (1991). Bayesian image restoration, with two
applications in spatial statistics (with discussion). Ann. Inst. of Statist. Math.,
43:1–59.

Billingsley, P. (1986). Probability and Measure. John Wiley & Sons Ltd, 2nd
edition.

Bochner, S. (1955). Harmonic analysis and the theory of probability. University of
California press, Berkeley, CA.

33



Introduction and summary

Chui, C. K. and Wang, J.-Z. (1992). On compactly supported spline wavelets
and a duality principle. T. Am. Math. Soc., 330:903–915.

Cressie, N. (1991). Statistics for Spatial Data. John Wiley & Sons Ltd.

Cressie, N. and Johannesson, G. (2008). Fixed rank kriging for very large spatial
data sets. J. Roy. Statist. Soc. Ser. B Stat. Methodol., 70(1):209–226.

Cressie, N. and Ravlicová, M. (2002). Calibrated spatial moving average simula-
tions. Statist. Model., 2:267–279.

Cressie, N. and Wikle, C. (2011). Statistics for Spatio-Temporal Data. Wiley Series
in Probability and Statistics. Wiley.

Daubechies, I. (1992). Ten Lectures on Wavelets (CBMS-NSF Regional Conference
Series in Applied Mathematics). Soc for Industrial & Applied Math.

Dempster, A. P., Laird, N. M., and Rubin, D. B. (1977). Maximum likelihood
from incomplete data via the EM algorithm. J. Roy. Statist. Soc. Ser. B Stat.
Methodol., 39(1):1–38.

Eklundh, L. and Olsson, L. (2003). Vegetation index trends for the African Sahel
1982–1999. J. Geophys. Res., 30:1430–1433.

Fisher, R. A. (1926). The arrangement of field experiments. J. Min. Agric. G. Br.,
33:503–513.

Furrer, R., Genton, M. G., and Nychka, D. (2006). Covariance tapering for
interpolation of large spatial datasets. J. Comput. Graph. Statist., 15:502–523.

Gamerman, D., Moreira, A., and Rue, H. (2003). Space-varying regression mod-
els: specifications and simulation. Comput. Statist. and Data Anal., 42:513–
533.

Gelfand, A., Diggle, P., and Guttorp, P. (2010). Handbook of spatial statistics.
Chapman & Hall/CRC handbooks of modern statistical methods. Taylor &
Francis Group.

Genz, A. and Bretz, F. (2009). Computation of Multivariate Normal and t Probab-
ilities, volume 195 of Lecture Notes in Statistics. Springer.

34



References

Higdon, D. (2001). Space and space-time modeling using process convolutions.
Technical report.

Holthuijsen, L. H. (2007). Waves in Oceanic and Coastal Waters. Cambridge
University Press.

Hrafnkelsson, B. and Cressie, N. (2003). Hierarchical modeling of count data
with application to nuclear fall-out. Environ. and Ecological Statist., 10(2):179–
200.

James, M. and Kalluri, S. (1994). The Pathfinder AVHRR Land data set: An im-
proved coarse resolution data set for terrestrial monitoring. Internat. J. Remote
Sensing, 15:3347–3363.

Justice, C. and Hiernaux, P. (1986). Monitoring the grasslands of the Sahel using
NOAA AVHRR data: Niger 1983. Internat. J. Remote Sensing, 7:1475–1497.

Krige, D. G. (1951). A statistical approach to some basic mine valuation prob-
lems on the Witwatersrand. J. Chem., Metal. and Mining Soc. South Africa,
52(6):119–139.

Lamb, P. (1982). Persistence of Subsaharan drought. Nature, 299:46–47.

Lindgren, F., Rue, H., and Lindström, J. (2011). An explicit link between Gaus-
sian fields and Gaussian Markov random fields: the stochastic partial differen-
tial equation approach (with discussion). J. Roy. Statist. Soc. Ser. B Stat. Meth-
odol., 73:423–498.

Lindgren, G., Bolin, D., and Lindgren, F. (2010). Non-traditional stochastic
models for ocean waves. European Phys. J. - Special Topics, 185:209–224.

Marchini, J. and Presanis, A. (2003). Comparing methods of analyzing fMRI
statistical parametric maps. NeuroImage, 22:1203–1213.

Matérn, B. (1960). Spatial variation. Meddelanden från statens skogsforskningsin-
stitut, 49(5).

Matheron, G. (1963). Principles of geostatistics. Econom. Geol., 58:1246–1266.

Matheron, G. (1971). The theory of regionalized variables, and its applications.
Centre de Geostatistique, Fontainebleau, Paris.

35



Introduction and summary

Nicholson, S. (2000). Land surface process and Sahel climate. Rev. of Geophys.,
38:117–140.

Nychka, D., Wikle, C., and Royle, J. A. (2002). Multiresolution models for
nonstationary spatial covariance functions. Statist. Model., 2:315–331.

Olsson, L. (1993). On the causes of famine – drought, desertification and market
failure in the Sudan. Ambio, 22:395–403.

Omre, H. and Halvørsen, K. (1989). The bayesian bridge between simple and
universal kriging. Mathematical Geology, 21:767–786.

Podgórski, K. and Wegener, J. (2011). Estimation for stochastic models driven
by Laplace motion. Commun. Statist.- Theory Methods, 40:3281–3302.

Robert, C. P. and Casella, G. (2004). Monte Carlo Statistical Methods. Springer,
second edition.

Rodrigues, A. and Diggle, P. J. (2010). A class of convolution-based models for
spatio-temporal processes with non-separable covariance structure. Scand. J.
Statist., 37:553–567.

Rue, H. and Held, L. (2005). Gaussian Markov Random Fields; Theory and Applic-
ations, volume 104 of Monographs on Statistics and Applied Probability. Chap-
man & Hall/CRC.

Rue, H., Martino, S., and Chopin, N. (2009). Approximate Bayesian inference
for latent Gaussian models using integrated nested Laplace approximations
(with discussion). J. Roy. Statist. Soc. Ser. B Stat. Methodol., 71(2):319–392.

Rue, H. and Tjelmeland, H. (2002). Fitting Gaussian Markov random fields to
Gaussian fields. Scand. J. Statist., 29(1):31–49.

Sampson, P. D. and Guttorp, P. (1992). Nonparametric estimation of nonstation-
ary spatial covariance structure. J. Amer. Statist. Assoc., 87(417):108–119.

Schabenberger, O. and Gotway, C. (2005). Statistical methods for spatial data
analysis. Texts in statistical science. Chapman & Hall/CRC.

Seaquist, J., Olsson, L., and Ardö, J. (2003). A remote sensing-based primary
production model for grassland biomes. Ecological Model., 169:131–155.

36



References

Stein, M. L. (1999). Interpolation of Spatial Data: Some Theory for Kriging.
Springer-Verlag, New York.

Tobler, W. R. (1970). A computer movie simulating urban growth in the detroit
region. Econom. Geogr., 46:234–240.

Tucker, C., Vanpraet, C., Sharman, M., and Van Ittersum, G. (1985). Satellite
remote sensing of total herbaceous biomass production in the Sengalese Sahel:
1980–1984. Remote Sensing of Environ., 17:233–249.

Walsh, J. (1986). An introduction to stochastic partial differential equations. In
École d’Été de Probabilités de Saint Flour XIV - 1984, volume 1180 of Lecture
Notes in Mathematics, chapter 3, pages 265–439. Springer Berlin / Heidelberg.

Wendland, H. (1995). Piecewise polynomial, positive definite and compactly
supported radial functions of minimal degree. Adv. Comput. Math., 4:389–
396.

Werner Hartman, L. (2006). Bayesian modelling of spatial data using Markov
random fields, with application to elemental composition of forest soil. Math.
Geol., 38(2):113–133.

Whittle, P. (1954). On stationary processes in the plane. Biometrika, 41:434–449.

Whittle, P. (1963). Stochastic processes in several dimensions. Bull. Internat.
Statist. Inst., 40:974–994.

Wikle, C. K., Berliner, L. M., and Cressie, N. (1998). Hierarchical Bayesian
space-time models. Environ. and Ecological Statist., 5(2):117–154.

Woodbury, M. A. (1950). Inverting modified matrices. S.R.G. Princeton, Memo.
Rep. n.o. 42.

37





A





Fast estimation of spatially dependent
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Abstract: There is a need for efficient methods for estimating trends in spatio-
temporal Earth Observation data. A suitable model for such data is a space-
varying regression model, where the regression coefficients for the spatial loca-
tions are dependent. A second order intrinsic Gaussian Markov Random Field
prior is used to specify the spatial covariance structure. Model parameters are es-
timated using the Expectation Maximisation (EM) algorithm, which allows for
feasible computation times for relatively large data sets. Results are illustrated
with simulated data sets and real vegetation data from the Sahel area in northern
Africa. The results indicate a substantial gain in accuracy compared with meth-
ods based on independent ordinary least squares regressions for the individual
pixels in the data set. Use of the EM algorithm also gives a substantial perform-
ance gain over Markov Chain Monte Carlo-based estimation approaches.

Key words: Gaussian Markov random fields; temporal trends; vegetation data;
EM algorithm; spatio-temporal modeling; African Sahel

1 Introduction

Current awareness of global warming has directed scientific interest towards ef-
fective monitoring of land surface changes. Trends in vegetation cover are related
to changes in climatic drivers, feedback mechanisms between the atmosphere and
land surface, and human interaction. A region with rapid recent changes is the
African Sahel. This zone has received much attention regarding desertification
and climatic variations (Olsson, 1993, Nicholson, 2000, Lamb, 1982). The re-
gion saw an increase in rainfall in the 1960’s, but since then, rainfall over the Sahel
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has decreased severely (Hulme, 2001). Starting in the late 1960’s, the area suffered
droughts for over twenty years, culminating with a severe drought and famine in
1983-1984. Since the 1983-1984 famine, and because of the growing archive of
meteorological satellite observations, several authors have used satellite imagery
to study vegetation in the Sahel (Tucker et al., 1985, Justice and Hiernaux, 1986,
Seaquist et al., 2003).

Recently, Eklundh and Olsson (2003) observed a strong increase in seasonal
vegetation index over parts of the Sahel using Advanced Very High Resolution
Radiometer (AVHRR) data from the NOAA/NASA Pathfinder AVHRR Land
(PAL) database (Agbu and James, 1994, James and Kalluri, 1994), for the period
1982-1999. The study was based on ordinary least squares (OLS) linear regression
on individual time series extracted for each pixel in the satellite images. The
changes were interpreted as a vegetation recovery from the earlier drought periods
(Olsson et al., 2005), and was found to be related to an increase in rainfall (Hickler
et al., 2005).

However, the time period of space observations is relatively short and the
data affected by numerous disturbances, e.g. inter-sensor calibration and satellite
drift (Lindström et al., 2006), atmospheric water vapour (Tanré et al., 1992),
aerosol variations (Hanan et al., 1995), geometric errors, clouds, and effects of
anisotropic surface reflectance (Holben, 1986, Prince and Goward, 1996). The
noisy data affect significance levels of the derived trends, reducing the possibility
of generating unambiguous trend images. A drawback with the OLS method,
is that spatial dependencies in the vegetation cover are neglected. The model
presented in this work aims at generating a more efficient analysis by including
these dependencies. For comparison, it is tested on the same data as were used in
Eklundh and Olsson (2003).

There are several ways of incorporating spatial context into the analysis. A
simple approach is to use smoothing, either on the calculated regression coeffi-
cients, or directly on the spatio-temporal data using three-dimensional smoothing
(Fan and Gijbels, 1996, Di Giacinto et al., 2005). Another approach is to con-
struct a Bayesian Hierarchical model (Wikle et al., 1998, Gelman et al., 2004),
where the spatial dependence is introduced either by letting the regression errors
be spatially dependent (Cressie, 1991, Chapters 2-5) or by utilising a spatially de-
pendent prior on the regression coefficients (Besag et al., 1991, Gamerman et al.,
2003).

Here, we formulate the regression based on a Bayesian hierarchical model.
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2. Statistical model

The data is considered to be noisy observations of underlying fields. A prior on
the regression coefficients is then introduced by assuming a spatial dependence
structure for each of the underlying fields and further assuming that the time
evolutions of the pixels in the fields are restricted to lie in the space spanned by
the regression functions. This restriction introduces a spatial prior on the re-
gression coefficients. The parameters of the model can, potentially, be estimated
using a Markov Chain Monte Carlo (MCMC) based approach, but the large data-
set makes this computationally infeasible (Bolin, 2007). Instead we estimate the
model parameters using the Expectation Maximisation (EM) algorithm (Demp-
ster et al., 1977), which allows for reasonably fast computations even when the
studied data-set is large.

2 Statistical model

Assume that we have observations in an area of size n1 × n2 pixels at the times
t = 0, 1, . . . ,T − 1. We will, from now on, assume that all images are column
vectorised, so that an image is represented by a vector of size n = n1n2. Denote
an observation at time t ∈ [0,T − 1] by Yt ∈ R

n−nt , where nt is the number of
missing data points at time t. We assume that each observation is generated as,

Yt |Xt ,Σεt ∈ N(AtXt ,Σεt ),

where Xt is an underlying field with prior distribution π(Xt), Σεt is a measure-
ment noise covariance matrix, and At is an observation matrix determining the
observed pixels. That is, if the field is measured at the locations i1, . . . , in−nt , the
observation matrix, At , will be of size (n− nt)× n, and have all elements equal to
zero except for

A1,i1 = . . . = An−nt ,in−nt
= 1.

Assuming that Xt1 and Xt2 are independent for t1 6= t2, the probability density
for X⊤ = (X⊤

0 , . . . ,X
⊤
T−1)⊤ would be

π(X) =
T−1∏

t=0

π(Xt). (1)

To estimate time varying trends in the observations, we introduce a T ×m-matrix
F = [f1, . . . , fm] containing basis functions for the trends. These basis functions
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are chosen to be linearly independent, i.e. rank(F) = m. Restricting X to follow
these trends, we get

X = (F⊗ I)K, (2)

where K = [K⊤
1 , . . . ,K

⊤
m ]⊤ contains the coefficients for the trends and I is an

n × n identity-matrix. The prior distribution for K is obtained by evaluating (1)
conditionally on the restriction (2).

2.1 Gaussian Markov random fields

A suitable prior describing the spatial dependencies in Xt is a Gaussian Markov
Random Field (GMRF) (see Rue and Held, 2005, for extensive details). A ran-
dom variable x = (x1, . . . , xn)⊤ ∈ N(μ,Q−1) is called a GMRF if the joint
distribution for x satisfies π(xi|x−i) = π(xi|xNi ) ∀ i. Here Ni is the neighbour-
hood of i and x−i denotes all elements in x except xi. An important implication
of this is that if i 6= j then:

xi ⊥ xj|x−{i,j} ⇐⇒ Qi,j = 0⇐⇒ j /∈ Ni. (3)

This means that the following properties are equivalent: 1) xi and xj are condi-
tionally independent 2) the corresponding element in the precision matrix, Qi,j is
zero and 3) i and j are not neighbours. Since Qi,j 6= 0 only if i and j are neigh-
bours, most GMRFs will have sparse precision matrices. The sparse precision
matrix is the main reason for using GMRFs in this work; none of the following
computations would be feasible for full matrices because of the large number of
observations and nodes in the fields.

In the analysis, we will use a special type of GMRFs called Intrinsic Gaussian
Markov Random Fields (IGMRFs). An IGMRF is improper, that is, its precision
matrix does not have full rank.

Definition 2.1. Let x = (x1, . . . , xn)⊤, and let Q be an n× n symmetric positive
semi-definite matrix with rank n− k, such that

Qi,j 6= 0 ⇐⇒ j ∈ Ni.

Then x is an Intrinsic GMRF, with parameters μ and Q if its density is

π(x) =
|Q|

1
2
∗

(2π)
n−k

2

exp

(

−1
2

(x− μ)⊤Q(x− μ)

)

. (4)
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Here, |Q|∗ denotes the product of the n − k non-zero eigenvalues of Q, and
following Rue and Held (2005), we will call this the generalised determinant of
Q. It should be noted that the density of an IGMRF is not a true density, since
it is invariant to additions of vectors from the null-space of Q. Hence, it cannot
be normalised to integrate to one. The parameters, μ and Q, no longer represent
the mean and precision, since these formally do not exist; however, we will for
convenience continue denoting them as mean and precision.

We choose a second-order polynomial IGMRF (Gamerman et al., 2003, Rue
and Held, 2005, Section 3.4.2) as a smooth prior. The field is invariant to the
addition of an arbitrary plane, p(i, j) = a + bi + cj, and the precision matrix, κQ

has a rank deficiency of 3. Here κ is a scaling parameter that governs the strength
of the dependence in the IGMRF. The second order IGMRF can be seen as a set
of penalties on

(Δ2
(1,0) +Δ

2
(0,1))xi,j, (5)

where Δ(1,0) and Δ(0,1) are forward-differences in the directions (1, 0) and (0, 1)
respectively, and Δ2

(1,0) + Δ
2
(0,1) is a discrete approximation of the Laplace op-

erator. Due to (5), this IGMRF can be interpreted as penalties on the second
derivatives if the field is used to model an underlying continuous field.

2.2 Regression model

Using the second order IGMRF, described above, a distribution for each Xt in
(1), with an unknown precision parameter κ, we get that X|κ ∈ N(0, (κQ)−1),
where Q = I ⊗ QX and QX is the precision matrix for a second order IGMRF.
Given the restriction in (2), we can now derive the distribution of the parameter
field, K.

Proposition 2.2. K|κ is an IGMRF of rank m(n−3) with zero mean and covariance
matrix (κQ)−1, where Q = (F⊤F)⊗QX .

For proof see Appendix A.
Note that the sparsity structure of Q is partially determined by the orthogon-

ality of the regression basis, F, see Figure 1.
Using the distribution for K|κ from Proposition 2.2, we can now write the

observations, Y, as Y|K,Σε ∈ N(AK,Σε). Here, Σε is a block diagonal matrix
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Figure 1: The figure depicts the sparsity structure in Q, Proposition 2.2, for a
field with 400 nodes and three regression basis vectors for orthogonal regression
basis (left) and non-orthogonal regression basis (right) respectively. The number
of non-zero elements in each of the matrices is denoted nz.

such that

Σε =






Σε0 0
. . .

0 ΣεT−1




 ,

and A = diag(A1, . . . ,AT−1)(F ⊗ I), where I is an n × n identity matrix. The
posterior distribution for K given data,Σε, and κ becomes

π(K|Y,Σε, κ) ∝ π(Y|K,Σε)π(K|κ)π(κ)π(Σε)

∝ π(Y|K,Σε)π(K|κ).

This follows since we choose to use flat priors for κ and Σε, i.e. π(κ) ∝ 1 and
π(Σε) ∝ 1. It can be shown (Rue and Held, 2005, p. 39) that the posterior
distribution of K is K|Y,Σε, κ ∈ N(μK |Y ,Q

−1
K |Y ) , with

μK |Y = Q−1
K |Y A⊤Σ−1

ε Y and QK |Y = κQ + A⊤Σ−1
ε A. (6)
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2.3 Noise model

To complete the model we need a noise model, i.e. we need to determine the
structure of Σε. Many of the factors that the measurement noise should model
are local phenomena, such as aerosol and cloud cover. Since it seems unreason-
able that the scale of these disturbances would be the same over the entire, large,
region, we assume a noise model with a different noise variance at each pixel. Fur-
ther, for simplicity, we take the noise to be spatially uncorrelated. Thus Σε is a
(nT −∑t nt)× (nT −∑t nt ) diagonal matrix with n unique diagonal elements,
σ2

1, . . . ,σ
2
n, which represent the noise variances of the n different pixels. Note

that Σε can be constructed by starting from the matrix I ⊗ diag(σ2
1 . . . σ2

n),
where I is a T ×T identity-matrix, and then removing all rows and columns that
correspond to missing observations.

3 EM parameter estimation

By construction, the structure of the precision matrix, Q, in (6) is known a pri-
ori, whereas the parameters κ and Σε have to be estimated. These parameters
can, potentially, be estimated using an MCMC based approach. However, two
difficulties arise when attempting to estimate this model with MCMC. Firstly,
given the large number of variance parameters in Σε, parameters that are likely
to be correlated, we find it very challenging to construct an efficient proposal dis-
tribution that ensures good mixing of the Markov chain. Secondly, even if this
issue is avoided by assuming a simpler measurement noise model with one com-
mon variance parameter for all the pixels in the field, the large data-set makes an
MCMC based estimation approach computationally infeasible (see Bolin, 2007,
for details).

A better alternative is to interpret the problem as a missing data problem.
This interpretation facilitates use of the EM algorithm, allowing for much faster
computations of maximum likelihood parameter estimates (a comparison of com-
putational times for simulated data is given in the last paragraph of Section 6.1).

Augmenting the observed data, Y, with the unknown regression coefficients,
K, we obtain the complete data, (Y,K), and the augmented likelihood becomes

L(κ,Σε|Y,K) = π(Y,K|κ,Σε) = π(Y|K,Σε)π(K|κ).

Taking the parameters as, θ = (κ,Σε), the loss-function is

Q(θ, θ(i)) = E(log(L(θ|K,Y))|Y, θ(i)), (7)
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where θ(i) is an estimate of θ at iteration i, and the expectation is taken over K.
The likelihood consists of two parts, π(Y|K,Σε) and π(K|κ). For the first

part we have that (Y|K,Σε) ∈ N(AK,Σε), hence

log(π(Y|K,Σε)) = log

(

1

(2π)
n
2 |Σε|

1
2

)

− 1
2

(Y− AK)⊤Σ−1
ε (Y− AK)

= −1
2

n∑

j=1

(

nj log(σ2
j ) +

1
σ2

j

nj
∑

k=1

(Y− AK)2
jk

)

+ const.

Here, nj is the number of observations at pixel j (not to be confused with nt ,
the number of missing observations at time t), and the last sum runs over these
observations, with (Y− AK)jk referring to the deviation of the kth observation of
pixel j, from the regression line. Similarly, since K|κ ∈ N(0, (κQ)−1), we get

log(π(K|κ)) =
1
2

log(|κQ|∗)− κ

2
K⊤QK + const. (8)

By Proposition 2.2, the rank of Q is m(n− 3), where n is the number of pixels in
the image, giving

log(π(K|κ)) =
m(n− 3)

2
log(κ)− κ

2
K⊤QK + const. (9)

Thus, the loss-function becomes

Q(θ, θ(i)) =
m(n− 3)

2
log(κ)− κ

2
E(K⊤QK|∗)

− 1
2

n∑

j=1

(

nj log(σ2
j ) +

1
σ2

j

nj
∑

k=1

E((Y− AK)2
jk |∗)

)

+ const.,
(10)

where the notation E(. . . |∗) means E(. . . |Y, κ(i),Σ(i)
ε ).

To calculate arg maxθQ(θ, θ(i)), we differentiate (10) with respect to the para-
meters κ and σ2

1, . . . ,σ
2
n and set these derivatives equal to zero, yielding

σ2(i+1)
j =

1
nj

nj
∑

k=1

E((Y− AK)2
jk |∗), for 1 ≤ j ≤ n, and

κ(i+1)
=

m(n− 3)

E(K⊤QK|∗) .
(11)
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Recall that these updating equations are derived under the assumption of flat
priors for κ and σ2

1, · · · ,σ2
n. However it can easily be shown that Gamma and

independent inverse-Gamma priors for κ and σ2
1, · · · ,σ2

n respectively will yield
tractable updating expressions in (11).

In general, the expectations in (11) can now be found by simulating from
the posterior density, π(K|Y, θ(i)), using a Monte Carlo-approach. However, in
this case the observations given the underlying field, π(Y|K,Σ(i)

ε ), are Gaussian
which in turn implies that the posterior density, π(K|Y, θ(i)), is Gaussian and we
can calculate the updating rules in (11) analytically. The first expectation in (11)
becomes

E((Y− AK)2
jk |∗) = Y 2

jk − 2Yjk A(jk,•)E(K|∗) + E((A(jk,•)K)2|∗)
= (Yjk − A(jk,•)E(K|∗))2

+ A(jk,•)VK |∗A⊤
(jk,•). (12)

Here, A(jk,•) denotes the row in A corresponding to the kth observation of pixel j,
and E(K|∗) = μK |Y and VK |∗ = Q−1

K |Y are given by (6).
Using that both the expected value and the trace of a matrix are linear oper-

ators, and the cyclic property of the trace, tr(ABC) = tr(CAB), we can calculate
E(K⊤QK|∗) as

E(K⊤QK|∗) = tr(E(K⊤QK|∗)) = tr(QE(KK⊤|∗))
= tr(Q(Q−1

K |Y + E(K|∗)E(K|∗)⊤))

= tr(QQ−1
K |Y ) + E(K|∗)⊤QE(K|∗). (13)

Calculating tr(QQ−1
K |Y ) and A(jk,•)Q

−1
K |Y A⊤

(jk,•) in (12) and (13) might not seem
feasible for large fields. However, three things should be noted: Firstly

A(jk,•)Q
−1
K |Y A⊤

(jk,•) = tr(A⊤
(jk,•)A(jk,•)Q

−1
K |Y ).

Secondly, due to the trace operator, only the diagonal elements of the products
(•Q−1

K |Y ) need to be calculated. Thirdly Q and A⊤
(jk,•)A(jk,•) are at least as sparse as

QK |Y , thus to calculate the traces we will at most need the elements of Q−1
K |Y that

correspond to neighbouring points in the GMRF, given the Cholesky factor these
elements can be calculated without calculating the entire inverse (Rue and Martino,
2007), making (12) and (13) computationally feasible.
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4 Testing for significant trends

A relevant question to ask is where changes in the vegetation have occurred over
the course of the studied time period. A method which has been used to answer
this question for the Sahel data set, is to find the significant trends in the data
(Eklundh and Olsson, 2003). For an OLS regression this is relatively straight-
forward, although one has to keep in mind that the obtained significant trends
describe whether trends at each pixel are individually significant, and not if the
trends for all pixels in an entire region are significant. To obtain the latter, one
has to consider techniques for multiple hypothesis testing, one option would be
to do hypothesis testing on the contour lines of the Ki estimates. How to do such
tests is, however, far from trivial, and will not be investigated here.

Using the GMRF model and the parameter estimation algorithm described
above, maximum-likelihood estimates of κ and σ2

1, · · · ,σ2
n are obtained. Given

these, the conditional posterior for the K-field is

K|Y, κ,σ2
1, · · · ,σ2

n ∈ N
(

μK |Y ,Q
−1
K |Y

)

,

with μK |Y and QK |Y defined in (6).
The conditional variances of the K-estimates are given by the diagonal ele-

ments in Q−1
K |Y . Let kj

i be the coefficient corresponding to the trend fj at pixel xi,

and let σ̂j
i denote the corresponding standard deviation given by the square root

of the relevant diagonal element in Q−1
K |Y . A simple hypothesis test would now be

to reject the null hypothesis H0 : kj
i = 0 against H1 : kj

i 6= 0, at a 95% confidence
level if

∣
∣
∣
∣
∣

kj
i

σ̂
j
i

∣
∣
∣
∣
∣
> λ0.025,

where λ0.025 is the 2.5%-quantile of the N(0, 1)-distribution.
Simulation studies (see Table 1) indicate that this test rejects the null hypo-

thesis too often, i.e. the corresponding confidence interval for kj
i is too small. The

problem is that the uncertainty in the estimated parameters κ and σ2
1, · · · ,σ2

n are
ignored. A solution to this problem is to instead, as in OLS regression, reject the
null hypothesis if

∣
∣
∣
∣
∣

kj
i

σ̂
j
i

∣
∣
∣
∣
∣
> t0.025(f ), (14)
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where t0.025(f ) is the 2.5%-quantile of the Student’s t-distribution with f degrees
of freedom. To perform this test, we have to determine f , which in OLS depends
on the number of data points used to estimate kj

i , and thus σ̂j
i. Since κ determines

the smoothness in the parameter field, a large κ-value would imply that the re-
gression parameters are highly correlated. In this case, the estimate of a parameter
at a specific pixel is influenced, not only by the observations at that pixel, but also
by observation of surrounding pixels. On the other hand, if κ = 0, the model
breaks down to n independent OLS regressions, and each parameter is estimated
using only the observations of the corresponding pixel. Thus, it is reasonable
to assume that f will be dependent on κ. It is, however, not easy to determine
an analytic expression for f , and we therefore use a simulation based algorithm
for estimating the degrees of freedom: Given estimated values of κ and Σε, we
simulate new K-fields and corresponding data sets. From these data, we use the
EM algorithm to calculate new ML-estimates, κ∗,Σ∗

ε , and new posterior means
K∗ = E(K|Y, κ∗,Σ∗

ε). The residuals, ǫ =
∑

j f⊤j ⊗ (Kj − K∗
j ), are calculated

and each residual, ǫi,t , is normalised by division with its corresponding standard
deviation V(

∑

j fj(t)K ∗
j (i))1/2. In standard OLS regression, the residuals would

now follow a Student’s-t distribution with unknown degrees of freedom. Thus we
estimate f by maximising the log-likelihood, of the t-distribution

∑

j,t log tf (ǫj,t),
with respect to f , using a simplex search method (Lagarias et al., 1998). Simula-
tion studies, Table 1, indicate that (14) with f estimated as described above gives
correct significance levels.

5 Data

Many Earth Observation studies use Normalised Difference Vegetation Index
(NDVI) data (Rouse et al., 1973) as a remotely sensed measure of ground ve-
getation. The principle behind the NDVI is that leaf chlorophyll absorbs red
light, whereas the cell structure of leaves reflects light in the near-infrared spectra.
With these properties in mind, NDVI is calculated as

NDVI =
RNIR − RRED

RNIR + RRED
, (15)

where RNIR and RRED are the measured reflectancies in the near-infrared and
red spectral bands, respectively. Thus, dense vegetation tends to have positive
NDVI values, while soil and other areas with little vegetation tend to have NDVI
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values close to zero. Many studies have confirmed that NDVI correlates well with
important vegetation variables, e.g. biomass, and vegetation greenness (Myneni
et al., 1997, Sellers et al., 1997).

The Sahel is a semi-arid region, and it should be noted that NDVI data is
well suited for studies of such areas; because of the low humidity, the atmospheric
contamination of the data is fairly low (Chappell et al., 2001), and because of the
sparse vegetation, saturated NDVI values are less of a problem than for areas with
denser vegetation cover (Prince, 1991).

5.1 Data preprocessing

The PAL database is derived from measurements by the AVHRRs on-board the
NOAA series of meteorological satellites (Kidwell, 1998). Before the NDVI values
are calculated, the AVHRR data undergoes a number of calibration steps (see
Agbu and James, 1994, for details). The data is then mapped to 8 km × 8 km
pixels and 10-day maximum value composites are generated to compensate for
negative bias due to clouds (Holben, 1986). In spite of these corrections, the data
still contains unwanted noise.

The end result of the above processing is a set of 10-day maximum value com-
posites, for a total of 36 values per year. However we are interested in assessing
the year-to-year change in vegetation growth. Therefore the seasonal NDVI in-
tegral which gives a measure of the total vegetation growth during each year is of
interest.

In order to generate annual data, we use the Savitzky and Golay (1964)
algorithm of the TIMESAT processing scheme (Jönsson and Eklundh, 2002,
2004). The method begins by estimating the number of annual growing seasons
and the corresponding season lengths. When the approximate onsets and ends of
the growing seasons have been found, the time series is smoothed using a robust
locally weighted least-squares fit of a quadratic polynomial to the upper envelope
of the NDVI data (Press et al., 1992). The fit is adapted to the envelope of the data
to account for negatively biased noise, and the weights in the least-squares fitting
are determined using cloud cover data from the NOAA/NASA Cloud AVHRR
(CLAVR) data set (Stowe et al., 1991). To obtain annual data, the seasonal integ-
rals are calculated from the fitted functions and used in the following analysis. To
further reduce the amount of noise in the data, all seasons which have more than
one missing observation are removed. Also, to avoid artificial growing seasons in
desert areas, all seasons which have less than two NDVI values above 0.1 are set
to zero.
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6 Results

Recall that the model presented in Section 2.2 (from now on referred to as the
GMRF model) is to be used for estimating trends in vegetation data. In this
section, the model is compared to simple independent OLS regression for each
pixel (from now on referred to as the OLS model), using simulated data and real
NDVI data.

6.1 Simulated data

The two models are compared, using 17 years of simulated data. For these tests,
we use two orthogonal trend basis functions, one constant and one linearly in-
creasing. Hence, K1 will contain the intercepts, and K2 the slopes for the linear
trends.

To create a spatially dependent data set, Y = (Y0, . . . ,Y16), we generate de-
pendent K1- and K2-fields from the distribution in Proposition 2.2, with κ = 0.5.
To create a data set without spatial dependencies, we instead generate K1 and K2

by independently drawing values from N(0, 1). In both cases, Yt , t ∈ [0, 16], is
created as Yt = f1(t)K1 + f2(t)K2 + ε, where ε is a draw from N(0,Σεt ) andΣεt
is defined as in Section 2.3, with pixel variances σ2

i drawn independently from
a uniform distribution on [0, α]. We use images of size 40 × 40 pixels in four
different cases:

D1 Spatially dependent data with κ = 0.5 and α = 1.
D10 Spatially dependent data with κ = 0.5 and α = 10.

R1 Random data (κ = 0) with α = 1.
R10 Random data with α = 10.

The accuracy of the models are compared using the following tests:

1. Calculate the percentage of pixels correctly labelled as significant trends,
i.e. the number of significant trends with correct sign divided by the total
number of pixels.

2. Estimate the number of times that the confidence intervals for the estim-
ated trend coefficients cover the actual value. This number should be close
to 95%.

3. Compare the estimated K-fields with the actual K-fields using the Frobenius
norm: K ǫ

i = ‖Ki − K∗
i ‖F .
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K ǫ
1 K ǫ

2 Σǫ Cov (%) Sig (%)
D1 OLS 6.84 1.39 8.40 95.01 94.73

GMRF 3.63 0.74 8.09 94.87 97.12
D10 OLS 21.66 4.42 84.43 95.06 84.40

GMRF 6.27 1.28 79.86 94.85 95.41
R1 OLS 6.83 1.40 8.38 94.96 94.43

GMRF 6.81 1.43 11.92 94.88 94.42
R10 OLS 21.63 4.45 83.75 94.90 82.78

GMRF 21.02 4.57 84.57 94.44 82.58

Table 1: Results for simulated data. Each value is the average over 100 different
runs. Here, K ǫ

1 , K ǫ
2 , and Σǫ show the difference, measured in the Frobenius

norm, of the true and estimated K1- , K2- and Σε-fields, respectively. Cov is the
estimated coverage percentage for the K2 confidence intervals, which should be
close to the nominal 95%. Sig is the percentage of correctly labeled significant
trends.

4. Compare the Σε estimates with the actual measurement noise variances:
Σǫ = ‖Σε −Σ∗

ε‖F .

Each of the tests are done on 100 different data sets for each of the four cases
described above. The results for the tests are summarised in Table 1. As seen in
the table, the two models are fairly similar for random data whereas the GMRF-
estimations of the K-fields are more accurate for spatially dependent data. This
can be seen in Figure 2 where generated K-fields are shown together with the
two estimates. The lower variance of the estimates also results in a higher per-
centage of correctly labelled significant trends for spatially dependent data. The
GMRF algorithm is implemented in C/C++ using GMRFLib (Rue, 2007). For
these simulations, the average time for each step in the EM algorithm was 0.26
seconds, which, for example, resulted in an average computation time of 9.80
seconds for the D1 simulations. The computations were performed on a dual
CPU (2 × 2.1GHz) personal computer. For comparison, an MCMC based es-
timation algorithm was also implemented in C/C++, assuming a simpler meas-
urement noise model with one common variance parameter for all the pixels in
the field (see Bolin, 2007, for details). The average computation time for one it-
eration in this algorithm was 0.11 seconds, which resulted in a computation time
of 1050 seconds for parameter estimates based on 104 iterations.
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Figure 2: Results from a simulated data set with κ = 0.5 and α = 10. The
two upper rows show the true K1- and K2-fields and the estimates generated by
the OLS model and the GMRF model. Notice that the GMRF estimates are
smoother and more accurate. On the bottom row, the left figure indicates where
the true K2-field is positive (red) and negative (blue). The other two figures show
the significance estimates for the K2-trends. Notice that more correct significant
trends are found by the GMRF model.

6.2 Sahel data

We base the analysis on the seasonal NDVI integrals of the 18 years of data. The
results from the previous section indicate that more accurate vegetation trend
estimates can be obtained using the GMRF-model instead of independent OLS
regression for each pixel.

The GMRF model assumes as common precision parameter for the entire
field, which is probably not valid for the entire Sahel. Therefore, the following
results were obtained by dividing the area into smaller subareas, with a (large)
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overlap between the subareas, and applying the GMRF model to each of these
subareas. This way, κ is assumed to be constant only on the smaller subareas, and
the overlap between neighbouring subareas ensure that no discontinuities appear
in the joints between the subareas.

Using two orthogonal trend basis functions, one constant, and one linearly
increasing, we obtain estimates shown in Figures 3 and 4. In the figures, we see
that the estimates are somewhat similar, but that the GMRF estimates are much
smoother than the OLS estimates. A big difference in the estimates can be seen
in Figure 5. Here, the areas with significant linear trends are shown, and we see
that, compared to the OLS, the GMRF estimate has more significant trends and
larger contiguous regions with significant trends. This result is expected since
the GMRF estimate takes advantage of the spatial dependencies in the data, and
therefore uses more observations for each point estimate. As indicated in Sec-
tion 4, contour plots of the Ki estimates might also be of interest for visualisation
and hypothesis testing. In Figure 6, a contour plot of the GMRF K2 estimate
is shown. In this figure, it is easy to see where large increases in vegetation has
occurred. This is a big advantage with the GMRF method, since similar contour
plots for the OLS estimate are too noisy to easily interpret. The larger contiguous
regions and smoother estimates will most likely aid future interpretation of the
data and make it easier to detect underlying reasons for the detected changes in
vegetation.

Besides detecting purely linear trends, it is also of interest to find areas which
experience a large increase or decrease in seasonal NDVI during the first half of
the time period, and a lower increase or decrease during the second half. To do
this, we add a third trend basis function, f3 = [ T

2 ,
T
2 − 1, . . . , 0, 1, . . . , T

2 ], nor-
malised to have length one. Contour plots of the resulting field, K3, can be seen
in Figure 7. The figure contains two different contour plots, the first one shows
the contours of the K3 field for pixels where the K2 field is positive. A positive
value in this field means that there was a higher increase in vegetation growth dur-
ing the second part of the time period, whereas a negative value corresponds to a
higher increase in vegetation growth during the first part of the time period. The
second plot shows the contours for the pixels where the K2 field is negative. Here,
a positive value means that there was a larger decrease in vegetation during the
first part, whereas a negative value corresponds to a larger decrease in vegetation
during the second half.
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Figure 3: OLS estimates of the intercepts (upper figure) and slopes (lower figure)
for the Sahel data. Notice that, especially, the K2 estimate seems to contain a large
amount of noise.
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Figure 4: GMRF estimates of the intercepts (upper figure) and slopes (lower fig-
ure) for the Sahel data. Notice that both these estimates are much smoother than
the corresponding estimates in Figure 3.
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Figure 5: Significance estimates for the slope of the linear trends using the OLS
model (upper figure) and the GMRF model (lower figure). Notice the large num-
ber of significant positive linear trends in the GMRF estimate.

7 Extensions

In this section, we will discuss three possible extensions of the model, and the
increase in complexity and potential difficulties that they would incur. A first
extension is to allow for spatial dependencies in the variance of the measurement
noise. Since the measurement noise includes phenomena, such as cloud cover and
aerosol, the model should, reasonably, allow for varying noise variances. These
variances will, however, vary slowly across the image, and the measurement noise
estimation could therefore be improved by adding a spatially dependent prior for
the noise. There are, in principle, no problems doing this. The only difference
in the model will be that explicit updating rules in the EM algorithm are hard to
find, most likely necessitating numerical optimisation schemes.

Another interesting extension is to allow for varying strength in the spatial
dependencies. That is, instead of using a single precision factor, κ, in the GMRF
prior, we let κ vary across the field. This is probably a more accurate model for
describing vegetation since the strength of the spatial dependencies most likely
varies with the character of the land. Because of the problem structure, the dif-
ferent weights will not separate in the likelihood expression, and the resulting
optimisation problem becomes highly non-linear and computationally demand-
ing.
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Figure 6: Contour plot of the GMRF estimate of the K2 field. Here, colours
corresponding to positive values correspond to areas with a positive linear increase
in vegetation. Notice that a large number of these areas coincides with areas with
significant positive trends in Figure 5. Also observe that this figure has a different
colour scale than Figure 4.

Finally, introducing non-Gaussian observations to handle heavy tailed resid-
uals, or allowing generalised linear regression models, would also improve the
model. However, for non-Gaussian observations, the expectations in (11) will
most likely have to be found using simulation techniques, which increases the
computational burden of the algorithm.

8 Concluding remarks

There is a need for efficient methods for estimating trends in Earth Observa-
tion data. The spatio-temporal regression model constructed in this work shows
great promise for utilising the spatial dependencies in satellite-derived NDVI data.
Tests on real and simulated data sets indicate that there is a substantial gain in
precision, compared with using independent ordinary least squares regressions
for the individual pixels. By estimating the model parameters using the EM al-
gorithm, we also obtain a substantial gain in computational cost compared with
a full MCMC-based approach.

The GMRF estimates are smoother and exhibit larger contiguous regions with
significant trends than a comparative analysis using OLS. The larger contiguous
regions and smoother estimates will most likely aid interpretation of the data and
make it easier to identify underlying reasons for the detected changes in vegeta-
tion.

The model we have used assumes as common precision parameter for the en-
tire field, which is probably not valid for the entire Sahel. Therefore, the results
presented in Section 6.2 are obtained by first dividing the area into smaller sub-
areas. This way, κ is assumed to be constant only on the smaller subareas. To
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Figure 7: Upper figure: Contour plot of the K3 field for the pixels where the
K2 field is positive. A positive value in this field means that there was a higher
increase in vegetation growth during the second part of the time period, whereas
a negative value corresponds to a higher increase in vegetation growth during the
first part of the time period. Lower figure: Contour plot of the K3 field for the
pixels where the K2 field is negative. Here, a positive value means that there
was a larger decrease in vegetation during the first part, whereas a negative value
corresponds to a larger decrease in vegetation during the second half.

avoid discontinuities in the joints between the areas, extra pixels, overlapping the
neighbouring subareas, are added in the computations. Although this procedure
will allow for some variation in the strength of the spatial dependencies, it does
not solve the problem entirely. Hence, some improvements are anticipated to
further improve the results for the Sahel region.
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A. Proof of Proposition 2.2

A Proof of Proposition 2.2

This follows from a change of variables in the distribution π(X|κ):

π(X|κ) ∝ exp(−1
2

X⊤κQX) = exp




−κ

2
K⊤ (F⊗ I)⊤(I⊗QX )(F⊗ I)
︸ ︷︷ ︸

Q

K




 .

Using common calculation rules (mixed product) for the Kronecker product, the
expression for Q simplifies to

Q = (F⊗ I)⊤(I⊗QX )(F⊗ I) = (F⊤F)⊗QX . (16)

Hence, K|κ ∈ N(0, (κQ)−1), and the corresponding graph can be determined
from the non-zero pattern of Q. To determine the rank of the field, we have
to determine the rank of Q. Since Xt is a second-order IGMRF, QX has rank
n−3, and F⊤F has, by construction, full rank. A basic property of the Kronecker
product is that rank(A⊗B) = rank(A) rank(B), and hence, Q has rank m(n− 3).

�
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Abstract: The Matérn covariance function is a popular choice for modeling de-
pendence in spatial environmental data. Standard Matérn covariance models are,
however, often computationally infeasible for large data sets. In this work, recent
results for Markov approximations of Gaussian Matérn fields based on Hilbert
space approximations are extended using wavelet basis functions. These Markov
approximations are compared with two of the most popular methods for effi-
cient covariance approximations; covariance tapering and the process convolu-
tion method. The results show that, for a given computational cost, the Markov
methods have a substantial gain in accuracy compared with the other methods.

Key words: Matérn covariances; kriging; wavelets; Markov random fields;
covariance tapering; process convolutions; Computational efficiency

1 Introduction

The traditional methods in spatial statistics were typically developed without any
considerations of computational efficiency. In many of the classical applications of
spatial statistics in environmental sciences, the cost for obtaining measurements
limited the size of the data sets to ranges where computational cost was not an
issue. Today, however, with the increasing use of remote sensing satellites, pro-
ducing many large climate data sets, computational efficiency is often a crucial
property.

In recent decades, several techniques for building computationally efficient
models have been suggested. In many of these techniques, the main assumption
is that a latent, zero-mean Gaussian process X (s) can be expressed, or at least
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approximated, through some finite basis expansion

X (s) =
n∑

j=1

wjξj(s), (1)

where wj are Gaussian random variables and {ξj}n
j=1 are some pre-defined basis

functions. The justification for using these basis expansions is usually that they
converge to the true spatial model as n tends to infinity. However, for a finite n,
the choice of the weights and basis functions will greatly affect the approxima-
tion error and the computational efficiency of the model. Hence, if one wants an
accurate model for a given computational cost, asymptotic arguments are insuffi-
cient.

If the process X (s) has a discrete spectral density, one can obtain an approxim-
ation of the form (1) by truncating the spectral expansion of the process. Another
way to obtain an, in some sense optimal, expansion of the form (1) is to use the
eigenfunctions of the covariance function for the latent field X (s) as a basis, which
is usually called the Karhunen-Loève (KL) transform. The problem with the KL
transform is that analytic expressions for the eigenfunctions are only known in a
few simple cases, which are often insufficient to represent the covariance structure
in real data sets. Numerical approximations of the eigenfunctions can be obtained
for a given covariance function; however, the covariance function is in most cases
not known, but has to be estimated from data. In these cases, it is infeasible to
use the KL expansion in the parameter estimation, which is often the most com-
putationally demanding part of the analysis. The spectral representation has a
similar problem since the computationally efficient methods are usually restricted
to stationary models with gridded data, and are not applicable in more general
situations. Thus, to be useful for a broad range of practical applications, the
methods should be applicable to a wide family of stationary covariance functions,
and be extendable to nonstationary covariance structures.

One method that fulfills these requirements is the process convolution ap-
proach (Barry and Ver Hoef, 1996, Higdon, 2001, Cressie and Ravlicová, 2002,
Rodrigues and Diggle, 2010). In this method, the stochastic field, X (s), is defined
as the convolution of a Gaussian white noise process with some convolution ker-
nel K (s). This convolution is then approximated with a sum of the form (1)
to get a discrete model representation. Process convolution approximations are
computationally efficient if a small number of basis functions can be used, but in
practice, this will often give a poor approximation of the continuous convolution
model.
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A popular method for creating computationally efficient approximations is
covariance tapering (Furrer et al., 2006). This method can not be written as an
approximation of the form (1), but the idea is instead to taper the true covariance
to zero beyond a certain range by multiplying the covariance function with some
compactly supported taper function (Gneiting, 2002). This facilitates the use of
sparse matrix techniques that increases the computational efficiency, at the cost of
replacing the original model with a different model, which can lead to problems
depending on the spatial structure of the data locations. However, the method is
applicable to both stationary and nonstationary covariance models, and instead of
choosing the set of basis functions in (1), the taper range and the taper function
have to be chosen.

Nychka et al. (2002) used a wavelet basis in the expansion (1), and showed
that by allowing for some correlation among the random variables wj, one gets a
flexible model that can be used for estimating nonstationary covariance structures.
As a motivating example, they showed that using a wavelet basis, computation-
ally efficient approximations to the popular Matérn covariance functions can be
obtained using only a few nonzero correlations for the weights wj. The approxim-
ations were, however, obtained numerically, and no explicit representations were
derived.

Rue and Tjelmeland (2002) showed that general stationary covariance models
can be closely approximated by Markov random fields, by numerically minimizing
the error in the resulting covariances. Song et al. (2008) extended the method
by applying different loss criteria, such as minimizing the spectral error or the
Kullback-Leibler divergence. A drawback of the methods is that, just as for the KL
and wavelet approaches, the numerical optimisation must in general be performed
for each distinct parameter configuration.

Recently, Lindgren and Rue (2007) derived an explicit method for producing
computationally efficient approximations to the Matérn covariance family. The
method uses the fact that a random process on R

d with a Matérn covariance
function is a solution to a certain stochastic partial differential equation (SPDE).
By considering weak solutions to this SPDE with respect to some set of local
basis functions {ξj}n

j=1, an approximation of the form (1) is obtained, where the
stochastic weights have a sparse precision matrix (inverse covariance matrix), that
can be written directly as a function of the parameters, without any need for costly
numerical calculations. The method is also extendable to more general stationary
and nonstationary models by extending the generating SPDE (Lindgren et al.,
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2011, Bolin and Lindgren, 2011).
In this paper, we use methods from Lindgren and Rue (2007) and Lindgren

et al. (2011) to algebraically compute the weights wj for wavelet-based approx-
imations to Gaussian Matérn fields (Section 3). For certain wavelet bases, the
weights form a Gaussian Markov Random Field (GMRF), which greatly increases
the computational efficiency of the approximation. For other wavelet bases, such
as the one used in Nychka et al. (2002), the weights can be well approximated
with a GMRF.

In order to evaluate the practical usefulness of the different approaches, a
detailed analysis of the computational aspects of the spatial prediction problem is
performed (Section 2 and Section 4). The results show that the GMRF methods
are more efficient and accurate than both the process convolution approach and
the covariance tapering method.

2 Spatial prediction and computational cost

As a motivating example why computational efficiency is important, let us con-
sider spatial prediction. The most widely used method for spatial prediction is
commonly known as linear kriging in geostatistics. Let Y (s) be an observation of
a latent Gaussian field, X (s), under mean zero Gaussian measurement noise, E(s),
uncorrelated with X and with some covariance function rE (s, t),

Y (s) = X (s) + E(s), (2)

and let μ(s) and r(s, t) be the mean value function and covariance function for
X (s) respectively. Depending on the assumptions on μ(s), linear kriging is usually
divided into simple kriging (if μ is known), ordinary kriging (if μ is unknown but
independent of s), and universal kriging (if μ is unknown and can be expressed
as a linear combination of some deterministic basis functions). To limit the scope
of this article, parameter estimation will not be considered, and to simplify the
notations, we let μ(s) ≡ 0. It should, however, be noted that all results in later
sections regarding computational efficiency also hold in the cases of ordinary kri-
ging and universal kriging. For more details on kriging, see e.g. Stein (1999) or
Schabenberger and Gotway (2005).

Let r(s, t) have some parametric structure, and let the vector γ contain all
covariance parameters. Let Y be a vector containing the observations, X1 be a
vector containing X (s) evaluated at the measurement locations, s1, . . . , sm, and let
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X2 be a vector containing X (s) at the locations, ŝ1, . . . , ŝm̂, for which the kriging
predictor should be calculated. With X = (X⊤

1 ,X
⊤
2 )⊤, one has X1 = A1X, and

X2 = A2X for two diagonal matrices A1 and A2, and the model can now be
written as

X|γ ∼ N(0,ΣX ),

Y|X,γ ∼ N(A1X,ΣE ),

whereΣX is the covariance matrix for X andΣE contains the covariances rE (si, sj).

It is straightforward to show that the posterior is X|Y,γ ∼ N(Σ̂A1Σ
−1
E Y, Σ̂),

where Σ̂ = (Σ−1
X + A⊤

1 Σ
−1
E A1)−1, and the well known expression for the kri-

ging predictor is now given by the conditional mean

E(X2|Y,γ) = A2Σ̂A1Σ
−1
E Y = A2ΣX A⊤

1 (A1ΣX A⊤
1 +ΣE )−1Y

= ΣX2X1 (ΣX1 +ΣE )−1Y = ΣX2X1Σ
−1
Y Y, (3)

where the elements on row i and column j in ΣX2X1 and ΣY are given by the
covariances r (̂si, sj) and r(si, sj) + rE (si, sj) respectively. To get the standard ex-
pression for the variance of the kriging predictor, the Woodbury identity is used
on Σ̂:

V(X2|Y,γ) = A2(Σ−1
X + A⊤

1 Σ
−1
E A1)−1A⊤

2

= A2ΣX A2 − A2ΣX A⊤
1 (A1ΣX A⊤

1 +ΣE )A1ΣX A⊤
2

= ΣX2 −ΣX2X1Σ
−1
Y Σ

⊤
X2X1

.

If there are no simplifying assumptions on ΣX , the computational cost for cal-
culating the kriging predictor is O(m̂m + m3), and the cost for calculating the
variance is even higher. This means that with 1000 measurements, the number of
operations needed for the kriging prediction for a single location is on the order
of 109. These computations are thus not feasible for a large data set where one
might have more than 106 measurements.

The methods described in Section 1 all make different approximations in or-
der to reduce the computational cost for calculating the kriging predictor and
its variance. These different approximations, and their impact on the compu-
tational cost, are described in more detail in Section 4; however, to get a gen-
eral idea of how the computational efficiency can be increased, consider the kri-
ging predictor for a model of the form (1). The field X can then be written as
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X = Bw ∼ N(0,BΣwB⊤), where column i in the matrix B contains the basis
function ξi(s) evaluated at all measurement locations and all locations where the
kriging prediction is to be calculated and w = (w1, . . . ,wn)⊤. Let B1 = A1B and
B2 = A2B be the matrices containing the basis functions evaluated at the meas-
urement locations and the kriging locations respectively. The kriging predictor is
then

E(X2|Y,γ) = B2(Σ−1
w + B⊤

1 Σ
−1
E B1)−1B1Σ

−1
E Y. (4)

If the measurement noise is Gaussian white noise, ΣE is diagonal and easy to
invert. IfΣ−1

w is either known, or easy to calculate, the most expensive calculation
in (4) is to solve u = (Σ−1

w + B⊤
1 Σ

−1
E B1)−1B1Σ

−1
E Y. This is a linear system of

n equations, where n is the number of basis functions used in the approximation.
Thus, the easiest way of reducing the computational cost is to choose n ≪ m,
which is what is done in the convolution approach. Another approach is to ensure
that (Σ−1

w + B⊤
1 Σ

−1
E B1) is a sparse matrix. Sparse matrix techniques can then

be used to calculate the kriging predictor, and the computational cost can be
reduced without reducing the number of basis functions in the approximation. If
a wavelet basis is used, B⊤

1 Σ
−1
E B1 will be sparse, and in Section 3, it is shown that

the precision matrix Qw = Σ−1
w can also be chosen as a sparse matrix by using

the Hilbert space approximation technique by Lindgren et al. (2011).

3 Wavelet approximations

In the remainder of this paper, the focus is on the family of Matérn covariance
functions (Matérn, 1960) and the computational efficiency of some different
techniques for approximating Gaussian Matérn fields. This section shows how
wavelet bases can be used in the Hilbert space approximation technique by Lind-
gren et al. (2011) to obtain computationally efficient Matérn approximations.

3.1 The Matérn covariance family

Because of its versatility, the Matérn covariance family is one of the most popular
choices for modeling spatial data. There are a few different parameterizations of
the Matérn covariance function in the literature, and the one most suitable in our
context is

r(τ) =
21−νφ2

(4π)
d
2Γ(ν+ d

2 )κ2ν
(κ‖τ‖)νKν(κ‖τ‖), (5)
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3. Wavelet approximations

where ν is a shape parameter, κ2 a scale parameter, φ2 a variance parameter, and
Kν is a modified Bessel function of the second kind of order ν > 0. With this
parametrization, the variance is r(0) = φ2Γ(ν)(4π)−

d
2Γ(ν + d

2 )−1κ−2ν, and the
associated spectral density is

S(ω) =
φ2

(2π)d

1

(κ2 + ‖ω‖2)ν+
d
2

. (6)

For the special case ν = 0.5, the Matérn covariance function is the exponential
covariance function. The smoothness of the field increases with ν, and in the limit
as ν → ∞, the covariance function is a Gaussian covariance function if κ is also
scaled accordingly, which gives an infinitely differentiable field.

3.2 Hilbert space approximations

As noted by Whittle (1963), a random process with the covariance (5) is a solution
to the SPDE

(κ2 −Δ)
α

2 X (s) = φW(s), (7)

whereW(s) is Gaussian white noise, Δ is the Laplacian, and α = ν + d/2. The
key idea in Lindgren et al. (2011) is to approximate the solution to the SPDE
using a basis expansion of the form (1). The starting point of the approximation
is to consider the stochastic weak formulation of the SPDE

{〈

bi, (κ2 −Δ)
α

2 X
〉

, i = 1, . . . , nb

}
d
= {〈bi, φW〉 , i = 1, . . . , nb} . (8)

Here
d
= denotes equality in distribution, 〈f , g〉 =

∫
f (s)g(s) ds, and equality

should hold for every finite set of test functions {bi, i = 1, . . . , nb} from some
appropriate space. A finite element approximation of the solution X is then ob-
tained by representing it as a finite basis expansion of the form (1), where the
stochastic weights are calculated by requiring (8) to hold for only a specific set of
test functions {bi, i = 1, . . . , n} and {ξi} is a set of predetermined basis func-
tions. We illustrate the more general results from Lindgren et al. (2011) with the
special case α = 2, where one uses bi = ξi and then has

〈
ξi, (κ2 −Δ)X

〉
=

n∑

j=1

wj
〈
ξi, (κ2 −Δ)ξj

〉
. (9)
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By introducing the matrix K with elements Ki,j =
〈
ξi, (κ2 −Δ)ξj

〉
and the

vector w = (w1, . . . ,wn)⊤, the left hand side of (8) can be written as Kw. Since,
by Lemma 1 in Lindgren et al. (2011)

〈
ξi, (κ2 −Δ)ξj

〉
= κ2 〈ξi, ξj

〉
−
〈
ξi, Δξj

〉
= κ2 〈ξi, ξj

〉
+
〈
∇ξi, ∇ξj

〉
,

the matrix K can be written as the sum K = κ2C + G where Ci,j =
〈
ξi, ξj

〉
and

Gi,j =
〈
∇ξi, ∇ξj

〉
. The right hand side of (8) can be shown to be Gaussian with

mean zero and covariance φ2C and one thus have that w ∼ N(0, φ2K−1CK−1).
For the second fundamental case, α = 1, Lindgren et al. (2011) show that

w ∼ N(0, φ2K−1) and for higher order α ∈ N, the weak solution is obtained
recursively using these two fundamental cases. For example, if α = 4 the solution
to (κ2−Δ)2X0(s) = φW(s) is obtained by solving (κ2−Δ)X0(s) = X̃ (s), where
X̃ is the solution for the case α = 2. This results in a precision matrix for the
weights Qα defined recursively as

Qα = KC−1Qα−2C−1K, α = 3, 4, . . . (10)

where Q1 = φ−2K and Q2 = φ−2K⊤C−1K. Thus, all Matérn fields with
ν + d/2 ∈ N can be approximated through this procedure. For more details, see
Lindgren and Rue (2007) and Lindgren et al. (2011). The results from Rue and
Tjelmeland (2002) show that accurate Markov approximations exist also for other
ν-values, and one approximate approach to finding explicit expressions for such
models was given in the authors’ response in Lindgren et al. (2011). However,
in many practical applications ν cannot be estimated reliably (Zhang, 2004), and
using only a discrete set of ν-values is not necessarily a significant restriction.

3.3 Wavelet basis functions

In the previous section, nothing was said about how the basis functions {ξi}
should be chosen. The following sections, however, shows that wavelet bases have
many desirable properties which makes them suitable to use in the Hilbert space
approximations on R

d . In this section, a brief introduction to multiresolution
analysis and wavelets is given.

A multiresolution analysis on R is a sequence of closed approximation sub-
spaces {Vj}j∈Z of functions in L2(R) such that Vj ⊂ Vj+1, cl

⋃

j∈Z Vj = L2(R),
and

⋂

j∈Z Vj = {0}, where cl is the closure, and f (s) ∈ Vj if and only if

f (2−j s) ∈ V0. This last requirement is the multiresolution requirement because
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3. Wavelet approximations

this implies that all the approximation spaces Vj are scaled versions of the space
V0. A multiresolution analysis is generated starting with a function usually called
a father function or a scaling function. The function φ ∈ L2(R) is called a scaling
function for {Vj}j∈Z if it satisfies the two-scale relation

φ(s) =
∑

k∈Z

pkφ(2s − k), (11)

for some square-summable sequence {pk}k∈Z and the translates {φ(s − k)}k∈Z

form an orthonormal basis for V0. Given the multiresolution analysis {Vj}j∈Z,
the wavelet spaces {Wj}j∈Z are then defined as the orthogonal complements of
Vj in Vj+1 for each j, and one can show that Wj is the span of {ψ(2j s − k)}k∈Z,
where the wavelet ψ is defined as ψ(s) =

∑

k∈Z(−1)kp1−kφ(2s − k).
Given the spaces Wj, Vj can be decomposed as the direct sum

Vj = V0 ⊕W0 ⊕W1 ⊕ . . . ⊕Wj−1. (12)

Several choices of scaling functions have been presented in the literature. Among
the most widely used constructions are the B-spline wavelets (Chui and Wang,
1992) and the Daubechies wavelets (Daubechies, 1992) that both have several
desirable properties for our purposes.

The scaling function of B-spline wavelets are mth order B-splines with knots
at the integers. Because of this, there exists closed form expressions for the cor-
responding wavelets, and the wavelets have compact support since the mth order
scaling function has support on (0,m + 1). The wavelets are orthogonal at dif-
ferent scales, but translates at the same scale are not orthogonal. This property is
usually referred to as semi-orthogonality.

The Daubechies wavelets form a hierarchy of compactly supported ortho-
gonal wavelets that are constructed to have the highest number of vanishing mo-
ments for a given support width. This generates a family of wavelets with an
increasing degree of smoothness. Except for the first Daubechies wavelet, there
are no closed form expressions for these wavelets; however, for practical purposes,
this is not a problem because the exact values for the wavelets at dyadic points can
be obtained very fast using the Cascade algorithm (Burrus et al., 1988). In this
work, the DB3 wavelet is used because it is the first wavelet in the family that has
one continuous derivative. The DB3 wavelet and its scaling function are shown
in Figure 1.
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Figure 1: The DB3 scaling function and wavelet.

3.4 Explicit wavelet Hilbert space approximations

To use the Hilbert space approximation for a given basis, the precision matrix,
Qα, for the weights has to be calculated. By (10), we only have to be able to
calculate the matrices C and G to build the precision matrix for any α ∈ N. The
elements in these matrices are inner products between the basis functions:

Ci,j =

∫

ξi(s)ξj(s) ds, Gi,j =

∫

(∇ξi(s))⊤∇ξj(s) ds. (13)

This section shows how these elements can be calculated for the DB3 wavelets
and the B-spline wavelets. When using a wavelet basis in practice, one always
have to choose a finest scale, J , to work with. Given that the subspace VJ is used
as an approximation of L2(R), one can use two different bases. Either one works
with the direct basis for VJ , that consists of scaled and translated versions of the
father function φ(s), or one can use the multiresolution decomposition (12). In
what follows, both cases are considered.

3.4.1 Daubechies wavelets on R

For the Daubechies wavelets, the matrix C is the identity matrix since these wave-
lets form an orthonormal basis for L2(R). Thus, only the matrix G has to be
calculated. If the direct basis for VJ is used, the matrix G contains inner products
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3. Wavelet approximations

of the form

〈
∇φ(2J s − k), ∇φ(2J s − l)

〉
= 2J 〈∇φ(s), ∇φ(s − l + k)〉 ≡ 2JΛ(k−l). (14)

Because the scaling function has compact support on [0, 2N − 1], these inner
products are only non-zero if k− l ∈ [−(2N − 2), 2N − 2]. Thus, the matrix G

is sparse, which implies that the weights w in (1) form a GMRF. Since there are no
closed form expressions for the Daubechies wavelets, there is no hope in finding a
closed form expression for the non-zero inner products (14). Furthermore, stand-
ard numerical quadrature for calculating the inner products is too inaccurate due
to the highly oscillating nature of the gradients. However, utilizing properties of
the wavelets, one can calculate an approximation of the inner product of arbitrary
precision by solving a system of linear equations. It is outside the scope of this
paper to present the full method, but the basic principle is to construct a system
of linear equations by using the scaling- and moment equations for the wavelets.
This system is then solved using, for example, LU factorization. For details, see
Latto et al. (1991).

Using this technique for the DB3 wavelets, the following nonzero values for
Λ(η) are obtained

Λ(0) = 5.267, Λ(±1) = −3.390, Λ(±2) = 0.876,

Λ(±3) = −0.114, Λ(±4) = −0.00535.

These values are calculated once and tabulated for constructing the G matrix,
which is a band matrix with 2JΛ(0) on the main diagonal, 2JΛ(1) on the first off
diagonals, et cetera.

If the multiresolution decomposition (12) is used as a basis for VJ , one also
needs the inner products

〈
∇ψ(2js − k), ∇ψ(2is − l)

〉
, i, j ∈ Z. Because of the

two-scale relation (11), every wavelet ψ(2js − k) can be written as a finite sum
of translated scaling functions at scale J . Using this property, the G matrix can
be constructed efficiently using only the already computed Λ values. Figure 2
shows the structure of the G matrices for a multiresolution DB3 basis with five
layers of wavelets and the corresponding direct basis. Note that there are fewer
non-zero elements in the precision matrix for the direct basis. Hence, it is more
computationally efficient to use the direct basis instead of the multiresolution
basis.
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Figure 2: The non-zero elements in the G matrices for a multiresolution DB3
basis with five layer of wavelets and the corresponding direct basis. 6.4% of the
elements are non-zero for the multiresolution basis whereas only 0.96% of the
elements are non-zero for the direct basis.

3.4.2 B-spline wavelets on R

For the B-spline wavelets, the matrices C and G can be calculated directly using
the closed form expressions for the basis functions and their derivatives. When a
direct basis is used on R, C is a band matrix with bandwidth m + 1, if the mth
order spline wavelet is used. For example, for m = 1, calculating (13) gives

Ci,j = 2−J ·







2/3, i = j,

1/6, |i − j| = 1,

0 otherwise,

Gi,j = 2J ·







2, i = j,

−1, |i − j| = 1,

0 otherwise.

Since the expression for the precision matrix for the weights w contains the inverse
of C, it is a dense matrix. Hence, C−1 has to be approximated with a sparse
matrix if Q should be sparse. This issue is addressed in Lindgren et al. (2011)
by lowering the integration order of

〈
ξi, ξj

〉
, which results in an approximate,

diagonal C matrix, C̃, with diagonal elements C̃i,i =
∑n

k=1 Ci,k. In Section 4,
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3. Wavelet approximations

the effect of this approximation on the covariance approximation for the basis
expansion is studied in some detail. For the multiresolution basis, the matrices
are block diagonal, and this approximation is not applicable.

3.4.3 Wavelets on R
d

The easiest way of constructing a wavelet basis for L2(Rd ) is to use the tensor
product functions generated by d one-dimensional wavelet bases. Let φ be the
scaling function for a multiresolution on R, the father function can be written as
φ̄(x1, . . . , xd ) =

∏d
i=1 φ(xi). The scalar product 〈∇φ̄(x), ∇φ̄(x + η)〉, where η

now is a multi-integer shift in d dimensions, can then be written as

〈∇φ̄(x), ∇φ̄(x + η)〉 =
〈

∇
d∏

i=1

φ(xi), ∇
d∏

i=1

φ(xi + ηi)

〉

=

d∑

i=1

∫

R
d

∂ φ(xi)
∂ xi

∂ φ(xi + ηi)
∂ xi

∏

j 6=i

φ(xj)φ(xj + ηj) dx

=

d∑

i=1

Λ(ηi)
∏

j 6=i

∫

R

φ(xj)φ(xj + ηj) dxj.

This expression looks rather complicated, but it implies a very simple Kronecker
structure for Gd , the G matrix in R

d . For example, in R
2 and R

3,

G2 = G1 ⊗ C1 + C1 ⊗ G1

G3 = G1 ⊗ C1 ⊗ C1 + C1 ⊗ G1 ⊗ C1 + C1 ⊗ C1 ⊗ G1,

where G1 and C1 are the G and C matrices for the corresponding one-dimensional
basis and ⊗ denotes the Kronecker product. Similarly, C2 = C1 ⊗ C1, and
C3 = C1 ⊗ C1 ⊗ C1. These expressions hold both if the direct basis for VJ if
used or if the multiresolution construction (12) is used for the one-dimensional
spaces. For Daubechies wavelets, the C matrix is the identity matrix for all d ≥ 1.
This also holds for the direct B-spline basis if the diagonal approximation is used
for C1.

81



B

4 Comparison

As discussed in Section 2, computational efficiency is often an important aspect
in practical applications. However, the computation time for obtaining, for ex-
ample, an approximate kriging prediction is in itself not that interesting unless
one also knows how accurate it is. We will, therefore, in this section compare
the wavelet Markov approximations with two other popular methods, covariance
tapering and process convolutions, with respect to their accuracy and computa-
tionally efficiency when used for kriging.

Before the comparison, we give a brief introduction to the process convolu-
tion method and the covariance tapering method and discuss the methods’ com-
putational properties. As mentioned in Section 2, the computational cost for
the kriging prediction for a single location based on m observations is O(m3).
In what follows, the corresponding computational costs for the three different
approximation methods are presented. We start with the wavelet Markov approx-
imations and then look at the process convolutions and the covariance tapering
method. After this, an initial comparison of the different wavelet approximations
is performed in Section 4.4 and then the full kriging comparison is presented in
Section 4.5-4.6.

4.1 Wavelet approximations

When using a wavelet basis, one can either work with the direct basis for the
approximation space VJ or do the wavelet decomposition into the direct sum of
J − 1 wavelet spaces and V0. If one only is interested in the approximation error,
the decomposition into wavelet spaces is not necessary and it is more efficient to
work in the direct basis for VJ since this will result in a precision matrix with
fewer nonzero elements. Therefore we only use the direct bases for VJ in the
comparisons in this section.

The wavelet approximations are of the form (1), so Equation (4) is used to
calculate the kriging predictor. However, since an explicit expression for the pre-
cision matrix for the weights w exists for this method, we rewrite the equation
as

E(X2|Y,γ) = B2(Qw + B⊤
1 QEB1)−1B1QEY,

where QE = Σ−1
E is diagonal if E is Gaussian white noise. If the number of

kriging locations is small, the computationally demanding step is again to solve a
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system of the form

u = (Qw + B⊤
1 QEB1)−1v.

Now, if the Daubechies wavelets or the Markov approximated spline wavelets are
used, both Qw and B⊤

1 QEB1 are sparse and positive definite matrices. The system
is therefore most efficiently solved using Cholesky factorization, forward substitu-
tion, and back substitution. The forward substitution and back substitution are
much faster than calculating the Cholesky triangle L, so the computational com-
plexity for the kriging predictor is determined by the calculation of L. Because
of the sparsity structure, this computational cost is in generalO(n), O(n3/2), and
O(n2) for problems in one, two, and three dimensions respectively (see Rue and
Held, 2005). If the spline bases are used without the markov approximation, the
computational cost instead is O(n3) since Qw then is dense. It should be noted
here that any basis could be used in the SPDE approximation, but in order to get
good computational properties we need both Qw and B⊤

1 QEB1 to be sparse. This
is the reason for why for example Fourier bases are not appropriate to use in the
SPDE formulation since B1 in this case always is a dense matrix.

4.2 Process convolutions

In the process convolution method, the Gaussian random field X (s) on R
d is

specified as a process convolution

X (s) =
∫

K (s,u)B( du), (15)

where K is some deterministic kernel function and B is a Brownian sheet. One
of the advantages with this construction is that nonstationary fields easily are
constructed by allowing the convolution kernel to be dependent on location. If,
however, the process is stationary we have K (s,u) = K (s− u) and the covariance
function for X is r(τ) =

∫
K (u− τ)K (u) du. Thus, the covariance function and

the kernel K are related through

K = F−1

(

1

(2π)
d
2

√

F(r)

)

= F−1

(

1

(2π)
d
2

√
S

)

,

where S is the spectral density for X (s) and F denotes the Fourier transform
(Higdon, 2001). Since the spectral density for a Matérn covariance function in
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dimension d with parameters ν, φ2, and κ is given by (6), one finds that the
corresponding kernel is a Matérn covariance function with parameters νk =

ν
2− d

4 ,
φ2

k = φ, and κk = κ.
An approximation of (15) which is commonly used in convolution-based

modeling is

X (s) ≈
n∑

j=1

K (s− uj)wj,

where u1, . . . ,un are some fixed locations in the domain, and wj are independ-
ent zero-mean Gaussian variables with variances equal to the area associated with
each uj. Thus, this approximation is of the form (1), with basis functions
ξj(s) = K (s− uj). When this approximation is used, Equation (4) is used to
calculate the kriging predictor. Because the basis functions are Matérn covariance
functions, the matrices B1 and B2 are dense. Thus, even though both ΣE and
Σ−1

w are diagonal matrices, one still have to solve a system of the form

u = (Σ−1
w + B⊤

1 Σ
−1
E B1)−1v,

where (Σ−1
w + B⊤

1 Σ
−1
E B1) is a dense n × n matrix and n is the number of basis

functions used in the basis expansion. The computational cost for both con-
structing and inverting the matrix is O(mn2 + n3). For kriging prediction of m̂
locations, the total computational complexity is O(m̂n + mn2 + n3).

4.3 Covariance tapering

Covariance tapering is not a method for constructing covariance models, but a
method for approximating a given covariance model to increase the computa-
tional efficiency. The idea is to taper the true covariance, r(τ), to zero beyond
a certain range, θ, by multiplying the covariance function with some compactly
supported positive definite taper function rθ(τ). Using the tapered covariance,

rtap(τ) = rθ(τ)r(τ),

the matrix ΣY in the expression for the kriging predictor (3) is sparse, which
facilitates the use of sparse matrix techniques that increases the computational
efficiency. The taper function should, of course, also be chosen such that the basic
shape of the true covariance function is preserved, and of especial importance for
asymptotic considerations is that the smoothness at the origin is preserved.
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Furrer et al. (2006) studied the accuracy and numerical efficiency of tapered
Matérn covariance functions, and to be able to compare their results to Matérn
approximations obtained by the wavelet Hilbert space approximations and the
process convolution method, we use their choice of taper functions:

Wendland1: rθ(τ) =

(

max

[

1− ‖τ‖
θ

, 0

])4(

1 + 4
‖τ‖
θ

)

,

Wendland2: rθ(τ) =

(

max

[

1− ‖τ‖
θ

, 0

])6(

1 + 6
‖τ‖
θ

+
35‖τ‖2

2θ2

)

.

These taper functions were first introduced by Wendland (1995). For dimension
d ≤ 3, the Wendland1 function is a valid taper function for the Matérn covariance
function if ν ≤ 1.5, and the Wendland2 function is a valid taper function if
ν ≤ 2.5. Furrer et al. (2006) found that Wendland1 was slightly better than
Wendland2 for a given ν, so we use Wendland1 for all cases when ν ≤ 1.5 and
Wendland2 if 1.5 < ν ≤ 2.5.

If a tapered Matérn covariance is used, the kriging predictor can be written as

E(X2|Y,γ) = Σtap
X2X1

(Σtap
X1

+ΣE )−1Y,

where the element on row i and column j inΣtap
X2X1

andΣtap
X1

are given by rtap(̂si, sj)
and rtap(si, sj) respectively. Since the tapered covariance is zero for lags larger
than the taper range, θ, many of the elements in Σtap

X1
will be zero. Thus, the

three step approach used for the wavelet Markov approximations can be used to
solve the system u = (Σtap

X1
+ ΣE )−1Y efficiently. Since the number of non-

zero elements for row i in Σtap
X1

is determined by the number of measurement
locations at a distance smaller than θ from location si, the computational cost is
determined both by the taper range and the spacing of the observations. Thus, if
the measurements are irregularly spaced, it is hard to get a precise estimate of the
computational cost. However, for given measurement locations, the taper range
can be chosen such that the average number of neighbors to the measurement
locations is some fixed number kθ. The cost for the Cholesky factorization is then
similar to the cost for a GMRF with m nodes and a neighborhood size kθ.

4.4 Covariance approximation

For practical applications of any of the approximation methods discussed here,
one is often mostly interested in producing kriging predictions which are close
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to the optimal predictions. The error one makes in the kriging prediction is
closely related to the method’s ability to reproduce the true Matérn covariance
function. There are many different wavelet bases one could consider using in the
Markov approximation method, and before we consider the kriging problem we
will in this section compare some of these bases with respect to their ability to
reproduce the Matérn covariance function so that we can choose only a few of the
best methods to compare in the next section. As a reference, we also include the
process convolution approximation in this comparison.

A natural measure of the error in the covariance approximation is a stand-
ardized L2 norm of the difference between the true-, and approximate covariance
functions,

εr(s) =

∫
(r(s,u)− r̂(s,u))2 du
∫

r(s,u)2 du
. (16)

Note here that the true covariance function r(s,u) is stationary and isotropic,
while the approximate covariance function r̂(s,u), for the basis expansion (1),
generally is not. For the wavelet approximations and the process convolutions,
εr is periodic in s since the approximation error in general is smaller where the
basis functions are centered, and we therefore use the mean value of εr(s) over the
studied region as a measure of the covariance error.

We use the different methods to approximate the covariance function for a
Matérn field on the square [0, 10] × [0, 10] in R

2. The computational com-
plexity for the kriging predictions depend on the number of basis functions, n,
used in the approximations. For the Markov approximated spline bases and the
Daubechies 3 basis, this complexity is O(n3/2) whereas it is O(n3) for the spline
bases if the Markov approximation is not used and for the process convolution
method. We therefore use 1002 basis functions for the O(n3/2) methods and 100
basis functions for the other methods to get the covariance error for the methods
when the computational cost is approximately equal.

Figure 3 shows the covariance error for the different methods as functions
of the approximate range, κ−1

√
8ν, of the true covariance function for three

different values of ν. There are several things to note in this figure:

1. The covariance error decreases for all methods as the range of the true co-
variance function increases. This is not surprising since the error will be
small if the distance between the basis functions (which is kept fixed) is
small compared to the true range.
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Figure 3: Numeric approximations of the L2-norm (16) shown as a function of
approximate range for different values of ν and different bases in R

2. In this
figure, 1002 basis functions are used for the bases with Markov structure (solid
lines), and 100 basis functions are used for the other bases (dashed lines). This
gives approximately the same computational complexity for kriging prediction.

2. The solid lines correspond to Markov approximations, which have compu-
tational complexity O(n3/2) for calculating the kriging predictor, and the
approximations with computational complexityO(n3) have dashed lines in
the figure.

3. There is no convolution kernel estimate for ν = 1 since the convolution
kernel has a singularity at the origin in this case. For the other cases, the loc-
ations {uj} for the kernel basis functions were placed on a regular 10 × 10
lattice in the region.

4. The error one makes by the Markov approximation of the spline bases
becomes larger for increasing order of the splines. Note that the third order
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spline basis is best without the approximation whereas the first order spline
basis is best if the Markov approximation is used.

It is clear from the figure that the Markov approximations have a much
lower covariance error for the same computational complexity. Among these,
the Daubechies 3 basis is best for large ranges whereas the Markov approximated
first order spline basis is best for short ranges. The higher order spline bases have
larger covariance errors so, from now on, we focus on the first order spline basis
and the Daubechies 3 basis.

4.5 Spatial prediction

In the previous section, several bases were compared with respect to their ability to
approximate the true covariance function when used in an approximation of the
form (1) of a Gaussian Matérn field. The comparison showed that the Daubech-
ies 3 (DB3) basis and the Markov approximated linear spline (S1) basis are most
accurate for a given computational complexity. In this section, the spatial predic-
tion errors for these two wavelet Markov approximations are compared with the
process convolution method and the covariance tapering method. In the compar-
isons, note that the S1 basis is essentially of the same type of piecewise linear basis
as used in Lindgren et al. (2011), so the results here also apply to that paper.

Simulation setup

Let X (s) be a Matérn field with shape parameter ν (chosen later as 1, 2, or 3)
and approximate correlation range r (later varied between 0.1 and 4). The range
r determines κ through the relation κ =

√
8νr−1 and the variance parameter

φ = 4πΓ(ν + 1)κνΓ(ν)−1 is chosen such that the variance of X (s) is 1. We meas-
ure X at 5000 measurement locations chosen at random from a uniform distri-
bution on the square [0, 5] × [0, 5] in R

2 using the measurement equation (2),
where E(s) is Gaussian white noise uncorrelated with X with standard deviation
σ = 0.01.

Given the measurements, spatial prediction of X to all locations on a 70× 70
lattice of equally spaced points in the square is performed using the optimal
kriging predictor, the wavelet Markov approximations, the process convolution
method, and the covariance tapering method. For each approximate method,
the sum of squared differences between the optimal kriging prediction and the
approximate method’s kriging prediction is used as a measure of kriging error.
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We compare the methods for ν = 1, 2, 3, and for each ν we test 40 different
ranges varied between 0.1 and 4 in steps of 0.1. For a given ν and a given range,
20 data sets are simulated and the average kriging error is calculated for each
method based on these data sets.

Choosing the number of basis functions

To obtain a fair comparison between the different methods, the number of basis
functions for each method should be chosen such that the computation time
for the kriging prediction is equal for the different methods. The computations
needed for calculating the prediction can be divided into three main steps as fol-
lows

Step 1. Build all matrices except M in Step 3 necessary to calculate the kriging
predictor.

Step 2. Solve the matrix inverse problem for the given method:

S1, DB3 and Conv.: u = (Σ−1
w + B⊤

1 Σ
−1
E B1)−1B1Σ

−1
E Y,

Tapering: u =
(
Σ

tap
X1

+ΣE

)−1
Y,

Optimal kriging: u =
(
ΣX1 +ΣE

)−1
Y.

Step 3. Depending on which method that is used, build M = B2, M = Σ
tap
X2X1

,

or M = ΣX2X1 and calculate the kriging predictor X̂ = Mu.

For the optimal kriging predictor, and in some cases for the tapering method,
the matrix M cannot be calculated and stored at once due to memory constraints
if the number of measurements is large. Each element in X̂ is then constructed
separately as X̂i = Miu, where Mi is a row in M. It is then natural to include the
time it takes to build the rows in M in the time it takes to calculate X̂, which is
the reason for including the time it takes to build M in Step 3 instead of Step 1.

The computation time for the first step is highly dependent on the actual
implementation, and we will therefore focus on the computation time for the last
two steps when choosing the number of basis functions. If one only does kriging
prediction to a few locations, the second step will dominate the computation time
whereas the third step can dominate if kriging is done to many locations. To get
results that are easier to interpret, we choose the number of basis functions such
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that the time for the matrix inverse problem in Step 2 is similar for the different
methods.

Now since the computational complexity for Step 2 is O(n3) for the convo-
lution method and O(n3/2) for the Markov methods, one would think that if n
basis functions are used in the convolution method and n2 basis functions are used
for the Markov methods, the computation time would be equal. Unfortunately
it is not that simple. If two different methods have computational complexity
O(n3), this means that the computation time scales as n3 when n is increased for
both methods; however, the actual computation time for a fixed n can be quite
different for the two methods. For example, DB3 is approximately 6 times more
computationally demanding than S1 for the same number of basis functions. The
reason being that the DB3 basis functions have larger support than the S1 basis
functions and this causes the matrices B1 and Σ−1

w for DB3 to contain approx-
imately 6 times as many nonzero elements compared to S1 for the same number

of basis functions. However, the relative computation time will scale as n3/2
1 if n1

is increased for both methods.
To get approximately the same computation time for Step 2 for the differ-

ent approximation methods, the number of basis functions for S1 is fixed to
1002. Since DB3 is approximately six times more computationally demanding,
the number of basis functions for this method is set to 1600. As mentioned in
Lindgren et al. (2011), one should extend the area somewhat to avoid boundary
effects from the SPDE formulation used in the Markov methods. We therefore
expand the area with two times the range in each direction which results in a
slightly higher number of basis functions used in the computations.

The computation time for S1 and DB3 increases if ν is increased since the
precision matrix for the weights contain more nonzero elements for larger values
of ν. Therefore we use 625 basis functions placed on a regular 25×25 lattice in the
kriging area for the convolution method when ν = 2 and use 841 basis functions
placed on a regular 29×29 lattice when ν = 3. For the tapering method we chose
the tapering range θ such that the expected number of measurements within a
circle with radius θ to each kriging location is similar to the number of neighbors
to the weights in the S1 method. For ν = 1, ν = 2, and ν = 3 this gives a
tapering ranges of 0.4, 0.55, and 0.7 respectively and results in approximately
the same number of nonzero elements in the tapered covariance matrix as in the
precision matrix Q for the S1 basis.
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Figure 4: Kriging errors for the different methods as functions of the true covari-
ance function’s range. For each range, the values are calculated as the mean of 20
simulations. The lower limit of the bands around the curves is the estimate minus
the standard deviation of the samples, and the upper limit is the estimate plus the
standard deviation.

Results

Figure 4 shows the average kriging errors for the different methods as functions
of the true covariance function’s approximate range r. The values for a given ν
and r is an average of 20 simulations. The convolution kernels are singular if
ν = 1, so there is no convolution estimate for this case. The tapering estimate
is best for short ranges, which is not surprising since the covariance matrix for
the measurements not is changed much by the tapering if the true range then is
shorter than the tapering range. For larger ranges, however, the tapering method
has a larger error than the other methods. One reason for this is that the tapered
covariance function is very different from the true covariance function if the true
range is much larger than the tapering range. Another reason is that the prediction
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ν = 1
Step 1 Step 2 Step 3 Total

Optimal 37.68 (6.357) 5.074 (0.277) 36.48 (6.231) 79.23 (8.906)
DB3 0.490 (0.049) 0.113 (0.014) 0.293 (0.026) 0.896 (0.057)
S1 0.423 (0.027) 0.088 (0.007) 0.248 (0.018) 0.759 (0.033)
Conv. − − − − − − − −
Taper 2.771 (0.191) 0.117 (0.010) 2.051 (0.127) 4.939 (0.229)

ν = 2
Optimal 36.19 (6.965) 5.327 (0.529) 34.94 (6.695) 76.45 (9.675)
DB3 0.600 (0.090) 0.228 (0.039) 0.310 (0.049) 1.138 (0.110)
S1 0.489 (0.055) 0.203 (0.025) 0.260 (0.036) 0.951 (0.070)
Conv. 0.961 (0.027) 0.217 (0.019) 0.942 (0.027) 2.120 (0.043)
Taper 4.184 (1.523) 0.247 (0.028) 3.319 (0.251) 7.750 (1.543)

ν = 3
Optimal 42.75 (6.572) 5.468 (0.380) 41.36 (6.440) 89.58 (9.210)
DB3 0.759 (0.091) 0.394 (0.051) 0.315 (0.033) 1.468 (0.110)
S1 0.569 (0.042) 0.377 (0.035) 0.266 (0.025) 1.213 (0.060)
Conv. 5.656 (1.094) 0.390 (0.024) 5.522 (1.078) 11.57 (1.537)
Taper 6.413 (1.051) 0.421 (0.035) 5.460 (0.402) 12.30 (1.126)

Table 1: Average computation times in seconds for the results in Figure 4. The
values are based on the 800 simulations for each value of ν. The standard devi-
ations are shown in the parentheses.

for all locations that do not have any measurements closer than the tapering range
is zero in the tapering method. The convolution method has a similar problem if
the effective range of the basis functions is smaller than the distance between the
basis functions. In this case, the estimates for all locations that are not close to
the center of some basis function have a large bias towards zero. These problems
can clearly be seen in Figure 5, where the optimal kriging prediction, and the
predictions for S1, the tapering method, and the convolution method, are shown
for an example where ν = 2 and the range is 1.

The computation times for the different methods are shown in Table 1. These
computation times are obtained using an implementation in Matlab on a com-
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Optimal prediction S1 basis

Convolution basis Tapered covariance

Figure 5: An example of an optimal kriging prediction and predictions using the
S1 basis, the convolution basis, and a tapered covariance when ν = 2 and the
covariance range is 1. The predictions are based on 5000 observations and are
calculated for a 200× 200 grid in the square [0, 5]× [0, 5]. The number of basis
functions and the tapering range are chosen such that the total time for Step 2
and Step 3 is approximately equal for the different methods.
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puter with a 3.33GHz Intel Xeon X5680 processor1. As intended, the time for
Step 2 is similar for the different methods whereas there is a larger difference
between the computation times for Step 3 because the computation time for the
kriging prediction scales differently with the number of kriging locations for the
different methods. Note that the wavelet methods are less computationally de-
manding than the tapering method and the convolution method when doing
kriging to many locations. The reason being that the matrix M in Step 3 can be
constructed without having to do costly covariance function evaluations.

As mentioned previously is the computation time for Step 1 highly dependent
on the actual implementation. However, as for Step 3 can the Markov method’s
matrices be constructed without doing any covariance function evaluations which
is the reason for the faster computation time. One thing to note here is that if
the parameters are changed (for example when doing parameter estimation), one
does not have to construct all matrices again in the Markov methods as one has
to do for the other two methods.

In conclusion we see that S1 is both faster and has a smaller kriging error for
all ranges when compared to DB3 and the convolution method and compared to
the tapering method it has a smaller kriging error for all but very short ranges.
Since the tapering method’s computational cost varies with the tapering range, we
conclude this section with a study of how changing the tapering range changes
the results in order to get a better understanding of which method is to prefer
when comparing S1 and the tapering method.

4.6 A study of varying the tapering range

As shown above is the S1 method to prefer over the DB3 method and the con-
volution method in all our test cases whereas the tapering method had a smaller
kriging error for very short ranges. Since this was done using a fixed tapering
range, chosen such that the computation time for Step 2 would be similar to the
other methods, we now look at what happens if the tapering range is varied when
keeping the true range fixed.

The setup is the same as in the previous comparison, a Matérn field with
ν = 2, variance 1, and an approximate range r is measured at 5000 randomly
chosen locations in a square in R

2. The difference is that we now keep these
parameters fixed but instead vary the tapering range from 0.05 to 2 in steps of

1implementation available at http://www.maths.lth.se/matstat/staff/bolin/
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Figure 6: The computation times (right) and kriging errors (left) for the covari-
ance tapering method (yellow lines) as functions of the taper range. Values for the
S1 basis (blue lines) are shown for comparison. The range of the true covariance
function is 1 (upper panels) and 0.25 (lower panels). The results are averages
of 100 simulations, and the grey bands indicate the standard deviation of these
samples. The solid lines in the right panels show the computation time for Step 2
and the dashed lines show the total computation time for Step 2 and Step 3.

0.05. We generate 100 data sets and calculate the kriging predictions for the S1
method and the tapering method for all values of the tapering range. Based on
these 100 estimates, the average kriging error is calculated for S1 and for each
tapering estimate.

The results can be seen in Figure 6. The kriging errors are shown in the left
panels and the computation times are shown in the right panels. The blue lines
represent the S1 method, which obviously does not depend on the tapering range,
and the yellow lines represent the tapering method. In the left panels, the solid
lines show the time for Step 2 in the computations and the dashed lines show the
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total time for Step 2 and Step 3. In the upper two panels, the true range r is 1,
and 1002 S1 basis functions are used. In this case, S1 is more accurate than the
tapering method for all tapering ranges tested, which is not surprising considering
the previous results. In the bottom panels of the figure, the true range r is 0.25 and
1002 S1 basis functions are used. This is a situation where the tapering method
was more accurate than S1 in the previous study and we see here that the tapering
method is more accurate for tapering ranges larger than 0.4 and that the time for
Step 2 is smaller for all tapering ranges smaller than 0.46. Thus, by choosing the
tapering range between 0.4 and 0.46, the tapering method is more accurate and
has a smaller computation time for Step 2.

The accuracy of the tapering method increases if the ratio between the taper-
ing range and the true range is increased, and the computation time depends on
what the distance between the measurements is compared to the tapering range.
If the distance between the measurements is large, the tapering method is fast,
whereas it is slower if the distance is small. Thus, the situation where the tapering
method performs best is when the true covariance range is short compared to the
distance between the measurements. However, also for the case when the true
range is small, the total time it takes to calculate the tapering prediction is larger
than the time it takes to calculate the S1 prediction unless the number of kriging
locations is small.

In this work, the taper functions that Furrer et al. (2006) found to be best for
each value of ν are used, but the results may be improved by using other taper
functions. Changing the taper function will, however, not change the fact that
the prediction for all locations that do not have any measurements closer than
the tapering range is zero in the tapering method and that the tapered covariance
function is very different from the true covariance function if the tapering range
is short compared to the true range. Finally, the results for all methods could be
improved by finding optimal parameters for the approximate models instead of
using the parameters for the true Matérn covariance. For the tapering method,
however, Furrer et al. (2006) found that this only changed the relative accuracy
by one or two percent.

5 Conclusions

Because of the increasing number of large environmental data sets, there is a need
for computationally efficient statistical models. To be useful for a broad range
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of practical applications, the models should contain a wide family of stationary
covariance functions, and be extendable to nonstationary covariance structures,
while still allowing efficient calculations for large problems.

The SPDE formulation of the Matérn family of covariance functions has these
properties, as it can be extended to more general nonstationary spatial models (see
Bolin and Lindgren, 2011, Lindgren et al., 2011, for details on how this can be
done), and allows for efficient and accurate Markov model representations. In
addition, as shown by the simulation comparisons, these Markov methods are
more efficient and accurate than both the process convolution approach and the
covariance tapering method for approximating Matérn fields.

Depending on the context in which a model is used, different aspects are im-
portant to make it computationally efficient. If, for example, the model is used
in MCMC simulations, one should be able to generate samples from the model
given the parameters efficiently, or if the parameters are estimated in a numerical
maximum likelihood procedure, one must be able to evaluate the likelihood effi-
ciently. To limit the scope of this article, only the computational aspects of kriging
was considered. However, for practical applications, parameter estimation is likely
the most computationally demanding part of the analysis. If maximum likelihood
estimation is performed using numerical optimization of the likelihood, matrix
inverses similar to the one in Step 2 in Table 1 have to be performed in each it-
eration of the optimization, and it is therefore important that these inverses can
be calculated efficiently. We have not discussed estimation here, but the Markov
methods are likely most efficient in this situation as well because these do not
require costly Bessel function evaluations when calculating the likelihood. How-
ever, this is left for future research to investigate in more detail. An introduction
to maximum likelihood estimation using the SPDE formulation can be found in
Bolin and Lindgren (2011) and Lindgren et al. (2011).

Finally, some relevant methods, such as Cressie and Johannesson (2008) and
Banerjee et al. (2008), were not included in the comparison in order to keep it
relatively short and also because they are difficult to compare with the methods
discussed here. It would be interesting to include more methods in the compar-
ison, but we leave this for future work.
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Spatial models generated by nested
stochastic partial differential equations,

with an application to global
ozone mapping

DAVID BOLIN AND FINN LINDGREN
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Abstract: A new class of stochastic field models is constructed using nested
stochastic partial differential equations (SPDEs). The model class is computa-
tionally efficient, applicable to data on general smooth manifolds, and includes
both the Gaussian Matérn fields and a wide family of fields with oscillating cov-
ariance functions. Nonstationary covariance models are obtained by spatially
varying the parameters in the SPDEs, and the model parameters are estim-
ated using direct numerical optimization, which is more efficient than standard
Markov Chain Monte Carlo procedures. The model class is used to estimate
daily ozone maps using a large data set of spatially irregular global total column
ozone data.

Key words: nested SPDEs; Matérn covariances; non-stationary covariances;
total column ozone data

1 Introduction

Building models for spatial environmental data is a challenging problem that has
received much attention over the past years. Nonstationary covariance models
are often needed since the traditional stationary assumption is too restrictive for
capturing the covariance structure in many problems. Also, many environmental
data sets today contain massive amounts of measurements, which makes compu-
tational efficiency another increasingly important model property. One such data
set, which will be analyzed in this work, is the Total Ozone Mapping Spectro-
meter (TOMS) atmospheric ozone data (McPeters et al., 1996). The data was
collected by a TOMS instrument onboard the near-polar, Sun-synchronous or-
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biting satellite Nimbus-7, launched by NASA on October 24, 1978. During the
sunlit portions of the satellite’s orbit, the instrument collected data in scans per-
pendicular to the orbital plane. A new scan was started every eight seconds as the
spacecraft moved from south to north. A number of recent papers in the statist-
ical literature (Cressie and Johannesson, 2008, Jun and Stein, 2008, Stein, 2007)
have studied the data, and it requires nonstationary covariance structures as well
as efficient computational techniques due to the large number of observations.

A covariance model that is popular in environmental statistics is the Matérn
family of covariance functions (Matérn, 1960). The Matérn covariance function
has a shape parameter, ν, a scale parameter, κ, and a variance1 parameter, φ2, and
can be parametrized as

C (h) =
21−νφ2

(4π)d/2Γ(ν + d/2)κ2ν
(κ‖h‖)νKν(κ‖h‖), h ∈ R

d , (1)

where Kν is a modified Bessel function of the second kind of order ν > 0. One
drawback with defining the model directly through a covariance function, such as
(1), is that it makes nonstationary extensions difficult. Another drawback is that,
unless the covariance function has compact support, the computational complex-
ity for calculating the Kriging predictor based on n measurements is O(n3). This
makes the Matérn covariance model computationally infeasible for many envir-
onmental data sets.

Recently, Lindgren et al. (2011) derived a method for explicit, and compu-
tationally efficient, Markov representations of the Matérn covariance family. The
method uses the fact that a random process on R

d with a Matérn covariance
function is a solution to the stochastic partial differential equation (SPDE)

(κ2 −Δ)α/2X (s) = φW(s), (2)

whereW(s) is Gaussian white noise, Δ is the Laplace operator, and α = ν+ d/2
(Whittle, 1963). Instead of defining Matérn fields through the covariance func-
tions (1), Lindgren et al. (2011) used the solution to the SPDE (2) as a definition.
This definition is valid not only on R

d but also on general smooth manifolds, such
as the sphere, and facilitates nonstationary extensions by allowing the SPDE para-
meters κ2 and φ to vary with space. The Markov representations were obtained
by considering approximate stochastic weak solutions to the SPDE; see Section 3
for details.

1With this parametrization, the variance C(0) is φ2(4π)−d/2
Γ (ν)Γ (ν+ d/2)−1κ−2ν.
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2. Stationary nested SPDE models

In this paper we extend the work by Lindgren et al. (2011) and construct a
new flexible class of spatial models by considering a generalization of (2). This
model class contains a wide family of covariance functions, including both the
Matérn family and oscillating covariance functions, and it maintains all desirable
properties of the Markov approximated Matérn model, such as computational ef-
ficiency, easy nonstationary extensions and applicability to data on general smooth
manifolds.

The model class is introduced in Section 2, with derivations of some ba-
sic properties, examples of covariance functions that can be obtained from these
models and a discussion on nonstationary extensions. Section 3 gives a review of
the Hilbert space approximation technique and shows how it can be extended to
give computationally efficient representations also for this new model class. In
Section 4 a numerical parameter estimation procedure for the nested SPDE mod-
els is presented, and the section concludes with a discussion on computational
complexity for parameter estimation and Kriging prediction. In Section 5 the
model class is used to analyze the TOMS ozone data. In particular, all measure-
ments available from October 1st, 1988 in the spatially and temporally irregular
“Level 2” version of the data set are used. This data set contains approximately
180,000 measurements, and the nonstationary version of the model class is used
to construct estimates of the ozone field for that particular day. Finally, Section 6
contains some concluding remarks and suggestions for further work.

2 Stationary nested SPDE models

A limitation with the Matérn covariance family is that it does not contain any co-
variance functions with negative values, such as oscillating covariance functions.
One way of constructing a larger class of stochastic fields is to consider a general-
ization of the SPDE (2):

L1X (s) = L2W(s), (3)

for some linear operators L1 and L2. If L1 and L2 are commutative operators,
(3) is equivalent to the following system of nested SPDEs:

L1X0(s) = W(s),
(4)

X (s) = L2X0(s).
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This representation gives us an interpretation of the consequence of the additional
differential operator L2: X (s) is simply L2 applied to the solution one would get
to (3) if L2 was the identity operator. Equation (3) generates a large class of
random fields, even if the operators L1 and L2 are restricted to operators closely
related to (2). One of the simplest extensions of the Matérn model is to let L1 be
the same as in (2) and use L2 = (b+B⊤∇), where∇ is the gradient, b ∈ R, and
B ∈ R

d . The equation then is

(κ2 −Δ)α/2X (s) = (b + B⊤∇)W(s), (5)

and X (s) is a weighted sum of a Matérn field and its directional derivative in the
direction determined by the vector B. This model is closely related to the models
introduced in Jun and Stein (2007) and Jun and Stein (2008), and the connection
is discussed later in Section 5. To get a larger class of models, the orders of the
operators L1 and L2 can be increased, and to get a class of stochastic fields that is
easy to work with, the operators are written as products, where each factor in the
product is equal to one of the operators in (5). Thus, let

L1 =

n1∏

i=1

(κ2
i −Δ)αi/2 (6)

for αi ∈ N and κ2
i > 0, and use

L2 =

n2∏

i=1

(bi + B⊤
i ∇) (7)

for bi ∈ R and Bi ∈ R
d . Hence, the SPDE generating the class of nested SPDE

models is

( n1∏

i=1

(κ2 −Δ)αi/2
)

X (s) =

( n2∏

i=1

(bi + B⊤
i ∇)

)

W(s). (8)

There are several alternative equations one might consider; one could, for
example, let L2 be on the same form as L1, or allow for anisotropic operators on
the form (1−∇⊤A∇) for some positive definite matrix A. However, to limit our
scope, we will from now on only consider model (8).
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2. Stationary nested SPDE models

2.1 Properties in Rd

In this section some basic properties of random fields generated by (8), when
s ∈ R

d , are given. First note that all Matérn fields with shape parameters satis-
fying ν + d/2 ∈ N are contained in the class of stochastic fields generated by
(8) since (κ2 −Δ)α/2 can be written on the form (6) for these values of ν. Also
note that the order of the operator L2 cannot be larger than the order of L1 if
X (s) should be at least as “well behaved” as white noise; hence, one must have
∑n1

i=1 αi ≥ n2. The smoothness of X (s) is determined by the difference of the
orders of the operators L1 and L2. In order to make a precise statement about
this, the spectral density of X (s) is needed.

Proposition 2.1. The spectral density for X (s) defined by (8) is given by

S(k) =
φ2

(2π)d

∏n2
j=1(b2

j + k⊤BjB
⊤
j k)

∏n1
j=1(κ2

j + ‖k‖2)αj
.

This proposition is easily proved using linear filtering theory (see, for example
Yaglom, 1987). Given the spectral density of X (s), the following proposition
regarding the sample function regularity can be proved using Theorem 3.4.3 in
Adler (1981).

Proposition 2.2. X (s) defined by (8) has almost surely continuous sample functions
if 2
∑n1

i=1 αi − 2n2 > d.

Because the stochastic field X (s) is generated by the SPDE (8), the following
corollary regarding sample path differentiability is also easily proved using the fact
that the directional derivative of X (s) is in the class of nested SPDE models.

Corollary 2.3. Given that 2
∑n1

i=1 αi − 2n2 − d > m, the mth order directional
derivative of X (s), (B⊤∇)mX (s), has almost surely continuous sample functions.

Hence, as 2
∑n1

i=1 αi−2n2 increases, the sample paths become smoother, and
eventually become differentiable, twice differentiable, and so on. One could also
give a more precise characterization of the sample path regularity using the notion
of Hölder continuity. This is (more or less) straightforward using properties of
index-β random fields (Adler, 1981), but outside the scope of this article.

A closed-form expression for the covariance function is not that interesting
since none of the methods that are later presented for parameter estimation, spa-
tial prediction or model validation require an expression for the covariance func-
tion; however, if one were to use some technique that requires the covariance
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function, it can be derived. An expression for the general case is quite complic-
ated, and will not be presented here. Instead we present a recipe for calculating
the covariance function for given parameters of the SPDE, with explicit results
for a few examples.

To calculate the covariance function of X (s), first calculate the covariance
function, CX0(h), of X0(s), given by (4). Given this covariance function, the
covariance function for X (s) is obtained as

C (h) =

( n2∏

i=1

(bi −∇⊤BiB
⊤
i ∇)

)

CX0(h).

The motivation for this expression is again directly from linear filter theory, and
the d -dimensional equivalent of the formula for the covariance function for a dif-
ferentiated stochastic process, rX ′ (τ) = −r′′X (τ). To get an expression for CX0(h),
first use Proposition 2.1 with L2 = I to get the spectral density of X0(s). Using a
partial fraction decomposition, the spectral density can be written as

SX0(k) =
φ2

(2π)d

n∑

i=1

αi∑

j=1

pi,j

(κ2
i + ‖k‖2)j , (9)

where pi,j is a real constant which can be found using the Heaviside cover-up
method (see, for example Thomas and Finney, 1995, page 523). Now, by taking
the inverse Fourier transform of (9), the covariance function for X0(s) is

CX0(h) =
n∑

i=1

αi∑

j=1

pi,jC
j
κi (h),

where Cνκ(h) denotes a Matérn covariance function with shape parameter ν, scale
parameter κ and variance parameter φ2. The final step is to use that the derivative
of a Matérn covariance function can be expressed using a Matérn covariance with
another shape parameter. More precisely, one has

∂

∂hi
Cνκ(h) = − hi

2ν
Cν−1
κ (h),

where hi denotes the ith component of the vector h. Using these calculations,
one can obtain the covariance function for any field given by (8). We conclude
this section by showing the covariance function for some simple cases in R

2. The
covariance functions for these examples are shown in Figure 1, and realizations of
Gaussian processes with these covariance functions are shown in Figure 2.
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2. Stationary nested SPDE models

Figure 1: Covariance functions of random fields obtained from model (8) with
parameters from Example 1 (top left), Example 2 (top middle and right), Ex-
ample 3 (bottom left and middle) and Example 4 (bottom right).

Example 1. With L1 = (κ2 −Δ)α/2 and L2 as the identity operator, the stand-
ard Matérn covariance function (1) is obtained, shown in the top left panel of
Figure 1.

Example 2. The simplest nested SPDE model (5) has the covariance function

C (h) = bCνκ(h) +
B⊤B

2ν
Cν−1
κ (h)− h⊤BB⊤h

4ν(ν− 1)
Cν−2
κ (h).

A stochastic field with this covariance function is obtained as a weighted sum of
a Matérn field X0(s) and its directional derivative in the direction of B. The field
therefore has a Matérn-like behavior in the direction perpendicular to B and an
oscillating behavior in the direction of B. In the upper middle panel of Figure 1,
this covariance function is shown for B = (1, 0)⊤, ν = 3, and b = 5. In the
upper right panel of Figure 1, it is shown for B = (1, 0)⊤, ν = 3, and b = 0.
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Figure 2: Realizations of random fields obtained from model (8) with different
parameters. The realization in each panel corresponds to a stochastic field with
the covariance function shown in the corresponding panel in Figure 1.

Example 3. The number of zero crossings of the covariance function in the dir-
ection of B is at most n2. In the previous example we had n2 = 1, and to obtain
a more oscillating covariance function, the order of L2 can be increased by one:

(κ2 −Δ)α/2X (s) = (b1 + B⊤
1 ∇)(b2 + B⊤

2 ∇)W(s).

This model has the covariance function

C (h) = b1b2Cνκ(h) +
b2B⊤

1 B1 + b1B⊤
2 B2

2ν
Cν−1
κ (h)

+
2(B⊤

2 B1)2 + B⊤
1 B1B⊤

2 B2 − h⊤(b1B2B⊤
2 + b2B1B⊤

1 )h
22ν(ν− 1)

Cν−2
κ (h)

− h⊤(B1B⊤
2 B2B⊤

1 + 4B1B⊤
1 B2B⊤

2 + B2B⊤
1 B1B⊤

2 )h
23ν(ν− 1)(ν− 2)

Cν−3
κ (h)

+
(B⊤

1 hh⊤B2)2

24ν(ν− 1)(ν− 2)(ν − 3)
Cν−4
κ (h).
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2. Stationary nested SPDE models

In the bottom left panel of Figure 1 this covariance function is shown for ν = 5,
b1 = b2 = 0 and B1 = B2 = (1, 0)⊤. With these parameters, the covariance
function is similar to the covariance function in the previous example, but with
one more zero crossing in the direction of B. For this specific choice of parameters,
the expression for the covariance function can be simplified to

C (h) = 3γ2Cν−2
κ (h)− 6γ3h2

1Cν−3
κ (h) + γ4h4

1Cν−4
κ (h),

where γk = (2kΠ k−1
i=0 (ν − k))−1. In the bottom middle panel of Figure 1 the

covariance function is shown for ν = 5, b1 = b2 = 0, B1 = (1, 0)⊤, and
B2 = (0, 1)⊤. Thus, the field X0(s) is differentiated in two different directions,
and the covariance function for X (s) therefore is oscillating in two directions. For
these parameters, the covariance function can be written as

C (h) = γ2Cν−2
κ (h)− γ3h⊤hCν−3

κ (h) + γ4h1h2Cν−4
κ (h).

Example 4. The bottom right panel of Figure 1 shows a covariance function for
the nested SPDE

(κ2 −Δ)α/2X (s) = (b1 + B⊤
1 ∇)2(b2 + B⊤

2 ∇)2W(s).

As in the previous examples, the covariance function for a stochastic field gener-
ated by this SPDE can be calculated and written on the form

C (h) =
8∑

k=0

γkfk(h)Cν−k
κ (h),

where fk(h), k = 0, . . . , 8, are functions depending on h and the parameters
in the SPDE. Without any restrictions on the parameters, it is a rather tedious
exercise to calculate the functions fk(h), and we therefore only show them for
the specific set of parameters that are used in Figure 1: ν = 7, b1 = b2 = 0,
B1 = (1, 0)⊤ and B2 = (0, 1)⊤. In this case f0(h) = f1(h) = f2(h) = 0, and the
covariance function is

C (h) = 9γ4Cν−4
κ (h)− 18γ5h⊤hCν−5

κ (h) + 3γ6(h4
1 + h4

2 + 12h2
1h2

2)Cν−6
κ (h)

− 6γ7h2
1h2

2h⊤hCν−7
κ (h) + γ8h4

1h4
2Cν−8

κ (h).
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2.2 Nonstationary nested SPDE models

Nonstationarity can be introduced in the nested SPDE models by allowing the
parameters κi, bi and Bi to be spatially varying:

( n1∏

i=1

(
κ2

i (s)−Δ
)αi/2

)

X0(s) = W(s),

(10)

X (s) =

( n2∏

i=1

(
bi(s) + Bi(s)

⊤∇
)
)

X0(s).

If the parameters are spatially varying, the two operators are no longer commut-
ative, and the solution to (10) is not necessarily equal to the solution of

( n1∏

i=1

(
κ2

i (s)−Δ
)αi/2

)

X (s) =

( n2∏

i=1

(
bi(s) + Bi(s)

⊤∇
)
)

W(s). (11)

For nonstationary models, we will from now on only study the system of nested
SPDEs (10), though it should be noted that the methods presented in the next
sections can be applied to (11) as well.

One could potentially use an approach where the spatially varying parameters
also are modeled as stochastic fields, but to be able to estimate the parameters
efficiently, it is easier to assume that each parameter can be written as a weighted
sum of some known regression functions. In Section 5 this approach is used for
a nested SPDE model on the sphere. In this case, one needs a regression basis
{ψj(s)} for the vector fields Bi(s) on the sphere. Explicit expressions for such a
basis are given in Appendix A.

3 Computationally efficient representations

In the previous section covariance functions for some examples of nested SPDE
models were derived. Given the covariance function, standard spatial statistics
techniques can be used for parameter estimation, spatial prediction and model
simulation. Many of these techniques are, however, computationally infeasible
for large data sets. Thus, in order to use the model for large environmental data
sets, such as the ozone data studied in Section 5, a more computationally effi-
cient representation of the model class is needed. In this section the Hilbert space
approximation technique by Lindgren et al. (2011) is used to derive such a rep-
resentation.
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3. Computationally efficient representations

The key idea in Lindgren et al. (2011) is to approximate the solution to the
SPDE L1X0(s) =W(s) in some approximation space spanned by basis functions
φ1(s), . . . ,φn(s). The method is most efficient if these basis functions have com-
pact support, so, from now on, it is assumed that {φi} are local basis functions.
The weak solution of the SPDE with respect to the approximation space can be
written as x̃(s) =

∑n
i=1 wiφi(s), where the stochastic weights {wi}n

i=1 are chosen
such that the weak formulation of the SPDE is satisfied:

[〈φi,L1x̃〉Ω ]i=1,...,n
D
= [〈φi,W〉Ω ]i=1,...,n. (12)

Here
D
= denotes equality in distribution, Ω is the manifold on which s is defined,

and 〈f , g〉Ω =
∫

Ω
f (s)g(s) ds is the scalar product on Ω . As an illustrative ex-

ample, consider the first fundamental case L1 = κ2 −Δ. One has

〈φi,L1x̃〉Ω =

n∑

j=1

wj〈φi,L1φj〉Ω ,

so by introducing a matrix K, with elements Ki,j = 〈φi,L1φj〉Ω , and the vector
w = (w1, . . . ,wn)⊤, the left-hand side of (12) can be written as Kw. Since

〈φi,L1φj〉Ω = κ2〈φi,φj〉Ω − 〈φi,Δφj〉Ω
= κ2〈φi,φj〉Ω + 〈∇φi,∇φj〉Ω ,

the matrix K can be written as K = κ2C + G, where Ci,j = 〈φi,φj〉Ω and
Gi,j = 〈∇φi,∇φj〉Ω . The right-hand side of (12) can be shown to be Gaussian
with mean zero and covariance C. For the Hilbert space approximations, it is nat-
ural to work with the canonical representation, x ∼ NC (b,Q), of the Gaussian
distribution. Here, the precision matrix Q is the inverse of the covariance mat-
rix, and the vector b is connected to the mean, μ, of the Gaussian distribution
through the relation μ = Q−1b. Thus, if K is invertible, one has

Kw ∼ NC (0,C−1) ⇐⇒ w ∼ NC (0,KC−1K).

For the second fundamental case, L1 = (κ2 − Δ)1/2, Lindgren et al. (2011)
show that w ∼ NC (0,K). Given these two fundamental cases, the weak solu-
tion to L1X0(s) = W(s), for any operator on the form (6), can be obtained
recursively. If, for example, L1 = (κ2 −Δ)2, the solution is obtained by solving
(κ2 −Δ)X0(s) = x̃(s), where x̃ is the weak solution to the first fundamental case.
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The iterative way of constructing solutions can be extended to calculate
weak solutions to (8) as well. Let x̃0 =

∑n
i=1 w0

i φi(s) be a weak solution to
L1X0(s) =W(s), and let QX0 denote the precision for the weights
w0 = (w0

1, . . . ,w0
n)⊤. Substituting X0 with x̃0 in the second equation of (3),

the weak formulation of the equation is

[〈φi, x̃〉Ω ]i=1,...,n
D
= [〈φi,L2x̃0〉Ω ]i=1,...,n

(13)

=

[ n∑

j=1

w0
j 〈φi,L2φj〉Ω

]

i=1,...,n

.

First consider the case of an order-one operator L2 = b1 +B⊤
1 ∇. By introducing

the matrix H1 with elements H1i,j = 〈φi,L2φj〉Ω , the right-hand side of (13) can
be written as H1w0. Introducing the vector w = (w1, . . . ,wn)⊤, the left-hand
side of (13) can be written as Cw, and one has

w = C−1H1w0 =⇒ w ∼ NC (0,CH−⊤
1 QX0H−1

1 C).

Now, if L2 is on the form (7), the procedure can be used recursively, in the same
way as when producing higher order Matérn fields. For example, if

L2 = (b1 + B⊤
1 ∇)(b2 + B⊤

2 ∇),

the solution is obtained by solving X (s) = (b2 + B⊤
2 ∇)x̃(s), where x̃ is the weak

solution to the previous example. Thus, when L2 is on the form (7), one has

w ∼ NC (0,H−⊤QX0H−1), H = C−1Hn2 C−1Hn2−1 · · ·C−1H1,

where each factor Hi corresponds to the H-matrix obtained in the ith step in the
recursion.

3.1 Nonstationary fields

As mentioned in Lindgren et al. (2011), the Hilbert space approximation tech-
nique can also be used for nonstationary models, and the technique extends to
the nested SPDE models as well. One again begins by finding the weak solution
of the first part of the system, L1(s)X0(s) =W(s). The iterative procedure is used
for obtaining approximations of high-order operators, so the fundamental step is
to find the weak solution to the equation when L1 = (κ2(s)−Δ). Consider the
weak formulation

[
〈φi,

(
κ2(s)−Δ

)
x̃〉Ω
]

i=1,...,n
D
= [〈φi,W〉Ω ]i=1,...,n, (14)
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3. Computationally efficient representations

and note that the right-hand side of the equation is the same as in the stationary
case, NC (0,C−1). Now, using that

〈φi,
(
κ2(s)−Δ

)
x̃〉Ω = 〈φi, κ

2(s)x̃〉Ω − 〈φi,Δx̃〉Ω
= 〈φi, κ

2(s)x̃〉Ω + 〈∇φi,∇x̃〉Ω ,
the left-hand side of (14) can be written as (C̃ + G)w0, where G and w0 are the
same as in the stationary case and C̃ is a matrix with elements

C̃i,j = 〈φi, κ
2(s)φj〉Ω =

∫

Ω

κ2(s)φi(s)φj(s) ds

(15)
≈ κ2(sj)

∫

Ω

φi(s)φj(s) ds = κ2(sj)Ci,j.

Since {φi} is assumed to be a local basis, such as B-spline wavelets or some other
functions with compact support, the locations sj can, for example, be chosen as
the centers of the basis functions φj(s). The error in the approximation of C̃ is
then small if κ2(s) varies slowly compared to the spacing of the basis functions
φj. From equation (15), one has C̃ = Cκ, where κ is a diagonal matrix with
elements κj,j = κ2(sj). Finally, with K = κC + G, one has

Kw0 ∼ NC (0,C−1) =⇒ w0 ∼ NC (0,KC−1K).

Now given the weak solution, x̃0, to L1(s)X0(s) = W(s), substitute X0 with x̃0

in the second equation of (4) and consider the weak formulation of the equation.
Since the solution to the full operator again can be found recursively, only the
fundamental case L2 = b(s) + B(s)⊤∇ is considered. The weak formulation is
the same as (13), and one has

〈φi, x̃〉Ω D
= 〈φi,L2x̃0〉Ω = 〈φi,

(
b(s) + B(s)⊤∇

)
x̃0〉Ω

= 〈φi, b(s)x̃0〉Ω + 〈φi,B(s)⊤∇x̃0〉Ω .
Thus, the right-hand side of (13) can be written as (Ĉ + Ĥ)w0, where

Ĉi,j = 〈φi, b(s)φj〉Ω =

∫

Ω

b(s)φi(s)φj(s) ds ≈ b(sj)Ci,j,

Ĥi,j = 〈φi,B(s)⊤∇φj〉Ω =

∫

Ω

φi(s)B(s)⊤∇φj(s) ds

≈ B(̃sj)
⊤

∫

Ω

φi(s)∇φj(s) ds.

115



C

Here, similar approximations as in equation (15) are used, so the expressions
are accurate if the coefficients vary slowly compared to the spacing of the basis
functions φj. The left-hand side of (13) can again be written as Cw, so with
H1 = Ĉ + Ĥ, one has w ∼ NC (0,CH−⊤

1 QX0H−1
1 C).

3.2 Practical considerations

The integrals that must be calculated to get explicit expressions for the matrices
C, G and H are
∫

Ω

φi(s)φj(s) ds,

∫

Ω

(∇φi(s))
⊤∇φj(s) ds and

∫

Ω

φi(s)∇φj(s) ds.

In Section 5 a basis of piecewise linear functions induced by a triangulation of
the Earth is used; see Figure 4. In this case, φi(s) is a linear function on each
triangle, and ∇φi(s) is constant on each triangle. The integrals, therefore, have
simple analytic expressions in this case, and more generally for all piecewise linear
bases induced by triangulated 2-manifolds.

Bases induced by triangulations have many desirable properties, such as the
simple analytic expression for the integrals and compact support. They are, how-
ever, not orthogonal, which causes C−1 to be dense. The weights w, therefore,
have a dense precision matrix, unless C−1 is approximated with some sparse mat-
rix. This issue is addressed in Lindgren et al. (2011) by lowering the integration
order of 〈φi,φj〉, which results in an approximate, diagonal C matrix, C̄, with di-
agonal elements C̄ii =

∑n
k=1 Cik. Bolin and Lindgren (2009) perform numerical

studies on how this approximation affects the resulting covariance function of the
process, and it is shown that the error is small if the approximation is used for
piecewise linear bases. We will, therefore, from now on use the approximate C

matrix in all places where C is used.
A natural question is how many basis functions one should use in order to

get a good approximation of the solution. The answer will depend on the chosen
basis, and, more importantly, on the specific parameters of the SPDE model.
Bolin and Lindgren (2009) study the approximation error in the Matérn case in
R and R

2 for different bases, and in this case the spacing of the basis functions
compared to the range of the covariance function for X (s) determines the approx-
imation error: For a process with long range, fewer basis functions have to be
used than for a process with short range to obtain the same approximation error.
For more complicated, possibly nonstationary, nested SPDE models, there is no

116
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easy answer to how the number of basis functions should be chosen. Increasing
the number of basis functions will decrease the approximation error but increase
the computational complexity for the approximate model, so there is a trade-off
between accuracy and computational cost. However, as long as the parameters
vary slowly compared to the spacing of the basis functions, the approximation
error will likely be much smaller than the error obtained from using a model that
does not fit the data perfectly and from estimating the parameters from the data.
Thus, for practical applications, the error in covariance induced by the Hilbert
space approximation technique will likely not matter much. A more important
consequence for practical applications when the piecewise linear basis is used is
that the Kriging estimation of the field between two nodes in the triangulation is
a linear interpolation of the values at the nodes. Thus, variations on a scale smal-
ler than the spacing between the basis functions will not be captured correctly
in the Kriging prediction. For practical applications, it is therefore often best to
choose the number of basis functions depending on the scale one is interested in
the Kriging prediction on.

For the ozone data in Section 5, the goal is to estimate daily maps of global
ozone. As we are not interested in modeling small scale variations, we choose the
number of basis functions so that the mean distance between basis functions is
about 258 km. For this basis, the smallest distance between two basis functions is
222 km, and the largest distance is about 342 km.

Estimating the model parameters using different numbers of basis functions
will give different estimates, as the parameters are estimated to maximize the like-
lihood for the approximate model instead of the exact SPDE. An example of
this can be seen in Figure 3 where the estimates of the covariance parameters for
model F’ (see Section 5 for a model description) for the ozone data are shown
for varying numbers of basis functions. Instead of showing the actual parameter
estimates, the figure shows the differences between the estimates and the estimate
when using the basis shown in Figure 4, which has 9002 basis functions. Increas-
ing the number of basis functions further, the estimates will finally converge to
the estimates one would get using the exact SPDE representation. The curve that
has not converged corresponds to the dominating parameter in the vector field.
Together with κ, this parameter controls the correlation range of the ozone field.
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Figure 3: Parameter estimates for the covariance parameters in model F′ for the
ozone data as functions of the number of basis functions in the Hilbert space
approximations.

4 Parameter estimation

In this section a parameter estimation procedure for the nested SPDE models is
presented. One alternative would be to use a Metropolis–Hastings algorithm,
which is easy to implement, but computationally inefficient. A better alternative
is to use direct numerical optimization to estimate the parameters.

Let Y (s) be an observation of the latent field, X (s), given by (8) or (10), under
mean zero Gaussian measurement noise, E(s), with variance σ2:

Y (s) = X (s) + E(s). (16)

Using the approximation procedure from Section 3, and assuming a regression
model for the latent field’s mean value function, μ(s), the measurement equation
can then be written as

Y = Mμ+Φw + ǫ,

where M is a matrix with the regression basis functions evaluated at the measure-
ment locations, and μ is a vector containing the regression coefficients that have
to be estimated. The matrixΦ contains the basis functions for the Hilbert space
approximation procedure evaluated at the measurement locations, and w is the
vector with the stochastic weights. In Section 3 it was shown that the vector w

is Gaussian with mean zero and covariance matrix HQ−1
X0

H⊤. Both QX0 and H

are sparse matrices, but neither the covariance matrix nor the precision matrix for
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4. Parameter estimation

w is sparse. Thus, it would seem as if one had to work with a dense covariance
matrix, which would make maximum likelihood parameter estimation computa-
tionally infeasible for large data sets. However, because of the product form of the
covariance matrix, one has that w = Hw0, where w0 ∼ NC (0,QX0 ). Hence, the
observation equation can be rewritten as

Y = Mμ+ΦHw0 + ǫ. (17)

Interpreting Λ = ΦH as an observation matrix that depends on some of the
parameters in the model, Y −Mμ can now be seen as noisy observations of w0,
which has a sparse precision matrix. The advantage with using (17) is that one
then is in the setting of having observations of a latent Gaussian Markov ran-
dom field, which facilitates the usage of sparse matrix techniques in the parameter
estimation.

Let ψ denote all parameters in the model except for μ. Assuming that μ and
ψ are a priori independent, the posterior density can be written as

π(w0,μ,ψ|Y) ∝ π(Y|w0,σ
2)π(w0|μ,ψ)π(μ)π(ψ).

Using a Gaussian prior distribution with mean μ and precision Qμ for the mean
parameters, the posterior distribution can be reformulated as

π(w0,μ,ψ|Y) ∝ π(w0|μ,ψ,Y)π(μ|ψ,Y)π(ψ|Y), (18)

where w0|μ,ψ,Y ∼ NC (b, Q̂), μ|ψ,Y ∼ NC (bμ, Q̂μ), and

b =
1
σ2Λ

⊤(Y−Mμ), bμ = Qμmμ +
M⊤Y

σ2 − M⊤ΛQ̂−1Λ⊤Y

σ4
,

Q̂ = Qw0 +
1
σ2Λ

⊤Λ, Q̂μ = Qμ +
M⊤M

σ2 − M⊤ΛQ̂−1Λ⊤M

σ4
.

The calculations are omitted here since these expressions are calculated similarly
to the posterior reformulation in Lindström and Lindgren (2008), which gives
more computational details. Finally, the marginal posterior density π(ψ|Y) can be
shown to be

π(ψ|Y) ∝ |Qw0 |1/2π(ψ)

|Q̂|1/2|Q̂μ|1/2|σI|
exp

(
1

2σ2 Y⊤

(
ΛQ̂−1Λ⊤

σ2 − I

)

Y +
b⊤
μ Q̂−1
μ bμ

2

)

.
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By rewriting the posterior as (18), it can be integrated with respect to w0 and
μ, and instead of optimizing the full posterior with respect to w0, μ and ψ, on-
ly the marginal posterior π(ψ|Y) has to be optimized with respect to ψ. This
is a lower dimensional optimization problem, which substantially decreases the
computational complexity. Given the optimum, ψopt = argmaxψ π(ψ|Y), μopt is

then given by μopt = Q̂−1
μ bμ. In practice, the numerical optimization is carried

out on log π(ψ|Y).

4.1 Estimating the parameter uncertainty

There are several ways one could estimate the uncertainty in the parameter estim-
ates obtained by the parameter estimation procedure above. The simplest estimate
of the uncertainty is obtained by numerically estimating the Hessian of the mar-
ginal posterior evaluated at the estimated parameters. The diagonal elements of
the inverse of the Hessian can then be seen as estimates of the variance for the
parameter estimates.

Another method for obtaining more reliable uncertainty estimates is to use a
Metropolis–Hastings based MCMC algorithm with proposal kernel similar to the
one used in Lindström and Lindgren (2008). A quite efficient algorithm is ob-
tained by using random walk proposals for the parameters, where the correlation
matrix for the proposal distribution is taken as a rescaled version of the inverse of
the Hessian matrix (Gelman et al., 1996).

Finally, a third method for estimating the uncertainties is to use the INLA
framework (Rue et al., 2009), available as an R package2. In settings with lat-
ent Gaussian Markov random fields, integrated nested Laplace approximations
(INLA) provide close approximations to posterior densities for a fraction of the
cost of MCMC. For models with Gaussian data, the calculated densities are for
practical purposes exact. In the current implementation of the INLA package,
handling the full nested SPDE structure is cumbersome, so further enhancements
are needed before one can take full advantage of the INLA method for these mod-
els.

4.2 Computational complexity

In this section some details on the computational complexity for the parameter
estimation and Kriging estimation are given.

2http://www.r-inla.org/
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4. Parameter estimation

The most widely used method for spatial prediction is linear Kriging. In the
Bayesian setting, the Kriging predictor simply is the posterior expectation of the
latent field X given data and the estimated parameters. This expectation can be
written as

E(X |ψ,μ,Y) = Mμ+ΦHE(w0) = Mμ+ΦHQ̂−1b.

The computationally demanding part of this expression is to calculate Q̂−1b.
Since the n × n matrix Q is positive definite, this is most efficiently done using
Cholesky factorization, forward substitution and back substitution: Calculate the
Cholesky triangle L such that Q̂ = LL⊤, and given L, solve the linear system
Lx = b. Finally, given x, solve L⊤y = x, where now y satisfies y = Q̂−1b. Solving
the forward substitution and back substitution are much less computationally
demanding than calculating the Cholesky triangle. Hence, the computational cost
for calculating the Kriging prediction is determined by the cost for calculating L.

The computational complexity for the parameter estimation is determined by
the optimization method that is used and the computational complexity for evalu-
ating the marginal log-posterior log π(ψ|Y). The most computationally demand-
ing terms in log π(ψ|Y) are the two log-determinants log |Qw0 | and log |Q̂| and
the quadratic form Y⊤ΛQ̂−1ΛY, which are also most efficiently calculated using
Cholesky factorization. Given the Cholesky triangle L, the quadratic form can be
obtained as x⊤x, where x is the solution to Lx = ΛY, and the log-determinant
log |Q̂| is simply the sum3 2

∑n
i=1 log Lii. Thus, the computational cost for one

evaluation of the marginal posterior is also determined by the cost for calculat-
ing L. Because of the sparsity structure of Q̂, this computational cost is O(n),
O(n3/2) and O(n2) for problems in one, two and three dimensions respectively
(see Rue and Held, 2005, for more details).

The computational complexity for the parameter estimation is highly de-
pendent on the optimization method. If a Broyden–Fletcher–Goldfarb-Shanno
(BFGS) procedure is used without an analytic expression for the gradients, the
marginal posterior has to be evaluated p times for each step in the optimization,
where p is the number of covariance parameters in the model. Thus, if p is large
and the initial value for the optimization is chosen far from the optimal value,

3Since only the difference between the log-determinants is needed, one should implement the
calculation as 2

∑n
i=1(log Lw0

(i) − log L̂(i)), where Lw0
(i) and L̂(i) are the diagonal elements of the

Cholesky factors, sorted in ascending order, and the sum is ordered by increasing absolute values of
the differences. This reduces numerical issues.
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many thousand evaluations of the marginal posterior may be needed in the op-
timization.

5 Application: Ozone data

On October 24, 1978, NASA launched the near-polar, Sun-synchronous orbit-
ing satellite Nimbus-7. The satellite carried a TOMS instrument with the purpose
of obtaining high-resolution global maps of atmospheric ozone (McPeters et al.,
1996). The instrument measured backscattered solar ultraviolet radiation at 35
sample points along a line perpendicular to the orbital plane at 3-degree intervals
from 51 degrees on the right side of spacecraft to 51 degrees on the left. A new
scan was started every eight seconds, and as the measurements required sunlight,
the measurements were made during the sunlit portions of the orbit as the space-
craft moved from south to north. The data measured by the satellite has been
calibrated and preprocessed into a “Level 2” data set of spatially and temporally
irregular Total Column Ozone (TCO) measurements following the satellite or-
bit. There is also a daily “Level 3” data set with values processed into a regular
latitude-longitude grid. Both Level 2 and Level 3 data have been analyzed in re-
cent papers in the statistical literature (Cressie and Johannesson, 2008, Jun and
Stein, 2008, Stein, 2007).

In what follows, the nested SPDE models are used to obtain statistical estim-
ates of a daily ozone map using a part of the Level 2 data. In particular, all data
available for October 1st, 1988 is used, which is the same data set that was used
by Cressie and Johannesson (2008).

5.1 Statistical model

The measurement model (16) is used for the ozone data. That is, the measure-
ments, Y (s), are assumed to be observations of a latent field of TCO ozone, X (s),
under Gaussian measurement noise E(s) with a constant variance σ2. We let X (s)
have some mean value function, μ(s), and let the covariance structure be determ-
ined by a nested SPDE model. Inspired by Jun and Stein (2008), who proposed
using differentiated Matérn fields for modeling TCO ozone, we use the simplest
nested SPDE model. Thus, Z (s) = X (s)− μ(s) is generated by the system

(
κ2(s)−Δ

)
Z0(s) = W(s)

Z (s) =
(
b(s) + B(s)⊤∇

)
Z0(s),

122



5. Application: Ozone data

A B C D E F G H I J K L M
κ2(s) 0 1 0 1 2 0 3 2 0 4 3 0 4
b(s) 0 1 1 1 2 2 3 2 3 4 3 4 4
B(s) 0 0 1 1 0 2 0 2 3 0 3 4 4
Total 2 8 11 14 18 26 32 34 47 50 62 75 98

Table 1: Maximal orders of the spherical harmonics used in the bases for the
different parameters and total number of covariance parameters in the different
models for X (s). The actual number of basis functions for κ2(s) and b(s) are given
by (ord + 1)2, and for B(s), the actual number is 2(ord + 1)2 − 2, where ord is
the maximal order indicated in the table.

whereW(s) is Gaussian white noise on the sphere. If κ(s) is assumed to be con-
stant, the ozone is modeled as a Gaussian field with a covariance structure that
is obtained by applying the differential operator (b(s) + B(s)⊤∇) to a stationary
Matérn field, which is similar to the model by Jun and Stein (2008). If, on the
other hand, κ is spatially varying, the range of the Matérn-like covariance function
can vary with location. As in Stein (2007) and Jun and Stein (2008), the mean can
be modeled using a regression basis of spherical harmonics; however, since the data
set only contains measurements from one specific day, it is not possible to identify
which part of the variation in the data that comes from a varying mean and which
part that can be explained by the variance–covariance structure of the latent field.
To avoid this identifiability problem, μ(s) is assumed to be unknown but con-
stant. The parameter κ2(s) has to be positive, and for identifiability reasons, we
also require b(s) to be positive. We, therefore, let logκ2(s) =

∑

k,m κk,mYk,m(s)
and log b(s) =

∑

k,m bk,mYk,m(s), where Yk,m is the spherical harmonic of order k
and mode m. Finally, the vector field B(s) is modeled using the vector spherical
harmonics basis functions Υ1

k,m and Υ2
k,m, presented in Appendix A:

B(s) =
∑

k,m

(
B1

k,mΥ
1
k,m(s) + B2

k,mΥ
2
k,m(s)

)
.

To choose the number of basis functions for the parameters κ2(s), b(s) and
B(s), some model selection technique has to be used. Model selection for this
model class is difficult since the models can have both nonstationary mean value
functions and nonstationary covariance structures. This makes standard vari-
ogram techniques inadequate in general, and we instead base the model selection
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Figure 4: The left part shows the triangulation of the Earth used to define the
piecewise linear basis functions in the Hilbert space approximation for ozone data.
Each basis function is one at a node in the triangulation, and decreases linearly
to zero at the neighboring nodes. The right part of the figure shows one of these
functions.

on Akaike’s Information Criterion (AIC) and the Bayesian Information Criterion
(BIC) (Hastie et al., 2003), which are suitable model selection tools for the nested
SPDE models since the likelihood for the data can be evaluated efficiently.

We estimate 13 models with different numbers of covariance parameters,
presented in Table 1. The simplest model is a stationary Matérn model, with
four parameters to estimate, and the most complicated model has 100 parameters
to estimate, including the mean and the measurement noise variance. There are
three different types of models in Table 1: In the first type (models B, E, G and
J), κ2 and b are spatially varying and the vector field B is assumed to be zero. In
the second type (models C, F, I and L), b and B are spatially varying and κ2 is
assumed to be constant. Finally, in the third type (model D, H, K and M), all
parameters are spatially varying.

A basis of 9002 piecewise linear functions induced by a triangulation of the
Earth (see Figure 4) is used in the approximation procedure from Section 3 to get
efficient representations of each model, and the parameters are estimated using the
procedure from Section 4. The computational cost for the parameter estimation
only depends on the number of basis functions in the Hilbert space approxima-
tion, and not on the number of data points, which makes inference efficient even
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Figure 5: AIC (squares) and BIC (circles) for the models A–M (solid lines) and
the axially symmetric models A′–M′ (dashed lines), scaled by a factor 10−5. Note
that the major improvement in AIC and BIC occurs when the orders of the basis
functions are increased from one to two, and that the model type with spatially
varying b and B seems to be most appropriate for this data. Also note that the
axially symmetric model F′ is surprisingly good considering that it only has 8
covariance parameters.

for this large data set.

AIC and BIC for each of the fitted models can be seen in Figure 5. The
figure contains one panel for each of the three model types and one panel where
AIC and BIC are shown for all models at once. The major improvement in AIC
and BIC occurs when the orders of the basis functions are increased from one to
two. For the first model type, with spatially varying κ2 and b, the figure indicates
that the results could be improved by increasing the orders of the basis functions
further. However, for a given order of the basis functions, the other two model
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Figure 6: Estimated variance-scaling parameter, b(s), and the norm of the vectors
in the estimated vector field B(s) for model F. Note that the estimates are fairly
constant with respect to longitude, which indicates that the latent field could be
axially symmetric.

types have much lower AIC and BIC. Also, by comparing AIC and BIC for the
second and third model types, one finds that there is not much gain in letting κ2

be spatially varying. We therefore conclude that a model with spatially varying b
and B is most appropriate for this data.

The estimated parameters b(s) and the length of the vectors B(s) for model F
are shown in Figure 6. One thing to note in this figure is that the two parameters
are fairly constant with respect to longitude, which indicates that the latent field
could be axially symmetric, an assumption that was made by both Stein (2007)
and Jun and Stein (2008). If the latent field indeed was axially symmetric, one
would only need the basis functions that are constant with respect to longitude in
the parameter bases. Since there is only one axially symmetric spherical harmonic
for each order, this assumption drastically reduces the number of parameters for
the models in Table 1. Let A′–M′ denote the axially symmetric versions of models
A–M. For these models, the number of basis functions for both κ2(s) and b(s) is
ord + 1, and the number of basis functions for B(s) is 2(ord + 1) − 2, where
ord is the maximal order indicated in Table 1. The dashed lines in Figure 5 show
AIC and BIC calculated for these models. Among the axially symmetric models,
model F′ is surprisingly good considering that it only has 8 covariance parameters.

The Kriging estimate and its standard error for model F′ are shown in Figures
7 and 8 respectively. The oscillating behavior near the equator for the stand-
ard error is explained by the fact that the satellite tracks are furthest apart there,
which results in sparser measurements between the different tracks. Because the
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Figure 7: Kriging estimate of TCO ozone in Dobson units using model F′.

measurements are collected using backscattered sunlight, the variance close to the
north pole is high, as there are no measurements there. As seen in Figure 9, there
is not much spatial correlation in the residuals X̂ − Y, which indicates a good
model fit. In Figure 10, estimates of the local mean and variance of the resid-
uals are shown. The mean is fairly constant across the globe, but there is a slight
tendency for higher variance closer to the poles. This is due to the fact that the
data really is space–time data, as the measurements are collected during a 24-hour
period. Since the different satellite tracks are closest near the poles, the temporal
variation of the data is most prominent here, and especially near the international
date line where data is collected both at the first satellite track of the day and
at the last track, 24 hours later. The area with high residual variance is one of
those places where measurements are taken both at the beginning and the end of
the time period, and where the ozone concentration has changed during the time
period between the measurements. One could include this effect by allowing the
variance of the measurement noise to be spatially varying; however, one should
really use a spatio-temporal model for the data to correctly account for the effect,
which is outside the scope of this article.

To see how much the temporal structure near the international date line in-
fluences the model fit, the parameters in model F′ are re-estimated without using
the first satellite track of the day and without using the last track of the day. The
estimated parameters can be seen in Table 2 and, as expected, the estimate of the
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Figure 8: Standard error in Dobson units for the Kriging estimate. The color bar
in the left part of the figure has been truncated at 6 Dobson units. The behavior
near the north pole can be seen in the right part of the figure.

κ σ b1 b2 b3 B1 B2 B3 B4

Yf 0.74 25.60 5.85 0.045 0.34 1.05 2.59 −6.84 −0.84
Yl 0.73 25.56 5.82 0.033 0.34 0.90 2.38 −7.01 −0.82
Y 0.67 34.09 5.75 0.054 0.36 0.70 2.48 −7.10 −0.68

Table 2: Estimates of the covariance parameters in model F′ using all data but the
first track (Yf ), all data but the last track (Yl ), and all data (Y )

measurement noise variance is much lower when not using all date line data. The
estimates of the covariance parameters for the latent field also change somewhat,
but the large scale structure of the nonstationarity is preserved.

To study how sensitive the Kriging estimates are to the model choice, the ratio
between the Kriging estimates for the simple model F′ and the large model M, and
the ratio between the corresponding Kriging standard errors, are shown in Fig-
ure 11. There is not much difference between the two Kriging estimates, whereas
there is a clear difference between the corresponding standard errors. Thus, if one
only is interested in the Kriging estimate, it does not matter much which model is
used, but if one also is interested in the standard error of the estimate, the model
choice greatly influences the results.

5.2 Discussion

Before the nested SPDE models were used on the ozone data, several tests were
performed on simulated data to verify that the model parameters in fact could be
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Figure 9: Estimated covariance function for the Kriging residuals using model F′.
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Figure 10: Estimates of the local mean (left) and standard deviation (right) for the
Kriging residuals using model F′. The mean is fairly constant across the globe,
whereas the standard deviation is higher close to the poles and at the international
date line because of the temporal structure in the data.

estimated using the estimation procedure in Section 4. These tests showed that
the estimation procedure is robust given that the initial values for the parameters
are not chosen too far from the true values. However, for nonstationary models
with many covariance parameters, it is not easy to choose the initial values. To re-
duce this problem, the optimization is done in several steps. A stationary Matérn
model (model A) is estimated to get initial values for κ0,0, b0,0 and σ2. To estim-
ate model B, all parameters are set to zero initially, except for the parameters that
were estimated in model A. Another layer of spherical harmonics is added to the
bases for κ2(s) and b(s) for estimating model E using the model B parameters as
initial values. This step-wise procedure of adding layers of spherical harmonics to
the bases is then repeated to estimate the larger models. Numerical studies showed
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Figure 11: The ratio between the kriging estimates using model F′ and model
M (left), and the ratio between the corresponding kriging standard errors (right).
Note that there is not much difference between the Kriging estimates, whereas
there is a clear difference between the corresponding standard errors.

that this optimization procedure is quite robust even for large models; however,
as in most other numerical optimization problems, there are no guarantees that
the true optimal values have been found for all models for the ozone data.

The application of the nested SPDE models to ozone data was inspired by Jun
and Stein (2008), who proposed using differentiated Matérn fields for modeling
TCO ozone, and we conclude this section with some remarks on the similarities
and differences between the nested SPDEs and their models. The most general
model in Jun and Stein (2008) is on the form

X (s) = P1(l2)X0(s) +

(

P2(l2)
∂

∂l2
+ P3(l2)

∂

∂l1

)

X1(s)
(19)

+ P4(l2)
∂

∂l1
X2(s),

where Xi, i = 0, 1, 2, are i.i.d. Matérn fields in R
3, Pi, i = 1, 2, 3, 4, are non-

random functions depending on latitude, l1 denoted longitude and l2 denoted
latitude. This model is similar to the model used here, but there are some import-
ant differences. First of all, (19) contains a sum of three independent fields, which
we cannot represent since the approximation procedure in Section 3 in this case
loses its computational benefits. To get a model more similar to the nested SPDE
model, one would have to let P4(l2) ≡ 0, and X0(s) = X1(s). Using X0 = X1 or
X0 and X1 as i.i.d. copies of a Matérn field gives different covariance functions,
and without testing both cases it is hard to determine what is more appropriate
for ozone data.
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6. Concluding remarks

Another important conceptual difference is how the methods deal with the
spherical topology. The Matérn fields in Jun and Stein (2008) are stochastic fields
on R

3, evaluated on the embedded sphere, which is equivalent to using chordal
distance as the metric in a regular Matérn covariance function. One might instead
attempt to evaluate the covariance function using the arc-length distance, which
is a more natural metric on the sphere. However, Theorem 2 from Gneiting
(1998) shows that for Matérn covariances with ν ≥ 1, this procedure does not
generate positive definite covariance functions. This means that the arc-length
method cannot be used for any differentiable Matérn fields. On the other hand,
the nested SPDEs are directly defined on the sphere, and therefore inherently use
the arc-length distance.

There is, in theory, no difference between writing the directional derivative of
X (s) as (P2(l2) ∂

∂l2
+P3(l2) ∂

∂l1
)X1(s) or B(s)⊤∇X (s), but the latter is easier to work

with in practice. If a vector field basis is used to model B(s), the process will not
have any singularities as long as the basis functions are nonsingular, which is the
case for the basis used in this paper. If, on the other hand, P2(l2) and P3(l2) are
modeled separately, the process will be singular at the poles unless certain restric-
tions on the two functions are met. This fact is indeed noted by Jun and Stein
(2008), but the authors do not seem to take the restrictions into account in the
parameter estimation, which causes all their estimated models to have singularities
at the poles.

Finally, the nested SPDE models are computationally efficient also for spa-
tially irregular data, which allowed us to work with the TOMS Level 2 data in-
stead of the gridded Level 3 data.

6 Concluding remarks

There is a need for computationally efficient stochastic models for environmental
data. Lindgren et al. (2011) introduced an efficient procedure for obtaining
Markov approximations of, possibly nonstationary, Matérn fields by considering
Hilbert space approximations of the SPDE

(
κ(s)2 −Δ

)α/2X (s) = φ(s)W(s).

In this work, the class of nonstationary nested SPDE models generated by (10)
was introduced, and it was shown how the approximation methods in Lindgren
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et al. (2011) can be extended to this larger class of models. This model class con-
tains a wider family of covariance models, including both Matérn-like covariance
functions and various oscillating covariance functions. Because of the additional
differential operator L2, the Hilbert space approximations for the nested SPDE
models do not have the Markov structure the model in Lindgren et al. (2011)
has, but all computational benefits from the Markov properties are preserved for
the nested SPDE models using the procedure in Section 4. This allows us to fit
complicated models with over 100 parameters to data sets with several hundred
thousand measurements using only a standard personal computer.

By choosing L2 = b + B⊤∇, one obtains a model similar to what Jun and
Stein (2008) used to analyze TOMS Level 3 ozone data, and we used this re-
stricted nested SPDE model to analyze the global spatially irregular TOMS Level
2 data. This application illustrates the ability to use the model class to produce
nonstationary covariance models on general smooth manifolds which efficiently
can be used to study large spatially irregular data sets.

The most important next step in this work is to make a spatio-temporal exten-
sion of the model class. This would allow us to produce not only spatial but also
spatio-temporal ozone models and increase the applicability of the model class to
other environmental modeling problems where time dependence is a necessary
model component.

A Vector spherical harmonics

When using the nonstationary model (10) in practice, we assume that the para-
meters in the model can be expressed in terms of some basis functions. If working
on the sphere, spherical harmonics is a convenient basis for the parameters taking
values in R. On real form, the spherical harmonic Yk,m(s) of order k ∈ N0 and
mode m = −k, . . . , k is defined as

Yk,m(s) =

√

2k + 1
4π

· (k − |m|)!
(k + |m|)! ·







√
2 sin(ml1)Pk,−m(sin l2), −k ≤ m < 0,

Pk,0(sin l2), m = 0,√
2 cos(ml1)Pk,m(sin l2), 0 < m ≤ k,

where l2 is the latitude, l1 is the longitude, and Pk,m(·) are associated Legendre
functions. We, however, also need a basis for the vector fields Bi(s), determining
the direction and magnitude of differentiation. Since the vector fields in each
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point on the sphere must lie in the tangent space of S2, the basis functions also
must satisfy this. A basis with this property is obtained by using a subset of the
vector spherical harmonics (Hill, 1954). For each spherical harmonic Yk,m(s),
k > 0, define the two vector spherical harmonics

Υ1
k,m(s) = ∇S2Yk,m(s),

Υ2
k,m(s) = ∇S2Yk,m(s) × s.

Here × denotes the cross product in R
3 and∇S2 is the gradient on S

2. By defin-
ing the basis in this way, all basis functions in Υ1 = {Υ1

k,m} and Υ2 = {Υ2
k,m}

will obviously lie in the tangent space of S2. It is also easy to see that the basis is
orthogonal in the sense that for any k, l > 0, −k ≤ m ≤ k, and−l ≤ n ≤ l , one
has

〈Υ1
k,m,Υ

2
l,n〉S2 = 0,

〈Υ1
k,m,Υ

1
l,n〉S2 = k(k + 1)δk−lδm−n,

〈Υ2
k,m,Υ

2
l,n〉S2 = k(k + 1)δk−lδm−n.

These are indeed desirable properties for a vector field basis, but for the basis to
be of any use in practice, a method for calculating the basis functions explicitly is
needed. Such explicit expressions are given in the following proposition.

Proposition A.1. With s = (x, y, z)⊤, Υ1
k,m(s) and Υ2

k,m(s) can be written as

Υ1
k,m(s) =

1
1− z2





−myYk,−m(s)− ck,mxzYk−1,m(s) + kxz2Yk,m(s)
mxYk,−m(s)− ck,myzYk−1,m(s) + kyz2Yk,m(s)
ck,m(1− z2)Yk−1,m(s)− (1− z2)kzYk,m(s)



 ,

Υ2
k,m(s) =

1
1− z2





kzyYk,m(s)− ck,myYk−1,m(s) + mzxYk,−m(s)
−kxzYk,m(s) + ck,mxYk−1,m(s) + myzYk,−m(s)

−m(1− z2)Yk,−m(s)



 ,

where

ck,m =

√

(2k + 1)(k2 − |m|2)
2k − 1

.

Proof. One has that∇S2Yk,m = PS2 (∇R3Yk,m), that is, the gradient on S
2 can be

obtained by first calculating the gradient in R
3 and then projecting the result onto
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S
2. If cm

k denotes the normalization constant for the spherical harmonic Yk,m(s),
and the recursive relation

(1− z2)
∂

∂z
Pk,m(z) = kzPk,m(z)− (k + m)Pk−1,m(z)

is used, one has that

∂

∂z
Yk,m(s) =

1
1− z2

(

kzYk,m(s)− (k + |m|) cm
k

cm
k−1

Yk−1,m(s)

)

.

Now, using that tan(l1) = x−1y, one has

∂l1
∂x

= − cos2(l1)
y
x2 = − y

1− z2 ,

∂l1
∂y

= cos2(l1)
1
x
=

x
1− z2 ,

where the last equalities hold on S
2. Using these relations gives

∂

∂x
Yk,m(s) = − my

1− z2 Yk,−m(s),
∂

∂y
Yk,m(s) =

mx
1− z2 Yk,−m(s).

Thus, with

ck,m , (k + |m|) cm
k

cm
k−1

=

√

(2k + 1)(k2 − |m|2)
2k − 1

,

one has that

∇R3Yk,m(s) =
1

1− z2





−myYk,−m(s)
mxYk,−m(s)

kzYk,m(s)− ck,mYk−1,m(s)



 .

Finally, the desired result is obtained by calculating

Υ1
k,m = ∇S2Yk,m = PS2∇R3Yk,m,

Υ2
k,m = Υ1

k,m × s = S×Υ
1
k,m,

where

PS2 = (I − ss⊤) =





1− x2 −xy −xz
−xy 1− y2 −yz
−xz −yz 1− z2



 , S× =





0 −z y
z 0 −x
−y x 0



 .

�
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Spatial Matérn fields driven by
non-Gaussian noise

DAVID BOLIN

Centre for Mathematical Sciences, Lund University, Lund, Sweden

Abstract: The article studies non-Gaussian extensions of a recently discovered
link between certain Gaussian random fields, expressed as solutions to stochastic
partial differential equations (SPDEs), and Gaussian Markov random fields
(GMRFs). The focus is on non-Gaussian random fields with Matérn covari-
ance functions, and in particular we show how the SPDE formulation of a
Laplace moving average (LMA) model can be used to obtain an efficient sim-
ulation method as well as an accurate parameter estimation technique for the
model. These methods are based on an extension of the Hilbert space approx-
imation technique by Lindgren et al. (2011) to SPDEs driven by Laplace noise,
and although interesting in itself, the results for the LMA model should be seen
as a demonstration of how these techniques can be used, and generalizations to
more general SPDEs driven by more general noise processes are readily available.

Key words: Matérn covariances; SPDE; Laplace moving averages; Markov
random fields; process convolutions; EM algorithm

1 Introduction

Recently, Lindgren et al. (2011) derived a link between certain Gaussian fields,
that can be represented as solutions to stochastic partial differential equations
(SPDEs), and Gaussian Markov random fields (GMRFs). The main idea is to
approximate these Gaussian fields using basis expansions

∑

i wiφi(s) where the
stochastic weights {wi} are calculated using the stochastic weak formulation of
the corresponding SPDE. For certain choices of the basis functions {φi}, espe-
cially compactly supported functions, the weights form GMRFs. Because of the
Markov property of the weights, fast numerical techniques for sparse matrices can
be used when estimating parameters and doing spatial prediction in these mod-
els. This greatly improves the applicability to problems involving large data sets,
where traditional methods in statistics fail due to computational issues. How-
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ever, the advantages of representing Gaussian fields as solutions to SPDEs are
not only computational. Using the SPDE representation, non-stationary exten-
sions are easily obtained by allowing spatially varying parameters in the SPDE
(Lindgren et al., 2011), and the model class can be generalized to include more
general covariance structures by generalizing the class of generating SPDEs (Bolin
and Lindgren, 2011). These are indeed useful features from an applied point of
view as many applications require complicated non-stationary models to accur-
ately capture the covariance structure of the data.

So far these methods have only been used in Gaussian settings, and it has not
been clear whether they are applicable when the Gaussianity assumption cannot
be justified. Therefore, this work will focus on extending the SPDE methods
beyond Gaussianity. A new type of non-Gaussian models that has proved to be
useful in practical applications is the Laplace moving average models (Åberg et al.,
2009, Åberg and Podgórski, 2011). These are processes obtained by convolving
some deterministic kernel function with stochastic Laplace noise. The models
share many good properties with the Gaussian models while allowing for heavier
tails and asymmetry in the data, making them interesting alternatives in practical
applications (see e.g. Bogsjö et al., 2012). One of the motivating examples in
Åberg and Podgórski (2011) is a Laplace moving average model with Matérn cov-
ariances. This model can be seen as the solution to the same SPDE that generates
Gaussian Matérn field but where the Gaussian white noise forcing is replaced with
Laplace noise. It has previously been shown that the SPDE model formulation
of Gaussian Matérn fields has many computational advantages compared with
the process convolution formulation (Bolin and Lindgren, 2009, Simpson et al.,
2010). We demonstrate here that for the Laplace moving average models, the
SPDE formulation can also be used to derive a new likelihood-based parameter
estimation technique as well as an efficient simulation procedure.

The structure of the paper is as follows. Section 2 contains an introduction
to the Matérn covariance family and the SPDE formulation in the Gaussian case.
In Section 3, stochastic Laplace fields are introduced, and some properties of
the Laplace-driven SPDE model are derived. Subsequently, in Section 4, the
Markov approximation technique by Lindgren et al. (2011) is extended to the
Laplace model, and its sampling is discussed in Section 5. A parameter estimation
technique based on the EM algorithm is derived in Section 6, and Section 7
contains a simulation study showing that it gives reliable parameter estimates.
Finally, Section 8 contains a summary and discussion of future work and possible
extensions.
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2. Gaussian Matérn fields

2 Gaussian Matérn fields

The Matérn covariance family (Matérn, 1960) is often used when modeling spa-
tial data. There are a few different parameterizations of the Matérn covariance
function in the literature, and the one most suitable in our context is

C (h) =
21−νφ2

(4π)
d
2Γ(ν + d

2 )κ2ν
(κ‖h‖)νKν(κ‖h‖), h ∈ R

d , (1)

where d is the dimension of the domain, ν is a shape parameter, κ2 a scale para-
meter, φ2 a variance parameter, and Kν is a modified Bessel function of the second
kind of order ν > 0. The associated spectrum is

S(k) =
φ2

(2π)d

1

(κ2 + k⊤k)ν+
d
2

. (2)

As the properties of Gaussian fields are given by their first two moments, the
standard way of specifying Gaussian Matérn fields is to chose the mean value,
μ(s) possibly spatially varying, and then let the covariance function be of the form
(1). An alternative way of specifying a Gaussian field on R

d is to view it as a
process convolution

X (s) =
∫

R
d

k(s,u)B( du), (3)

where k is some deterministic kernel function and B is a Brownian sheet (Higdon,
2001). One of the advantages with this construction is that non-stationary exten-
sions are easily constructed by allowing the convolution kernel to be dependent
on the location s. If, however, the process is stationary, the kernel k depends only
on s− u and the covariance function for X is

C (h) =
∫

R
d

k(u− h)k(u) du.

Thus, the covariance function C , the spectrum S, and the kernel k are related
through

(2π)d |F(k)|2 = F(C ) = S,

where F(·) denotes the Fourier transform. Since the spectral density for a Matérn
field in dimension d with parameters ν, φ2, and κ is given by (2), one finds that

141



D

the corresponding symmetric non-negative kernel is a Matérn covariance function
with parameters νk =

ν
2 − d

4 , φk =
√
φ, and κk = κ.

In yet another setting, Gaussian Matérn fields can be viewed as the solution
to the SPDE

(κ2 −Δ)
α

2 X (s) = φW(s), (4)

whereW(s) is Gaussian white noise, Δ =
∑d

i=1
∂2

∂ s2
i

is the Laplace operator, and

α = ν+ d/2 (Whittle, 1963). As discussed in Lindgren et al. (2011), there is an
implicit assumption of appropriate boundary conditions needed if one wants the
solutions to be stationary Matérn fields.

The connection between (3) and (4) is through the Green’s function of the
differential operator in (4)

Gα(s, t) =
21− α−d

2

(4π)
d
2Γ(α2 )κα−d

(κ‖s − t‖) α−d
2 K α−d

2
(κ‖s − t‖), (5)

that serves as a kernel in (3). It is straightforward to show that Gα ∈ Lp(Rd ) if and

only if α > (p−1)d
p (see for example Samko et al. (1992) p. 538), and in particular

α > d/2 guarantees that Gα ∈ L2(Rd ).
A non-Gaussian model with Matérn covariances could be constructed either

using the process convolution formulation (3) where the Brownian sheet is re-
placed by some non-Gaussian process, or through the SPDE formulation (4) with
non-Gaussian noise. Such non-Gaussian extensions are discussed next.

3 Non-Gaussian SPDE-based models

A simple way of moving beyond Gaussianity in the SPDE model (4) is to allow
for a stochastic variance parameter φ. By choosing φ as an inverse-gamma distrib-
uted random variable, the resulting field has t-distributed marginal distributions
and is therefore sometimes referred to as a t-distributed random field (Røislien
and Omre, 2006). In a Bayesian setting, this extension can be interpreted simply
as choosing a certain prior distribution for the variance, and one can of course
come up with many other non-Gaussian models by changing this distribution.
However, models constructed in this way are non-Gaussian only in a very lim-
ited sense. Namely, every realization of them behaves exactly as a Gaussian field

142



3. Non-Gaussian SPDE-based models

with a globally re-scaled variance, and because of this, they are all non-ergodic as
the parameters in the prior distribution cannot be estimated from a single real-
ization of the field. One would prefer a non-Gaussian model where the actual
sample paths behave differently from a stationary Gaussian field, and one way
of achieving this is to let the variance parameter be spatially and stochastically
varying. Both Lindgren et al. (2011) and Bolin and Lindgren (2011) explores
this option by expressing logφ(s) as a regression on a few known basis functions
where the stochastic weights are estimated from data. This was interpreted as a
non-stationary Gaussian model, but could also be viewed as a, somewhat limited,
non-Gaussian model with a slowly spatially varying variance parameter φ(s). To
obtain a model which is intrinsically non-Gaussian also within realizations, one
can draw φ(s) at random independently for each s. The right-hand side of (4)
is then a product of two independent noise fields. The following non-Gaussian
models essentially can be interpreted as a formal realization of this idea.

One interesting type of distributions, obtained by taking a random vari-
ance and mean in an otherwise Gaussian random variable, are the generalized
asymmetric Laplace distributions (Åberg et al., 2009). The Laplace distribu-
tion is defined through the characteristic function with parameters μ,γ ∈ R and
σ, τ > 0

φ(u) = eiγu
(

1− iμu +
σ2

2
u2
)−τ

.

The distribution is symmetric if μ = 0 and asymmetric otherwise. The shape of
the distribution is governed by τ and the scale by σ. The distribution is infinitely
divisible, and a useful characterization is that if Z is a standard normal variable
and Γ is an independent gamma variable with shape τ, then γ + μΓ + σ

√
ΓZ

has an asymmetric Laplace distribution.
Stochastic Laplace noise can now be obtained from an independently scattered

random measure Λ, defined for a Borel set B in R
d by the characteristic function

φΛ(B)(u) = eiγm(B)u
(

1− iμu +
σ2

2
u2
)−m(B)

,

where the measure m is referred to as the control measure of Λ. This does not
define Laplace noise in a direct manner, but similarly to how Gaussian white noise
can be seen as a differentiated Brownian sheet (Walsh, 1986), Laplace noise can
be viewed in the sense of distributions (generalized functions) as a differentiated
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Laplace field. The most transparent characterization is through the following
series representation of the Laplace field Λ(s) on a compact D ∈ R

d :

Λ(s) = γs +
∞∑

k=1

(

Γk + Gk

√

Γk

)

1(s ≥ sk), s ∈ D, (6)

where Gk are iid N(0, 1) random variables, sk are iid uniform random variables
on D, and

1(s ≥ sk) =

{

1 if si ≥ sk,i for all i ≤ d ,

0 otherwise.

The random variables Γk can be written as Γk = e−νγk Wk where Wk are iid
standard exponential variables and γk are the arrival times of a Poisson process
with intensity 1. Thus, Laplace noise can be expressed as a distribution (general-
ized function)

.

Λ = γ+
∞∑

i=k

(

Γk + Gk

√

Γk

)

δsk , (7)

where δsk is the Dirac delta distribution centered at sk.
The model of interest is the solution X to the Laplace-driven SPDE

(κ2 −Δ)
α

2 X =
.

Λ, (8)

where both X and
.

Λ are viewed as random variables valued in the space of
tempered distributions. To clarify in what way the solution to this equation exists,
we look at a general SPDE

(κ2 −Δ)
α

2 X =
.

M , (9)

where M is an arbitrary independently scattered L2-valued random measure with
E(|M( dx)|2) = C dx for some constant C < ∞. Examples of such measures
are the Laplace measures of interest here but also standard Brownian sheets. As
usual for fractional Laplacian operators (Samko et al., 1992), T = (κ2 −Δ)

α

2 is
defined using the Fourier transform throughF(T f ) = P f̂ , where f̂ is the Fourier
transform of the function f , (P f̂ )(k) = (κ2 + k⊤k)

α

2 f̂ (k), and the operator T is
well-defined for example for all f ∈ Lp(Rd ) for 1 ≤ p ≤ ∞. The definition
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applies also when f is a distribution or, more specifically, a tempered distribution.
Thus, (9) is viewed as an equation for two random (tempered) distributions so
the equation has to be interpreted in the weak sense

T X (φ) =
.

M (φ), (10)

where φ is in some appropriate space of test functions. Now, the action of the
self-adjoint operator T can be moved to the test function on the left-hand side
and (10) can be rewritten in a more explicit fashion as

X (T φ,ω) =
∫

φ(s)M( ds,ω). (11)

Here, we have included the second argument ω ∈ Ω to highlight that the sought
functional X is random, and the equation should hold for ω in a certain full
probability set Ω0 ∈ Ω and universally for each φ.

To describe the solutions of (9), we need the Sobolev spaces Ht of fractional
order t. These are usually defined using the Fourier transform in the following
way. Let E be the Schwartz space of rapidly decreasing functions on R

d , for
u ∈ E ′ (the dual of E , also referred to as the space of tempered distributions),
define the Fourier transform of u as û(φ) = u(φ̂), where φ̂ is the usual Fourier
transform on R

d of φ ∈ E . Define a norm on E by

‖u‖t =

∫

R
d
(1 + |k|2)t |û(k)|2 dk

and let Ht be the completion of E in this norm. By Plancherel’s theorem, one has
that H0 = L2(Rd ) and one can show that for the special case t = n ∈ N, Hn is
identical to the classical Sobolev space of L2 functions with all partial derivatives
of order n or less in L2. The space H−t is the dual space of Ht and does in general
contain distributions.

Let us note that the right hand side of (11) in principle may not be defined
on a full probability set uniformly for all φ. However, one can regularize M so
that φ→ M(φ) is in fact a random distribution. Indeed, since

E(|M(φ)|2) = C
∫

φ(s)2 ds = C‖φ‖2
0,

the random linear functional φ → M(φ) is continuous in probability on Hn for
any n ≥ 0, and by Theorem 4.1 in Walsh (1986) there exists a version of M
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which is almost surely in H−n for n > d/2. From now on we always assume that
we deal with such a version.

Following Walsh (1986), we say that X (·,ω) is an Hn-solution of (9) if for a.e.
ω, X (·,ω) is an element of H−n and (11) holds for every φ ∈ Hn. In other words,
we aim at finding a random functional X that almost surely is a distribution
and satisfies (9) as a continuous functional on Hn. The proof of the following
proposition is similar to the proof of Proposition 9.1 in Walsh (1986) where the
existence of the solution to the stochastic Poisson equation on a bounded domain
in R

d was demonstrated.

Proposition 3.1. Assume that M is an independently scattered L2-valued random
measure with E(|M( dx)|2) = C dx. Then for κ > 0, α > 0, there exists a random
functional X : Hn × Ω → R such that for a certain set Ω0, P(Ω0) = 1 and for all
ω ∈ Ω0 and all φ ∈ Hn

X (φ,ω) =
∫

Gαφ(x)M( dx,ω), (12)

where Gαφ(x) =
∫

Gα(s, x)φ(s) ds and Gα is given by (5). This is the unique
Hn-solution to (9) if n > d/2, and moreover we have X ∈ Hm almost surely for
m < α− d/2.

Proof. From the standard theory of fractional differential equations, one has that
Gα maps Hn isomorphically onto Hn+α (see e.g. Samko et al., 1992, p.547). Let
X be any Hn-solution to (9) and let ψ = Gαφ. Applying (11) to ψ and using that
T Gαφ = φ one gets that

X (φ) = X (T Gαφ) = X (T ψ) =
∫

ψ(y)M( dy) =
∫

Gαφ(y)M( dy).

Thus this solution also satisfies (12) and the solution is unique if it exists.
To prove existence, let X be defined by (12) and take φ ∈ L2(Rd ). Then

E(|X (φ)|2) = E

[(∫

Gαφ(y)M( dy)

)2
]

=

∫

Gαφ(x)Gαφ(y)E
[
M( dx)M( dy)

]

= C
∫
(
Gαφ(x)

)2
dx = C‖Gαφ‖2

0 ≤ C2‖φ‖2
−α,
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where the last inequality follows from that Gα maps Hn−α → Hn boundedly for
α > 0. Thus, it follows that X is a random linear functional that is continuous in
probability on H−α. The embedding maps Hn1 → Hn2 are of Hilbert-Schmidt
type if n1 > n2 + d/2 (see e.g. Example 1a in Walsh, 1986), and using this with
n2 = −α together with Theorem 4.1 in Walsh (1986) one gets that there exists a
version of X which is almost surely in H−n if n > d/2 > d/2 − α. From now
on, X is such a version and we note that X ∈ Hm almost surely for m < α− d/2.

What is left to show now is that X with probability one satisfies (11) for each
φ ∈ Hn for n > d/2. To that end, first note that if φ ∈ Hn, then by the
definitions of T and Gα one has

GαT φ(s) =
∫

Gα(y, s)T φ(y) dy

= F−1
(

(κ2
+ k⊤k)−

α

2 (κ2
+ k⊤k)

α

2 φ̂(k)
)

(s)

= φ(s).

Let n > d/2 and fix φ ∈ Hn. If M(φ,ω) denotes the functional
∫
φ(s)M( ds,ω),

one has by the definition of X and by the equation above that
∫

|X (T φ,ω)−M(φ,ω)|2 dP(ω) = 0.

Hence, there is a set Ωφ ⊂ Ω with P(Ωφ) = 1 such that for each ω ∈ Ωφ one
has X (T φ,ω) = M(φ,ω). Now, Hn is separable, so we can chose a countable
base B = {bi}∞i=1 in Hn and define Ω̄0 = ∩∞i=1Ωbi . Then equality holds for each
f ∈ B and for each ω ∈ Ω̄0 and P(Ω̄0) = 1 by the countability of B.

The map φ → T φ → X (T φ) of Hn → Hn−α → R is continuous since X
is continuous on Hn for n > d/2 − α and T is a continuous map from Hn to
Hn−α. Thus, both X (T ·,ω) and M(·,ω) are continuous functionals on Hn for
ω in some full probability set Ω̃0 and equality therefore holds in (11) for each
φ ∈ Hn for ω ∈ Ω0 = Ω̄0 ∩ Ω̃0 since B is linearly dense in Hn. �

Remark 1. By similar arguments one can show that the solution X defined in Pro-
position 3.1 also is a solution to the SPDE (9) in the sense that with probability
one X ∈ E ′ and (11) holds for every φ ∈ E . This is, however, a weaker statement
since E = ∩nHn and E ′ = ∪nHn.

Remark 2. The solution X defined in Proposition 3.1 is in general a random linear
functional. However, it can be identified with a random function if α > d/2 since
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X ∈ Hm almost surely for m < α − d/2. Using the relation between α and the
parameter ν in the Matérn covariance function, α = ν+d/2, we see that X ∈ Hm

almost surely for m < ν. Thus, ν acts as a smoothness parameter for the solution
since the sample paths almost surely will be differentiable if ν > 1, two times
differentiable if ν > 2 etc.

Remark 3. The previous remark can be strengthened using the Sobolev embed-
ding theorem which shows that Hn can be embedded in the Hölder space C r

k (Rd )
where n − (r + k) = d/2 and r ∈ (0, 1) (see e.g. Adams, 1975). The space
C r

k (Rd ) consists of functions such that all partial derivatives up to order k are
continuous and such that the kth partial derivatives are Hölder continuous with
exponent r. Thus, if ν > d/2, we almost surely have X ∈ C r

k (Rd ) (after possibly
redefining it on a set of measure zero) where k is the integer part of ν − d/2 and
r = ν− d/2− k.

We now go back to the special case of Laplace noise and since the main interest
here is ordinary random fields with Matérn covariance functions, we from now
on assume that α > d/2 in (8). One sometimes uses m(A) = l(A)τ, where l is
the Lebesgue measure and τ some constant, as a control measure for Λ. By the
definition of the differential operator T , it is then easy to see that the spectrum
for the solution X is

RX (k) =
τ(σ2 + μ2)

(2π)d

1

(κ2 + k⊤k)α
.

Thus, the covariance function for X is a Matérn covariance of the form (1) with
φ2 = τ(σ2+μ2). Since X is Laplace noise convolved with a Green function, which
also has the form of a Matérn covariance function, the model is equivalent to the
Laplace moving average models in Åberg et al. (2009) and Åberg and Podgórski
(2011). Thus, using Theorem 1 in Åberg and Podgórski (2011), the marginal
distribution for X (s) is given by the characteristic function

φX (u) = exp

(

τ

∫

iγGα(s, t)u− log

(

1− iμuGα(s, t) +
σ2u2

2
G2
α(s, t)

)

dt

)

.

(13)

A few examples of the marginal distributions for symmetric and asymmetric cases
are shown in Figure 1.
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Figure 1: Marginal distributions of the solution X (s) to (8) in the case of sym-
metric (left panel) and asymmetric (right panel) Laplace noise.

4 Hilbert space approximations

To obtain a computationally efficient representation of a Matérn field, the Hil-
bert space approximation technique by Lindgren et al. (2011) can be used. The
starting point is to consider the stochastic weak formulation (10) of the SPDE.
A finite element approximation of the solution X is then obtained by represent-
ing it as a finite basis expansion X̃ =

∑n
i=1 wiφi(s), where the stochastic weights

are calculated by requiring (10) to hold for only a specific set of test functions
{ψi, i = 1, . . . , n} and {φi} is a set of predetermined basis functions. To simplify
the presentation, we first look at the case α/2 ∈ N and then turn to the case of a
general α > d/2.

4.1 The case α/2 ∈ N

To construct the approximation for α = 2, 4, . . ., we first look at the fundamental
case α = 2. Lindgren et al. (2011) then use ψi = φi, and one then has

(κ2 −Δ)X̃ (φi) =
n∑

j=1

wj
〈
φi, (κ2 −Δ)φj

〉
,

where 〈f , g〉 =
∫

f (s)g(s) ds. By introducing the vector w = (w1, . . . ,wn)⊤ and
a matrix K with elements Kij =

〈
φi, (κ2 −Δ)φj

〉
, the left hand side of (10) can
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be written as Kw. Under mild conditions on the basis functions, one has

〈
φi, (κ2 −Δ)φj

〉
= κ2 〈φi, φj

〉
−
〈
φi, Δφj

〉

= κ2 〈φi, φj
〉
+
〈
∇φi, ∇φj

〉
.

Hence, the matrix K can be written as the sum K = κ2C+G where C and G are
matrices with elements Cij =

〈
φi, φj

〉
and Gij =

〈
∇φi, ∇φj

〉
respectively.

4.1.1 Gaussian noise

In the Gaussian case, when
.

M is Gaussian white noise, the right hand side of (10)
under the finite element approximation can be shown to be Gaussian with mean
zero and covariance C. Thus, one has

w ∼ N
(
0,K−1CK−1) . (14)

For higher order α/2 ∈ N, the weak solution is obtained recursively. If, for
example, α = 4 the solution to (κ2 − Δ)2X0 = W is obtained by solving
(κ2 −Δ)X0 = X̃ , where X̃ is the solution for the case α = 2. This results in
replacing the matrix K with a matrix Kα defined recursively as Kα = KC−1Kα−2,
where K2 = K. For more details about these representations in the Gaussian case,
see Lindgren et al. (2011).

So far, we have not specified how the basis functions {φi} should be chosen,
but this choice will determine the quality of the approximation as well as some
computational properties. If, for example, Daubechies wavelets are used as basis
functions, the precision matrix (inverse covariance matrix) Q for the weights is
a sparse matrix (Bolin and Lindgren, 2009), which facilitates the use of efficient
sparse matrix techniques when using this model. Lindgren et al. (2011) used
piecewise linear basis functions induced by triangulating the domain, and in this
case C is a sparse matrix, but its inverse is dense. To obtain a sparse precision
matrix in this case (which is needed for efficient GMRF computations), one can
approximate C with a diagonal matrix C̃ with elements C̃ii =

∫
φi(s) ds. To

simplify the notation later, we denote the ith element on the diagonal by ai as it
is the area where φi > φj for j 6= i. For more details on this approximation and
the choice of basis functions, see Bolin and Lindgren (2009).
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4. Hilbert space approximations

4.1.2 Laplace noise

For the Laplace case, one has
.

M =
.

Λ in the weak formulation (10). Under the
finite element approximation, the left-hand side can, as in the Gaussian case, be
written as Kαw. Using Theorem 1 in Åberg and Podgórski (2011), the distribu-
tion of the right-hand side in the case of Laplace noise is given by the characteristic
function

φΛ(u) = exp

(

τ

∫

Ω

iγφ(s)⊤u− log

(

1− iμφ(s)⊤u +
σ2

2
(φ(s)⊤u)2

)

ds

)

,

whereφ(s) =
(
φ1(s), . . . ,φn(s)

)⊤
. This representation is not very convenient for

approximation and simulation of the model. Instead we will use a representation
based on the series expansion (6) of Λ. However, we for a moment turn to the
more general setup of type-G processes to hint at how this technique could be
applied also for this broader class of random fields.

Recall that a Lévy process is type G if its increments can be represented as a
Gaussian variane mixture V 1/2Z where Z is a standard Gaussian variable and V is
a non-negative infinitely divisible random variable. Clearly, the Laplace fields are
of type G as their increments are of the form Γ1/2Z where Γ is a gamma variable.
Rosiński (1991) showed that every Lévy process of type G can be represented as a
series expansion similar to the expansion (6) for the Laplace fields. This expansion
also holds in R

d , and for a compact domain D ∈ R
d it can be written as

M(s) =
∞∑

k=1

Gkg(γk)
1
2 1(s ≥ sk),

where the function g is the generalized inverse of the tail Lévy measure for V
and the other variables are the same as in the Laplace case (6). Since V is in-
finitely divisible, there exists a non-decreasing Lévy process V (s) with increments
distributed the same as V . This process has the series representation

V (s) =
∞∑

k=1

g(γk)
1
2 1(s ≥ sk). (15)

Now, consider the integral of some basis function φi with respect to M , which
can be represented as

∫

D
φi(s)M( ds)

d
=

∞∑

k=1

φi(sk)Gk

√

g(γk). (16)
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Thus, the distribution of (
∫

D φ1(s)M(ds), . . . ,
∫

D φn(s)M(ds)) can be approxim-
ated in distribution by taking partial sums of the series in (16). Another way
of calculating the distribution is to evaluate the integrals by conditioning on the
variance process V (s) (Wiktorsson, 2002); given that

∫

D φ
2
i (s)V ( ds) < ∞, the

integral conditionally on V is simply a Gaussian variable
∫

D
φi(s)M( ds)|V ∼ N

(

0,
∫

D
φ2

i (s)V ( ds)

)

.

Going back to the case of Laplace noise. If M is a Laplace field corresponding
to the Laplace measure Λ, the variance process is a gamma process, Γ(s), so by the
argument above one has that the right hand side of (10) under the finite element
approximation and conditionally on the gamma process is N(m̃, Σ̃), where the
elements of m̃ and Σ̃ are given by

Σ̃ij = C

(∫

D
φi(s)Λ( ds) ,

∫

D
φj(s)Λ( ds)

∣
∣
∣
∣
Γ

)

=

∫

D
φi(s)φj(s)Γ( ds),

m̃i = E

(∫

D
φi(s)Λ( ds)

∣
∣
∣
∣
Γ

)

= γ

∫

D
φi(s) ds +

∫

D
φi(s)Γ( ds).

Given this, the weights w can be calculated conditionally on the gamma process,
Γ(s), as

w|Γ ∼ N
(

K−1
α m̃,K−1

α Σ̃K−1
α

)

, (17)

where Kα is defined recursively as in the Gaussian case.
It would seem as one has not gained much by using the conditional represent-

ation since the conditional mean and covariances, m̃i and Σ̃ij , do not have any
simple distributions. One way of approximating them is to approximate the in-
tegrals with respect to the Gamma process using the right hand side of (15) with a
finite number of terms. However, by using compactly supported linear basis func-
tions, one can simplify things further. Thus, now assume that the basis functions
are piecewise linear functions induced by some triangulation of the domain. One
can then perform the same Markov approximation as in the Gaussian case. This
results in an approximation of the right-hand side of (10) conditionally on the
gamma process distributed as N(m,Σ) with m = γτa + μΓ, andΣ = diag(Γ).
Here, the gamma variables Γi ∼ Γ(τai, 1) are independent and ai =

∫
φi(s) ds,

and these can be calculated without numerically estimating the integrals with re-
spect to the gamma process.
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4. Hilbert space approximations

Bolin and Lindgren (2009) studies how this approximation affects the result-
ing covariance function of the process in the Gaussian case, and it is shown that
the error is small if the approximation is used for piecewise linear basis functions.
Although additional studies are needed in the non-Gaussian case, the results are
likely similar so that the simplification has no large impact on the approximation.
Figures 2-4 show that the approximation is accurate in one and two dimensions
as explained in Section 5.

4.2 The solution for general α > d/2

If one could approximate the solution to (8) for α = 1, the recursive scheme
discussed above could be used to represent the solutions for all positive odd α. In
the Gaussian case, Lindgren et al. (2011) use a least-squares method where the test

functions are chosen as ψi = (κ2 −Δ)
1
2φi. The left-hand side of (10) can then

be expressed as Kw and the right-hand side is a mean zero Gaussian variable with
covariance matrix K. This follows from Lemma 2 in Lindgren et al. (2011), which
shows that the covariance between element i and element j on the right-hand side
can be written as

Σij =

〈

(κ2 −Δ)
1
2φi, (κ2 −Δ)

1
2φj

〉

=
〈
(κ2 −Δ)φi, φj

〉
= Kij.

The stochastic weights therefore form a GMRF w ∼ N(0,K−1). This argument is
unfortunately not applicable in the non-Gaussian case as the covariance between
the elements given the gamma process Γ(s) is

Σij = C

(∫

D
(κ2 −Δ)

1
2φi(s)Λ( ds),

∫

D
(κ2 −Δ)

1
2φj(s)Λ( ds)

∣
∣
∣
∣
Γ

)

=

∫

D

(

(κ2 −Δ)
1
2φi(s)

)(

(κ2 −Δ)
1
2φj(s)

)

Γ( ds)

6=
∫

D

(
(κ2 −Δ)φi(s)

)
φj(s)Γ( ds).

We have not been able to find an easy way of evaluatingΣij in the non-Gaussian
case, and it seems as this least-squares procedure is not extendable to the non-
Gaussian case. However, if one instead uses ψi = φi, the right-hand side of (10)
conditionally on the variance process is N(m,Σ), as in the case α = 2. With this
as a starting point, one can use a finite element matrix transfer technique (FE-
MTT) to obtain a discretized approximation of the solution. Simpson (2008)
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studied such methods for sampling generalized Matérn fields on locally planar
Riemannian manifolds, and argued that one could sample the stochastic weights
for a general α using the matrix transfer equation (C−1K)α/2w ∼ N(0,C−1). To
simplify the notations in later sections, denote Kα = (C−1K)α/2 and note that we
now have changed the definition of Kα from the one that was used for even α. The
weights w are then mean zero Gaussian with a precision matrix Qα = KαC

−1Kα.
In the case α = 2, this discretization coincides with the approximation described
above, but it can be used for any α > d/2.

Now in the non-Gaussian case, the results from the case α = 2 can be used
directly to get a right-hand side that is Gaussian with mean m and covariance
Σ conditionally on the variance process. As in the Gaussian case, this should be
multiplied with C−1 to get consistency in the FE-MTT procedure. Hence, in the
case of Laplace noise the weights are given by

w|Γ ∼ N
(
K−1
α C−1m,K−1

α C−1ΣC−1K−1
α

)
. (18)

Again, for the case α = 2, this coincides with the procedure described in the sec-
tion above, and because of this we will from now on use this FE-MTT procedure
for all α > d/2. Consistency of the FE-MTT procedure follows from similar
arguments as in Simpson (2008). These arguments do not provide a rate of con-
vergence as the number of basis functions are increased, and as for the Gaussian
case, the rate of convergence and the numerical properties of the approximation
are strongly dependent on α.

5 Sampling from the model

Using the finite element representation obtained in the previous section it is easy
to generate samples from the SPDE (8). Assume that we want sample the model
at locations s = (s1, . . . , sn), and let Φ be a matrix with elements Φij = φj(si).
Samples can now be generated using the following three-step algorithm.

Algorithm 5.1. Sampling the Laplace driven SPDE (8).

1. Generate two independent random vectors Γ and Z, where Γi ∼ Γ(τai, 1)
and Zi ∼ N(0, 1).

2. LetΛ = γτa + μΓ+ diag(
√
Γ)Z and calculate w = C−1Λ.

3. X = ΦK−1
α w is now a sample of the random field at the locations s.
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5. Sampling from the model

The last step could potentionally be computationally expensive for large sim-
ulations. However, if α is even, one can take advantage of the sparsity of Kα and
solve the equation system v = K−1

α w efficiently without calculating the inverse
by using Cholesky factorization and back substitution as suggested by Rue and
Held (2005). For other α > d/2, Kα is not sparse and the Cholesky method will
not improve the computational efficiency. However, as Simpson (2008) shows,
one can instead use Krylov subspace methods in the calculations to obtain effi-
cient sampling schemes. The basic problem for general α is to solve the matrix
equation v = (C−1K)−

α

2 w, and there are a number of methods with different
computational properties that can be used. In this work we use the method by
Hale et al. (2008), which is based on combining contour integrals evaluated by the
periodic trapezoid rule with conformal maps involving Jacobi elliptic functions.

In Figure 2, a simulation of a process on R with parameters μ = γ = σ = 1,
τ = 2, κ = 15, and α = 2 is shown. Since Kα is sparse in this case, the Cholesky
method is used for the simulation. In the upper left panel, a histogram of the
samples from 1000 simulations is shown together with the theoretical density, cal-
culated using numerical Fourier inversion of the characteristic function (13). In
the upper right panel, the empirical covariance function of the samples is shown
together with the theoretical Matérn covariance function. Two more examples of
densities and covariance functions for different parameter settings are shown in
Figure 3. In the upper panels, we have α = 1, which results in an exponential co-
variance function. The other parameters are μ = γ = 0, σ = 1, and τ = κ = 10,
which results in a symmetric distribution. In the lower panels, we have α = 3.5
which results in a smoother field. The other parameters are μ = σ = 0.1, γ = 0,
τ = 10, and κ = 20, which results in an asymmetric distribution. In both cases
in Figure 3, the Krylov subspace method is used for the simulations.

In Figure 4 and Figure 5, two simulations of fields on R
2 are shown together

with the corresponding covariance functions, densities, and empirically estimated
versions based on 1000 simulations each. As seen in the figures for all five ex-
amples, there is a close agreement between the histograms and the true densities,
and between the true covariance functions and the empirically estimated covari-
ance functions for all these parameter settings, indicating that the approximation
procedure works as intended. A more detailed analysis of the simulation pro-
cedure is outside the scope of this article, but it should be noted that the SPDE
approximation using piecewise linear basis functions does not provide conver-
gence of higher-order derivatives, and the simulation procedure is therefore not
appropriate for applications where such properties are important.
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Figure 2: The lower panel shows a simulation of the Laplace driven SPDE (8) on
R with parameters μ = γ = σ = 1, τ = 2, κ = 15, and α = 2. The upper left
panel shows a histogram of the samples from 1000 simulations together with the
true density. The upper right panel shows the empirical covariance function for
the samples (grey curve) together with the true Matérn covariance function (black
curve). It is difficult to see the grey curve since the two curves are very similar.

6 Parameter estimation

Parameter estimation for Laplace moving average models is not easy since there is
no closed form expression for the parameter likelihood. Recently, Podgórski and
Wegener (2011) derived a method of moments-based estimation procedure for
these types of models. In their method, the convolution kernel is first estimated
from the spectral density of the data, and given the estimated kernel, the paramet-
ers in the Laplace distribution are estimated by fitting the theoretical moments of
the Laplace distribution to the sample moments. The method is quite simple al-
though some special care has to be taken to handle the cases when the method of
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Figure 3: Simulation results as in Figure 2 with different parameters. The top row
shows a symmetric case with parameters μ = γ = 0, σ = 1, κ = τ = 10, and
α = 1. The bottom row shows an asymmetric case with parameters μ = σ = 0.1,
γ = 0, κ = 20, τ = 10 and α = 3.5.

moments equation system does not have a solution, which can happen for certain
values of the sample skewness and excess kurtosis.

Using the SPDE formulation, parameter estimation can instead be performed
in a likelihood framework. One of the advantages with this is that maximum
likelihood parameter estimates always are in the allowed parameter space. Another
advantage is that the estimates will account for all relevant information in the data,
which might not be the case for method of moment estimates.

To be able to estimate the parameters in a maximum likelihood framework,
the problem is interpreted as a missing data problem which facilitates use of the
Expectation Maximization (EM) algorithm (Dempster et al., 1977). The pro-
posed EM algorithm is based on the same ideas as the ones in Lange et al. (1989)
and Protassov (2004) which looked at EM estimation in the case of iid observa-
tions of certain Gaussian mixtures. Our main contribution is the extension of
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Figure 4: A simulation of an asymmetric model (8) in R
2 where the parameters

are κ = 5, σ = μ = γ = 1, τ = 2, and α = 2. The covariance functions and
densities for these fields can be seen in the second row. The empirically estimated
versions are based on 1000 simulations.

these ideas to the random field setting.
Assume we have measurements X of the process X (s) taken at some locations

and that the Hilbert space approximation procedure is used with a basis obtained
by triangulating the measurement locations. In this case, the matrixΦ is diagonal
and conditioning on the measurements and the parameters is equivalent to condi-
tioning onΛ and the parameters as there is a one-to-one correspondence between
the two through Λ = CKαΦ

−1X, see Algorithm 5.1. To obtain simpler updat-
ing expressions, we first make a change of variables by introducing the parameter
γ̄ = γτ and estimate this parameter instead of γ. As for Gaussian Matérn models,
the shape parameter ν is difficult to estimate accurately and it is therefore assumed
to be known throughout this section and no attempt is made at estimating it.
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Figure 5: A simulation of a symmetric model (8) in R
2 with parameters κ = 5,

σ = 1, μ = γ = 0, τ = 2, and α = 4. The covariance function and density are
shown in the second row. The empirically estimated versions are based on 1000
simulations.

Augmenting the data with the unknown (missing) gamma variables, the aug-
mented likelihood is L(θ|X,Γ) = π(X|Γ,θ)π(Γ|θ), and the loss-function that is
needed for the EM-procedure is

Q(θ,θ(j)) = E
(

log L(θ|X,Γ)
∣
∣
∣X,θ(j)

)

,

where θ(j) is an estimate of θ =
(
κ,σ, μ, γ̄, τ

)
at iteration j, and the expectation is

taken according to the distribution ofΓ given X. We have X|Γ,θ ∼ N(m,σ2Σ),
where m = ΦK−1

α C(γ̄a + μΓ), Σ = ΦK−1
α CDΓCK−1

α Φ, and DΓ is the di-
agonal matrix with the vector Γ on the main diagonal. The second part of the
augmented likelihood can be written as π(Γ|θ) =

∏
π(Γi|θ) since the compon-
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ents in Γ are independent gamma variables Γi with shape parameters τai and
scale one, where ai are known constants depending on the basis used. The log-
likelihood is

log L(θ|X,Γ) =− n log(σ) + log(|Kα|)−
1

2σ2 (X−m)⊤Σ−1(X−m)

+

n∑

i=1

(
τai logΓi − logΓ(τai)

)
+ C ,

where the constant C does not depend on the unknown parameters. Thus, using
the relation between X andΛ, the loss-function is

Q(θ,θ(j)) =− n log(σ) + log(|Kα|)−
1

2σ2

(

(Λ− γ̄a)⊤DE(Γ−1|⋆)(Λ− γ̄a)

+ μ21⊤E(Γ|⋆) + 2γ̄μa⊤1− 2μΛ⊤1
)

+

n∑

i=1

(
τaiE(logΓi|⋆)− logΓ(τai)

)
+ C ,

where E(·|⋆) denotes E(·|θ(j),X). The expectations needed to evaluate the loss-
function are E(Γ|⋆), E(Γ−1|⋆), and E(logΓi|⋆). To calculate these, first note that
(see Gradshteyn and Ryzhik, 2000, formula 3.472.9)

I(a, b, c) =
∫ ∞

0
xa−1e−

b
x −cx dx = 2

(
b
c

) a
2

Ka

(

2
√

bc
)

. (19)

Using this expression, the expectation E(Γi|⋆) can be written as

E(Γi|⋆) =
∫

Γiπ(Γi|X,θ) dΓi =

∫
Γiπ(X|Γi,θ)π(Γi|θ) dΓi

π(X|θ)

=

∫
Γiπ(X|Γi,θ)π(Γi|θ) dΓi
∫
π(X|Γi,θ)π(Γi|θ) dΓi

=

I
(

τai +
1
2 ,

(Λi−γ̄ai)2

2σ2 , 1 +
μ2

2σ2

)

I
(

τai − 1
2 ,

(Λi−γτai)2

2σ2 , 1 +
μ2

2σ2

)

=
|Λi − γ̄ai|
√

2σ2 + μ2

Kτai+
1
2

(

σ−2|Λi − γ̄ai|
√

2σ2 + μ2
)

Kτai−
1
2

(

σ−2|Λi − γ̄ai|
√

2σ2 + μ2
) .

If the argument in the Bessel functions is very small or very large one might
get numerical problems when evaluating this expression depending on how it is
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implemented. In the case of small arguments, one can use the following approx-
imation to improve the numerical stability

Ka(x) ≈ Γ(|a|)
2

(
2
x

)|a|

, if a 6= 0 and x ≪
√

|a|+ 1.

The expectation E(Γi|⋆) then simplifies to

E(Γi|⋆) ≈







(
τai − 1

2

)
2σ2

2σ2+μ2 , τ > 1
2ai

,
Γ(τai+

1
2 )

Γ( 1
2−τai)

(2σ2)2τai

(2σ2+μ2)
2τai+1

2

|Λi − γ̄ai|1−2τai , τ < 1
2ai

.

In the case of large arguments, one can instead use the approximation

Ka(x)
Ka−1(x)

≈ 1 +

(

a− 1
2

)
1
x
,

which gives the following approximation for E(Γi|⋆)

E(Γi|⋆) ≈ |Λi − γ̄ai|
√

2σ2 + μ2
+
τaiσ

2

2σ2 + μ2 .

The expectation E(Γ−1
i |⋆) is calculated similarly using (19) and can be writ-

ten as

E(Γ−1
i |⋆) =

√

2σ2 + μ2

|Λi − γ̄ai|
Kτai−

3
2

(

σ−2|Λi − γ̄ai|
√

2σ2 + μ2
)

Kτai−
1
2

(

σ−2|Λi − γ̄ai|
√

2σ2 + μ2
) . (20)

Evaluating modified Bessel functions numerically is computationally expensive
and should therefore be avoided as much as possible when implementing the
estimation procedure. To that end, one can express Kτai−

3
2
(·) using the following

recurrence relationship for modified Bessel functions

Ka(x) = Ka+2(x)− 2(a + 1)
x

Ka+1(x),

giving the following expression for E(Γ−1
i |⋆) in terms of E(Γi|⋆)

E(Γ−1
i |⋆) =

(μ2 + 2σ2)E(Γi|⋆)− σ2(2τai − 1)
(Λi − γ̄ai)2 .
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Using this expression instead of (20), one only have to evaluate two modified
Bessel functions instead of three.

Finally, the expectation E(log(Γi)|⋆) is similarly written as

E(log(Γi)|⋆) =

∫
log(Γi)π(X|Γi,θ)π(Γi|θ) dΓi

π(X|θ)
.

The denominator is the same as in the previous expectations, while calculating
the nominator requires evaluating an integral on the form

Ilog(a, b, c) =
∫ ∞

0
log(x)xa−1 exp

(

−b
x
− cx

)

dx. (21)

To calculate this integral, we differentiate (19) with respect to a and obtain

Ilog(a, b, c) =
∂

∂ a

∫ ∞

0
xa−1e−

b
x −cx dx =

∂

∂ a

(

2

(
b
c

) a
2

Ka

(

2
√

bc
)
)

= 2

(
b
c

) a
2
(

log

(
b
c

)

Ka

(

2
√

bc
)

+
∂

∂ a
Ka

(

2
√

bc
))

.

The derivative of Ka(2
√

bc) with respect to a can be expressed using infinite sums
of gamma- and polygamma functions; however, in this case it is easier to numer-
ically approximate the derivative using for example forward differences:

∂

∂ a
Ka

(

2
√

bc
)

≈
Ka+ε

(

2
√

bc
)

− Ka

(

2
√

bc
)

ε
.

Using this expression, we approximate E(log(Γi)|⋆) as

E(log(Γi)|⋆) =
Ilog

(

τai − 1
2 ,

(Λi−γ̄ai)2

2σ2 , 1 +
μ2

2σ2

)

I
(

τai − 1
2 ,

(Λi−γ̄ai)2

2σ2 , 1 +
μ2

2σ2

)

≈ log

(

|Λi − γ̄ai|
√

μ2 + 2σ2

)

− 1
ε

+
1
ε

Kτai−
1
2+ε

(

σ−2|Λi − γ̄ai|
√

2σ2 + μ2
)

Kτai−
1
2

(

σ−2|Λi − γ̄ai|
√

2σ2 + μ2
) .
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6. Parameter estimation

To obtain the updating equations for the parameters, the loss-function should
be maximized with respect to each parameter, for example by differentiating it
with respect to the parameters and setting the derivatives equal to zero. Since the
system of equations obtained from this procedure is not analytically solvable, one
would have to iterate numerically in each step to obtain the parameter updates
if the EM algorithm is used without modifications. A better alternative is to use
an Expectation Conditional Maximization (ECM) algorithm (Meng and Rubin,
1993) where the M-step is divided into two conditional maximization steps. In
the first step, the parameters of the Laplace noise is updated conditionally on the
current value of κ, and in the second step κ is updated conditionally on the other
parameters. Differentiating the loss-function with respect to μ, γ̄, and σ and
setting the derivatives equal to zero yields the following updating rules

μ(j+1)
=

(Λ⊤1)(a⊤DE(Γ−1|⋆)a)− (a⊤1)(Λ⊤DE(Γ−1|⋆)a)

(1⊤E(Γ|⋆))(a⊤DE(Γ−1|⋆)a)− (1⊤a)2
,

γ̄(j+1)
=

(1⊤E(Γ|⋆))(Λ⊤DE(Γ−1|⋆)a)− (Λ⊤1)(a⊤1)

(1⊤E(Γ|⋆))(a⊤DE(Γ−1|⋆)a)− (1⊤a)2
,

σ(j+1)
=

1√
n

(

Λ⊤DE(Γ−1|⋆)Λ+ 2
(Λ⊤DE(Γ−1|⋆)a)(Λ⊤1)(1⊤a)

(1⊤E(Γ|⋆))(a⊤DE(Γ−1|⋆)a)− (1⊤a)2

−
(Λ⊤DE(Γ−1|⋆)a)2(1⊤E(Γ|⋆)) + (a⊤DE(Γ−1|⋆)a)(Λ⊤1)2

(1⊤E(Γ|⋆))(a⊤DE(Γ−1|⋆)a)− (1⊤a)2

) 1
2

.

In general, there is no closed form expression for the conditional updating equa-
tion for τ, so the following equation is maximized numerically to obtain τ(j+1)

Qτ =
n∑

i=1

(
τaiE(logΓi|⋆)− logΓ(τai)

)
.

In the special case when all ai are equal to some value a, which for example is
the case if a triangulation induced by a regular lattice is used in the Hilbert space
approximation, the solution can be written as

τ(j+1)
=

1
a
ψ−1

(

1
n

n∑

i=1

E(logΓi|⋆)

)

,
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where ψ−1(·) is the inverse of the digamma function. Finally κ is updated con-
ditionally on the other parameters. There is no closed form expression for the
updating equation for κ either, so the following expression is maximized numer-
ically with respect to κ,

Qκ = log(|Kα|)−
1

2(σ(i+1))2

(

Λ⊤DE(Γ−1|⋆)Λ

− 2γ̄(j+1)Λ⊤DE(Γ−1|⋆)a− 2μ(j+1)Λ⊤1
)

.

By the construction of Kα, its log-determinant can be written as

log(|Kα|) =
α

2
log |C−1G + κ2I| = α

2

n∑

i=1

log(λi + κ2),

where λi denotes the ith eigenvalue of C−1G. If the size of Kα is small, these
eigenvalues can be pre-calculated as they do not depend on the parameters. For
larger problems is it most efficient to calculate the log-determinant in each itera-
tion using a sparse Cholesky factorization of K = G + κ2C.

As shown by Meng and Rubin (1993), the ECM algorithm has the same con-
vergence properties as the ordinary EM algorithm. The likelihood is increasing
for each iteration and the convergence is linear. Hence, we do not lose any rate of
convergence by using the ECM algorithm instead of the EM algorithm.

7 A simulation study

In this section, a simulation study is performed to test the accuracy of the para-
meter estimation algorithm presented above. The algorithm is tested for twelve
different parameter settings corresponding to marginal distributions shown in Fig-
ure 6 for processes in one dimension with α = 2. For Matérn covariance func-
tions, one sometimes defines the approximate range as r =

√
8νκ−1, which is

the value where the correlation is approximately 0.1. For the first six test cases,
we have κ = 1 which corresponds to an approximate range of 3.5, and for the
last six cases we have κ = 0.1 which corresponds to an approximate range of 35.
For each value of κ, three symmetric distributions and three asymmetric distribu-
tions are used. In Figure 6, the distributions for the short range are shown in the
two upper panels, and the distributions for the long range are shown in the two
bottom panels.
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Figure 6: Marginal distributions for the twelve test cases in the simulation study.
In Panel a and Panel b, the approximate covariance range is 3.5 and in Panel c
and d, the range is 35.

For each set of parameters, 500 data sets are simulated using Algorithm 5.1,
where each data set contains 1000 equally spaced observations on [1, 1000]. The
basis used in the Hilbert space approximations consists of 1000 piecewise linear
basis functions centered at 1, 2, . . . , 1000. For each data set, the starting value
for κ is set to

√
8νr̂−1, where r̂ is the approximate range for the empirical co-

variance function for the data set. To obtain good starting values for the other
parameters, an initial run of the EM estimator is made with κ fixed to the starting
value and where the starting values for μ and γ are drawn independently from
a N(0, 1) distribution, and the starting values for σ and τ−1 are drawn from a
χ2(1)-distribution. After 100 steps, this initial run is ended, and the estimates are
used as starting values for the full EM-estimator.

In Table 1, the 10% 50%, and 90% percentiles of 500 Monte Carlo samples
are shown for each parameter setting, together with the true values of the para-
meters. One can note that all estimates are more or less unbiased and have fairly
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small variances, indicating that the estimation procedure works as intended. The
only case where the estimator seems to have a bias is in case L, where most of
the estimated values of τ are above the true value. The cause of this bias is prob-
ably that the estimation procedure is not very stable for small values of τ because
some of the expectations E(Γ−1

i |⋆) can be infinite in this case. More precisely,
for τ < 3/(2 min(a1, . . . , an)), the likelihood is unbounded for any γ̄ = Λi/ai

and the ML procedure thus has to be modified. To improve the stability of the
algorithm, the expectations E(Γ−1

i |⋆) are truncated to 1000 in the first iteration,
and for each iteration this bound is made larger so that it has little to no effect
after a few hundred iterations of the algorithm. This greatly improves the sta-
bility for τ < 3/(2 min(a1, . . . , an)), but it is left for future research to justify
this modified maximum likelihood procedure theoretically, to derive large sample
properties of the estimator, and to investigate other improvements for the case of
small values of τ.

It should finally be noted that the parameters are estimated assuming the same
finite element approximation as is used for simulating the data. Estimating the
model parameters using a different numbers of basis functions in the approxim-
ation can possibly give biased estimates, as the parameters are estimated to max-
imize the likelihood for the approximate model instead of the exact SPDE. The
size of this bias depends on the specific parameters of the model, and especially
on the true covariance range in relation to the spacing of the basis functions, as
discussed in Bolin and Lindgren (2011) in the case of Gaussian models. It is,
however, outside the scope of this work to investigate this issue further here.

8 Discussion and extensions

We have showed how the SPDE approach by Lindgren et al. (2011) can be exten-
ded to the case of Laplace noise and how this can be used to obtain an efficient
estimation procedure as well as an accurate estimation technique for the Laplace
moving average models. This is indented as a demonstration that the methods in
Lindgren et al. (2011) are applicable to more general situations than the ordinary
Gaussian models. There are also a number of extensions that can be made to this
work which are discussed below.

First of all, the Hilbert space approximation technique in Section 4 was de-
rived using theory for Lévy processes of type G, and although we only used this
for the case of Laplace noise, the methods work equally well for this larger class of
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models. All that is changed are the distributions of the integrals conditionally on
the variance process. These techniques are also applicable to the case when more
general SPDEs are used, one could for example use the nested SPDEs by Bolin
and Lindgren (2011) to achieve more general covariance structures without any
additional work needed, or one could include drift terms in the operator on the
left-hand side to mimic the effects of asymmetric kernels in the Laplace moving
average models. The methods are in fact not restricted to Rd or stationary SPDEs,
but can be extended to non-stationary SPDEs on general Riemann manifolds.

Secondly, the estimation procedure in Section 6 assumed that one basis func-
tion was used for each observation of the process. The reason being that this gives
us a one-to-one correspondence between the observations and the Laplace vari-
ablesΛ which simplified the estimation procedure. For practical applications this
is not ideal as one would like to be able to choose the basis independently of the
measurement locations, and it would also be useful if one could assume that the
measurements are taken under measurement noise. If the estimation procedure
could be extended to handle these cases, the practical usefulness of these models
would greatly improve.

As mentioned in Section 7, the estimation procedure is sensitive to the value
of τ. Too large values will result in a model which is very similar to a standard
Gaussian model, and it might be difficult to accurately estimate the parameters in
this case without a very large data set. This is not a big problem as if the data is
Gaussian, one should not use these models but a standard Gaussian model. The
estimation procedure is also unstable for small values of τ, and modifications to
further improve the stability in this case are currently being investigated.
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κ

τ
σ

μ
γ

A
1

(0.95
1.00

1.06)
2

(1.63
2.03

3.02)
1

(0.78
0.98

1.13)
0

(-0.07
-0.01

0.06)
0

(-0.06
0.00

0.07)

B
1

(0.96
1.00

1.05)
2

(1.68
1.99

2.41)
12

(0.42
0.50

0.57)
12

(0.43
0.50

0.57)
0

(-0.06
0.00

0.07)

C
1

(0.96
1.00

1.05)
1

(0.85
0.99

1.21)
1

(0.87
1.00

1.11)
0

(-0.07
0.00

0.05)
0

(-0.04
0.00

0.05)

D
1

(0.96
1.00

1.04)
1

(0.90
1.00

1.14)
1

(0.90
1.00

1.10)
1

(0.87
1.00

1.13)
-1

(-1.11
-1.00

-0.89)

E
1

(0.97
1.00

1.02)
12

(0.45
0.49

0.54)
1

(0.93
1.00

1.08)
0

(-0.06
0.00

0.06)
0

(-0.01
0.00

0.01)

F
1

(0.98
1.00

1.01)
12

(0.46
0.50

0.54)
1

(0.91
1.00

1.08)
1

(0.89
1.00

1.11)
-1

(-1.09
-1.01

-0.92)

G
110

(0.09
0.10

0.11)
1

(0.86
1.00

1.24)
1

(0.87
1.00

1.11)
0

(-0.06
0.00

0.06)
0

(-0.04
0.00

0.04)

H
110

(0.09
0.10

0.11)
1

(0.89
0.99

1.13)
12

(0.45
0.50

0.54)
12

(0.44
0.50

0.56)
0

(-0.05
0.01

0.13)

I
110

(0.10
0.10

0.10)
12

(0.45
0.49

0.54)
1

(0.91
1.01

1.09)
0

(-0.06
0.00

0.07)
0

(-0.01
0.00

0.01)

J
110

(0.10
0.10

0.10)
12

(0.46
0.50

0.54)
1

(0.91
0.99

1.08)
1

(0.90
1.01

1.13)
-1

(-1.09
-1.01

-0.93)

K
110

(0.10
0.10

0.10)
13

(0.31
0.33

0.36)
1

(0.91
0.99

1.06)
0

(-0.07
0.00

0.07)
0

(-0.00
0.00

0.00)

L
110

(0.09
0.10

0.12)
13

(0.33
0.36

0.43)
12

(0.42
0.47

0.51)
12

(0.39
0.50

0.52)
0

(-0.05
0.00

0.13)
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Abstract: An interesting statistical problem is to find regions where some studied
process exceeds a certain level. Estimating these regions so that the probability
for exceeding the level in the entire set is equal to some predefined value is a
difficult problem that occurs in several areas of applications ranging from brain
imaging to astrophysics. In this work, a method for solving this problem, as
well as the related problem of finding uncertainty regions for contour curves,
for latent Gaussian models is proposed. The method is based on using a para-
metric family for the excursion sets in combination with INLA and an import-
ance sampling algorithm for estimating joint probabilities. The accuracy of the
method is investigated using simulated data and two environmental applications
are presented. In the first, areas where the air pollution in the Piemonte region
in northern Italy exceeds the daily limit value, set by the European Union for
human health protection, are estimated. In the second, regions in the African
Sahel that experienced an increase in vegetation after the drought period in the
early 1980s are estimated.

Key words: Latent Gaussian models; excursion sets; contour curves; multiple
testing; INLA

1 Introduction

In many statistical applications, one is interested in finding areas where the stud-
ied process exceeds a certain level or is significantly different from some reference
level. A typical example is in studies of air pollution, where one is interested in
testing if, and where, the pollution level exceeds some given limit value set by some
regulatory agency (Cameletti et al., 2012), and similar examples can be found in
a wide range of scientific fields including brain imaging (Marchini and Presanis,
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2003) and astrophysics (Beaky et al., 1992). In spatio-temporal applications one
might be interested in finding regions that have experienced significant changes
over the studied time period. This is a common problem in climate science and
the studied quantity can for example be temperature (Furrer et al., 2007), precip-
itation (Sain et al., 2011), or vegetation (Eklundh and Olsson, 2003, Bolin et al.,
2009).

The quintessential problem is that one has observations y of some latent
stochastic field x(s) and wants to find a region D such that, with a certain given
probability, x(s) > u for all s ∈ D for a given level u. The easiest, and most
common, way of specifying D is to choose it as the set of locations

Dm = {s : P(x(s) > u) ≥ 1− α}, (1)

where the probability is taken under the posterior distribution for x|y. Thus, D is
specified as the set of locations where the marginal probability for exceeding the
level exceeds some given value 1 − α. The set can be calculated using multiple
hypothesis testing and the parameter α then acts as the type 1 error parameter, and
should thus control how certain one is that the level is exceeded in the entire set.
The problem with this definition of D is that of multiple hypothesis testing; the
confidence level α does not give us any information about the family-wise error
rate. That is, the probability P(x(s) > u, s ∈ Dm) is in general not equal to 1− α.
If one instead wants to choose D so that this simultaneous probability is 1 − α,
one has to modify the procedure for constructing the set.

The more general problem of multiple hypothesis testing is an active research
area and there exists a number of proposed solutions for problems in various con-
texts. Most of these solutions are based on first calculating the marginal probab-
ilities P(x(s) > u), then calculating a single threshold value t, and finally defining
the exceedance region as D = {s : P(x(s) > u) > t}. The methods differ in how
the threshold t is calculated, and can basically be divided into three main cat-
egories; type 1 error control thresholding, false discovery rate thresholding, and
posterior probability thresholding (Marchini and Presanis, 2003). The most pop-
ular method is likely the method by Adler (1981) using the Euler characteristic of
the latent field to control the family-wise error rate when defining the threshold t.
Though this method is simple to use, one has to be careful to check whether
the required assumptions are satisfied. Typically the method is accurate for large
values of u, and the latent field is assumed to be stationary.

In this work we will focus on the problem where the latent spatial field x(s)
is Gaussian and measured at a set of irregular locations. This means that the
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posterior distribution π(x|y) is non-stationary and typically non-Gaussian unless
the measurements are Gaussian and the model parameters are known a priori.
One of our motivating examples is the problem of finding regions with significant
changes in vegetation in the African Sahel studied by Eklundh and Olsson (2003)
and Bolin et al. (2009), and in this example the threshold u is zero, so methods
based on asymptotic arguments when u goes to infinity are unlikely to perform
well.

The structure of the article is as follows. In Section 2, the problem is formu-
lated and definitions for excursion sets and uncertainty regions for contour curves
are given. In Section 3, a method for estimating these sets is proposed. Estimating
the sets is the most difficult problem as one easily runs into computational diffi-
culties arising from having to evaluate high-dimensional integrals. In Section 4,
the methods are tested on a few simulated examples to test the method’s accur-
acy. Two applications to real data are covered in Section 5, the first considers air
pollution data from the North-Italian region Piemonte, and the second considers
estimation of spatially dependent vegetation trends in the African Sahel. Finally,
a few remarks and comments are given in Section 6.

2 Problem formulation

There are a number of different ways one could formulate excursion sets, and not
all of them are useful from a practical point of view. Hence, in this section we will
formalise the problem and discuss how the results should be interpreted. More
precisely we look at two connected problems. The first one is to find areas where
a stochastic process exceeds a given level with some probability and the second
one is to quantify the uncertainty in contour curves of stochastic fields.

Throughout this section, let Ω be a bounded domain of Rn, or have a well-
defined area |Ω| < ∞. First some notation for excursion sets of a function and
contour sets is needed.

Definition 2.1 (Excursion sets for functions). Given a function f (s), s ∈ Ω , the
positive excursion set A+

u for a level u is given by

A+
u (f ) = {s ∈ Ω ; f (s) > u}.

Similarly

A−
u (f ) = {s ∈ Ω ; f (s) < u}.

is the negative excursion set.
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In a similar fashion one could now define the set of contour points for the
level u as the set of points s for which f (s) = u; however, a contour curve consists
not only of these points but also discontinuous crossings of the level u. In order
to incorporate both continuous and discontinuous crossings, a contour point is
defined as a point s such that in every neighborhood B of s

∃ s1, s2 ∈ B : f (s1) ≥ u, f (s2) ≤ u.

The set of all such points is the complement of the union of the interior sets of
the positive and negative excursion sets.

Definition 2.2 (Contour sets for functions). Given a function f (s), s ∈ Ω , the
contour set Ao

u for a level u is given by

Ac
u(f ) =

(
A+

u (f )o ∪ A−
u (f )o)c

.

where Ao is the interior, relative to Ω , of the set A and Ac is the complement.

Remark 4. Taking the interiors of the sets A+
u (f ) and A−

u (f ) is important. Con-
sider for example the following function on Ω = [0, 1]

f (s) =

{

−1 0 ≤ s < 0.5

1 0.5 ≤ s ≤ 1.

In this case A+
0 (f )∪ A−

0 (f ) = Ω , so without taking the interiors of the sets Ac
0(f )

would be empty when we want to include the discontinuous crossing at 0.5 in
the contour set. It is also important to take the interiors with respect to Ω and
not R, since the endpoints 0 and 1 always would be included in the countour
set otherwise. This may seem as only a theoretical nicety, but the problem with
discontinuous functions occurs frequently in environmental applications when
discontinuous covariates are used for the mean value function of the field. This
makes it essential to not treat contour sets as regions where the function lies close
to a level, but rather as regions where level crossings occur.

The statistical problem is now to find a region D such that the function x(s)
exceeds the level u with a certain probability 1− α for all s ∈ D. There might be
many such regions, so if one is interested in a single answer one might look for
the largest of these.

178



2. Problem formulation

Definition 2.3 (Excursion sets). Let x(s), s ∈ Ω be a random field (or process).
The positive level u excursion set with probability 1− α is given by

E+
u,α(x) = arg max

D
{|D| : P(D ⊆ A+

u (x)) ≥ 1− α}.

Similarly

E−
u,α(x) = arg max

D
{|D| : P(D ⊆ A−

u (x)) ≥ 1− α}.

is the negative level u excursion set with probability 1− α.
Remark 5. The set E+

u,α(x) can also be formulated as the largest set D for which
P(infs∈D x(s) ≤ u) ≤ α, which can be useful when calculating the set in prac-
tice. Also note that for deterministic functions f one has E+

u,α(f ) = A+
u (f ) and

E−
u,α(f ) = A−

u (f ) for any α ∈ [0, 1].

It is important to realize how the excursion set E+
u,α(x) should be interpreted:

It is the largest set so that the level u is exceeded at all locations in the set with
probability 1 − α. It will thus be a smaller set than Dm defined in (1), which
is the set of points where the marginal probability for exceeding the level is at
least 1 − α. Another possible definition of an excursion set would be a set that
contains all excursions with probability 1 − α. This is a larger set than Dm, given
by E−

u,α(x)c. Which set one is interested in depends on the application, but it can
be a good idea to show both to get a better unterstanding of the uncertainties in
the problem.

In certain applications, one might be interested in joint positive and negative
excursions from some level, for example when doing simultaneous regressions and
one is interested in finding regions where the slopes are significantly different from
zero (see Section 5.2 for a possible scenario of this kind).

Definition 2.4 (Level avoiding sets). Let x(s), s ∈ Ω be a random field. The pair
of level u avoiding sets with probability 1− α is given by

(M+
u,α(x),M−

u,α(x))

= arg max
(D+,D−)

{|D− ∪ D+| : P(D− ⊆ A−
u (x), D+ ⊆ A+

u (x)) ≥ 1− α}.

Denote the union of these two sets the level avoiding set Mu,α:

Mu,α(x) = M+
u,α(x) ∪M−

u,α(x).
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Remark 6. The sets M+
u,α(x) and M−

u,α(x) must be non-overlapping for the prob-
ability to be non-zero. The set Mu,α can be calculated as an excursion set itself.
To see this, define a new random process y(s) by

y(s) =

{

u− x(s), s ∈ D−,

x(s)− u, s 6∈ D−.

The probability calculation in Definition 2.4 can now be reformulated as an or-
dinary excursion probability in y:

P(D− ⊆ A−
u (x), D+ ⊆ A+

u (x)) = P(D− ∪ D+ ⊆ A+
0 (y)).

Also in this case, the set can be found using a reformulation using the infimum
over the region as P(infs∈D−∪D+ y(s) ≤ 0) ≤ α.

Simlarly to the contour sets for deterministic functions were defined, the pair
of level avoiding sets can now be used to define uncertainty regions for contour
curves.

Definition 2.5 (Uncertainty region for contour sets). Let x(s), s ∈ Ω be a ran-
dom field, and let (M+

u,α(x),M−
u,α(x)) be the pair of level avoiding sets from Defin-

ition 2.4. The set

M c
u,α(x) =

(
M+

u,α(x)o ∪M−
u,α(x)o)c

is then an uncertainty region for the contour set of level u.

The interpretation of this uncertainty region is important. The set M c
u,α is the

smallest set such that all level u crossings of x are in the set with probability 1−α.
One should note that this definition of the uncertainty region for level curves is
different from some other definitions in the literature. For example, Lindgren
and Rychlik (1995) define uncertainty regions as a union of intervals where each
interval contains a single level crossing with probability 1− α.

It is somewhat unsatisfactory that the sets defined here are made unique by
finding the largest set satisfying a certain restriction. The set E+

u,α(x) is for example
defined as the largest set D satisfying P(D ⊆ A+

u (x)) ≥ 1 − α, but there are also
many other smaller sets satisfying the requirement, and these are not seen if only
E+

u,α(x) is reported. Also, if one wants to know where the field likely exceeds
the level u, the set E+

u,α(x) might not be sufficient since it does not provide any
information about the locations not contained in the set.
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It would instead be good to have something similar to p-values, i.e. the mar-
ginal probabilities of exceeding the level, but which can be interpreted simultan-
eously. To that end we introduce the excursion function, level avoidance function,
and contour function as visual tools for answering such questions.

Definition 2.6 (Excursion functions). The positive and negative u excursion
functions are given by

F+(u, s) = sup{1− α; s ∈ E+
u,α},

F−(u, s) = sup{1− α; s ∈ E−
u,α}.

Similarly, the level avoidance and contour functions are given by

F (u, s) = sup{1− α; s ∈ Mu,α},
F c(u, s) = 1− F (u, s).

These functions will take values between zero and one, and for a fixed level
u and a fixed location s, this value is equal to 1 − α for the smallest α such that
the location is a member of the excursion set. Thus, the set E•

u,α can be retrieved
as the 1 − α excursion set of the function F•(u, s). The interpretation of the
excursion function is therefore that if, for a given location s, the function takes a
value close to one, this indicates that this location is a member of the excursion
sets for alsmost all values of α, whereas if the value of the function is close to zero,
the location is only a member of excursion sets with large values of α and it is
therefore more unlikely that the process exceeds the level at that location.

3 Computations

So far, no assumptions have been made regarding the distribution of x(s), but to
be able to calculate the excursion sets in practice we will now restrict ourselves
to the class of latent Gaussian models, which is a popular model class with many
practical applications (see e.g. Rue et al., 2009). Thus, the following problem
setup is assumed. Let x(s) be a random field that can be written on the form

x(s) =
k∑

i=1

βifi(s) + z(s)
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where fi(s) are fixed effects and z(s) is a zero mean random field with covari-
ance parameters θ1. Further assume that both z(s) and the parameter vector
β = (β1, . . . , βk)⊤ are a priori Gaussian.

Let y = (y1, . . . , ym)⊤ be a vector of measurements of the latent field with
some distribution π(y|xobs,θ2), where xobs is a vector containing the latent field
evaluated at the measurement locations and θ2 is a vector of parameters for the
measurement distribution. Finally let s1, . . . , sn be the set of locations where
predictions of the latent field should be calculated and let x = (x(s1), . . . , x(sn))⊤.
The posterior distribution for x can then be written as

π(x|y) =
∫

π(x|y,θ)π(θ|y) dθ, (2)

where θ = (θ⊤
1 ,θ

⊤
2 )⊤, and this is the distribution that should be used in the

probability calculations when estimating the excursion sets.
There are now, in principle, two main problems that have to be solved in

order to find the excursion sets, level avoidance sets, or contour uncertainty sets:

integration For excursion sets, calculate P(D ⊆ A+
u (x)) or P(D ⊆ A−

u (x)) for a
given set D, or in the case of level avoidance sets or uncertainty regions for
contour curves, calculate P(D− ⊆ A−

u (x),D+ ⊆ A+
u (x)) for the pair of sets

(D+,D−).

optimization Use shape optimization to find largest region D satisfying the re-
quired probability constraint.

Hence, given a method to solve each of the two problems, one could simply
run the shape optimization algorithm and in each iteration calculate the required
probability using the integration method. In theory there are no problems doing
this, but in practice the integration method will be computationally demanding
and it may not be feasible to use this strategy for applications involving large data
sets. Therefore, we instead propose a slightly different strategy that will minimize
the number of calls to the integration method by solving the problem sequentially.
We first outline the strategy in the simplest possible situation, which will be used
as a basis for all other more complicated strategies.

The method is based on using an increasing parametric family for the excur-
sion sets in combination with a sequential integration routine for calculating the
probabilities. The advantage with using a sequential integration routine is that if
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the required probability has been calculated for some set D1, then the calculation
for a larger set D2 ⊃ D1 can be based on the result for D1, resulting in large
computational savings.

Algorithm 3.1 (Calculating excursion sets using a one-parameter family). Assume
that the model parameters θ are known and that the posterior distribution π(x|y,θ) is
Gaussian. Further assume that D(ρ) is a parametric family for the possible excursion
sets, such that D(ρ1) ⊆ D(ρ2) if ρ1 < ρ2. The following strategy is then used to
calculate E+

u,α.

1. Choose a suitable (sequential) integration method for the problem.

2. Reorder the nodes to the order they will be added to the excursion set when the
parameter ρ is increased.

3. sequentially add nodes to the set D according to the ordering given above and in
each step update the probability P(D ⊆ A+

u (x)). Stop as soon as this probability
falls below 1− α.

4. E+
u,α is given by the last set D for which P(D ⊆ A+

u (x)) ≥ 1− α.

The computational savings of this sequential strategy are large. For example,
assume that we want to find the positive level u excursion set E+

u,α(x), and have
m candidates D(ρ1), . . . ,D(ρm) to choose from. Using the naïve optimization
method, we would then have to check whether P(D(ρi) ⊆ A+

u (x)) > 1− α for
each of these sets, and among the sets that satisfy the condition select the largest.
Thus doing the probability calculation m times. However, by reordering the nodes
and adding them sequentially we only have to run the integration routine once.

Before extending this method to more general situations, we go into more
detail on how to do the steps in Algorithm 3.1 in practice. In Section 3.1, a
few sequential integration methods are presented. In Section 3.2, some different
parametric families for the excursion sets and level avoidance sets are introduced
and Algorithm 3.1 is extended using two-parameter families. The problem of
how to optimally reorder the nodes is also discussed in this section. Finally in
Section 3.3, three different methods are proposed for calculating excursion sets
under the full posterior distribution (2).
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3.1 Gaussian probability calculations

For a Gaussian vector x, the probabilities P(D ⊆ A+
u (x)), P(D ⊆ A−

u (x)), and
P(D+ ⊆ A+

u (x),D− ⊆ A−
u (x)) can all be written on the form

I (a, b,Σ) =
1

(2π)d/2|Σ|1/2

∫

a≤x≤b

exp(−1
2

x⊤Σ−1x) dx, (3)

where a and b are vectors depending on the mean value of x, the domain D, and
on u. There have been considerable research efforts devoted to approximating
integrals of this form in recent years, and we will in this section briefly describe a
few techniques that can be used.

3.1.1 Quasi Monte Carlo methods

The simplest way of approximating (3) is to use Monte-Carlo (MC) integration.
However, estimating the probability with any reasonable accuracy using stand-
ard MC integration is often too computationally expensive. Fortunately there
are a number of variance reduction techniques that can be used to increase the
efficiency.

A key step in many numerical integration techniques is to transform the in-
tegral to make it more suitable for integration. Notably, Genz (1992) derived
such a transformation for the Gaussian integral (3), though similar transforma-
tions have been suggested by other authors as well (see e.g. Geweke, 1991). Genz
(1992) begins by calculating the Cholesky factor L ofΣ and then transforms the
integral as

I (a, b,Σ) =
1

(2π)d/2

∫

a≤Lx≤b

exp(−1
2

y⊤y) dy

=

∫ b̃1

ã1

φ(y1)
∫ b̃2(y1)

ã2(y1)
φ(y2) · · ·

∫ b̃d (y1:d−1)

ãd (y1:d−1)
φ(yd ) dy

where ãi = L−1
ii (ai −

∑i−1
j=1 Lijyj), b̃i = L−1

ii (bi −
∑i−1

j=1 Lijyj), φ(x) is the stand-
ard Gaussian probability density function, and y1:d−1 = {y1, . . . , yd−1}. After
this, two more transformations are made to transform the integral to the unit hy-
per cube [0, 1]d . Firstly, let yi = Φ

−1(zi), where Φ(x) is the standard Gaussian
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cumulative distribution function, and secondly let zi = di + (ei − di)wi where

di(w1:i−1) =Φ(ãi(Φ
−1(z1(w1)), . . . ,Φ−1(zi−1(wi−1)))

ei(w1:i−1) =Φ(b̃i(Φ
−1(z1(w1)), . . . ,Φ−1(zi−1(wi−1))).

Then the integral I (a, b,Σ) can be rewritten as

(e1− d1)
∫ 1

0
(e2(w1)− d2(w1)) · · ·

∫ 1

0
(ed−1(w1:d−1)− dd−1(w1:d−1)

∫ 1

0
dw.

Besides having transformed the integral to the unit hyper cube, the transformation
has also achieved a separation of the variables so that the full problem can be
calculated sequentially.

This integral can then efficiently be evaluated using a quasi MC (QMC)
method where the uniform random numbers in the ordinary MC integrator are
replaced by some deterministic sequence of points chosen to reduce the probab-
ilistic error bound of the crude MC integrator. There are a number of ways such
deterministic sequences can be chosen in, and it is outside the scope of this article
to cover these, see Genz and Bretz (2009) for details.

A final variance reduction technique for the general integration problem can
be achieved by reordering the variables before calculating the integral. Schervish
(1984) originally proposed sorting the variables so that the first variable has the
shortest integration interval and inte innermost integral has the widest interval.
Gibson et al. (1994) improved this reordering by sorting the variables so that the
innermost integral has the largest expected value. This reordering can reduce the
error by an order of magnitude, as shown by Genz and Bretz (2002). However,
the technique will not be applicable in our situation since the reordering will be
determined by a parametric family for the excursion sets.

3.1.2 Methods for Markov random fields

A common assumption in spatial statics and image analysis is that the latent
field can be modeled, or approximated, using a Gaussian Markov random field
(GMRF). One of the motivating reasons for using GMRFs is that it reduces the
computational cost for parameter estimation and spatial prediction, and because
of this one would also like to be able to use the Markov property in the calculation
of (3).
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The main difference between latent GMRF models and standard Gaussian
models is that the distribution is specified using the (sparse) precision matrix in-
stead of the covariance matrix:

I (a, b,Q) =
|Q|1/2

(2π)d/2

∫

a≤x≤b

exp(−1
2

x⊤Qx) dx, (4)

Using the QMC methods from the previous section directly is difficult without
first inverting the precision matrix and then ignoring the sparsity of Q in the
calculations. To take advantage of the sparsity of Q one can use the fact that
any GMRF can be viewed as a non-homogeneous auto-regressive process defined
backwards in the indices of x (see Rue and Held, 2005, Theorem 2.7), that is, if
x is a GMRF with mean μ and precision matrix Q, then

xi|xi+1, . . . , xn ∼ N



μi −
1

Lii

n∑

j=i+1

Lji(xj − μj),L−2
ii



 , (5)

where Lij are the elements of the Cholesky factor of Q. The integral can thus be
written as

I (a, b,Q) =
∫ b1

a1

π(x1|x2:d )
∫ b2

a2

π(x2|x3:d ) · · ·
∫ bd−1

ad−1

π(xd−1|xd )
∫ bd

ad

π(xd ) dx

where, because of the Markov structure, xi|xi+1:d only depends on the elements
in xNi∩{i+1:d}, andNi is the neighborhood of i in the graph of the GMRF.

If Q is a band-matrix, the integral can be efficiently calculated as a sequence
of iterated one-dimensional integrals as discussed in Genz and Kahaner (1986).
However, the band width of L will often be too large for this method to be effi-
cient, and a better alternative is then of use a particle filter algorithm based on the
GHK simulator (Geweke, 1991, Hajivassiliou, 1991, Keane, 1993). Denote the
integral of the last d − i components by Ii,

Ii =

∫ bi

ai

π(xi|xi+1:d ) · · ·
∫ bd−1

ad−1

π(xd−1|xd )
∫ bd

ad

π(xd ) dx,

and note that the integral is the normalizing constant to the truncated dens-
ity fi(xi:d ) = 1(ai:d < xi:d < bi:d )π(xi:d ). The integrals Id , . . . , I1 are now
estimated sequentially using importance sampling. In the first step, calculate
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Id = Φ(Lii(bd − μd ))− Φ(Lii(ad − μd )), simulate N samples {xj
d}N

j=1 from the

truncated normal distribution hd (xd ) = 1(ad < xd < bd )π(xd ), and set wj
d = Id .

Next, simulate xj
d−1 from hd−1(xd−1|xj

d ) = 1(ad−1 < xd−1 < bd−1)π(xd−1|xj
d )

and set x
j
d−1:d = {xj

d−1, xj
d}. The integral Id−1 is estimated as Id−1 ≈

∑N
j=1 wj

d−1

where wj
d−1 are the importance weights wj

d−1 = fd−1(xd−1:d )/hd−1(xd−1:d ). Pro-
ceed like this, simulating from the truncated conditional distributions, and in
each step update the importance weights recursively through

wj
i =



Φ



Lii(bi − μi) +
n∑

j=i+1

Lji(Xj − μj)





−Φ



Lii(ai − μi) +
n∑

j=i+1

Lji(Xj − μj)







wj
i+1.

A common problem with sequential importance sampling is weight degeneration,
i.e. that most of the importance weights will become very small after a few steps
and the integral approximation will be determined by only a few particles with
large weights. To reduce the variance of the estimator when the target probability
is small, a resampling step can be performed after having calculated the weights
wj

i. The sample {xj
i:d} is then updated by selecting N particles from the set, where

xj
i:d is selected with probability wj

i/
∑N

k=1 wk
i . To avoid resampling too often, one

can do the resampling only if some criterion is met, for example if the effective
sample size is below some given threshold (see for example Doucet et al., 2001,
for an introduction to particle filter techniques).

3.2 Parametric families

In theory one can use any shape optimization technique to find the largest region
D. However, since evaluating the probability P(x(s) > u, s ∈ D) for a given set D
is computationally expensive, one would like to do as few iterations as possible in
this step. As discussed previously, we will solve this by assuming a parametric form
of the sets D. The optimization can then be reduced to a standard optimization
of only a few variables instead of doing a full shape optimization procedure. The
parametric families will be based on the marginal quantiles of x(s),

P(x(s) ≤ qρ(s)) = ρ,
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which are easy to calculate using only the marginal posterior distributions. The
simplest one-parameter family based on the marginal quantiles is given in the
following definition.

Definition 3.2 (One-parameter family). Let qρ(s) be the marginal quantiles for
x(s), then a one-parameter family for the positive and negative u excursion sets is
given by

D+
1 (ρ) = {s; P(x(s) > u) ≥ 1− ρ} = {s; P(x(s) ≤ u) ≤ ρ} = A+

u (qρ),

D−
1 (ρ) = {s; P(x(s) < u) ≥ 1− ρ} = {s; P(x(s) ≥ u) ≤ ρ} = A−

u (q1−ρ).

Using this one-parameter family in Algorithm 3.1 is equivalent to finding a
threshold value for the marginal excursion probabilities to get the correct simul-
taneous significance level. It is thus similar to the thresholding algorithms dis-
cussed in Marchini and Presanis (2003) but with the important difference that
the correct joint, often non-stationary, posterior density is used when finding the
threshold.

The simple one-parameter family can be extended in a number of ways, for
example by considering other levels in the excursion sets.

Definition 3.3 (Two-parameter family). Let qρ(s) be the marginal quantiles for
x(s), then a two-parameter family for the positive and negative u excursion sets is
given by

D+
1 (v, ρ) = {s; P(x(s) > v) ≥ 1− ρ} = {s; P(x(s) ≤ v) ≤ ρ} = A+

v (qρ),

D−
1 (v, ρ) = {s; P(x(s) < v) ≥ 1− ρ} = {s; P(x(s) ≥ v) ≤ ρ} = A−

v (q1−ρ).

The sets D+
1 (v, ρ) and D−

1 (v, ρ) are increasing in ρ for a fixed v.

One drawback with this parametric family is that it does not take the spatial
dependency of the data into account directly. Therefore certain sets which might
seem reasonable to test are not included in the family. Consider the example in
Section 4.1, Figure 1, Panel (a), where the marginal excursion probabilities are
shown in grey for an example in one dimension where the model is a Gaussian
process with exponential covariance function. The estimated posterior mean in
this example is shown as the black curve in Panel (b) in the figure, and in this
situation a reasonable candidate for the 0-excursion set might be a contiguous set
centered at 1, [1 − λ1, 1 + λ2] for some positive λ1, λ2. However, looking at the
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marginal probabilities we see that sets on this form will not be included in the
parametric family. One way of including such sets is to first smooth the mar-
ginal excursion probabilities pi = P(x(si) > u) using some parametric smoother
and then consider sets on the form {s; pτi ≥ 1 − ρ} where pτi are the smoothed
excursion probabilities.

Definition 3.4 (Two-parameter smoothing family). Let pτi be the smoothed mar-
ginal u excursion probabilities, using a circular averaging filter with radius τ. A
two-parameter family for the positive and negative u excursion sets is then given
by

D+
2 (τ, ρ) = {s; pτi ≥ 1− ρ},

D−
2 (τ, ρ) = {s; pτi ≥ 1− ρ}.

The parameter τ determines how close pτi is to the original excursion probab-
ilities. For τ = 0, no smoothing is done and for a general τ, pτi is equal to the
average of the marginal excursion probabilities in the disk with radius τ centered
at si. As τ increases pτi becomes smoother and approaches a constant function
equal to the average excursion probability. One could also use other types of
parametric smoothers instead of the simple averaging filter.

Using the two-parameter families requires a modification to Algorithm 3.5,
resulting in a slightly more computationally demanding method.

Algorithm 3.5 (Calculating excursion sets using a two-parameter family). Assume
that the model parameters θ are known and that the posterior distribution π(x|y,θ) is
Gaussian. Further assume that D(ν, ρ) is a parametric family for the possible excursion
sets, such that D(ν, ρ1) ⊆ D(ν, ρ2) if ρ1 < ρ2 for a fixed ν. The following strategy is
then used to calculate E+

u,α.

1. Choose a suitable (sequential) integration method for the problem.

2. Select a suitable one-dimensional optimization strategy.

3. Do optimization of the size of D(ν, •) over ν:

• For the current value of ν, reorder the nodes to the order they will be
added to the excursion set when the parameter ρ is increased.

• sequentially add nodes to the set D according to the ordering given above
and in each step update the probability P(D ⊆ A+

u (x)). Stop as soon as
this probability falls below 1− α.
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• return the last set D for which P(D ⊆ A+
u (x)) ≥ 1− α.

4. E+
u,α is given by the largest set D found in the optimization over ν.

The optimization can in this case be done using a Golden section search or a
similar fast optimization procedure for one-dimensional problems. Algorithm 3.5
can also be used to estimate uncertainty regions for contour curves by using the
following two-parameter family for the pair of level avoiding sets.

Definition 3.6 (Parametric family for level avoiding sets). Let D+
1 (ρ1) and D−

1 (ρ2)
be given by Definition 3.2. A two-parameter family for the pair of level avoid-
ing sets is obtained as (D+

1 (ρ1),D−
1 (ρ2)). A one-parameter family is obtained by

requiring that ρ1 = ρ2 = ρ.

The one-parameter family in Definition 3.6 can be used in Algorithm 3.1 to
estimate level avoiding sets and uncertainty regions for contour curves without
having to use the more computationally expensive Algorithm 3.5.

3.2.1 Domain bounds and reorderings

In the case of a GMRF posterior, it is desirable to make the Cholesky factor of the
precision matrix as sparse as possible, because it reduces the number of floating
point calculations that have to be done and reduces the error of the estimator.
Reordering the nodes according to a parametric family does not guarantee good
sparsity of the Cholesky factor, but the reordering can be improved by finding
upper and lower bounds for the region.

The simplest upper bound for the region is to use

U1 = {s : P(x(s) > u) ≥ 1− α},

which is calculated using only the marginal probabilities, and which is the largest
region D if x(s) is a perfectly correlated field. The domain D cannot contain
any locations s which are not in U1 because all points not in U1 have marginal
probabilities lower than 1− α of exceeding the level u.

A simple lower bound for the region is obtained using Boole’s inequality as

L1 = {s : P(x(s) > u) ≥ 1− α/n}

where n is the number of points in the discretization of the domain. In terms
of multiple hypothesis testing, this lower bound is obtained from the classical
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Bonferroni correction method and an improved lower bound can be obtained
using the Holm-Bonferroni method (Holm, 1979) as

L2 = {s : p(k) > 1− α/k}

where p(k) is the kth largest probability in the set {P(x(si) > u), i = 1, . . . , n}. If
the stochastic variables x(si) are independent, L2 is the largest domain D. If the
variables are not independent or perfectly correlated, one has L2 ⊂ D ⊂ U1.

The nodes can now be categorized into three classes, the first class contains
the nodes included in the upper bound U1, the second class contains the nodes
in the set L2 \ U1 and the third class contains all other nodes. Since one knows
that all nodes in U1 will be included in D, these can be reordered to maximize
the sparsity of the Cholesky factor, for example using an approximate minimum
degree permutation. The nodes in the second class are then added in the order
determined by the parametric family. Finally, since the nodes in the third class will
not be included in the domain, these can be reordered to maximize the sparsity or
integrated out of the posterior distribution. Making the bounds more precise will
improve the sparsity of the problem and therefore reduce the Monte-Carlo error
and the computational complexity.

3.3 Probability calculations for the latent Gaussian setting

In practice, we cannot use the computations from the previous sections directly
unless we are in a purely Gaussian setting with known parameters. In the latent
Gaussian setting with posterior (2), the method has to be modified. Since this
is a latent Gaussian setting, Integrated Nested Laplace Approximations (INLA)
(Rue et al., 2009) are used to estimate the posterior distributions π(x|y,θ) and
π(θ|y). First we propose three methods for calculating the excursion probabilities,
assuming that π(x|y,θ) is Gaussian:

EB: (Empirical Bayes) Ignore the parameter uncertainty and calculate the prob-
ability conditionally on a parameter estimate. That is, estimate the excur-
sion sets under the conditional posterior π(x|y,θ0) where θ0 for example
is the maximum a posteriori estimate or the maximum likelihood estimate
of θ.

QC: (Quantile correction) Do a correction to the Gaussian probability calcula-
tions based only on the marginal posteriors in the following way. For each
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i use the marginal posterior to calculate P(xi > ai|y) and P(xi < bi|y)
and calculate ãi and b̃i so that P(zi > ãi|y,θ0) = P(xi > ai|y) and
P(zi < b̃i|y,θ0) = P(xi < bi|y). An estimate of the probability is then
given by I (ã, b̃,Q(θ0)), where Q(θ0) is the posterior precision matrix for x

given the estimated parameters.

NI: (Numerical integration) Use the same integration strategy as is used in INLA
when estimating the marginal posterior distributions. The idea is to numer-
ically approximate the excursion probability by approximating the integral
in (2) as

P(a < x < b|y) = E(P(a < x < b|y,θ)) ≈
k∑

i=1

wiP(a < x < b|y,θi)

where the configuration of the points θi is taken from the integration in
INLA and the weights wi are chosen proportional to π(θi|y).

The Empirical Bayes estimator is the simplest, and may be sufficient in many
situations. The quantile correction method is based on correcting the limits of
the integral so that the probability would be correct if the xi ’s were independent.
This method is as easy to implement as the empirical Bayes method and should
perform better in most scenarios. Finally, the numerical integration strategy is k
times more computationally demanding as the probability has to be calculated for
each parameter configuration θi, but should also be the most exact method. If
the number of parameters is small one can often obtain accurate results with only
a few parameter configurations, but the accuracy of the estimator will depend on
how these configurations are chosen.

A second modification is required if the conditional posterior π(x|y,θ0) is not
Gaussian. The simplest solution to this problem is to do a Gaussian approxima-
tion π̃G (x|y,θ0), for example using Laplace approximations or simplified Laplace
approximations as suggested by Rue et al. (2009). If a Gaussian approximation
is not sufficient, the sequential integration method has to be modified, and how
to do this will depend on the posterior distribution. For example, Genz and
Bretz (2009) outline how the quasi Monte Carlo methods can be extended to t-
distributions, and the GHK-based particle filter method can be extended to other
types of distributions as well.
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4 Tests on simulated data

In this section, three examples using simulated data are presented to illustrate the
methods and test their accuracy. In the first example, we look at a problem in
one dimension with known model parameters, where a latent Gaussian process
with an exponential covariance is observed under Gaussian measurement noise.
In the second example, we compare the different parametric families for contour
uncertainty sets for a model in two dimensions with known parameters, where a
latent Gaussian Matérn field is observed under Gaussian measurement noise. In
the third example, the same spatial model setup is used, but this time the model
parameters are estimated from data and the three methods for handling the full
posterior distribution are compared.

4.1 Example 1: 1d Gaussian data with known parameters

We begin with a simple one-dimensional example to illustrate the different sets
we have previously defined. Let x(s), s ∈ [0, 2] be a Gaussian process with an
exponential covariance function with scaling parameter λ = 1 and mean

μ(s) =

{

s − 0.5 if s < 1

1.5− s if s ≥ 1.

We generate a trajectory from the model and observe it at 500 locations s1, . . . , sn
drawn at random in the interval under Gaussian measurement noise, giving us
observations yi = x(si) + ǫi where ǫi ∼ N(0,σ2). We do spatial prediction
(kriging) to 1000 equally spaced locations in the interval given the parameters
θ and the measurements y, and then estimate the positive 0-excursion function
F+(0, s) using the parametric family D+

1 (0, ρ). In Figure 1, Panel (a), F+(0, s) is
shown in red together with the marginal excursion probabilities P(x(s) > 0) in
grey.

By the definition of F+(0, s), the positive 0-excursion set E+
0,α(x), is obtained

by calculating the 1 − α excursion set of the function F+(0, s), and this set is
shown for α = 0.05 in red in Figure 1, Panel (b). The grey set shows the upper
bound U1, which is the set where P(x(s) > 0) ≥ 1 − α, and the dark red set
shows the Holm-Bonferroni lower bound L2. The black curve shows the kriging
estimate of the process given the data. Note that the grey and red sets are obtained
as excursion sets of the grey and red functions in Panel (a), and also note that
L2 ⊂ E+

0,α(x) ⊂ U1.
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Figure 1: Results from Example 1. Panel (a) shows the excursion function F+(0, s)
(red) and the marginal excursion probabilities p(s) = P(x(s) > 0) (grey). Panel (b)
shows E+

0,0.05(x) in red, obtained as A+

0.95(F+). The grey area shows A+

0.95(p),
which is the upper bound U1, and the dark red set is the lower bound L2. The
black curve is the kriging estimate of x(s).

We now want to verify that the estimated sets E+
0,α(x) have the correct excur-

sion probability, that is, that P(x(s) > 0, s ∈ E+
0,α(x)) = 1 − α. To that end,

draw N samples, x1(s), . . . , xN (s) from π(x|y,θ), count the number of samples
for which inf{x(s), s ∈ E+

0,α(x)} ≥ 0, and denote this number by Ns. Further let
p̂(α) denote the proportion of samples, Ns/N , that satisfies the requirement. If
E+

0,α(x) is correctly estimated, p̂(α) should be close to 1−α. In Figure 2, Panel (a),
the difference 1 − α − p̂(α) is shown as a function of 1 − α. The difference is
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Figure 2: Results from Example 1. Panel (a) shows 1−α−P(x(s) > 0, s ∈ E+
0,α(x))

as a function of 1− α, estimated twice using Monte-Carlo simulation of x. Panel
(b) shows the estimated contour uncertainty set M c

0,0.05(x).

calculated twice, using two different estimates p̂(α), each based on N = 50000
samples. As can be seen in the figure, the difference is very small for all values
of α, and the difference that can be seen is mostly due to the Monte-Carlo error
in the estimation of p̂(α). Thus the sets E+

0,α indeed have the correct excursion
probabilities.

Finally in Figure 2, Panel (b), the 0-contour uncertainty region M c
0,0.05(x) is

shown in red and the kriging estimate of x(s) is again shown in black. The set was
estimated using the two-parameter family for level avoidance sets from Definition
3.6 and Algorithm 3.5. The complement of this set is the union of the level
avoiding sets (M−

0,0.05(x),M+

0,0.05(x)), which is the largest pair of sets (D+,D−)
satisfying P(D− ⊆ A−

u (x), D+ ⊆ A+
u (x)) ≥ 0.95.

4.2 Example 2: 2d Gaussian data with known parameters

In this example, we change to a spatial model to test the parametric families for
contour sets. Let x(s), s ∈ [0, 10] × [0, 10], be a Gaussian field with a constant
mean μ = 0 and a Matérn covariance function

C (‖h‖) = 21−νφ2

(4π)
d
2Γ(ν + d

2 )κ2ν
(κ‖h‖)νKν(κ‖h‖), (6)

where ν is a shape parameter, κ2 a scale parameter, φ2 a variance parameter, Kν is
a modified Bessel function of the second kind of order ν > 0, and ‖ · ‖ denotes
the Euclidean spatial distance. We use the SPDE representation by Lindgren et al.
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Figure 3: Results from Example 2. Panel (a) shows a kriging estimate and Panel (b)
shows the same estimate where the corresponding estimated contour uncertanty
set M c

0,0.05(x) is superimposed in grey.

(2011) of the field using a triangulation based on an 80× 80 regular lattice in the
region. The representation is a piecewise linear approximation x(s) ≈∑i xiφi(s)
of the field using 6400 piecewise linear functions φi(s), each centered at one of
the nodes in the lattice. The advantage with this representation is that it allows
us to do all calculations using the weights x of the basis expansion, which form a
Gaussian Markov random field.

We set ν = φ = 1, and κ2 = 0.5, and generate a sample of the field and
measure it at 1000 locations in the square, chosen at random, under Gaussian
measurement noise, giving us observations yi = x(si) + ǫi where ǫi ∼ N(0,σ2)
and σ = 0.1. The posterior estimate (kriging) of x|y can be seen in Figure 3,
Panel (a), and the uncertainty region M c

0,0.05(x) for the 0-contour can be seen
in Panel (b). In this case the M c

0,0.05(x) was estimated using the one-parameter
family in Definition 3.6, and it is now of interest to test how much is gained by
using the two-parameter family from the same definition instead.

To that end, we generate 50 data sets using the same setup, and for each
data set estimate M c

0,0.05(x), first using the one-parameter family (D+
1 (ρ),D−

1 (ρ)),

and then using the more general two-parameter family (D+
1 (ρ1),D−

1 (ρ2)). Since
the one-parameter family is a special case of the two-parameter family where
ρ1 = ρ2 = ρ, the contour sets estimated with the two-parameter family should
always be smaller than the one-parameter sets. However, using the two-parameter
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family, the estimated sets are on average only 0.2% smaller than if the one-
parameter family is used, so in this case it is arguably not worth the extra com-
putational effort to use the two-parameter family, although for other levels u, or
other latent models, the difference might be larger.

4.3 Example 3: 2d Gaussian data with unknown parameters

In this example we compare the three methods,described in Section 3.3, for hand-
ling the full posterior distribution (2) in the calculations. The same Gaussian
Matérn model is used as in Example 2, with the difference that we now also es-
timate the parameters from the data.

We set ν = φ = 1, and κ2 = 2 in the covariance function (6), and generate
a sample of the field and measure it at 1000 locations in the square, chosen at
random, under Gaussian measurement noise, giving us observations yi = x(si)+ǫi

where ǫi ∼ N(0,σ2) and σ = 0.5. Given the measurements, we estimate the
parameters and the marginal posterior distributions using INLA. The posterior
estimate (kriging) of x|y can be seen in the lower right panel of Figure 4, and in
the lower left panel, the marginal probabilities P(x(s) > 0|y) are shown.

We now estimate the excursion function F+(0, s) using the three different
methods described in Section 3.3 and the one-parameter family from Defini-
tion 3.2 for the excursion sets. These can be seen in the upper panels of Fig-
ure 4. Visually it is in this case difficult to see any differences between the three
estimates of the excursion function. To compare the accuracy of the estimates we
will do a simular comparison to the one performed in Example 1, where Monte-
Carlo simulation was used to estimate p̂(α), the proportion of samples satisfying
inf{x(s), s ∈ E+

0,α(x)} ≥ 0, which should be close to 1− α if E+
0,α(x) is correct.

There are three possible sources of errors in this comparison. The first one
is the Monte-Carlo error from the estimation of p̂(α), which has nothing to do
with the accuracy of the method. The second error is the Monte-Carlo error in
the probability estimation when estimating the excursion distribution functions.
This error is, however many orders of magnitude smaller in this case. The final
error is the approximation error induced by using any of the three methods EB,
QC, or NI for handling the full posterior distribution.

To investigate this approximation error, the difference 1− α− p̂(α) is estim-
ated for the three estimates of F+(0, s). First we base the estimate on 20000
samples from the posterior π(x|y), obtained using the MCMC sampler described
in Appendix A. In Figure 5, Panel (a), the results can be seen for the EB method
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Figure 4: Results from Example 3. In the top row, three estimates of the excursion
function can be seen using the EB method (left), the QC method (middle), and
the NI method with 15 parameter configurations (right). In the bottom row, the
marginal p-values for exceeding the limit can be seen in the left panel, using the
same color scale as for the top row. The middle panel shows the set E+

0,0.05(x)
given by excursion function estimated by the NI method. Finally the right panel
shows the kriging estimate of the latent field.

(blue), the QC method (green), the NI method with k = 45 parameter settings
(red), and the NI method with k = 15 parameter settings (cyan). The compar-
ison was done twice, with two different samples of size 20000 when calculating
p̂(α), and the curves of the same color show these two and give an indication of
the size of the Monte-Carlo error in the comparison. As seen in the figure, the NI
method performs best, as expected.

The error using the NI method comes from the fact that only finitely many
points are used in the integration when approximating the posterior distribution
for the parameters. That is, the full posterior π(θ|y) is approximated by a discrete
distribution with point masses at the parameter configurations θi used in the
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Figure 5: Results from Example 3 showing the difference 1− α− p̂(α) as a func-
tion of 1 − α for the different approximation methods, EB (blue), QC (green),
NI using 45 parameter configurations (red), and NI using 15 parameter config-
urations (cyan). p̂(α) is an estimate of P(x(s) > 0, s ∈ E+

0,α(x)) based on MCMC
simulation of x(s), which should be close to 1 − α if E+

0,α(x) is correctly estim-
ated. In Panel (a), p̂(α) is estimated using the full posterior distribution, and in
Panel (b), p̂(α) is estimated using the discrete posterior distribution defined by
the 45 parameter configurations from the NI method. The comparison was done
twice, with the two different estimates of p̂(α), each based on 20000 samples of
x(s), and the curves of the same color shows these two.

integration, π(θi) = wi. To verify that this indeed is the source of the error
in, we construct a second Monte-Carlo sampler where we instead of sampling
θ from the full posterior π(θ|y) sample it from the discrete distribution defined
by the 45 parameter configurations used in the first NI method. Panel (b) in
Figure 5 shows the same comparison as Panel (a) but where θ is sampled from the
discrete distribution. As expected, the error for the NI method with 45 parameter
configurations is now smaller.

The Monte-Carlo error from estimating p̂(α) is quite large in Figure 5, so to
get a better understanding of the other errors, a larger study was also performed
where the procedure in Figure 5 was repeated 50 times for 50 different simulated
data sets, and for each data set N = 60000 draws from the posterior was used
when estimating p̂(α). The average errors of these 50 runs can be seen in Fig-
ure 6. In Panel (a) the results using samples from the full posterior is shown,
and in Panel (b) the results using the discrete distribution for θ is shown. Note
that the red curve is very close to zero in Panel (b), indicating that the error in
the NI method mostly depends on choosing the integration points for θ so that
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Figure 6: Results from Example 3 showing the difference 1− α− p̂(α) as a func-
tion of 1−α for the different approximation methods, EB (blue), QC (green), NI
using 45 parameter configurations (red), and NI using 15 parameter configura-
tions (cyan). The same setup as in Figure 5 was repeated 50 times for 50 different
datasets and 60000 samples were used when estimating p̂(α). This figure shows
the average error of these 50 runs.

they capture the true posterior distribution well. Also note that the QC method
performs well for large values of 1 − α, and since one most often is interested in
finding the excursion sets for small values of α, this method is then a good way of
finding such sets with less computational effort than using the NI method.

5 Applications

In this section, we will use the techniques described above in two different applic-
ations. In the first, we study air pollution data from Piemonte region in northern
Italy and estimate regions where the daily limit for PM10 (particulate matter with
an aerodynamic diameter of less than 10 μm) is exceeded. In the second applic-
ation, we study vegetation index data from the African Sahel and estimate areas
that experienced a significant increase in vegetation after the drought period in the
early 1980’s. In both of these applications the data sets are large, and the Markov
structure of the latent Gaussian models has to be used in the calculations.

5.1 Air pollution data

High levels of air pollution can be harmful for the ecosystems and the human
health. The effects on human health ranges from minor effects to the cardio-
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respiratory system to premature mortality (Cohen et al., 2009, Cameletti et al.,
2012). Because of this, environmental agencies have to assess the air quality in
order to take proper actions for improving the situation in polluted areas, and an
important tool in this process is the ability to produce continuous maps of air
pollution.

A region where the daily limit values fixed by the European Union for human
health protection (see EU Council Directive 1999/30/EC) are periodically ex-
ceeded is the Piemonte region in northern Italy. Recently, Cameletti et al. (2012)
proposed a statistical model to capture the complex spatio-temporal dynamics of
PM10 concentration in the region and used it to produce daily maps of PM10.
They also produced daily maps of exceedance probabilities of the value 50μg/m3,
which is the value fixed by the European directive 2008/50/EC for the daily mean
concentration that cannot be exceeded more than 35 days in a year. These probab-
ility maps only considered the marginal excursion probabilities, and no attempts
of producing maps of simultaneous exceedance probabilities were made. In the
following, we will therefore consider the same model and data but also estimate
the excursion functions for the 50μg/m3 limit value.

Cameletti et al. (2012) considers daily PM10 data measured at 24 monitor-
ing stations by the Piemonte monitoring network during 182 days in the period
October 2005 - March 2006. Denoting the measurements made at location si at
time t by y(si, t), the following measurement equation is assumed,

y(si, t) = x(si, t) + ǫ(si, t), (7)

where ǫ(si, t) ∼ N(0,σ2
ǫ ) is Gaussian measurement noise, both spatially and tem-

porally uncorrelated, and x(si, t) is the latent field of true unobserved air pollu-
tions. The latent field is assumed to be on the form

x(si, t) =
p
∑

k=1

zk(si, t)βk + ξ(si, t), (8)

where the p = 9 covariates zk are used and ξ is a spatio-temporal Gaussian ran-
dom field. Based on the work of Cameletti et al. (2011) the following covariates
were used: 1) Daily mean wind speed; 2) daily maximum mixing height; 3) daily
precipitation; 4) daily mean temperature; 5) daily emissions; 6) altitude; 7) lon-
gitude; 8) latitude; and 9) intercept. These covariates are provided with hourly
temporal resolution on a 4 km × 4 km regular grid by the environmental agency
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of Piemonte region (Arpa Piemonte). The spatio-temporal process ξ is assumed
to follow first order autoregressive dynamics in time with spatially dependent in-
novations:

ξ(si, t) = aξ(si, t − 1) + ω(si, t), (9)

where |a| < 1 and ω(si, t) is a zero-mean temporally independent Gaussian pro-
cess characterized by the spatio-temporal covariance function

Cov(ω(si, t1),ω(sj, t2)) =

{

0 if t1 6= t2
C (‖si − sj‖) otherwise,

(10)

where C (·) is a Matérn covariance function given by (6). The model parameters
and the posterior distribution for the latent field are then estimated using INLA in
combination with the SPDE representation of Lindgren et al. (2011), see Came-
letti et al. (2012) for details.

The map of marginal excursion probabilities for the level 50μg/m3 for Janu-
ary 30, 2006, based on the estimated posterior distribution for x, can be seen in
the left panel of Figure 7. To avoid inappropriate linear extrapolation of the effect
of elevation beyond the range of the elevation of the observations, the results are
only shown for areas below 1km. Based on these results, we now estimate the pos-
itive excursion function for the level 50μg/m3, F+(50, s), using the NI method
from Section 3.3 and the parametric family of excursion sets from Definition 3.2.
A total of 25 parameter configurations are used in the integration. The result can
be seen in the right panel of Figure 7. As seen in the figure, there are three regions
where the level is clearly exceeded, and a fourth that possibly contains too high
pollution levels. As expected, these areas coincide with the locations of the main
metropolitan areas in the region; Turin, Novara, Vercelli, and Alessandria. In this
case, it would have been desirable to make the predictions on a finer spatial scale,
but since the covariates were given on a 4 km × 4 km grid, this spatial resolution
had to be used in the prediction.

To get a better understanding of the results, it is also of interest to find the
regions where the pollution level is simultaneously below the limit value with
some given probability. The marginal probabilities for being below be the level
50μg/m3, based on the estimated posterior distribution for x, can be seen in the
left panel of Figure 8. The results are again only shown for areas below 1km
altitude. Using the same method as for the positive excursion function, we now
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Figure 7: Results from the PM10 application for January 30, 2006. A map of
the marginal exceedance probabilities for 50μg/m3 (left), and the joint excursion
distribution function for the level (right).

estimate the negative excursion function for the level 50μg/m3, F−(50, s). The
result can be seen in the right panel of Figure 8.

Note that the union of E+

50,0.1(x) and E−
50,0.1(x) covers only a small part of

the region, indicating that the uncertainty in the problem is large. See the red
and blue sets in the left panel of Figure 9. Also, by taking the complement of
the set E−

50,0.1(x), we get the region that contains all exceedances of the level with
certainty 0.9, indicated in grey in the left panel of Figure 9. This set is large,
indicating that there are many regions where the level possibly is exceeded. Hence,
it is important to note that the positive excursion set E+

50,0.1(x) is small because the
uncertainty is large in the problem, and not because the other regions certainly
have concentrations below the level.

To verify that the uncertainty is large, we finally calculate the contour function
for the level 50μg/m3, F c(50, s), using the NI method and the one-parameter
family from Definition 3.6 for the pair of level avoiding sets. The result can be
seen in the right panel of Figure 9, and it can be seen that the uncertainty regions
for the countour curve indeed cover a large part of the region.
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Figure 8: Results from the PM10 application for January 30, 2006. A map of the
marginal probabilities for the field being below the level 50μg/m3 (right), and the
joint negative excursion distribution function for the level (left).

5.2 Spatially dependent temporal trends in vegetation data

Trends in vegetation cover are related to changes in climatic drivers, feedback
mechanisms between the atmosphere and land surface, and human interaction.
A region with rapid recent changes is the African Sahel. This zone has received
much attention regarding desertification and climatic variations (Olsson, 1993,
Nicholson, 2000, Lamb, 1982). Recently, Eklundh and Olsson (2003) observed
a strong increase in seasonal vegetation index over parts of the Sahel using Ad-
vanced Very High Resolution Radiometer (AVHRR) data from the NOAA/NASA
Pathfinder AVHRR Land (PAL) database (Agbu and James, 1994, James and Kal-
luri, 1994), for the period 1982-1999. The study was based on ordinary least
squares linear regression on individual time series extracted for each pixel in the
satellite images. The results of Eklundh and Olsson (2003) were later improved
by Bolin et al. (2009) where a spatial model for the vegetation was used in the
analysis to capture the spatial dependencies in the trend estimation.

To find regions where changes in the vegetation have occurred over the course
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Figure 9: Results from the PM10 application for January 30, 2006. In the left
panel, the set E+

50,0.1(x) is shown in red, E−
50,0.1(x) in blue, and it’s complement

E+

50,0.1(x)c in grey. The contour curve for the level 50μg/m3 is shown in green.
The right panel shows the contour function for the level 50μg/m3, F c(50, s).

of the studied time period, both Eklundh and Olsson (2003) and Bolin et al.
(2009) used significance testing for the individual pixels in the field. Thus, pixels
that individually had significant changes in vegetation were found, but no at-
tempts were made to find simultaneous excursion regions. Here, we will use a
similar model to that of Bolin et al. (2009) but also estimate joint excursion re-
gions for the vegetation trends.

Assume that the vegetation measurements year t are generated as,

Yt |Xt ,Σεt ∈ N(AtXt ,Σεt ),

where Xt is the latent vegetation field with prior distribution π(Xt ),Σεt is a meas-
urement noise covariance matrix, and At is an observation matrix determining
which pixels in the field that are observed. To estimate time varying trends in the
observations, X is restricted to follow a field of spatially varying linear trends:

Xt = K1 + tK2 (11)
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The prior distribution for K = [K⊤
1 ,K

⊤
2 ]⊤ is obtained by evaluating the joint

distribution for X = [X⊤
1 , . . . ,X

⊤
T ]⊤ conditionally on the restriction (11). We

choose a second-order polynomial IGMRF (Rue and Held, 2005, Section 3.4.2)
prior for X and then calculate the corresponding prior distribution for K, (see
Bolin et al., 2009, for details).

To complete the model, the structure of Σε needs to be determined. Many
of the factors that the measurement noise should model are local phenomena,
such as aerosol and cloud cover. Since it seems unreasonable that the scale of
these disturbances would be the same over the entire region, Bolin et al. (2009)
assumed that the measurement noise was uncorrelated with a different noise vari-
ance at each pixel in the field. This results in a large number of parameters for
the measurements noise, one for each pixel in the field, so here we instead use a
different slightly simplified noise model. We divide the region into five different
land cover categories using the Africa Land Cover Characteristics Data Base Ver-
sion 2.0 (http://edc2.usgs.gov/glcc/glcc.php): 1) Bare desert; 2) Semi
desert; 3) Savanna; 4) Crops, grass, and shrubs; and 5) Forests and wetlands. The
measurement noise variance at pixel si is then modeled as

log σ2(si) =
5∑

k=1

θkbk(si), (12)

where bk(s) is the spatial basis function with values equal to the proportion of
vetetation type k at each pixel s. The parameters of the model are thus the scale
parameter κ and the five measurement noise parameters θ1, . . . , θ5. A gamma
prior is assumed for κ and gaussian priors are used for θk.

We choose to study the western part of the Sahel region, and this area is
divided into 35463 pixels of size 8 km× 8 km, so the field K has 70926 elements,
and there are 547832 measurements from 17 years of data starting in 1982 and
ending in 1999.

The model parameters and the marginal posterior distributions are estim-
ated using the INLA framework and the excursion sets are estimated using the
QC method from Section 3.3. The results can be seen in Figure 10 and Figure 11.
The top panel in Figure 10 shows the posterior estimates of the intercepts, K1,
and the slopes, K2, is shown in the bottom panel. As expected, intercepts are
larger in the savanna regions to the south, and smaller in the semi desert regions
to the north. The top panel of Figure 11 shows the estimated standard deviation
of the measurement noise using model (12). It is worth noting that these results
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K1

 0 2 4 6 8

K2

 −0.2 −0.1 0 0.1 0.2

Figure 10: Results from the Sahel vegetation data. The top panel shows the
posterior estimates of the regression intercepts, K1, and the botom panel shows
the estimated slopes, K2.

look reasonable, with larger measurement errors in the coastal region and where
there are forests and wetlands, and smaller measurement errors in desert and semi
desert regions. Finally the bottom panel of Figure 11 shows the estimated excur-
sion set E+

0,0.05(K2) in red and the point-wise positive significant trends in green.
The interpretation of the result is that one with high certainty can conclude that
the areas indicated in red have experienced an increase in vegetation over the stud-
ied time period. Hence, conclusions drawn by Eklundh and Olsson (2003) seem
valid, also when taking the spatial dependency of the vegetation into account and
when estimating the excursion sets controlling the family-wise error.
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Figure 11: Results from the Sahel vegetation data. The top panel shows the
estimated standard deviation of the measurement noise and the bottom panel
shows the estimated excursion set E+

0,0.05(K2) in red and the point-wise positive
significant trends in green.

6 Discussion

Estimating excursion sets and uncertainty regions for contour curves for stochastic
fields are difficult problems. In this work, we have presented a method for calcu-
lating such sets for latent Gaussian models. The main idea is to use a parametric
family for the excursion sets in combination with a sequential integration method
to reduce the computational effort required when estimating the sets in practise.
Tests on simulated data showed that the method is accurate, and two applications
were presented to show that the method is applicable even to large environmental
problems.

There are a number of extensions that could be made to this work. First of
all, using the one-parameter family for the excursion sets gives a method that falls
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into the broad category of p-value thresholding methods for estimating simultan-
eous excursion sets. It would therefore be interesting to do a comparison with
other similar methods with respect to the accuracy and computational complex-
ity. Another interesting comparison would be to compare the uncertainty regions
for contour curves produced by these methods to those of Lindgren and Rych-
lik (1995). One could potentially also combine these methods with the work by
Polfeldt (1999) to make statements on the quality of contour maps.

We also presented other parametric families that can be used to obtain more
complicated methods for estimating the excursion sets, with the possibility of
finding more precise estimates under the cost of higher computational complex-
ity. Initial comparisons showed that there is not much gain in using these more
complicated methods, but so far these comparisons have only been made using
fairly simple latent models, and the gain is likely higher when the latent models
are more complex. Hence, more studies are required to verify if this is the case and
to investigate in what situations it is appropriate to use the simple one-parameter
families.

As the method is valid for the same class of models as the INLA framework
is used for, it is our intention to integrate these two in order to minimize the
coding effort required of the user for using these methods in practice. Therefore,
our main focus at the moment is to implement these methods in the R-INLA
package (r-inla.org).
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A Notes on the MCMC algorithm used in Example 3

To generate samples from the posterior distribution π(x|y) in Example 3, an
MCMC algorithm is used. The algorithm is a random-walk Metropolis Hast-
ings algorithm (Metropolis et al., 1953, Hastings, 1970) with proposal kernel

q({xold,θold}, {x,θ}) = π(x|y,θ)qθ(θold, θ).
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A new proposal of the parameters θ = (log(σ), log(κ), log(φ)) is proposed based
on the old value θold using θ ∼ N(θold,Σθ). Here Σθ is a scaled version
of the Hessian matrix evaluated at the maximum posterior estimate of θ. The
scaling is selected as suggested by Gelman et al. (1996). A new value for x

is then proposed using the marginal posterior distribution π(x|y,θ) given by

x|y,θ ∼ N( 1
σ2 Q̂

−1
A⊤y, Q̂). Here Q̂ = Q +

1
σ2 A⊤A, where Q is the preci-

sion matrix for x and A is an observation matrix determined by the measurement
locations. The acceptance probability simplifies to

αMCMC = min

(

1,
π(θold|y)
π(θ|y)

)

,

where the posterior π(θ|y) is given by

π(θ|y) ∝ |Q|
1
2 π(θ)

|Q̂| 12 |σI|
exp

(

1
2σ2 y⊤

(

AQ̂
−1

A⊤

σ2 − I

)

y

)

. (13)

Since the proposal for x does not affect the acceptance probability, a new proposal
for x is only generated if θ is accepted. With only three parameters in the model,
we achieve good mixing this way, but being an MCMC-procedure it is still highly
computationally demanding since the calculation of the acceptance probability re-
quires a few Cholesky factorizations and back substitutions based on the posterior
precision matrix for x.
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