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“Daß ich erkenne, was die Welt
Im Innersten zusammenhält.”

Goethes “Faust. Der Tragödie erster Teil”





Abstract

One objective of attosecond science is to study electron dynamics
in atoms and molecular systems on their natural time scale. This
can be done using attosecond light pulses. Attosecond pulses are
produced in a process called high-order harmonic generation, in
which a short, intense laser pulse interacts with atoms or molecules
in a highly nonlinear process, leading to the generation of high-
order frequencies of the fundamental laser with a large spectral
bandwidth, supporting pulses with attosecond duration. In some
condition the harmonics are locked in phase leading to a train of
attosecond pulses or, in some cases, to a single attosecond pulse.
This thesis presents experiments based on interferometry to study
electron dynamics using attosecond pulses.

The first part describes a series of experiments, in which the
dynamics of electrons was studied after photoionization with an
attosecond pulse train. The time resolution in these experiments
was achieved by measuring the accumulated phase of the free
electron wave packet after photoemission using an interferomet-
ric technique. The phase carries temporal information about the
ionization process, from which the delay in photoemission can be
determined with a much better time resolution than that given by
the temporal structure of the pulse train. The same technique was
applied to investigate the phase behavior of resonant two-photon
ionization in helium atoms.

The second part describes the application of an interferometric
pump-probe technique to characterize bound electron wave pack-
ets. Single attosecond pulses are used to excite a broad electron
wave packet containing bound and continuum states. The bound
part of the wave packet is further ionized by an infrared laser with
a variable delay. Analysis of the resulting interferogram allows for
full reconstruction of the bound wave packet, since both the am-
plitude and the phase of all ingoing states in the wave packet are
encoded in the interference pattern.
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Populärvetenskaplig
sammanfattning

Har en galopperande häst vid n̊agot tillfälle alla hovarna i luften
samtidigt? Den här till synes enkla fr̊agan är inte helt enkel att
svara p̊a eftersom det inte g̊ar att avgöra med blotta ögat om s̊a är
fallet. För att avgöra om hovarna verkligen är i luften p̊a samma
g̊ang behöver vi andra redskap med bättre tidsupplösning än v̊ara
ögon. Första g̊angen n̊agon lyckades göra en s̊adan mätning
var 1878 d̊a Eadweard Muybridge med hjälp av en nyutvecklad
kamera kunde ta en serie bilder av en galopperande häst. Den
bildsekvensen visade med all tydlighet att alla hovarna vid vissa
tillfällen verkligen är i luften samtidigt. Att experimentet lyck-
ades berodde framförallt p̊a den förbättrade bildkvaliten som Muy-
bridge lyckades uppn̊a. Om man vill ta skarpa bilder av ett förem̊al
i rörelse m̊aste kamerans slutartid vara tillräckligt kort och Muy-
bridge kamera hade en slutartid p̊a 1 ms (1 ms = 10−3 s) vilket
i slutet av 1800-talet betraktades som ultrasnabbt. För att av-
bilda ännu snabbare förlopp behövs ännu kortare slutartider, men
tillslut begränsas slutartiden av vad som är mekaniskt möjligt att
åstadkomma. En alternativ metod är att l̊ata slutaren vara öppen
hela tiden och istället belysa förem̊alet som ska avbildas med en
kort ljusblixt.

En galopperande häst rör sig väldigt l̊angsamt jämfört med
mikroskopiska objekt och att avbilda förem̊al i mikrokosmos är
därför ännu mer utmanande. Vattenmolekyler rör sig till exem-
pel genom en lösning p̊a en pikosekundstidsskala (1 ps = 10−12 s)
medan atomer rör sig ännu fortare och måste avbildas p̊a en fem-
tosekundstidsskala (1 fs = 10−15 s). I allmänhet rör sig föremål
fortare ju lättare de är. En elektron som är 2000 g̊anger lättare än
den lättaste atomen rör sig därför mycket fortare. För en elektron
i en väteatom tar det till exempel bara 150 as (1 as = 10−18 s) att
ta sig ett varv runt kärnan.

2001 lyckades tv̊a oberoende grupper för första g̊angen att
skapa och mäta attosekundspulser. Det öppnade helt nya
möjligheter att studera elektronrörelser i realtid och ett nytt
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Abstract

forskningsomr̊ade som kallas attofysik s̊ag dagens ljus. Teknikerna
som används p̊aminner i mycket om Muybridges ursprungliga ex-
periment, men inte med mekaniska slutare. Elektroner studeras
med n̊agot som kallas pump-prob teknik där elektronrörelsen star-
tas av pumpen, en kort attosekundspuls, och senare f̊angas av en
andra ljuspuls (proben). Tiden mellan de tv̊apulserna m̊aste kon-
trolleras och varieras med extremt hög noggrannhet. Att ta en
serie bilder för olika tidsintervaller mellan de tv̊aljuspulserna gör
det möjligt att följa elektronernas rörelser p̊a ungefär samma sätt
som Muybridge studerade hästen.

I den här avhandlingen presenteras flera olika studier av elek-
trondynamik. Antingen förblir elektronen bunden i atomen efter
att den har växelverkat med pumppulsen, eller s̊a tvingas den
lämna atomen via fotojonisation. Den fotoelektriska effekten som
fram tills nyligen antogs ske momentant tar faktiskt en liten stund.
Efter det att ljuspulsen träffar atomen, tills det att elektronen loss-
nar hinner en kort tid passera, det är en kort tid, men den är inte
försumbar.
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Figure 1.1. A series of
photographs reveal the horse’s
course of movements [1].

Chapter 1

Introduction

“Does a horse take all four hooves off the ground while galloping?”
This seemingly simple question was not easy to answer. The
human visual system is not capable of resolving the motion of the
horse’s hooves when it is galloping. To understand the course of
movements in the horse’s stride we have to apply suitable tools.
In 1878 the photographer Eadweard Muybridge used animated
photography to capture the motion of a galloping horse in a
series of pictures, such as shown in Figure 1.1, and could prove
in this way that there is indeed an instance in time when all four
of the horse’s hooves are in the air. Two things were essential
to resolve the horse’s stride. Firstly, the series of photographs
had to be taken sufficiently rapidly to capture the complete
course of movements. In this case a photograph was taken every
millisecond (1 ms = 10−3 s). Additionally, to get a sharp image,
the shutter speed of the camera had to be faster than the speed
of the moving object, so Muybridge also needed a shutter time of
about 1 ms. At the end of the 19th century 1 ms was considered
to be ultrafast, and in a way, Muybridge’s study of the galloping
horse can be regarded as the first ultrafast experiment.
“How long does it take an electron to escape from an atom?” A
racing horse is very slow compared to events on the atomic scale,
and studying motion in the quantum world is far more challenging.
Water molecules move through a solution on the picosecond time
scale (1 ps = 10−12 s), while atoms move and form bonds to
become molecules within femtoseconds (1 fs = 10−15 s) [2]. In
general, the lighter a particle the faster it will travel. An electron
is almost 2000 times lighter than the lightest nucleus, and the
electrons that orbit a nucleus thus move much faster than the
nucleus itself. In the lightest atom, hydrogen, it takes the single
electron only 150 attoseconds (1 as = 10−18 s) to complete one
orbit.
To capture such rapid events, extremely short shutter times
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are needed, but the shutter speed is ultimately limited by the
underlying mechanics of the camera. An alternative approach
is to use a slow shutter together with very short flashes of light
(also called light pulses) to illuminate the object. Light pulses
with a duration of attoseconds are needed to resolve the motion
of electron.

A fundamental relation states that the product of the duration
and the bandwidth1 of a light pulse is equal to, or greater than, a
constant of the order of one, i.e., ∆τ∆ν ≥ 1. This implies, that
if we want to generate short pulses we have to include more light
frequencies. But even if we would include the complete visible
spectrum, from red up to violet, this would only allow pulse dura-
tions on the order of 1 fs, which is not short enough to resolve the
motion of electrons. A much larger bandwidth is needed, and the
main challenge was and still is to generate such a large bandwidth.
Shortly after the discovery of a process called high-order harmonic
generation (HHG) in 1987 [3, 4] possibilities were explored to use
the process for the generation of attosecond pulses [5–8]. In HHG,
a short laser pulse, nowadays usually femtoseconds long, interacts
with atoms or molecules in a highly nonlinear process, leading to
the generation of new frequencies that are multiples of the laser
frequency, resulting in a large bandwidth that supports attosecond
pulse durations. The first attosecond light pulses were measured
by two independent research groups in 2001, first as a train of
attosecond pulses by Paul et al. [9] and shortly after as single
attosecond pulses by Hentschel et al. [10]. This provided the op-
portunity to study electron motion in real time and led to the new
field of research called attosecond physics.
The techniques used to study electrons are similar to Muybridge’s
original idea, but due to the short time scale it is difficult to know
when to make the exposure and also how to take a sufficient num-
ber of photographs within these short time periods. Electron mo-
tion is therefore studied with a technique called the pump-probe
method. First, the electron dynamics is initiated by a light pulse
(the pump pulse), then the motion is captured using a second pulse
(the probe pulse), where the timing between the two pulses can
be set with very high accuracy. Repeated pumping and probing
at different time intervals provides a series of images from which
the electron motion can be followed, similar to Muybridge’s pho-
tographs of the galloping horse. The pump-probe technique was
used by Ahmed H. Zewail to resolve chemical reactions on the fem-
tosecond time scale, and in 1999 he was awarded with the Nobel
Prize in Chemistry for his work [11].
The first attosecond pump-probe experiment using single attosec-

1The bandwidth is a measure for the range of frequencies ν that together
form a light pulse.
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ond pulses was reported in 2002 by Drescher et al. [12]. For the
first time, the emission of an Auger electron resulting from ion-
ization of an atom could be followed in real time. Using similar
techniques, attosecond pulses have been used to study other pro-
cesses such as atomic photoexcitation [13] and ionization [14, 15],
as well as electron dynamics in solids [16] and molecules [17].

1.1 Aim and Outline of this Thesis

Attosecond pulses were measured for the first time in Lund in
2003 [18], and reliable techniques for the generation [19–22] and
characterization [18, 23, 24] of attosecond pulses were established
soon thereafter. Effective post-generation pulse compression was
demonstrated leading to attosecond pulse durations of 130 as, the
shortest pulses generated at that time [25]. When I started my
PhD studies at the end of 2007 the main focus of attosecond re-
search in Lund was shifting towards the application of attosecond
pulse trains [26–29], and the content of this thesis reflects this tran-
sition. Paper I describes in detail a proposed method for the char-
acterization of attosecond pulses [30], while all the other papers
included in this thesis present applications of attosecond pulses to
atomic and molecular physics.
The main measurement technique applied in the work presented
here is interferometry. Interferometry is a measurement technique
in which coherent waves are superimposed to determine their phase
difference by measuring intensity modulations. It is a very power-
ful tool since small changes in phase, and also wavelength lead to
considerable changes in the intensity of the signal. Trains of at-
tosecond pulses have relatively good spectral resolution, but are,
at first sight, not directly applicable in pump-probe experiments
due to the ambiguity of the excitation event. In the series of ex-
periments described in Papers II, III and IV this limitation was
circumvented by measuring the phase of an electron wave packet
after ionization with an attosecond pulse train using an interfero-
metric technique. The phase carries temporal information, and it
was thus possible to study time delays in photoionization with a
much better time resolution than given by the temporal structure
of the pulse train. The same technique was applied to investigate
the phase behavior of resonant two-photon ionization of helium
atoms (Paper V). Papers VI and VII present a pump-probe tech-
nique using single attosecond pulses. By using a delayed probe
pulse combined with an interferometric technique a better spec-
tral resolution was achieved than that given by the broad spectral
bandwidth of the single attosecond pulse. Since the phase infor-
mation is also preserved, a full reconstruction of arbitrary excited
bound-electron wave packets was possible.
Paper VIII describes how the time-dependent polarization of a
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1.2 From Optical Wave Packets to Electron Wave Packets

neutral molecule under the influence of an IR laser field was stud-
ied by measuring the changes in the ionization yield using attosec-
ond pulse trains.
The structure of this thesis is as follows. This introduction con-
cludes with the connection between the electron wave packets con-
sidered in this work and the attosecond pulses used to create
them. Chapter 2 introduces the underlying physics of attosec-
ond pulse generation and describes the experimental realization
together with the essential characterization methods. Chapter 3
concentrates on the theoretical framework needed to describe the
formation of the electron wave packets by means of the excita-
tion and ionization of atoms with attosecond pulses. This chapter
extends from well established descriptions of light-matter interac-
tions to the novel theoretical results obtained in connection with
the interpretation of experimental results present in this work.
Chapter 4 summarizes the results given in the previous chapters
and presents examples of interferometric measurement techniques
to study electron dynamics using attosecond pulses. The conclud-
ing chapter, Chapter 5, gives a summary and outlook.

1.2 From Optical Wave Packets to Electron
Wave Packets

The electron wave packets (EWPs) studied are the result of the
interaction of atoms with attosecond pulses, which are described
in terms of optical wave packets. These optical wave packets will
partially imprint their properties on the EWPs through the inter-
action with the atom, so it is worth looking at their properties.
Optical wave packets can be described as the sum of monochro-
matic waves that obey the electromagnetic wave equation. The
resulting electric field is given by:2

E(r, t) =

∫
dΩ Ẽ(Ω) ei(k(Ω)r−Ωt), (1.1)

where Ω = 2πν is the angular frequency and k the wave vec-
tor. Ẽ(Ω) is the spectral amplitude that defines the spectral
content of the optical wave packet. In general, Ẽ(Ω) is com-
plex, so Ẽ(Ω) = |Ẽ(Ω) | exp[iφi(Ω)], where φi(Ω) is the intrin-
sic phase of each spectral component. Using the dispersion rela-
tion k(Ω) = Ωn(Ω) /c, where n(Ω) is the refractive index, Equa-
tion (1.1) can be rewritten for a fixed position in space as:

E(t) =

∫
dΩ Ẽ(Ω) e−iΩt+iφp(Ω), (1.2)

where φp(Ω) is the phase accumulated during propagation. The
resulting spectral phase φ(Ω) is then given by φ(Ω) = φi(Ω) +

2The magnetic component will be neglected in the following.
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φp(Ω). The group delay (GD), which is a measure of the relative
delay of different spectral components, can be defined as:

GD =
dφ(Ω)

dΩ
. (1.3)

The variation in GD is called the group delay dispersion (GDD)
and can be expressed as:

GDD =
d2φ(Ω)

dΩ2
. (1.4)

GD and GDD are commonly used to describe optical wave packets
such as attosecond pulses.
Alternatively, the phase properties of an optical wave packet can be
described in the time domain by the temporal phase φ(t), which is
defined the complex phase of E(t), and from this the instantaneous
frequency of a pulse can be defined as:

dφ(t)

dt
= Ω(t) . (1.5)

If Ω(t) varies in time, the pulse is said to be chirped with a
chirp rate given by d2φ(t) /dt2 = a(t). A constant chirp rate,
a, corresponds to a linear change in Ω(t) with time. A chirp is
equivalent to a GDD 6= 0.
The pulse duration, ∆t, is usually given as the Full Width at Half
Maximum (FWHM) of the intensity I(t) = |E(t) |2. Similarly,
the spectral bandwidth, ∆Ω, is defined as the FWHM of the
spectral intensity, S(Ω) = |Ẽ(Ω) |2. Together they form the
time-bandwidth product, which sets the lower limit on the pulse
duration for a given bandwidth. For a Gaussian pulse, the time-
bandwidth product is given by ∆t∆Ω = 4 ln 2

√
1 + a2. When

the chirp rate is equal to zero the pulse is said to be transform
limited, which means that the pulse duration is as short as the
bandwidth allows, while a chirped pulse exhibits a longer duration.

In the same manner, a free-EWP can be defined as the coherent
sum of plane waves that satisfies the free Schrödinger equation for
a free particle:

Ψ(r, t) =

∫
dk g(k) ei(k(ω)r−ωt). (1.6)

k is the wave vector which is related to the electron momentum
p via the de Broglie relation p = ~k, where |k| = 2π/λdeB . The
interesting quantity is the complex momentum envelope g(k). The
interaction between an attosecond pulse and an atom or molecule
that leads to the formation of an EWP is usually described by
perturbation theory. In this case, g(k) can be written as:

g(k) ≈ Ẽ(Ω) · µki, (1.7)
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1.2 From Optical Wave Packets to Electron Wave Packets

where µki gives the atomic details of the interaction for an electron
initially in state i. The complex envelope depends directly on Ẽ(Ω)
and the momentum components k are given by energy conserva-
tion: E = ~k2/2m = ~Ω− Ip, where Ip is the ionization potential.
The intrinsic phase of the attosecond pulses will be transferred to
the EWP. However, the EWP is far more than just an electronic
replica of the ionizing pulse. The atom or molecule from which
the EWP originates will imprint its unique signature on the am-
plitude and phase of g(k) and influence the dynamics of the EWP
in the form of µki. The first generation of attosecond experiments
used the EWP to study and characterize the attosecond pulses by
concentrating on Ẽ(Ω). The well characterized attosecond pulses
available today allow attosecond physicists to turn their attention
more and more to the atomic signature on the EWP to study its
creation and the connected electron dynamics.
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Chapter 2

Attosecond Pulse Generation

Attosecond pulses are the tool used for the study of electron dy-
namics presented in this thesis. This chapter provides an introduc-
tion to the theory and the experimental realization of these pulses.
First, the underlying process of high-order harmonic generation is
reviewed using classical arguments. The second part of this chapter
provides a detailed introduction to the generation and metrology of
attosecond pulse trains, while the last section gives an overview of
single attosecond pulse generation and characterization.

2.1 High-order Harmonic Generation

Attosecond pulses are generated when intense laser pulses are fo-
cused into a diffuse ensemble of atoms.1 The basic aspects are
illustrated in Figure 2.1. Each atom will respond to the laser field
by the emission of high-order harmonics of the fundamental laser
frequency ω. The details of this microscopic response will be cov-
ered in Section 2.1.1. Apart from the single-atom response, the
effects of collective emission must be taken into account, and this
will be discussed in Section 2.1.2. Post-generation pulse shaping
in frequency and time can then be applied. Examples are given
Section 2.2.1.

2.1.1 Microscopic Physics

An intuitive understanding of the interaction between atoms and
strong laser fields is given by a semi-classical three-step model [31,
32]. For laser pulses with intensities exceeding 1013 W/cm2 the
electric field of the laser pulse becomes comparable to the strength
of the binding Coulomb potential. Under these conditions, the

1Alternative generation media such as molecules or solid surfaces will not
be considered in this thesis.
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2.1.1 Microscopic Physics

Laser field

Coulomb
potential

(I) Tunneling

(II )Acceleration 
and 

redirection

(III) Recombination

Laser field

Laser field

Figure 2.2. The three-step model
for high-harmonic generation.
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Figure 2.1. Schematic overview of attosecond pulse generation.

electron may tunnel through the Coulomb barrier modified by the
presence of the assumed, slowly varying, linearly polarized electric
field, as depicted in Figure 2.2. After tunnel ionization, which is
considered as step (I), the electron is treated as a classical parti-
cle. In the following step (II) the electron is accelerated by the
oscillating laser field and gains kinetic energy, Ekin. During the
motion of the electron in the continuum, the Coulomb potential of
the remaining nucleus is assumed to be small. Depending on the
phase of the electric field at the time of ionization, ti, the electron
can be redirected and driven back to the vicinity of the nucleus
at a return time tr. It may then recombine to the ground state
emitting a photon with an energy that is given by the ionization
potential of the atom, Ip, plus Ekin. The recombination and sub-
sequent emission of radiation is considered to be step (III).
Useful information about the harmonic radiation can be gained by
solving Newton’s equation of motion of the unbound electron dur-
ing the excursion. Figure 2.3 shows the trajectories for the charged
particle in the laser field, simply described as E = E0 sinωt.
Within the first half of the optical cycle, T , only electrons tun-
neling between T/4 and T/2 will contribute to the generation of
harmonics, as shown by the black curves in Figure 2.3. The pro-
cess will then repeat itself every half-cycle. Figure 2.4 illustrates
the relationship between tr and Ekin for the recombining electrons.
The maximum energy is equal to 3.17 Up, where Up is the pon-
deromotive energy defined as the quiver motion of the electron in
the oscillating laser field averaged over one period:

Up =
e2

2meω2
· I
ε0c

, (2.1)

where I is the laser intensity. The maximum photon energy at the
so-called cutoff is thus given by:

~ωc = Ip + 3.17Up. (2.2)
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symmetry in HHG.

It is apparent from Figure 2.4 that, apart from the cutoff region,
there are always two trajectories leading to the same kinetic
energy. They differ in the excursion time, texc, of the electron in
the continuum, which is also depicted in Figure 2.4. Two kinds
of trajectories are then defined depending on whether they are
longer or shorter than the cutoff trajectory.

Time and Frequency Picture

In a more complete description, the three-step process will repeat
itself every half-cycle as long as the intensity during the pulse dura-
tion is sufficient for tunnel ionization, and the gas is not completely
ionized. During every half-cycle, a short burst of light with a dura-
tion shorter than one 1 fs will be emitted.2 For multi-cycle pulses
this leads to an attosecond pulse train (APT) with a spacing of
T/2 in time. Interference will occur between the multiple emission
events. In the frequency domain this will give rise to a frequency
comb with a spacing of 2ω, which is the inverse of T/2. Consider
the resulting electric field of one harmonic frequency, Ω = qω, for
two consecutive emission events, as shown in Figure 2.5:

E(t) = Ê(t) e−iΩt + Ê(t+ T/2) e−(iΩt+iΩT/2), (2.3)

where Ê(t+ T/2) = −Ê(t) due to the symmetry of the pro-
cess. The expression for E(t) depends on the phase difference,
ΩT/2 = qπ, and vanishes if q is even, so that only odd harmonic
orders will be observed.
One way to break the symmetry and produce even harmonics is to
apply an asymmetric field to the atom. This can be done by intro-
ducing a small fraction of the second harmonic of the fundamental
field into the generation process. The generation of even harmon-
ics can be optimized by varying the ratio of the amplitudes and the
phase between the two fields. This so-called two-color generation
is described in Paper I.
For very short, few-cycle laser pulses the intensity required for
HHG may only occur during one half-cycle, leading to the emis-
sion of only one isolated pulse with a broad continuous frequency
spectrum. This calls for a controlled carrier envelope phase (CEP)
of the driving field.

Phase Properties

In the classical picture, each harmonic order arises from a different
electron trajectory with a different return time tr. The temporal
distribution of kinetic energies is transferred to the emitted light

2Assuming a fundamental wavelength of 800 nm, corresponding to T =
2.67 fs.
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2.1.2 Macroscopic Effects

burst, causing a variation in the spectral phase of the attosecond
pulse. The group delay of an attosecond pulse is then given by:

tr = GD =
∂φ

∂ω
, (2.4)

where ω = (Ekin + Ip)/~. The short trajectories are positively
chirped (compare Figure 2.4):

∂tr/∂ω = ∂2φ/∂ω2 > 0 (2.5)

The chirp can be approximated as being linear over a large range
of energies, leading to a constant group delay dispersion [24]. The
long trajectories show the opposite behavior. Since, in principle,
all trajectories contribute to harmonic emission, this would lead to
a distorted temporal profile [7]. In attosecond experiments usually
only the short trajectories are selected by choosing the correct
phase matching conditions and a hard aperture in the beam, as
explained below.

2.1.2 Macroscopic Effects

Besides the single-atom response, collective effects must to be con-
sidered to account for all the properties of the harmonic signal, es-
pecially the intensity. Different macroscopic effects, such as reab-
sorption of the generated harmonics and propagation of the fields
in the generating media, come into play [33].
The most important factor for efficient energy transfer between
the driving laser field and the harmonic fields is phase matching,
which is achieved if each individual atom emits in phase with the
rest of the ensemble. The generalized phase matching condition in
the strong-field regime is given by [34]:

kq = qk +∇Φq, (2.6)

where k is the wave vector of the fundamental and kq is the
wave vector of the qth harmonic. Φq denotes the phase of the
component oscillating at qω of the laser induced atomic dipole
moment and is governed by the accumulated phase of the electron
wave packet along the trajectories leading to the emission of
harmonic q. It can be approximated by Φq ' Uptexc ' −αI,
where the coefficient α depends on the harmonic order and on the
excursion time, texc, spent in the continuum [24]. It is interesting
that α depends on texc because it implies that the phase matching
conditions will be different for the long and short trajectories.
Different effects may lead to a wave vector mismatch, ∆k 6= 0,
between k and kq. One such effect is the dispersion of the
fundamental field. Although the gas densities are very small,
dispersion arises from the neutral atoms, leading to ∆katom.
Another contribution, ∆ke, originates from the free electron
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Intensity profile

Gas cellFocused laser

Figure 2.6. Optimized on-axis phase matching condition [35].

density inherent to the generation process. The dispersion caused
by the neutral atoms is of the opposite sign to the free-electron
dispersion. Another possible source of phase mismatch, ∆kgeo, is
of geometrical origin. Focusing a Gaussian beam will lead to an
additional phase variation, the Gouy phase shift, across the focus.
This mainly affects the fundamental field.

The sign and magnitude of the dipole phase factor, −α∇I, depends
on the position both along and perpendicular to the beam direc-
tion in the focal volume. The main challenge in the laboratory
is to find experimental conditions where all these contributions
cancel each other out. Different parameters are available to exper-
imentalists, e.g., gas pressure and medium length, laser intensity,
focusing parameters (for example, focal length or guided focusing)
and the relative position of the focus and generating medium. Fig-
ure 2.6 presents an example of optimized on-axis phase matching
for HHG in a gas cell [35]. Here, the medium is located behind
the focus, which minimizes the geometrical contribution. In addi-
tion, the intensity gradient is negative and thus the contribution
of the dipole phase is positive, and compensates for the geometric
and electronic dispersion. Normally, in this configuration, only a
small contribution of the dipole phase is needed to achieve phase-
matching, thus favoring on-axis phase matching for short trajecto-
ries. Phase matching for the harmonic radiation originating from
the long trajectories will be realized off-axis, leading to a greater
divergence. It can therefore be easily blocked using a hard aperture
in the beam, providing a cleaner time structure of the attosecond
pulses [24]. At optimized generation conditions, an energy con-
version efficiency of 10−6 to 10−4 into one harmonic peak can be
achieved, depending on the generating gas [33, 36, 37].
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Figure 2.8. Resulting intensity
profile in time for an APT with a
flat phase relationship (solid
curves) and with a linear chirp
(dashed curves).

2.2 Attosecond Pulse Trains

An APT is generated by the process of HHG, when a short, intense
laser pulse is focused into an ensemble of atoms, as described in
the previous section. The laser pulses generated in the attosecond
laboratory at Lund University in this work have a pulse duration of
about 35 fs at a central wavelength of 800 nm, and a standard pulse
energy of 3 mJ per pulse. For a wavelength of 800 nm, which is
equal to a period of T = 2.67 fs, this corresponds to approximately
10 cycles with sufficient intensity for HHG, assuming a Gaussian
intensity profile in time. The resulting 20 emission events have a
duration of less than 1 fs, and form a train of attosecond pulses.
Due to the repetition of the process the frequency spectrum of the
APT will exhibit a frequency comb of odd harmonics of the driving
laser field. The spectral width of each harmonic peak is inverse
proportionally to the number of events, N . A single emission cor-
responds to a broad structure-less continuum. With increasing N
the harmonic peaks become sharper (analogous to the increasing
finesse of a Fabry-Pérot etalon). This leads to a good spectral
resolution combined with attosecond time resolution, which was
used in Papers II, III and V.
Although the origin of attosecond pulses can be understood in the
time domain, it is convenient to describe the pulse properties in
the frequency domain, in analogy with conventional optics. The
process of HHG produces a comb of high-order harmonics with
photon energies ranging from a couple of eV up to the ultraviolet
or the soft x-ray regime [38–40]. The bandwidth of the harmonic
comb, ∆Ω, is large enough to support pulse durations in the at-
tosecond regime. Consider a comb of monochromatic harmonics:
the resulting electric field will be given by:

E(t) =
∑

q odd

Êqe
−i(ωqt+φq). (2.7)

If the individual fields are synchronized, meaning that they have
a fixed phase relationship, they may add constructively, and the
resulting amplitude E(t) will then vary much faster than T/2 of
the driving laser field, as depicted in Figure 2.7.

However, as discussed in Section 2.1.1, the attosecond emission
exhibits an inherent chirp, which is approximately linear over a
large range of energies. The influence of the chirp is illustrated
in Figure 2.8, which shows the intensity profile I = |E(t) |2 of an
APT including harmonics 13 to 21. The solid line illustrates the
Fourier-limited pulse duration according to the bandwidth, while
the dashed line corresponds to an APT with the same bandwidth,
but quadratic phase behavior, i.e., a linear chirp.
To achieve the shortest possible pulses it is therefore important
to be able to control the phase properties. This can be done by
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through a 200 nm thick chromium
filter.

optimizing the generation process [41] and by post-generation pulse
shaping [19, 25]. Additionally, long trajectories, which exhibit the
opposite phase behavior, must to be suppressed in order to obtain
a clean time structure.

2.2.1 Pulse Shaping

To achieve short attosecond pulses post-generation pulse shaping
is necessary. The short trajectories used for attosecond pulse gen-
eration cause a positively chirped emission, i.e., GDD = ∂2φ\∂ω2,
which is positive over the harmonic spectrum. Thin metallic foils
can be used to compensate the positive atto-chirp. These foils
cause a negative GDD on the low-energy side of their transmis-
sion window, so that when the light passes through the medium,
low-frequency components travel slower than the higher frequency
ones, leading to the desired synchronization.
The choice of material depends on the photon energy range [19, 25].
A standard combination of generating medium and metallic filter
used throughout the work described in this thesis was argon gas
together with a thin aluminum foil. Figure 2.9 shows the trans-
mittance and group delay for a 200 nm thick aluminum foil. The
transmission onset of aluminum at low frequencies together with
the cutoff on the high-energy side acts as a bandpass filter. Over
the spectral range between 25 and 45 eV (corresponding to har-
monics 17 to 29) aluminum exhibits an almost constant negative
group delay. Pulse compression can be achieved by choosing the
appropriate filter thickness. Below the 17th harmonic the group
delay varies rapidly and aluminum is not suitable for synchroniza-
tion. In this region the transmittance of aluminum is so low so that
the lower orders are sufficiently absorbed. An additional advantage
of metallic filters is that they effectively filter out the fundamental
laser pulse.

In some applications, the shortest pulse duration may not be the
decisive factor. In the experiments presented in Papers II and III
a chromium filter was used to tailor the bandwidth of the harmonic
spectrum. Figure 2.9 presents the optical properties of chromium.
A small transmission window between 30 and 45 eV allows for the
selection of harmonics 21 to 29. Figure 2.10 shows the resulting
harmonic spectrum generated in argon. The spectrum is confined
by the transmittance on the low-energy side and by the cutoff at
high energies. The GDD in this energy region is positive, indicat-
ing that chromium is not suitable for pulse compression, on the
contrary, attosecond pulses passing through a chromium filter will
gain additional chirp. However, in the experiments described in
Papers II and III the actual pulse length was only of secondary
interest. The temporal resolution in these experiments is the result
of an interferometric measurement technique.
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2.2.2 Characterization of Attosecond Pulse Trains

2.2.2 Characterization of Attosecond Pulse Trains

The main characterization method used in this work was RABITT
(Reconstruction of Attosecond Beating by Interference of Two-
photon Transitions). RABITT measures the pulses ‘on target’
including propagation effects and filtering. Another method of
probing the attosecond pulses when they are generated, proposed
by Dudovich et al. [30], namely the in situ method, has also been
investigated.

RABITT

RABITT is a widely used method for the characterization of at-
tosecond pulses in a train [9, 19, 20, 41, 42]. RABITT is a cross-
correlation method in which the XUV pulses are probed with a
small fraction of the fundamental IR pulse used for generation.
The method relies on the fact that the two fields, XUV and IR,
are locked in phase. In a RABITT measurement, both the spectral
phase and the amplitudes are measured for all frequency compo-
nents, thus full reconstruction of the pulses is possible.
The basic idea of a RABITT measurement is depicted in Fig-
ure 2.11. An attosecond pulse train ionizes an atom leading to
a photoelectron spectrum with equally spaced peaks at energies
of ~ωq − Ip, where q is the harmonic order. The presence of a
small fraction of the fundamental laser pulse with the energy ~ω
will introduce two-photon transitions, where the electron either
absorbs or emits an additional IR photon.3 Additional photoelec-
tron peaks, denoted sidebands S, will appear corresponding to
even harmonic orders. The two possible quantum paths to the
same sideband will lead to interference, and the sideband inten-
sity S will be sensitive to the phase between the two fields [43].
Since both intensities, XUV and IR, are small, it is possible to use
second-order perturbation theory. Assuming equal amplitudes for
the two pathways, the sideband signal will oscillate as a function
of phase, i.e., the delay τ , between the XUV and IR pulses [9]:

Sq(τ) ∝ 1 + cos
(
2ωτ −∆φq −∆φatq

)
, (2.8)

where ∆φq = φq+1 − φq−1 is the difference in spectral phase be-
tween two consecutive harmonics. The phase term ∆φatq is called
the atomic phase and denotes an additional phase factor that arises
from to the two-photon ionization process itself. The atomic phase
is usually small compared to ∆φq and can be neglected or calcu-
lated [9, 44]. However, since ∆φatq contains valuable information
about the dynamics of the ionization process, an extended version
of the RABITT method was used in this work to determine ∆φatq .

3The case where the electron first absorbs an IR photon and then an XUV
photon will be neglected since the probability for this transition is small.
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Figure 2.11. Principle of the
RABITT technique. Ionization
with an APT in the presence of a
fraction of the fundamental will
lead to sideband peaks. The
interference signal from the two
pathways contains information on
the chirp of the XUV pulses.

Delay (fs)

H
ar

m
on

ic
 o

rd
er

0 -5-5

17

19

21

23

25

Figure 2.12. A complete
RABITT scan when using argon
as generation and detection gas.
The sideband modulations are
clearly visible at even harmonics.

Under some circumstances the contribution of ∆φatq may be consid-
erable, for example, in the case of a resonant two-photon transition.
In the studies presented in Paper V the RABITT method was used
to study the resonant behavior of two-photon ionization of helium.
A similar approach was used by Haessler et al. [45] and Caillat et
al. [46] to investigate ‘complex resonances’ of nitrogen molecules.
A more detailed derivation of the RABITT Equation 2.8 is given
in Section 4.1.1.

Figure 2.12 gives an example of a complete RABITT scan, show-
ing photoelectron spectra as a function of the delay between the
APT and the IR pulse. The oscillating sideband signal for even
harmonic orders is clearly visible. The sidebands are modulated at
a frequency of 2ω and have a characteristic phase offset. A Fourier
transformation of the sideband signal along the delay axis, τ , will
give a frequency contribution at 2ω with a phase given exactly
by ∆φq + ∆φatq . Neglecting ∆φatq for now, the measured phases
provide insight into the synchronization between consecutive har-
monics, i.e., the GD of the attosecond pulse:

GD =
∆φq
2ω

. (2.9)

By setting the phase of the lowest measured harmonic, qi, to zero,
the phase of the following harmonics can be obtained from a re-
cursive relationship:

φq>qi =

q∑

n=qi+1

∆φn. (2.10)

The pulses are then reconstructed as:

I(t) =

∣∣∣∣∣∣

qf∑

q=qi,odd

Êqe
−i(ωqt+φq)

∣∣∣∣∣∣

2

. (2.11)

For a complete reconstruction not only the phases but also the
amplitudes of each harmonic must be known. These can either
be measured using an XUV spectrometer, or derived directly from
the photoelectron spectra. In the latter case the harmonic ampli-
tudes result from the ionization cross-section-corrected intensities
Êq =

√
Iq/σq.

There are several limitations to the RABITT method. One lies in
the fact that Equation 2.11 assumes monochromatic harmonics, in
other words, harmonics that are infinitely long in time. In reality,
the harmonic emission is limited to less than the duration of the
driving pulse. Moreover, since the cutoff energy varies as a func-
tion of intensity, the lower orders will be produced over a longer
time, while the generation of higher orders is limited to the center
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of the intensity envelope of the generating laser pulse. This results
in a variation in the pulse duration along the train, as well as a non-
uniform spacing of the pulses in the train [23, 24, 47]. RABITT
consequently measures only the average pulse in the train. In ad-
dition, the derivation of Equation 2.8 is based on a perturbative
treatment which assumes low IR intensities. For higher intensi-
ties, higher multi-photon transitions have to be included, which
compromises the phase determined at 2ω. Swoboda et al. [48]
showed how the RABITT method could be generalized for high
probe intensities by including higher-order transitions.

In Situ Method

In contrast to RABITT the in situ method provides characteriza-
tion of attosecond pulses when they are ‘born’ [30]. This is done
by introducing a small perturbation in the generation process. In
an in situ measurement a small fraction of the second harmonic of
the fundamental is included in the generation (less than < 10−3).
Due to the symmetry breaking of the driving field experienced by
the atom, even harmonics will be generated. When changing the
relative phase between the two generation fields the signal of the
even harmonics will be modulated. The phase of the oscillation
maxima ∆φmax(ωq) for the even harmonics in the plateau region
can be related to the return time of the electron trajectory, tr, and
therefore to the GD [49]:

GD = tr(ωq) ∝
∆φmax(ωq)

ω
, (2.12)

which allows for a reconstruction of the attosecond pulses. The va-
lidity of the in situ method was investigated in terms of generation
pressure and IR intensity by comparison with the corresponding
RABITT measurements (Paper I). A recent, more thorough the-
oretical investigation, however, revealed that the in situ method
must be improved to account correctly for the intensity and the
wavelength of the fundamental, as well as for the ionization poten-
tial, in order for it to be applicable in quantitative studies [50].

2.2.3 The Experimental Setup in Lund

The experimental setup used for the experiments described in Pa-
pers I, II, III, V and VIII is located in the attosecond laboratory
of the Lund High Power Laser Facility. It can be divided into
three parts: (i) the laser system, (ii) the optical setup including
the HHG chamber and a Mach-Zehnder interferometer for time-
resolved pump-probe experiments, and (iii) the detection part in-
cluding different types of electron spectrometers.
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Figure 2.13. Overview of the
laser system in the attosecond
laboratory.

The Laser System

Figure 2.13 gives a schematic overview of the laser system. It
is based on the chirped-pulse amplification (CPA) technique and
delivers pulses in the IR region, centered at 800 nm, with a band-
width of approximately 30 nm, corresponding to a pulse duration
of 35 fs. Standard pulse energies are about 3 mJ. CEP-controlled
operation with pulse energies up to 6 mJ was demonstrated in
2009 [51]. However, this feature was not used in the current work.

The CPA chain is seeded by a Femtolasers Rainbow oscillator, us-
ing a chirped mirror configuration for intracavity dispersion man-
agement [52]. The Rainbow oscillator delivers pulses with a dura-
tion of 7 fs and a bandwidth of 300 nm at a central wavelength of
800 nm. The pulse energy is about 2.5 nJ. The CEP can be con-
trolled by a feedback loop, utilizing a monolithic, collinear geome-
try [53, 54]. The oscillator is followed by a Fastlite Dazzler. This is
an acousto optic programmable dispersive filter (AOPDF) to fine
control dispersion and to shape the spectrum for optimal gain.
The AOPDF reduces the oscillator bandwidth to 80-100 nm. The
pulses are then stretched in an Öffner type of grating stretcher to a
pulse duration of 200 ps, before entering the regenerative amplifier.
Here the repetition rate is reduced from 78 kHz to 1 kHz by a pulse
picker. In the regenerative amplifier the pulse energy saturates at
0.5 mJ after about 12 round trips. The second amplification stage
employs a five-pass bow-tie amplifier using a cryogenically cooled
Ti:Sapphire crystal. The amplifier is designed for an output of
10 mJ. Both amplifiers are pumped with a 30 W diode-pumped,
frequency-doubled Nd:YLF laser from Photonics Industries. For
pulse energies above 5 mJ the multipass amplifier can be pumped
by a second pump laser (YLF 20W, B.M. Industries). Most ex-
periments presented here were performed without the additional
pump laser, resulting in pulses with a usable energy of about 3 mJ
after compression. After amplification the beam diameter is ex-
panded to about 1.6 cm with a telescope to avoid damage to the
following optics, especially to the gratings of the compressor. The
final stage is a standard double-pass grating compressor, optimized
at 800 nm. Frequency-Resolved Optical Gating (FROG) measure-
ments indicate a minimum pulse length of about 35 fs FWHM after
compression.
As mentioned above, the AOPDF can be used to shape the spec-
trum. This feature was explored to change the carrier frequency
of the IR pulses and therefore the photon energy of the generated
harmonics (Paper V). Tuning was achieved by changing the posi-
tion of the selected 80 nm bandwidth from the oscillator output, or
by introducing a dip or hole at a given wavelength to shift the rela-
tive contribution from different wavelengths and thus changing the
‘center of mass’ of the pulse ( see Figure 2.14. However, the ability
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Figure 2.14. Spectra for the laser
tuning used in Paper V.

to alter the central wavelength is limited by the bandwidth of the
dielectric optical elements following the AOPDF (about 40 nm cen-
tered at 800 nm), thus limiting the possible tunability. Another
limiting factor is gain narrowing during amplification. This will
act as an additional bandpass filter and manifest itself mainly as
a red shift during amplification. The limitations on the tuning are
clearly visible in Figure 2.14.

The Mach-Zehnder Interferometer

The most important part of the experimental pump-probe setup
used in this work is the Mach-Zehnder interferometer, shown in
Figure 2.15. After the pulses leave the compressor a small fraction
of the beam is split off by a beam splitter to serve later as a probe
pulse. The main fraction of the beam is focused into a gas cell for
HHG, situated in a separate part of a vacuum chamber. The gas
cell is pulsed and synchronized to the repetition rate of the laser.
Pulsed operation keeps the background pressure at a minimum to
reduce propagation effects of the XUV radiation. The generation
cell is motorized for signal optimization (see Section 2.1.2). Dif-
ferent cell lengths are available, but a length of 6 mm was most
commonly used. A hard aperture can be placed in front of the vac-
uum chamber to reduce the generation intensity if necessary, and
serves as an additional means of achieving good phase matching
conditions. The standard focal length is 50 cm, but focal lengths
between 30 and 75 cm were also used. After generation, the IR
pump beam is blocked by a thin metallic foil, which is also used
to spectrally alter and temporally compress the XUV pulses, as
described in Section 2.2.1.
Two different delay stages are implemented in the probe arm: one
for the coarse delay with a range of about 600 ps, and a small
piezo-driven translation stage with a range of about 150 fs for
high-resolution scans. Recently, a system was implemented that
actively stabilizes the length of the probe arm with respect to the
pump arm. The probe intensity can be varied by a combination of
a λ/2 plate and a thin polarizer at the Brewster angle. The probe
beam is recombined with the XUV beam using a holey mirror
which simultaneously serves as a hard aperture to spatially filter
out the long trajectories. The recombination mirror is convex so
that the probe beam wave fronts match the wave front of the XUV
for HHG with a focal length of 50 cm. After recombination the two
collinear beams are focused into the sensitive region of an electron
spectrometer using a toroidal mirror.
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Figure 2.15. The Mach-Zehnder interferometer. While the main frac-
tion of the pulse is used for HHG, the smaller part serves as a probe
pulse with variable delay. After recombination both beams are focused
with a toroidal mirror into an electron spectrometer.

Electron Detection

Two different types of electron spectrometer are available in the
attosecond laboratory. In the experiments described in Papers I,
II, III and V the photoelectron spectra were collected using
a magnetic bottle electron spectrometer (MBES). The MBES
records the number of electrons as a function of the time of
flight (TOF) in a drift tube [55]. The XUV and IR pulses are
focused into the interaction region containing a diffuse gas target.
A relatively strong magnetic field (≈1 T) is present and forces
the photoelectrons to spiral around the magnetic field lines,
which are parallel to the spectrometer axis. The magnetic field
strength decreases adiabatically towards the flight tube where
it is kept constant (≈1 mT). The gradient of the magnetic field
lines resembles a bottle neck, hence the name. The adiabatic
change in magnetic field strength causes an increase in the parallel
velocity component, while the total velocity is conserved. This
leads to parallelization of the electron trajectories so that the
TOF depends only on the initial velocity, not on the direction.
All electrons that have an initial velocity component towards the
detector can be detected in this way, resulting in an acceptance
angle of 2π sr with a high energy resolution. The high collection
efficiency is beneficial in experiments with a small signal strength
as the case in multi-photon ionization. The collection efficiency
for electrons below 1 eV kinetic energy can be further enhanced if
a small acceleration potential is applied in the interaction region.
This was used in Paper II, III and V.
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2.2.3 The Experimental Setup in Lund
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Figure 2.17. Velocity map image
of electrons from argon ionized
with an APT generated in argon.
a) Raw image. b) Momentum
distribution after inversion using
the Legendre polynomial
expansion.

The other electron spectrometer used in this work was a veloc-
ity map imaging spectrometer (VMIS). It is an angularly resolved
technique, which not only detects the kinetic energy, as the MBES
does, but also the direction of the photoelectrons. Figure 2.16 a) il-
lustrates the principle of the VMIS. The focused beams are crossed
with a diffuse gas jet and the following ionization of the target gas
results in a 3D distribution of outgoing photoelectrons. The inter-
action takes place in an electrostatic potential applied between the
repeller and extractor electrodes, with Vrep < Vext < 0. The po-
tential is usually on the order of several keV so that the electrons
are strongly accelerated towards a position-sensitive detector con-
sisting of a stack of multi-channel plates, a phosphor screen and
a charge-coupled device camera. The position, where the electron
hits the detector, is directly related to its initial momentum and
origin in the source volume. Velocity focusing can be achieved
by choosing the ratio between the repeller and extractor voltage,
Vrep/Vexc, such that all electrons with the same initial momentum
are focused onto the same position on the detector. The result is
a 2D projection of the initially 3D momentum distribution.
Figure 2.17 a) presents an example of the projection at the detec-
tor. If the original 3D momentum distribution contains a symme-
try axis in the detector plane, it can be reconstructed from the
2D projection by means of the inverse Abel transform [56]. All
ionization experiments included in this thesis fulfill this criterion,
since the radiation electric fields is chosen to be linearly polarized
perpendicular to the detector axis, as depicted in Figure 2.16 a).
Various numerical implementations of the Abel inversion exist [56–
58]. The inversion method used in connection with Paper VI is
based on a Legendre polynomial expansion [59] and briefly de-
scribed below.
The angular distribution in photoionization can be expressed in
terms of Legendre polynomials: P3D =

∑
` ap3DP`(cos θ3D), where

the maximum ` is determined by the order of the ionization pro-
cess. Similarly, the 2D projection can be expressed using a Leg-
endre expansion, i.e.: P2D =

∑
` bp2DP`(cos θ2D). The Abel pro-

jection states the 2D image is fully characterized by the 3D data
set. Organizing the elements ap3D and bp2D in vector form a and
b gives the projection simply by a matrix multiplication b = Ma.
The matrix M can be constructed from projections of single mono-
energetic momentum distributions with angular distributions de-
scribed by a single Legendre polynomial, P`(cos θ), shown in Fig-
ure 2.16 b). The initial 3D angular distribution can then be recon-
structed by the inverse Abel transform: a = M−1b. Figure 2.17 b)
shows a cut through the 3D momentum distribution reconstructed
from Figure 2.17 a). The Legendre based inversion has the advan-
tage that the necessary inversion of the raw data already yields
the physical meaningful asymmetry parameters describing the dif-
ferential cross-sections.
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Attosecond Pulse Generation

t
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Figure 2.18. Principle of SAP
generation, in which only the
continuum part in the cutoff
region is used.

t

Figure 2.19. Principle of the
polarization gate, showing the
ellipticity as function of time for
the resulting electric field (red).

A VMIS was used in the experiments described in Papers VI
and VIII. In the latter, the repeller and extractor voltages were
chosen for momentum imaging of positively charged ions, e.g.,
Vrep > Vext > 0.

2.3 Single Attosecond Pulses

For few-cycle laser pulses with pulse durations as short as 5 fs
the electric field varies significantly from one half-cycle to another.
Since the cutoff energy in HHG scales with the field strength, the
highest photon energies can only be generated during one half-
cycle, leading to a continuous spectrum for the highest energies.
Lower photon energies, on the other hand, are more likely to be
generated during more than one cycle, leading to a harmonic spec-
trum. In consequence, a short APT is generated, from which a
single attosecond pulse (SAP) can be isolated using a bandpass
filter, as illustrated in Figure 2.18. This technique was used to
demonstrate the first single attosecond pulses [10]. With pulse du-
ration as short as a few optical cycles it is crucial to control the
CEP, since the maximum field strength is strongly dependent on
the CEP. In the illustration shown in Figure 2.18, a cosine pulse for
generation (CEP = 0) was assumed. Under the same conditions
a sine pulse would result in two equally strong emission maxima
and hence two pulses after filtering [60].
An alternative approach for the generation of SAPs is to use a
polarization gating [61, 62]. Within the three-step model it is
clear that the generation efficiency is drastically decreased for po-
larization states other than linear polarization, since the returning
electron is likely to miss the parent ion. An ellipticity as small as
ξ = 0.2 will reduce the generation efficiency by an order of mag-
nitude. The polarization gate is realized with a driving field that
has a time dependent ellipticity. These kinds of pulses can be con-
structed by a left circularly polarized pulse followed by a delayed
right circularly polarized pulse, as depicted in Figure 2.19. For a
short duration, where the wings overlap, a window, or gate, of lin-
ear polarization is introduced and effective HHG is possible. This
technique was used in the experiment presented in Paper VI.
The polarization gating technique is less demanding on the dura-
tion of the IR pulses. It has been demonstrated that SAPs can
be generated using pulse durations of up to 28 fs with the slightly
modified method of double optical gating, combining polarization
gating and two color generation [63–65]. Another advantage is the
lower photon energies. Since the usable spectrum is not limited to
the cutoff region it was possible to choose the energy region around
the ionization threshold of helium at 24.6 eV (see Paper VI).
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2.3.1 Characterization of Single Attosecond Pulses
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Figure 2.20. Experimental
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VI.

2.3.1 Characterization of Single Attosecond Pulses

As for RABITT, the characterization of an SAP relies on a cross-
correlation where an atom is ionized by the XUV pulse in the
presence of a probing IR field. In contrast to RABITT, rather high
IR intensities are used and, in general, a perturbative treatment is
not valid.
The principle of the measurement can be understood in terms of
classical mechanics [66]. When an atom is ionized by an XUV
field, the photoelectron energy will depend on the ionization time,
t, as:

Ekin(t) =
1

2
mv2(t) = ~Ω(t)− Ip, (2.13)

where Ω(t) = ∂φ(t) /∂t is the instantaneous frequency of the SAP.
Due to the presence of the IR field the electrons are further accel-
erated, and the final energy, after the IR pulse has passed, is given
by:

Ekin(t→∞) =
[mv(t) + eA(t− τ)]2

2m
, (2.14)

where A(t− τ) is the vector potential of the IR field. The addi-
tional momentum picked up by the electron depends the delay,
τ , between the XUV and IR pulses. For a transform-limited,
very short SAP, A(t− τ) can be assumed to be quasi-static for
the duration of the XUV pulse. Collecting photoelectron spectra
as a function of τ will provide an image of the vector potential
of the IR pulse, since all possible kinetic energies are emitted at
the same time, t. In general, for ionization with a chirped XUV
pulse, electrons leaving the atom with Ekin(t) will experience a
different value of A(t− τ), which will affect the width and the
peak value in the photoelectron spectra. This is the principle of
the attosecond streak camera [67, 68].

A streaking trace obtained during the experimental work de-
scribed in Paper VI is shown in Figure 2.20. It can be interpreted
as a FROG spectrogram [69], and its extension to the attosecond
regime is dubbed FROG-CRAB ( FROG for Complete Reconstruc-
tion of Attosecond Bursts) [70, 71]. The reconstructed pulses from
the spectrogram shown in Figure 2.20 had a duration of 350±20 as.
The bandwidth would support a duration of 180 as, indicating a
chirp on the XUV emission, which is visible in the trace as an
asymmetric electron distribution.
Using FROG-CRAB pulse characterization is, in principle, possi-
ble for both IR and XUV fields simultaneously. In addition, arbi-
trary pulse shapes including APTs can be reconstructed [70, 72].
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Attosecond Pulse Generation
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Figure 2.21. Experimental setup in Milan. The pulses are split using a
holey mirror. SAP are generated by polarization gating and afterwards
are overlapped with a few-cycle IR pulse with a variable delay. Both
beams are focused into the sensitive region of a VMIS. Also attached to
the beamline is XUV spectrometer to monitor the SAP.

2.3.2 Experimental Setup in Milan

Isolated attosecond pulses were used in the experiment described
in Paper VI. The experiment was carried out in collaboration with
a group led by Professor Mauro Nisoli at the Politecnico di Milano
and was the first attosecond experiment I took part in.
As in Lund, the IR pulses are generated by a Ti:Sapphire-based
CPA system with a pulse duration after compression of 25 fs at
a central wavelength of 750 as, but with a lower pulse energy of
0.7 mJ. Few-cycle pulses are then generated by a combination of an
argon-filled hollow-core fiber and a set of ultrabroadband chirped
mirrors. When the laser output is coupled to the fiber, self-phase
modulation will substantially broaden the spectrum, while recom-
pression by the chirped mirrors result in ultra-short pulses with a
pulse duration down to 5 fs [62]. The CEP is stabilized and can
be controlled, which, together with the short pulse duration, is a
key factor in SAP generation.
The compressed pulses are split using a mirror with a hole at the
center. Due to the radial intensity distribution in the hollow-core
fiber the output is broadest on-axis, leading to a pulse duration
with a radial distribution. When the inner and outer parts of the
beam are separated by the holey mirror the outer part will have a
slightly longer pulse duration of 7 fs. The experimental setup used
in Milan is shown in Figure 2.21. The pump pulse passes through
a pair of birefringent plates to achieve the desired time-dependent
ellipticity for the polarization gating. The first plate splits the lin-
early polarized beam into two orthogonally polarized pulses with
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2.3.2 Experimental Setup in Milan

a delay of 5.8 fs. The second plate converts the two pulses into
circularly polarized pulses with opposite helicity [62]. The width
of the linearly polarized window can be fine tuned by changing the
relative orientation of the plate. The altered IR pulses are then
focused into a gas cell containing xenon at a static pressure for
HHG. After generation the fundamental is filtered out by an alu-
minum filter, which also compresses the SAP in time, as described
in Section 2.2.1.
The IR probe pulse is recombined with the XUV pulse after a vari-
able delay. A silica plate is inserted into the probe arm to balance
the dispersion in the two interferometer arms. Both beams are
focused into a gas jet in a VMIS. Additionally, the XUV can be
monitored using an XUV spectrometer.
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Chapter 3

Interaction of Atoms with Light

While the previous chapter covered the generation of attosecond
pulses as a result of exposing atoms to strong fields, this chapter
will concentrate on the interaction of atoms with electromagnetic
radiation at low and moderate field intensities. Two-photon
ionization is central to the studies of electron dynamics presented
in this thesis. The interpretation of some of the experimental
results led to theoretical progress in the description of above-
threshold two-photon ionization. For a better understanding of
this theoretical work, basic concepts, which can be found in many
textbooks, will also be reviewed.
The chapter is organized as follows. Starting with a short
introduction of the theoretical framework, the first section reviews
one-photon excitation processes. This is followed by the descrip-
tion of two-photon ionization in Section 3.2. The influence of
electron correlation is briefly discussed in Section 3.3.

Two main approximations are used to describe the process
of photoexcitation and photoionization. First, the interaction
between the atom and electromagnetic radiation is described
using time-dependent perturbation theory [73, 74], and second,
the reduction of the complex atomic system with N interacting
electrons to one active electron only.

Time-Dependent Perturbation Theory

At low intensities the electromagnetic field can be treated as a
small perturbation, and the atomic processes are usually described
using the field-free atomic states. Under this small perturbation
only a small fraction of the initial state is transferred into higher
lying excited or continuum states.
For times t < t0 the atom is in a field-free initial state i satisfying
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the stationary Schrödinger equation:

H0|ϕk〉 = Ek|ϕk〉, (3.1)

where |ϕk〉 forms a complete set of basis functions including bound
and unbound continuum states. At t = t0 a perturbation Hint(t)
starts to act so that the Hamiltonian becomes time-dependent,
H0 → H(t) = H0 +Hint(t). Between t0 and t the evolution of the
system is given by the time-dependent Schrödinger equation:

i~
d

dt
|Ψ(t)〉 = [H0 +Hint(t)] |Ψ(t)〉. (3.2)

The solution of this first-order differential equation with the initial
condition |Ψ(t0)〉 = |ϕi〉 can be approximated by expanding |Ψ(t)〉
onto field-free states:

|Ψ(t)〉 ≈ |Ψ(0)(t)〉+ |Ψ(1)(t)〉+ |Ψ(2)(t)〉+ . . .

= |ϕi〉e−iEit/~ +
∑

k

c
(1)
k (t) |ϕk〉e−iEkt/~ (3.3)

+
∑

k

c
(2)
k (t) |ϕk〉e−iEkt/~ + . . .

The coefficients of |ϕk〉 corresponding to the first-order perturba-
tion are given by:

c
(1)
k (t) =

1

i~

∫ t

t0

dt′ 〈ϕk|Hint(t
′) |ϕi〉 eiωkit

′
, (3.4)

where ωki = (Ek − Ei) /~ is the Bohr frequency. The second-order
coefficients are:

c
(2)
k (t) = − 1

~2

∑

s

∫ t

t0

dt′ 〈ϕk|Hint(t
′) |ϕs〉eiωkst

′ ×

∫ t′

t0

dt′′ 〈ϕs|Hint(t
′′) |ϕi〉 eiωsit

′′
. (3.5)

The expression for c
(2)
k (t) depends recursively on the first-order

solution. It can be viewed as a sequential process where the
first-order final state serves as an initial state for the second
excitation.

A special case is a harmonic perturbation in the form of Hint(t) =
HΩe

−iΩteεt + cc, where Ω is the frequency of the perturbation.
The expression for Hint(t) carries an exponential ‘turn-on’ in
the form of eεt, where ε is an infinitesimal quantity such that
Hint(t0 → −∞) ≈ 0. The integrals in Equations (3.4) and (3.5)
can then be extended to −∞. At the end of the calculation the
limit ε→ 0+ is adopted.
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Interaction of Atoms with Light

For a harmonic perturbation, the first-order amplitudes c
(1)
k (t) be-

come:

c
(1)
k (t) =

1

i~
〈ϕk|HΩ|ϕi〉

︸ ︷︷ ︸
M

(1)
ki

[
ei(ωki−Ω−iε)t

i (ωki − Ω− iε) +
ei(ωki+Ω−iε)t

i (ωki + Ω− iε)

]
.

(3.6)
The first term has a resonant character for Ω ≈ ωki, which corre-
sponds to the situation of photoabsorption [73]. In this case, the
second term is small and will be neglected in the following. The

matrix element M
(1)
ki , defined in Equation (3.6), is a measure of

the coupling between the states i and k by the perturbation. The
probability of finding the system in a final state f at time t is

given by Pfi(t) = |c(1)
f (t) |2, and the time-independent transition

rate Wfi is defined as:

W
(1)
fi = lim

ε→0+

d

dt
|c(1)
f (t) |2 =

2π

~2
|〈ϕf |HΩ|ϕi〉|2δ(ωfi − Ω) , (3.7)

where the identity limε→0+
2ε

(ωfi−Ω)2+ε2
→ 2πδ(ωfi − Ω) was used.

Equation (3.7) has a strong resonance character expressed by the δ-
function and is known as Fermi’s rule. It can easily be generalized
for a continuum of final states [73].
When the first-order correction vanishes, or if the atom interacts
with two photons, second-order perturbation theory may be used.
In the case of laser-assisted photoionization discussed in Section 3.2
the photons have different energies, and a second perturbation of
the form of Hωe

−iωteεt+cc is added. Including only the absorption

term as before, the coefficients c
(2)
k (t) from Equation (3.5) become:

c
(2)
k (t) =

1

i~2

∑

s

〈ϕk|Hω|ϕs〉〈ϕs|HΩ|ϕi〉
ωi + Ω− ωs + iε

︸ ︷︷ ︸
M

(2)
ki

[
ei(ωki−Ω−ω−i2ε)t

i (ωki − Ω− ω − i2ε)

]
.

(3.8)
The sum is performed over all possible intermediate states, s. The

matrix element for the two-photon transition M
(2)
ki can be defined

in a similar manner as for the first-order amplitudes. Accordingly,
Fermi’s rule for the two-photon transition is given by:

W
(2)
fi =

2π

~4

∣∣∣∣∣
∑

s

〈ϕf |Hω|ϕs〉〈ϕs|HΩ|ϕi〉
ωi + Ω− ωs + iε

∣∣∣∣∣

2

δ(ωfi − Ω− ω) . (3.9)

The energy conservation expressed by the δ-function is only re-
quired between the initial and final states. The intermediate state
s has a short lifetime and is therefore not very well defined in en-
ergy, so no energy conservation is required for the transition to the
intermediate state.
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3.1 Interaction with One Photon

a) b)

Figure 3.1. One-photon
absorption. (a) The electron is
excited into a higher-lying state.
(b) For a photon energy ~Ω > Ip
the electron is released into the
continuum.

Electrons in a Central Field

The perturbative treatment described above was expressed in
rather general terms. For atoms, the eigenfunctions |ϕk〉 are known
exactly only for hydrogenic systems. However, N-electron atoms
can be conveniently described using the central-field approxima-
tion.
Considering only the electrostatic interaction, the Hamiltonian of
an N-electron atom with a nuclear charge of Z is given by:

H0 =

N∑

i=1

(
p2
i

2m
− Ze2

ri

)
+

N∑

i>j=1

e2

|ri − rj |
. (3.10)

The first sum describes the kinetic and potential energy of each
individual electron in the Coulomb field of the nucleus, while the
second sum includes the repulsive electrostatic potential between
the electron pairs [75]. In the central-field model this exact Hamil-
tonian is approximated by a sum of single-electron terms that de-
scribes the independent motion of N electrons in a central potential
V (r):

HCF =

N∑

i=1

(
p2
i

2m
+ V (ri)

)
, (3.11)

where V (r) includes the Coulomb potential of the nucleus as well
as the electron-electron repulsion. The motion of each electron is
now decoupled from the remaining (N-1) electrons. Without loss
of generality, it is sufficient to consider only one active electron of
these independent electrons:

H0 → Hi =
p2
i

2m
+ V (ri) . (3.12)

In the central-field approximation several processes that stem from
a direct electron-electron interaction are neglected. Some examples
of these interactions will be discussed in Section 3.3.

3.1 Interaction with One Photon

The interaction of atoms with electromagnetic radiation at low
intensities is usually described by the dipole approximation [73,
74]. Figure 3.1 shows the transitions considered in this work, where
the electron is either excited into a higher excited state or where
the photon energy is sufficient for ionization.

3.1.1 Dipole Transitions

Using the Coulomb gauge, the electric field that interacts with the
electron is given by:

E(r, t) = EΩε̂e
i(k·r−Ωt), (3.13)
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Interaction of Atoms with Light

where k is the wave vector, Ω the frequency and EΩ =
|EΩ| exp [iφΩ] is the complex amplitude with the intrinsic phase
φΩ. The polarization ε̂ is assumed to be linear along the ẑ-
direction. Within the dipole approximation the corresponding in-
teraction Hamiltonian becomes:

Hint(t) = i
eEΩ

mΩ
ε̂ · pe−iΩteεt. (3.14)

Again an exponential turn-on was added. p is the electron mo-
mentum for the field-free case. Equation (3.14) takes the form of a
harmonically time-dependent perturbation as assumed for Equa-
tion (3.6). Accordingly, the matrix element for the transition am-
plitude to a final state, f , becomes:

M
(1)
fi =

i

~
ωfi
Ω
EΩe〈ϕf |z|ϕi〉, (3.15)

where z was chosen as the quantization axis. Additionally, the
identity [z,H0] = i~

mpz was used.

The matrix element M
(1)
fi defined in Equation (3.15) is propor-

tional to e〈ϕf |z|ϕi〉, which represents the component of a dipole
moment in the ẑ-direction between the initial and the final states.
It is that dipole moment the electric field couples to. Whether a
dipole transition is said to be forbidden or allowed depends on the

matrix element M
(1)
fi . If it is non-vanishing the transition is al-

lowed. Since the electron moves in a spherical potential V (r), |ϕk〉
can be written as a product of a radial part R(r) and an angular
part Y (r̂):

ϕnk`kmk(r) = Rnk`k(r)Ylkmk(r̂) , (3.16)

where n is the principal quantum number, and ` and m are the
angular and magnetic quantum numbers, respectively. Ylm(r̂) are
spherical harmonics, while r̂ denotes a unit vector in the direction
of r. By rewriting z in spherical coordinates as z = r cos(θ) =

(4π/3)1/2 rY10(r̂), the dipole matrix element M
(1)
fi can be sepa-

rated into an angular and a radial part:

M
(1)
fi ∝ 〈ϕf |z|ϕi〉 = (4π/3)1/2〈Ylfmf |Y10|Ylimi〉〈Rnf lf |r|Rnili〉.

(3.17)
The integral product of three spherical harmonics can be evaluated
using 3j symbols [76]:

〈Ylfmf |Y10|Ylimi〉 =

√
3

4π
ˆ̀
i
ˆ̀
f (3.18)

×
(
`f 1 `i
0 0 0

)(
`f 1 `i
−mf 0 mi

)
,

where ˆ̀ =
√

2`+ 1. The 3j symbols are non-vanishing for `f =
`i ± 1 and mf = mi, which are the dipole selection rules for linear
polarization. As a rule of thumb the transition `→ `+1 is usually
favored according to Fano’s propensity rule [77].
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3.1.2 Photoionization

3.1.2 Photoionization

In scenario b) of Figure 3.1 the photon energy is ~Ω > Ip (or
more generally ~Ω + Ei > 0). The atom will be ionized and the
final state of the electron is a continuum state. The wavefunction
of this photoelectron |k〉 is the result of an electron scattering
from the atomic potential and can, in principle, be expressed as a
superposition of spherical harmonic functions [78]:

〈k|r〉 =
∑

LM

cL,Me
iηL(k)YLM (k̂), (3.19)

where k̂ is the unit vector in the direction of k, and k = |k| is
restricted by energy conservation, Ek = ~2k2/2m = ~Ω + Ei.
The coefficients cLM contain angular and radial information about
the state from which the scattering occurred, and ηL(k) are the
scattering-induced phase shifts. A more complete analysis shows
that the final state wave function takes the form of [79]:

〈k|r〉 = (8π)3/2
∑

L,M

iLe−iηL(k)Y ∗LM (k̂)YLM (r̂)Rk,L(r) , (3.20)

where the radial part RkL(r) shows asymptotic behavor [80, 81]:

lim
r→∞

RkL(r) ∝ sin [kr − Lπ/2 + ln(2kr)/k + ηL(k)] . (3.21)

Equations (3.20) and (3.21) can be understood in the following
way. After the ionization far away from the ion when the electron
is detected, it should behave as a plane wave in the k̂-direction.
Since the electron wave packet is formed in the vicinity of the
atomic potential the influence of the potential manifests itself as a
phase shift, e−iηL(k), for each partial wave in the expansion.
Using Equation (3.20), the dipole matrix element from Equa-
tion (3.15) in the case of ionization is given by:

M
(1)
ki = i

e

~
ωki
Ω

(8π)
3/2

EΩ

∑

L=`i±1
M=mi

i−LeiηL(k)YLM (k̂)L̂ˆ̀
i (3.22)

×
(
L 1 `i
0 0 0

)(
L 1 `i
−M 0 mi

)
〈RkL|r|Rnili〉,

where the angular part was evaluated according to Equation (3.18).

The radial part M
(1)
ki is real valued, so the phase of the transition

matrix element for one-photon ionization becomes:

arg
[
M

(1)
ki

]
≈ φΩ + ηL(k) + arg

[
YLM (k̂)

]
− Lπ

2
, (3.23)

for L = `i±1 and M = mi. This includes the phase of the ionizing
field and the scattering phase shift.
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Interaction of Atoms with Light

Figure 3.2. Different phase shifts
accumulated by the photoelectron.

Phase Shifts

The phase shifts of the photoelectron wave function in Equa-
tions (3.20) and (3.21) are a result of the atomic potential. They
are phase shifts compared to a free electron wave function with
no potential present. As illustrated in Figure 3.2, the total accu-
mulated phase has different origins: the factor −Lπ/2 arises due
to the centrifugal potential barrier. The phase shifts ηL(k) are
the scattering phases, and are given as ηL(k) = σL(k) + δL(k),
where σL(k) are the Coulomb phases due to the Coulomb poten-
tial. These phases can be expressed analytically with the aid of the
complex gamma function. The asymptotic phase shifts, δL(k), de-
pend on the deviation of the short-range potential from the pure
Coulombic case [80]. In the central-field model this deviation is
due to the (N-1) electrons that modify the potential seen by the
electron. δL(k) are a very important quantity, since they carry
information about the physical effect of the inner potential into
the outer asymptotic region [80], and thus give direct insight into
the atom.

Time Delay in Photoemission

In the context of scattering problems, Eugene Wigner introduced
the concept of time delay [82, 83]. This is defined as the extra
time the scattered particle spends in the scattering region, i.e., the
potential, compared to a free particle subject to the same condi-
tions [84]. The physical meaning of the time delay can be under-
stood in an intuitive way: a positive time indicates a delay while a
negative time difference can be seen as a acceleration. The Wigner
time delay is defined as τw = 2~ dηL/dE, where ηL is exactly the
scattering phase of the L-partial wave introduced above. As pho-
toionization can be seen as half a scattering problem (the electron
leaves the potential but it does not enter it), a corresponding time
delay for photoemission can be defined as half the Wigner time
delay:

τ = ~
dηL
dE

. (3.24)

The potential introduces dispersion into the motion of the elec-
tron, which speeds up or slows down compared to the motion if it
were in a field-free region. The derivative of the scattering phase,
dηL/dE, is a measure of this dispersion. Electrons ionized from
different shells of an atom ‘see’ a different potential and the time
delays are expected to be different for photoionization of different
shells [85].
In photoionization the scattering phases appear as the phase of

the dipole matrix element M
(1)
ki . However, in conventional photo-

electron spectroscopy the possibility of accessing the phase, and
therefore the timing of an photoelectron wave packet, is limited.
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z
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x

Figure 3.3. Photoionization
coordinate system used for linear
polarized light.

One option is to use angularly resolved measurements (see below),
but they only provide a measure of the phase difference between
partial waves in the outgoing wave packet. Papers II, III and IV
describe how the phase properties of a photoelectron can be ob-
tained using an extension of the RABITT method to measure the
difference in delay between electrons ionized from the 3s and 3p
subshells in argon.
Note that the photoemission time delay is given as τ = dηL/dE
only for one dominant ionization channel into an L-like final state.
For more than one ionization channel with comparable amplitudes,
the resulting time delay is given by a mixture of the different ηL
weighted by the cross-section.

3.1.3 Total and Partial Cross-Sections

The absorption cross-section σfi for process a) in Figure 3.1 is
defined as the rate of absorption of energy from a radiation field
divided by its intensity, I(ωfi) [74]:

σfi =
~ωfiW (1)

fi

I(ωfi)
, (3.25)

where W
(1)
fi is the time-independent transition rate for absorp-

tion introduced in Equation (3.7). Taking the expression for the
transition amplitude derived in Equation (3.15), the absorption
cross-section can be rewritten as:

σfi = 4π2αωfi|〈ϕf |z|ϕi〉|2δ(ωfi − Ω) , (3.26)

where several constants are merged into the fine-structure constant
α = e2/4πε0~c.
From Equation (3.26) it is easy to define the total cross-section
for photoionization by integrating over all final states, k, of the
ejected electron:

σtot =

∫
dk σki. (3.27)

The integration element dk can be written dk = k2dkdΘ, where
dΘ is the differential solid angle in the direction of k̂. The assumed
geometry is shown in Figure 3.3. Using energy conservation, the
final energy of the photoelectron is given by Ek = ~2k2/2m, and
the total ionization cross-section becomes:

σtot =

∫
dΘ

∫
dEk

mk

~2
σki =

4π2αmkΩ

~

∫
dΘ |〈k|z|ϕi〉|2,

(3.28)
where the integration over Ek was performed with the help of the
δ-function. For angularly resolved measurements it is convenient

32



Interaction of Atoms with Light

to define the differential cross-section for electron ejection within
the solid angle dΘ:

dσ

dΘ
=

4π2αmkΩ

~
|〈k|z|ϕi〉|2. (3.29)

The evaluation of |〈k|z|ϕi〉|2 yields the general expression for the
angular distribution of photoelectrons:

dσ

dΘ
=
σtot
4π

(1 + βP2(cos θ)) , (3.30)

where P2(cos θ) is the second-order Legendre polynomial, and β
is the asymmetry parameter. The angle θ is measured with re-
spect to the quantization axis, as indicated in Figure 3.3. For
multi-photon ionization higher-order Legendre polynomials must
be included, where the highest order is connected to the order of
the multi-photon process [59]. The angular distribution in pho-
toionization will further discussed for some selected examples in
section 4.2.
The asymmetry parameter depends on the angular momentum of
the initial and final states as well as on the radial part of 〈k|z|ϕi〉.
In general, the angular distribution includes an interference pat-
tern between partial waves with different angular momenta, in-
tensities and phase shifts. This leads to constructive lobes or de-
structive nodes in the angular distribution, with positions that are
very sensitive to the relative phase (η`i+1 − η`i−1) between the
interfering partial waves [78]. In Papers VI and VII the angular
distribution was used to distinguish between different pathways
into the continuum.
The ultimate goal of photoionization studies is to perform a ‘com-
plete experiment’ enabling the whole photoionization dynamics to
be captured [78]. Complete experiments require the determina-
tion of the magnitudes of the radial dipole matrix element for
the partial wave of each contributing photoelectron and the phase
differences between them. Angular-resolved measurements are es-
sential for complete experiments since the measured β-parameter
depends strongly on the amplitudes and their scattering phases.
However, only the difference between partial waves in the outgoing
wave packet are available in conventional angular-resolved mea-
surement (see, for example Reference [86]). The interferometric
pump-probe experiment presented in Papers VI and VII provide
additional information for the characterization of the photoioniza-
tion processes.

3.2 Interaction with Two Photons

All experiments presented in this thesis rely on two-color two-
photon ionization, where one color is XUV and the other one is IR.
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3.2 Interaction with Two Photons

Figure 3.4 displays the most interesting ionization pathways. First,
the electron absorbs an XUV photon with the energy E = ~Ω and
then in the second step the electron interacts with an additional
IR photon E = ~ω. The intermediate state can either be below a)
or already above the ionization threshold b).
The dipole matrix element for two-photon ionization can be cal-
culated in a similar manner as for one photon. Using second-order
perturbation theory the two-photon ionization dipole matrix ele-
ment can be expressed as:

M
(2)
ki =

−i
~2

Eω
ω

EΩ

Ω
e2 lim

ε→0+

∑

s

∫
ωksωsi

〈k|z|ϕs〉〈ϕs|z|ϕi〉
ωi + Ω− ωs + iε

. (3.31)

As before, the incident light is linearly polarized in the ẑ-direction,
which is also chosen as the quantization axis. The initial state is
denoted ϕi with the energy Ei and the final continuum state has
the asymptotic momentum k. The sum runs over all possible in-
termediate states, s, which can either be discrete bound states or
in the continuum. The complex amplitudes of the laser and the
XUV fields are denoted Eω and EΩ, respectively.
As for one-photon ionization, the initial, intermediate and final
states can be factorized into a radial and an angular part. Us-
ing again a partial wave expansion for the continuum state, the
transition matrix element takes the form:

M
(2)
ki =

−i
~2

Eω
ω

EΩ

Ω
e2(8π)3/2 (3.32)

×
∑

L=λ±1,λ=li±1
M=µ=mi

ωksωsii
−LeiηL(k)YLM (k̂) L̂λ̂2 ˆ̀

i

×
(
L 1 λ
0 0 0

)(
L 1 λ

−M 0 µ

)

×
(
λ 1 li
0 0 0

)(
λ 1 li
−µ 0 mi

)
T

(2)
Lλ (k) .

The sum was reduced by taking the dipole selection rules into
account: L = λ± 1, λ = `i ± 1 and M = µ = mi where {λ, µ} are
the orbital and the magnetic quantum numbers of the intermediate
state. The radial part is given by:

T
(2)
Lλ =

∑

s,Es<0

〈RkL|r|Rλµ〉〈Rλµ|r|Rni`i〉
ωi + Ω− ωs

(3.33)

+ lim
ε→0+

∫ +∞

0

dEκ
〈RkL|r|Rκλ〉〈Rκλ|r|Rni`i〉

ωi + Ω− ωκ + iε
.

The discrete and the continuous parts are now separated. For
the situation illustrated in Figure 3.4 a) the intermediate state
is below the ionization threshold. In the presence of a resonance
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a) b)

abs em

Figure 3.4. Two-photon
ionization. a) The intermediate
state is still a bound state. b) The
XUV photon energy is already
sufficient to ionize so that the
intermediate state is in the
continuum. Two possible
continuum-continuum transitions
are shown: absorption and
emission of one IR photon.

state |ϕr〉 where Ω ≈ ωri the denominator for the term s = r in

the first sum becomes so small so that the expression for T
(2)
Lλ can

be approximated by the dominant term. When the photon energy
is scanned across such a resonance it will cause a sign change of

T
(2)
Lλ , i.e., a π phase jump of the complex amplitude.1 The phase

behavior was studied as a function of detuning δ = (Ω−ωri) from
the 1s3p 1P1 state in helium, and is described in Paper V. The
measurement method is presented in Section 4.1.

Asymptotic Approximation

For ~Ω > Ip the intermediate state will be a continuum state.
The momentum κ in Equation (3.33), which corresponds to the
absorption of an XUV photon, is ~2κ2/2m = Ei + ~Ω. As a con-
sequence, the denominator in the second line in Equation (3.33)
approaches zero, and the radial part becomes a complex quantity.
This is in contrast to one-photon ionization, where the radial part
is real. To obtain an estimate of the phase of the radial part of
above-threshold two-photon ionization an asymptotic approxima-
tion was developed (Paper II), the main steps of which will be
described below. A more detailed and improved derivation can be
found in Paper IV.
The radial part can be rewritten as:

T
(2)
Lλ = 〈RkL|r|ρκλ〉, (3.34)

introducing the perturbed wavefunction,

|ρκλ〉 = lim
ε→0+

∫∑

s

|Rκλ〉〈Rκλ|r|Rni`i〉
ωi + Ω− ωs + iε

. (3.35)

This perturbed wave function is in its nature an outgoing wave
and represents the electron wave packet after the first ionization
step. It can be shown that in the asymptotic limit as r → ∞ it
takes the form [87, 88]:

ρκλ(r) ≈ −πNκ
r

exp(i[κr +
ln(2κr)

κ
+ ηλ(κ)− λπ

2
])〈Rκλ|r|Rni`i〉,

(3.36)
where Nκ is a normalization constant. The integral in Equa-
tion (3.34) can then be solved using the asymptotic form of ρκλ(r)
and the asymptotic form of the final state introduced in Equa-

tion (3.21). The phase of the complex quantity T
(2)
Lλ is then given

by:

arg
[
T

(2)
Lλ

]
≈ π

2
(L− λ− 1) + ηλ(κ)− ηL(k) + φcc(k, κ) . (3.37)

1At resonance, i.e., when Ω = ωri, the first term in Equation (3.33) goes
to infinity. To properly describe such a situation the XUV bandwidth must
be included.
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The radial part contains the difference between the scatter-
ing phases of the two continuum states involved plus an addi-
tional phase factor φcc(k, κ). This phase is associated with the
continuum-continuum radiative transition resulting from the addi-
tional absorption of the IR photon in the presence of the Coulomb
potential. The continuum-continuum phase φcc(k, κ) does not de-
pend on the details of the atomic potential, only on the momenta
{k, κ} of the continuum states. In its simplest form it is given
by [88]:

φcc(k, κ) = arg

[
(2κ)i/κ

(2k)i/k
Γ [2 + i(1/κ− 1/k)]

(κ− k)i(1/κ−1/k)

]
. (3.38)

The expression for φcc(k, κ) is analytical and can be calculated.
Since it does not depend on the atomic potential it is universal
and can be applied, in principle, to arbitrary systems.
Within the asymptotic approximation the phase of the complete
matrix element from Equation (3.32) becomes:

arg
[
M

(2)
ki

]
≈ φΩ + φω + ηλ(κ) + arg

[
YLM (k̂)

]
− λπ

2
+ φcc(k, κ) .

(3.39)
The main outcome of the asymptotic treatment is that the scat-
tering phase of the final state cancels out, and except for the ad-
ditional continuum-continuum phase the expression recovers the
phase of one-photon ionization in Equation (3.23).
The derivation for the emission of an IR photon instead of absorp-
tion (see Figure 3.4) is similar, but ω is replaced by −ω. In Pa-
pers II and III the asymptotic approximation was used to extract
the one-photon ionization phase from the measured two-photon
phase in order to determine the time delay of photoelectrons in
photoemission (see Section 4.1).

3.3 Electron Correlations

The physics of photoionization presented so far utilizes the
central-field approximation, which leads to a description of N
independent electrons. In some cases, the collective response of
the electrons must be considered, for example, to explain processes
such as one-photon double ionization, shake-up processes, Auger
decay or post-collision interactions, where the electrons may
directly interact with each other.
A good starting point to include electron-electron interactions
is the Hartee-Fock (HF) method, where the effective potential
and the electronic eigenstates can be calculated with good
accuracy [89]. In the HF method the electron-electron Coulomb
interaction is incorporated into a mean-field, while taking into
account the anti-symmetry of the electronic wave function. This
leads to a correlation of the electron position for electrons having
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Figure 3.5. Single
photoionization. a) Single-particle
ionization. b) Photoabsorption by
a virtually doubly-excited state.
c) Intra-/Interchannel coupling
following photoabsorption.
From [75].
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Figure 3.6. Partial cross-section
for the argon 3s→ εp transition.
Experimental data from [93].

parallel spin since they cannot have the same position (Pauli
principle). The HF method already accounts for this part of
the electron-electron interaction while still being an independent
particle model [90]. All interactions beyond HF are usually
referred to as electron correlations.
The interesting quantity in photoionization is the matrix element
Mfi. Electron correlations can either be included directly in the
initial and final wave functions or indirectly as an additional field
in the operator z. Within the framework of configuration inter-
action (CI) the real N-electron wavefunctions Ψ, which include
electron correlation, are expanded in terms of a complete set of
uncorrelated basis functions, Ψ(0), where the basis functions differ
in the occupation of their orbitals, and hence in their electron
configuration [74]. It is possible to distinguish between initial
state configuration interaction (ISCI) and final state configuration
interaction (FSCI) [89].
Instead of incorporating electron correlations into the wave
functions, one can describe the influence of electron correlations
as an induced field which adds to the external field during
photoionization, so that z → Z. This approach is the basis
for the random-phase approximation with exchange (RPAE)
method, which was used in Paper III. The basic idea of RPAE
is that the amplitude of the photoionization process can be
expressed as the sum of two terms: one that describes the direct
photoionization and one that describes the ejection of an electron
as a consequence of the change in the N-electron field due to
the external perturbation. Physically, one can imagine that
the electron cloud is deformed and polarized by the external
field, so that the actual field seen by the ionized electron differs
from the pure external field [91]. The application of RPAE to
photoionization shows very good agreement for cross-sections
of outer-shell ionization in rare-gas atoms [89]. A detailed list
of theoretical methods including correlation effects is given, for
example, in References [89, 92].

Figure 3.5 shows diagrams2 of important electron-electron inter-
actions in photoionization as included in RPAE. Single-particle
photoionization (n → k) is shown in a). The symbols n and
k characterize the active electron. The wavy line represents the
dipole photon interaction, and the dashed lines b) and c) denote
the Coulomb interaction. The index s denotes all possible discrete
and continuous orbitals. The diagrams are read from the bottom
to the top with respect to the time axis t. In b) the atom in the
ground state has two virtually excited electrons from the n shell.
Upon absorbing a photon, one of the electrons is de-excited into

2A detailed description of Feynman diagrams for photoionization can be
found, for example, in Reference [91].
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its original state while the other is ionized [75]. In the CI picture
this corresponds to ISCI. In diagram c) an electron is excited, but
during its escape it interacts with another electron so that the sec-
ond electron is ionized and the original electron is de-excited into
its ground state. This process can be classified as FSCI, since the
interaction takes place after photoabsorption. When the electron
is from the same subshell, n, this is called intrachannel coupling,
and if the electron is from a different subshell, m, it is called inter-
channel coupling. While intrachannel coupling is included in the
HF model, interchannel coupling is treated as a correlation.
Interchannel coupling is of particular importance for s subshell
ionization [75]. Figure 3.6 compares experimental data and the-
oretical calculations of the partial cross-section for the 3s → εp
transition in argon. The experimental data show a distinct min-
imum between 40 and 45 eV. The results of HF calculations do
not reproduce this minimum, while RPAE, which includes inter-
channel coupling, reproduces the strong destructive interference
between pathways a) and c) in Figure 3.6 [75]. The phase varia-
tion close to the cross-section minimum was investigated in Paper
III.
Further electron correlations beyond RPAE include relaxation pro-
cesses, i.e., FSCI in the CI picture, as shake-up or shake-off pro-
cesses or Auger decay. The independent particle approximation
implies that the orbitals of the passive electrons do not change
under photoionization; this is the so-called frozen core approxima-
tion. However, the ejection of one electron through photoionization
will alter the Coulomb field seen by the remaining electrons. In
the shake-up model this unrelaxed wavefunction is projected onto
the relaxed ionic states with the result that one of the remaining
electrons may be shaken into a higher unoccupied orbital. These
states can either be bound (shake-up) or free (shake-off), and the
latter will lead to double ionization.3 Shake-up transitions are
governed by monopole selection rules ∆` = ∆m = 0. It should
be noted that the shake-up model explains the existence of shake-
up processes in helium qualitatively but not quantitatively. Other
correlations in the form of CI have to be taken into account to
fully describe shake-up in helium [89].
The theoretical studies presented in Paper VII on shake-up pro-
cesses in helium do not reflect this complexity. However, this does
not compromise the study presented in Paper VII, as discussed in
Section 4.2.

3Shake-up excitation can also lead to double ionization if the final state is
an autoionizing state.
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Chapter 4

Attosecond Interferometry

When an attosecond pulse interacts with an atom or molecule it
excites a broad electronic wave packet. This wave packet can either
be bound, free or a mixture of both. Characterization of the EWP
and following its evolution give valuable insight into the dynam-
ics of the excitation process, as well as information on the system
it originated from. The phase is of particular interest, not only
because it is necessary for complete reconstruction of the EWP,
but because it carries information about the timing of the excita-
tion process, as introduced in Chapter 3. Interferometry is a very
powerful tool since small changes in the phase or the wavelength
can be detected. This allows for the determination of phase differ-
ences of EWPs that correspond to delays on the order of ∼ 100 as.
By including phase-sensitive techniques in classical time-resolved
pump-probe arrangements, not only the temporal resolution, which
is no longer given by the pulse duration, τ , but also the spectral
resolution (usually given by the Fourier limit ∝ 1/τ) can be im-
proved significantly.
This chapter is organized as follows. In the first section some
examples of interferometry using attosecond pulse trains are pre-
sented, followed by the description of an interferometric pump-
probe method using single attosecond pulses in the Section 4.2. In
Section 4.3 the concept of attosecond stark spectroscopy is intro-
duced and the first experimental results are presented.

4.1 Interferometry Using Attosecond Pulse
Trains

This section gives examples of interferometric measurements using
the phase-locked harmonic radiation from attosecond pulse trains
in combination with the fundamental laser field.
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3s

3p

a)

b)

3s 3p

q-1 q+1

kp ks kd

Figure 4.1. Photoionization of
the valence shell in argon. a)
Possible `-channels. b) Principle
of the measurement.

4.1.1 Time Delay Measurements

When an atom interacts with an attosecond pulse whose energy
is higher than the ionization potential of the atom a coherent free
EWP is created. When the photoelectron leaves the atom its phase
will depend on the atomic potential it has to overcome and the ki-
netic energy of the final state.
The general concept of group delay of a wave packet in a disper-
sive medium can be applied to the outgoing EWP in the atomic
potential, and a group delay can be defined as the energy deriva-
tive of the phase of the complex matrix element for the bound-free
transition. The group delay of the photoelectron then provides a
measure of the relative timing of the spectral components in the
photoemission process.
Papers II and III describe measurements of the time delay of
photoemission of electrons from the valence shell in argon using
an interferometric method to access the phase difference between
spectral components of the EWP. It is similar to the technique
used to determine the spectral phase of the attosecond pulses (see
Section 2.2.2), but the emphasis is on the atomic contribution to
the measured phases.
Whether or not the group delay in photoemission can be reduced
to the Wigner time delay introduced in Section 3.1.2 depends on
the number of ionization channels open for a given transition and
on the strength of possible electron correlations. For the sake of
simplicity only non-interacting electrons are considered here. The
validity of this assumption will be discussed at the end of this sec-
tion. Figure 4.1 a) shows the ionization channels for the 3s2 and
3p6 shells in argon given by the dipole selection rules. There is
only one open channel for s shell ionization but in principle two
different final states for the photoionization from the p shell. The
transition `→ `+ 1 is usually favored, but under some conditions
the probability of this transition can be greatly reduced, for ex-
ample, due to a Cooper minimum. This is the case for argon at a
photon energy of about 48 eV, so that the relative strength of the
` → ` − 1 transition increases. For photon energies below 48 eV,
which were used in these experiments, photoionization from the p
shell in argon was approximated by the 3p→ kd channel.
The basic idea behind the delay measurements is shown in Fig-
ure 4.1 b). The argon atoms are ionized using the phase-locked
high-order harmonics from a train of attosecond pulses. The cen-
tral frequency of the harmonic comb is well above the 3s ionization
threshold, so two independent EWPs are created simultaneously.
The EWPs are then probed with a small fraction of the funda-
mental laser field with a frequency ω. Due to the presence of the
IR field, two-photon transitions are introduced where the electron
either picks up or emits an additional photon, which leads to the
formation of sideband peaks, Sq. The two different quantum paths
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Figure 4.2. Interferometric measurement of EWPs liberated from the
3s- and 3p-shell in argon. The interference signal at even harmonic
orders oscillates as a function of XUV-IR delay.

to the same final state will interfere, and changing the delay be-
tween the attosecond pulse train and the probe field will cause
modulation of the sideband signal.
Figure 4.2 presents the interferometric measurements for the 3s
and 3p photoelectrons. A 0.2 µm thin chromium filter was used to
select a 10 eV-broad spectral window corresponding to harmonics
21 to 27 at a central energy of 37 eV. The filter was necessary to
separate the two EWPs in energy.

The RABITT Equation (2.8) describing the sideband oscilla-
tions can be derived using the asymptotic approximation for two-
photon ionization from Section 3.2, within which the phase of the

complex matrix elements M
(2)
± (k), where the electron picks up (+)

or emits (−) an additional photon (see Figure 4.1 b)) is given by:

arg
[
M

(2)
± (k)

]
≈ φq∓1∓φω +ηλ(κ±) + arg

[
YLM (k̂)

]
+φcc(k, κ±) .

(4.1)
Here, φq∓1 is the spectral phase of the harmonic q ∓ 1 and φω is
the relative phase of the IR field with respect to the attosecond
pulse train. The phase shifts ηλ(κ±) are the one-photon scattering
phases of the intermediate states, κ±, with the angular momentum
λ and φcc(k, κ±) are the continuum-continuum phases due to the
second transition from the intermediate states to the final state,
k. The interference between the two pathways will be governed by
the phase difference between them:

Sq(τ) ∝ |M (2)
+ +M

(2)
− |2 = |M (2)

+ |2 + |M (2)
− |2

+2|M (2)
+ ||M (2)

− | cos(2ω (τ − τa − τi)) , (4.2)

where

τa =
φq+1 − φq−1

2ω
(4.3)

41



4.1.1 Time Delay Measurements

Kinetic energy (eV)
5 10 15 20 25 30

0

100

-200

-100D
el

ay
 (

as
)

0

100

-200

-100D
el

ay
 (

as
)

Figure 4.3. Computed delays
associated with the two dominant
ionization channels. The blue
dashed lines are the single-photon
Wigner time delays. The green
lines represent the estimated
measurement delay τcc. The
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Figure 4.4. Comparison between
experimental results (red 2009,
black 2011) and theoretical
calculations (blue HF, gray
RPAE).

is the group delay of the attosecond pulse. The ionization delay,
τi, caused by the two-photon transition contains two terms:

τi =
ηλ(κ−)− ηλ(κ+)

2ω︸ ︷︷ ︸
τw

+
φcc(k, κ−)− φcc(k, κ+)

2ω︸ ︷︷ ︸
τcc

. (4.4)

The first term, denoted τw, is a finite difference approximation of
the Wigner time delay, and reflects the properties of the EWP
from single-photon ionization into the angular momentum channel
λ. The second contribution, τcc, stems from the continuum-
continuum transition due to the IR field. In this process, the IR
field acts as a probe for single-photon ionization, changing the
final state energy, causing the two paths to interfere. The delay,
τcc, can then be interpreted as a measurement-induced delay,
which is independent of the characteristics of the initial atomic
state.
Figure 4.3 presents the delays of the two dominant ionization
channels in argon as a function of kinetic energy. The Wigner
time delay was assumed to be the derivative of the scattering
phase in an independent-electron model [81]. The measurement
delay τcc was calculated with a photon energy of ~ω = 1.55 eV,
and is the same for the two channels. The Wigner time delay has
an intuitive interpretation: i.e., low-kinetic-energy electrons take
longer to escape the potential for a given shell. Also, ionizing
electrons into a channel with a higher angular momentum λ
takes a longer time because of the centrifugal potential. The
measurement delay shows the opposite behavior, leading to an
apparently faster escape of the electron compared to field-free
emission.

The delay encoded in the sidebands is the sum of τa and τi. These
two contributions are difficult to separate. However, the simul-
taneous measurements of the two EWPs can be used to cancel
the influence of the attosecond group delay, τa, and to determine
τi(3s) − τi(3p) at the same photon energy. The results of the dif-
ference measurement are plotted in Figure 4.4. The red circles
indicate the results from a first series of measurements carried out
in 2009. They agree well with the computed difference in delay
within the independent particle approximation. A second series of
measurements performed in 2011 with an improved experimental
setup reproduced the lower energy data points, but show a different
behavior for the sideband S26 (shown in black in Figure 4.4). At
about the same time, the theoretical model was also improved. In
cooperation with Anatoli Kheifets, the Wigner time delay was re-
placed by a more general time delay including electron correlations
(see Section 3.3). The corresponding RPAE calculations show a
rapid change in the delay in the energy region 40-45 eV. This is
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Figure 4.5. Illustration of the
phase behavior within
perturbation theory for a R2PI as
function of detuning from the
resonance δ. The dashed line
represents the expected variation
including the XUV bandwidth.
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Figure 4.6. Principle of the phase
measurement in a R2PI.

due to a phase variation of the matrix element for the 3s ioniza-
tion close to a Cooper-like minimum in the partial cross-section
due to interchannel coupling. The discrepancy in the experimen-
tal results for S26 could be caused by this large variation in time
delay and the uncertainty of the energy calibration which is self-
referencing. Even a small change in the harmonic photon energy
due to a shift of the fundamental spectrum together with different
generation conditions would lead to a considerable change in the
measured delay. This is shown by the error bars in photon energy.
Further details concerning the RPAE calculations can be found in
Paper III.

4.1.2 Resonant Two-Photon Ionization

If an electron is excited by two photons with a combined photon
energy that is sufficient for ionization, this is referred to as two-
photon ionization, as discussed in Section 3.2. In more general
terms, this is often expressed as two-color two-photon ionization if
the two photons have different energies.
The probability of a two-photon transition is strongly enhanced if
the energy of one photon is close to an intermediate state, r. The
transition amplitude is then governed by the resonant term and the
matrix element from Equation (3.31), and can be approximated by:

M
(2)
ki ∝ EωEΩ

〈k|z|ϕr〉〈ϕr|z|ϕi〉
Ei − Er + ~Ω

, (4.5)

where Er is the energy of the resonant state and ~Ω the photon
energy. When the photon energy is scanned across the resonance,

M
(2)
ki changes sign, which manifests itself as a π phase jump of the

matrix element. The phase behavior as a function of detuning from

the resonance δ is shown in Figure 4.5. The phase of M
(2)
ki is there-

fore very sensitive to the photon energy if it is close to a resonant
transition. In the presence of a resonant state, this two-photon
ionization is usually referred to as resonant two-photon ionization
(R2PI).
Paper V describes a study of the resonant phase behavior of the
R2PI of helium via the 1s3p 1P1 state. The basic principle is il-
lustrated in Figure 4.6. The 15th harmonic (H15), with a photon
energy of 23.25 eV generated from a fundamental IR field with
a wavelength of 800 nm (corresponding to ~ω = 1.55 eV photon
energy), was chosen as the first color. The energy of H15 is close
to that of resonant transition 1s2 → 1s3p at 23.087 eV. With an
ionization potential of 24.59 eV the 3p state can be ionized with a
single IR photon, which was chosen as the second color.
Changing the fundamental wavelength using the Dazzler (see Sec-
tion 2.2.3), and therefore the photon energy of H15, allows the
detuning between the photon energy and the resonant transition
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Figure 4.7. Harmonic phase
difference for different detunings.
a) While S16 varies with δ are the
higher-order sidebands unaffected
and only exhibit a linear chirp
indicated with the green line. b)
The same measurements corrected
for a linear chirp fit.

δ to be scanned. The change in phase is measured as a function
of δ by interference with a second pathway to the same final state,
which is unaffected by the detuning. Figure 4.6 shows that the
direct ionization with H17 together with the stimulated emission
of one IR photon serves as such a reference. When the funda-
mental wavelength is changed, all the photon energies will change,
and thus the interference signal is independent of the fundamen-
tal wavelength. The final state can be identified as sideband S16

in a conventional RABITT measurement, where the intensity of
the sideband signal will be modulated as function of the delay τ
between the harmonic fields and the IR field:

S16(τ) ∝ 1 + cos
(
2ωτ −∆φ16 − (φate − φata )

)
. (4.6)

The interesting term in the equation above is the atomic phase
term, φata , which contains the contribution from the resonant tran-
sition (a indicates the pathway involving the absorption of one IR
photon). The atomic phase contribution from the second path-
way, φate , can be identified from Equation (3.39), but only causes
a small constant phase offset compared to the phase variation due
to the presence of the resonance. The phase ∆φ16 = φ17 − φ15

gives the group delay of the attosecond pulses, which must to be
determined independently in order to extract φata . As discussed in
Section 2.1.1, the variation in the spectral phase of an attosecond
pulse can assumed to be linear, and can therefore be measured
using higher-order sidebands excluding S16. Figure 4.7 shows the
phases extracted from RABITT measurements for different degrees
of detuning and the way in which the phase of S16 is corrected for
the attosecond group delay.
To compare the measurements made with different amounts of de-
tuning, δ, the absolute delay between the XUV and the IR pulses
must be known. The phase of S16 was therefore referenced to the
respective phase of S18, which was unaffected by the detuning and
could be used as an absolute clock.
Measurements were performed, in which δ was either changed by
tuning the fundamental wavelength, or by tuning the position
of the 1s3p state using the intensity-dependent AC-Stark effect.
Combining the two measurements allowed the intensity depen-
dence of the 1s2 → 1s3p transition energy to be determined. Fur-
ther details can be found in Paper V.

4.2 Interferometry using Single Attosecond
Pulses

When an atom interacts with an attosecond pulse whose photon
energy is not sufficient for ionization it may create a broad bound
EWP instead. This EWP can be studied after further ionization
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Figure 4.8. a) Principle of the
pump-probe interferometer. b)
Possible ionization channels in the
interferometer.
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Figure 4.9. Inverted VMIS image
taken during the experimental
work for Paper VI. Interferences
are visible due to the two
pathways. Also indicated is the
cutout taken for the
interferogram.

using interferometry, as introduced in Paper VI and further ex-
plored in Paper VII.
The basic idea of the measurements is shown in Figure 4.8 a). He-
lium atoms are excited using a broadband SAP with a photon en-
ergy centered around the ionization threshold at 24.6 eV. A broad
EWP is created that includes several bound states as well as con-
tinuum states. After initial excitation the EWP evolves freely in
time. The excited helium atoms are further ionized, at a variable
delay, with an IR pulse locked in phase to the SAP, and the re-
sulting electron momentum distribution is recorded using a VMIS.
For long delays, when the XUV and the IR pulses are clearly sep-
arated in time, the momentum distribution exhibits interference
due to the two distinct ionization pathways. One of the pathways
stems from ionization with the SAP (the direct pathway), while
the other is the result of delayed ionization with the IR pulse (the
indirect pathway). Figure 4.9 presents a momentum distribution
obtained during the experimental work presented in Paper VI.

In contrast to Papers VI and VII, where traditionally notation
in quantum beat spectroscopy was used, the following analysis of
the interferences will carried out within the framework introduced
in Chapter 3. Figure 4.8 b) depicts the ionization channels in the
interferometer leading to a final state with energy E = ~2k2/2m.
For the direct pathway the only possible ionization channel is the
1s→ kp channel, and the corresponding dipole matrix element is:

Mdir(k) ∝ EΩ eiη1(k)T (1)(k)Y10(θ, ϕ) = a1(k)Y10(θ, ϕ) , (4.7)

where T (1)(k) = 〈Rkp|r|R1s〉 is the radial part of the dipole ma-
trix element. EΩ is the complex amplitude of the XUV pulse
corresponding to a photon energy ~Ω + E1s = E and η1(k) is the
scattering phase for ` = 1. In contrast to the previous section, the
angular dependence now is explicitly singled out. The coefficient
a1(k) is complex with a phase given by arg[a1(k)] = φΩ + η1(k).
(It is assumed throughout that m = 0.) The indirect pathway
consists of two ionization channels 1s → np → k{sd}, where n is
the principal quantum number for the intermediate state with the
binding energy En. The dipole matrix element in this case is given
by:

Mind(k) ∝ EΩ′Eω
∑

`=0,2

eiη (̀k)T (2)(k)Y`0(θ, ϕ)

=
∑

`=0,2

a`(k)Y`0(θ, ϕ) , (4.8)

where T (2)(k) is the corresponding radial part. The XUV photon
energy is given by ~Ω′ + E1s = En. The complex amplitude, Eω,
of the IR field corresponds to a photon energy of ~ω + En = E.
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The phase of Eω is given by the relative phase of the IR pulse with
respect to the SAP. The phase of the complex coefficients a`(k) is
arg[a`(k)] = φΩ′ + φω + η`(k).
The resulting angle-dependent intensity for a given energy be-
comes:

I ∝ |Mdir +Mind|2 = |
2∑

`=0

a`(k) · Y`0(θ, ϕ) |2

= |a1|2|Y10(θ, ϕ) |2 + |a0|2|Y00(θ, ϕ) |2 + |a2|2|Y20(θ, ϕ) |2
+2|a1||a0| cos(arg[a1a

∗
0])Y10(θ, ϕ)Y ∗00(θ, ϕ)

+2|a1||a2| cos(arg[a1a
∗
2])Y10(θ, ϕ)Y ∗20(θ, ϕ)

+2|a0||a2| cos(arg[a0a
∗
2])Y00(θ, ϕ)Y ∗20(θ, ϕ) . (4.9)

The intensity distribution depends on three different interference
terms. The first two terms are the result of the interference be-
tween the direct and the indirect pathways. They vary as a func-
tion of E and the delay τ :

cos
(
arg[a1a

∗
0,2]
)

= cos((E − En)τ/~ + (η1(k)− η0,2(k))). (4.10)

The XUV pulse was assumed to be transform limited, so that
φΩ = φΩ′ , and φω was rewritten as φω = ωτ = (E −En)τ/~. The
third interference term in Equation (4.9) is independent of τ and
describes the interference between the partial waves s and d, as
expected from conventional angular-resolved studies.
Figure 4.10 a) presents a calculated interferogram considering
only the 2p state, and shows the photoelectron spectra along the
common polarization axis of the ionizing fields as a function of
delay. The cutout from the momentum distribution is indicated
in Figure 4.9. Since the direct-indirect interference depends on
both the observation energy and the delay, this gives rise to a
hyperbolic fringe pattern in the interferogram. Figure 4.10 c)
presents the same type of interferogram, but including two states,
the 2p and 3p states. Besides the hyperbolic fringes, an overall
intensity modulation is visible. This is due to quantum beating
between the two states.
The composition of EWP can be extracted from the interferogram
by performing a Fourier transform along the delay axis for all
final energies. The result is a 2D function of E and the conjugate
variable of τ from the Fourier transform, E′. The results of Fourier
analysis of the two interferograms are shown in Figure 4.10 b) and
d). The interference between the direct and the indirect pathways
is seen as lines tilted at an angle of 45◦ because the oscillations in
the fringe pattern are directly proportional to E. The different
EWP components can be identified from the Fourier analysis by
their binding energies, En, which are given by the intersection of
the tilted lines with the horizontal line for E = 0, i.e., at threshold.

46



Attosecond Interferometry

Delay (fs)

E
ne

rg
y 

(e
V

)

5 10 15 

5 

10 

Energy, E' (eV)
0 5 10 

3p

2p

Quantum
beating

c) d)

2p

2p+3p

2p
5 

10 

a) b)

E
ne

rg
y 

(e
V

)

Figure 4.10. a) Calculated interferogram for the 2p state. b) Fourier
analysis showing the 2p component. c) Calculated interferogram includ-
ing the 2p and 3p state in the wave packet. d) Fourier analysis showing
the different components plus the quantum beating.

The relative strength of each Fourier component is directly related
to its relative contribution to the EWP. No real information is
obtained about the continuum part of the EWP, and it can simply
be seen as a reference to determine the composition of the bound
part. Using this interferometric approach the energy resolution
is no longer limited by the bandwidth of the XUV and IR pulse,
but by the maximum delay τ used in the experiments.
In principle the energy dependent phase offset in Equation (4.10),
η1(k) − η0,2(k), can be read out from the Fourier analysis as the
phase of each frequency component that gives rise to the tilted
lines. However, one should keep in mind that, for more than one
dominant ionization channel, it will be a mixture of scattering
phases η`(k).

The interference between the direct and the indirect pathway is
only detected because the measurement is angularly resolved. In
the angle-integrated signal the interferences would vanish since the
spherical harmonics Y`m(θ, ϕ) are orthogonal. More information
can be extracted from the complete 3D momentum distribution.
The momentum distribution can be expressed as an expansion of
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Legendre polynomials, PJ(cos θ):

I(E, θ) =

∫ 2π

0

dϕ |
2∑

`=0

a`(E)Y`0(θ, ϕ) |2

=

4∑

J=0

βJ(E)PJ(cos θ) , (4.11)

where the expansion coefficients βJ can be calculated using the
algebraic properties of the spherical harmonics [76]:

βJ =
2J + 1

2

∑

`,`′

a`(E) a∗`′(E)V (`, `′, J) , (4.12)

where

V (`, `′, J) = ˆ̀ˆ̀′
(

` `′ J
0 0 0

)2

. (4.13)

The 3j symbols in Equation (4.13) are non-vanishing for even βJ
coefficients, if ` and `′ have the same parity. If ` and `′ have
opposite parities the expansion will also contain odd coefficients.
Therefore, the interference described in Equations (4.9) and (4.10)
can be separated by the Legendre expansion:

β0 =
1

2
(|a0|2 + |a1|2 + |a2|2)

β1 =
√

3 |a0||a1| cos(arg[a1a
∗
0])

+
√

15
6

5
|a2||a1| cos(arg[a1a

∗
2])

β2 = |a1|2 +
10

7
|a2|2 +

√
5 |a0||a2| cos(arg[a0a

∗
2])

β3 =
√

15
3

5
|a1||a2| cos(arg[a1a

∗
2])

β4 =
9

7
|a2|2. (4.14)

The direct and indirect pathways have opposite parity, since they
pick up a different number of photons, and thus the direct-indirect
interference appears in β1 and β3. The partial wave interference
in the indirect pathway have the same parity and appear in β2.
The parity-dependent form of the Legendre coefficients is general
and can be used to differentiate different processes that lead to the
same final energy. The quantum beating, which is not included in
Equation (4.14), appears in the even βJ coefficients since the two
pathways via different bound states also have the same parity.
Other pathways can also be identified in this way, for example,
ionization with two IR photons. Consider the case where two-
photon transition can lead to the same final state as single-photon
ionization, due to the broad bandwidth of the probe pulse. The
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Figure 4.11. a) Interferometric
measurement of an EWP created
via a shake-up excitation. b)
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Figure 4.12. The interference
signal of one state can be
separated using a window
function in the Fourier analysis.

period of the oscillation is the same, since it depends only on the
difference between the binding energy, En, and the observation
energy. The two processes can, however, be studied separately
using the Legendre analysis.

The possibility of full reconstruction of an arbitrary excited EWP,
using the interferometric pump-probe technique introduced above,
was explored in Paper VII. A simplified ‘toy model’ was developed
to show how the phase of each component could be retrieved, and
thus achieve complete characterization of the EWP. In this model,
an EWP is created in helium via a shake-up excitation. The shake-
up is strictly treated within the sudden approximation, so that the
EWP consists of a coherent superposition of ns-states and s-like
continuum states, as shown in Figure 4.11. The use of shake-up
excitations reduces the number of ionization channels and simpli-
fies the analysis.
To characterize the EWP, the relative phase of each component
must be measured. To separate the interference pattern for each
component filter functions were applied in the Fourier analysis,
and then an inverse Fourier transform was performed back to the
time domain, as shown for the 3s state in Figure 4.12 a). The ac-
cumulated phase difference that leads to the interference pattern
(see Equation (4.10)) can be rewritten in more general terms as:

∆Φ(E, t) = ϕn + (E − En)(t− t0)/~ + ∆φion(E) . (4.15)

Here, ϕn denotes the initial phase of the component n and
∆φion(E) is the phase difference between the two pathways due to
the excitation. The delay τ is now written in absolute values t−t0.
An illustration of the phase evolution is shown in Figure 4.12 b).
The measured phase ∆Φ(t) is plotted for two states, i and j, and
three different final energies. For a given energy the phase evolu-
tion is linear and can be traced back to the origin, which is defined
as the time at which all lines intersect, and is the time when the
EWP was created, t0. The phase offset at t0 is the initial phase.
The slope of each line is given by the difference between E and Ei
or Ej . In principle, ∆φion(E) must also be included, however, only
knowledge of the relative phases is required for a full reconstruc-
tion. In a first approximation, the offset ∆φion(E) is considered
to be equal for all components, so it can be neglected in the fol-
lowing.
To correctly retrieve the phase, ϕn, it is necessary to know the
exact energy, En, and the exact timing at which the reference was
created, t0. The En can be extracted from the Fourier analysis,
as described above. The time t0 is obtained by differentiating
∆Φ(E, t) with respect to E:

~∆Φ′ = t− t0. (4.16)
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Complete characterization of the EWP is now possible. Further
details on the phase retrieval and the numerical calculation for
shake-up can be found in Paper VII.

4.3 Attosecond Stark Spectroscopy

Apart from using attosecond pulses to initiate electron dynamics
and IR radiation to probe it, as described in the previous sec-
tions, they can also be used to probe the dynamics induced by IR
excitation. Paper VIII presents a study on the instantaneous po-
larization of molecules induced by the electric field of an IR laser
pulse and probed using trains of attosecond pulses.
Figure 4.13 illustrates the idea of the measurement. The electric
field of an IR laser pulse induces time-dependent polarization in
a molecule, where the displacement of the electron cloud follows
the instantaneous field strength adiabatically. This is due to the
laser frequency being non-resonant, and the laser intensity being
lower than what is necessary for significant multi-photon ionization
or dissociation. Classically, this time-dependent dipole oscillation
corresponds to the motion of the electrons along the molecular
axis. This motion can be probed through ionization with an ATP
at variable delays within a laser cycle.
Experiments were carried out for a series of small and medium-
sized molecules (N2, O2, CH2 and C2H4) in a collaboration
with Franck Lépine from Université Lyon and the group of Marc
Vrakking at the MBI in Berlin and at the AMOLF in Amsterdam.
The measurements in N2 and O2 were performed in Lund, where
the parent ion yields N+

2 and O+
2 were measured as a function of

the delay between the XUV and the IR pulse using a VMIS. The
result for N2

+ is shown Figure 4.14. The signal is modulated with
twice the laser frequency, which is expected, since the molecules
were not aligned. The modulation depth is equal to 0.5 %, which
is relatively small. The modulation depth for O2 is also 0.5 %.
Measurements at MBI on CH2 and C2H4 showed relative varia-
tions of 1.0 % and 1.5 %, respectively. This coincides with the
evolution of the total polarizability α in this series of molecules,
which increases with increasing molecule size and is smallest for
N2 and O2.
The variation in the ionization yield can be interpreted in terms of
the Stark effect. Since the expected Stark shifts of the electronic
states are proportional to the polarizability of the molecule in an
external field, a greater change in the ionization yield is expected
with an increase in polarizability. Further details including sup-
porting time-dependent density functional theory calculations can
be found in Paper VIII.
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Chapter 5

Summary and Outlook

This thesis describes studies on different types of electron wave
packets created by absorption of attosecond pulses, both in the
form of attosecond pulse trains and as isolated pulses. The key
technique applied in almost all experiments was interferometry,
which allows very small changes in the phase and energy content
of the electron wave packet to be detected. Both features, the
phase and the frequency sensitivity, were used in new applications
of attosecond pulses, which go beyond the boundaries set by
the Fourier-limit for both attosecond pulse trains and single
attosecond pulses.

Attosecond pulse trains allow to achieve high spectral resolu-
tion due to their harmonic comb structure. Combining excitation
of an electron wave packet using attosecond pulse trains and an
interferometric measurement technique to determine the phase
evolution of this electron wave packet allows to achieve both high
spectral and temporal resolution at the same time.
In the first part of this work, the phase properties of free electron
wave packets were studied using the phase-locked harmonic comb
structure of an attosecond pulse train in combination with the
fundamental laser. The ionization of atoms with an attosecond
pulse train in the presence of the IR field led to two-photon
transitions whose interference provided information on the phase
variation between the spectral components of the electron wave
packet. The technique was used to investigate the phase behavior
of resonant two-photon ionization in helium (Paper V), allowing
the response of an excited state in an external electric field to be
studied.
The same interferometric technique was applied to measure the
relative phase variation of electron wave packets originating from
different subshells in the valence shell of argon (Papers II and III).
Using an asymptotic approximation, the phase of the one-photon
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ionization could be extracted from the two-photon transition,
allowing the phase measurements to be interpreted in terms of
time delays in photoionization. A photon-energy-dependent delay
was measured between electrons emitted from the 3s shell and
electrons photoionized from the 3p shell.
The first study of photoemission time delays was presented by
Schultze et al. in 2010 [15]. They used the streaking technique to
study photoemission from the valence shell in neon, and found a
delay between the emission of 2s electrons and electrons from the
2p shell of 21 as, causing a lively theoretical discussion [94–98].
The question that was raised was the extent to which the influence
of the probing IR field should to be included to account for the
measured delay. Papers II and IV answered this question. The
measured delay must be adequately corrected for the influence of
the additional interaction with the IR photon in order to obtain
the time delay in single-photon ionization. In a sense, this is
another example of a well known problem in physics, i.e., the
observer effect.
Attosecond pulse trains are also most suitable to study sub-cycle
dynamics, due to the fixed phase relationship between the pulses.
This was in Paper VIII, where the time-dependent polarization
of neutral molecules under the influence of an IR laser field was
studied. In this case, electron motion was resolved by measuring
the changes in the ionization yield using attosecond pulse trains.

The use of single attosecond pulses allows directly for a good
temporal resolution but to the expense of poor spectral resolution.
However, the spectral resolution can be improved by using a
coherent double excitation separated in time, analog to Ramsey
spectroscopy.
In the second part of this work, such an interferometric pump-
probe technique was developed to characterize bound electron
wave packets. This technique makes use of the broad bandwidth of
single attosecond pulses to create a reference wave simultaneously
with the bound wave packet. When the electron wave packet is
probed by further ionization after a variable delay it will interfere
with the reference wave. Analysis of the resulting interference
pattern allows spectral resolution of all ingoing states, together
with their relative strength, as reported in Paper VI. Since the
phase information is also preserved in the interference pattern,
this allows for full characterization of the wave packet. Paper VII
describes how to completely reconstruct an arbitrarily excited
electron wave packet.

Each improvement of light sources brought a large impetus to
science [89]. The Lund High Power Laser Facility underwent major
changes during the fall and winter 2011, when the laboratory was
extended. The time of this forced shutdown of all experimental ac-
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tivities was used to incorporate an upgrade of the laser system in
the attosecond laboratory. The improved laser will deliver pulses
with durations of 20 fs, and one goal will be to generate single at-
tosecond pulses using the polarization gating technique. This will
allow for further investigations of the experimental feasibility of
the interferometric pump-probe technique (Papers VI and VII),
with the ultimate goat to apply this technique to characterize elec-
tron wave packets and the processes that led to their formation in
complex systems.
Additionally, the wavelength of the new laser will be tunable over
a few tens of nm (80 nm is promised by the manufacture). This
feature is highly desirable to study phase behavior in resonant ex-
citation processes as described in Paper V, and can be applied to
more complex problems, see for example Haessler et al. [45] and
Caillat et al. [46].
The most exciting prospect of this large tunability range is the pos-
sibility to access time delays in photoemission over a broad and
almost continuous spectral region using attosecond pulse trains
with tunable harmonic frequencies, e.g., close to the 3s ionization
minimum in argon as discussed in Paper III. Another aim is to
combine the tunability with higher photon energies. Gustafsson
et al. [25] have shown the possibility to obtain attosecond pulse
trains with a central energy at 80 eV using high-order harmonic
generation in a neon gas target. To develop a reliable attosecond
pulse source using neon is a difficult task due to the low conversion
efficiency for neon and the difficulty to remove the IR radiation for
these XUV photon energies. This will be tackled in a near future.
It should allow the access to the dynamics of inner shells in rare
gases and other systems where one would expect electron correla-
tions to have a huge impact on delay measurements.
In the course of improvements in the attosecond laboratory the
Mach-Zehnder interferometer will be rebuilt, whose design I took
part in. The new design will be more compact to improve the total
stability. It will also include an active stabilization and a measure
of the absolute arm lengths in the interferometer to be able to di-
rectly compare consecutive acquired data.
In cooperation with the Division of Synchrotron Radiation Re-
search at Lund University a new 3D-spectrometer is tested, which
allows 3D momentum detection of particles in coincidence, and
first time delay measurements on sequential and non-sequential
(direct and indirect) double ionization of xenon have been per-
formed.
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I Atomic and Macroscopic Measurements of
Attosecond Pulse Trains
In this paper we characterize attosecond pulse trains by
means of two different methods, one being the well estab-
lished RABITT method, the other the recently proposed in
situ method. By comparison of the two methods it was possi-
ble to extract the single-atom response in HHG. I contributed
to the experimental work.

II Probing Single-Photon Ionization on the
Attosecond Time Scale
In this paper we study single-photon ionization of the va-
lence shell in argon. We measure a difference in photoe-
mission delay between electrons liberated from the 3s and
the 3p shell. The measured delay can be interpreted as a
sum of two contributions: the Wigner time delay and an ad-
ditional contribution due to the measurement process. To
account for the latter we develop an asymptotic approxima-
tion for the laser-assisted photoionization. I was responsible
for the preparation and execution of the experiment. I ana-
lyzed the experimental data and wrote the main parts of the
manuscript.
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III Photoemission Time-Delay Measurements and
Calculations close to the 3s Ionization Minimum in
Argon
In this paper we study the photoionization time delay of the
3s and 3p shells in argon with special emphasis on the re-
gion where strong interchannel coupling led to a Cooper-like
minimum in the 3s ionization cross-section. We include the
electron correlations between the two shells within the frame-
work of RPAE in the theoretical calculations. I was involved
in the preparation of the experiment, I analyzed the experi-
mental data and contributed to writing the manuscript.

IV Theory of Attosecond Delays in Laser-Assisted
Photoionization
In this paper we derive an asymptotic expression for
the phase of laser-assisted photoionization and establish a
connection to different types of time-delay measurements,
namely techniques using attosecond pulse trains and others
based on single attosecond pulses. The measured time de-
lays can be interpreted as the sum of two contributions: the
one-photon Wigner time delay and an additional delay in-
troduced by probing the photoelectron wave packet with an
IR laser pulse. I was involved in the early work that led the
formulation of the asymptotic approximation.

V Phase Measurement of Resonant Two-Photon
Ionization in Helium
In this paper we study the phase behavior of resonant two-
photon ionization in helium as a function of detuning from
the resonant 1s3p 1P1 transition. From that we can deter-
mine the intensity dependence of the transition energy. I
participated in the experiments and helped with the prepa-
ration of the manuscript.

VI Attosecond Pump-Probe Electron Interferometry
In this paper we present an interferometric pump-probe tech-
nique for the characterization of bound electron wave packets
using single attosecond pulses. Analysis of the resulting in-
terferogram yielded the spectral composition of wave packets
with a resolution no longer limited by the spectral bandwidth
of the attosecond pulses. I took part in the experiments in
Milan, analyzed the experimental data and help with the
preparation of the manuscript.
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VII Reconstruction of Attosecond Electron Wave
Packets with Quantum State Holography
In this paper we present a feasibility study for the full re-
construction of bound electron wave packets using single at-
tosecond pulses. We show that it is possible to fully charac-
terize an unknown electron wave packet in amplitude and
phase by interferometric measurements. I performed the
data analysis, derived the analytical expressions and wrote
the manuscript.

VIII Attosecond Stark Effect in Molecules
In this paper we present a two-color attosecond pump-probe
experiments, where the time-dependent polarization of a
neutral molecule under the influence laser field is monitored.
A series of small to medium-size molecules are exposed to
a femtosecond IR laser pulse and a co-propagating attosec-
ond pulse train, and oscillations are observed in the parent
molecular ion yield as a function of the pump-probe delay. I
participated in the experiments performed in Lund and did
parts of the data analysis.
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the former and present head of the division, and Camilla Nilsson,
Harriett Lindahl, Minna Ramkull and Bertil Hermansson for
taking care of administrative and technical things and for always
speaking Swedish to me.

I am very glad to have found good friends in Lund Guillaume
Genoud and Satu Tanskanen, Agnieszka Nowacka e ao meu
querido amigo Tiago Ferreira, que me ensinou tudo o que há para
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W. Kornelis, J. Biegert, U. Keller, M. B. Gaarde, K. J. Schafer
and A. L’Huillier. Measurement and control of the frequency
chirp rate of high-order harmonic pulses. Phys. Rev. A 70,
R021801 (2004).

48. M. Swoboda, J. M. Dahlström, T. Ruchon, P. Johnsson,
J. Mauritsson, A. LHuillier and K. J. Schafer. Intensity De-
pendence of Laser-Assisted Attosecond Photoionization Spec-
tra. Las. Phys. 19, 1591–1599 (2009).

49. J. M. Dahlström, T. Fordell, E. Mansten, T. Ruchon, M. Gis-
selbrecht, K. Klünder, M. Swoboda, A. L’Huillier and J. Mau-
ritsson. Atomic- and macroscopic measurements of attosecond
pulse trains. Phys. Rev. A 80, 033836 (2009).

50. J. M. Dahlström, A. L’Huillier and J. Mauritsson. Quantum
mechanical approach to probing the birth of attosecond pulses
using a two-colour field. Journal of Physics B: Atomic, Molec-
ular and Optical Physics 44, 095602 (2011).

51. T. Fordell, M. Miranda, A. Persson and A. L’Huillier. Carrier-
envelope phase stabilization of a multi-millijoule, regenerative-
amplifier-based chirped-pulse amplifier system. Opt. Express
17, 21091–21097 (2009). URL http://www.opticsinfobase.

65

http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-17-23-21091
http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-17-23-21091


References

org/oe/abstract.cfm?uri=oe-17-23-21091.
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Atomic and macroscopic measurements of attosecond pulse trains
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We characterize attosecond pulses in a train using both the well established “reconstruction of attosecond
beating by interference of two-photon transitions” �RABITT� technique and the recently demonstrated in situ
method, which is based on a weak perturbation of the harmonic generation process by the second harmonic of
the laser field. The latter technique determines the characteristics of the single atom emission, while RABITT
allows one to measure attosecond pulses “on target.” By comparing the results of the two methods, the
influence of propagation and filtering on the attosecond pulses can be extracted.

DOI: 10.1103/PhysRevA.80.033836 PACS number�s�: 42.65.Ky, 32.80.Qk, 32.80.Rm

I. INTRODUCTION

Attosecond pulse trains �APTs� are created when intense
infrared �ir� laser pulses interact with a gas of atoms or mol-
ecules �1�. The characteristics of the attosecond pulses de-
pend both on the quantum-mechanical single atom dynamics
as well as on macroscopic effects due to propagation in the
nonlinear medium �2�. Under normal experimental condi-
tions, the pulse train contains two pulses per cycle of the
laser field �3–5�. The properties of these pulses can be modi-
fied by transmission through filters �6� or reflection by grat-
ings and/or multilayer mirrors �7�. Several techniques to
characterize attosecond pulse trains have been proposed,
each with specific advantages and limitations. In this paper
we concentrate on analyzing and comparing two of these
techniques: the reconstruction of attosecond beating by inter-
ference of two-photon transitions �RABITT� �1� and a two-
color in situ method �8�, which uses a weak perturbation of
the high-order harmonic generation �HHG� by the second
harmonic of the fundamental laser field. Both techniques aim
to characterize the average attosecond pulse structure in an
APT.

Figure 1 illustrates schematically the difference between
these two techniques. RABITT allows us to determine the
final structure of the attosecond pulses after propagation in
the gas cell and filtering. The attosecond pulses are charac-
terized “on target,” i.e., in the chamber where they can be
used for applications. The RABITT scheme is implemented
by ionizing an atomic gas with the APT in presence of a
synchronized weak ir field. The perturbation due to the ir
field results in sidebands in the photoelectron spectra as
shown in Fig. 2�a�. Information about the structure of the
attosecond pulses can then be obtained by studying the in-
tensity oscillations of these sidebands with respect to the
subcycle delay between the probe field and the APT.

The in situ method measures the single atom emission
from the individual atoms. In contrast to RABITT, the initial
shape of the attosecond pulses, before propagation and filter-
ing, is now measured �Fig. 1�. This is important for applica-
tions that are conducted in the generation process itself, e.g.,
the tomography of electronic orbitals �9�. The presence of a

weak second harmonic �blue� field in the generation chamber
leads to the generation of even harmonics as shown in Fig.
2�b� �10�. The harmonic generation process is nonlinear be-
yond the perturbative regime, which results in comparable
probabilities for the processes shown in Fig. 2�b� even
though the number of ir photons absorbed differs by 4. In-
formation about the initial properties of the attosecond pulse
is obtained by studying the intensity oscillations of the even
harmonics with respect to the phase between the ir and the
blue field.

In this paper we present a detailed theoretical and experi-
mental comparison between the two characterization meth-
ods. Implementing both schemes allows us to measure both
the initial and final shapes of the attosecond pulses. From
these measurements the influence of propagation as well as

FIG. 1. �Color online� Cartoon illustrating the differences be-
tween the two characterization methods. The in situ method mea-
sures the single atom emission, while the RABITT scheme deter-
mines the corresponding attosecond pulses “on target.” The
influence of phase matching and filtering on the attosecond pulses
can be deduced through the implementation of both methods on the
same HHG setup.
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filtering can be determined. The paper is composed as fol-
lows: Sec. II reviews the theory of the two characterization
methods, Sec. III gives an overview of the experimental
setup, Sec. IV presents results from both methods at low gas
generation pressure, Sec. V discusses the reasons for the dif-
ference observed at higher gas pressures, and Sec. VI sum-
marizes the paper with an outlook.

II. THEORY

The electric field of an attosecond pulse can be written as

Ẽ�t�= �̃�t�exp�i�̃�t��, where �̃�t� and �̃�t� represent the tem-
poral envelope and phase, respectively. It can also be de-
scribed through its Fourier transform

E��� = ����exp�i����� �1�

=� dt�̃�t�exp�i�̃�t� − i�t� , �2�

where ���� and ���� are the spectral envelope and phase.
The Fourier integral in Eq. �2� can be approximated using the
saddle point method when the linear part in the temporal
phase cancels the Fourier component,

� d�̃

dt
�

t=t����
− � = 0, �3�

and the quadratic part of the temporal phase is large,

�� d2�̃

dt2 ��
t=t����

� 0. �4�

Note that the temporal phase must be expanded at different
times for different Fourier components, i.e., the saddle point
time is a function of frequency, t����. The saddle point ap-
proximation yields

E��� � �	 2�

� d2�̃

dt2 �
�̃�t�exp
i�̃�t� − i�t �

i�

4
��

t=t����

,

�5�

where the positive �negative� phase factor corresponds to a
positive �negative� chirp which is the case for attosecond
pulses from the short �long� branch. The spectral phase is
approximately equal to

���� = �̃„t����… − �t���� �
�

4
�6�

and its first derivative is

d�

d�
= − t���� , �7�

which is obtained using the chain rule and Eq. �3�. We can,
therefore, interpret the group delay �GD=−d� /d�� as the
time when the temporal phase oscillates as �. A deeper
analysis is needed if Eqs. �3� and �4� are not satisfied, which
is the case of frequencies above the harmonic cutoff.

We define the relative timing of spectral components �or
relative group delay� as

t�rel���,�0� = t���� − t���0� = −
d�

d�
+ �d�

d�
�

�0

, �8�

where t�rel��� ,�0� is the time it takes for the attosecond pulse
to go from oscillating at �0 to oscillating at �. The reference
frequency, �0, is arbitrarily chosen to be the lowest fre-
quency of the pulse.

In the present work performed with relatively long �mul-
ticycle� driving pulses, the emission spectrum contains peaks
at harmonic frequencies. In what follows, we use the follow-
ing notation for the spectral phase �n=��n�R�, where n is
the harmonic number and �R is the angular frequency of the
ir laser field.

A. RABITT

The sidebands that appear in the RABITT method can be
understood through the use of second-order perturbation
theory �1�: absorption of a high-order harmonic photon fol-
lowed by absorption or emission of an ir photon. Interfer-
ences occur between the different quantum paths that lead to
the same sideband �Fig. 2�a��. If we assume that the compet-
ing quantum paths have the same amplitude, then the inten-
sity of the sideband varies as

I2n��� 	 1 + cos�2� − 
�2n − 
�2n
at � , �9�

where � is the phase of the probe field oscillations relative to
the attosecond pulses, 
�2n=�2n+1−�2n−1 is the difference
between the phases of the corresponding harmonics, and

�2n

at is the difference in atomic phase for the corresponding
energies �11�. The atomic phase is neglected in the following
because it only has a small effect on the final result in the
spectral region that we consider. The first derivative of the

FIG. 2. �Color online� Energy diagrams associated with the two
characterization methods. �a� Sidebands are created through the ab-
sorption and emission of an ir photon ��R� in the RABITT method.
�b� Even harmonics are produced in the in situ method due to the
presence of a weak blue field �2�R�. Attosecond pulses are charac-
terized by studying the interferences arising from the degenerate
ways of reaching the sidebands or even harmonics.
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spectral phase can then be determined using the approximate
relation

�d�

d�
�

2n�R

�

�2n

2�R
. �10�

The final shape of an average attosecond pulse in the APT
can be reconstructed using Eq. �10� combined with a mea-
surement of the spectrum �12�. The aim of this paper is,
however, not to reconstruct attosecond pulses but rather to
study how the corresponding relative timing is affected by
macroscopic dispersion in the generation cell. Using Eqs.
�8�–�10�, the relative timing can be written as a function of
experimental observables as

tfinal
�rel� ��,�0� � −

1

�R
��min��� − �min��0�� , �11�

where �min��� is the relative phase between the probe and
the APT that minimizes the sideband intensity, I2n��min����
=0, for �=2n�R. The subscript final is used to indicate that
this is the final state of the pulse as it is detected on target.

B. In situ

We will now derive an analog to Eq. �11� for the in situ
method, where the relative timing of the initial attosecond
pulses is determined from the oscillation of the induced even
harmonics. Using the strong field approximation �SFA�, the
Fourier components of the HHG dipole can be approximated
as �13�

x�n 	� dtd�d3p� exp
 iS�p� ,t,��
�

− in�Rt� , �12�

where p� is the canonical �drift� momentum, � is the time
between tunneling and recombination, S is the quasiclassical
action, and n is the harmonic order. Finding the stationary
points of the quasiclassical action and then applying the
saddle point approximation five times reduce the integrals in
Eq. �12� to a sum of discrete contributions, each correspond-
ing to a quasiclassical trajectory �5,14�. In the limit of a
vanishing ionization potential, the quasiclassical trajectories
become classical and the quasiclassical action becomes the
classical action,

S�x�t,t��� = �
t−��t�

t

dt��mv�t,t��2

2
+ qx�t,t��E�t�� , �13�

where x, v, m, and q are the position, velocity, mass, and
charge of the electron, respectively. We label the electron
trajectories as x=x�t , t��, where t is the return time and t� is
the integration variable for the action. The electron is re-
leased from the atom at time t−� and accelerated by the laser
field, E, until it returns and recombines with the atom at time
t. In the one-color HHG, where E=ER=ER0 sin��Rt�, the
process is repeated with an alternating sign every half period,
xR�t , t��=−xR�t+TR /2, t�+TR /2�, since ER�t��=−ER�t�
+TR /2�. The action is, however, the same, SR�t�=SR�t
+TR /2�.

Adding a weak blue field, E=ER+EB, EB=EB0 sin�2�Rt
+��, induces a small change in the trajectories and the accu-

mulated action. We treat the blue field as a perturbation and
expand the trajectory,

m
d2

dt2 �
n=0



�nx�n� = qER + �qEB, �14�

where � is the usual perturbation parameter. The zeroth-order
solution is the same as in the one-color case, x�0�=xR, and the
first-order solution is purely given by the blue field, x�1�

=xB. Higher orders, n�1, are equal to zero. We expand the
action as S=S�0�+�S�1�+�2S�2�. The zeroth-order action is the
same as in the one-color case, S�0�=SR. The first-order action,
S�1�=�, is composed of three cross terms that can be rewrit-
ten using a few partial integrations,

� = �
t−�

t

dt��mvRvB + qxREB + qxBER� �15�

=q�
t−�

t

dt�xREB, �16�

where the following boundary conditions are used: xR�t , t�
=xR�t , t−��=vR�t , t−��=xB�t , t�=0. It is interesting to note
that � can be written as an integral over the unperturbed
trajectory, xR, and the blue field �or as an integral over the
trajectory perturbation, xB, and the red field�. Unlike SR, the
first-order action changes sign between opposite half cycles
of the ir field, ��t�=−��t+TR /2�, which reflects the fact that
the electron is now moving differently in the two half cycles,
x�t , t���−x�t+TR /2, t�+TR /2�. The second order action is
given purely by the blue field, S�2�=SB, and it has, therefore,
the same sign in opposite half cycles of the ir. The sum of the
contributions from the zeroth and the second order is labeled
as �=S�0�+S�2�.

The integrals of Eq. �12� are evaluated for the two-color
case using the saddle point solutions for the ir field only, i.e.,
we assume that � and SB are slowly varying compared to SR.
Only the two stationary points corresponding to the short
branch of trajectories in two neighboring half cycles of the
fundamental are used, in accordance with the experiment
where the long branch has been removed using spatial filter-
ing in a narrow aperture. The contributions from the first-
order action can be combined using Euler’s formula. The
HHG dipole takes the following form for the odd harmonics:

x�n=2N+1 	 cos
�n

�
�exp
 i�n

�
− in�Rtn� , �17�

where the first-order change in action, �n, leads to a change
in dipole amplitude. In the limit of a vanishing blue field, we
recover the one-color case: cos��n /��→1 and �n→SRn. The
HHG dipole for the even harmonics takes the following
form:

x�n=2N 	 sin
�n

�
�exp
 i�n

�
− in�Rtn� , �18�

where the amplitude again is dependent on the change in
action. The even harmonics vanish if there is no blue field
since sin��n /��→0. The intensities of the odd and even har-
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monics vary out of phase: the odd harmonics decrease when
the even harmonics increase. A weak blue field implies that
sin��n /����n /�. In this regime the even harmonic ampli-
tudes grow linearly with the applied blue field and oscillate
with the relative phase, �. It is in this regime that an in situ
measurement can be carried out.

Using Eq. �16�, we seek the relative phase, �min�t�, that
induces no even harmonic amplitude,

�„t,�min�t�… = q�
t−��t�

t

dt�xR�t,t��EB„t�,�min�t�… = 0,

�19�

where the return time, t= t���, is a saddle point solution to
Eq. �12� and, therefore, a function of frequency �in close
analogy with Eqs. �3� and �4��. We find excellent agreement
with the pioneering work of Dudovich et al. �8� using unper-
turbed classical trajectories in Eq. �19�. The solution, �min�t�,
is expanded to first order around the central return time, tc
=0.35TR,

�min�t� − �min�tc� � − �1 + ���R�t − tc� , �20�

where ��−0.06 is the “systematic scaling difference” be-
tween �min and �Rt. Our numerical linearization of �min�t� in
Eq. �20� depends on the choice of tc: � varies from 0.1 �in the
shortest return� to 0 �in the cutoff regime�. It is, however, the
scaling around the central return time �central frequency� that
is most appropriate for calculating the initial properties of the
entire attosecond pulse. Using Eqs. �8� and �20�, we find the
following simple relation between the oscillations in the
even harmonics and the relative emission time from the
atom:

tinitial
�rel� ��,�c� � −

�

�R
��min„t���… − �min„t��c�…� , �21�

where �=1 / �1+���1.06 is a correction factor. Equation
�21� resembles Eq. �11� from the RABITT section in both
form and interpretation. The even harmonic oscillations are
mapping out the relative emission times from the atom much
like the sidebands in a RABITT scan map out the relative
arrival times on target. In contrast to RABITT, the in situ
method needs a correction factor, �, which is slightly larger
than one for the short branch of trajectories. The validity of
Eq. �21� is limited to the high-order harmonic plateau where
the constant amplitude approximation �Eq. �12�� and the lin-
earization of �min�t� �Eq. �20�� are sound. The in situ method
can also be applied to the second �long� branch of trajecto-
ries. The correction factor for the long branch is ��0.88 for
tc=0.55TR.

We want to stress that the in situ method is not a direct
measure of the emission time �or the group delay� because
�min�t� is not related to the return time in a trivial way �Eq.
�19��. In fact, one could also interpret the in situ method as a
measurement of the continuum time which is an equally
good parameter of the process.

All technical details aside, we have found that the in situ
method produces traces of oscillating even harmonics which,
to reasonable agreement, can be treated as RABITT scans. In
the following, we will present data which are uncorrected,

�=1, verifying numerically and experimentally the validity
of ��1 for harmonics in the plateau. Unlike RABITT, the in
situ method is not limited to sampling the relative timing at
only even harmonic energies. The oscillations in the odd har-
monic energies �Eq. �17�� can be treated in a similar way,
thus doubling the number of sampling points for the relative
timing compared to RABITT.

C. Numerical SFA calculation

We perform a numerical experiment using SFA to verify
the analytical work presented in Sec. II B for an ir intensity
of IR=2�1014 W /cm2. Our numerical calculations are
based on Eq. �13� in �5� where the saddle point approxima-
tion is done only over p� space. The integration over con-
tinuum time, �, and actual time, t, is done numerically. This
allows us, in a simple way, to access either branch of trajec-
tories by numerically restricting the integral over the con-
tinuum time, �. We calculate the single atom response for the
short branch of trajectories by restricting the continuum time
integral to 0���0.65TR. Then we calculate the response
from the long branch of trajectories by restricting the con-
tinuum time integral to 0.65TR���TR. The corresponding
group delays are calculated numerically from the first deriva-
tive of the spectral phase of the short branch dipole �Fig.
3�a�, �� and the long branch dipole �Fig. 3�a�, ��. The time-
energy curves are compared to a simple classical model �Fig.
3�a�, gray line�, consisting in finding the classical kinetic
return energy for a classical electron in a sinusoidal electric
field, E�t�=E0 sin �t, which starts and returns to the origin,
and then adding the ionization energy.

Next, we perform the numerical in situ measurement by
calculating the single atom response from the same ir field
plus a weak blue field with a relative intensity of IB / IR
=0.1%. The phase of the blue field, �, is then shifted relative
to the ir and the atomic response is calculated again. As
expected, we obtain weak oscillations in the even harmonics
which vary with respect to �. The relative phases, �min, that
minimize the even harmonic signal are extracted from the
short branch �Fig. 3�b�, �� and the long branch �Fig. 3�b�,
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FIG. 3. �Color online� �a� The single atom response of the short
��� and the long ��� branches are calculated using SFA for a typi-
cal ir intensity, IR=2�1014 W /cm2. The group delays, −d� /d�, of
both branches are in good agreement with the simple classical
model �gray line�. The group delay branches merge beyond the
cutoff �dotted line�. �b� The numerical in situ scans generated using
SFA with a weak blue field, IB / IR=0.1%, show qualitative agree-
ment for both the short ��� and the long ��� branches with the
simple classical model �gray line�.
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��. We find that the in situ method produces time-energy
slopes �lines in Fig. 3�b�� that are in qualitative agreement
with the simple classical model �Fig. 3�b�, gray line� for
harmonics below the cutoff �Fig. 3�b�, dotted line�. There is,
however, an absolute time difference between −�min /�R, and
the �unshifted� simple classical model �Fig. 3�b�, gray line�.
A careful study of the numerical experiment indicates that
the in situ measurement suffers from a small systematic de-
viations from the group delay which can be attributed to the
correction factor, �. We stress that all data presented in Fig.
3�b� are uncorrected, i.e., �=1.

A larger and possibly more interesting systematic devia-
tion between the group delay and the in situ method arises
for harmonics close to and beyond the cutoff �Figs. 3�a� and
3�b�, dotted line�. This deviation occurs in a spectral region
where Eqs. �3� and �4� are questionable and it is, therefore,
more difficult to interpret the deviation. It is clear, however,
that the in situ measurement is not a direct measurement of
the group delay �or the relative timing� of the attosecond
pulses and that a deeper analysis is needed for understanding
the behavior beyond the cutoff.

The numerical experiment is repeated at progressively
higher relative intensities to investigate the robustness of the
in situ method. We observe the depletion of the odd harmon-
ics, as expected from Eq. �17�. The information retrieved
from the even harmonics is intact as long as IB / IR�1% for
IR=2�1014 W /cm2. Increasing the relative intensity further
results in an invalid in situ measurement.

III. EXPERIMENTAL SETUP

The experimental work is carried out at the Lund Laser
Center �LLC� using a kHz Ti-sapphire chirped pulse ampli-
fied laser operating at a wavelength of 800 nm �ir�. The
pulseenergy is 2 mJ and the pulse length is 35 fs. The APTs
are generated by focusing the ir laser pulses into a synchro-
nized pulsed argon gas cell �15�. Having a pulsed gas cell
allows us to maintain a low average background pressure in
the generation chamber while the effective gas pressure in
the gas cell is high. We do not measure the instantaneous
generation pressure in the gas cell but it is reasonable to
assume that it scales with the average background pressure in
the generation chamber.

We use aluminum filters after the HHG to
�i� remove the remaining ir and the low-order harmonics

in the pump line and
�ii� compress the pulses in the APT.
Eliminating the intense ir beam after the generation cell is

important since neither of the characterization schemes work
if there is a strong ir field present in the detection process.
The individual filters are 200 nm thick and the number of
filters used can be changed using a motorized filter holder
�6�. Being able to change the number of filters is important in
order to access the effect of filters on the attosecond pulses
�3�. The attosecond pulses are finally detected using a mag-
netic bottle electron spectrometer �MBES�. The detection gas
is argon which allows us to study the high-order harmonics
from the plateau and cutoff regions.

In the RABITT method the ionization step in the MBES is
perturbed by a synchronized weak ir probe field, which is

coupled into the MBES using a Mach-Zehnder interferom-
eter �Fig. 4�a��. The relative phase, �, between the APT and
the ir is controlled using a piezoelectric translation stage in
the interferometer. A typical RABITT scan is shown in Fig.
4�b�.

In the in situ method the ir pulse is used to generate a
second harmonic field �blue� with a 1.3-mm-thick potassium
dideuterium phosphate �KDP� type-I crystal. The ir and the
blue field are synchronized before the generation chamber
using a three-dimensional dichroic interferometer �Fig. 4�c��.
A glass plate in the interferometer enables control of the
relative phase, �, between the ir and the blue fields. The
interferometer is engineered so that the polarizations of the
recombined red and blue fields are parallel �16�. A typical in
situ scan is shown in Fig. 4�d�. Using Eqs. �11� and �21�, we
know that the information about the attosecond pulses is de-
rived in the same way from both methods, while the physical
interpretation of the two measurements differs.

IV. PROOF OF PRINCIPLE FOR IN SITU
MEASUREMENTS

In this section, we study the properties of an APT using
both the RABITT and the in situ method. A direct compari-
son of the two measurements is not meaningful since attosec-
ond pulses are probed at different times. Two main effects
influence the properties of the attosecond pulses:

�i� dispersion from the Al filters;
�ii� phase matching in the generation cell.
To avoid effects due to phase matching as much as pos-

sible �2,17�, we perform the measurement at the lowest pos-
sible pressure, corresponding to a background pressure of
PG�1.5 �bar. At this pressure, the high-order harmonic
signal is weak but still stable enough for both characteriza-
tion methods to work. The results from the RABITT method
are shown in Fig. 5�a� and the results from the in situ method
are shown in Fig. 5�b�.

The change in relative timing induced to an attosecond
pulse propagating through one aluminum filter, 
tAl

�rel��� ,�0�,
can be determined using two RABITT measurements,


tAl
�rel���� = tfinal2

�rel� ��� − tfinal1
�rel� ��� , �22�

where tfinal1
�rel� is the relative timing of the attosecond pulse

having passed one filter and tfinal2
�rel� is the relative timing after

passing two filters. Note that we now drop the notation for
the reference frequency since it is �0=14�R for all experi-
mental data. We have verified that 
tAl

�rel���� agrees with the
GD deduced from the refractive index of aluminum �18�.
Assuming that the two filters are identical we can calculate
the relative timing of the attosecond pulse before passing the
filter�s�,

tfinal0
�rel� ��� = tfinal1

�rel� ��� − 
tAl
�rel���� . �23�

The “unfiltered” relative timing of attosecond pulses �Fig.
5�a�, �� is in good agreement with the simple classical
model �gray line� for an effective intensity of IR�1
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�1014 W /cm2. This intensity corresponds to a cutoff at har-
monic �23�, which agrees well with spectral measurements
taken without the probe field present.

Having estimated the initial state of the attosecond pulses
using the RABITT method, we now proceed with the in situ
scheme. One important advantage of the in situ scheme is
that all information is imprinted spectrally, which makes it
possible to analyze attosecond processes with great accuracy
using a photon spectrometer rather than an electron spec-
trometer. In this paper, however, we use the same MBES as
for the RABITT so that a straightforward comparison of the
two schemes is made.

The in situ measurements are taken immediately after
their respective RABITT measurements for one and two alu-
minum filters �Fig. 5�b��. The HHG conditions, therefore,
have little time to evolve when changing schemes �a few
seconds�. The filters should not influence the in situ measure-

ment because the information is imprinted spectrally already
in the HHG process. Using the in situ scheme, we should
ideally obtain identical information regardless of the number
of filters. The measurements again nicely follow the classical
model for I=1�1014 W /cm2 �gray curve�. We determine
the initial relative timing, tinitial

�rel� ���, and compare it to the
relative timing obtained with the RABITT method, tfinal0

�rel� ���,
in Fig. 5�c�. The corresponding group delay dispersion
�GDD� is calculated by fitting a line to the relative timing
using sidebands and even harmonics �14�–�22�,

− �d2�

d�2�
18�R

� � 2.31 � 104 as2/rad �RABITT�
� � 2.24 � 104 as2/rad �in situ� ,


�24�

with a root mean square deviation of approximately 23 as for

(a) (b)

(c) (d)

FIG. 4. �Color online� �a� In RABITT mode the blue field �from KPD� is split off �BS1� and blocked. A weak ir probe field is created
�BS2� and delayed on the subcycle scale using a translation stage. The APT is generated from the intense ir pulses �HHG �ir�� in a
synchronized pulsed gas cell. The intense ir field is eliminated using aluminum filter�s�. The APT and the probe are recombined �APT
+probe� using a mirror with a narrow aperture. The APT passes through the aperture while the probe is reflected on the mirror. The
temporally overlapping APT and probe field are then focused using a toroidal mirror and detected using an electron spectrometer �not
shown�. �b� The RABITT scan is recorded using an electron spectrometer with subcycle synchronization of the APT and the probe in the
detection chamber. �c� In in situ mode the ir and the blue field �from KDP� are separated �BS1� into a dichroic interferometer. The ir field
is delayed on the subcycle scale using a glass plate �which can be tilted� before it is recombined with the blue field �BS3�. The probe is
blocked �after BS2�. The APT is generated from intense ir pulses in the presence of a weak blue field �HHG �ir+blue�� in a synchronized
pulsed gas cell. The ir and blue fields are eliminated using aluminum filter�s�. The APT is detected using an electron spectrometer �not
shown� after passing a narrow aperture. �d� The in situ scan is recorded using an electron spectrometer with subcycle synchronization of the
ir and the blue fields in the generation cell �HHG �ir+blue��. The color scale in �b� and �d� is saturated so that the interferometric beating is
more clearly seen.
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the corresponding difference in relative timing. We treat the
in situ data as a RABITT scan, and the numerical value of
the GDD must, therefore, be multiplied by the correction
factor, �. The experiment shows that the correction factor is
close to unity for the short branch, as expected from the
theory section. The good agreement between these measure-
ments shows that either the RABITT or the in situ method
can be used to characterize the APTs at low generation pres-
sures for energies in the central and upper regions of the
harmonic plateau.

It is tempting to increase the intensity of the blue field so
that the even harmonics become stronger and more visible.
We use an adjustable aperture in the blue arm of the three-
dimensional dichroic interferometer so that the intensity of
the blue field can be increased while all other experimental
parameters are constant. It has been demonstrated that an
increased blue intensity will alter the quasiclassical trajecto-
ries in the HHG process �19,20�, but a systematic study of
how the in situ method breaks down has not yet been re-
ported. Even harmonic oscillations appear beyond the cutoff
for a slight increase in the blue intensity. The information
extracted from these oscillations show strong deviations with
the expected group delays, while the information from the
plateau region remains rather accurate �Fig. 5�d�, *�. Even
harmonic oscillation beyond the cutoff regime should, there-
fore, not be included in our simple interpretation �Eq. �21��
of the in situ method. The experimental results at high pho-
ton energy are in qualitative agreement with the numerical

calculations of the long branch shown in Fig. 3�b� shifted by
half their period. At moderately higher blue intensities we
observe a shift of the modulations in the plateau �Fig. 5�d�,
��. This shows that the in situ method now predicts the
wrong relative timing for the initial attosecond pulses also in
the plateau region and that the relative intensity must be
reduced.

V. COMPARISON OF RABITT AND IN SITU
MEASUREMENTS AT HIGHER PRESSURE

We now study how the phase of the attosecond pulses is
modified due to a higher gas pressure in the generation
chamber. It has recently been shown that in some conditions
an increasing gas pressure can lead to a compression of the
attosecond pulses �17�. The effect predicted theoretically
was, however, small and difficult to demonstrate experimen-
tally. Here, combined measurements using the RABITT and
the in situ method allow us to unambiguously extract the
contribution of phase matching to the temporal structure of
attosecond pulses.

RABITT results obtained at different pressures are shown
in Fig. 6�a�. The data are collected with one aluminum filter,
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FIG. 6. �Color online� �a� Relative timing measurements from
RABITT for a variety of high background pressures in the genera-
tion chamber: 5�10−3 ���, 6�10−3 ���, and 7�10−3 ��� mbar
�the exact instantaneous pressure in the gas cell is unknown�. The
effect of the Al filter has been subtracted. At high pressures there is
an increased deviation from the simple classical model �IR=0.9
�1014 W /cm2� �gray curve�. �b� The corresponding in situ mea-
surements are mostly unaffected by the increased pressure. The data
are not corrected, �=1. �c� The difference in relative timing,

tmacro

�rel� �� , PG� �pink �, �, and ��, is interpreted as the macro-
scopic delay due to phase matching in the gas cell. The symbols
correspond to the same pressures as in the figures above. The delay
from phase matching has approximately the same magnitude as an
aluminum filter �gray dashed curve�. �d� The relative timing due to
phase matching �false color in units of TR� is calculated using a
one-dimensional model �17� for pressures ranging from 0 to 100
mbar. The intensity used in the model is 1.25�1014 W /cm2 and
the duration of the pulse is 35 fs. The length of the cell is modeled
as 5 mm.
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FIG. 5. �Color online� �a� RABITT measurements with one �+�
and two ��� aluminum filters are used to determine the relative
timing of the unfiltered attosecond pulses ���. All temporal mea-
surements are presented as relative timings with reference to har-
monic �14�. �b� In situ measurements with one �+� and two ���
aluminum filters. The data are uncorrected, �=1. The simple clas-
sical model �IR=1�1014 W /cm2� ��a� and �b� gray curve� is plot-
ted for reference. �c� Unfiltered RABITT measurement �red, ��
compared to the average in situ measurement �blue, *�. �d� A slight
increase in the blue intensity �blue, *� has a small effect on the
measurement in the harmonic plateau �harmonics �14�–�24�. In-
creasing the blue intensity further �pink, �� results in an invalid
measurement. The simple classical model �IR=0.9�1014 W /cm2�
�gray line� is plotted for reference.
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but the effect of this filter is removed using Eq. �23�. The
corresponding in situ measurements are shown in Fig. 6�b�.
The in situ measurements are mostly insensitive to the in-
creased gas pressure, while the RABITT measurements are
deformed in a nontrivial way. Deviations in relative timing
for attosecond pulses due to the macroscopic propagation
through the gas cell can be extracted by subtracting the final
and initial relative timings,


tmacro
�rel� ��,PG� = tfinal0

�rel� ��,PG� − tinitial
�rel� ��,PG� , �25�

where we have explicitly written PG to indicate that the mac-
roscopic effects depend on the gas pressure. In tinitial

�rel� �� , PG�,
the PG dependence refers to a possible change in the funda-
mental field in the nonlinear medium that could affect the
single atom response. The results are shown in Fig. 6�c�,
together with the effect of a 200 nm Al filter �gray�. Macro-
scopic effects introduce a �nontrivial� negative relative tim-
ing, first decreasing then increasing with frequency. The cor-
responding induced GDD might help to compensate for the
single atom GDD for low orders, but for higher orders the
GDD is increased. These results agree well with those pre-
sented in �17�.

To understand the origin of the macroscopic group delay,
we perform a simple model calculation �17,21�. We consider
for simplicity a one-dimensional approximation along the
propagation axis z, a homogeneous medium of length L, and
a collimated geometry. In this simple case, the contribution
of the single atom response and of propagation can be sepa-
rated and the effect of propagation both on the phase �or
more exactly phase variation� and amplitude of the nth har-
monic can be described by

Fn =
1 − exp��− i
kn − �n�L�

i
kn + �n
= �Fn�exp�i�n

mac� . �26�

The phase mismatch 
kn is equal to kn−nk1, where kn and k1
denote the wave vector of harmonic n and the fundamental,
respectively. Absorption at the nth harmonic frequency is
described by �n. The macroscopic phase can be written as

�n
mac = − arctan
 sin�
knL�

cos�
knL� − exp��nL�� − arctan

kn

�n
� .

�27�

Figure 6�d� presents in color its derivative as a function of
harmonic order and pressure. These results show a variation
in the phase derivative that qualitatively agrees with the mea-
sured one. For a given pressure �20 mbar, the induced GD
is negative, showing a decrease at low orders, a minimum
around the 23rd harmonic, followed by an increase. We
stress that this satisfactory agreement is obtained with a
simple model, not including the geometric phase due to fo-
cusing or two-dimensional effects. Combined RABITT and
in situ measurements provide a way to really unravel the
effect of propagation in the generation of attosecond pulses.

VI. CONCLUSIONS

We have performed a proof of principle experiment for
the in situ scheme by comparing it to the well established
RABITT method. We have found excellent agreement be-
tween the methods at low generation gas pressures when the
macroscopic phase matching plays a negligible role.

We have found that it is not possible to use the in situ
scheme to predict the final relative timing of the average
attosecond pulses if the generation pressure is high or if it
passes through some unknown dispersive material. It is
equally important to realize that accurate single atom mea-
surements cannot be conducted at high generation gas pres-
sures with the RABITT scheme. In a RABITT measurement
there will always be a trade off between the number of har-
monic photons generated and their phase perturbation from
propagation through the generation cell.

The advantages and disadvantages of the two schemes
become quite clear when the generation pressure is high and
one could argue that both schemes are needed for a more
complete understanding of the attosecond pulse production
and propagation.
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We study photoionization of argon atoms excited by attosecond pulses using an interferometric

measurement technique. We measure the difference in time delays between electrons emitted from the

3s2 and from the 3p6 shell, at different excitation energies ranging from 32 to 42 eV. The determination of

photoemission time delays requires taking into account the measurement process, involving the interac-

tion with a probing infrared field. This contribution can be estimated using a universal formula and is

found to account for a substantial fraction of the measured delay.

DOI: 10.1103/PhysRevLett.106.143002 PACS numbers: 32.80.Rm, 32.80.Qk, 42.65.Ky

The interaction of light with matter is an essential pro-
cess in nature and, in particular, the photoelectric effect has
been studied during decades using synchrotron radiation
[1]. The development of ultrashort light pulses in the atto-
second range allows scientists to tackle temporal aspects of
electron transitions in atoms, molecules, and more com-
plex systems. Cavalieri et al. [2] investigated photoemis-
sion from the valence and the conduction band in tungsten
crystals using single attosecond pulses and an infrared (ir)
probing field through the streaking technique [3]. Recently,
Schultze et al. [4] implemented the same technique to
study photoemission from the 2s2 and 2p6 shells in neon
at a pulse energy of 100 eV. They measured a difference in
photoemission time delays equal to 21 as, a value which is
significantly larger than the expected theoretical value, as
further discussed in a series of theoretical articles [5–8].

In this Letter, we examine photoemission of electrons
from the 3s2 and 3p6 shells in argon. Our method uses a
frequency comb of high-order harmonics with photon en-
ergies varying from 32 to 42 eV for the photoionization and
a weak ir field for probing the outgoing electrons. It is
based on interferometry and presents analogies with co-
herent control schemes used for phase measurements close
to resonant states [9–11]. Here we explore single photo-
ionization in the threshold region for the 3s2 shell, where
one expects large variation in photoemission times. The
measurement shows a delay between the ionization from
the 3s2 and 3p6 shells which varies with photon energy. We
investigate the influence of the interaction with the weak ir
field, which is needed to do the interferometric measure-
ment and get the temporal information. Probing the out-
going electron wave packet (EWP), even with a weak ir
field, affects electron motion and therefore the measured
delay. Fortunately, this effect can be analytically calculated
and takes a universal form, that allows us to disentangle the
different effects and gives us access to the single-photon
ionization time, also called Wigner time [12,13].

The basic principle of our experiment is shown in Fig. 1.
We ionize argon using a comb of high-order harmonics.
With a central frequency of the harmonic comb above the
binding energy of the 3s shell we simultaneously create
two independent EWPs, one originating from the 3s2 and
one from the 3p6 shell. The presence of a fraction of the
fundamental laser field with frequency ! induces the for-
mation of sideband peaks due to two-photon transitions
including absorption or emission of an ir photon [14,15].
Two different and interfering quantum paths involving
consecutive harmonics lead to the same sideband (see
Fig. 1). When changing the delay � between the harmonic
comb and the laser field, the sideband signal from a given
shell is modulated as [16]

Sð�Þ ¼ �þ � cos½2!ð�� �A � �IÞ�; (1)

FIG. 1 (color online). Principle of the measurement. Two
EWPs originating from different shells are simultaneously cre-
ated using the same comb of high-order harmonics. The out-
going EWPs are further probed with a weak ir field. For
simplicity only two harmonics are indicated. Also shown is the
experimental harmonic spectrum used.
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where �, � are two constants independent of �. The term
�A is proportional to the difference in phase between
consecutive harmonics and describes the group delay of
the attosecond pulses, while �I represents the atomic delay
due to the two-photon ionization process [17]. As we will
show below �I can be connected to the Wigner time delay
�W for the single-photon ionization. The knowledge of �A
as well as of the absolute value of the delay � would enable
us to determine �I directly. However, these variables are
difficult to obtain separately. The simultaneous measure-
ment of the two EWPs allows us to cancel the influence
of the attosecond group delay �A and to determine
�Ið3sÞ � �Ið3pÞ at the same photon energy, i.e., at kinetic
energies separated by the difference in binding energy
between the two shells (13.5 eV).

Our experiments were performed with a 800 nm, 30 fs
titanium-sapphire laser system [18]. High-order harmonics
were generated in a pulsed Ar gas cell and spatially filtered
using a small aperture [19]. We used a 0:2 �m thick
chromium thin film to select a 10 eV-broad spectral win-
dow corresponding to harmonic 21 to 27 at 38 eV central
energy (see Fig. 1). This filter was chosen to separate the
wave packets emitted from the 3s and 3p shells in energy.
The comb of four phase-locked harmonics, corresponding
to a train of attosecond pulses with a 450 as duration, was
focused by a toroidal mirror into the sensitive region of a
magnetic bottle electron spectrometer containing a diffu-
sive Ar gas jet. Part of the laser field was extracted prior to
the high-order harmonic generation and recombined colli-
nearly with the harmonics with a variable time delay �. The
precision of our measurement does not depend on the
duration of the attosecond extreme-ultraviolet (xuv) pulses
but on the interferometric stability of our experiment,
estimated to be 50 as.

Figures 2(a) and 2(b) present electron spectra as a func-
tion of the delay � between the xuv and the ir pulses. The
low-energy spectrum in Fig. 2(a) shows electron peaks at
energies corresponding to single-photon ionization from
the 3s shell by the harmonics and additional sideband
peaks due to two-photon transitions. The high-energy
part of the spectrum shown in Fig. 2(b) presents the corres-
ponding photoelectron spectra for 3p ionization. Although
simultaneously recorded the results are presented sepa-
rately due to the unequal signal strength caused by the
difference in cross section and detector sensitivity (note the
different color scales). For both channels the sideband
signal oscillates, allowing us to extract the delay by
Fourier transform along the time axis for a weak ir field
[20]. The ir intensity was estimated to be well below
1012 W cm�2. Figure 2(c) presents the delays obtained
for the scan shown in (a) and (b), corrected for the influ-
ence of the Cr filter, which is positively dispersive in this
region [21]. The variation in delay reflects mainly the
positive chirp of the attosecond pulses. The main experi-
mental result of the present work is the significant offset

between the delays measured for the two wave packets. To
emphasize this result, we show as a dashed line the
3p delays shifted down in energy by 13.5 eV. Taking the
difference between the measured delays at the same exci-
tation energy allows us to eliminate the attosecond chirp
and to reduce the effect of temporal drifts in the interfer-
ometer. Averaging over five independent measurements,
we determine a difference in delays �Ið3sÞ � �Ið3pÞ equal
to �40� 10 as for sideband 22, �110� 10 as for side-
band 24, and �80� 30 as for sideband 26.
To understand the meaning of these time delays, we need

to establish the connection between single-photon ioniza-
tion and the two-photon ionization process used in the
measurement. The phase of the transition matrix element
describing a single ionization process towards a final state
with angular momentum ‘ is the scattering phase �‘, i.e.,
the phase accumulated by the photoelectron when escaping
from the atom. Its energy derivative �W ¼ @@�‘ð�Þ=@�
represents the ‘‘photoionization time delay’’ also called
Wigner time delay [12,13]. Clearly, both �‘ and �W de-
pend on the details of the atomic potential and their
computation remains a challenge for theory. Using
second-order perturbation theory, the transition matrix ele-
ment for two-photon ionization involving absorption of a
harmonic photon !H and an ir photon ! from an initial
state ’i to a continuum state ’~k with asymptotic momen-

tum ~k can, using atomic units, be written as

Mð2Þ
a ð ~kÞ¼�iELEH lim

"!0þ

XZ
n

h’~kj ~� � ~rj’nih’nj ~� � ~rj’ii
�iþ!H��nþ i"

: (2)

The complex amplitudes of the laser and harmonic fields
are denoted EL and EH and ~� is their common polarization
vector. The energies of the initial and intermediate states
are denoted �i and �n, respectively. The integral sum is
performed over all possible intermediate states ’n.

FIG. 2 (color). Energy spectra as a function of delay from
electrons liberated from the 3s shell (a) and the 3p shell (b),
respectively. (c) Retrieved delays corrected for the Cr group
delay. Also shown are the 3p delays shifted down in energy for
comparison with the 3s delays (dashed line).
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The index a indicates that we first discuss a two-photon
process with absorption of the ir photon.

We consider the channels s ! p ! ‘ with ‘ ¼ s, d.
Using spherical coordinates, separating radial and angular
parts, and expanding the final wave function into partial
waves, the transition matrix element becomes

Mð2Þ
a ð ~kÞ ¼ �iELEH

X
‘¼0;2

C‘0Y‘0ðk̂Þei�‘ðkÞTð2Þ
a ðkÞ; (3)

where Y‘0 is a spherical harmonic,C‘0 is the corresponding
angular coefficient, and �‘ is the scattering phase of the
final state. The radial two-photon transition matrix element

Tð2Þ
a ðkÞ can be expressed as [15,17]

Tð2Þ
a ðkÞ¼XZ

n

hRk‘jrjRn1ihRn1jrjRi0i
�iþ!H��nþ i"

¼hRk‘jrj�ka1i: (4)

In the right part of Eq. (4) we introduce the perturbed wave
function �ka1 with the wave number ka such that k2a=2 ¼
�i þ!H ¼ k2=2�! (see Fig. 1) [22]. To get an estimate

of the phase of Tð2Þ
a , we consider the asymptotic behavior of

the wave functions involved in Eq. (4). The perturbed wave
function �ka1 is an outgoing wave [23,24]

lim
r!1�ka1ðrÞ / ei½kar�1=2�þ1=ðkaÞ lnð2karÞþ�1ðkaÞ�; (5)

while Rk‘ is real with an asymptotic behavior:

lim
r!1Rk‘ðrÞ / sin

�
kr� ‘

2
�þ 1

k
lnð2krÞ þ �‘ðkÞ

�
: (6)

The factor ‘�=2 arises from the centrifugal potential,
while lnð2krÞ=k is a correction due to the long-range
Coulomb potential. Using Eqs. (3)–(6) we find an approxi-

mate expression for Mð2Þ
a ðkÞ

Mð2Þ
a ðkÞ / ei�1ðkaÞ|fflffl{zfflffl}

ðIÞ
�

�
i

ka � k

�
iz ð2kÞi=k
ð2kaÞi=ðkaÞ

�ð2þ izÞ
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

ðIIÞ

; (7)

where z ¼ 1=ka � 1=k and �ðzÞ is the complex gamma
function. The first phase term (I) is the scattering phase of
the intermediate state and identical to the phase of the
corresponding one-photon ionization. The phase of term
(II) can be assigned to the laser-driven transition connect-
ing the two continuum states in the presence of the long-
range Coulomb potential, ’cc

a . It is independent of the
short-range behavior of the atomic potential and therefore
universal. Corrections to this approximation due to the core
are expected to become important only at energies close to
threshold.

The phase of the two-photon matrix elementMð2Þ
e for the

second pathway, i.e., absorption of an harmonic photon!H

followed by emission of an ir photon! via an intermediate
state with wave number k2e=2 ¼ k2=2þ! (see Fig. 1),
can be derived in a similar manner. The total interference

signal is obtained by angular integration of jMð2Þ
a þMð2Þ

e j2.
It can be written as Eq. (1), with

�I ¼ �1ðkeÞ � �1ðkaÞ
2!|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
�W

þ ’cc
e ðkÞ � ’cc

a ðkÞ
2!|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
�cc

: (8)

This result gives an intuitive understanding of the ioniza-
tion time �Ið3sÞ. It can be expressed as the sum of the
Wigner time delay �W for one-photon ionization 3s ! �p
and an additional continuum-continuum delay �cc inherent
to the measuring process. This analytical derivation can be
easily generalized to other ionization channels.
Figure 3 shows the delays involved in the three ioniza-

tion channels 3p ! �s (a), 3p ! �d (b), and 3s ! �p (c)
in Ar as a function of kinetic energy. The Wigner time
delay �W (dashed) is obtained by taking the derivative of
the scattering phase (Coulomb phase plus phase shift taken
from [25]). For comparison, we also show in (d) the delays
for the pathway 1s ! �p in hydrogen in the same energy
region, using the Coulomb phase. The continuum-
continuum delay �cc (dash-dotted) is calculated for a
800 nm laser wavelength and identical for all the channels
and atoms. The solid line indicates �I as the sum of the two
contributions. The Wigner time delay variation can be
nicely and intuitively interpreted. Low-energy electrons
take a longer time to escape from a given shell than
high-energy electrons. Furthermore, electrons escaping to
a channel with higher angular momentum take a longer
time than those escaping to a channel with low angular
momentum because of the centrifugal barrier. The
continuum-continuum delay has the opposite behavior

FIG. 3 (color online). Computed delays associated with the
following ionization channels: (a) 3p ! �s, (b) 3p ! �d,
(c) 3s ! �p in Ar, and (d) 1s ! �p in H. The dashed lines
(red) are the one-photon Wigner time delays. The dash-dotted
lines (blue) represent the estimated delays induced by the
measurement �cc. The sum of the two delays is shown as a solid
line (black). The dotted line (black) in (d) is the result of an exact
calculation in H.
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and leads to an apparent quicker escape for the low-energy
electrons. Finally, we also indicate in Fig. 3(d) results from
exact calculations in H (dotted line). The comparison
between the solid and dotted lines gives an estimation of
the error made in considering only the asymptotic behav-
iors of the perturbed and final wave functions. For the
energy range considered in the present work the asy-
mmetry parameter remains close to 2 [26], which indi-
cates that the ionization channel 3p ! �d dominates over
3p ! �s. Neglecting the 3p ! �s channel, we calculate
�Ið3sÞ � �Ið3pÞ at the same excitation energy [Eq. (8)].
Figure 4 presents the approximated delays (solid line),
together with the experimental results (r). The experimen-
tal results at the two highest energies agree well with the
results of our calculation, indicating that the scattering
phases [25] and our approximated continuum-continuum
transition are reliable in this region. The lowest energy
point, however, lies several standard deviations away from
the calculated value. In this region the core may play a
more important role for the continuum-continuum transi-
tion, and the Wigner time delays may differ from those
calculated in [25]. In addition, the finite difference ap-
proximation to the Wigner time delay in Eq. (8) might
break down in the presence of sharp resonances [27]. Using
our experimental measurements combined with our esti-
mated continuum-continuum delays, we can tentatively
deduce the difference in single photoemission delays to
be equal to 140 as at 34 eV and �20 as at 37 and 40 eV.

In conclusion, we have performed experimental mea-
surements of photoemission from the 3s2 and 3p6 shells in
Ar, using interferometry with a weak ir field to probe the
created EWPs. We identify two contributions to the
measured delays: the Wigner time delay and a delay in-
herent to the measurement process. Both contributions are
most important near threshold and vanish as the energy

increases. We believe that the work presented here will
stimulate further experiments, aiming at measuring photo-
emission delays in a variety of systems, and providing data
that could be compared to advanced theoretical
calculations.
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FIG. 4 (color online). Comparison between the measured de-
lay differences for ionization of Ar from the 3s and 3p shells
(diamonds) with calculations performed according to the ap-
proximate theory developed in this work (solid black line). Also
shown is the delay expected for one-photon ionization (dashed
red line) and the laser-driven continuum-continuum transition
(dash-dotted blue line).
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We present experimental measurements and theoretical calculations of photoionization time de-
lays from the 3s and 3p shells in Ar in the photon energy range of 32-42 eV. The experimental
measurements are performed by interferometry using attosecond pulse trains and the infrared laser
used for their generation. The theoretical approach includes intershell correlation effects between the
3s and 3p shells within the framework of the random phase approximation with exchange (RPAE).
The connection between single-photon ionization and the two-color two-photon ionization process
used in the measurement is established using the recently developed asymptotic approximation for
the complex transition amplitudes of laser-assisted photoionization. We compare and discuss the
theoretical and experimental results especially in the region where strong intershell correlations in
the 3s→ kp channel lead to an induced “Cooper” minimum in the 3s ionization cross-section.

I. INTRODUCTION

Attosecond pulses created by harmonic generation in
gases [1, 2] allow us to study fundamental light-matter
interaction processes in the time domain. When an ultra-
short light pulse impinges on an atom, a coherent ultra-
broadband electron wave packet is created. If the fre-
quency of the pulse is high enough, the electronic wave
packet escapes by photoionization [3]. As in ultrafast op-
tics, the group delay of an outgoing electron wave packet
can be defined by the energy derivative of the phase of
the complex photoionization matrix element. When pho-
toionization can be reduced to one non-interacting angu-
lar channel (L), this phase is the same as the scattering
phase ηL, which represents the difference between a free
continuum wave and that propagating out of the effective
atomic potential for the L-angular channel. In fact, the
concept of time delay was already introduced by Wigner
in 1955 to describe s-wave quantum scattering [4]. In
collision physics, with both ingoing and outgoing waves
the (Wigner) time delay is twice the derivative of the
scattering phase.

In general, photoionization may involve several
strongly interacting channels. Only in some special cases,
the Wigner time delay can be conveniently used to char-
acterize delay in photoemission. One such case might be
valence shell photoionization of Ne in the 100 eV range
[5, 6]. In this case, there is no considerable coupling be-
tween the 2s → εp and 2p → εs or εd channels and εd
is strongly dominant over εs, following Fano’s propensity
rule [7]. The case of valence shell photoionization of Ar in
the 40 eV range [8] is more interesting. In this case, the
3s photoionization is radically modified by strong inter-
shell correlation with 3p [9]. As a result, the 3s pho-
toionization cross-section goes through a deep “Cooper”
minimum at approximately 42 eV photon energy [10].
Such a feature is a signature of inter-shell correlation and
cannot be theoretically described using any independent
electron, e.g. Hartree-Fock (HF) model.

Recent experiments [5, 8] reported the first measure-
ments of delays between photoemission from different
subshells from rare gas atoms, thus raising considerable

interest from the scientific community. Different meth-
ods for the measurements of time delays were proposed,
depending on whether single attosecond pulses or at-
tosecond pulse trains were used. The streaking tech-
nique consists in recording electron spectra following ion-
ization of an atom by a single attosecond pulse in the
presence of a relatively intense infrared (IR) pulse, as
a function of the delay between the two pulses [11, 12].
Temporal information is obtained by comparing streak-
ing traces from different subshells in an atom [5] or from
the conduction and valence bands in a solid [14]. On
the other hand, the so-called RABBIT (Reconstruction
of attosecond bursts by interference of two-photon transi-
tions) method consists in recording photoelectron above-
threshold-ionization (ATI) spectra following ionization
of an atom by a train of attosecond pulses and a weak
IR pulse, at different delays between the two fields [15].
Temporal information on photoionization is obtained by
comparing RABBIT traces from different subshells in an
atom [8]. The name of the technique, which we will use
throughout, refers to its original use for the measurement
of the group delay of attosecond pulses in a train [16].

Both methods involve absorption or stimulated emis-
sion of one or several IR photons, and it is important to
understand the role of these additional transitions for a
correct interpretation of the measured photoemission de-
lays. A temporal delay difference of 21 as was measured
for the photoionization from the 2s and 2p shells in neon
using single attosecond pulses of 100 eV central energy
[5]. Interestingly, the electron issued from 2p shell was
found to be delayed compared to the more bound 2s elec-
tron. Similarly, delay differences on the order of ∼ 100 as
were measured for the photoionization from the 3s and
3p shells in argon using attosecond pulse trains with cen-
tral energy around 35 eV. Again, the 3p electron appears
to be delayed relative to the 3s-electron, with a difference
which depends on the excitation energy [8].

These experimental results stimulated several theoret-
ical investigations, ranging from advanced photoioniza-
tion calculations, including correlations effects [6], time-
dependent numerical approaches [5, 17–19] to semi- ana-
lytical developments aiming at understanding the effect
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of the IR field on the measured time delays [20–22]. The
picture which is emerging from this productive theoreti-
cal activity is that when the influence of the IR laser field
is correctly accounted for, such time delay measurements
may provide very interesting information on temporal as-
pects of many-electron dynamics.

The present work reports theoretical and experimental
investigation of photoionization in the 3s and 3p shells in
argon in the 32-42 eV photon energy range. Besides pro-
viding a more extensive description of the experimental
and theoretical methods in [8], we improve the results in
three different ways:

• We performed more precise measurements using a
stabilized Mach- Zehnder interferometer [23] for the
RABBIT method. The stabilization allows us to
take scans during a longer time and thus to extract
the phase more precisely. Some differences with the
previous measurements are found and discussed.

• For the comparison with theory, we determined the
phases of the single-photon ionization amplitudes
using the Random Phase Approximation with Ex-
change (RPAE) method, which includes intershell
correlation effects [9, 24, 25]. This represents a
clear improvement to the calculations presented in
[8], using Hartree-Fock data [26], especially in the
region above 40 eV where photoionization of Ar
passes through an interference minimum, owing to
3s-3p intershell correlation effects.

• Finally, we improved our calculation of the phase of
a two-photon ionization process, thus making a bet-
ter connection between the experimental measure-
ments and the single photoionization calculated
phases [21].

The paper is organized as follows. Section II presents
the experimental setup and results. Section III describes
the phase of one- and two-photon ionization processes
using perturbation theory in an independent-electron ap-
proximation. Section IV includes inter-shell correlation
using the RPAE method. A comparison between theory
and experiment is presented in Section V.

II. EXPERIMENTAL METHOD AND RESULTS

The experiments were performed with a Tita-
nium:Sapphire femtosecond laser system delivering
pulses of 30 fs (FWHM) duration, centered at 800 nm,
with 1 kHz repetition rate, and a pulse energy of ∼ 3 mJ.
A beam splitter divides the laser output into the probe
and the pump arm of a Mach-Zehnder interferometer (see
Fig. 1). The energy of the probe pulses can be adjusted
by a λ/2-plate followed by an ultra-thin polarizer. The
pump arm is focused by a f = 50 cm focusing mirror into
a pulsed argon gas cell, synchronized with the laser repe-
tition rate, in order to generate an attosecond pulse train
via high-order harmonic generation. An aluminum filter
of 200 nm thickness blocks the fundamental radiation and
subsequently a chromium filter of the same thickness se-
lects photon energies of about 10 eV bandwidth in the
range of harmonics 21 to 27.

The probe and the pump arm of the interferometer
are recombined on a curved holey mirror, transmitting
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mirror

Beam splitter
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stage

Piezo 
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Filter

Toroidal 

mirror
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FIG. 1: (color online) Schematic illustration of our experi-
mental setup.

the pump attosecond pulse train, but reflecting the outer
portion of the IR probe beam. The exact position of
the recombination mirror with respect to the focal po-
sition of the pump arm is essential in order to precisely
match the wavefronts of the probe and XUV (extreme
ultraviolet) beams. A toroidal mirror (f = 30 cm) focuses
both beams into the sensitive region of a magnetic bottle
electron spectrometer (MBES), where a diffusive gas jet
provides argon as detection gas. The relative timing be-
tween the ultrashort IR probe pulses and the attosecond
pulse train can be reproducibly adjusted on a sub-cycle
time scale due to an active stabilization of the pump-
probe interferometer length [23].
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FIG. 2: Electron spectrum obtained by ionizing Ar with four
harmonics of orders 21, 23, 25 and 27. The ionization channels
are shown on the top.

Figure 2 presents an electron spectrum obtained by
ionizing Ar atoms with harmonics selected by both Al
and Cr filters, with orders ranging from 21 to 27. We
can clearly identify three ionization channels towards the
3s2p5, 3s1p6, and 3s23p4n` (n` = 4p or 3d) continua [27].
The corresponding ionization energies are 15.76, 29.2 and
∼ 37.2 eV. Note that the settings of the MBES were here
chosen to optimize the spectral resolution at low energy.
The large asymmetric profile obtained at high electron
energy can be reduced by optimizing the MBES settings
differently. The spectrum due to 3p-ionization is strongly
affected by the behavior of the ionization cross-section in
this region. The relative intensities of the 21st to the 27th

harmonics are approximately 0.2:0.7:1:1.
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FIG. 3: (color online) Electron spectrum as a function of
time delay between the attosecond pulses and the IR laser.
The signal strength is indicated by colors. The spectrum on
the right (3p) follows that on the left (3s) with a factor of 6
reduction in the color code, and a slight overlap in energy.

Figure 3 shows a typical RABBIT spectrogram, i.e.
electron spectra as a function of delay between pump and
probe pulses. The electron yield is indicated as colors.
Compared to the spectra obtained with the harmonics
only, Fig. 3 includes electron peaks at sideband frequen-
cies, including additional absorption or emission of one
IR photon (see Fig. 4). The intensity of these sidebands
oscillates with a delay at a frequency equal to 2ω, ω being
the IR laser photon energy, according to

S2q(τ) = α+ β cos(2ωτ −∆φ2q −∆θ2q), (1)

where α and β are constant quantities, independent of
the delay and 2q represents the total number of IR pho-
tons involved, i.e. an odd number to create harmonic
2q − 1 or 2q − 1 plus or minus one IR photon. ∆φ2q de-
notes the phase difference between two harmonics with
order 2q+1 and 2q−1, while ∆θ2q arises from the differ-
ence in phase between the amplitudes of the two inter-
fering quantum paths leading the same final state [Fig. 4
(a)]. At high IR intensity, other quantum paths involv-
ing more than one IR photon become possible and may
change the retrieved RABBIT phase [13]. We kept the
IR laser intensity low enough to avoid such higher-order
effects, which can be identified through oscillations at
higher frequencies. τA = ∆φ2q/2ω can be interpreted as
the group delay of the attosecond pulses [16]. We de-
fine in a similar way τ (2) = ∆θ2q/2ω arising from the
two-photon ionization process. Since the same harmonic
comb is used for ionization in the 3s and 3p shells, the in-
fluence of the attosecond group delay can be subtracted
and the delay difference τ (2)(3s) − τ (2)(3p) can be de-
duced. The results of these measurements are indicated
in Table 1 for sidebands 22, 24 and 26. We also indicate
in the same table, previous results from [8]. It is quite dif-
ficult in such an experiment to estimate the uncertainty
of our measurement. The stability of the interferometer
is measured to be ∼ 50 as. The relative uncertainty in
comparing the phase offsets of different sideband oscilla-
tions is estimated to be of the same magnitude or even
slightly better.
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FIG. 4: (color online) Energy level scheme of the processes
discussed in the present work; (a) RABBIT principle; (b)
Different channels in 2-photon ionization from the 3s and 3p
subshells.

TABLE I: Time delay measurements

Sideband 22 24 26
Photon energy (eV) 34.1 37.2 40.3

τ (2)(3s)− τ (2)(3p)
this work (as) -80 -100 10

τ (2)(3s)− τ (2)(3p),
[8] (as) -40 (-90) -110 -80

τcc(3s)− τcc(3p) (as) -150 -70 -40

τ (1)(3s)− τ (1)(3p)(as) 70 -30 50

Our measurements agree well with those of [8] for side-
band 24. For sideband 22, the measurements performed
in [8] could not resolve the sideband peak from electrons
ionized by harmonic 27 towards the continuum 3s23p4n`
(see Fig. 3). A new analysis done by considering only
the high energy part of the sideband peak leads to the
number indicated in parenthesis in the table, which is in
good agreement with the present measurement. There is,
however, a difference for the delay measured at sideband
26. We will comment on this difference in Section V.

III. THEORY OF ONE AND TWO-PHOTON
IONIZATION

To interpret the results presented above, we relate the
one-photon ionization delays to the delays measured in
the experiment. Using lowest-order perturbation theory,
the transition matrix elements in one and two-photon
ionization are

M (1)(~k) = −iEΩ〈~k|z|i〉, (2)

M (2)(~k) = −iEωEΩ lim
ε→0+

∫∑

ν

〈~k|z|ν〉〈ν|z|i〉
εi + Ω− εν + iε

. (3)

Atomic units are used throughout. We choose the quan-
tization axis (z) to be the (common) polarization vector
of the two fields. The complex amplitudes of the laser
and harmonic fields are denoted by Eω and EΩ, with
photon energies ω and Ω, respectively. The initial state

is denoted |i〉 and the final state |~k〉. The energies of
the initial and intermediate states are denoted εi and εν ,
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respectively. The sum in M (2) is performed over all pos-
sible intermediate states |ν〉 in the discrete and contin-
uum spectrum. The infinitesimal quantity ε is added to
ensure the correct boundary condition for the ionization
process, so that the matrix element involves an outgoing
photoelectron. The magnitude of the final momentum is
restricted by energy conservation to ε = k2/2 = Ω + εi
for one photon and ε = k2/2 = Ω +ω+ εi for two-photon
absorption. The two-photon transition matrix element
involving emission of a laser photon can be written in
the same way, with ω replaced by −ω in the energy con-
servation relation and Eω replaced by its conjugate.

The next step consists in separating the angular and
radial parts of the wavefunctions. The different angular
channels involved are indicated in Fig. 4(b). We split
the radial and angular dependence in the initial state as
〈r|i〉 = Ylimi(r̂)Rnili(r) and use the partial wave expan-
sion in the final state

〈r|~k〉 = (8π)
3
2

∑

L,M

iLe−iηL(k)Y ∗LM (k̂)YLM (r̂)RkL(r). (4)

We perform the spherical integration in Eq. (1) and ob-
tain

M (1)(~k) ∝
∑

L=li±1
M=mi

eiηL(k)i−LYLM (k̂)

(
L 1 li

−M 0 mi

)
T

(1)
L (k), (5)

where the reduced dipole matrix element is defined as

T
(1)
L (k) = L̂l̂i

(
L 1 li
0 0 0

)
〈RkL|r|Rnili〉 (6)

using 3j-symbols and with the notation l̂ =
√

2l + 1. The
reduced matrix element (6) is real. When the dipole tran-
sition with the increased momentum L = li + 1 is domi-
nant, which is often the case [7], the phase of the complex
dipole matrix element M (1) is simply equal to

arg[M (1)(k)] = ηL(k)− Lπ/2. (7)

(There is also a contribution from the fundamental field
which we do not write here, as well as trivial phases, e.g
from the spherical harmonic whenM 6= 0 [21]). Similarly,
for two-photon ionization,

M (2)(~k) ∝
∑

L=λ±1,λ=li±1
M=µ=mi

eiηL(k)i−LYLM (k̂) (8)

(
L 1 λ

−M 0 µ

)(
λ 1 li
−µ 0 mi

)
T

(2)
Lλ (k).

where

T
(2)
Lλ (k) = L̂λ̂2 l̂i

(
L 1 λ
0 0 0

) (
λ 1 li
0 0 0

)
〈RkL|r|ρκλ〉.

(9)
Here, we have introduced the radial component of the
perturbed wave function,

|ρκλ〉 = lim
ε→0+

∫∑

ν

|Rνλ〉〈Rνλ|r|Rnili〉
εi + Ω− εν + iε

, (10)

where the sum is performed over the discrete and contin-
uum spectrum. κ denotes the momentum corresponding
to absorption of one harmonic photon such that the en-
ergy denominator goes to zero (κ2/2 = εi + Ω). The
summation can be decomposed into three terms, the dis-
crete sum over states with negative energy, a Cauchy
principal part integral where the pole has been removed
(both these terms are real) and a resonant term which
is purely imaginary. The important conclusion is that
in contrast to the radial one-photon matrix element, the
radial two-photon matrix element is a complex quantity.

To evaluate the phase of this quantity, as explained in
more details in [21], we approximate RkL(r) and ρκλ(r)
by their asymptotic values. We have, for example,

ρκλ(r) ≈ −
√

2

πκ
〈Rκλ|r|Rnili〉

1

r
exp

{
i

[
κr +

ln(2κr)

κ
+ ηλ(κ)− πλ

2

]}
.(11)

This allows us to evaluate analytically the integral
〈RkL|r|ρκλ〉 in Eq. (9). We obtain

arg
[
T

(2)
Lλ (k)

]
≈ (L− λ)

π

2
+ηλ(κ)− ηL(k) + φcc(k, κ), (12)

where φcc(k, κ) is the phase associated to a continuum-
continuum radiative transition resulting from the absorp-
tion of IR photons in the presence of the Coulomb po-
tential. It is independent from the characteristics of the
initial atomic state, in particular its angular momentum.
An important consequence is that, when inserting the
asymptotic form Eq. (11) in Eq. (8), the scattering phase
ηL is canceled out, so that the total phase will not depend
on the angular momentum of the final state. In the case
of a dominant intermediate channel λ, the phase of the
complex two-photon matrix element M (2)(k) is equal to

arg[M (2)(k)] = ηλ(κ)− λπ/2 + φcc(k, κ). (13)

It is equal to the one-photon ionization phase towards the
intermediate state with momentum κ and angular mo-
mentum λ plus the additional “continuum-continuum”
phase. The difference of phase which is measured in the
experiment is therefore given by

∆θ2q = ηλ(κ>)− ηλ(κ<) + φcc(k, κ>)−φcc(k, κ< (14)

where κ>, κ< are the momenta corresponding to the
highest (lowest) continuum state in Fig. 4(a). Dividing
this formula by 2ω, we have

τ (2)(k) = τ (1)(k) + τcc(k), (15)

where

τ (1)(k) =
ηλ(κ>)− ηλ(κ<)

2ω
, (16)

is a finite difference approximation to the Wigner time
delay dηλ/dε and thus reflects the properties of the elec-
tronic wave packet ionized by one-photon absorption into
the angular channel λ. τ (2) also includes a contribution
from the IR field which is independent of the angular
momentum,

τcc(k) =
φcc(k, κ>)− φcc(k, κ<)

2ω
. (17)
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FIG. 5: (color online) Continuum-continuum delay τcc as a
function of excitation photon energy for the two subshells 3s
(red solid line) and 3p (blue dashed line) for an IR photon
energy of 1.55 eV (800 nm wavelength).

We refer the reader to [21] for details about how to
calculate τcc. Fig. 5 shows τcc as a function of photon
energy, for the two subshells 3s and 3p and for the IR
photon energy ω = 1.55 eV used in the experiment. The
corresponding difference in delays for the 3s and 3p sub-
shells is only due to the difference in ionization in en-
ergy between the two shells (13.5 eV). We also indicate
in Table I the measurement-induced delays for the three
considered sidebands.

The processes discussed in this section can be repre-
sented graphically by Feynman-Goldstone diagrams dis-
played Fig. 6(a,b). The straight lines with arrows repre-
sent electron (arrow pointing up) or hole (arrow pointing
down) states, respectively. The violet and red wavy lines
represent interaction with the XUV and IR fields. We
are neglecting here two-photon processes where the IR
photon is absorbed first [21].

IV. INTERSHELL CORRELATION EFFECTS

To include inter-shell correlation effects, we use the
random phase approximation with exchange (RPAE) [9].
In this approximation, the dipole matrix element of sin-
gle photoionization is replaced by a “screened” matrix
element 〈k|Z|i〉, which accounts for correlation effects
between the 3s and 3p subshells. These screened ma-
trix elements, represented graphically in Fig. 6(c), are
defined by the self-consistent equation:

〈~k|Z|i〉 = 〈~k|z|i〉+ lim
ε→0+

∫∑

ν

[
〈ν|Z|j〉〈j~k|V |νi〉
Ω− εν + εj + iε

−〈j|Z|ν〉〈ν
~k|V |ji〉

Ω + εν − εj

]
, (18)

where i and j are 3s or 3p or vice versa and V = 1/r12 is
the Coulomb interaction. The sum is performed over the
discrete as well as continuum spectrum. The Coulomb in-

teraction matrices 〈j~k|V |νi〉 and 〈ν~k|V |ij〉, represented

+ 

i k 

Ω 

j ν 

i k 

Ω 
j ν 

i k 
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d) 
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FIG. 6: (color online) Feynman-Goldstone diagrams repre-
senting one-photon (a) and two-photon (b) ionization pro-
cesses. (c) Diagrammatic representation of the RPAE equa-
tions. The second and third diagrams on the right hand side
refer to time-forward and time-reversed respectively. (d) Two-
photon ionization including intershell correlation effects. (e)
Two-photon ionization with the XUV photon absorbed after
the IR photon.

by dashed lines in Fig. 6(c), describe the so-called time-
forward and time-reversed correlation processes (Note
that the time goes upwards in the diagrams). If we re-
place Z by z in the right term in Eq. (18), we obtain a
perturbative expansion to the first order in the Coulomb
interaction. More generally, the use of the self-consistent
screened matrix elements [Eq.(18)] implies infinite par-
tial sums over two important classes of so-called “bubble”
diagrams. Each bubble consists of an electron-hole pair
νj, which interacts via 1/r12 with final electron-hole pair
~ki. The energy integration in the time-forward term of
Eq. (18) (first line) contains a pole and the screened ma-
trix element acquires an imaginary part and therefore an
extra phase. For a single dominant channel L, the phase
of the one-photon matrix element [see Eq.(7)] becomes:

arg[M (1)(k)] = ηL(k) + δL(k)− Lπ/2, (19)

where δL(k) = δi→kL denotes the additional phase due to
the correlations accounted within the RPAE. The pho-
toemission time delay is then determined by the sum of
two terms:

τ (1) =
dηL
dε

+
dδL
dε

. (20)

The first term represents the time delay in the indepen-
dent electron approximation, equal to the derivative of
the photoelectron scattering phase in the combined field
of the nucleus and the remaining atomic electrons. The
second term is the RPAE correction due to inter-shell
correlation effects.

We solve the system of integral equations (18) nu-
merically using the computer code developed by Amu-
sia and collaborators [28]. The basis of occupied atomic
states (holes) 3s and 3p is defined by the self-consistent
HF method [29]. The excited electron states are calcu-
lated within the frozen-core HF approximation [30]. We
present some results for one-photon ionization in Fig. 7.
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FIG. 7: (color online) Top panel: The photoionization cross-
sections σ3p→kd calculated in the HF (blue dotted line) and
RPAE (red solid line) approximations, are compared with the
σ3p→ks cross-sections (HF, green open circles, RPAE, pur-
ple dashed line). The experimental data for the σ3p cross-
section are from Ref. [31]. Middle panel: Photoionization
cross-sections σ3s calculated in the HF (blue dotted line)
and RPAE(red solid line) approximations, are compared with
experimental data [10]. Bottom panel: Correlation-induced
phase shifts for the 3s and 3p dipole matrix elements.

On the top panel, we show the partial photoionization
cross-sections from the 3p-state calculated using the HF
and RPAE approximations (see figure caption). From
this plot, we see that the 3p → kd transition is clearly
dominant at low photon energies. Intershell correlation
effects are more important for the 3p → ks than for the
3p → kd transition. The sum of the two partial cross
sections calculated with the RPAE correction (red and
green lines) is very close to the the experimental data
(solid circles) [31]. The middle panel presents the cal-
culated cross-section for 3s-ionization and compares it
to the experimental data from [10]. The RPAE correc-

tion is here essential to reproduce the behavior of the
cross-section which, in this spectral region, is a rapid de-
creasing function of photon energy.

The bottom panel shows the correlation-induced phase
shifts δ3s→kp and δ3p→kd from the same RPAE calcula-
tion. We observe that the RPAE phase correction δ3p→kd
is relatively weak. In contrast, δ3s→kp varies signifi-
cantly with energy, especially near the “Cooper” mini-
mum. This qualitative difference can be explained by
a different nature of the correlations in the 3p and 3s
shells. In the 3p case, the correlation takes place mainly
between the electrons that belong to the same shell with
not much influence of the inter-shell correlation with 3s.
We confirmed this conclusion by performing a separate
set of RPAE calculations with only the 3p shell included.
These calculations lead to essentially the same results for
3p ionization as the complete calculations. In the case of
intrashell correlation, the time-forward process [see Fig.
6(c)] is effectively accounted for by calculating the pho-
toelectron wave function in the field of a singly charged
ion. It is therefore excluded from Eq. (18) to avoid double
count. The remaining time-reversed term [second line in
Eq. (18)] does not contain any poles and therefore does
not contribute to an additional phase to the correspond-
ing dipole matrix element. The small phase δ3p→kd is
due to intershell correlation which is indeed weak. In
contrast, 3s-ionization is strongly affected by correlation
with the 3p shell. Consequently, the RPAE phase correc-
tion δ3s→kp, which comes from the correlation with the
3p shell in the time-forward process, is large and exhibits
a rapid variation with energy (a π phase change) in the
region where the cross section decreases significantly.

Finally, we generalize our theoretical derivation of two-
photon ionization to including the effect of inter-shell
correlation on the XUV photon absorption. As shown
graphically in the diagram in Fig. 6 (d), we replace the
(real) transition matrix element corresponding to one-
XUV photon absorption by a (complex) screened matrix
element, with an additional phase term. As a conse-
quence the phase of the two-photon matrix element be-
comes:

arg[M (2)(k)] = ηλ(κ) + δλ(κ)− λπ/2 + φcc(k, κ). (21)

The time delay measured in the experiment is expressed
as before as τ (2)(k) = τ (1)(k) + τcc(k), with τ (1)(k) mod-
ified by intershell correlation:

τ (1)(k) =
ηλ(κ+)− ηλ(κ−)

2ω
+
δλ(κ+)− δλ(κ−)

2ω
. (22)

Figure 8 presents calculated time delays τ (1) for 3s→
kp, 3p → ks and 3p → kd channels. The ionization de-
lays from the 3p channel do not vary much with photon
energy and remain small. The 3p → ks delay is negli-
gible while it takes about 70 as more time for the wave
packet to escape towards the d channel, due to the an-
gular momentum barrier. The wave packet emitted from
the 3s channel takes considerably more time to escape,
especially in the region above 40 eV, owing to strong
intershell correlation leading to screening by the 3p elec-
trons.
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FIG. 8: (color online) Ionization delay for the three angular
channels 3p→ kd (blue dashed), 3p→ ks (green dashed) and
3s→ kp (red solid line).

V. COMPARISON BETWEEN THEORY AND
EXPERIMENT

We present in Fig. 9 a comparison between our exper-
imental results (see Table 1) and our calculations. The
dashed blue and solid red lines refer to the independent-
electron HF and RPAE calculations, respectively. The
circles refer to the results of [8], while the other symbols
(with error bars both in central energy and delay) are the
results obtained in the present work. Regarding the two
sets of experimental results, they agree very well, except
for that obtained at the highest energy corresponding
to the sideband 26. Our interpretation is that we may
be approaching the rapidly varying feature due to 3s 3p
intershell correlation. Therefore a small change in the
photon energy between the two measurements may lead
to an important change in the delay. The experimental
and RPAE results agree well for the first sideband but
less for the two higher energy sidebands. Surprisingly
and perhaps accidentally the HF calculation gives there
a closer agreement with the experiment.

We now discuss possible reasons for the discrepancy.
Our calculation of the influence of the dressing by the IR
laser field is approximate. It only uses the asymptotic
form of the continuum wave functions (both in the final
and intermediate states), thereby neglecting the effect of
the core. This approximation should be tested against
theoretical calculations, and especially in a region where
correlation effects are important. We also neglect the in-
fluence of the two-photon processes where the IR photon
is absorbed (or emitted) first [32] [see Fig. 6 (e)]. The
corresponding matrix elements are usually small, except
possibly close to a minimum of the cross section, where
the other process, usually dominant, is strongly reduced.
Interestingly, in such a scenario, the IR radiation would

not simply be a probe used for the measurement of the
phase of a one-photon process, but would modify (con-
trol) the dynamics of the photoemission on an attosecond
time scale. Finally, in our theoretical calculation, corre-
lation effects are only accounted for in the single ioniza-
tion process (XUV absorption). Additional correlation

34 36 38 40 42

400

-200

200

0

SB22 SB24 SB26

Photon Energy (eV)

(a
s)

FIG. 9: (color online) Comparison between our theoretical
calculations (dashed blue line, HF, red line, RPAE) and ex-
periments (circles [8], crosses, present work)

effects surrounding the probing, e.g. after the IR photon
is absorbed might play a role.

In conclusion, the results shown above point out to
the need for explicit time-dependent calculations, which
would account for many-electron correlation and include
not only one-photon but also two-photon ionization. We
also plan to repeat these experimental measurements us-
ing attosecond pulses with a large and tunable band-
width. Our results demonstrate the potential of the ex-
perimental tools using single attosecond pulses [5] or at-
tosecond pulse trains [8]. These tools now enable one to
measure atomic and molecular transitions, more specif-
ically, quantum phases and phase variation, i.e. group
delays, which could not be measured previously.
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Abstract

We study the temporal aspects of laser-assisted extreme ultraviolet (XUV) photoionization using attosecond pulses
of harmonic radiation. The aim of this paper is to establish the general form of the phase of the relevant transition
amplitudes and to make the connection with the time-delays that have been recently measured in experiments. We
find that the overall phase contains two distinct types of contributions: one is expressed in terms of the phase-shifts of
the photoelectron continuum wavefunction while the other is linked to continuum–continuum transitions induced by the
infrared (IR) laser probe. Our formalism applies to both kinds of measurements reported so far, namely the ones using
attosecond pulse trains of XUV harmonics and the others based on the use of isolated attosecond pulses (streaking).
The connection between the phases and the time-delays is established with the help of finite difference approximations
to the energy derivatives of the phases. The observed time-delay is a sum of two components: a one-photon Wigner-like
delay and an universal delay that originates from the probing process itself.

1. Introduction

The dynamics of photoionization can now be explored
with unprecedented time resolution thanks to high-order
harmonic-based sources that deliver pulses of XUV radia-
tion with duration in the attosecond range. Recent mea-
surements performed with single attosecond pulses have
shown the existence of an unexpected time-delay between
the single-photon ionization from the 2s and the 2p sub-
shells of Ne atoms in gas phase [1]. The “streak camera”
technique used in these experiments [2] implied nontriv-
ial ejection times of the photoelectrons, depending on the
sub-shell from which they originate. Similar delays be-
tween the ejection times from the 3s and 3p sub-shells
in Ar have been measured also using trains of attosecond
pulses [3], with the help of another technique based on in-
terferometry called RABBIT (Reconstruction of Attosec-
ond Beating By Interference of Two-photon transitions)
[4–6]. In both cases, delays of several tens of attoseconds
have been measured. As photoionization is one of the most
fundamental processes in light-matter interactions, these
results have motivated a large number of theoretical inves-
tigations [7–13].

The two kinds of measurements share many similarities
since they involve a laser-assisted single-photon ionization
process and they rely on a phase-locked IR laser field to

Email addresses: marcus.dahlstrom@fysik.su.se

(J. M. Dahlström), anne.lhuillier@fysik.lth.se (A. L’Huillier),
richard.taieb@upmc.fr (R. Täıeb)

probe the temporal aspects of the XUV photoionization.
However, they differ in the analysis used to determine the
time-delays and in the range of IR laser intensity.

The motivation of the present paper is to present an
unified theoretical analysis of these processes. To achieve
this goal, we shall expose first the theoretical background
which has conducted us to conclude in [3], that in inter-
ferometric measurements, the measured delays arise from
the combination of two distinct contributions: One is re-
lated to the electronic structure of the atomic target while
the other is induced by the measurement process itself.
The first one can be identified as a “Wigner time-delay”
[14, 15] that is directly related to the energy dependence
of the different phase-shifts experienced by the photoelec-
trons ionized from distinct sub-shells in atoms. The other
contribution is induced by the IR laser field that is used
to probe the photoionization process. This latter contri-
bution results from the continuum–continuum transitions
induced by the probe IR laser field in the presence of the
Coulomb potential of the ionic core. When simplifying
the analysis to the cases when the process is dominated
by the asymptotic form of the relevant second-order ma-
trix elements, a characteristic measurement-induced delay
can be identified, that is independent from the details of
the electronic structure of the ionic core. This shows how
the experimental signal can be related to the temporal dy-
namics of one-photon ionization.

Regarding the streaking measurements realized with a
single attosecond pulse of XUV radiation [1], the experi-

Preprint submitted to Elsevier January 21, 2012

103



Theory of Attosecond Delays in Laser-Assisted Photoionization

0

(a)

0

(b)Energy Energy

0

Energy(c)

Figure 1: (a) Laser-assisted photoionization by an attosecond pulse train, corresponding to odd XUV harmonics, H2q−1, where q is a positive
integer. The sideband S2q can be reached by either absorbing H2q−1 and then absorbing a IR laser photon ω or by absorbing H2q+1 and
then emitting ω. The sideband signal, S2q , oscillates as a function of the subcycle-delay, τ , between the attosecond pulses and the IR laser
probe field. (b) Laser-assisted photoionization by a single attosecond pulse, corresponding to a broad XUV continuum. To first order, the
electron is ionized by absorbing one XUV photon, Ω, resulting in a wave packet centered at ε = εi + Ω0. To second order, the electron
may absorb an additional laser photon ω resulting in an upshifted wave packet centered at ε = εi + Ω0 + ω; or it may emit a laser photon
resulting in a downshifted wave packet centered at ε = εi+Ω0−ω. The interference of these three wave packets leads to a modulation, ∆k, of
central momentum of the photoelectron as function of the subcycle-delay, τ , between the laser field and the attosecond pulse. (c) Two-photon
XUV-IR Above-Threshold Ionization from an initial bound state with energy εi, to a final state with energy ε.

mental data were obtained for IR field intensities signifi-
cantly higher than those obtained with attosecond pulse
trains [3]. Understandably, the questions related to the
role of the probe IR field on the photoelectron dynamics
in streaking measurements have motivated several theo-
retical studies [7–13]; see also the earlier papers: [16–19].
Then, a natural issue arises which is to determine to what
extent the “streaking delays” so obtained differ from those
derived from the interferometric data. Although both the
experimental techniques and the theory treatments differ,
it is of interest to compare the two approaches. Indeed,
as we shall show below, a link can be found when re-
ducing the laser intensity of the streaking field so that
one reaches the domain of applicability of the recently
developed Phase-Retrieval by Omega Oscillation Filter-
ing (PROOF) scheme, [20]. An interesting outcome of
our analysis is to show the importance of the long-range
Coulomb potential for understanding the absolute time-
delays in the streaking experiments as well.

The interpretation of the attosecond delays in pho-
toionization relies on our ability to determine the phases
of the relevant transition amplitudes. Thus, before go-
ing into the details of the derivation of such phases, we
shall outline the main features of the two techniques in
Section 2. Then, Section 3 is devoted to the presenta-
tion of the general expressions for two-color, two-photon,
complex transition amplitudes that are relevant for Above-
Threshold Ionization (ATI) in single-active electron sys-
tems. The theoretical background is based on a perturba-
tive approach and the emphasis will be on the derivation of

a closed-form approximate expression that is of interest for
evaluating the phase of the amplitudes. The basis of exact
computations in hydrogen will be outlined, and a simpli-
fied classical treatment will be presented. Applications to
the determination of the relation between the phases and
the time-delays is presented in Section 4. Here we consider
first ionization by an attosecond pulse train and then by a
single attosecond pulse, in the presence of a relatively weak
IR field. This discussion provides an interesting connec-
tion between the two types of measurements. Section 5
contains a comparison of the results extracted from the
approximate evaluation of the delays to the ones deduced
from exact calculations performed in hydrogen from dif-
ferent initial states. Also, we present our conclusions and
perspectives.

2. Laser-Assisted XUV Photoionization: Attosec-
ond Pulse Train vs. Single Attosecond Pulse

The principle of the measurements of the delays using
an attosecond pulse train is illustrated in Fig. 1 (a), which
represents schematically the ionization of an atom in the
simultaneous presence of a set of several XUV (odd) har-
monics and of the IR field, used to generate the harmonics
(atomic units will be used throughout the paper, unless
otherwise stated). In the time domain, both pulses are
“long”, i.e. the IR laser pulse is multi-cycle, with typical
duration of a few tens of femtoseconds, and the XUV har-
monic field is constituted of a train of attosecond pulses
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(or equivalently of a comb of coherent odd harmonic fre-
quencies (2q + 1)ω: H2q+1). Under these conditions, the
photoelectron spectrum consists of equidistant lines sepa-
rated by 2ω that are associated to one-photon ionization
of the target by each harmonic. In-between these lines are
sidebands associated to two-photon transitions involving
the absorption of one harmonic and the exchange of one
IR photon. The signal intensities, S2q, of the sidebands la-
belled 2q vary periodically with the delay τ between the IR
and the harmonic pulses, according to a generic expression
that involves the phases of the fields together with atom-
dependent contributions:

S2q = α+ β cos[2ωτ −∆φ2q −∆θ2q], (1)

where ∆φ2q = (φ2q+1 − φ2q−1) is the phase difference be-
tween the consecutive harmonics H2q+1 and H2q−1 and
∆θ2q is an intrinsic atomic quantity, associated to the dif-
ference of the phases of the transition amplitudes associ-
ated to the distinct quantum paths leading to the side-
band [5].

To make clearer the connection between the above phase
differences and the time-delays we shall discuss here, it is
convenient to rewrite the formula in Eq. (1) under the
form:

S2q = α+ β cos[2ω(τ − τ2q − τθ)], (2)

where τ2q = ∆φ2q/2ω is a finite difference approximation
to the group delay GD = ∂φ/∂Ω of the harmonic radia-
tion at the considered frequency, Ω ≈ 2qω, as presented
in refs. [21, 22]. On the other hand, τθ = ∆θ2q/2ω is an
intrinsic time-delay associated to the atomic phase differ-
ence, ∆θ2q. As reported in [3] and as we shall describe
in more details here, the determination of τθ gives access
to the temporal dynamics of atomic photoionization. Be-
fore closing this brief presentation of the RABBIT scheme,
we stress that the intensities of both fields must be kept
moderate, so that the phases of the transition amplitudes
associated to the sidebands can be derived from a standard
time-dependent perturbation theory calculation, limited to
second-order.

As represented schematically in Fig. 1 (b), streaking
relies on the ionization of the atom by a single attosec-
ond pulse, in the presence of a few-cycle IR pulse. One
requirement to realize streaking is that the effective dura-
tion of the attosecond pulse has to be significantly shorter
than the IR pulse cycle [2] (more rigorously it is actually
the spectral bandwidth of the attosecond pulse that must
be larger than the probe photon frequency). The mea-

surement consists then in recording the momentum, ~kf (t),
of the ejected photoelectron, as deflected by the instanta-
neous IR probe vector potential, ~Aω(t), so that its wave
vector is given approximately by:

~kf ≈ ~k − ~Aω(t), (3)

where ~k is the field-free momentum. We note that this
simple relation is being derived by assuming that the pho-
toelectron does not experience the effects of the residual

Coulomb potential of the ionic core [2]. In this article, we
will recover this streaking phenomenon using an interfero-
metric interpretation, which includes the full effect of the
ionic core, thereby, obtaining the correct absolute delay of
the momentum modulation relative to the probe field.

0

Energy

Figure 2: Sketch of an attosecond photoionization time-delay exper-
iment between two different initial states with energies, εi and εj .
The attosecond XUV field, Ω, ionizes the electron in the presence
of a phase-locked IR laser field, ω. Since the same single attosecond
pulse (or attosecond pulse train) is used to promote the electrons
from either state, the observed delays of the modulation of the cen-
tral momenta (or sidebands), ∆τij(Ω), are directly related to the

atomic delay difference τ
(i)
θ (Ω) − τ (j)θ (Ω) defined in Eq. (2), which,

in turn, is related to the difference of the corresponding two-photon
matrix element phases.

If the XUV field frequency is high enough to ionize
electrons from either one of two valence sub-shells of an
atom (typically the 2s and 2p states in Ne atoms) one
can record two distinct streaking traces corresponding to
the two photoelectron lines associated to each sub-shell.
This situation is schematically displayed in Fig. 2. A de-
lay between the ejection times of the photoelectrons from
the different atomic sub-shells can be determined by com-
paring the corresponding streaking traces, corrected from
possible biases introduced by the experimental procedure
[1]. The same idea can be applied to attosecond pulse
trains, by using the interferometric set-up [3]. We turn
now to the presentation of the theoretical background that
is common to the two kinds of techniques, in the limit of
weak IR probe fields.
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3. Phases of Laser-Assisted Photoionization Tran-
sition Amplitudes

3.1. Two-photon Above-Threshold Ionization

A representative laser-assisted photoionization transi-
tion is depicted in Fig. 1 (c): It displays the sequential ab-
sorption of one XUV harmonic photon with frequency Ω,
followed by the absorption of one IR laser photon with fre-
quency ω. It corresponds to the lowest-order perturbative
amplitude for an Above-Threshold Ionization (ATI) pro-
cess observed when the XUV frequency is larger than the
ionization energy of the system: Ω > Ip. Obviously, other
quantum paths are contributing to this type of two-color
ionization process, e.g. the IR photon can be absorbed be-
fore the XUV photon, but ATI amplitudes of the former
type are dominant in the class of experiments considered
here.

For two fields with the same linear polarization ~ε, it is
natural to choose this direction as the quantization axis ẑ,
and the matrix element associated to the path shown in
Fig. 1 (c), is of the form:

M(~k; εi + Ω) =
1

i
EωEΩ lim

ε→0+

∫∑

ν

〈 ~k | z | ν 〉〈 ν | z | i 〉
εi + Ω− εν + iε

,

(4)

where EΩ and Eω are the complex amplitudes of the har-
monic and IR laser fields, respectively; ϕni,`i,mi(~r) = 〈~r|i〉
is the initial state wavefunction, with negative energy εi
and ϕ~k(~r) = 〈~r|~k〉 is the final state wavefunction with pos-
itive energy εk = k2/2 = εi + Ω + ω. The sum over the
index ν runs over the whole spectrum (discrete plus con-
tinuous) of the atom. The partial wave expansion of the
final state wavefunction is:

ϕ~k(~r) = (8π)3/2
∑

L,M

iLe−iηL(k)Y ∗L,M (k̂)YL,M (r̂)Rk,L(r),

where the YL,M are spherical harmonics, the Rk,L(r) are
(real) radial wavefunctions normalized on the energy scale
and ηL(k) are the phase-shifts. We note that this wave-
function behaves asymptotically as the superposition of a
plane wave plus an ingoing spherical wave, as required to
treat photoionization [24]. Thus, the phase-shifts ηL(k)
account for the phase difference between the free motion
of a plane wave and that of a photoelectron wave ejected
from an atomic bound state.

The angular dependence of the matrix element can be
factorized out for an initial state

ϕni,`i,mi(~r) = Y`i,mi(r̂)Rni,`i(r)

and with z =
√

4π/3 r Y1,0(r̂), it becomes:

M(~k, εi + Ω) =
4π

3i
(8π)3/2 EωEΩ

×
∑

L,M

(−i)LeiηL(k)YL,M (k̂)

×
∑

λ,µ

〈YL,M |Y1,0|Yλ,µ〉〈Yλ,µ|Y1,0|Y`i,mi〉

× TL,λ,`i(k, εi + Ω), (5)

where the angular momentum components of the interme-
diate states are labelled (λ, µ) and the quantity, TL,λ,`i(k; εi+
Ω), is the radial part of the amplitude. The span of ac-
cessible angular momentum states in the intermediate and
final states is governed by the dipole selection rules: One
has λ = `i±1;L = `i, `i±2 and M = µ = mi respectively.
The explicit form of the radial amplitude TL,λ,`i(k; εi+ Ω)
is:

TL,λ,`i(k; εi + Ω) =
∑

ν:εν<0

〈Rk,L|r|Rν,λ〉〈Rν,λ|r|Rni,`i〉
εi + Ω− εν

+ lim
ε→0+

∫ +∞

0

dεκ′
〈Rk,L|r|Rκ′,λ〉〈Rκ′,λ|r|Rni,`i〉

εi + Ω− εκ′ + iε
,

(6)

where we have separated the contributions of the discrete
and continuous spectra.

Since the frequency of the XUV harmonic is larger than
the ionization potential of the atom, Ω > Ip = |εi|, it is also
larger than the excitation energies of the atom, Ω > εν−εi.
Accordingly, the denominators of the terms in the sum
over the discrete states are positive and relatively large,
which makes the overall contribution of these terms sig-
nificantly smaller than that of the continuous spectrum.
In the integral running on the continuous spectrum of en-
ergies εκ′ = κ′2/2, the denominator becomes zero at the
energy εκ = κ2/2 = εi + Ω. Taking the limit ε → 0+, the
integral becomes:

lim
ε→0+

∫ +∞

0

dεκ′
〈Rk,L|r|Rκ′,λ〉〈Rκ′,λ|r|Rni,`i〉

εi + Ω− εκ′ + iε

= P
∫ +∞

0

dεκ′
〈Rk,L|r|Rκ′,λ〉〈Rκ′,λ|r|Rni,`i〉

εi + Ω− εκ′

−iπ〈Rk,L|r|Rκ,λ〉〈Rκ,λ|r|Rni,`i〉. (7)

where the first term is the Cauchy principal value of the
integral, which turns out to be real, and the second term
is purely imaginary. The latter is associated with a two-
step transition as it contains the product of the one-photon
ionization amplitude towards the state of energy εκ = εi+
Ω, times the continuum–continuum transition amplitude
from εκ towards the final state of energy k2/2 = εκ + ω
that is reached upon the absorption of the IR photon ω.

The overall phase of the radial matrix element, Eq. (6),
is thus governed by the ratio of the imaginary term in
Eq. (7) to the sum of the integral principal part in the same

4

106



Paper IV

equation plus the contribution of the discrete spectrum
contained in Eq. (6). Accurate computations of such am-
plitudes and phases represent a formidable task for most
atomic systems. This entails to rely on approximate rep-
resentations of the atomic potential for each angular mo-
mentum dependent state [25, 26] or to use many-electron
techniques [27, 28]. There is however the notable excep-
tion of hydrogenic systems, where “exact” calculations of
these amplitudes are feasible [29–32], see below. It is thus
of importance to derive an approximate treatment which
should allow to get correct estimates of the phases of in-
terest to address the questions of the time-delays.

3.2. Asymptotic approximation for 2-photon ATI matrix
elements

Let us re-express the radial amplitude in terms of the
first-order perturbed wavefunction denoted ρκ,λ(r):

TL,λ,`i(k; εi + Ω) = 〈Rk,L|r|ρκ,λ〉. (8)

The function ρκ,λ(r) solves the inhomogeneous differential
equation:

[Hλ − εκ]ρκ,λ(r) = −rRni,`i(r), (9)

where Hλ is the radial atomic Hamiltonian for angular mo-
mentum λ. The fully developed eigenfunction expansion
of ρκ,λ(r) can be identified using Eqs. (6) and (7):

ρκ,λ(r) =
∑

ν:εν<0

Rν,λ(r)〈Rν,λ|r|Rni,`i〉
εκ − εν

+ P
∫ +∞

0

dεκ′
Rκ′,λ(r)〈Rκ′,λ|r|Rni,`i〉

εκ − εκ′

− iπRκ,λ(r)〈Rκ,λ|r|Rni,`i〉. (10)

We note that it describes the radial part of the intermedi-
ate photoelectron wave packet created upon absorption of
the XUV photon Ω, before absorbing the IR laser photon
ω.

The essence of the approximate treatment that we have
implemented to get an estimate of TL,λ,`i(k; εi + Ω), is
based on using the asymptotic forms of both the final
state function Rk,L(r) and of the perturbed wavefunction
ρκ,λ(r) for large values of their radial coordinate. This
is a priori justified by the fact that we are interested in
the phases of the amplitudes which are governed by the
asymptotic behavior of these functions. As an additional
verification, we will compare the predictions of the model
to those derived from an exact treatment in Hydrogen.

The asymptotic limit of the radial continuum wave-
function of the final state with angular momentum L is of
the generic form [24]:

lim
r→∞

Rk,L(r) =
Nk
r

sin[kr + Φk,L(r)], (11)

where Nk =
√

2/(πk) is the normalization constant in the
energy scale and the phase has the general form:

Φk,L(r) = Z ln(2kr)/k + ηL(k)− πL/2. (12)

We note that this phase includes the logarithmic diver-
gence characteristic of the Coulomb potential of the ionic
core with charge Z, in the asymptotic region. The Coulomb
potential influences also the scattering phase-shift ηL(k),
which can be rewritten under the form: ηL(k) = σL(k) +
δL(k) where σL = arg[Γ(L + 1 − iZ/k)] is the Coulomb
phase-shift and where the correction δL(k) originates from
the short range deviation of the ionic potential from a pure
Coulomb potential, see for instance [26, 28]. Obviously, in
the case of an hydrogenic system, one has δL(k) = 0.

To derive the asymptotic form of the perturbed wave-
function ρκ,λ(r), it is in principle enough to establish the
limiting structure of the differential equation it verifies.
From Eq. (9), one observes that, in the asymptotic limit
r →∞, the second member vanishes, as a result of the ex-
ponential decay of the bound state wavefunction Rni,`i(r).
One is left with a standard Schrödinger equation for posi-
tive energy εκ which is solved by imposing outgoing wave
boundary conditions to the solutions [32]:

lim
r→∞

ρκ,λ(r) ∝ Nκ
r

exp [i(κr + Φκ,λ(r))] . (13)

It is also of interest to derive explicitly the limiting forms
of the terms entering the expression of ρκ,λ(r) in Eq. (10).
Regarding its real part, the sum over the discrete states ν
can be neglected, as each term goes asymptotically to zero.
Thus, for large r, it reduces to a principal part integral:

<[ρκ,λ(r)] ≈ P
∫ +∞

0

dεκ′
Rκ′,λ(r)〈Rκ′,λ|r|Rni,`i〉

εκ − εκ′
. (14)

This integral can be estimated by extending the integra-
tion range εκ′ → −∞ and replacing the radial continuum
function Rκ′,λ(r) by its asymptotic limit according to the
prescription in Eq. (11). Then, writing the sine function
under its exponential form and performing contour inte-
grations, with semi-circles around the pole at εκ, one gets:

lim
r→∞

<[ρκ,λ(r)] ≈ −πNκ
r

cos[κr + Φκ,λ(r)]〈Rκ,λ|r|Rni,`i〉.
(15)

Regarding the imaginary part given by the last term in
Eq. (10), it is enough to substitute again the asymptotic
form of Rκ,λ(r), so that:

lim
r→∞

=[ρκ,λ(r)] ≈ −πNκ
r

sin[κr + Φκ,λ(r)]〈Rκ,λ|r|Rni,`i〉.
(16)

Then by regrouping the real and imaginary parts, one gets
the final expression:

lim
r→∞

[ρκ,λ(r)] ≈ −πNκ
r

exp [iκr + iΦκ,λ(r)] 〈Rκ,λ|r|Rni,`i〉,
(17)

which corresponds to a complex outgoing wave [32], as
expected from Eq. (13), weighted by the dipole matrix
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element associated to the one-photon transition from the
initial state. We note that adopting the so-called “pole-
approximation”, which consists in neglecting the off-shell
part (i.e. the real part given in Eq. (15)), would lead to
a loss of the phase information of the process since the
perturbed wavefunction then would be a standing wave
rather than an outgoing wave.

The corresponding asymptotic approximation for the
second-order radial matrix element, Eq. (6), is obtained by
substituting in Eq. (8) the asymptotic expressions, Eqs. (11)
and (17), for the radial wavefunctions of the final state and
of the intermediate state, respectively. One has explicitly:

TL,λ,`(k; εκ) ≈ − π 〈Rκ,λ|r|Rni,`i〉NkNκ

×
∫ ∞

0

dr sin[kr + Φk,L(r)] r e[i(κr+Φκ,λ(r))].

(18)

To introduce the next step in our approximate treatment,
one rewrites the sine in its exponential form and develop
the expressions of the phases Φκ,λ(r) as given in Eq. (12).
One is left with two distinct contributions containing in-
tegrals either of the type J+ or J− that are defined as
follows:

J± = ± 1

2i

∫ ∞

0

dr r1+iZ(1/κ±1/k) exp [i(κ± k)r]

= ± 1

2i

(
i

κ± k

)2+iZ(1/κ±1/k)

Γ[2 + iZ(1/κ± 1/k)],

(19)

where we have used an integral representation of a Gamma
function Γ(z) with complex argument. In our case, the
contribution of the J+ integral is vanishingly small as com-
pared to that of J−. This is due to the IR photon energy
being small compared to the final kinetic energy of the
electron, ω = k2/2 − κ2/2 � k2/2, so that the difference
|κ− k| ≈ ω/k is much smaller than the sum κ+ k ≈ 2k ±
ω/k. As a result, the fast oscillations of exp[i(κ+k)r] lead
to a relative cancellation of the corresponding integral, as
compared to the one containing the factor exp[i(κ− k)r].
Neglecting the J+ contribution, the asymptotic expression
reduces to:

TL,λ,`i(k; εκ) ≈ π

2
NkNκ 〈Rκ,λ|r|Rni,`i〉

× 1

|κ− k|2 exp

[
−πZ

2

(
1

κ
− 1

k

)]

× iL−λ−1 exp[i(ηλ(κ)− ηL(k))]

× (2κ)iZ/κ

(2k)iZ/k
Γ[2 + iZ(1/κ− 1/k)]

(κ− k)iZ(1/κ−1/k)
, (20)

which was used by us [3] to obtain estimates of the phases
occurring in two-photon transitions entering RABBIT tran-
sition amplitudes. The first two lines in Eq. (20) are real,
they contain a one-photon matrix element from the bound
state into the continuum, but also an exponential factor

describing the strength of the continuum–continuum tran-
sition from κ to k. The exponential factor decreases with
the probe photon energy, ω = k2/2−κ2/2, which indicates
that large energy leaps in the continuum are strongly sup-
pressed. At a given laser probe energy, however, the expo-
nential factor increases with the final momentum, k, which
indicates that it becomes easier for the photoelectron to
interact with the probe field. The third line is a simple
phase factor containing the scattering phases of the con-
tinuum states. Finally, the fourth line is a complex factor
that depends on three quantities: final momentum, k; the
laser probe frequency, ω; and the charge of the ion, Z.

A more formal derivation of this result, based on a
closed-form representation of the Coulomb Green’s func-
tion is given in the Appendix A. [We have found a typo in
Eq. (7) in ref. [3]: The ratio, (2k)i/k/(2ka)i/ka , should be
inverted, as is evident from Eq. (20) in the present work].

Thus, in the asymptotic limit, the phase of the radial
component takes the form:

arg [TL,λ,`i(k; εκ)] ≈ π

2
(L− λ− 1)

+ ηλ(κ)− ηL(k) + φcc(k, κ), (21)

where

φcc(k, κ) = arg

[
(2κ)iZ/κ

(2k)iZ/k
Γ[2 + iZ(1/κ− 1/k)]

(κ− k)iZ(1/κ−1/k)

]
, (22)

is the phase associated to a continuum–continuum radia-
tive transition resulting from the absorption of ω, in the
presence of the Coulomb potential, Z. It is important to
note that it is independent from the characteristics of the
initial atomic state, as well as from the amplitude of the
field. It is illustrative to study the continuum–continuum
phase in the limit of a small photon energy, ω ≈ k(k− κ),
which yields a simplified expression:

φ(soft)
cc (k;ω) = arg

[(
2k2

ω

)iZω/k3
Γ[2 + iZω/k3]

]
,

(23)

where it becomes clear that it is the product: Zω/k3,
which determines the size of the continuum–continuum
phase. This expression is expected to be valid in the so-
called “soft-photon” limit, k2/2� ω, where the exchange
of energy ω and the corresponding momentum transfer
∆k = ω/c do not significantly modify the electron state
[23]. The substitution, ω → −ω, yields the (Fourier)
component corresponding to stimulated emission of light.
We note that the phases corresponding to absorption and
emission have opposite signs, but that they are otherwise
identical in the soft-photon limit.

Replacing the formula obtained in Eq. (20) for the ra-
dial component in the expression of the full transition am-
plitude M(~k, εi + Ω) given in Eq. (5), one gets its general
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form in the asymptotic limit:

M(~k; εκ) ≈ − 2π2

3
(8π)3/2EωEΩNkNκ

× 1

|k − κ|2 exp

[
−πZ

2

(
1

κ
− 1

k

)]

× (2κ)iZ/κ

(2k)iZ/k
Γ[2 + iZ(1/κ− 1/k)]

(κ− k)iZ(1/κ−1/k)

×
∑

L=`i,`i±2

YL,mi(k̂)
∑

λ=`i±1

〈YL,mi |Y1,0|Yλ,mi〉

× 〈Yλ,mi |Y1,0|Y`i,mi〉〈Rκ,λ|r|Rni,`i〉i−λeiηλ(κ)

(24)

To address the question of its phase, one notices that be-
sides a trivial contribution from the spherical harmonic in
the final state, YL,mi(k̂), it contains only phase-shifts that
are governed by the angular momentum λ of the intermedi-
ate state, i.e. a state that can be reached via single-photon
ionization. More precisely, for a given transition channel
characterized by the angular momenta of the intermedi-
ate and final state `i → λ → L , the phase of the matrix
element reduces to:

arg [ML,λ,`i(
~k, εκ)] = π + arg[YL,mi(k̂)] + φΩ + φω

− πλ

2
+ ηλ(κ) + φcc(k, κ), (25)

where φΩ and φω are the phases of the XUV field Ω and
of the IR laser ω, respectively. We stress that the final
state scattering phase, ηL(k), cancels out and that it enters
neither in Eq. (24) nor in Eq. (25).

Eq. (25) represents one of the major results of our the-
oretical analysis. It shows that, within the asymptotic
approximation and besides trivial spherical harmonic con-
tributions and the phases of the fields [line 1 in Eq. (25)],
the phase of a two-color ATI transition amplitude has two
components: i) One is directly linked to the quantum-
mechanical phase-shift of the one-photon XUV ionization
amplitude, here −πλ/2 + ηλ(κ); ii) The other, denoted
φcc(k, κ), is in some sense “universal”, it describes the
phase brought by the absorption of the probe photon ω,
in the presence of the Coulomb potential with charge Z.
Then, as shown below, when comparing laser-assisted ion-
ization originating from distinct atomic states, the energy
derivative of the phase-shifts in the first term contribute
to a Wigner-like time-delay. On the other hand, the dif-
ference between the “universal” terms φcc gives rise to
a measurement-induced delay, associated to continuum–
continuum stimulated radiative transitions in the presence
of the Coulomb potential of the ionic core.

In Fig. 3, we present the continuum–continuum phases,
associated with absorption (red) and emission (blue) of
a probe photon leading to the same final energy, calcu-
lated using the asymptotic approximation, Eq. (22). The
continuum–continuum phases for probe photon absorption
are positive while those for stimulated emission are neg-
ative, but approximately equal in absolute value. In the
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Figure 3: Continuum–continuum phases for absorption (red, up-
per curves) and emission (blue, lower curves) calculated using the
asymptotic approximation (dashed curves) [Eq. 22] and the long-
range amplitude-corrected asymptotic approximation (full curves)
[Eq. 30]. These approximate phases are compared with the exact
calculations (black symbols) from the 1s state in hydrogen. The ex-
act results for final angular momentum L = 0 (+ symbol) and L = 2
(× symbol) are computed by subtracting the one-photon scattering
phase from that of the exact two-photon matrix elements. The data
correspond to Z = 1 and to a laser probe with ω = 1.55 eV. It is
interpolated between the discrete harmonic orders.

next subsection, we show that, still in a single-active elec-
tron picture, it is feasible to improve the accuracy of our
approximate treatment with the help of semi-classical ar-
guments.

3.3. Long-range amplitude effects

In order to go to the next level of our asymptotic ap-
proximation, we must include not only long-range phase
variations of the continuum states, but also long-range
variations of the amplitudes. Indeed, the normalization
constants contained in the asymptotic forms of the radial
functions Rk,L(r) and ρκ,λ(r) can be modified to account
for the long-range influence of the Coulomb potential. For
instance, the modified final state normalization constant
is:

Nk(r) =

√
2

πp(r)
, (26)

where

p(r) =
√

2(ε− V (r)) ≈ k − V (r)/k, (27)

is the local momentum from Wentzel–Kramers–Brillouin
(WKB) theory [36]. The same remark applies to Nκ(r)
for the perturbed radial function. Long-range amplitude
effects can be approximated by expanding the quantities
Nk(r) and Nκ(r),

Nk(r)Nκ(r) ≈
√

4

π2kκ

[
1− 1

2

(
1

κ2
+

1

k2

)
Z

r

]
, (28)
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to first-order in the Coulomb potential. The second term
within the brackets in Eq. (28) contains the first-order am-
plitude correction to the matrix element. Evaluation of the
long-range amplitude contribution leads to a correction to
the continuum–continuum phase:

αcc(k, κ) = arg

[
1 +

iZ

2

(
1

κ2
+

1

k2

)
κ− k

1 + iZ(1/κ− 1/k)

]
.

(29)

The final continuum–continuum transition phase is:

φ̃cc(k, κ) = αcc(k, κ) + φcc(k, κ) (30)

where φcc(k, κ) is given in Eq. (22). In Fig. 3, we show that
including such long-range effects improves the accuracy of
the approximation greatly, leading to accurate quantita-
tive result already at relatively low energies in the contin-
uum. The accuracy in the lower energy range can be fur-
ther improved by using a regularization method designed
to remove the effect of the singularity in Eq. (28) as r, k
and κ go to zero.

Going beyond the approximations given here, namely
performing exact ab initio computations of the matrix el-
ements M(~k, εi + Ω) in polyelectronic systems, is out of
reach of present computational capabilities. It is only
in the special case of hydrogenic systems, that such 2-
photon amplitudes can be computed with arbitrary preci-
sion. Thus, with objective to delineate the range of validity
of our approximation, we turn now to a brief presentation
of the “exact” calculations in hydrogen.

3.4. Exact calculations of 2-photon ATI matrix elements
in hydrogenic systems

The principle of the calculation is outlined here for s-
states. Numerical data for other states will be given below.
We first express the transition amplitude given in Eq. (5)
for the case `i = 0,mi = 0 which implies λ = 1 so that the
angular momentum of the photoelectron is either L = 0, 2.
Accordingly, two distinct amplitudes contribute to ATI
transitions like the one depicted in Fig. 1 (c):

M(~k, εκ)
∣∣∣
`i=0

=
1

3i
(8π)3/2EωEΩ

×
[
eiσ0(k)Y0,0(k̂)T0,1,0(k; εκ)

− 2√
5
eiσ2(k)Y2,0(k̂)T2,1,0(k; εκ)

]
, (31)

where the radial components for s−states are of the form:

TL,1,0(k; εκ)|`i=0 = 〈Rk,L|r|G1(εκ)|r|Rni,0〉, (32)

with L = 0, 2; ni labels the initial atomic s−state and
Gλ=1(εκ) is the radial component of the Coulomb Green’s
function for angular momentum λ = 1. The general form
of the Green’s function with energy argument εκ is:

Gλ(r′, r; εκ) = lim
ε→0+

∫∑

ν

Rν,λ(r′)Rν,λ(r)

εκ − εν + iε
. (33)

As already mentioned, the infinite sum over the index ν
runs over the whole (discrete + continuous) spectrum of
the hydrogenic system. Closed form expressions for Gλ
are known, see for instance [33]. Here, we have used the
expression given as an expansion over a discrete Sturmian
basis:

Gλ(r′, r; εκ) =
∑

ν=λ+1

Sν,λ,x(r′)Sν,λ,x(r)

1− νx , (34)

where x =
√−2εκ and the so-called Sturmian functions

Sν,λ,x(r) have a structure similar to the bound-state hy-
drogenic radial functions [34, 35]:

Sν,λ,x(r) = 2x

√
(ν − λ− 1)!

(ν + λ)!

× e−xr(2xr)λL2λ+1
ν−λ−1(2xr), (35)

where L2λ+1
ν−λ−1(z) are associated Laguerre polynomials. In

the amplitudes for ATI transitions, εκ = εi + Ω > 0,
and the quantity, x = i

√
2|εκ|, is pure imaginary. It is

then convenient to use Padé-like resummation techniques
to compute the infinite sum over the index ν, see, for in-
stance ref. [31].

In Fig. 3, we present the exact continuum–continuum
phases from the 1s state in hydrogen. These phases are
defined as the total phase of the exact matrix element,
ML,1,0(~k; εκ), minus the one-photon phase [see line 2 of
Eq. (25)]. Our approximate calculation including long-
range amplitude effects, Eq. (30), is in excellent agreement
with the exact calculations except at low energy.

3.5. Phase of the classical dipole

Finally, we present a simplified derivation of the continuum–
continuum phase, φcc(k, κ), using a classical approach.
The dipole associated with the absorption of radiation at
frequency ω by a free electron in the presence of a Coulomb
potential, can be calculated using Larmor’s formula,

dC(k;ω) =

∫ ∞

0

dt rk(t) exp[−iωt], (36)

where it is assumed that the electron follows a field-free
trajectory, rk(t), that starts close to the ion, rk(0) ≈ 0,
and then moves out away from the ion with an asymptotic
velocity, k. The integral can be cast from time to space
using the r−dependence of the velocity:

vk(r) =
√
k2 − 2V (r), (37)

where k2/2 is the final kinetic energy of the electron at
large distance from the ion. Using the differential dt =
dr/v(r), the time can be written as t(k; r) =

∫ r
dr′/vk(r′)+

C, where C is an integration constant. In the case of the
Coulomb potential, V (r) = −Z/r, the integral becomes

t(k; r) =

∫ r

dr′
1√

k2 + 2Z/r′
+ C

≈ r

k
− Z

k3
ln(r) + C, (38)
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in the asymptotic limit, i.e. when k2/2 � Z/r. This
provides an approximate time–position relation valid at
large distances from the origin. In the special case where
the electron starts from the origin [t, r] = [0, 0], the ex-
act integration in Eq. (38) leads to C = −Z ln[2k2/Z]/k3.
Keeping for the moment this value of the constant and re-
placing the asymptotic form of the time in the expression
of the dipole Eq. (36), one gets:

dC(k;ω) ≈ 1

k

∫ ∞

0

dr r exp

[
−iω
k

(
r − Z

k2
log[2k2r/Z]

)]

=
1

k

(
2k2

Z

)iZω/k3 ∫ ∞

0

dr r1+iZω/k3 exp
[
−iω
k
r
]

= − k

ω2
exp

[
−3πZω

2k3

]

×
(

2k3

Zω

)iZω/k3
Γ(2 + iZω/k3), (39)

where the next-to-last line is real, with an exponential fac-
tor that decreases with ω, but increases with k, in excellent
agreement with the quantum mechanical result, Eq. (24).
Furthermore, the last line contains the complex gamma
function times an algebraic factor, also in close connection
to the quantum counterpart. Clearly, the dipole corre-
sponding to absorption is a complex quantity with phase:

φC(k;ω) = arg [dC(k;ω)]

≈ arg

[
−
(

2k3

Zω

)iZω/k3
Γ(2 + iZω/k3)

]
, (40)

which is closely related, but not identical to its soft-photon

quantum counter part φ
(soft)
cc , given in Eq. (23).

In the quantum mechanical case, the electron starts in
a bound state with some spatial extent and not exactly
from r = 0. In order to account for this uncertainty on
the initial position, we may choose a different value of the
integration constant C, introduced in Eq. (38), in order
to come closer to the quantum mechanical dipole. This
matching-procedure is reminiscent of the method used in
ref. [12], to determine the “best” initial radial position
for the electron within the eikonal Volkov approximation.
Within the lowest-order approximation of Eq. (38), we find
a simple relation between the initial position and the in-
tegration constant:

r0 ≈ exp

[
Ck3

Z

]
, (41)

which is valid at high-energy. It is convenient to set C =
−Z ln[2k]/k3, a choice corresponding to an initial radial
position r0 ≈ 1/(2k), as was identified in ref. [12]. Clearly,
when the first-order amplitude correction is included, Eq. (30),
the initial position is adjusted accordingly. The continuum–
continuum phase being only one part of the total quantum
mechanical phase, we have also to include the scattering

phase if we want to deduce the “true” initial position. In-
terestingly, in our approach this exact inital position is
not critical. In fact, our results are stable with respect to
rather substantial modifications of the wavefunctions close
to the core. It is the behavior of the wavefunctions far away
from the core that must be described accurately, using the
asymptotic approximation. We now turn our attention to
the applications of the complex ATI matrix elements, to
the determination of attosecond delays in photoionization.

4. Attosecond Time-delays

The complex amplitude M(~k, εi + Ω) (denoted M (a)

for conciseness in the following) for the joint absorption
of an XUV photon Ω and of an IR laser photon ω, is of
course not a direct observable in any experiment. Only
the square modulus of a complex transition amplitude can
be measured. Thus, if M (a) is the only amplitude leading
to a given final state, there is no way to determine its
absolute phase. However, in the cases of interest here,
with attosecond XUV pulses in the presence of a probe IR
laser field, several other channels are open which can lead
to the same final state, thus making it feasible to observe
phase-dependent interference patterns. This property is
exploited in the following schemes.

4.1. Attosecond delay measurements using pulse trains

In the RABBIT scheme there are two dominant com-
plex amplitudes (quantum paths), M (a) and M (e), asso-
ciated with the absorption of harmonic H2q−1 or H2q+1

plus absorption or emission of a laser photon with phase,
±ωτ ≡ ±φω, leading to the same final sideband, S2q. The
photoelectron will transit via different intermediate states:
κ< and κ>, corresponding to different intermediate ener-
gies: ε< = εi + 2qω − ω = κ2

</2 and ε> = εi + 2qω + ω =
κ2
>/2. Clearly, the energy of the corresponding intermedi-

ate states are one photon below and above the sideband,
as is illustrated in Fig. 1 (a). This implies that the mea-
sured intensity of the sideband, S2q, will depend on the
phase difference between the two quantum paths:

P2q ∝ |M (a) +M (e)|2 = |M (a)|2 + |M (e)|2

+ 2|M (a)||M (e)| cos
[
arg
(
M (a)∗M (e)

)]
(42)

which corresponds to a standard interference phenomenon,
as summarized in Eqs. (1) or, equivalently in (2) displayed
in the introduction (Sec. 1). If we now apply Eq. (25),
and assume that the total contribution to the complex
amplitudes can be approximated by a single intermediate
angular momentum component, λ, the phase difference is

arg
(
M

(a)∗
L,λ,`i

M
(e)
L,λ,`i

)
≈ −2ωτ +

∆φ2q︷ ︸︸ ︷
φ2q+1 − φ2q−1

+ ηλ(κ>)− ηλ(κ<) + φcc(k, κ>)− φcc(k, κ<)︸ ︷︷ ︸
∆θ2q

. (43)
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Here the first line contains the phases of the fields, while
the second line is ∆θ2q, in terms of scattering and continuum–
continuum phases. The corresponding measurement delay,
τθ as defined in Eq. (2), is the sum of finite-difference ap-
proximations to a Wigner-like time-delay:

τλ(k) ≈ ηλ(κ>)− ηλ(κ<)

2ω
(44)

and to a continuum-continuum delay:

τcc(k;ω) ≈ φcc(k, κ>)− φcc(k, κ<)

2ω
, (45)

so that τθ ≈ τλ + τcc.
In a more general case, the interference will result from

complex amplitudes with two terms for absorption and for
emission, M (a/e) = M (a/e,+) +M (a/e,−), corresponding to
different intermediate angular momenta, λ = `i ± 1. The
interesting point is that the τcc will not be affected, since
the phases φcc are independent of λ as well as of the fi-
nal angular momenta L = `i, `i ± 2, see Eq. (22). The
remaining part can be interpreted as an effective Wigner-
like delay, τ̃λ=`i±1, which has to be computed taking into
account the relative weights of the four components enter-
ing the expression of the transition probability amplitude.

4.2. Attosecond delay measurements using single pulses

In this section we apply the perturbative treatement to
laser-assisted photoionization by a single-attosecond pulse
(SAP) and a probing laser field. The ionizing attosecond
field is

ẼSAP (t) =

∫
dΩ EΩ exp[−iΩt]/2π, (46)

with EΩ = |EΩ| exp[iφΩ] being complex Fourier coeffi-
cients. While our approach is very general, it can be il-
lustrated by considering a Gaussian frequency distribu-
tion centered on the frequency Ω0, as depicted in the left
panel of Fig. 4. The probing laser field is assumed to be
monochromatic and real, Ẽ(t) = 2|Eω| cos[ω(t − τ)], so
that it can account for both absorption and emission pro-
cesses. Our perturbative approach cannot be used to fully
account for the large momentum shifts that are typical of
streaking spectrograms, but it does allow us to study the
onset of streaking. As we shall see below, streaking-like
behavior is clear already in the perturbative regime. In the
right panel of Fig. 4, we sketch the interfering processes
to a certain energy ε: (d), (a) and (e) from lowest-order
perturbation theory. The dominant contribution (d) cor-
responds to absorption of a single XUV photon, while the
upshifted (a) and downshifted (e) photoelectron spectra
corresponds to absorption and emission of an additional
laser photon ω, respectively.

The matrix element for one-photon ionization with a

0

(d)

Energy

(a) (e)

Figure 4: Sketch of the quantum paths describing the onset of
“streaking” for a photoelectron ionized by a single attosecond pulse
and probed by a monochromatic laser field. The first-order pho-
toelectron wave packet is centered at ε0 = εi + Ω0. Within the
bandwidth of the attosecond pulse, any energy, ε, can be reached
by path (d), where a single XUV photon with frequency Ω is ab-
sorbed. Alternatively, the same energy can reached by path (a) by
absorbing a less energetic photon, Ω<, and a laser photon, ω; or
by path (e) by absorbing a more energetic photon, Ω>, and then
emitting a laser photon, −ω. At the high-energy end of the photo-
electron distribution (indicated by ε), the dominant contributions to
the photoelectron wave packet are (d) and (a), due to Ω> being far
in the upper energy range of the XUV bandwidth.

photoelectron emitted along the polarization axis is

M (d)(kẑ; εi + Ω) =
(8π)3/2

i
EΩ

∑

λ

(−i)λ
√

2λ+ 1

3
eiηλ(k)

× 〈Yλ,0|Y1,0|Y`i,0〉〈Rk,λ|r|Rni,`i〉 δmi,0,
(47)

where the XUV frequency satisfies εi + Ω = ε = k2/2
for process (d). Note that only initial states with zero
magnetic quantum number, mi = 0, will contribute to
photoelectron emission along ẑ, as indicated by the Kro-
necker delta at the end of Eq. (47) that originates from
the explicit properties of the spherical harmonics along ẑ:
Yλ,mi(ẑ) =

√
(2λ+ 1)/3 δmi,0.

The two-photon matrix element for photoelectrons along
the polarization direction is

M(kẑ; εi + Ω<) =
(8π)3/2

i
EΩ<Eω

∑

L

(−i)L
√

2L+ 1

3
eiηL(k)

×
∑

λ

〈YL,0|Y1,0|Yλ,0〉〈Yλ,0|Y1,0|Y`i,0〉

× TL,λ,`i(k; εi + Ω<) δmi,0, (48)

where εi+Ω<+ω = ε for process (a). A similar expression,
M(kẑ, εi + Ω>), can be written for process (e) where εi +
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Ω>−ω = ε, and where the complex conjugate of the laser
field, E∗ω, is used for emission of a laser photon. Again,
only initial states with zero magnetic quantum number
contribute.

The PROOF method [20] relies on the interference be-
tween these three quantum paths, denoted M (d), M (a) and
M (e), as a function of the XUV-laser delay, τ . The prob-
ability for emission of an electron with final momentum k
along the polarization axis ẑ is

P (kẑ) ∝ |M (d) +M (a) +M (e)|2, (49)

where only cross-terms lead to delay dependent modula-
tions. Provided that the laser field is relatively weak, we
expect the interference cross-terms (d)-(a) and (d)-(e), will
dominate over the cross-term (a)-(e), because the former
involve the exchange of only one laser photon while the
latter contributes to higher order terms in a perturbative
treatment, involving the exchange of two laser photons ω.

In order to illustrate the origin of the attosecond delay
within this framework, we consider a final energy that is
higher than the central energy of the photoelectron wave
packet, ε = εi+Ω > εi+Ω0. In this region, the ω modula-
tion is dominated by the (d)-(a) interference, because path
(a) goes through a central part of the XUV distribution,
while path (e) passes through a higher frequency range, in
the upper part of the XUV bandwidth [Fig. 4]. Increasing
the bandwidth of the attosecond pulse or decreasing the
probe photon frequency makes this distinction less pro-
nounced. We restrict our analysis to the case of an initial
s-state, `i = 0, and study the interference of the cross term
(d)-(a). The relevant phase reads

arg[M (a)∗M (d)] ≈ − ωτ + φΩ − φΩ<

+ ηλ(k)− ηλ(κ<)− φcc(k, κ<)− π

2
,

(50)

where we have used the asymptotic approximation for the
phase of the two-photon matrix element as in Eq. (25),
thereby, introducing the continuum–continuum phase into
the framework of laser-assisted photoioization by single
attosecond pulses. Also, we note that the phase-shifts
present in the two-photon matrix element are those of
p−waves (λ = 1). In terms of the temporal delays, the
ω modulation is displaced by

τ ≈ φΩ − φΩ<

ω
+
ηλ(k)− ηλ(κ<)

ω
− φcc(k, κ<)

ω
− π

2ω

≡ τΩ + τλ(k) + τcc(k;ω) − π

2ω
, (51)

where we have used the definition of the continuum–continuum
delays τcc, Eq. (45), and the following relation for the
continuum–continuum phases φcc:

φcc(k, κ<) ≈ −φcc(k, κ>), (52)

which is exact in the soft-photon limit. Similarly to Eq. (51),
we can compute the modulation at the low energy end of

the electron distribution using the cross term (d)-(e), and
we find the same result but shifted by a half laser period,
i.e. out of phase by π. This π−shift of the modulation
is important to explain the onset of streaking, because it
ensures that the high-energy probability of the electron
spectra is maximized when the low-energy part is mini-
mized. In the central region, ε ≈ εi + Ω0, the (d)-(a) and
(d)-(e) contributions will be comparable, leading to a rela-
tive cancellation of the ω modulation, leaving only the 2ω
modulation. In total, the electron momentum distribution
is slightly shifted up or down depending on the sub-cycle
delay between the laser field and the attosecond pulse: It
is streaked as expected from the classical (or strong-field)
picture. Using Eq. (51), we find that this streaking mod-
ulation is displaced by a Wigner-like delay, τλ(k), and by
the continuum–continuum delay, τcc(k;ω). We can inter-
pret this delay as the time it takes for the electron to be
photoionized plus the time it takes for the measurement
process to occur, i.e. for a lower energy electron to ab-
sorb one probe photon so that it may interfere with the
direct path. We stress that this analysis was made as-
suming a monochromatic probe field, while it is common
in streaking experiments to use few-cycle IR laser pulse,
which leads to a convolution (a blurring effect) of the mo-
mentum modulation and of the attosecond time-delays.

4.3. Comparison between the two measurements

We now briefly discuss the small differences of τcc oc-
curing between the RABBIT method and the streaking
method. Eq. (52) implies that

τcc(k;ω) ≡ φcc(k, κ>) − φcc(k, κ<)

2ω

≈ φcc(k, κ>)

ω
, (53)

where the first line corresponds to the RABBIT method
and the second line corresponds to the streaking method.
These different “flavours” of τcc merge completely in the
soft-photon limit, ε� ω, but differ slightly at low kinetic
energies, where the phases are not exact opposites. In
both methods, τcc varies with k inside the bandwidth of
the photoelectron wavepacket.

Furthermore, it is interesting to note that the group de-
lays of the attosecond pulses and Wigner delays of the pho-
toelectrons appear as discrete derivatives over one and two
ω photons in the streaking and RABITT methods respec-
tively. Here, we have assumed that all delays are slowly
varying so that the discrete derivatives are equivalent. We
also note that the streaking method relies on the cross-
terms: (d)-(a) and (d)-(e); while the RABBIT method re-
lies on the (a)-(e) contribution. The weaker signal in the
RABBIT method is not a problem, since it is recorded be-
tween the harmonics, on “zero background”. Consequenty,
the modulation frequency of the streaking/PROOF signal
is ω due to the single laser photon involved in each ap-
propriate cross term, while the corresponding RABBIT
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frequency is 2ω due to the two laser photons involved in
the latter cross term. Another important difference be-
tween the methods is related to symmetry (parity): The
ω signal is somewhat restricted to the ẑ direction and it
is not observed if photoelectrons are collected in all direc-
tions; while the 2ω signal is more general and it prevails
also when electrons in all directions are collected. Inter-
estingly, we have shown that all three attosecond char-
acterization methods (RABITT, PROOF and streaking)
provide equivalent temporal information about the XUV
ionization process, even though they are built from differ-
ent sets of cross-terms associated to different interfering
quantum paths.

5. Results

5.1. Calculations of attosecond time-delays

In Fig. 5, we plot atomic delays relevant for laser-
assisted photoionization. The Wigner-like delays, τλ, are
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Figure 5: Atomic delays of laser-assisted photoionization in hydrogen
for three different angular momenta of the wave-packet wavefunction
in the intermediate state (s, p and d : λ = 0, 1 and 2). The delays are
calculated using the regularized approximation. The data correspond
to Z = 1 and a laser probe with ω = 1.55 eV.

calculated from the finite-difference derivative of the scat-
tering phase of hydrogen for angular momentum, λ =
[0, 1, 2], corresponding to s, p and d continuum wave pack-
ets. The universal continuum–continuum delay, τcc, plus
these Wigner-like delays yields the total atomic delay, τθ.
Notice that the sign of τλ and τcc are opposite, so that
τθ is smaller than either of the contributions individually.
The increase of τλ with the angular momentum can be
understood as due to the repulsive, short-range, centrifu-
gal potential. The total delay is negative in this example,
which implies that the electron appears as being advanced
compared to the probe field.

In Fig. 6, we evaluate the accuracy of τcc as derived by
various degrees of the asymptotic approximation by com-
parison with exact calculations in hydrogen from the 1s

state along two different angular momentum sequences:
s → p → s (+) and s → p → d (×). Indeed, we find
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Figure 6: Continuum–continuum delays calculated using the
asymptotic approximation (dashed curve), Eq. (22), the long-
range amplitude-corrected asymptotic approximation (thick curve),
Eq. (30), and the regularized asymptotic approximation (dash-dot
curve). The approximate delays are compared with exact delays
computed from the 1s state in hydrogen by subtracting the interme-
diate Wigner delay. The data correspond to Z = 1 and to a laser
probe with ω = 1.55 eV.

that the exact τcc are almost completely independent of
the final state angular momentum. The asymptotic ap-
proximation (dashed curve) predicts the correct qualita-
tive behavior of the delay, but it slightly overestimates its
magnitude. By taking into account the long-range am-
plitude effects, the agreement is excellent at high kinetic
energies. The disagreement at low energy can be removed
by avoiding the radial singularity in Eq. (28), namely by
an ad hoc substitution of r → r + i(1− |k − κ|/2). In this
way, we obtain a “regularized” continuum–continuum de-
lay (dot–dashed curve), which is excellent at all energies
in the range.

In Fig. 7, we address the question of the universality of
τcc by computing the exact two-photon phases from three
different intial states in hydrogen: 1s, 2s and 2p. We
find that all seven different angular-momentum sequences,
`i → λ→ L, line up on the same universal curve, in excel-
lent agreement with the regularized continuum–continuum
delay. In this way, we have verified that not only s−type
initial states have similar τcc, but also initial p−states with
non-zero angular momentum.

In Fig. 8, we present a contour plot that provides a
rough overview of the magnitude of τcc as a function of
the kinetic energy of the photoelectron and of the wave-
length of the probe field. In general, τcc decreases with the
kinetic energy and it increases with the wavelength of the
probe field. We note that a softer probe photon leads to an
increased delay. A few selected τcc curves are displayed in
Fig. 9 for a more quantitative comparison at some exper-
imentally relevant wavelengths. We conclude that τcc is
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Figure 7: Continuum–continuum delays from exact calculations in
hydrogen from different intial states: 1s (black symbols), 2s (red
symbols) and 2p (blue symbols). This data demonstrates the uni-
versality of the continuum–continuum delay and that it is valid not
only for initial states of s−character. The exact data is in excellent
agreement with the regularized approximation. The data correspond
to Z = 1 and a laser probe with ω = 1.55 eV.

not extremely sensitive to the probe wavelength, except at
low kinetic energies, where it takes larger negative values
when the probe wavelength increases. As already men-
tioned, the delays converge to zero as the kinetic energy
is increased, however, the convergence is rather slow and
there is still ∼ −10 as of delay remaining at a relatively
high kinetic energy of ∼ 100 eV.

Finally, in Fig. 10, we examine the validity of the soft-

photon approximation by comparing τcc and τ
(soft)
cc , calcu-

lated using Eq. (22) and Eq. (23), respectively. The soft-
photon limit over-estimates the magnitude of the delay at
low energies, but it converges rapidly towards the quantum
mechanical result as the kinetic energy is increased.

5.2. Conclusions

The main result of this work is the determination of
the phase associated with two-photon transition matrix
elements for laser-assisted XUV photoionization, namely
Eq. (25). These phases have broad applications in at-
tosecond science as they enter naturally in most charac-
terization methods, as well as in quantum control schemes
and delay experiments of more general character. We
have demonstrated that the phase is composed of two dis-
tinct atomic contributions: i) The one-photon scattering
phase of the intermediate state and ii) a quantity, given
in Eq. (22), that we call the continuum–continuum phase.
The latter is universal and it describes the added phase
induced by the transition from the intermediate contin-
uum state to the final continuum state. It is independent
of the short-range behavior of the atomic potential and it
depends only on three quantities: the final momentum, the
laser-probe frequency and the charge of the remaining ionic

K
in
e
ti
c
e
n
e
rg
y
[e
V
]

Probe laser wavelength [ m]

10

20

30

40

50

60

70

80

90

100

0.5 1 1.5 2 2.5 3 3.5 4 4.5

0 > τcc > -10 as

-10 > τcc > -20 as

-20 > τcc > -30 as

-30 > τcc > -40 as

τcc < -100 as

Continum-continum delay

Figure 8: Contour plot of continuum–continuum delays at different
kinetic energy and laser probe wavelength. The delays are calculated
using the regularized asymptotic approximation.

core. As expected from the strong-field approach, the tran-
sition phase is reduced to that of the one-photon (interme-
diate) scattering phase when the charge of the remaining
ion is neglected, i.e. for a short-range potential. Other
interesting findings are related to the classical–quantum
correspondence: First, the phase of the classical dipole,
for exchange of radiation in the continuum, Eq. (40), is
closely related, but not identical, to the soft-photon limit
of the quantum mechanical continuum–continuum phase,
Eq. (23). Further, as epitomized in Eq. (41), there ex-
ists a relationship between the initial radial position of
the ejected electron (a classical concept) and the asymp-
totic quantum phase. We have also demonstrated how the
theory of complex transition matrix elements, originally
developed for RABBIT, can help to better understand at-
tosecond streaking measurements. In our interferometric
interpretation of streaking, we stressed the benefits of a
weak and monochromatic laser probe field. Given such ex-
perimental conditions, quantitative analysis of more com-
plex systems can be carried out using two-photon transi-
tion matrix elements, corrected by many-body perturba-
tion theory.
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Appendix A: Formal derivation of the approximate
expression for the radial component of the 2-photon
ATI transition amplitudes

The radial component of the two-photon ATI matrix
elements given in Eq. (6) can be rewritten:

TL,λ,`i(k; εi + Ω) = lim
ε→0+

〈Rk,L|r Gλ(εi + Ω + iε) r|Rni,`i〉.
(54)

Here the initial atomic state is represented by the ra-
dial wavefunction Rni,`i(r), while Rk,L(r) is the wavefunc-
tion of the photoelectron with energy k2/2 = εi + Ω ± ω.
Gλ(r2, r1; εi + Ω) is the radial component, of the Green’s
function given in Eq. (33) for angular momentum λ and
positive energy argument κ2/2 = εi + Ω > 0. We note the
presence of the positive imaginary infinitesimal iε in the
argument of G: It corresponds to the change κ→ κ+iε/κ,
which ensures the presence of a converging factor e−εr in
the integrals below, which otherwise would be divergent.
For the sake of conciseness, we will omit this factor in the
following.

In the limit of large values of the coordinates r1 and
r2, the Green’s function takes the following limiting form,
written for the case of a Coulomb potential, [37, 38]:

Gλ(r2, r1; εi + Ω) ≈ − 2

r1r2κ
ei[κr>+Φκ,λ(r>)]

× sin[κr< + Φκ,λ(r<)] (55)

where r> (resp. r<) denotes the larger (resp. smaller) of
(r1, r2) and the phases Φκ,λ(r) are defined in Eq. (12).

We consider now the case of two-photon ATI from the
1s state of a hydrogenic system with R1,0(r) = C1,0e

−Zr
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Figure 10: Continuum–continuum delays calculated using the
asymptotic approximation (dashed curve) using Eq. (22). They
are compared to the corresponding soft-photon limit (curve) using
Eq. (23). The data correspond to Z = 1 and to a laser probe with
ω = 1.55 eV.

and normalization constant C1,0 = 2Z3/2, while the pho-
toelectron is described by a continuum wavefunction with
asymptotic form given in Eq. (11). In the case consid-
ered here, λ = 1 while L = 0, 2. Replacing in the general
expression of the amplitude Eq. (54), one has:

TL,1,0(k; ε1s + Ω) = −2

k
C1,0Nk

∫ ∞

0

dr2r2 sin[kr2 + Φk,L(r2)]

∫ ∞

0

dr1r
2
1e
−Zr1ei[κr>+Φκ,λ(r>)] sin[κr< + Φκ,λ(r<)]

(56)

and splitting the integration ranges over r> and r<, one
gets:

TL,1,0(k; ε1s + Ω) = −2

k
C1,0Nk

∫ ∞

0

dr2r2 sin[kr2 + Φk,L(r2)]

×{ei[κr2+Φκ,1(r2)]

∫ r2

0

dr1r
2
1e
−Zr1 sin[κr1 + Φκ,1(r1)]

+ sin[κr2 + Φκ,1(r2)]

∫ ∞

r2

dr1r
2
1e
−Zr1ei[κr1+Φκ,1(r1)]}

(57)

From the two r1−integrals present within the braces, the
first one is by far dominant. This comes from the presence
of the exponentially decaying wavefunction of the ground
state, which ensures that the integration range containing
the origin is dominant. Thus, one can neglect the second
term and one has:

TL,1,0(k; ε1s + Ω) ≈ −2

k
C1,0Nk

∫ ∞

0

dr2r2 sin[kr2 + Φk,L(r2)]ei[κr2+Φκ,1(r2)]

×
∫ r2

0

dr1r
2
1e
−Zr1 sin[κr1 + Φκ,1(r1)] (58)
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We remark that the r1-integral contained in this expression
is real:

∫
dr1... ∈ R and its precise value does not affect

the overall phase of the amplitude which becomes:

arg[TL,1,0(k; ε1s + Ω)] ≈

arg{−
∫ ∞

0

drr sin[kr + Φk,L(r)]ei[κr+Φκ,1(r)]} (59)

or, making explicit the expressions of the Coulomb phases
Φ, writing the sine function under its exponential form and
keeping only the r−dependent terms in the integrand, the
amplitude can be expressed in terms of the integrals J±
defined in Eq. (19). Following the same line of reasoning
as the one followed in Sec 3.2, one can neglect the contri-
bution of the J+ integral, so that:

arg[TL,1,0(k; ε1s + Ω)] ≈ arg{(−)
L+2
2 (2κ)iZ/κeiσ1(κ)

(2k)−iZ/ke−iσL(k)

∫ ∞

0

drr1+iZ(1/κ−1/k)ei(κ−k)r]}. (60)

where the last integral represents a Gamma function of
complex argument times algebraic factors, so that one re-
covers the expression of the phase of the radial amplitude
given in Eq. (21).

This expression, which has been established for an ini-
tial 1s hydrogenic state with nuclear charge Z, remains
valid for any s bound state with an exponentially decaying
wavefunction. As already mentioned, for non-hydrogenic
systems, the Coulomb phase-shifts have to be replaced by
the relevant scattering phase-shifts .

For the sake of reference, we give the complete expres-
sion of the asymptotic form of the amplitude, including
real factors:

TL,1,0(k; ε1s + Ω) ≈ (−)
L+2
2

1

k
C1,0Nke

−πZ2 ( 1
κ− 1

k )

(2κ)iZ/κ

(2k)iZ/k
ei[σ1(κ)−σL(k)] Γ[2 + iZ(1/κ− 1/k)]

(κ− k)2+iZ(1/κ−1/k)

×
∫ ∞

0

drr2e−Zr sin[κr + Φκ,1(r)] (61)
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We study resonant two-color two-photon ionization of helium via the 1s3p 1P1 state. The first color is

the 15th harmonic of a tunable Ti:sapphire laser, while the second color is the fundamental laser radiation.

Our method uses phase-locked high-order harmonics to determine the phase of the two-photon process by

interferometry. The measurement of the two-photon ionization phase variation as a function of detuning

from the resonance and intensity of the dressing field allows us to determine the intensity dependence of

the transition energy.

DOI: 10.1103/PhysRevLett.104.103003 PACS numbers: 32.80.Rm, 32.70.Jz, 32.80.Qk, 42.65.Ky

Multicolor resonant ionization is at the heart of numer-
ous and diverse applications in fundamental and applied
sciences. Examples are studies of very high Rydberg states
[1], investigations of biomolecules [2] and specific selec-
tion of radioactive species [3]. In the simplest scheme,
resonantly enhanced two-photon ionization (R2PI) occurs
via the absorption of two photons, generally of different
colors, one tunable (!1) used to scan across a resonant
state (r), and the second (!) ionizing from the excited
state. In traditional R2PI, the yield of the produced ion
species is recorded as a function of laser wavelength, and
the position and shape of the observed resonance provides
information on the underlying electronic and rovibrational
structures. These studies rely on spectroscopic information
using narrow-bandwidth lasers, which do not allow any
temporal resolution. Here, we present an ultrafast time-
resolved-technique to retrieve also the phase of R2PI when
sweeping through the resonance. We demonstrate it by
studying R2PI of He via the 1s3p 1P1 state which lies
23.087 eV above the ground state.

The basic principle of our experiment is illustrated in
Fig. 1. We study the interference between two pathways to
the same ionized final state (f1), one through the resonance
with absorption of two photons with frequency !1 and !,
and the second through a continuum path, using a third
color (!2), involving absorption of a photon with fre-
quency !2 and emission of a photon with frequency !.
The phase of the R2PI is encoded in the modulation of the
photoelectron signal Sf1 as a function of the delay �

between the (!1, !2) fields and the ! field [Fig. 1(b)].
When the energy of the exciting radiation !1, and thus the
detuning from the resonance is changed, the phase varia-
tion of the resonant transition leads to a measurable shift of
the Sf1 oscillation. This phase shift needs to be referenced

against another modulation Sf2 that is independent of the

resonance and thus providing a clock to our measurement.

A process providing an independent modulation requires a
fourth color (!3) and involves another final state (f2) (see
Fig. 1).
An essential requirement for our measurement is the use

of phase-locked radiation fields with commensurate fre-
quencies, and a temporal precision better than the period-
icity of the interference signal, in our case 1.3 fs. Another
requirement, is a high spectral resolution for the excitation
of a narrow resonance. These requirements can be simul-
taneously fulfilled by using the high-order harmonic fre-
quency combs produced when an intense laser field
interacts with a gas of atoms or molecules [4]. As is now
well understood [5,6], harmonics arise due to interferences

FIG. 1 (color online). (a) Schematic diagram illustrating the
phase measurement of R2PI. The dashed and solid !1 lines
represent two excitation energies on either side of the resonance.
The photoelectron peaks used in the measurement are Sf1 and

Sf2 . (b) Illustration of modulated sideband signals Sf1 and Sf2 .

Two Sf1 modulations are indicated, corresponding to the two

excitation energies in (a). (c) Experimental harmonic spectrum
used in the measurements.
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between attosecond pulses produced by tunnel ionization,
acceleration of the created wave packet in the field and
recombination back to the ground state at each half cycle of
the laser field. The spectral width of the individual har-
monics is thus related to the number of attosecond pulses,
and decreases as the laser pulse duration increases [7]. In
this process, a comb of phase-locked harmonics of odd
order is generated.

In the present work, we use high-order harmonics to
study two-color photoionization of He via the 1s3p 1P1

state [8,9]. In contrast to the ‘‘reconstruction of attosecond
bursts by interference of two-photon transition’’
(RABITT) technique, used to determine the pulse duration
of attosecond pulses [10,11] and similarly to previous work
performed in Ne [12] and N2 [13], we eliminate the influ-
ence of the temporal characteristics of the attosecond
pulses to concentrate on the influence of the atomic prop-
erties. We study the R2PI phase as a function of detuning
from the resonance, by varying the fundamental wave-
length (around 805 nm) or alternatively by increasing the
fundamental intensity. We apply these measurements to
determine the intensity-dependence of the energy of the
1s2 ! 1s3p transition, and interpret the results using theo-
retical calculations consisting of solving the time-
dependent Schrödinger equation (TDSE) in conditions
close to the experimental ones [14].

Our experiments were performed with a 1-kHz 35-fs
4-mJ Ti:sapphire laser system. An acousto-optic program-
mable dispersive filter (DAZZLER) was used to change the
central wavelength between 802.5 and 809.3 nm, while
maintaining the spectral width of the amplified pulses
approximately equal to 25 nm. High-order harmonics
were generated in a pulsed Ar gas cell, filtered using a
spatial aperture and a 200-nm thick Al thin film [15], and
focused by a toroidal mirror into a vacuum chamber con-
taining an effusive He gas jet. A magnetic bottle electron
spectrometer (MBES) allowed us to record and analyze in
energy the ejected electrons. Part of the laser field was
extracted before the generation of harmonics, and recom-
bined downstream collinearly with the harmonics, after a
variable time delay that could be adjusted with sub-100-as
precision [12].

A comb of about seven phase-locked harmonic fields
[Fig. 1(c)], corresponding in the time domain to a train of
attosecond pulses of 260 as duration, was thus sent into the
interaction chamber together with the dressing field at
frequency ! with an adjustable phase ’ (or time � ¼
’=!) delay. In addition, a half-wave plate and polarizer
in the dressing IR field arm allowed precise control of the
pulse energy and therefore the intensity in the interaction
region of the MBES. The detuning was determined from
� ¼ 15hc=�0 � E3p, where E3p is 23.087 eVand �0 is the

barycenter of the fundamental frequency spectrum, shifted
to the blue by �� ’ 3:5 nm to account for the blueshift
from free electrons in the generation gas [16,17]. The
dressing laser intensity was determined by measuring the

energy shifts of the photoelectron peaks of harmonics 17 to
23 in the presence of the laser field, which is simply equal
to the ponderomotive energy Up � 6:0I eV where the

intensity I is in units of 1014 W cm�2 for a laser wave-
length of 800 nm [18,19].
Figures 2(a) and 2(b) present electron spectra as a func-

tion of delay between the harmonics and the dressing field,
obtained for two different detunings. Electrons are ob-
served at energies corresponding to one-photon absorption
of the harmonics (from the 17th) and at ‘‘sideband’’ en-
ergies due to two-photon ionization processes, which we
label by the corresponding net number of infrared photons
(16, 18, etc.). These sideband peaks strongly oscillate with
the delay at a frequency equal to 2!. The oscillations of
sidebands 18, 20, 22, and 24 do not depend on the detun-
ing, while sideband 16 is strongly affected by it. A Fourier
transform of the sideband signal over about 10 fs (four
cycles) allows us to determine the relative phases of the
sideband oscillations with a precision of 0.1 rad. The
phases are plotted in Fig. 2(c) for the two cases shown in
(a),(b).
The relationship between the R2PI phase and the ex-

perimental results in Fig. 2 can be understood within
second-order perturbation theory [10,12]. Using the nota-
tion from Fig. 1, the photoelectron signal Sf1 can be ex-

pressed as

Sf1 ¼ jaa1 þ ae2j2; (1)

where aa1 and a
e
2 are the two-photon probability amplitudes

with the superscript a or e referring to an absorption or
emission of an ! photon and with the subscript 1 or 2
referring to absorption of an !1 or !2 photon. Introducing
’1 and ’2 as the phases of the radiation fields, as well as

FIG. 2 (color online). Electron spectra as a function of delay
for detunings � ¼ 10 meV (a) and � ¼ 190 meV (b). The
oscillation of the 16th sideband depends on the detuning while
the others do not (see dashed line) (c) Phase of the oscillations of
the sideband peaks in light orange for (a) and dark red for (b).
The two results have been superposed at sideband 18.
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’a
1 and ’e

2 as the phase terms involved in the two-photon
transitions, Eq. (1) becomes

Sf1 ¼jjaa1jei’a
1
þi’1þi’þjae2jei’e

2
þi’2�i’j2

¼jaa1j2þjae2j2þ2jaa1ae2jcosð’a
1�’e

2þ2’þ’1�’2Þ:
(2)

The cosine term leads to the modulation of the signal
observed in the experiment. In general, the phase terms
involved do not depend much on the photon energies. In
two-photon ionization via a resonant state, however, the
phase (’a

1) changes by � across the resonance. The study
of the variation of ’a

1 as a function of detuning � provides
interesting information on the two-photon ionization pro-
cess, e.g., on the relative importance of resonant and non-
resonant contributions, ac Stark shift of the resonant state,
depending on the spectral characteristics of the XUV and
laser fields.

The variation of ’a
1 with the detuning can be experi-

mentally obtained from Sf1ð’Þ provided the other phase

terms ’e
2, ’1, ’2 do not depend on � and provided the

phase delay ’ is known in absolute value, which is gen-
erally not the case. Sf1ð’; �Þ is therefore referenced against
Sf2ð’Þ, assuming that the phase terms involved,’a

2 and’
e
3,

are independent of the detuning and thus removing the
need of knowledge of the absolute ’. When changing �,
the laser intensity used to generate the harmonics varies
slightly, leading to a (small) variation of the group delay of
the attosecond pulses and thus of ’1 � ’2. We take this
effect into account by assuming a linear group delay [20],
which we experimentally determine using higher-order
sidebands. Its contribution is then subtracted from the mea-
sured phases and the phase of sideband 18 is set to zero for
all detunings. The results are presented in Fig. 3(a). As
expected, the phases corresponding to all sidebands except
the 16th are almost superposed to each other and show no
influence of detuning.

Figure 3(b) shows the variation of the R2PI phase as a
function of detuning. We can tune only over half the
resonance since for lower (negative detunings) sideband
16 moves progressively below the ionization threshold,
thus making our phase measurement inaccurate. We also
compare our measurements with the results of two differ-
ent calculations (solid lines): The dark red line is obtained
by a simple perturbative model [21], only considering the
resonant state. Gaussian envelopes were used for the ir and
XUV pulses with FWHMs of 30 and 10 fs, respectively.
The light orange curve shows the result of calculations
performed by numerically integrating the TDSE in the
single active electron approximation [14] in conditions
close to the experiment. We use a He pseudopotential
with the energy of the 1s3p state equal to 23.039 eV. The
result is therefore shifted by 40 meV for comparison with
the experiment. The result shown in Fig. 3(b) agrees very
well with the experiment, thus confirming our detuning
calibration.

In order to investigate how the 1s3p resonance behaves
in a laser field, we measured the dependence of the R2PI
phase on the dressing laser intensity. Figure 4(a) shows the
R2PI phase determined similarly to Fig. 3(a) but keeping
the wavelength constant at 805.5 nm and gradually increas-
ing the dressing intensity. We verified that even at the
highest intensity, higher-order multiphoton transitions
were still negligible [22], thus not affecting our phase
determination. Increasing the intensity from 0.1 to 1:8�
1012 W=cm2, the R2PI phase varies from�0:7 to 0.9 radi-
ans. Figure 4(b) presents the intensity dependence of all of
the measured phases (circles). We find an almost linear
increase of the phase with intensity, as indicated by the
dark red curve obtained by averaging, with a saturation at
around 1:3� 1012 W=cm2, due to the suppression of R2PI
when part of the two-photon excitation bandwidth moves
partly below the ionization threshold. The light orange line
obtained by TDSE calculations agrees well with our
measurements.
Combining our previous phase measurements as a func-

tion of detuning for a fixed (low) intensity and as a function
of intensity (for a fixed detuning) allows us to determine
the intensity dependence of the 1s2 ! 1s3p transition
energy. Both experimental (dark red solid) and TDSE
(light orange solid) results are shown in Fig. 5(a). The
dashed line is equal to �E1s2 þUp, representing the varia-

tion of the transition energy if the 1s3p state was moving as
a high-lying Rydberg state, following Up [19]. The ac

Stark shift of the fundamental state �E1s2 is very small,
equal to �0:3I eV where the intensity I is in units of
1014 W cm�2 [23,24] so that �E1s2 þUp � Up. We find

that the measured transition energy increases about 40%

FIG. 3 (color online). (a) Measured sideband phases corrected
for the attosecond group delay and normalized at zero for
sideband 18. Different detunings are indicated by the color
code [going from 11 meV below the resonance (dark red, lower
points in order 16) to 190 meV above the resonance (light
orange, upper in order 16)]. (b) Measurements (circles) of the
R2PI phase as a function of detuning. The dark red line indicates
results of a simple perturbative model while the light orange line
shows results of simulations based on solving the TDSE.
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more rapidly with the laser intensity than Up, up to the

saturation at 1:3� 1012 W cm�2.
To better understand this faster than ponderomotive

shift, we have calculated the XUV absorption cross sec-
tion for helium in the presence of an 800 nm field by
numerically solving the TDSE as a function of both
XUV wavelength and laser intensity [Fig. 5(b)]. Using an
XUV bandwidth of 50 meVor smaller we find that beyond
1� 1011 Wcm�2, the 3p resonance has at least two com-
ponents the higher of which shifts significantly faster than
the ponderomotive energy. With the experimental XUV
bandwidth (150 meV), however, the different components
cannot be resolved. As a result, we observe shifts exceed-
ing E1s2 þUp. Experimentally, the predicted structure in

the 3p resonance could be observed using longer funda-
mental laser pulses, leading to spectrally narrower har-
monic peaks.

In conclusion, we have shown how well-characterized
phase-locked high-order harmonics can be used to measure
the phase of R2PI and we have applied it to the determi-
nation of the ac Stark shift of the 1s3p 1P1 state. Although
our resolution was unsufficient to detect the splitting of the
excited state, we observed a nontrivial, faster than pon-
deromotive, ac Stark shift. Our method, here demonstrated
in He, could be applied to the study of numerous resonant
or quasiresonant processes in atoms and molecules.
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FIG. 4 (color online). Intensity dependence of the R2PI phase.
(a) Harmonic phase differences at dressing intensities from 0.1
(dark red) to 2:2� 1012 Wcm�2 (light orange), with attosecond
chirp correction and normalization at sideband 18. (b) R2PI
phase (circles) as a function of intensity, with a six-point moving
average (dark red line) and TDSE (light orange).

FIG. 5 (color online). (a) Measured transition energy of the
1s3p state. Experimental results (solid dark red), compared with
�E1s2 þUp (dashed) and TDSE calculation (solid light orange).

(b) TDSE calculation of XUV absorption for three different
intensities with 50 meV resolution. The position of the 1s3p
state is indicated by the dashed line.
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We present an interferometric pump-probe technique for the characterization of attosecond electron

wave packets (WPs) that uses a free WP as a reference to measure a bound WP. We demonstrate our

method by exciting helium atoms using an attosecond pulse (AP) with a bandwidth centered near the

ionization threshold, thus creating both a bound and a free WP simultaneously. After a variable delay, the

bound WP is ionized by a few-cycle infrared laser precisely synchronized to the original AP. By mea-

suring the delay-dependent photoelectron spectrum we obtain an interferogram that contains both quan-

tum beats as well as multipath interference. Analysis of the interferogram allows us to determine the

bound WP components with a spectral resolution much better than the inverse of the AP duration.

DOI: 10.1103/PhysRevLett.105.053001 PACS numbers: 32.80.Rm, 32.80.Qk, 42.65.Ky

Attosecond science [1,2] promises to achieve temporal
resolution comparable to the duration (�) of the light
pulses, e.g., of the order of 100 as [3,4] or even below
[5]. An important issue, however, is whether this is pos-
sible only to the detriment of spectral resolution, thus
considerably limiting the scientific interest of such light
sources. When attosecond pulses (APs) interact with atoms
or molecules, they create broad electron wave packets
(WPs), partly in the continuum, but often including also
a number of bound states excited by direct absorption [6]
and/or by shake-up processes [7]. A spectral resolution
given by the Fourier limit, i.e., of the order of 1=�, prevents
any detailed analysis of such complex WPs.

Because of the low intensity of currently available APs,
most of the techniques used to characterize attosecond
electron WPs have used as a probe an infrared (IR) pulse
which is synchronized to the extreme ultraviolet (XUV)
AP. The required XUV-IR synchronization is inherent to
the AP generation process and several methodologies, such
as chronoscopy [7], streaking [8,9], stroboscopy [10], and
interferometry [11] have been demonstrated. All of these
techniques require that the attosecond and IR pulses over-
lap temporally. The IR field is therefore not only probing
the electronWP after it has been created but it also perturbs
the formation. In addition, the spectral resolution of these
techniques is Fourier limited.

Several techniques could be considered to achieve a
spectral resolution higher than the inverse of the pulse
duration. Although trains of pulses, i.e., frequency combs,
have the potential to achieve extremely high spectral reso-

lution [12], pairs of pulses, as in traditional Ramsey spec-
troscopy, might be easier to implement for time-resolved
measurements [13]. In this Letter we present a novel
interferometric technique, using a single AP and a delayed
IR pulse, that resolves both issues previously discussed:
The spectral resolution is much better than the Fourier limit
of the exciting pulse and the delayed probe pulse does not
perturb the excitation process (see Fig. 1).
In our method, an AP is used to excite a bound WP

in an atom or a molecule and a delayed IR pulse, locked in
phase with the XUV pulse, is used to probe it. Coincident
with the creation of the bound WP, we also create a con-
tinuum WP, which serves as a reference. After a variable
delay, the bound WP is ionized by the IR pulse, and both
continuum WPs, created directly by the XUV pulse, or
by the two-step (XUVþ IR) process, interfere. The analy-
sis of the interferogram obtained when measuring the
photoelectron spectrum as a function of delay allows us
to determine the spectral components of the bound WP.
This technique enables us to obtain a spectral resolu-
tion given by the inverse of the IR-XUV delay, which is
typically a few tens of femtoseconds, i.e., more than a
factor 100 better than the Fourier limit of the excitation
pulse. We demonstrate the technique experimentally using
an AP with 350 as duration and central energy of 24 eV
which excites a broad WP in helium, including bound
(unknown) and continuum (reference) components. A
few-cycle IR pulse probes the bound WP, and analyzing
the electron spectra allows us to recover the composition of
the WP.
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In the experiments, a linearly polarized phase stabilized
5-fs IR laser pulse is divided into a central and annular part
using a mirror with a hole in the center. The polarization
gating technique is used on the central part to obtain a laser
pulse with a temporal window of linear polarization with
duration of less than half an optical cycle [14]. This laser
beam is focused into a xenon gas cell to generate XUV
radiation via high order harmonic generation. The low
order harmonics and the collinear IR radiation are removed
using a 100 nm thick aluminum filter. This metallic filter
also provides partial dispersion compensation of the intrin-
sic positive chirp of the emitted pulse [15], compressing it
to a duration of 350 attoseconds. The APs are focused
using a grazing incidence toroidal mirror into the active
region of a velocity map imaging spectrometer (VMIS)
[16], used to record the photoelectron momentum
distributions.

The APs have a central frequency of 24 eV with a
bandwidth exceeding 10 eV and excite helium from its
ground state to a coherent superposition of bound and
continuum p states. At a controllable time delay the bound
WP is ionized by the probe IR laser (bandwidth 0.53 eV),
which is collinearly recombined with the AP using a
second mirror with a hole in the center and which is
focused by a spherical mirror. The IR intensity was close
to 1� 1013 W=cm2, well below that necessary to tunnel
ionize He in its ground state, but high enough to induce
‘‘streaking’’ when both IR and XUV pulses overlap [3,17],
allowing us to determine the delay between the two pulses.
The XUVand IR beams are crossed with an effusive He gas
jet emerging from a capillary incorporated into the repeller
electrode of the VMIS [18]. Using a set of electrostatic
lenses, the electrons emitted in the two-color photoioniza-
tion process are accelerated onto multichannel plates
coupled to a phosphor screen detector. The effusive gas

jet allows us to obtain a gas density of�3� 1015 cm�3 in
the interaction region, while keeping a low enough pres-
sure close to the multichannel plates. Two-dimensional
images are acquired with a CCD camera and used for the
retrieval of the 3D initial velocity distribution [19].
A scan of the photoelectrons emitted in a small angle

around the polarization axis in the upward direction is
shown in Fig. 2. Both fields are vertically polarized. The
color indicates the photoelectron intensity SexpðE; tÞ as a

function of observation energy E and delay t. When the
two pulses overlap temporally (at 0 fs delay), the photo-
electron spectra are streaked, indicating photoionization by
an isolated AP in the presence of a laser field [3,17]. In the
more interesting region where the AP precedes the IR
probe, interference fringes are observed in the low-energy
region of the spectrum, up to about 2 eV. As explained
below, interferences fringes are expected also at higher
energy, but the spectrometer resolution in this region pre-
vents their observation [20]. This interference pattern is
due to the multiple pathways leading to the same final
continuum energy. During the delay, t, a continuum state
with energy E and a bound, stationary state with energy Ei

accumulate a phase difference ðE� EiÞt=@. The interfer-
ence fringes, defined as the curves of constant phase dif-
ference, are therefore hyperboles, which become more
closely spaced as the delay increases.
In Fig. 3, we present quantum calculations based on the

single active electron approximation [6] under conditions
that are close to those of the experiment. The probe has a
6 fs duration with a cos2 shape and an intensity of 1�
1013 W=cm2, while the AP duration is 180 as which is
shorter that the 350 as in the experiment but chosen to
match the experimental bandwidth [20]. The theoretical
spectra as a function of delay, StheoðE; tÞ, shows electrons
emitted in the direction of the IR and XUV polarization
axis. Interference fringes appear as soon as the excitation
of the bound states is separated in time from their ioniza-
tion by the probe field, meaning that we have two clearly
delineated routes into the continuum. The hyperbolic shape

FIG. 2 (color online). Experimental photoelectron spectra in
He as a function of delay. The electron distribution is recorded
using a VMIS and the spectra are obtained by selecting a small
collection angle along the polarization direction. The interfer-
ence fringes are clearly visible at low energies.

IR
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AP

He
I II III

FIG. 1 (color online). Principle of attosecond electron inter-
ferometry. A broadband, AP with a spectrum centered on the
ionization threshold of helium is used to coherently excite an
electron WP consisting of a superposition of bound and contin-
uum p states (region I). The created WP evolves freely during a
certain delay (II). The bound part of the WP is finally ionized by
a few-cycle IR pulse (III), which is locked in phase to the AP and
interferences with the previously created free WP are observed
in the photoelectron spectra. In addition, several excited states
can be excited leading to quantum beats in the ionization signal.
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of the fringes is visible in the calculation and the fringe
spacing in energy decreases as the delay increases.

A quantum beat signal [21,22] is also visible in Fig. 3(a),
due to simultaneous excitation of several bound states (i,j).
Interferences between quantum paths leading to the same
final energy, for example Ei þ n@! ¼ Ej þ n0@!0, !, !0

being within the IR laser bandwidth and the number of
photons n and n0 not necessarily the same (typically one or
two), give rise to periodic structures in the ionization
probability. The accumulated phase difference between
the quantum paths, equal to ðEj � EiÞt=@, is independent
on the observation energy and the quantum beat signal
appears as periodic vertical structures. The beat signal
observed in Fig. 3 has a main periodicity of about 2 fs,
corresponding to the beating between the outgoing elec-
trons from the 2p and the 3p states. The periodicity of the
beat signal carries information on the relative energy sepa-
ration of the states involved, while the absolute timing of
the beating depends on the relative phase of the pairs of
states contributing to the signal. As we now discuss, analy-
sis of the ‘‘direct-indirect’’ interferences, involving bound
states and a reference continuum state allow us to go well
beyond quantum beat spectroscopy.

To begin with, the different components of the excited
WP can be extracted by Fourier analysis of the delay-
dependent photoelectron signal StheoðE; tÞ. We first analyze
the simulation shown in Fig. 3. The Fourier transform at all
the possible observation energies yields a two dimensional
function of the observation energy E and the Fourier
frequency (represented as an energy E0). This function,
StheoðE;E0Þ, is presented as a color plot in Fig. 3(b) as a
function of E and E0. Figure 3(c) shows a line out at E ¼
4 eV. It exhibits six prominent peaks. The three lowest
peaks are from the quantum beat between 3p-4p, 2p-3p,
and 2p-4p pairs of states, respectively, while the other
peaks at 4.9, 5.6, and 7.4 eV in Fig. 3(c) are due to the
direct-indirect interferences involving the 4p, 3p and 2p
states, respectively. When the observation energy E is
varied, the Fourier frequency of the quantum beats does
not change and they appear as vertical lines in Fig. 3(b). In
contrast, the Fourier frequency E0 of the direct-indirect

interferences increases with E, since the accumulated
phase difference between the direct and indirect ionization
pathways is proportional to it. This linear relationship
results in lines tilted at 45� in Fig. 3(b). The energies of
the bound intermediate states (4p, 3p, 2p) in the WP can
be read directly from the intersections of the 45� lines with
the horizontal zero energy line. In addition, the relative
strengths of the 45� lines are directly related to the con-
tributions from each bound state to the ionization signal.
Turning to the experimental data, we find that quantum

beats and direct-indirect interferences are also present.
Figure 4 presents an extended analysis of our experimental
results. Figure 4(a) is a zoom of the low-energy region in
Fig. 2, while Fig. 4(b) presents the Fourier transform of the
experimental data. The observed 45� lines which are char-
acteristic for the direct-indirect interferences allow us to
identify the composition of the bound WP and identify the
contributions from the 3p, 4p and 5p states. A weak
indication of the 4p-5p quantum beat can also be seen as
a beating with a 13 fs periodicity in Fig. 4(a) and as a
vertical line near 0.5 eV in Fig. 4(b). Additional infor-
mation is encoded in the angular distributions since
the two interference processes are fundamentally different
and involve different angular momentum states. Fig-
ures 4(c)–4(f) present a more complete analysis making
use of the full angular-resolved photoelectron distribution
FðE; �; tÞ, which can be expanded as a sum of Legendre
polynomials

FðE; �; tÞ ¼ X2Lmax

j¼0

�jðE; tÞPJ½cosð�Þ�; (1)

where PJ is the Legendre polynomial of Jth order, �J an
expansion coefficient, and Lmax the maximum angular
momentum component of the ionized wave function,
which corresponds to the maximum absorbed angular
momentum. After extraction of the individual expansion
coefficients, �JðE; tÞ, we apply the same Fourier analysis
that was already applied to the photoelectron spectrum
measured along the laser polarization axis. Figures 4(c)
and 4(e) show the extracted expansion coefficients �1ðE; tÞ

FIG. 3 (color online). (a) Calculated photoelectron spectra in He as a function of delay between the AP and the IR pulse. Interference
fringes are clearly seen where the AP precedes the IR probe. (b) Fourier transform of the photoelectron spectrum allowing the
identification of the states that form the bound WP. The beat signals from the 2p, 3p and 4p states can be seen as vertical lines while
the direct-indirect interference gives rise to contributions at an angle of 45�. A line out of the transform at 4 eV is presented in (c).
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and �2ðE; tÞ respectively, together with their Fourier trans-
forms in Figs. 4(d) and 4(f). Simple parity arguments
dictate that interference between ionization processes that
end in states of definite parity will appear in the even J
expansion coefficients, while interference between ioniza-
tion processes that end in mixed parity states will appear in
the odd J expansion coefficients. The direct-indirect inter-
ference process involves electrons that have absorbed dif-
ferent numbers of photons resulting in a mixed parity state.
Indeed, we see that the characteristic hyperbolic interfer-
ence fringes appear clearly in�1ðE; tÞ [Figs. 4(c) and 4(d)].
In contrast, the process that produces quantum beats results
in states of definite parity. Accordingly, the quantum beat
signal dominates �2ðE; tÞ [Figs. 4(e) and 4(f)], thus con-
firming the interpretation presented above.

Using the above analysis, we can determine which states
are excited by the AP (3p, 4p, 5p) and obtain a measure of
their relative strengths. Our ultimate goal is of course a
complete characterization in both amplitude and phase.
Determining the amplitudes and phases of a wavelike
object by interference with a reference wave is a well-
known approach. The experiment and the analysis we
have presented demonstrates that we can probe an atto-
second electron WP using a coherent reference WP that is
in the continuum. The method can be extended to include
the retrieval of a phase associated with each WP compo-
nent from the interferogram. This phase retrieval yields the

phase difference between the two paths into the continuum
and includes a phase contribution from both XUV and IR
ionization steps. If it can be arranged that both ionization
leading to the creation of the reference WP and ionization
by the probe field do not add extra amplitude or phase
variation or that these possible variations are well-known
then a complete phase characterization can be made.
In conclusion we have demonstrated experimentally a

new interferometric technique using a reference continuum
WP and a delayed probe excitation. The method demon-
strated can be used to probe the temporal evolution of
bound or quasibound electron WPs, e.g., composed of
autoionizing states [23] or created by shake-up [7] with
high spectral and temporal resolution simultaneously, thus
providing an increased precision when doing attosecond
experiments.
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We present a new method of doing quantum state holography to completely characterize excited
attosecond electron wave packets. Quantum state holography is a method to measure the wavefunc-
tion of a quantum system in both amplitude and phase. The presented approach is an extension
of a recent publication (J. Mauritsson et al. Phys. Rev. Lett. 105, 053001 (2010)) in which we
demonstrated experimentally that we can characterize the energies and amplitudes of an attosec-
ond electron wave packet using electron interferometry. Here we show theoretically that attosecond
electron interferometry can be extended to retrieve also the phases of all the states that make up
the wave packet. We demonstrate the feasibility of our method using a simple model of shake-up
wave packets where we can add arbitrary phases and/or life times to the different eigenstates.

PACS numbers: 32.80.Rm, 32.80.Qk, 42.65.Ky

I. INTRODUCTION

The interaction of short light pulses with atoms or
molecules leads to the creation of localized electron wave
packets, either through direct excitation or through in-
direct processes such as shake-up excitation. These elec-
tron wave packets, which can be viewed as a coherent
superposition of excited eigenstates, are localized in both
time and space and the localization determines the num-
ber of states and the bandwidth that they cover. There-
fore, if we want to capture and ultimately control fast
localized electron motion we have to characterize broad-
band wave packets consisting of many excited states
spread over many electron volts. A complete reconstruc-
tion of such wave packets requires that we characterize
both the time-dependent amplitudes and the phases of
all these states.

Determining the amplitudes and phases of a wave-like
object by interference with a reference wave is a well-
known approach. It is the essence of holography, and
has been used to great advantage in the characterization
of optical fields [1]. The method has also been applied
to vibrational and highly excited Rydberg wave packets
(where the motion takes place on a picosecond to fem-
tosecond time scale) [2–4], but in those cases two bound
wave packets were used, one the object to be measured
and the other a known reference that spectrally over-
lapped the unknown one. The challenge in attosecond
science is to develop a similar technique without requir-
ing that the reference wave packet interferes with the
unknown wave packet while it is still bound. This would
alter the properties of the unknown wave packet. We
propose a method to solve this problem by having the
reference be a free wave packet, which does not interfere
with the unknown wave packet during the evolution of
the electron dynamics of interest, but only in the course
of the detection step, when the bound wave packet is ion-

ized by a coherent probe pulse and the resulting angle-
and energy-resolved photoelectron spectrum is measured.

In a recent publication [5] we demonstrated experimen-
tally an interferometric pump-probe technique that uti-
lizes attosecond electron interferometry. We showed that
we could obtain the high experimental stability necessary
to spectrally resolve the states of a bound wave packet
(the np series in Helium starting from the 3p-state). Sim-
ilar to quantum state holography [2] we demonstrated
the ability to measure independently the amplitude of
each state in the wave packet. The interferometric na-
ture of the method used implies that also phase informa-
tion should be embedded in the recorded interferogram.
In this article we demonstrate that this is indeed the
case and that the techniques for amplitude and phase re-
trieval work irrespectively of the way the wave packet is
created. We do this using a simplified model of shake-
up/shake-off process and show that the time-dependence
of the electron wave packet can be completely recon-
structed since we retrieve both the time-dependent am-
plitudes and phases of any given state in the coherent
superposition. This is a prerequisite if we want a com-
plete reconstruction of the wave packet since even minor
phase changes alters the electron motion.

The basic idea of the attosecond electron interferom-
etry is illustrated in Fig. 1. When an attosecond pulse
is applied to an atom or a molecule at time t0 = 0 it
excites a broad coherent superposition of bound states
spread over several electron volts. This can either hap-
pen by direct excitation or as a subsequent process, e.g.
by a shake-up process [6]. The coherent superposition,
and hence the electron dynamics that take place, is com-
pletely characterized by the states that are part of the
superposition,

Ψb(t > 0) =
∑

i

AiΨie
−i(Eit/~−ϕi), (1)
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FIG. 1: (Color online). Principle of the attosecond electron
interferometer. A bound wave packet is created either di-
rectly by excitation with an attosecond pulse or through a
subsequent process after ionization. Simultaneously a con-
tinuum reference wave packet is created. Both wave packet
evolve freely in time and after a variable delay the bound wave
packet is ionized using a synchronized probe pulse which leads
to interference.

where Ei, Ψi are the bound state energies and wave func-
tions and ϕi, Ai the phases and amplitudes.

Simultaneously with the bound wave packet a contin-
uum wave packet is created that will serve as a reference
in the following. After the initial excitation both wave
packets evolve freely in time. The bound wave packet is
probed through a further excitation step after a variable
delay t using a probe pulse that is locked in phase with
the event that initiated the wave packet. The subsequent
ionization leads to interference between the direct path
of the continuum wave packet and the indirect pathway
via the bound states. In this article we demonstrate that
it is possible to determine the initial phases ϕi and any
possible lifetime effects of the bound states Ψi as well as
the energies, Ei and the amplitudes, Ai.

This article is organized as follows. In Sec. II the
simplified shake-up model is described together with the
pulse parameters used in the calculations followed by a
brief explanation about how to analyze the resulting in-
terferograms. In Sec. III the separation of the angular
resolved data into Legendre polynomials is presented and
how this information can be used to separate different
ionization pathways. This is followed in Sec. IV by an
explanation how the encoded lifetime and phase informa-
tion can be retrieved form the spectrograms ending with
conclusions in Sec. V.

II. ANALYSIS OF A SHAKE-UP WAVE PACKET

Shake-up processes occur after the sudden removal of
one electron, e.g., by photoionization with high-energy
photons [6]. The abrupt changes in the atomic poten-
tial create a perturbation that may ’shake’ the remain-

(a) (b)

He+He
1s

ns

Es Ep

EdEs

FIG. 2: (Color online). Possible pathways in the interferome-
ter. (a) The rapid removal of an electron excites the remain-
ing electron(s) to excited bound or even continuum states. (b)
Ionization of the bound states with one or two probe photons
after the shake-up excitation.

ing electron(s) into an excited bound or even continuum
state [see Fig. 2]. We simulated such a shake-up and
shake-off process in helium using a sudden approxima-
tion, consisting in removing one electron and projecting
the wave function onto the eigenstates of the ionic sys-
tem [7]. This process produces a wave packet that is
a coherent superposition of ns-bound states and a con-
tinuum s-wave packet [see Fig. 2 (b)]. We further ion-
ize the excited bound states after a variable delay by
a two-cycle pulse at 200 nm central wavelength with a
cos2 shape envelope, which corresponds to a bandwidth
of 6 eV FWHM. Recent advances in source development
indicate that ultra-short pulses in this wavelength regime
are now experimental feasible [8]. We calculated the
angular-resolved electron spectra F(E, θ, t) as a function
of delay (t) between the shake-up/shake-off excitation
(pump) and the probe laser pulse by solving the time-
dependent Schrödinger equation [9, 10]. E denotes the
final energy, while θ is the angle between the direction of
emission of the electron and the direction of polarization
of the probe field, which coincides with the quantization
axis. Note that due to the revolution symmetry of the
problem, F(E, θ, t) does not depend on the azimuthal
angle φ.

In Fig. 3(a) the results of the calculations are pre-
sented for the electrons emitted in the direction of the
polarization vector. The electron signal in one direction
is plotted as a function of E and t. The spectrogram
F(E, θ, t) (here with θ = 0) exhibits a series of tilted in-
terference fringes with a tilt varying from almost vertical
at small time delays to almost horizontal at large delays
[see Fig. 3(a)]. We analyze the interferences by Fourier
transform along the delay axis for all final energies [5].
The result shown in Fig. 3(b) is a two dimensional func-

134



Paper VII

3

tion S(E,E′) of the continuum energy E and the energy
E′, the conjugate variable of t from the Fourier trans-
form. This function presents a series of tilted lines at 45◦

corresponding to “direct-indirect” interferences, i.e., be-
tween the wave packet ionized by the probe pulse and the
reference continuum wave packet created by the shake-off
process.

The structure of the interference pattern both in the
E − t interferogram or in the E − E′ representation can
be understood by expressing the accumulated phase dif-
ference ∆Φ along the two branches of the interferometer
(see Fig. 1). Considering a final energy E and an ex-
cited bound state Ei the accumulated phase difference
at time t (assuming that the initial shake-up excitation
takes place at time t = 0) is

∆Φ(E, t) = (E − Ei)t/~ + ϕi + δφ(E) , (2)

where δφ(E) = φdir(E) − φind(E) is the difference in
phase that is picked up during the ionization process for
the two pathways [11, 12]. In the simplest case, i.e.,
no phase due to the initial excitation and no correlation
effect, δφ(E) is given by the difference of the scatter-
ing phases for the outgoing wave packet between the di-
rect pathway with ` = 0 and the indirect pathway with
` = 1, η0(E)−η1(E). The phases, ϕi, which characterize
the bound wave packet, are those that we want to de-
termine using our interferometric technique. Note that
we are only interested in the relative phases of the wave
packet components. Let us therefore, in a first step and
for the sake of simplicity, neglect any state and energy-
dependence of δφ(E) over the range considered (for ex-
ample assuming that the probe pulses are transform lim-
ited) and therefore treat δφ as a small constant phase
offset, which does not alter the relative phase difference
of the wave packet components. The position of the inter-
ference fringes is determined by the families of hyperbolic
curves E = Ei+(nπ−ϕi)~/t, with n integer. For a given
energy E, the frequency of the oscillation as a function
of t is (E − Ei)/h, leading to straight lines with a tilt
of 45◦ in the Fourier plane, which intersects E = 0 at
the bound state energies, Ei. In this way we can identify
the 3s, 4s, 5s, 6s and 7s states with the binding energies
6.04 eV, 3.40 eV, 2.18 eV, 1.50 eV and 1.10 eV with an
accuracy given by the numerical resolution. Note that
no information is obtained for the population of 2s state
since the photon energy of the probe pulse is not suffi-
cient to ionize it. The relative strength of each Fourier
component is directly related to its relative contribution
to the wave packet.

III. LEGENDRE ANALYSIS

A deeper understanding of the interference pattern can
be achieved by performing a Legendre analysis of the

FIG. 3: (Color online). Analysis of a shake-up wave packet
in a helium ion. (a) Complete on-axis spectrogram. (b)
Fourier analysis showing the components of the wave packet.
(c) β1(E, t) and the corresponding Fourier analysis (d). (e)
β2(E, t) and (f) its Fourier analysis.

calculated angular distribution. F(E, θ, t) is numerically
decomposed as

F(E, θ, t) =
2∑

`=0

β`(E, t)P
0
` (cos θ), (3)

where P 0
` are Legendre polynomials, related to the spher-

ical harmonics by

P 0
` (cos θ) =

√
4π

2`+ 1
Y 0
` (θ, φ). (4)

Fig. 3(c) and (e) show the extracted coefficients β1(E, t)
and β2(E, t) together with the Fourier analysis S1(E,E′),
S2(E,E′) in Fig. 3(d) and (f). The hyperbolic fringes ap-
pear clearly in β1(E, t) and β2(E, t). They are modulated
in intensity due to the presence of several bound states
and therefore several families of fringes leading to a Moire
pattern and also quantum beats in β2(E, t). The Fourier
transforms show lines at 45◦ which are characteristic of
direct-indirect interferences as well as a few vertical lines
(in (f)) which can be identified as quantum beats [5].

To understand the information contained in this anal-
ysis, we express the shake-off amplitude for the ejection
of an electron in the direction given by (θ, φ) as:

Mdir(θ, φ) = eiφdirαE Y 0
0 (θ, φ) . (5)

Similar, the amplitude for shake-up into states i or j (we
only consider two states) followed by ionization by the
probe field can be written as:

Mind(θ, φ) = [e
i(E−Ei)t

~ +iϕiαi + e
i(E−Ej)t

~ +iϕjαj ]

×eiφindY 0
1 (θ, φ) . (6)
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In Eqs. (5) and (6) αE , αi, αj are the probability ampli-
tudes for the different processes. The interference signal
for a given direction is proportional to |Mdir + Mind|2.
We easily identify the coefficients of the Legendre poly-
nomial expansion for this simple case as:

β0 ∝ |αE |2 + |αi|2 + |αj |2 +

+2Re{αiα∗jei
(Ej−Ei)t

~ +i(ϕi−ϕj)},

β1 ∝ Re{α∗Eαiei
(E−Ei)t

~ +iϕi+iδφ

+α∗Eαje
i
(E−Ej)t

~ +iϕj+iδφ}, (7)

β2 ∝ |αi|2 + |αj |2 + 2Re{αiα∗jei
(Ej−Ei)t

~ +i(ϕi−ϕj)}.
Processes with different parity, such as the interference
between shake-off and ionization of the shake-up wave
packet by one-photon absorption appear in the odd coef-
ficient β1. Quantum beats between states i and j show up
in the even coefficients β0 and β2. Additionally β0 (not
plotted) has a strong background contribution |αE |2 from
the shake-off, which is missing in β2. Besides the quan-
tum beats that are clearly visible in the Fourier analysis
in Fig. 3(f), the direct-indirect interferences with the ref-
erence wave packet are still observable. These are due to
ionization of the shake-up wave packet by absorbing two
probe photons. Fig. 2(b) indicate the different processes
considered in this discussion.

The probability amplitude corresponding to two-
photon absorption with final angular momentum ` (` =
0, 2) can be expressed as:

M
(2)
ind(θ, φ) = [ei

(E−Ei)t

~ +iϕiα
(2)
i,` + ei

(E−Ej)t

~ +iϕjα
(2)
j,` ]

×eiφ
(2)
indY 0

` (θ, φ) , (8)

where α
(2)
i,` indicate the probability amplitude for shake

up to the i state, followed by two-photon absorption

and φ
(2)
ind is the associated two-photon ionization phase

[12, 13], which, for simplicity, we assume to be state and
energy-independent. β1 is unchanged while β2 becomes:

β2 ∝ |αi|2 + |αj |2 + 2Re{αiα∗jei
(Ej−Ei)t

~ +i(ϕi−ϕj)}

+2Re{αEα(2)∗
i,2 ei

(E−Ei)t

~ +iϕi+iδφ
(2)

+αEα
(2)∗
j,2 ei

(E−Ej)t

~ +iϕj+iδφ
(2)}, (9)

with δφ(2) = ϕdir − φ
(2)
ind. β2 includes both quantum

beats and direct-indirect interferences with two-photon
absorption.

Comparing the signal strength in Fig. 3(d) and (f) the
center of intensity within the tilted lines is shifted to-
wards higher energies for β2. The two-photon case takes
the electron to a higher observation energy clearly ob-
servable for the 3s state. Both quantum beating and
interferences involving absorption of two probe photons,
scale with the square of the amplitude of the probe field
|Eprobe|2.

IV. LIFETIME AND PHASE RETRIEVAL

In order to illustrate that our technique can be used
to resolve bound state dynamics we artificially impose
a short lifetime of 5 fs on the 3s state. To access the
dynamics, the 3s contribution to the expansion coeffi-
cient β1(E, t) is filtered out using a window function in
S1(E,E′) and an inverse Fourier transform back to the
time domain. Fig. 4 illustrates the different steps. In
Fig. 4(a) β1(E, t) is shown with the corresponding Fourier
analysis S1(E,E′) in Fig. 4(b). The edges of the fil-
ter function are indicated as dashed lines in Fig. 4(b).
S1(E,E′), after filtering, is inverse Fourier transformed
back to the time domain. The result is shown in Fig. 4(c).
The separated 3s signal shows a clear decay. The 3s am-
plitude |A3s(t) |2 is also plotted. We determine a lifetime
of 5 fs, in agreement with the imposed one.

Finally, we explain here how to retrieve the phases of
the wave packet components from this type of measure-
ments. We make again use of the fact that we can sepa-
rate all states via the Fourier analysis S1(E,E′). Window
functions are used to filter out the contributions from
each single state as explained in Fig. 4(a)-(c). In an ex-
perimental situation, t denotes the delay between the ex-
citation pulse and the probe field and is not known in
absolute value and we now replace t by t − t0, where t0
is the instant of excitation. The phase of the detected
oscillation (see Fig. 4(c)) is given by:

∆Φ(E, t) =
(E − Ei)(t− t0)

~
+ ϕi. (10)

There is an additional phase term due to the scattering
phase of the reference wave packet, but since we compare
the interference signal for all the states at the same final
energy this additional phase leads to a constant offset
that is that same for all the states (see also the previ-
ous discussion). An illustration of the phase evolution is
sketched in Fig. 4(d). For two states i and j the measured
phase ∆Φ(E, t) is plotted for three different observation
energies E. Tracing the linear phase evolution back to
its origin it will intersect at the same starting point t0
for all observation energies - the time of creation of the
wave packet. The phase offset at t0 is the initial phase.
The slope of each line is given by the difference between
continuum and binding energy E − Ei, E − Ej .

To correctly retrieve the phase, ϕi, we need to know
precisely the energy of the state, Ei, and the exact
time of creation of the reference wave packet, t0. This
information can be obtained by utilizing the fact that we
measure ∆Φ(E, t) as a function of both delay and energy.
Ei is already extracted from the Fourier transform, while
t0 is obtained by differentiating ∆Φ(E, t) with respect
to E, yielding t − t0, from which t0 can be determined
[see Eq. 10]. We differentiate ∆Φ(E, t) for observation
energies from threshold up to 1 eV. The ionization time
for the wave packet, t0, is determined to -0.66 fs, or
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FIG. 4: (Color online). Lifetime analysis and phase retrieval. (a) β1(E, t) for shake-up excitation in a helium ion. (b) Fourier
analysis of β1(E, t) and an example of a window function (green, dashed lines) to separate single states. (c) Back transformation
into the time domain for the 3s state with a lifetime of 5 fs. (d) Idea of the phase retrieval: ∆Φ for different continuum energies
for two different states j and k. The evolution of ∆Φ depends on the initial phase at time t0. (e) Spectrum at threshold and
retrieved phases for three calculation under different initial conditions.

one period of the probe field, which corresponds to the
time when the sudden shake-up process takes place in
the calculation. The initial time t0 is independent of
the state we choose for the analysis. We impose an
initial phase of 0, π/2 and π to the 3s state for different
runs of our calculation while leaving all other conditions
identical. The result of our phase retrieval is shown in
Fig. 4(e). As expected the initial phases for the 4s and
5s state are unaffected while the initial phases for the 3s
state can be retrieved within the numerical precision to
0.01, 0.497π and 0.996π.

The phase retrieval method presented here relies on
the fact that we measure the phase difference between
the reference wave packet and the bound wave packet
via a delayed ionization. As a consequence it is also
possible to compare the phase difference with respect to
other pathways, namely the two-photon ionization shown
in Fig. 2(b). As we have shown previously we can eas-
ily distinguish between one- or two-photon ionization by
means of the Legendre analysis. While the β1(E, t) co-
efficient contains information about the one-photon case
the β2(E, t) gives us access to the two-photon contribu-
tion [compare Eqs. (7) and (9)]. Assuming an identical

phase imprint for the shake-up transitions and the one
photon-ionization the phase difference between the one-

and two-photon ionization (φind−φ(2)ind) would yield solely
the phase contribution due to the second photon. This
could be of great interest in time delays measurements
[12].

V. CONCLUSION

In this article we have demonstrated that attosecond
electron interferometry can be used as quantum state
holography and retrieve the wavefunction of a quantum
system in both amplitude and phase. The presented
method can be further developed by also measuring these
phases as a function of detection energy in which case the
difference in scattering phases between the two ionization
pathways could be directly measured.
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ABSTRACT 

 

We report two-color attosecond pump-probe experiments, where the time-dependent polarization of 

a neutral molecule under the influence of a moderately strong near-infrared laser field is monitored 

with attosecond time resolution. A series of small to medium-size molecules (N2, O2, CO2 and 

C2H4) are exposed to a femtosecond IR laser pulse and a co-propagating attosecond pulse train, and 

pronounced oscillations are observed in the parent molecular ion yield as a function of the pump-

probe delay. Our measurements are the first demonstration of the probing of attosecond time-scale 

electron dynamics in neutral molecules and may be regarded as a first example of attosecond Stark 

spectroscopy in molecules. 
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Introduction 

 

The emergence of attosecond laser techniques permits addressing fundamental questions 

regarding the interactions between light and matter, by providing access to electronic 

properties in real time (1). One of the most fascinating possible applications of attosecond 

pump-probe spectroscopy concerns the observation of electronic motion on the atomic scale 

in atoms, molecules and condensed matter. Using intense attosecond laser pulses generated 

by high-harmonic generation (2), in future, it may be possible to configure pump-probe 

experiments where a first, attosecond pump pulse creates a non-stationary electronic state 

whose time-dependent evolution is subsequently probed by a second, attosecond probe 

pulse that interacts with the system after a variable delay. Already, the combination of 

phase-locked femtosecond and attosecond laser pulses has been used to unravel a wide 

range of attosecond timescale phenomena in atoms (3-6), molecules (7) and on surfaces (8). 

In these experiments, several spectroscopies have already been applied towards the 

elucidation of attosecond timescale dynamics, including photoelectron spectroscopy 

(streaking (9, 10) and RABBITT (11) measurements), ion momentum imaging (7) and 

transient absorption (5). Efforts to experimentally probe the inner workings of molecules 

and to reveal the electronic motion in neutral molecules on the attosecond timescale have so 

far not been successful, since the observed attosecond timescale effects were thus far 

attributed to dynamics in the ionized system (7, 12, 13). These first experimental efforts 

have been complemented by theoretical work that have described several scenarios for 

inducing and observing attosecond time-scale electron dynamics in neutral molecules (14). 

In general, an experimental approach that would allow us to observe these attosecond 

electron dynamics remained to be developed. Addressing, in particular, the probing of this 

electron dynamics, Yudin and co-workers studied ionization of a coherent superposition of 

electronic states of H2
+, and concluded that the motion of the time-dependent electron wave 

packet could be inferred from photoelectron energy and angular distributions measured 

upon attosecond XUV ionization (15).  

It is known that the absorption of a photon requires that both the photon energy and 

momentum are absorbed. Consequently, shorter wavelength radiation is absorbed in the 

vicinity atomic nuclei (16), explaining, for example, why in X-ray photo-absorption inner-

shell excitation is favored over valence excitation. Therefore, we may anticipate that 
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attosecond XUV/X-ray pulses should be very suitable for probing time-dependent electron 

localization in molecules, since the short wavelength/high photon energy of the attosecond 

pulses provides a highly local, time-dependent probe of the electron density near the atomic 

centers in the molecule. For example, molecules where the electron density is periodically 

modulated as a result of the interaction with a moderately strong laser field (17), might 

display a sub-cycle time-dependence in the photoionization yield under the influence of a 

time-delayed attosecond laser pulse. The observation of polarization-induced time-

dependent changes to the photo-absorption yield is consistent with the occurrence and 

observation of Stark shifts in molecular photo-absorption. Indeed, attosecond probing of IR-

induced molecular electron dynamics may be regarded as an ultrafast variant of molecular 

Stark spectroscopy, which is a well-established tool for extracting information on structure 

and chemical bonds in molecules (18). In molecular Stark spectroscopy, a sample 

experiences a static (or oscillatory) electric field that induces a Stark shift of the electronic 

states and the variation of the absorption of incident light tuned to a specific resonance is 

measured. In other words, Stark spectroscopy measures the sensitivity of a given transition 

to an external electric field, thereby providing direct information on the polarizabilities of 

the molecular sample. We note that the possible advantages of the use of an intense laser 

field in Stark spectroscopy (enabling extensive control over the field strength, oscillation 

period, etc.) was already pointed out in (18).  

In this article we present first results illustrating - with attosecond time resolution - the 

effect of a moderately strong near-infrared laser field on the photoionization efficiency of a 

series of small to medium-size molecules. In the experiments, a moderately strong near-IR, 

femtosecond laser pulse interacts with a molecule and induces a time-dependent polarization 

that is probed by attosecond photoionization. Experiments have been performed for 

relatively simple diatomic molecules like N2 and O2, but also for CO2 and mid-size 

molecules like Ethylene (C2H4). Our results demonstrate the viability of attosecond Stark 

spectroscopy as a tool for observing time-dependent electron dynamics that is applicable to 

a large variety of molecules. 

The principle of our measurements is illustrated in Figure 1, which shows the results of 

TDDFT calculations performed on a C2H4 molecule that is polarized by a static electric 

field. First the ground state geometry of the molecule was optimized using DFT. Then, the 

oscillator strength was computed in the linear response approximation, using the B3LYP 
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functional and an extended 6-31G*(d) basis set. The calculations were performed with and 

without an 109 V/cm external electric field that was applied along the molecular axis. Such a 

field is too weak to field ionize the molecule, but, as shown in Figure 1, can induce 

significant changes in the absorption spectrum of the molecule. The modifications of the 

photo-absorption spectrum are due to the Stark induced modification of the electronic states, 

as well as the accompanying changes in the transition probabilities for the individual 

transitions between molecular orbitals. In other words, the induced modification of the 

electronic properties of the molecule under the influence of the electric field induces a 

modification of its absorption properties. The electronic response of the molecule to the 

electric field depends on the polarizability , the energy is given by E(F) = E0 + F2. For a 

transition between two states, this leads to: E(F) = E0 + F2The field-dependent 

variations of the molecular photo-absorption result from changes in these transitions and 

thus from the molecule´s polarizability. 

The results presented in Figure 1 illustrate the response of C2H4 to a static electric field in 

order to introduce the concept of attosecond Stark spectroscopy. A more realistic theoretical 

description of our experiment requires using the TDDFT real time/real space framework. In 

Figure 2 calculations are shown illustrating the dynamical response of an N2 molecule 

interacting with a femtosecond IR pulse synchronized to a co-propagating attosecond pulse 

train (APT). In our approach, the ground state orbitals of the molecule were first determined 

in a static DFT calculation. Next the molecule was exposed to a 30 fs long, 800 nm near-IR 

laser pulse polarized along the N2 inter-nuclear axis with a peak intensity of 5*1012 W/cm2, 

in order to minimize the ionization of the molecule. As illustrated in Figure 2, the light-

induced dipole adiabatically follows the near-IR light electric field. This is due to the fact 

that the laser frequency is not resonant and therefore doesn’t generate electronic excited 

states (14). Moreover, the light intensity is chosen to minimize the ionization.  

The time-dependent dipole oscillation classically corresponds to the motion of the electron 

along the molecular axis. This motion is illustrated in the Figure 2, where the time-

dependent electron localization function (TD-ELF) defined by Silvi and Savin (19) is 

plotted, allowing one to observe the laser-induced modifications of the molecular bonds. 

When no field is present, the TD-ELF shows the 2 lone-pair orbitals localized on the N-

atoms and the triple bond expected in N2 in between. The time-dependent polarization of the 

molecule corresponds to a dynamical modification of these bonds, in which the electron 
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alternatively localizes on one or the other side of the molecule. This laser induced 

dynamical modification of the molecular bonds has been previously considered in TDDFT 

calculations (17), but until now no experiment could resolve these processes in real time. 

The time-dependent electron localization in the molecule can induce a variation of the light 

absorption. As a consequence, the absorption of XUV light and therefore the ionization 

efficiency can vary when the molecule is under the influence of a fs pulse. This is illustrated 

in Figure 2, where the ionization yield of a molecule resulting from the interaction with an 

APT (300 as individual pulse duration, 109 W/cm2 XUV, one pulse per half IR cycle) and a 

fs IR pulse. The ionization yield is defined as the total charge transferred into the continuum 

at the end of the 500 fs long integration time. The calculation uses a finite box (R=5Ǻ) 

followed by an absorbing region where the wave function vanishes. The size of the box 

remains modest, since due to the low IR intensity and XUV induced ionization, no returning 

electrons are expected. Moreover no reflection from the absorbing boundaries is observed. 

The pump-probe ionization signal was determined by calculating the total charge for 

different delays between the APT and the IR light. Oscillation of the ionization yield is 

observed and these oscillations are following the variation dipole and therefore of the light 

electric field. This demonstrates that the time-dependent polarization of the molecule can be 

observed through the measurements of the ionization efficiency. 

  

The experimental realization uses a Mach-Zehnder-type interferometer. One arm of the 

interferometer contains the near-infrared (800 nm) pump beam, whose intensity was varied 

by using the combination of a half wave-plate and a thin polarizer at Brewster angle. The 

XUV APT that was used as probe beam was generated in the other arm of the 

interferometer, by focusing approximately 1 mJ, near-infrared (800 nm) laser pulses into a 

gas cell containing various rare gasses (Kr, Xe, Ar). An Al thin film (200 nm thickness) 

spectrally filtered the radiation and eliminated the IR fundamental beam as well as low-

order harmonics with orders below 11. The probe beam was recombined with the IR pump 

beam using a holey mirror which simultaneously serves as a hard aperture to spatially filter 

out the long trajectories in the HHG process (20). The recombination mirror was slightly 

convex to match the wave fronts of the XUV and IR pulses. The XUV probe and IR pump 

beams were focused onto the molecular target by a toroidal mirror. The molecular target 

was introduced into the experiment by a pulsed valve (PMB) or a capillary integrated in the 
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repeller electrode (21) of the velocity map imaging spectrometer (22) . Using a static 

electric field, ions formed in the experiment were accelerated towards a set of micro-

channel plates followed by a phosphor screen and a CCD camera. Both ion velocity map 

images and time-of-flight measurements were performed. To corroborate the results, some 

of the experiments were repeated in different laboratories, located at Lund University, 

AMOLF (Amsterdam) and MBI (Berlin). Illustrating the wide applicability of APTs to 

Stark spectroscopy, as discussed in the theory section, measurements were made both for 

simple diatomic molecules (N2 and O2) and for polyatomic molecules CO2, C2H4. The IR 

intensity was chosen avoiding any significant ionization of the molecule, and the XUV 

photons were generated in Xe, in order to restrict the ionization to valence states.  

 

In figure 3, the variation of the N2
+ yield versus pump-probe delay is shown. We observe an 

oscillation with a modulation depth of 0.5%. Notice that the appearance of these oscillations 

is very sensitive to the properties of the light pulses. The modulation vanishes when higher 

XUV photon energies are used (harmonic generation in Ar or Kr) or when IR intensity is 

decreased. In addition, when the IR intensity is increased to the point where it induces 

noticeable ionization of the molecules, the oscillations also vanishes. Similar experiments 

were performed on other molecules and oscillations with various amplitudes are shown for 

O2
+ (0.5%), CO2

+ (0.3 %) and C2H4
+ (1%). Notice that the amplitude of the oscillations is 

smaller than the one calculated with TDDFT. This is expected due to several averaging 

effects: first of all, in the experiment the molecules are not aligned along the laser 

polarization; moreover the signal measured corresponds to focal volume averaged effect 

where the IR intensity is not constant. Nevertheless, the amplitude of the oscillations is a 

function of the chosen molecule. This is explained by the fact that the response of the 

molecule to the driving IR field is determined by the polarizabilities of the states involved in 

the absorption of the XUV light. For the chosen molecules the total polarizability are: O2 

(1.562 A3), N2 (1,71 A3), CO2 (2.507 A3), C2H4 (4.18 A3) and therefore increases with the 

size of the molecule. This is consistent with the amplitude of the oscillations measured. In 

fact the XUV induced ionization is sensitive to the local electron localization, as a 

consequence, the time-dependent modification of the chemical bond that is visualized by the 

TD-ELF can be directly probed. Further theoretical and experimental developments will 

allow us to characterize how this is shown in our attosecond stark approach.    
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Conclusion: 

 

In this article we have demonstrated that IR driven attosecond electron dynamics in neutral 

molecules can be observed through variation of ionization efficiency. In our experiment, the 

electrons are driven in a neutral molecule by a non-resonant mid-IR fs pulse. This motion is 

probed by using a train of attosecond pulses that ionizes the molecule. The ionization 

efficiency varies with the pump-probe delay, which traduces the time-dependent localization 

of the electrons in the molecule.  Moreover, the amplitude of the time-dependent oscillations 

is a direct signature of the electronic properties of the molecule and depends on the 

polarizabilities of the electronic states involved in the XUV absorption. It is therefore the 

first implementation of Stark spectroscopy on the attosecond timescale. Our approach could 

be used to observe electron dynamics in a complex molecule, to follow bond formation and 

deformation and to reconstruct the 3D polarizability of the molecular electronic states. We 

have shown that it can be applied to any molecule.  
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Figure 1:  

TDDFT calculation of the photoabsorption spectrum of C2H4 in the presence of a 

static electric field. A comparison between the calculated spectrum without (A) and 

with a 109 V/cm dc electric field (B) shows strong modifications due to field-induced 

changes in the electronic transitions. Calculated ELF shows the modification of the 

chemical bond due to the polarization of the molecule by the electric field. 
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Figure 2:  

Calculated “movie” of the laser driven electron motion. We show the time-

dependant electron localization function in the case of N2 interacting with a 30 fs, 

800 nm, 1012 W/cm2 laser pulse. On the first image a), the triple covalent bond is 

observed while later in the pulse the bond is modified by the laser field b). The TD-

DFT calculation of the ionization probability, as a function of the delay between the 

fs pulse and attosecond pulse train shows strong oscillations. The oscillations 

observed are correlated with the variation of the dipole of the molecule in the laser 

field. The maximum ionization is obtained when the attosecond pulse is synchronized 

with the maximum of the electric field.     
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Figure 3: 

Experimentally measured ion yields for the diatomic molecules a) N2 , b) O2 , c) CO2, d) 

C2H4  as a function of the delay between the IR pump and the XUV probe pulses. The yield 

oscillates with a periodicity corresponding to half the period of the IR field. These 

oscillations traduce the attosecond electronic motion while the amplitude of these 

oscillations varies for different molecules. 
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