
LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

Incremental Evaluation of Reference Attribute Grammars using Dynamic Dependency
Tracking

Söderberg, Emma; Hedin, Görel

2012

Link to publication

Citation for published version (APA):
Söderberg, E., & Hedin, G. (2012). Incremental Evaluation of Reference Attribute Grammars using Dynamic
Dependency Tracking. (LU-CS-TR:2012-249; Vol. 98). Department of Computer Science, Lund University.

Total number of authors:
2

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.
 • Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

https://portal.research.lu.se/en/publications/c2b6f02c-e473-4777-b6b7-dac621560fee


Incremental Evaluation of
Reference Attribute Grammars using

Dynamic Dependency Tracking

Emma Söderberg
Görel Hedin

Technical report, LU-CS-TR:2012-249
ISSN 1404-1200, Report 98, 2012

Lund University



LU-CS-TR:2012-249
ISSN 1404-1200
Report 98, April 2012

Department of Computer Science
Lund University
Box 118
SE-221 00 Lund
Sweden

c©Copyright is held by the authors.



Incremental Evaluation of Reference Attribute
Grammars using Dynamic Dependency Tracking

Emma Söderberg and Görel Hedin

Department of Computer Science, Lund University, Sweden
(emma.soderberg|gorel.hedin)@cs.lth.se

Abstract. Reference attribute grammars (RAGs) have proven practical for gen-
erating production-quality compilers from declarative descriptions, as demon-
strated by the JastAdd system. Recent results indicate their applicability also to
generating semantic services in interactive editors. For use in editors, it is nec-
essary to update the attribution after edit operations. Earlier algorithms based on
statically scheduled incremental attribute evaluation are, however, not applicable
to RAGs, as they do not account for the dynamic dependencies that reference at-
tributes give rise to. In this report, we introduce a notion of consistency for RAG
attributions, along with an algorithm for maintaining consistency after edit oper-
ations, based on dynamic dependency tracking. That is, we introduce a means to
do incremental evaluation of RAGs using dynamic dependency tracking.

1 Introduction

Today’s industry-standard language-based editors, like the Eclipse JDT or IntelliJ IDEA
for Java, have become indispensable tools for efficient software development. More
languages would benefit from this kind of editor support, but to develop an editor from
scratch is a major endeavor. Especially, since such interactive tools need support for
efficient updating of their internal representation.

To instead generate such editors from declarative descriptions is an area of research
that has been extensively investigated. Much focus has been put on editor descriptions
building on the formalism of attribute grammars (AGs) [16], and the development of
incremental evaluation algorithms for such grammars [22]. This research has resulted
in several generator systems [21, 15, 17].

However, a major deficiency of the pure AG approach is its limitation of only sup-
porting attribute dependencies running along the structure of the syntax tree. A restric-
tion to such dependencies, leads to shuffling of large aggregated values along the syntax
tree. Also, these restrictions make it difficult to express graph-like properties, like use-
def chains or object-oriented inheritance. Many efforts have been made to remove these
obstacles through extensions to AGs [4, 20].

One such recent extension, reference attribute grammars [11] (RAGs), allows at-
tributes to be references to other abstract syntax tree (AST) nodes. In effect, this allows
graphs to be super-imposed on top of the AST, making it easy to, for instance, express
use-def chains. RAGs have further been extended with parameterized attributes, which



remove the need to shuffle large aggregated values up and down the syntax tree. In ad-
dition, RAGs have been extended with so called ReRAGs or rewrites, that is, demand-
driven transformations depending on attribute values. ReRAGs can, for instance, be
used for syntax normalization, or context-based specialization of nodes in the syntax
tree. Together, these extensions, tackle the earlier mentioned practicality issues of pure
AGs, making it possible to more easily express complex semantics. This expressive
property has been clearly demonstrated by the JastAdd system [12], where a full Java
compiler has been generated from a RAG specification, performing within a factor of
three from handwritten compilers [9].

The graph properties of RAGs make them highly attractive for the generation of
interactive services in language-based editors, such as refactorings, name completion,
and cross-references [23, 25]. However, there is so far no general algorithm for updating
of RAG attributions after edits. Earlier developed incremental algorithms for AGs are
based on static analysis of attribute dependencies, where dependencies follow the tree
structure of the AST. RAGs, in contrast, are more general and may have attribute depen-
dencies that follow a graph structure emanating from reference attributes, making these
static algorithms inapplicable. Instead, RAGs are evaluated dynamically on-demand
using a recursive algorithm, originally formulated for AGs [14], during which attribute
values may be cached to prevent unnecessary re-computations.

In this report, we explore different approaches for maintaining consistency of RAG
attributions after edit operations in an interactive setting. We consider the spectrum
of possible approaches: from the crude batch solution, which restores consistency by
rebuilding the AST with a complete re-parsing of the source code, to the fine-grained
incremental solution, that seeks to retain as many valid attribute values as possible.
Previous incremental algorithms statically compute an evaluation order based on static
dependencies. These algorithms work under the assumption that all attributes should be
evaluated, and that all dependencies are known before evaluation, or a at least a good
approximation thereof.

In our setting, neither is true: the exact set of evaluated attributes depends on the
syntax tree, and the set of dependencies depends on the values of references attributes,
and is therefore not known before evaluation. To find the exact dependencies we are left
to using a dynamic algorithm where we construct a dependency graph during evalua-
tion. Once we have this dependency graph, we can react to change and restore consis-
tency after edits. In addition to the batch and the incremental approach, we consider a
so called full flush approach, where we restore consistency by removing all computed
attribute values, but avoid the re-parsing needed in the batch approach. In this full flush
approach, and in the fine-grained incremental approach, we incorporate support for re-
versal of rewrites.

To our knowledge, this is the first work on consistency maintenance of RAGs. The
main contributions of this report are the following:

- Basic notions of consistency and attribute dependencies for RAGs.
- A dynamic dependency tracking approach for dependencies in RAGs.
- An incremental algorithm for consistency maintenance for RAGs.

The rest of this report is structured as follows: We start with a brief introduction to
RAGs in Section 2 and a description of the concept of a consistent RAG attribution in



Section 3. This is followed by an explanation of how the dynamic dependency tracking
works in Section 4, and how it is used to maintain a consistent RAG attribution in
Section 5. Related work is covered in Section 6 and, finally, conclusions and a summary
of future work ends the report in Section 7.

2 Reference Attribute Grammars

This section describes RAGs and the problems in applying a statically scheduled at-
tribute evaluation.

2.1 Traditional Attribute Grammars

Attribute grammars (AGs) [16] provide context-sensitive information by associating at-
tributes to nodes of an abstract syntax tree (AST) defined by a context-free grammar.
The attribute values are defined using so called semantic functions of other attributes.
Traditionally, there are two kinds of attributes: inherited and synthesized, propagat-
ing information downwards and upwards in the AST. The following example shows a
synthesized attribute propagating the sum of an addition upwards in the AST:

// Grammar: Add ::= Left Right
syn int Add.sum = Left.val + Right.val;

In the example, the comment shows a simplified grammar with an AST node Add with
two children – Left and Right. The attribute sum is declared as an integer defined
as the sum of its children’s val attributes (definitions of val are not included in the
example).

The definition of an attribute value is called an equation, whose left hand side is
the defined attribute, and whose right hand side is an application of a semantic func-
tion to other attributes. In this case, the semantic function is "+", and it is applied to
the attributes Left.val and Right.val. To propagate information in the reverse
direction, downwards, we can use inherited attributes. The following example shows an
inherited attribute which is used to compute the nesting depth:

// Grammar: Program ::= Block
// Grammar: Block ::= Assign | Block
inh int Assign.nesting;
inh int Block.nesting;
eq Block.Block.nesting = nesting + 1;
eq Block.Assign.nesting = nesting + 1;
eq Program.Block.nesting = 0;

Again, the comment provides a simplified grammar, this time with a Block node which
may have either an assignment (Assign) or another block as a child. Each of these pos-
sible children are defined to have an inherited attribute nesting returning an integer.
In contrast to synthesized attributes, the equation for an inherited attribute is not given
in the node in which the attribute is declared, instead it is provided by an ancestor in



the AST. With this in mind, we provide equations for the attribute in Block – one for
the Assign child and one for the Block child. In these equations, we make use of
the nesting attribute in Block itself to increase the value for its children. Finally,
the root of the AST (Program) provides an equation for the nesting attribute of its
Block child.

2.2 Reference Attributes and Parameters

In traditional AGs, attribute types are value types, for example, integers and booleans.
RAGs extend AGs with reference attributes, that is, by allowing attribute values to
be direct references to distant nodes in the AST. Reference attributes allow for easy
specification of structures that do not follow the AST tree structure, like call graphs and
inheritance relations useful in compiler construction. A reference attribute can be used
to access information in a distant node, as in the following example:

// Grammar: Decl ::= <Type:String> <Name:String>
// Grammar: Use ::= <Name:String>
syn Decl Use.decl = ...
syn String Use.type = decl.Type;

Here, we have two AST nodes, Decl and Use, representing declarations and uses of
names in a language. The Decl node has two terminals of type String while the Use
node has one. Two synthesized attributes are defined: the first providing a reference to
the declaration of a use, and the second providing the type of a use as a string. In the
latter equation, Type is a terminal of the Decl object referred to by the decl attribute.

// Grammar: Program ::= Block
// Grammar: Block ::= Decl (Use | Block)
// Grammar: Decl ::= <Type:String> <Name:String>
// Grammar: Use ::= <Name:String>
syn String Use.type = decl.Type;
syn Decl Use.decl = lookup(Name);
inh Decl Use.lookup(String name);
inh Decl Block.lookup(String name);
syn boolean Decl.declares(String name) =

Name == name;
eq Block.Use.lookup(String name) =

Decl.declares(name) ? Decl : lookup(name);
eq Block.Block.lookup(String name) =

Decl.declares(name) ? Decl : lookup(name);
eq Program.Block.lookup(String name) =

’’Unknown Decl’’

Fig. 1. Lookup example, illustrating parameterized attributes.



To complete the example and provide an equation for the decl attribute, we need
a means to look up the declaration corresponding to the name of the use. Tradition-
ally, AGs use inherited aggregate-valued attributes, usually named environment, to
propagate information about all visible names to each use. With RAGs, we can instead
provide a distributed symbol table [8] using parameterized attributes, another central
extension in RAGs. Using parameterized attributes, we define inherited attributes, typ-
ically called lookup, that take a name as a parameter and return a reference to the
appropriate declaration node. Parameterized attributes allow nodes to be queried for
information, rather than having to construct large aggregate attribute values with all
potentially interesting information.

An example is shown in Figure 1. The top comments in the figure show a simplified
grammar with Decl and Use nodes as presented earlier, a Block node with a Decl
node followed by a Block or Use node, and a root Program. The previous decl
attribute is here defined by an equation calling an inherited attribute lookup, taking
the name of the use node as parameter. Three equations are provided for the lookup
attribute: two in Block and one final in Program, returning a representation of an
”unknown declaration”. The equations in Block check whether the Decl child de-
clares name, in which case the Decl node is returned, or calls lookup of Block
itself.

2.3 Attribute Evaluation and Dependencies

If the value of an attribute b is used when evaluating the right hand side of the equation
for another attribute a, we say that a depends on b. For traditional AGs, all attribute de-
pendencies are static, in the sense that they can be deduced from the AG alone, without
taking the attribute values of a particular AST into account. Most incremental algo-
rithms for AGs, e.g., the well-known optimal algorithm by Reps [22], make use of this
fact.

Program

Block nesting

Block nesting

Block nesting

Block nesting

Assign nesting

Add sum

Left value Right value

Fig. 2. Example of production-based static dependency graphs. An arrow from b to a indicates
that a depends on b.

These algorithms do not apply to RAGs since the possibility to access attributes of
distant nodes, via reference attributes, makes the dependencies dependent on the values
of individual reference attributes. I.e., some of the dependencies are dynamic, in that
they can be decided only after actually evaluating some of the attributes.

Considering the examples in Section 2.1, the static evaluation order is quite clear:
to compute Add.sum we must first compute Left.val and Right.val, and to
compute Assign.nesting we must first compute the nesting of its parent block.



Block lookup

Decl declares Block lookup

Use decl lookup type

Name Decl?.Type
Program

Block lookup

Block lookup

Decl declares Use decl lookup type

Decl declares

Name Type

Fig. 3. Production-based static dependency graphs for the lookup example listed in Figure 1.
Dashed arrows show dependencies, which cannot be captured by these graphs, due to reference
attributes.

ProgramVersion I:

Block lookupBlock lookup

Decl declares Block lookupBlock lookup

Decl declares Use decl lookup type

Decl declares

Name Type
"boolean""a"

Decl declares

Name Type
"int""b"

Use decl lookup type

Name
"a"

{
boolean a;
{
int b;
a;

}
}

ProgramVersion II:

Block lookupBlock lookup

Decl declares Block lookupBlock lookup

Decl declares Use decl lookup type

Decl declares

Name Type
"boolean""a"

Decl declares

Name Type
"int""b"

Use decl lookup type

Name
"b"

{
boolean a;
{
int b;
b;

}
}

Fig. 4. Two example showing how the dynamic dependency graph is obtained for a derivation
tree by pasting together instances of the production-based static dependency graphs. The dashed
arrows show dynamic dependencies not captured by these graphs.



These static dependencies can be illustrated using production-based static dependency
graphs, also used in [6], as illustrated in Figure 2.

Using the same notation, we can capture the static dependencies of the lookup ex-
ample presented in Section 2.2, as shown in Figure 3. However, here we have trouble
capturing the dependency of the type attribute, as indicated by the dashed arrow. We
know that type depends on the Type terminal of a Decl node but exactly which
node depends on the AST. Figure 4 illustrates these dynamic dependencies with two
examples of possible ASTs. The two examples are identical except for the Use node:
in version I there is a use of the name a and in version II there is a use of the name b.

2.4 Demand-driven Transformations

In addition to the previous mentioned extensions, reference attributes and parameterized
attributes, RAGs support demand-driven transformations called rewrites [7]. Rewrites
are defined as conditional transformations on node types, and are triggered and evalu-
ated on first access to a node of that type. During traversal of an AST, on each access
to a child, potential rewrites will be evaluated on that child before it is returned. At the
point where a child is returned, it is considered to be final. Initially, only the root node
is considered final, but this final "region" of the root node will spread downwards in the
AST as new nodes are accessed and evaluated. In practice, this means that rewrites are
evaluated top-down, from parent to child, starting at the root of the AST.

There is no limit to the number of rewrites in an AST. In theory, all nodes except
the root node may have rewrites, but in practice rewrites are mainly used for smaller
transformations. For example, desugaring of syntax or specialization of access nodes
based on context. The extent to which rewrites are evaluated depend on which AST
nodes are that accessed, and in the set of accessed nodes, the actual set of rewritten
nodes depend on which rewrite conditions that have become true. A rewrite condition
may contain attribute values, and these values may depend on the syntax tree. That is, a
rewrite may happen in one syntax tree but not in another.

In order to incrementally update an AST constructed using rewrites, we need to
know the dependencies of rewrite conditions and we need a means to reverse rewrites
if their conditions turn to false after an update. Finding the dependencies of rewrite
conditions, boils down to the finding of dependencies between reference attributes, and
the reversal, or flushing, of rewrites, requires knowledge of which value to reverse back
to. Regardless of approach, the solution to these problems needs to be integrated with
the tracking of attribute dependencies and flushing of attribute values.

3 Consistent Attribution

In this section we describe what is meant by a RAG attribution, and what it means for
it to be consistent.

3.1 Attribution

The value of an attribute instance is found by evaluating the right-hand side of its defin-
ing equation, and recursively evaluating any attribute instances used in this equation.



For efficiency, the value can be cached, i.e., stored at the first access, so that subsequent
accesses can return the value directly, rather than have to recompute it [14]. In theory,
all attribute values should be cached, to minimize the number of computations. How-
ever, in practice, there are performance gains in selecting only a subset of attributes to
be cached [24].

We will refer to attributes that store their value as cacheable and attributes that do
not as uncacheable. A cacheable attribute instance is either in the state cached, meaning
it has a currently stored value, or decached, meaning it does not. Initially, all cacheable
attributes are decached. Evaluation of a decached attribute computes its value, stores
it, and takes the attribute to the cached state. A cached attribute can also be flushed,
removing the value and taking the attribute back to the decached state.

To be able to reason about edits of the AST, we will regard the child and parent
links as intrinsic reference attributes, and terminals as intrinsic value attributes. Intrinsic
attributes have a stored value that is given a priori, when the AST is constructed. They
are similar to cached attributes in that they have a stored value, but different in that
they generally have no defining equation, and are not flushed. The collective state of all
intrinsic and cacheable attributes is called an attribution.

Adding rewrites to a RAG system is then like adding equations to certain intrinsic
attributes, in this case child links. Rewrites use the values that are given a priori as
base values for their evaluation: the rewrite condition will be evaluated based on this
value and, if the condition is true, the final value of the rewrite will be constructed
using this value. Attribution-wise when using rewrites, the intrinsic child attribute can
be considered as a cached attribute with a more complex attributed value: Flushing the
rewritten child attribute will bring it back to its base value.

3.2 Consistency

When accessing an attribute we expect that we will get the same value as we would
if we evaluated the right-hand side of its defining equation. If this is the case for all
attributes, we say that the attribution is consistent. For the different kinds of attributes,
we define consistency as follows:

intrinsic attributes are by definition consistent, rewrites are here not considered to be
pure intrinsic attributes, but cached intrinsic attributes.

uncacheable attributes are by definition consistent
decached attributes are by definition consistent
cached attributes are consistent if all cached attributes they (transitively) depend on are

consistent, and if their stored value is equal to the value computed by evaluating the
right-hand side of their defining equation.

rewrites are considered to be cached intrinsic attributes. In their decached state, they
are consistent if they have their base value, and in their cached state, their consis-
tency follows from the definition for cached attributes.

It follows that an initial AST is consistent since it has no cached attributes. Evalua-
tion of cacheable attributes and caching of their values will keep the attribution consis-
tent, since the expressions in the right-hand side of equations are side-effect free. These
conditions also hold for rewrites, which behave like cached attributes.



However, after editing an AST, i.e., changing the value of an intrinsic attribute,
cached attributes may have become inconsistent. With knowledge of dependencies, po-
tentially inconsistent attributes can be found and consistency can be restored, either by
decaching attributes or by re-caching attributes, i.e., by re-evaluating attributes. In this
paper, we focus on decaching of attributes, i.e., flushing.

4 Dependency Tracking

This section describes how dynamic dependencies are found by tracking during evalu-
ation of attributes and rewrites.

4.1 Stack-based Dependency Tracking

Reference attributes are evaluated recursively using an evaluation stack [14]. To find
dynamic dependencies, dependency tracking is done during evaluation, recording how
attribute instances depend on each other. The example below shows the stack during the
evaluation of an attribute f.

int f = g + h;
int g = h;
int h = 4; f f

g

f

g
h

f

g

f f
h

f
time

stack

The evaluation stack is in effect a call stack, where each call reflects that the callee
is dependent on the caller, giving the following dependencies: f←g←h, and f←h.
In this example, the dependencies are static and could have been deduced from the
attribute definitions alone. However, in the case of dynamic dependencies, the call stack
is needed to capture the exact dependencies. Consider the following example involving
a terminal term (i.e., an intrinsic attribute) and a conditional equation right-hand side:

int m =
term > 2 ? g : h;

int g = 5;
int h = 4;

m m

g

m

time

stack
For term = 3:

m m
h

m

time

stack
For term = 0:

Here, the stack depends on the value of term, resulting in different dependencies: for
term = 3, we get m←g, and for term = 0 we get m←h. Here, a static approach
would lead to an approximation of the exact dependencies: m←{g,h}.

The need for dynamic dependencies is even more apparent in examples using ref-
erence attributes. Figure 5 shows the call stacks for the examples in Figure 4. Here, we
show the stacks only at points during evaluation when the stack is about to decrease.
Version I of the program gives rise to the following dependencies: Usea.type← Usea.decl

← {Usea.Name, Usea.lookupa}, Usea.lookupa← {Declb.declaresa, Block.lookupa}, Block.lookupa

← Decla.declaresa , and Version II give rise to the following dependencies: Useb.type←
Useb.decl← {Useb.Name, Useb.lookupb}, Useb.lookupb← Declb.declaresb. We can note that
Version II induces fewer dependencies, due to the closeness of the declaration to the
use.



Version I:

Usea.type
Usea.decl

Usea.Name

Usea.type
Usea.decl

Usea.lookupa

Declb.declaresa

Usea.type
Usea.decl

Usea.lookupa

Block.lookupa

Decla.declaresa

Usea.type
Decla.type

time

stack

Version II:

Useb.type
Useb.decl

Useb.Name

Useb.type
Useb.decl

Useb.lookupb

Declb.declaresb

Useb.type
Declb.type

time

stack

Fig. 5. The stacks correspond to the evaluation stack at points during the evaluation where the
stack is about to decrease. The examples being evaluated are taken from Figure 4.

4.2 Tracking of Attribute Dependencies

Each attribute is implemented as a method containing evaluation code. For cacheable
and intrinsic attributes this code accesses the stored state (computing and storing the
value in case the cacheable attribute was previously decached). For uncacheable at-
tributes, the evaluation code simply computes the value according to the equation right-
hand side.

We represent each intrinsic and cacheable attribute instance a by a dependency han-
dler object that keeps a set of dependents, i.e., a set of references to handler objects for
the attribute instances that depend on a. Initially, before any attribute evaluation starts,
all dependents sets are empty. For cacheable parameterized attributes, the cached value
is stored for each used combination of parameter values, and a handler is created for
each new such combination used.

To track dependencies during evaluation, we instrument the evaluation code of these
attributes to maintain a global stack of handlers, adding and removing the handler for
the evaluated attribute instance to this stack as the evaluation code is entered and exited.
Furthermore, at each evaluation code entry, the previous top of stack is added to the
dependents set of the new top of stack.

4.3 Tracking of AST Structure and Rewrites

Accesses to child and parent links also give rise to dependencies. Even more so, when
a child has rewrites, since then there is a rewrite condition potentially depending on
attribute values. Dependencies for these rewrite conditions need to be tracked like for
any cached attribute. In fact, this tracking needs to be done for all intrinsic attributes that
may be changed. Rewritten children may be changed due to an update of a dependency,
and non-rewritten children may be changed due to an AST edit. In this sense, we may
consider parent and child links as reference attributes, with all child links of a node as
one parameterized child attribute.

The dependency graphs in Figure 4 are thus actually incomplete. In particular, de-
pendencies to child links are missing, since equations may return references to children.



For example, the equations for lookup in Block in Figure 1 may return a reference
to the Decl child. Possibly less apparent, is that each time an attribute of a child is
used in an equation, there is actually also a dependency on the child link. Also, each
inherited attribute actually depends on the parent link up to the node holding its defining
equation.

5 Consistency Maintenance

During development, a developer makes changes to a program. These changes will
result in a sequence of AST edits handled by the editor. After each edit, the previously
consistent attribution of the AST, corresponding to the program being edited, may have
become inconsistent. The goal of consistency maintenance is to bring the AST into a
consistent state after each edit. In practice, this means keeping track of dependencies
and notifying affected cached attributes of change when needed, so that these attribute
values may be flushed.

In our setting, we assume the following: 1) that the AST is initially syntactically
correct with a consistent attribution before any edits have taken place, 2) that the AST
is syntactically correct after an edit, and 3) that any new nodes or subtrees added to
the AST are consistent before the addition, typically with all cacheable attributes in the
decached state.

5.1 AST Edits

There are several possible AST edits, for example, a child link may be replaced, added,
removed or inserted, or a terminal may be replaced. Edits to child links may be con-
sidered to be the most complex edits given that its an edit to a list structure, where
succeeding children may be affected. In contrast, a parent link or an intrinsic terminal
value, like the name of a variable, can only be replaced.

As an example, consider the removal of a child k in a list of n children (from 0 to
n − 1), dependants to the removed child must be notified, but also dependants to child
k + 1 to n− 1, since these children are being moved as a consequence. In comparison,
the replacement of a child is a simpler edit, since then only the dependencies of the
child being replaced needs to be notified.

In general, an edit can be described as changing the values of a set I of intrinsic
attributes, i.e., parent and child links, and terminals, followed by a notification of de-
pendencies which are (transitively) dependent on the set I . Clearly, these are the set of
cached attributes that can become inconsistent due to the edit.

Notably, edits to rewritten children are not very different than edits to children with-
out rewrites. For example, if a rewritten child is replaced, then the new value is used as
the base value of the rewrite, and the rewrite is considered to be decached.

5.2 Flushing

If a cached attribute is notified of a change, with the current approach, it should be
flushed. A flush means marking the attribute as decached and returning the value of the
attribute to its base value given at AST construction.



Base values for rewrites To flush a rewrite, the base value needs to be stored. The trivial
approach for storing base values is to make an base copy of the value of a rewrite before
it is evaluated. This approach is, however, quite memory demanding, especially when
rewrites are nested, or if rewrites occur for larger subtrees, and not useful in practice.
A slightly trimmed alternative, is for rewrites to share base copies when possible. That
is, nested rewrites, or inner rewrites, share their base copy with enclosing rewrites, or
outer rewrites. In practice, this means that during evaluation outer rewrites make copies
while inner rewrites do not.

Flushing of rewrites Given that we use the slightly trimmed copying of base values,
we get a situation where we have flushing of inner and outer rewrites. The flushing of
an outer rewrite, then includes the following steps: 1) setting the rewrite to decached,
2) setting all inner rewrites to decached, 3) restoring the value of the base value, and
4) notifying dependencies of the rewrite. In contrast, the flushing of an inner rewrite
involves the following steps: 1) setting the rewrite to decached, and 2) locating the
enclosing outer rewrite and notifying it of change.

5.3 Algorithm for Consistency Maintenance

A general technique for maintaining RAG consistency after edits is to flush all attributes
that transitively depend on the edited set of intrinsic attributes I . We represent I by the
set of corresponding handler objects, handling dependencies and acting as nodes in the
dependency graph. The algorithm for restoring consistency can then be expressed as
follows:

RESTORE-CONSISTENCY(I)

1 for each intrinsic handler h ∈ I
2 do TRANSITIVE-FLUSH(h)

FLUSH(h)

1 � Flush the cacheable
2 attribute handled by h

TRANSITIVE-FLUSH(h)

1 deps← dependents(h)
2 dependents(h)← ∅
3 for each cacheable handler h ∈ deps
4 do FLUSH(h)
5 TRANSITIVE-FLUSH(h)

Notably, the dependents set of h is cleared before dependents are transitively
flushed. This clean up prevents the algorithm from going into endless recursion if there
are circular dependencies between attributes. Circular attributes [10, 19] are excluded
from the examples in this paper, but are nonetheless supported by this approach.

5.4 Aborting Transitive Flush

The simple algorithm above does not take the attribute values into account: if an at-
tribute happens to have the same value after the change, all its dependent attributes will
be flushed. In principle, it would be possible to abort the transitive flush for attributes
that are known to have the same value after the change. However, this would require
that a new value is computed before the flush is done. To compute this new value, we
cannot, however, use the cached values it depends on since they might be inconsistent.



In principle, new values can be computed without using cached values, i.e., by eval-
uating corresponding equations rather than using cached values. However, in general,
this can become extremely expensive, since evaluating attributes without using caching
may lead to exponentially growing evaluation times. Therefore, in general, such abor-
tion is not likely to be profitable. In specific cases, however, it can still pay off.

In particular, if an attribute does not depend (transitively) on any cacheable at-
tributes, it can be evaluated in the same amount of time before or after the flush. We
call such an attribute cache-independent. To take such cache-independent attributes into
account, the algorithm for TRANSITIVE-FLUSH would be altered as follows:

TRANSITIVE-FLUSH(h)

1 deps← dependents(h)
2 dependents(h)← ∅
3 for each cacheable handler h ∈ deps
4 do if CACHE-INDEPENDENT(h)
5 then
6 valuenew ← EVALUATE-ATTRIBUTE-OF(h)
7 if valuenew! = CACHED-VALUE-OF(h)
8 then
9 SET-VALUE-OF(h, valuenew)

10 FLUSH(h)
11 TRANSITIVE-FLUSH(h)
12
13 else
14 FLUSH(h)
15 TRANSITIVE-FLUSH(h)

The identification of attributes that are cache-independent could either be done stat-
ically, by annotating the attributes as such (and checking this property), or dynami-
cally, by keeping track of which attributes are cache-independent during the dependency
tracking.

In practice, abortion of transitive flush will be particularly important for parame-
terized attributes that check terminal values, like the attribute Decl.declares in
Figure 1. Suppose the Name terminal of a Decl is edited. Calls to Decl.declares
will have the same value for all parameters that are different from the old and new
Name terminal. In practice, there may be many such calls due to the block structure in
a program.

5.5 Implementation

The algorithm described in Section 5.3 has been implemented and tested in the Jas-
tAdd system [1]. The implementation supports incremental consistency maintenance
for all AST edits allowed by the system, that is, removal, addition and insertion of chil-
dren. The JastAddJ extensible Java compiler [9] has been used as a test platform for the
implementation, and all attributes and transformations occurring in the JastAddJ com-
piler are supported. This includes synthesized, inherited, and parameterized attributes,



higher-order attributes [26], circular attributes [10], and rewrites [7]. The abortion of
transitive flush is currently under implementation.

6 Related Work

There is an extensive amount of previous work on the incremental evaluation of attribute
grammars with the goal of supporting interactive language-based editors.

For classical AGs, Demers, Reps, and Teitelbaum presented a two-pass algorithm,
which first nullifies dependent attributes and then reevaluates them [5]. The depen-
dency analysis is done based on the static dependencies in the AG. Reps improved this
approach by presenting an optimal change propagation algorithm [22], where old and
new attribute values are compared, and avoiding to propagate the change to dependents
if the values are equal. This algorithm was proven optimal in the sense that it does work
proportional to the number of affected attributes, i.e., the attributes that actually do get
new values.

A problem with classical AGs is that, even if the algorithm is optimal, the number of
affected attributes becomes very large: to handle complex computations, large amounts
of information, typically symbol tables, are bundled together into single aggregate-
valued attributes that are copied throughout the AST. A small change to one declaration
thereby causes all the copies to become affected, even if very few attributes actually
make use of the changed declaration. A number of different solutions to these problems
were proposed, focusing on special support for these aggregate-valued attributes, e.g.,
[13].

Other work focused on extending the classical AGs themselves, to make the com-
plex computations more straightforward to express. This includes work by Poetzsch-
Heffter [20], Boyland’s Remote AGs [2], and our RAGs [11]. All these formalisms
make use of some kind of mechanism for remote access of attributes, thereby inducing
dependencies that are difficult to deal with by static analysis of the AG.

In Boyland’s Remote AGs, AST nodes can have local objects with fields, and at-
tributes can be references to such objects. This allows graph structures to be built, and
equations can read the fields of an object remotely. In Remote AGs, an AST node can
also have collection fields, which are aggregate-valued attributes like sets, and where
the definition can be spread out on multiple sites in the AST, each contributing to the
collection, e.g., adding a particular element.

Boyland developed a static algorithm for the evaluation of Remote AGs, where con-
trol attributes are automatically added to take care of scheduling of remote attributes
and collections [2]. He also developed an incremental algorithm for remote AGs that
combines static scheduling for "ordinary" attributes with dynamic scheduling for re-
mote attributes and collections [3]. Preliminary experiments with this algorithm on a
small procedural toy language and synthetic benchmark programs, showed substantial
speedups for edits of declarations as compared to reevaluating all attributes.

Boyland uses collection attributes for solving name analysis problems, representing
local symbol tables as collections of declaration objects. Although JastAdd does support
collection attributes (whose incremental evaluation is not treated in this paper), name



analysis in RAGs is typically solved using parameterized attributes, as in the examples
in this paper.

All the algorithms mentioned above are based on data-driven attribute evaluation,
i.e., all attributes are evaluated, regardless of if they are actually used or not. After
an edit, all affected attributes are updated. In RAGs, the attribute evaluation is instead
demand-driven [14], evaluating only attributes whose values are actually needed. After
an edit, we decache all attributes that might be inconsistent. This might well be a larger
set than the actually affected set. However, because aggregate values are avoided, we
do not get the inflated affected sets that classical AGs suffer from.

7 Conclusion and Future Work

We have presented a basic fine-grained algorithm for incremental evaluation of RAGs.
The algorithm restores consistency after edits to the abstract syntax tree, and is based
on dynamic dependency tracking to flush all possibly affected attributes. We have also
discussed how the flush propagation can be aborted by comparing old and new attribute
values, and how this can be done without extra cost for cache-independent attributes.

As future work, we will evaluate the algorithm experimentally, and investigate sev-
eral optimizations. The basic algorithm has extensive overhead due to the fine-grained
dependency information that is maintained. We expect that more coarse-grained ap-
proaches will perform better in practice, and we are investigating approaches based on
partitioning the AST and the attribute set. Furthermore, some practical RAGs such as
the JastAddJ extensible Java compiler [9], make use of large attribute values for col-
lecting local declarations into a map data structure. This is done in order to avoid that
multiple queries for declarations repeatedly search the AST. Unfortunately, this use of
large values causes the same kind of dependency imprecision that ordinary AGs suffer
from. To obtain both the higher performance of the maps and fine-grained dependencies,
we are investigating the introduction of a new kind of bound parameterized attribute,
where all results (for all possible parameter values) can be computed at the first call to
the attribute.

There is also a potential for improving the evaluation of rewrites. In our current im-
plementation, attributes depending on rewritable parts of the AST are not cached until
those parts are rewritten [7]. By using the incremental evaluation it might be possible to
cache such attributes already during rewrite. Other possible improvements include sup-
port for incrementally updating rather than recomputing affected higher-order attributes
[26], and support for incremental evaluation of collection attributes [18].

References

1. JastAdd, 2012. http://jastadd.org.
2. John Boyland. Analyzing direct non-local dependencies in attribute grammars. In Com-

piler Construction, 7th International Conference, CC’98, volume 1383 of Lecture Notes in
Computer Science, pages 31–49. Springer, 1998.

3. John Boyland. Incremental evaluators for remote attribute grammars. Electr. Notes Theor.
Comput. Sci., 65(3), 2002.



4. John Tang Boyland. Remote attribute grammars. Journal of the ACM, 52(4):627–687, 2005.
5. Alan J. Demers, Thomas W. Reps, and Tim Teitelbaum. Incremental evaluation for attribute

grammars with application to syntax-directed editors. In POPL, pages 105–116, 1981.
6. Pierre Deransart, Martin Jourdan, and Bernard Lorho. A Survey on Attribute Grammars, Part

I: Main Results on Attribute Grammars. Technical report, INRIA, Rocquencourt, France,
January 1986. Rapport de Recherche 485.

7. Torbjörn Ekman and Görel Hedin. Rewritable reference attributed grammars. In Martin
Odersky, editor, ECOOP, volume 3086 of Lecture Notes in Computer Science, pages 144–
169. Springer, 2004.

8. Torbjörn Ekman and Görel Hedin. Modular name analysis for Java using JastAdd. In Gen-
erative and Transformational Techniques in Software Engineering, International Summer
School (GTTSE 2005), volume 4143 of LNCS. Springer, 2006.

9. Torbjörn Ekman and Görel Hedin. The Jastadd Extensible Java Compiler. In 22nd An-
nual ACM SIGPLAN Conference on Object-Oriented Programming, Systems, Languages,
and Applications (OOPSLA 2007), pages 1–18. ACM, 2007.

10. Rodney Farrow. Automatic generation of fixed-point-finding evaluators for circular, but well-
defined, attribute grammars. In SIGPLAN ’86: Proceedings of the 1986 SIGPLAN sympo-
sium on Compiler construction, pages 85–98, New York, NY, USA, 1986. ACM.

11. Görel Hedin. Reference Attributed Grammars. In Informatica (Slovenia), 24(3), pages 301–
317, 2000.

12. Görel Hedin and Eva Magnusson. JastAdd: an aspect-oriented compiler construction system.
Science of Computer Programming, 47(1):37–58, 2003.

13. Roger Hoover and Tim Teitelbaum. Efficient incremental evaluation of aggregate values in
attribute grammars. In Proceedings of the 1986 SIGPLAN Symposium on Compiler Con-
struction, pages 39–50. ACM, 1986.

14. Martin Jourdan. An optimal-time recursive evaluator for attribute grammars. In International
Symposium on Programming, volume 167 of Lecture Notes in Computer Science, pages 167–
178. Springer, 1984.

15. Martin Jourdan, Didier Parigot, Catherine Julié, Olivier Durin, and Carole Le Bellec. Design,
implementation and evaluation of the fnc-2 attribute grammar system. SIGPLAN Notices,
25(6):209–222, 1990.

16. Donald E. Knuth. Semantics of Context-free Languages. Mathematical Systems Theory,
2(2):127–145, 1968. Correction: Mathematical Systems Theory 5, 1, pp. 95-96 (1971).

17. Matthijs F. Kuiper and João Saraiva. Lrc - a generator for incremental language-oriented
tools. In CC, pages 298–301, 1998.

18. Eva Magnusson, Torbjörn Ekman, and Görel Hedin. Demand-driven evaluation of collection
attributes. Automated Software Engineering, 16(2):291–322, 2009.

19. Eva Magnusson and Görel Hedin. Circular Reference Attributed Grammars - Their Evalua-
tion and Applications. Science of Computer Programming, 68(1):21–37, 2007.

20. Arnd Poetzsch-Heffter. Prototyping realistic programming languages based on formal spec-
ifications. Acta Informatica, 34(10):737–772, 1997.

21. Thomas Reps and Tim Teitelbaum. The Synthesizer Generator. SIGPLAN Notices, 19(5):42–
48, May 1984.

22. Thomas W. Reps. Optimal-time incremental semantic analysis for syntax-directed editors.
In POPL, pages 169–176, 1982.

23. Max Schäfer, Torbjörn Ekman, and Oege de Moor. Sound and Extensible Renaming for Java.
In Gregor Kiczales, editor, 23rd Annual ACM SIGPLAN Conference on Object-Oriented
Programming, Systems, Languages, and Applications (OOPSLA 2008). ACM Press, 2008.

24. Emma Söderberg and Görel Hedin. Automated selective caching for reference attribute
grammars. In Brian Malloy, Steffen Staab, and Mark van den Brand, editors, Software Lan-
guage Engineering (SLE 2010), volume 6563 of LNCS, pages 2–21, 2010.



25. Emma Söderberg and Görel Hedin. Building semantic editors using jastadd. In Proceedings
of the of the 11th Workshop on Language Descriptions, Tools and Applications, LDTA 2011.
ACM, 2011.

26. Harald Vogt, S. Doaitse Swierstra, and Matthijs F. Kuiper. Higher-order attribute grammars.
In PLDI, pages 131–145, 1989.


