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Abstract. Quantum dots are an important model system for thermoelectric
phenomena, and may be used to enhance the thermal-to-electric energy
conversion efficiency in functional materials, by tuning the Fermi energy relative
to the dots’ transmission resonances. It is therefore important to obtain a
detailed understanding of a quantum dot’s thermopower as a function of the
Fermi energy. However, so far it has proven difficult to take the effects of
interactions into account in the interpretation of experimental data. In this
paper, we present detailed measurements of the thermopower of quantum dots
defined in heterostructure nanowires. We show that the thermopower lineshape
is described well by a Landauer-type transport model that uses as its input
experimental values of the dot conductance, which contains information about
interaction effects.
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1. Introduction

The thermovoltage, Vth, of a quantum dot (QD) is defined as the open-circuit voltage in response
to an applied temperature differential, 1T , and has already been explored [1, 2] as one of
the fundamental electron transport characteristics of QDs. In recent years, the thermoelectric
properties of QDs have attracted renewed interest because QDs are essentially highly tunable
energy filters, which can be used to optimize their performance as thermoelectric power
generators [3] or coolers [3, 4]. Specifically, QDs with a very narrow (delta-like) transmission
resonance have been shown to be ideal thermoelectric energy converters: they can be operated
reversibly, near the fundamental Carnot limit of their efficiency [3, 5, 6], and their efficiency
at maximum power approaches the fundamental Curzon–Ahlborn limit [7–9]. The use of
QDs (nanocrystals) embedded into bulk material [10] or nanowires [6] has been proposed
as a way to enhance a material’s thermopower or Seebeck coefficient, S = Vth/1T . Because
the thermopower of ideal QDs depends only on fundamental constants, QDs have also been
proposed as a quantum measurement standard for the Seebeck coefficient [11].

For each of these applications, as well as for fundamental understanding, it is important
to know how Vth depends on the properties of the QD, as well as on the chemical potential
in the electron reservoirs. For a dot with infinitely sharp, delta-like transmission resonances
separated by an energy 1E (figure 1), Beenakker and Staring [1] predicted a sawtooth-
like dependence of Vth on the chemical potential, with a resulting maximum thermovoltage
V max

th = (1E/4e) · (1T /T ). This model suggests that Vth of a QD can, in principle, be made
arbitrarily large by decreasing the dot size, and thus increasing 1E through charging or quantum
confinement effects. Staring et al [2] did indeed find that the thermovoltage of a QD oscillates
with a sawtooth-like lineshape for thermal energies kT much less than the QD’s charging energy,
e2/C , but found a much lower amplitude than predicted. This difference was suggested to be
due to the finite energy-broadening, 0, of the levels in the QD (figure 1), a result of co-tunneling
in the transport through the dot, which depends on the strength of the coupling to the leads [12].
Dzurak et al [13] shared this interpretation in the context of a similar experiment. Turek
and Matveev [14] developed a thermopower theory including co-tunneling and predicted a
transition, as a function of decreasing temperature, from a sawtooth-like lineshape to a lineshape
more similar to an energy derivative of the dot’s conductance. Kubala and König [15] later
extended the theory to include all second-order tunneling contributions. Scheibner et al [16]
observed the predicted transition, but it proved difficult to find detailed agreement between
experiment and theory.
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http://www.njp.org/


3

Figure 1. We consider a QD defined by a pair of energy barriers, and attached
to a hot (left) and a cold (right) electron reservoir. The QD is characterized by
an electron transmission function τ(E) consisting of Lorentzian resonances with
full-width at half-maximum 0 and energy separation 1E .

From these prior results it thus emerges that the lineshape of Vth of a QD depends on
the energy scales kT and 1E as well as on 0. However, it is known that information about
each of these parameters is contained in measurements of the conductance, G, of a QD. Here,
we present detailed measurements of Vth and G in two different QDs defined in heterostructure
nanowires. We show that, using measurements of G as a function of the chemical potential in the
electron reservoirs as an input, and using a simple tunneling model implemented by a Landauer-
type formalism, we can predict Vth as a function of the chemical potential for various 1E/kT
and 0/kT . This approach takes into account transport through all-order tunneling processes by
using an experimentally determined Lorentzian transmission function with finite broadening 0.
We begin by presenting our experimental results and will then turn to a comparison with the
model.

2. Experiment

We used two QDs with different 0 and 1E , each defined by an InP double-barrier structure
embedded in an InAs nanowire, grown using metal–particle seeded growth and chemical beam
epitaxy [17, 18]. For sample 1, denoted as QD1, InAs0.8P0.2 was used as the dot material
(reducing the effective InP barrier height), and for sample 2, denoted as QD2, InAs was the
dot material. Scanning electron microscope (SEM) inspection after the measurements showed
that for QD1 (QD2) the nanowire diameter was 66 nm (55 nm) and the length of the QD (along
the wire) was about 190 nm (10 nm).
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Figure 2. Differential conductance as a function of source–drain bias, V, and
gate voltage, Vg, for (a) QD1 at a temperature T = 0.23 K and (b) QD2 at a
temperature T = 1.55 K , with the vertical axis already converted to µ (arbitrary
zero). Differential conductance peaks measured as a function of µ at V = 0 for
(c) QD1 and (d) QD2 are used to extract values for 1E and 0. The shift of
energy levels at T = 6 K for QD1 is related to a gate shift. The inset of (d)
shows an SEM image of the contact configuration used for both devices.

After growth, the nanowire was transferred to an n-doped Si wafer with a 100 nm thick
SiOX capping layer. The SiOX/Si substrate acts as a global gate for tuning the QD states
relative to the chemical potential in the leads. Ohmic Au/Ni contacts were fabricated by
electron beam lithography, followed by passivation, metallization and lift-off [19, 20]. A three-
terminal configuration is used to contact each of the two ends of the nanowire (see the inset
of figure 2(d)). An ac heating current, IH, applied through terminals A and C, is used to
warm the contact electron gas [21]. IH is applied in a push–pull fashion using a home-built,
tunable operational-amplifier circuit such that IH does not influence the voltage at the nanowire.
Terminal B is used to assist in the tuning process. The drain contact temperature at the opposite
end of the nanowire increases via electron–phonon coupling in the nanowire [21]. For QD2
we measure 1T using QD thermometry [21]. For QD1 we use finite element modeling [21],
which delivers results consistent with those from QD thermometry, to estimate the effective
temperature differential 1T applied across the wire at a given cryostat temperature and IH.7

7 The actual electronic temperature differential across the QD is expected to be about a factor 2–3 smaller than
1T due to a temperature drop in the InAs leads [21].
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The heating current, at frequency f, generates a thermovoltage, Vth, composed of two
distinguishable signals: (i) an ac thermovoltage at frequency 2f (because Vth ∝ 1T ∝ I 2

H), and
(ii), after time-averaging, a dc thermovoltage. For QD1, the ac thermovoltage was measured
using a standard lock-in technique to detect the second harmonic signal at frequency 2f (here
f = 13 Hz). The lock-in measurements have the advantage of being relatively fast (6 1 s
per data point) without sacrificing the signal-to-noise ratio. For QD2, the dc component of
Vth was measured. Any background signal (voltage measured when IH = 0) is subtracted
from subsequent raw voltage data measured when IH 6= 0. Additional details are available
elsewhere [22]. To isolate the dc signal, a low-pass resistor–capacitor (RC) filter damps ac
components and therefore measurements on QD2 require slow sampling rates (several seconds
per data point, using a multimeter with 1 s integration time).

Data that provide a basic characterization of QD1 and QD2 are shown in figure 2. From
measurements of the differential conductance, G = dI/dV , as a function of gate voltage Vg

(see figures 2(a) and (b)), we convert Vg to an energy scale, µ [23]. In figures 2(c) and (d),
we plot G at V = 0 as a function of µ for both the samples. For QD1, the larger of the two
dots, conductance peaks are spaced equally, indicating that the observed 1E ≈ 5.3 meV is the
charging energy EC = e2/C . To determine 0 for QD1, we fit the measured G to the derivative
of the Landauer equation (see equation (1) below) at the lowest measured temperature, with the
amplitude, A, and width, 0, of the transmission function (equation (2)) used as free parameters.
Averaged over multiple peaks we find that 0 ≈ 160 µeV, corresponding to 1.8 K. The smaller
QD2 has unequally spaced resonances due to quantum confinement effects, with EC = 8.7 meV.
Because of a limitation in the temperature range of the cryostat, fitting G of QD2 produces only
an approximate upper limit of 0 ≈ 30 leV, almost an order of magnitude less than in QD1.

In figure 3, we plot the thermovoltage of QD1 as a function of µ for different IH and
cryostat temperature T, allowing us to vary the relative energy scales 0/kT and 1E/kT . At the
highest temperature of 6 K an offset, presumably due to the thermovoltage in the InAs leads8,
has been added to center the thermovoltage curves at Vth = 0.

The following observations can be made from figure 3: (i) Vth increases with IH as
expected in the linear response regime; (ii) at the lowest cryostat temperature (T = 232 mK),
the lineshape of Vth resembles an energy derivative of G; and (iii) with increasing T, resulting
in a decrease of 0/kT and 1E/kT , Vth becomes more triangular. We will return to these
observations after introducing our model.

3. Model

We use a Landauer-type approach in which the current through a QD connected to a cold (C)
and a hot (H) reservoir is given by

I =
2e

h

∫
[ fC (E, µC , T ) − fH (E, µH , T +1T )]τ(E)dE, (1)

where fC/H is the Fermi–Dirac distribution on the hot (H) and cold (C) sides, respectively, lC/H

are the chemical potentials in the reservoirs, T and T + 1T are the electronic temperatures, and
τ(E) is the transmission function of the QD (figure 1). Usually, equation (1) is used to describe

8 The offset, as shown in the inset to figure 3, increases with heating current. We estimate 1T to be about
30–50 mK using a heating current of 85 mA, which results in S ≈ 40 µV K−1, which is comparable to the value of
120 µV K−1 measured for similar InAs nanowires at the higher temperature of 100 K [24].
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Figure 3. Thermovoltage of QD1 as a function of µ (arbitrary zero) for different
T and heating currents IH. Note that the same IH applied at higher T causes
a smaller 1T . At the highest temperature of 6 K an offset (inset) has been
subtracted to center the thermovoltage curves at Vth = 0 V (see text). The
thermovoltage signals at T = 3.1 K and 6 K were scaled as indicated.

elastic, non-interacting transport processes. Note, however, that τ(E) can be used to take into
account additional effects [25]. We approximate τ(E) as the sum of Lorentzian functions,

τ (E) =

∑
n

An
(0n/2)2

(E−En)
2 + (0n/2)2 , (2)

with their centers located at the dot’s resonant levels En, with widths 0n and amplitudes An. For
computational reasons it is convenient to define the average chemical potential µ = (µC + µH)/2
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Figure 4. Modeling data based on equation (3) for T = 10 K and 1T = 1 K.
(a) Vth(µ) for varying 0 and for 1E = 50 meV ≈ 58 kT . The dashed lines
indicate positions En of resonance levels. (b) Vth(µ) for 0 = kT/100 and for
varying 1E . The blue graphs in (a) and (b) correspond to approximately
equivalent conditions, 0 = kT/100 and 1E ≈ 60 kT . The µ-axes use an
arbitrary zero.

and to assume that V is applied symmetrically across the dot such that lC/H = l ± eV/2. We
calculate S = Vth/1T using the approximation [11, 26]

S =
Vth

1T
= −

1

e (T +1T/2)

∫
(E−µ)

∂ f0

∂ E τ (E) dE∫
∂ f0

∂ E τ (E) dE
. (3)

Here, f0 is the equilibrium Fermi–Dirac distribution for 1T = 0 and V = 0, and eVth �

1E and 1T �T was assumed in the derivation of equation (3).9

Figure 4(a) plots Vth as a function of µ for a QD with resonant energy levels of width 0

varying over a wide range, from 10−6kT to kT and for 1E/kT � 1. Also plotted in figure 4(a),
for comparison, is the ideal sawtooth lineshape predicted by Beenakker and Staring [1] and
obtained from equation (3) when τ(E) consists of delta functions (0 → 0). A key observation
in figure 4(a) is that the lineshape of Vth(µ) deviates from the sawtooth lineshape for 0 as small
as 10−5kT, i.e. even for exceedingly small coupling to the leads. With increasing 0, the lineshape
increasingly resembles the shape of an energy derivative of the conductance peaks, Vth between
transmission resonances becomes suppressed and the amplitude of the Vth resonances is, for
finite 0, much lower than predicted in [1].

The single-electron tunneling picture combined with the Landauer equation (equation (1))
provides a conceptual explanation for the observations in figure 4(a). First, we recall that Vth,
for a given configuration (1T , µ), can be found by looking for the value of the bias voltage
where I = 0 (open-circuit condition). When τ(E) is a delta function, zero current across the
dot is obtained when τ(E) is at the position where the term 1 f = fC − fH = 0 (this is the

9 As is common in thermoelectrics, we use the approximate equation (3) for numerical convenience. A different,
more time-consuming method is to use equation (1) to calculate the current I for all external bias voltages, V, and
to search for the V at which I = 0 for each µ. We confirmed for representative parameters that the results from
both approaches agree within the resolution of our figures. Note that equation (3) is identical to equation (5) in [11]
where T was defined as the average temperature of the reservoirs.
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condition of energy-specific equilibrium as defined in [27]). This condition yields the sawtooth
lineshape [1]. For finite 0, when τ(E) is slightly broadened, charge carriers can leak through
the tails of the Lorentzian. Because 1 f is not antisymmetric for finite bias voltage, a correction
in bias voltage is needed at a given |µ–En| in order to cancel the leakage current and thereby
maintain the zero-current condition. As a result the slope of Vth(µ) is slightly reduced for small
|µ − En| (not visible in figure 4(a)) [11], and drops for larger |µ − En|. However, 1 f goes to
zero faster as a function of energy than a Lorentzian, such that the Lorentzian’s tails will always
sample all of 1 f . Therefore, for larger 0 and larger |µ − En|, the zero-current condition can
only be maintained with Vth going to zero.

In figure 4(b), we plot Vth as a function of 1E for fixed 0 = 0.01 kT . As 1E decreases,
Vth becomes more triangular, its negative slope between resonances becomes steeper and its
amplitude decreases. It is worth noting that, with a decrease in 1E , this effect becomes
significant already when 1E ∼ 10 kT and 1E ∼ 1030.

4. Discussion

Qualitatively, our experimental data (figure 3) at the lowest temperature show a derivative-like
lineshape, in agreement with our model in figure 4(a). When T is increased in the experiment, Vth

becomes more triangular (figure 3), consistent with our modeled data in figure 4(b), suggesting
that the leading cause of the experimentally observed lineshape evolution is the decrease of
1E/kT with increasing T.

We now turn to a more quantitative comparison of the experiment and the model. In
figure 5(a), we show S of QD1 at four different temperatures with IH chosen such that we
estimate (based on finite-element modeling [21]) a 1T of a few 10 mK for each data set. In
figure 5(b), we show the corresponding modeling results based on equation (3), which used
as their only input T and 1T , as well as 0 = 160 µeV and 1E = 5.3 meV as determined
experimentally (see figure 2(c)). There is good agreement between experiment and theory at
the two lowest temperatures, while the suppression of S between transmission resonances is
stronger in the experiment at higher T. Vth of QD1 was measured using an ac technique, and
therefore the observed suppression might be due to RC damping as the dot’s resistance (and
therefore the system’s RC constant) increases between the resonances. Therefore, in figure 5(c),
we include the effect of RC damping (at frequency f = 13 Hz) using R(µ)C = C/G(µ) based
on measured data for G(µ) and the modeled data from figure 5(b). For the capacitance to
ground, C, we estimate an upper limit of 0.5 nF, with the leading contribution from the cryostat
leads (≈ 0.4 nF) estimated to be much larger than those from the bond pads and the QD itself.
After taking the RC damping into account, the agreement of the model with the experiment is
excellent (see figures 5(a) and (c)), given the uncertainty in the accuracy of the modeled 1T .

A similar comparison between experiment and model is shown in figures 5(d)–(f) for
QD2, measured using the dc technique, and for smaller values of 0/kT and larger values of
1E/kT than in figures 5(a)–(c). Also, here experiment (figure 5(d)) and theory (figure 5(e))
are in very good agreement for the lowest temperature. At higher temperatures, the model
predicts increasing amplitudes of S due to the decrease in 0/kT . However, the same increase
is not seen in experiment, where instead S appears to be suppressed compared to the model. To
improve the agreement between theory and experiment, we include the effect of the finite load
resistance, RL = 47M�, of the dc measurement setup, which is expected to reduce the measured
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Figure 5. (a) Thermopower, S = Vth/1T , for QD1 at the indicated cryostat
temperatures, based on the values for 1T obtained using finite-element
simulations [21]: 1T ≈ 0.035 K at T = 0.232 K, 1T ≈ 0.05 K at T = 1.5 K,
1T ≈ 0.045 K at T = 3.1 K and 1T ≈ 0.01 K at T = 6 K. (b) Modeling results
based on equation (3) for the same temperatures T as in (a), 1T = 0.05 K, 1E =

5.3 meV and 0 = 160 µeV. (c) The same data as in (b), but including the effect
of RC damping in the measurement circuit, using the measured R = 1/G and a
fixed C = 0.5 nF. Note that the model used only three resonances and therefore
only the center resonance (highlighted by gray background) experiences the
effect of neighboring resonances present in the experiment and corresponds to
the data in (a). (d) Thermopower, S, of QD2 at cryostat temperatures T and 1T
as indicated. Here 1T was measured using QD thermometry [21]. 0/kT varies
here from 0.145 at 2.4 K to 0.042 at 8.26 K, and 1E/kT from 73 at 2.4 K to 21
at 8.26 K. (e) Modeled data based on equation (3) for the same T, 1T , 1E and
0n as in (d). Note that the model took into account a third resonance that was
present in the device. Only the center resonance in (e) can be compared to (d).
(f) The same data as in (e), including the effect of the finite load resistance, RL,
of the experimental setup.
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thermovoltage compared to the dot’s actual thermovoltage by a factor of (1 + R(µ, T )/RL)
−1

(for details, see [22]). Because we do not have data on the dot’s resistance, R(µ, T ) =

1/G(µ, T ), at all temperatures, we model G(µ, T ) using the equation

G(µ, T ) =
1

kT
G0 sech2

(
µ − En

2kT

)
, (4)

which is obtained from the derivative of the Landauer equation with respect to bias voltage for
0 � kT [28], where G0 is a fit parameter that we obtain by matching the measured G(µ) at
T = 1.55 K (figure 2(d)), and En is the position of the nth resonance as defined in equation (2).
In figure 5(f), we show the effect of this expected suppression on the modeled thermopower
data of figure 5(e), and find that the qualitative agreement with the experiment in figure 5(d) is
now excellent. The remaining quantitative discrepancy, roughly a factor of 2, might be related
to an inaccuracy in the value of 0 used in the thermopower model in figure 5(e). To obtain a
more accurate value for 0, conductance measurements at lower temperatures T ≈ 0/k would
be required. Note that the experimental data also show a curious asymmetric lineshape (of the
leftmost resonance), indicating that higher-order effects may be important [29].

5. Conclusion

In conclusion, we have tested the extent to which a simple Landauer-type model predicts the
lineshape of the thermopower S in quantum dots as a function of the relevant energy scales 0/kT
and 1E/kT , which are readily available from conductance measurements. Using high-quality
experimental data that allow for a detailed comparison with theory, we find excellent qualitative
agreement and reasonable quantitative agreement, when the effects of the measurement setup
are taken into account in the model.

In our approach, we used a Landauer-type equation (which is normally used for elastic,
non-interacting processes) and took into account additional information, namely about the
coupling of the dot states to the leads, and about interactions in the dot, by using a τ(E)

based on experimental measurements. For an interacting system such as that considered here,
this approach is strictly valid only in the linear response regime and at zero temperature [25].
The model can therefore be expected to break down at finite T or finite 1T , because inelastic
processes may become important in these cases. In our experiments, the temperature was
small (kT/1E � 1) and the system was, in this respect, in the linear-response regime, with
1T an order of magnitude smaller than T. However, we cannot rule out spin-flip processes in
our experiment, and it is not obvious why our assumption of non-interacting particles works
so well.
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