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Introduction and Summary

In 1973 Fischer Black and Myron Scholes published their seminal paper
on option valuation. Although more than three decades has passed the
Black-Scholes option pricing formula remains a cornerstone in modern
…nance. With its aide it became possible to price …nancial assets giving
the holder the right but not the obligation to buy (call option) or sell (put
option) an underlying asset-say, a stock - in the future, at a prespeci…ed
price. Their work gave rise to what is sometimes called …nancial engineer-
ing. While traditional economics attempts to price assets by modelling
individuals preferences with utility functions and is concerned with equi-
librium outcomes, …nancial economists working in the vein of Black and
Scholes rely on the concept of arbitrage-free pricing, relating the price of
an asset to the prices of other assets so that no risk free pro…ts can be
made. Thus, assuming that markets do not allow arbitrage opportuni-
ties, the price of an asset such as a call option can be found by forming a
replicating portfolio giving the same payo¤ in all states of the world. A
key feature of this approach is that one is able to price derivatives such
as call options on stocks without speci…cation of individuals risk aver-
sion, implying that any two individuals will agree on the price regardless
of their attitude towards risk. Although this may seem remarkable, the
answer lies in the fact that the risk premium is re‡ected in the price of
the stock. Thus, whereas in traditional economics the price of a stock
is derived in an equilibrium setting, the approach by Black and Scholes
was to take the equilibrium price of the stock as given.

One assumption underlying the Black and Scholes option pricing for-
mula is that the price of the underlying asset is lognormally distributed,
so that the returns are normally distributed. Furthermore, they assumed

1



2

that the volatility of the returns is constant over time. These assump-
tions have been tested empirically and found wanting in realism. For
example, stock returns have been shown to display fatter tails than im-
plied by the normal distribution, meaning that very low and very high
returns are more likely than the assumption of normally distributed re-
turns allows. A related observation is that the volatility implied by the
observed option price di¤ers among options with di¤erent exercise price,
so that often a smile shaped pattern occurs when the implied volatili-
ties are plotted against the exercise prices. Implied volatilities also di¤er
for options having di¤erent time to expiration. Consequently, much re-
search has been devoted to amend these shortcomings, the majority of
which has operated within the …nancial engineering framework, such as
stochastic volatility models and jump-di¤usion models. Such models can
be regarded as piecemeal improvements of the original Black and Scholes
theory as they operate within the same basic framework. While Black
and Scholes formulated their theories in a continuous-time setting using
relatively advanced mathematics, in 1979 Cox, Ross and Rubinstein pub-
lished a paper showing that the Black and Scholes option pricing formula
could be derived within a discrete-time setting. This made the intuition
behind the theory more accessible as it only required mathematical tools
that are standard in economic theory.

The aim of this thesis is to relate the observed pattern of implied
volatilities to the behavior of individuals using an equilibrium, discrete-
time setting.

Summary of Chapter 1

Chapter 1 analyses daily data on put and call options covering the period
1993 to 2000, on the Swedish OMX index, an index comprising the 30
stocks which have the largest volume of trading on the Stockholm Stock
Exchange. The options are European options, meaning that they can
only be exercised at the expiration date. For both calls and puts the
implied volatilities are extracted using the aforementioned discrete time
option pricing formula due to Cox, Ross and Rubinstein. These implied
volatilities were then related to time to expiration and moneyness. The
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implied volatilities varied substantially over the eight year period. When
the implied volatilities were related to time to expiration the results were
as follows. Throughout the sample period it was found that both calls
and puts exhibit the largest implied volatility for short maturities and
that the implied volatility tended to be decreasing in time to expiration.
In general the volatilities implied by puts exceeded those for calls, for all
maturities. In order to measure how much the implied volatilities varies
for a given time to expiration the notion of strength of smile is introduced.
For both calls and puts the strength of smile is decreasing in time to
expiration, implying that options with short maturity are the ones most
mispriced by the (discrete time) Black and Scholes formula. The strength
of smile for puts was in general much higher than for calls. When the
same analysis was performed with regard to moneyness, it was seen that
the implied volatilities were the highest for calls with extreme values of
moneyness. This pattern was duplicated for puts, although the implied
volatilities for puts in general were higher. For both calls and puts, the
strength of smile for a given interval of moneyness was also the highest
for extreme values of moneyness. On average, the implied volatilities for
puts clearly exceeded the volatilities implied by calls. Chapter One also
contains a test of the no-arbitrage condition known as Put-Call Parity,
showing that it holds well. For those options eligible to use in the test,
the di¤erence in implied volatilities was signi…cantly smaller, indicating
that the arbitrage powers underlying Put-Call Parity indeed is in e¤ect.

Summary of Chapter 2

Chapter 2 presents the theory of how Bayesian learning a¤ects asset pric-
ing. The model is due to Timmermann and Guidolin [2003] and applies
Lucas [1978] representative agent, equilibrium model. Thus, the point
of departure is an economy with a bond in zero net supply and a stock
paying an in…nite stream of dividends evolving in a binomial tree. The so-
lution of the consumers problem provides us with state prices with which
any payo¤ can be priced. After having equipped the representative agent
with power utility, speci…cation of how the probabilities of up and down
movements in the tree evolve over time distinguishes the state prices of
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the Full Information model from those of the model with Bayesian learn-
ing. As a pedagogical tool the urn model due to Polya is introduced.
The Polya distribution can be used to model Bayesian learning and also
encompasses as a special case the binomial distribution which applies to
the Full Information model. It is shown that Bayesian learning implies
fatter tails of the probability distribution as compared to the binomial
distribution. In the beta-binomial representation of the Polya distribu-
tion, the parameters re‡ect the Bayesian learners beliefs. Thus equipped
with state prices the bond, stock and call prices are derived for the Full
Information model and the model with Bayesian learning, reproducing
the results of Timmermann and Guidolin. The bond prices with Bayesian
learning implies that the present value of future income becomes path
dependent, making computation of the risk neutral probabilities more
complicated. A key feature of the stock price with learning is that the
stock-dividend ratio is no longer constant, as it is for the Full Informa-
tion case. Compared to the Full Information case, learning a¤ects the
call price both by widen the support and by increasing the state prices
with which the payo¤s at exercise date are valued. The contribution of
this chapter is a derivation of closed form approximations for the stock
and call price in the case of Bayesian learning, improving analytical and
computational tractability of the model. Furthermore, by normalizing
the model, the strength of learning is captured in one single parameter.
Also, a precise description of the relationship between the call price of
the Full Information model and the call price of the (discrete time) Black
and Scholes model is given, presenting an equilibrium rationalization of
the Black and Scholes model.

Summary of Chapter 3

In Chapter 3 the closed form approximation of the Bayesian learning call
price formula is applied to the OMX data analyzed in Chapter 1 We also
apply the Black and Scholes model, the Full Information model and a
Spline model, where the volatility input to the Black and Scholes formula
is modeled by a polynomial in the exercise price and time to expiration.
Except for the Spline model, all models are also estimated allowing the
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parameters to depend on moneyness and time to maturity, respectively.
Accordingly, we have three classes of models: unstrati…ed models and
models strati…ed according to moneyness and time to expiration, respec-
tively. The estimation of the Full Information model is performed using
its relationship with the Black and Scholes model described in Chapter
Two. In-sample results show that the model with Bayesian learning is
superior to all its unstrati…ed competitors in its ability to match the
data, displaying an average in-sample error only 2/3 that of the Black
and Scholes model, and is also the best model in 2/3 of the dates. It
is followed in both regards by the Spline model. Out-of-sample pre-
dictions were performed using the parameter estimates obtained from
the in-sample exercise. Both one-day ahead and one-week ahead predic-
tions were performed. In both cases, the model with Bayesian learning
strati…ed according to time to expiration scored the highest when the
percentage of dates it outperformed its competitors was considered. It
also displayed the lowest prediction error for one-day ahead predictions,
closely followed by the unstrati…ed model with Bayesian learning. For
one-week ahead predictions, the Full Information model strati…ed accord-
ing to moneyness displayed the lowest prediction error, closely followed
by the unstrati…ed Full Information model. For both prediction lengths
the Spline model performed the worst in terms of prediction error, raising
the issue of parameter stability. Consistent with the …ndings by Timmer-
mamm and Guidolin, it was found that the model with Bayesian learning
was the best of the unstrati…ed models when out-of-the-money contracts
were considered.
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Chapter 1

The OMX Index and
Derivatives

Introduction

The Black-Scholes option pricing model assumes that the underlying as-
set follows a geometric brownian motion with constant volatility, imply-
ing that all options on the same asset should provide the same implied
volatility. However, it has been well documented that the implied volatil-
ities tend to di¤er both across remaining time to expiration and exercise
prices, resulting in ”smiles” or ”smirks” when plotted against these vari-
ables. For ease of reference we will refer to any such distribution of
implied volatilities over the exercise price or remaining time to expira-
tion as a smile. By the strength of the smile we denote the volatility of
the implied volatilities. This notion is meant to measure to which degree
the assumption of constant volatility is violated.

Lando and Poulsen [2006] provide an economic explanation of the
existence of these volatility smiles in terms of portfolio insurance and
crash fears: managers of portfolios mimicking the market stock index
wanting to insure against a possible crash will want to purchase out-
of-the-money put options, causing their prices to rise, and hence their
implied volatilities.

The purpose of this chapter is to investigate whether the pricing of
options on the Swedish OMX index causes the implied volatility to be a

7



8 1. THE OMX INDEX AND DERIVATIVES

non-constant function of the exercise price and the remaining time to ex-
piration. Furthermore, we will determine how the strength of the smiles
vary over time and how it depends on the exercise price and remaining
time to expiration. This is done for calls and puts separately. In ex-
tracting the implied volatility the discrete time Black and Scholes model
due to Cox, Ross and Rubinstein [1979] is used. Much research has been
dedicated to analyze di¤erent option markets with regard to the patterns
of implied volatilities; often cited papers include Edgerington and Guan
[2002] and Das and Sundaram[1999].

When pricing an option one has to take into consideration whether
the underlying asset pays dividends during the life of the option. For
an option on an index such as the OMX index which is not adjusted for
dividends one thus has to estimate the dividend yield during the life of
the option. However, when the dividend yield was computed using Spot-
Futures Parity the result was ambiguous. Although for some years the
dividend yield clearly peaked during the dividend period, this pattern was
not consistent throughout the sample. Furthermore, the dividend yield
often assumed negative values. For these reasons the options a¤ected by
dividends were discarded.

The arbitrage relation known as Put-Call Parity was tested by com-
puting the relative di¤erence between the call and a portfolio constructed
by borrowing the present value of the exercise price, buying a put and
the underlying asset.

The outline of the paper is as follows. In section 1:1 we introduce
the OMX index and describe the derivatives on the OMX and the data
set used. Section 1:2 describes the numerical procedure used in solving
the discrete time Black and Scholes model for the implied volatility. The
implied volatility as a function of time to expiration is studied in Section
1:3 while section 1:4 investigates the implied volatility as a function of
moneyness. Finally, a summary is given in Section 1:5.

Section 1.1 concludes with the results from the investigation of Put-
Call Parity are presented and the volatility smiles are examined.

The convergence of the discrete Black and Scholes model to its con-
tinuous counterpart is described in Appendix A. In Appendix B the
relationship between the spot price of an asset and the future price is
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derived. The Put-Call Parity is described in Appendix C.

1.1 About the Data

The Swedish OMX Index

Introduced in 1986 by the Swedish exchange for options and other deriv-
ative securities (OM), the Swedish OMX index comprises the 30 stocks
which have the largest volume of trading. It was constructed with the
objective of creating an index based on a limited number of stocks, which
develops in close correlation with the stocks listed on the Stockholm Stock
Exchange. The index is reviewed semi-annually. The OMX is a price in-
dex, meaning that no cash dividend is reinvested in the index. Hence,
the OMX only yields the performance of stock price movements.

Derivatives on the OMX Index

Three types of derivative assets on the OMX index are traded at the
Stockholm Stock Exchange. These are futures, call options and put op-
tions. Each fourth Friday is an expiration (delivery) date. Trade is most
frequent in derivatives expiring within the next three months although
there is some trade in derivatives with expiration dates up to a year or
more. Prices for the derivatives are quoted per unit of the index but
trade is in contracts for 100 such units. For the derivatives on the OMX
index the deals are settled in cash rather than by delivery of the portfolio
underlying the index.

Purchasing a futures contract on the OMX index at the current date,
t; with delivery date T and price Ft;T ; at date t; one thus commits to pay
100£Ft;T SEK at the delivery date and is, on the other hand entitled to
receive 100£ST SEK, where ST is the value of the OMX index at date T .
There are no margin accounts but a deposit of 10 % of the futures price,
the security amount, is required. Generally, the day following a delivery
date a futures contract with delivery date in three months is created, so
that each day except for delivery dates there are three futures contracts
di¤ering in delivery dates.



10 1. THE OMX INDEX AND DERIVATIVES

The OMX call and put options are European style options, so that
exercise prior to the expiration date is not possible.

A call option bought at the current date, t; with expiration date T
is paid at date t. It gives the owner the right, but not the obligation, to
buy the underlying asset at strike price K at the expiration date. Since
the underlying asset is here the OMX index there is a cash settlement
and the owner receives max (ST ¡K; 0) at the expiration date.

Similarly, a put option bought at date t is paid at the same date. It
entitles the owner to sell the underlying asset at strike price K at the
given expiration date and thus there is a cash settlement and the owner
receives max (K ¡ ST ; 0) at the expiration date.

In order to make the OMX options more accessible, the 27:th of April
1998 there was a split in the OMX index 4:1. This implies that beginning
with this date, the number of option- and futures contract are multiplied
by 4, while the exercise price and the future price is divided by 4. Thus
a holder of one call option with exercise price K = 600 prior to the split,
when the OMX was reported at, say, 640 would make a pro…t of

100(640¡ 600) = 4000

since an option comprises 100 contracts. Since after the split the OMX
will record at 160, in order to make the post-split position equivalent, the
exercise price is divided by 4 and the number of contracts is multiplied
by 4, so that the pro…t can now be written as

400(160¡ 150) = 4000

Dividends and the Spot-Futures Parity

Cash dividends from companies traded on the Stockholm Stock Ex-
change are concentrated to the months March, April, May and June.,
with roughly 90% of the dividends occurring in April and May. Hence,
the index must be adjusted for dividends only when the March-, April-,
May- and June-option prices are analyzed. The standard procedure for
doing this is using spot-futures parity in calculating the expected divi-
dend yield during the life of the option. Spot-futures parity is described
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in Appendix B
Using all futures with remaining days until delivery between 7 and

90, the average dividend yield was computed for each day in the entire
period, including the non-dividend periods for which one would expect
the computed dividend yield to be zero. However, the dividend yield was
found to take both positive and negative values regardless of the period
considered. Furthermore, even though for some years the dividend yield
peaks during the dividend period, for some years no such pattern could
be found. This is illustrated in Figure 1.1.A, where the average dividend
yield is plotted for 1996 and 2000, respectively.

As a consequence of the inconsistent pattern displayed by the divi-
dends, only dividend free July to February option contracts were ana-
lyzed.
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Figure 1.1.A: Average dividend yields for the years 1996 (left)
and 2000 (right)

The Data Set for OMX and Derivatives

The data set used in this study consists of daily observations of the
OMX index and the corresponding call and put option prices covering
the period 1993 to 2000. In order to avoid unreliable prices, options with
volume less than 20 contracts, strike prices deviating from the current
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OMX index by a factor of more than 1:2 or less than 0:8 and options
with remaining days until expiration less than 8 and greater than 90
were excluded, resulting in a data set of 31762 calls and 34416 puts.
Discarding those options that were a¤ected by dividends further reduced
the original dataset to 20215 call options and 21783 put options.

For the sample period 1993 to 2000, Figure 1.1.B shows the distribu-
tion of contracts over time to expiration for calls and puts, respectively.
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Figure 1.1.B: The left …gure shows that the number of traded
contracts for calls is decreasing in time to expi-
ration. The right …gure shows the same pattern
for puts.

The distribution of contracts in the sample over moneyness, de…ned
as OMX=K for calls and K=OMX for puts, is shown in Figure 1.1.C,
revealing that little trade occurs for options with extreme values of mon-
eyness. The relevant interest rates were attained by linear interpolation
of the 1-month and 3-month, Swedish treasury bills. Thus, for an option
with less than 31 days to expiration the interest rate on the 1-month
Treasury bill was used. For options with T > 30 days to expiration the
relevant interest rate was computed as

r =
r3 ¡ r1
60 (T ¡ 30) + r1
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where r1 and r3 denotes the 1-month and 3¡month interest rates, re-
spectively. Figure 1.1.D shows how the interest and OMX index have
evolved during the sample period.
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Figure 1.1.C: The distribution of contracts over moneyness for
calls (left) and puts (right) in the sample,
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(left) and the OMX index (right)
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Figure 1.1.E: Standard deviation of annual return on the OMX
index

In the Black and Scholes formula, all parameters are directly observ-
able except for the standard deviation of the annual return. In Figure
1.1.E the standard deviation of the annual return on the OMX index is
shown for each day in the sample period. Following common practice, the
standard deviation for each day was calculated using the daily returns of
the previous 30 days.

Put-Call Parity

In order to measure howwell Put-Call Parity holds, we study the absolute
di¤erence between the observed call price, Cobs, and the price of the
syntethic call option, Csynt, which is constructed by borrowing the present
value of the exercise price, buying a put with the same exercise price and
time to expiration as Cobs and buying the underlying asset. In the data
set there are 10469 pairs of puts and calls traded at the same date with
identical strike price and time to expiration. Although the underlying
asset in this case is an index it is possible to buy the stocks comprising
the index. Also, since there exists stock funds, OMXACT and Erik
Penser Aktieindex Sverige OMX, mimicking the OMX index, another
way of purchasing the equivalent of the underlying asset would be to
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invest in such a fund. Dividing this quantity by the exercise price K we
obtain the relative di¤erence

jCobs ¡ Csyntj
Cobs

The distribution of the relative di¤erence is shown in Figure 1.1.F, indi-
cating that roughly 90% of the options have a di¤erence less than 0:03%.
Thus, disregarding other factors a¤ecting arbitrage opportunities, trans-
action costs in excess of this would prevent pro…ts to be made from this
slight deviation from Put-Call Parity. It should be noted however that
there exists an asymmetry in transaction costs due to the fact that the
syntethic call option is created by buying the stock (index), for which
the price, and hence the transaction cost, is higher.
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Figure 1.1.F: Cumulative distribution of the the relative di¤er-
ence over the 10469 observations

1.2 Numerical Procedure

For the purpose of obtaining the implied annual volatility we apply the
discrete time BS model to the daily OMX data. Thus, viewing the one
period model (Cf. Appendix A) as pertaining to one year, we now let
the discrete time Black and Scholes model correspond to an M period
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model, with one period equal to one day. Hence, in analyzing a call
option Ct at date t with T days to expiration, R, U and D refer to the
daily returns. The implied daily volatility associated with a call option
Ct with T periods to expiration, strike priceK and current index value St
is extracted by numerically solving for the upfactor U in the non-linear
equation given by putting the observed option price Cobs equal to the
value given by the right hand member of the discrete time BS formula.
Cf. Appendix A

Ct =
1
RT

TX

k=0

µ
T
k

¶
pk(1¡ p)T¡kmax(StUkDT¡k ¡K; 0)

From Appendix A we have, setting q equal to 1=2

U = e¹q=M+¾q=
p
M and D = e¹q=M¡¾q=

p
M

where M now denotes the number of business days in a year. Further-
more, by assuming the drift ¹ to be zero we have U = exp(¾q=

p
M ) and

D = 1=U . Using that p = (R¡D)=(U ¡D) we can now write

Ct =
1
RT

TX

k=0

µ
T
k

¶µ
RU ¡ 1
U 2 ¡ 1

¶k µ
U2 ¡RU
U 2 ¡ 1

¶T¡k ¡
U 2k¡TSt ¡K

¢+

where
¡
U 2k¡TSt ¡K

¢+ = max(U2k¡TSt¡K; 0): Hence, given the known
parameter values T , R; St and K, the price of a call option is a function
solely depending on U . Getting a solution consistent with absence of
arbitrage requires that the search is constrained to the interval where
U > R: The assumption of zero drift is a reasonable approximation since
we are using daily data; over the sample period the mean daily ¹ is
8:72 ¤ 10¡4. However, in applying the numerical procedure we can not
be sure to …nd a U which satis…es the equation C(U ) ¡ Cobs = 0. For
given values of T , R;and St the function h(U) = C(U)¡Cobs is depicted
in Figure 1.2.A for two di¤erent values of the strike price K. The …gure
shows that for options with high moneyness the minimum of C(U) might
well exceed the observed option price, in which case h(U ) = 0 does not
have a solution with U > 1:
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Figure 1.2.A: The function h(U) = C(U ) ¡ Cobs is depicted
for two call options with strike prices 900 and
1100, respectively. They both have Cobs = 22 ,
St = 1002:5, R = 1:0001 and T = 15:

For approximately 1:5% of the calls and 0:2% of the puts in the
dataset considered it was not possible to solve for U . These options dif-
fer from options for which U could be extracted with respect to volume,
time to expiration and moneyness. Speci…cally, they were considerably
less traded, had much higher moneyness and on average their time to
expiration was half that of options with an implied U . Having solved
for the daily upreturn U , the estimate of the daily standard deviation
becomes ln U . Cf. Appendix A. Assuming 252 business days, the annual
volatility ¾ is then given by

¾ =
p
252 ln U

Figure 1.2.B illustrates that letting one day constitute one step provides
a good approximation of the implied volatility from the continuous BS
formula. For the call options in the sample, the average di¤erence be-
tween the volatilities extracted from the continuous BS model and the
volatilities extracted from the discrete BS model with a period taken to
be one day was 0:0019 When each day was divided into two subperiods
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the average di¤erence was 0:0011:Figure 1.2.B illustrates that letting one
day constitute one step provides a good approximation of the implied
volatility from the continuous BS formula. It is also seen that letting
each day comprise two steps in the discrete BS model only marginally
improves the approximation of the continuous implied volatility.
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Figure 1.2.B: Volatilities implied for a call option with 8 days
to expiration by the continuous BS, the discrete
BS with one step/day and the discrete BS with 2
steps/day

Extracting the implied volatility for put options was done analogously.
Table 1.2.A shows the number of options for which it was not possible
to solve for U and the number of options which violated the arbitrage
condition.

Table 1.2.A: Results from Numerical Calculations

Calls Puts
# obs 20215 21783

No solution in U 319 63
Violating no-arbitrage 3 1

# volatilities 19893 21719
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1.3 Volatility Smiles and Time to Expira-
tion

According to the BS model, the volatility should be constant across both
moneyness and time to expiration. Geometrically, the volatility surface
at a given date then corresponds to a plane parallel to the moneyness -
time-to-expiration plane, as seen in Figure 1.3.A. In case the parameters
of the BS model were also constant over calender time the same volatility
plane would apply to each date.

money
aaaaa

moneyness

expiration
time to

Figure 1.3.A: At date t the implied volatility, according to the
BS model is constant as a function of exercise
price and time to expiration

However, it is well documented that observed option prices usually
fail to conform to the structure predicted by the BS model, so that data
plots often exhibit ”smiles” or ”smirks”. We will refer to such deviations
simply as ”smiles”. A …rst step towards the construction of models better
suited to explain option prices is to study closer the deviations from the
BS model. Thus for the purpose of characterizing the nature and extent
of the violations of the predictions by BS we introduce the notions of
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level of smile and strength of smile.
Depending on the nature of the deviations from the BS assumptions,

the volatility surface assumes di¤erent shapes. The volatility surface will
be analyzed with respect to moneyness and time to expiration separately.

Let t denote the calender date, T the time to expiration andM mon-
eyness (de…ned as the ratio of the OMX index and the exercise price
for calls and the inverse ratio for puts). Consider a given calender date,
¹t. For the moment assume that time to expiration and moneyness are
continuous variables. If the implied volatility for varying moneyness but
…xed time to expiration, ¹T; is constant this will show up as a line in the
volatility surface, at date ¹t: Thus varying ¹T the volatility surface will be
traced out by a family of lines as shown in Figure 1.3.B. Let ¾t;T;M denote
the implied volatility for an option at date t with T days to expiration
and moneyness M:

moneyness

expiration
time to

Figure 1.3.B: Level of smile, at date ¹t, varies with time to ex-
piration. Strength of each smile, given ¹T;is 0

The date ¹t level of smile, given time to expiration ¹T ; is
1¯̄¡¹t; ¹T;M

¢¯̄
X
M
¾¹t; ¹T;M = ¾¹t; ¹T

where
¯̄¡¹t; ¹T;M

¢¯̄
denotes the number of observations at date ¹t with ¹T

days to expiration as M varies. Cf. Figure 1.3.B where the volatility is
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constant for each time to expiration so that there exists a valid BS model
for each time to expiration but where, in general, the valid model will
vary with time to expiration. The implied volatilities at date ¹t for options
with ¹T days to expiration will typically also vary with moneyness so that
these options give rise to a ”smile” around the ”level of the smile”. Cf.
Figure1.3.C.

The date ¹t strength of smile, given time to expiration ¹T ; is
Ã

1¯̄¡¹t; ¹T;M
¢¯̄

X
M

¡
¾¹t; ¹T;M ¡ ¾¹t; ¹T

¢2
!1=2

= z¹t; ¹T

where
¯̄¡¹t; ¹T;M¢¯̄

denotes the number of observations at date ¹t with ¹T
days to expiration as M varies.

money
aaaaa

moneyness

expiration
time to

Figure 1.3.C: Level of smile constant as time to expiration
varies. Strength of smile decreasing with time to
expiration

Figure 1.3.C illustrates a case where the strength of the smiles de-
creases with time to expiration, in such a way as to keep the level of the
smile constant.

Table 1.3.A shows the number of observations used in calculating the
levels, for calls and puts respectively. While the level was calculated if
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there were at least one observation, the strength was only calculated if
there were at least 2 observations. It follows that the number of observa-
tions used in calculating the strength is one less that of the number used
in computing the level.

Table 1.3.A: number of observations used

Number of levels
1 2 3 4 5 6 7 8 9 10 11 12 ¸13 §

# obs/level
Calls

6 10 12 17 14 11 22 26 21 15 16 4 19 1468

# obs/level,
Puts

14 10 7 7 16 14 18 22 25 20 15 8 21 1550

Calls and Smiles given Time to Expiration

In this section we study the level and strength of smiles generated by
call options with times to expiration T = 10;30; 50 and 70. This gives a
sample size of 1522 implied volatilities.

Recall that the level of smile at date ¹t given time to expiration ¹T
was de…ned as

1¯̄¡¹t; ¹T;M
¢¯̄

X
M
¾¹t; ¹T;M = ¾¹t; ¹T

Figures 1.3.D and 1.3.E show how the level of smile for call options
has evolved over calendar time for times to expiration T = 10; 30; 50
and 70. The total number of levels were 193. The median number of
observations used in calculating the level was 8. As a consequence of the
relatively sparse trade in options with long maturity, the median value of¯̄¡¹t; ¹T;M

¢¯̄
was only 3 for calls with 70 days to expiration. For each time

to expiration the level of the smiles have varied considerably over time
with the annual levels ranging between 0:15 and 0:30. Another feature
is the marked covariation between the level of smiles for di¤erent times
to expiration.
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Figure 1.3.D: Level of smile for calls with 10 days to expira-
tion (left) and for calls with 30 days to expiration
(right)
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Figure 1.3.E: Level of smile with for calls with 50 days to expi-
ration (left) and for calls with 70 days to expira-
tion (right)
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To summarize the information in Figures 1.3.D and 1.3.E we de…ne
the average level of smile, given time to expiration ¹T ; as

1¯̄
t; ¹T

¯̄
X
t
¾t; ¹T = L ¹T

where
¯̄
t; ¹T

¯̄
is the number of ¾t; ¹T as t varies. Figure 1.3.F shows how the

average level of smile is decreasing with time to expiration.
The standard deviation of level of smile, given time to expiration ¹T ;

is "
1¯̄
t; ¹T

¯̄
X
t

¡
¾t; ¹T ¡ L ¹T

¢2
#1=2

= SL ¹T

The standard deviation of level of smile, as T varies, is given in Figure
1.3.F, which con…rms the impression from Figures 1.3.D and 1.3.E that
the standard deviation is relatively constant and the average level is
decreasing about one half of the standard deviation as time to expiration
increases.
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Figure 1.3.F: Average level of smile for calls (left) and its stan-
dard deviation (right)

The date ¹t strength of smile, given time to expiration ¹T; was de…ned
above as Ã

1¯̄¡¹t; ¹T ;M
¢¯̄

X
M

¡
¾¹t; ¹T;M ¡ ¾¹t; ¹T

¢2
!1=2

= z¹t; ¹T
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Figure 1.3.G: Strength of smile for calls with 10 days to expira-
tion (left) and for calls with 30 days to expiration
(right)
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Figure 1.3.H: Strength of smile for calls with 50 days to expira-
tion (left) and for calls with 70 days to expiration
(right)

Computing the strength of smile as time to expiration varies yields
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189 observations. Figures 1.3.G and 1.3.H show how the strength of smile
has evolved over calender time for times to expiration T = 10; 30; 50 and
70. The …gures indicate that the strength of smile decreases as time to
expiration increases. They also suggest that the variations in strength of
smiles over calendar time is smaller than for the levels of smiles. This
di¤erence is more pronounced for longer maturities. It should be noted
that the number of observations for which the strength was calculated
varied between 2 and 24.

To summarize the information in Figures 1.3.G and 1.3.H we de…ne
the average strength of smile, given time to expiration ¹T , as

1¯̄¡
t; ¹T

¢¯̄
X
t
zt; ¹T = Z ¹T

where
¯̄
t; ¹T

¯̄
is the number of zt; ¹T as t varies. Figure 1.3.I shows that the

average strength of smile decreases strongly with time to expiration.
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Figure 1.3.I: Average strength of smile for calls (left) and stan-
dard deviation of strength (right)

The standard deviation of strength of smiles, for time to expiration ¹T
is "

1¯̄¡
t; ¹T

¢¯̄
X
t

¡
z¹t; ¹T ¡ Z ¹T

¢2
#1=2

= SZ ¹T
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Figure 1.3.I shows the standard deviation of strength of smiles, as T
varies.

Unlike the case with levels of smiles, the standard deviation of strength
of smiles is decreasing with time to expiration which indicates that the
deviation from the constant volatility assumption is less severe for calls
with long maturity.

Puts and Smiles given Time to Expiration

In this section the previous analysis for calls is repeated for puts. For puts
with time to expiration T = 10; 30; 50 and 70 we get 1622 observations,
for which we can compute 197 levels. As for calls, the median number of
observations used in calculating the level was 8. From Figures 1.3.J and
1.3.K, depicting the levels over time, it is seen that options with longer
maturity exhibit lower level of smile. This is the same pattern exhibited
by calls, although the level of smile for puts are in general higher for all
times to expiration.
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Figure 1.3.J: Level of smile for puts with 10 days to expiration
(left) and 30 days to expiration (right)
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Figure 1.3.K: Level of smile for puts with 50 days to expiration
(left) and 70 days to expiration (right)
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Figure 1.3.L: Average level of smile for puts (left) and standard
deviation of level for puts (right)

Computing the average level of smile and its standard deviation,
shown in Figure 1.3.L , rea¢rms that the level is decreasing in time
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to expiration and that the level is higher for puts than for calls, for all
times to expiration. The standard deviation of level of smile is roughly
constant over time to expiration and similar to those for calls.

In Figures 1.3.M and 1.3.N the strength of smile is displayed. Similar
to the case for level of smile, the strength of smile is clearly decreasing
in time to expiration. Comparing the strength of smile for puts with
that of calls (Cf Figures 1.3.G and 1.3.H) it is seen that the strength for
puts is markedly higher, especially for short maturities and for the early
years in the sample. For example, in 1993 the annual average of strength
of smile for puts with 10 remaining days to expiration is 0:06, which is
about three times larger than for the corresponding calls.

Figure 1.3.O summarizes the …ndings in Figures 1.3.M and 1.3.N and
shows how strength of smile and the standard deviation of strength of
smile varies with time to expiration. It is seen that the pattern for
calls, both with regard to average strength and its standard deviation is
duplicated for puts.
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Figure 1.3.M: Strength of smile for puts with 10 days to expi-
ration (left) and 30 days to expiration (right)
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Figure 1.3.N: Strength of smile for puts with 50 days to expira-
tion (left) and 70 days to expiration (right)
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Figure 1.3.O: Average strength of smile and standard deviation
of strength of smile for puts
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1.4 Volatility Smiles and Moneyness

When we applied the notions of strength and level of smile for a given
time to expiration we considered the intersection of the volatility surface
with a plane parallel with the moneyness-volatility axes.

In this section we want to study how level of smile and strength of
smile varies, for given moneyness. Figure 1.4.A exhibits a case where, for
each moneyness, the implied volatility is constant across time to expira-
tion, but is decreasing in moneyness.

moneyness

expiration
time to

Figure 1.4.A: Strength of smile with respect to time to expira-
tion is zero, but level of smile varies with mon-
eyness

Figure 1.4.B illustrates a case where the level of smile is decreasing
with moneyness and where the strength of smile varies from high to
low and back to high. Here the strength of smile attains a minimum for
options at the money, indicated by the straight line. It follows that for
options at the money a BS model would be a good approximation.
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Table 1.4.A: Observations used in computations od levels

Number of levels
1 2 3 4 5 6 7 8 9 10 11 12 ¸13 §

# obs/level,
Calls

383 320 348 328 259 253 197 207 154 151 126 104 317 19566

# obs/level,
Puts

527 459 407 340 306 248 256 188 126 145 115 110 349 20926

moneyness

expiration
time to

Figure 1.4.B: Level of smile is decreasing with moneyness.
Strength of smile varies from high to low and back
to high

Calls and Smiles given Moneyness

Since moneyness is a continuous variable we can not quite duplicate the
computations done when analyzing the volatility surface given time to
expiration.

In order to resolve this di¢culty we letM denote moneyness belonging
to an interval. Thus ¾¹t; ¹M denotes the average of implied volatilities,
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at calendar date ¹t; with moneyness in some interval ¹M: In this section
we study the level and strength of smile generated by call options with
moneyness in the intervals (0:8; 0:9) ; (0:9; 1:0) ; (1:0; 1:1) and (1:1; 1:2).

For a given calendar date ¹t and moneyness ¹M we thus study the
implied volatility for call options with varying time to expiration.

The date ¹t level of smile, given moneyness ¹M; is

1¯̄¡¹t; T; ¹M
¢¯̄

X
T
¾¹t;T; ¹M = ¾¹t; ¹M

where
¯̄¡¹t; T; ¹M

¢¯̄
denotes the number of observations at date ¹t with mon-

eyness ¹M. The total number of levels were 3147. The median number of
observations used to compute the level was 5.

Since moneyness is a continuous variable there is a high correlation
between the number of options belonging to a certain moneyness interval
at date t and the number of options belonging to the same interval at
date t+1. Plotting the daily level over time results in a highly cluttered
picture. Hence, Figures 1.4.C and 1.4.D depict not the daily level, but
rather its annual average, for di¤erent intervals of moneyness. The …gures
show that the level of smile given moneyness display the same pattern
over calender time as the level of smile given time to expiration. For calls
deeply out-of-the-money and deeply in-the-money the levels are located
higher than for calls with moneyness close to unity.

The average level of smile, given moneyness ¹M; is

1¯̄¡
t; ¹M

¢¯̄
X
t
¾t; ¹M = L ¹M

where
¯̄¡
t; ¹M

¢¯̄
is the number ¾t; ¹M as t varies.

The standard deviation of level of smile, given moneyness ¹M; is

Ã
1¯̄¡
t; ¹M

¢¯̄
X
t

¡
¾t; ¹M ¡ L ¹M

¢2
!1=2

= SL ¹M

where
¯̄¡
t; ¹M

¢¯̄
denotes the number of ¾t; ¹M :as t varies.
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Figure 1.4.C: Annual average of daily level for calls with mon-
eyness between 0.8 and 0.9 (left) and between 0.9
and 1 (right)
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Figure 1.4.D: Annual average of daily level for calls with mon-
eyness between 1 and 1:1 (left) and between 1:1
and 1:2 (right)
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Figure 1.4.E con…rms the …ndings of Figures 1.4.C and 1.4.D, with
the highest average level for extreme values of moneyness. By contrast,
the standard deviation of level of smile is increasing in moneyness.
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Figure 1.4.E: Average level of smile for calls (left) and standard
deviation of level of smile for calls (right)

Recall that the date ¹t strength of smile, given moneyness ¹M; is

Ã
1¯̄¡¹t; T ; ¹M

¢¯̄
X
T

¡
¾¹t;T; ¹M ¡ ¾¹t; ¹M

¢2
!1=2

= z¹t; ¹M

where
¯̄¡¹t; T; ¹M

¢¯̄
denotes the number of observations, at date ¹t; with

moneyness ¹M as T varies. The total number of observations were 2764.
Figures 1.4.F and 1.4.G show how the strength of smile has evolved over
time. For extreme values of moneyness the strength and its variation
over time is considerably higher than for calls with moneyness closer to
unity.
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Figure 1.4.F: Strength of smile for calls with moneyness be-
tween 0:8 and 0:9 (left) and between 0:9 and 1
(right)
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Figure 1.4.G: Strength of smile for calls with moneyness be-
tween 1 and 1:1 (left) and between 1:1 and 1:2
(right)
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The average of strength of smile, given moneyness ¹M;is

1¯̄¡
t; ¹M

¢¯̄
X
t
zt; ¹M = Z ¹M

where
¯̄¡
t; ¹M

¢¯̄
denotes the number of zt; ¹M as t varies.

The standard deviation of strength of smile, given moneyness ¹M; is
Ã

1¯̄¡
t; ¹M

¢¯̄
X
t

¡
zt; ¹M ¡ Z ¹M

¢2
!1=2

= SZ ¹M

where
¯̄¡
t; ¹M

¢¯̄
denotes the number of zt; ¹M as t varies. Figure 1.4.H

shows that a large average strength is accompanied by a large standard
deviation. Also, it is clear that the largest strength is found for calls
deep in-the-money, implying that the Black and Scholes model would be
particularly ill suited to price these option.
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Figure 1.4.H: Average strength of smile for calls (left) and
standard deviation of strength of smile for calls
(right)

Puts and Smiles given Moneyness

Again, the analysis made for calls is repeated for puts. Computing the
level of smile for the puts in the sample yields 3576 observations, where
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the median number of observations used to compute each level was 5.
The annual averages of these daily levels are depicted in Figures 1.4.I
and 1.4.J. The preceding sections showed that the levels of smile, given
time to expiration, displayed the same pattern over time for calls and
puts, with the levels for puts signi…cantly higher. Comparing the levels
of smile given moneyness for calls and puts, we see that for all years and
all intervals of moneyness, the levels for puts are considerably higher for
puts than for calls.

In Figure 1.4.K it is seen that the highest average level is found for
extreme values of moneyness, while the standard deviation is increasing
in moneyness. Again , this mimics the pattern displayed by puts. By
contrast, while the average level is higher for puts, its standard deviation
seems slightly lower than the corresponding for puts.

Computing the strength of smile yields 3049 (daily) observations, with
only 41 of these observations having moneyness in excess of 1:1. The
annual averages of these are shown in Figures 1.4.L and 1.4.M, indicating
that the strength of smile varies considerably less over time than the
levels.
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Figure 1.4.I: Level of smile for puts with moneyness between 0:8
and 0:9 (left) and between 0:9 and 1 (right)
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Figure 1.4.J: Level of smile for puts with moneyness between 1
and 1:1 (left) and between 1:1 and 1:2 (right)
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Figure 1.4.K: Average level for puts (left) and standard devia-
tion of levels of smile for puts (right)



40 1. THE OMX INDEX AND DERIVATIVES

1993 1995 1997 1999 2001
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

Year

S
tr

en
gt

h

1993 1995 1997 1999 2001
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

Year

S
tr

en
gt

h

Figure 1.4.L: Strength of smile for puts with moneyness between
0:8- 0:9 (left) and 0:9¡ 1 (right)
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Figure 1.4.M: Strength of smile for puts with moneyness be-
tween 1¡ 1:1 (left) and 1:1-1:2 (right)

The average strength of smile and their standard deviation is shown
in Figure 1.4.N. Comparing with the average strength for calls, it is seen
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that the average strength is higher for puts for out-of-the-money options,
while the opposite is true for in-the-money options. As was the case for
calls, the largest strength is obtained for extreme values of moneyness.
The standard deviation of strength for out-of-the-money puts are higher
than for the corresponding calls, while the standard deviation of strength
for in-the-money puts is lower than for the corresponding calls.
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Figure 1.4.N: Average strength of smile for puts and standard
deviation of strength for puts

1.5 Comparison of Volatility Surfaces for
Calls and Puts

As a …nal step we estimate the volatility surfaces for calls and puts us-
ing kernel regression. This exercise provides us with three-dimensional
graphs linking moneyness and time to expiration to implied volatility,
thus summarizing the …ndings in the preceding sections.

The volatility surface for calls is shown in Figure 1.5.A and the volatil-
ity surface for puts is shown in Figure 1.5.B. An inspection of the surfaces



42 1. THE OMX INDEX AND DERIVATIVES

reveals the marked strength of smile with respect to moneyness for puts,
which is notably higher than the strength of smile with respect to mon-
eyness for calls. While the strength of smile with respect to moneyness
decreases with time to expiration for both puts and calls, the strength
of smile for puts with long maturity is still signi…cant. By contrast, the
strength of smile for calls with long maturity appears marginal.

For both calls and puts the strength of smile with respect to time to
expiration is the highest for extreme values of moneyness. Finally, the
volatility surface for puts seems to be located higher than the volatility
surface for calls, re‡ecting the fact that the average volatility implied
by puts is 0:2659 while the average volatility implied by calls is 0:2368:
For the 10469 pair of options for which Put-Call-Parity was applied, the
di¤erence in implied volatility was less signi…cant; the average implied
volatility was 0:2389 for calls and 0:2474 for puts. This is taken as ev-
idence that the arbitrage forces underlying Put-Call-Parity indeed is in
e¤ect.

20
40

60
80

0.8

1

1.2
0.2

0.4

0.6

Time to Expiration

Volatility Surface for Calls

Moneyness

Im
pl

ie
d 

V
ol

at
ili

ty

Figure 1.5.A: Implied volatility surface for calls
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Figure 1.5.B: Volatility surface for puts

Summary

When pricing an option one has to take into consideration whether the
underlying asset pays dividends during the life of the option. For an
option on an index such as the OMX index which is not adjusted for
dividends one thus has to estimate the dividend yield during the life of
the option.

However, when the dividend yield was computed using Spot-Futures
Parity the result was ambiguous. Although for some years the dividend
yield clearly peaked during the dividend period, this pattern was not
consistent throughout the sample. Furthermore, the dividend yield of-
ten assumed negative values. For these reasons the options a¤ected by
dividends were discarded.

The arbitrage relation known as Put-Call Parity was tested by com-
puting the relative di¤erence between the call and a portfolio constructed
by borrowing the present value of the exercise price, buying a put and the
underlying asset. It was shown that for about 90% of the observations
the relative di¤erence was less than 0:03%, suggesting that the possibility
of exploiting the relation for arbitrage pro…ts is remote.
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The volatility surface was analyzed with respect to time to expiration
and moneyness for calls and puts separately.

When the development of levels of the smiles over time for calls was
studied, it was found that the highest levels over the sample period was
found for calls with the shortest time to expiration.

Summarizing the information over time for calls, the average level of
smile given time to expiration was seen to be monotonically decreasing in
time to expiration, whereas the standard deviation of the average levels
remained constant.

The strength of smile given time to expiration for calls were relatively
stable over time, for all years and times to expiration.

The average strength of smiles for calls is decreasing in time to ex-
piration, with the average strength of smile for calls with 10 days to
expiration almost 3 times that of calls with 70 days to expiration. This
would indicate that the assumption of constant volatility is relatively
more appropriate for calls with long time to expiration, although this
conclusion is made somewhat more uncertain by the standard deviations
of the strength of smiles being higher for calls with short time to expira-
tion.

The analysis of the average levels given moneyness for calls revealed
that the average level was the highest for calls with extreme values of
moneyness. The average strength of smiles given moneyness was the
highest for extreme values of moneyness . This fact, in conjunction with
the observation that the strength of smiles given time to expiration was
the highest for calls with short time to expiration implies that we would
expect the Black and Scholes model to be particularly ‡awed when pric-
ing calls with high moneyness and short time to expiration.

Analyzing the volatility surface for puts we note both some similarities
and dissimilarities as compared to the case for calls. The results for given
time to expiration were as follows.

For puts, the highest levels throughout the sample period was found
for puts with the shortest time to expiration. Again, the pattern for calls
is duplicated in the distribution of the average level of the smiles given
time to expiration for puts, with the average levels for puts being higher
than for calls.
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When we consider the strength of smiles given time to expiration for
puts, the pattern is similar to that for calls, with relatively stable annual
means for each maturity.

The average strength of smile given time to expiration for puts is de-
creasing in time to expiration and higher than for calls, for all maturities.

The analysis of the smile structure for puts given moneyness gave the
following results. The average level of smiles for puts given moneyness
were the highest for extreme values of moneyness, mimicking the pattern
for calls, although the average levels were higher than for calls, for all
intervals of moneyness.

The average strength of smile given moneyness was the highest for
extreme values of moneyness. Interestingly, for out-of-the-money puts
the average strength was higher than for the corresponding calls, whereas
the opposite was true for in-the-money options.
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Chapter 2

Bayesian Learning and Asset
Pricing

Introduction

Drawing on the work by Timmermann and Guidolin [2003] this chap-
ter investigates the consequences of introducing learning in asset pricing
models. The starting point is a special case of the asset pricing model
due to Lucas [1978], the Full Information (FI) model. It is shown that
this model give identical option price predictions as the (discrete time)
Black and Scholes (BS) option pricing model, given that certain condi-
tions on the parameters are met. Whereas the BS model takes as given
an equilibrium where the price of the stock and the bond are determined,
the FI model is a representative agent, equilibrium model. Thus, the FI
model can be seen as an equilibrium rationalization of the BS model.

The basic construction for (the discrete version of) the model is a
binomial tree and the dividend pattern of the stock and the bond over
the nodes of the tree. The given prices for the stock and bond induce
state prices for contingent income and risk-neutral probabilities.

The speci…cation of the dividend pattern of the stock and the bond
implies that the risk-neutral probabilities are invariant over time. Other
assets may then be priced by arbitrage. Since markets are complete
one can, on the one hand, construct a portfolio which is varied over
time so as to mimic the dividend pattern of, for example a European

47
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call option. Since the valuation of such a portfolio is determined by the
assumed prices of the stock and the bond an assumption of non-existence
of arbitrage induces an implicit valuation of the option.

Another way to arrive at a price for the option is to make use of the
fact that complete markets and the non-existence of arbitrage induces
uniquely determined, positive state prices for contingent income at each
of the nodes in the tree. The price of the option is simply the current
value of the future uncertain income stream of the option.

Given the state prices it is possible to construct risk neutral prob-
abilities. The current price of the option is then the expected value of
the (time) discounted future dividends with respect to the probability
measure given by the risk-neutral probabilities.

Observed deviations from predictions by the Black and Scholes
model

It has been noted that the prices predicted by the BS pricing formula
deviate from observed prices in a systematic way. The BS model implies a
time invariant volatility. Thus one can use options with di¤erent exercise
dates or exercise prices to infer the implied volatility. For a given exercise
date it turns out that options with extreme exercise prices, "far out-of-
the-money" or "deep in-the-money" implies volatility in excess of that
implied by options "at-the-money". Drawing diagrams relating exercise
price to implied volatility one gets "smiles" or "smirks".

A related observation is that the risk-neutral probability distribution
predicted by the BS model appears to be less spread out than the risk-
neutral probability distribution, which can be inferred from option prices.

Introducing learning in asset pricing models

Here we will study the consequences of introducing learning in the model.
To do so it is useful to construct explicitly an equilibrium model, in
the vein of Lucas [1978]. Such an equilibrium model then induces the
stock and bond prices taken as given in the BS model. When learning is
introduced the agents are equipped with some initial probability belief,
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their ”priors”, and after observing the rise or fall in the stock price they
update these probabilities. Agents are rational and are assumed to take
into account that they will learn from future price movements.

We show that this type of learning actually can be described by an
urn model due to Polya. Although the model is a modest modi…cation of
the BS model, Timmermann and Guidolin [2003] reports that it agrees
much better with observed prices than the BS model. While we de-
rive the same option pricing formulas implied by the FI model and the
model with Bayesian learning (BL), although in a di¤erent manner, as do
Timmermann and Guidolin, the contribution here is twofold. First, we
derive a closed form approximation of the stock an call price in the case
of Bayesian learning using properties of the Polya distribution. Second,
a precise description of the relationship between the BS model and the
FI model is presented, thus giving an equlibrium rationalization of the
BS model.

The introduction of learning is interesting and the method is suitable
also for studying the price formation in other …nancial markets. In par-
ticular, it is relevant for the reinsurance market where the trade occurs
in contracts whose value crucially depend on the probabilities of some
underlying events. These probabilities are not invariant over time and
thus a model incorporating learning is useful.

The Polya distribution and its relation to Bayesian learning is intro-
duced in Section 2.1. In Section 2.2 the dividend process is described
and the consumer problem is stated and state prices are derived for both
the learning and the Full Information case. These state prices are then
used in Section 2.3 to derive the stock and bond prices for the learning
and Full Information case. Section 2.3 also presents approximations of
the stock and call prices in the case of learning as well as a description of
the relationship between the BS model and the FI model. To illustrate
the e¤ects of learning an example is presented in Section 2.4.
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2.1 Bayesian Learning and Probability

The concept of Bayesian learning and how it di¤ers from the Full Infor-
mation case can be illustrated with the aid of the Polya distribution. For
references on the Polya distribution see Johnson and Kotz [1977], Barton
and David [1962] and Fisz [1963].

Ultimately we wish to arrive at a description of how fundamentals
evolve in a binomial tree where at each point in time either an upstep U
or a downstep D can occur. In what follows we present the Polya urn
model and the beta-binomial model, which can be seen as a special case
of the Polya model. The framework provided by the beta-binomial model
facilitates the description of Bayesian learning as it allows speci…cation
of strength of learning and the probability beliefs of individuals.

Consider an urn initially containing n white balls and s black balls,
so that the total number of balls in the urn is N = n + s. One draws a
ball from the urn, notices its color and puts it back together with c balls
of the same color, where

c = f¡1; 0; 1; 2; ::::::g
Thereafter the procedure is repeated. Put

Xi =

8
><
>:

1, if you get a white ball at the i:th drawing

0, otherwise

The number of white balls in ¿ drawings is then

Y¿ =X1 +X2+ :::::::X¿

The probability of getting a white ball in the …rst drawing is

Pr (X1 = 1) =
n
N

The probability of getting a white ball in the second drawing is

Pr(X2 = 1) = Pr (X1 = 0)Pr (X2 = 1 j X1 = 0)+
Pr(X1 = 1)Pr (X2 = 1 j X1 = 1) =

=
s
N

n
(N + c) +

n
N
n + c

(N + c) =

=
(N + c)n
N (N + c) =

n
N
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indicating that the Xi : s are identically distributed.
To show that the Xi : s are dependent, we note that

Pr(X1 = 1; X2 = 1) = Pr (X1 = 1)Pr (X2 = 1 j X1 = 1) =

=
n
N
n + c
N + c

which di¤ers from

Pr (X1 = 1)P (X2 = 1) =
n2

N2

The probability of getting white balls in the …rst k drawings, when the
total number of drawings is ¿ is

Pr(X1 = 1 = X2 = : : : =Xk = 1; Xk+1 = Xk+2 = : : : =X¿ = 0) =

=
n
N
n + c
N + c

n + 2c
N +2c

: : : ¢

¢ n + (k ¡ 1) c
N + (k ¡ 1) c

s
N + kc

: : :
s+ (¿ ¡ k ¡ 1)c
N + (¿ ¡ 1) c

Using the factor
µ
¿
k

¶
to account for the number of sequences containing

k white balls we get the probability function for the Polya distribution

Pr(Y¿ = k) =
µ
¿
k

¶
n
N
n + c
N + c

n +2c
N + 2c

::::¢

¢ n+ (k ¡ 1) c
N + (k ¡ 1)c

s
N + kc

::::s+ (¿ ¡ k ¡ 1) c
N + (¿ ¡ 1) c

=

=
µ
¿
k

¶Qk
i=1 n + i¡ 1

Qn¡1
j=k s+ ¿ ¡ 1 ¡ jQn

q=1N + ¿ ¡ q
2.1.A

where N = n + s: Notice that, for c > 0, as the total number of balls
in the urn increases the e¤ect of adding new balls diminishes; we say
that the strength of learning decreases. Put di¤erently, the strength of
learning is a¤ected both by the initial urn size N , and the number of balls
we add each drawing, c. Thus, for given c; a large initial urn N implies
weak learning e¤ects. Y¿ is Polya distributed with parameters n, s, ¿ and
c. The Polya distribution encompasses some well known distributions,
for example
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² c = 0 : Y¿ 2 bin
³
¿ ;
n
N

´

² c = ¡1 : Y¿ 2 hyp
³
N; ¿; n

N

´

The expectation and variance of the Polya distribution is given by

² E (Y¿) = ¿
n
N

² V ar (Y¿) = ¿
n
N
s
N
N + ¿c
N + c

We now turn to the beta-binomial representation of the Polya distrib-
ution; it is de…ned for c > 0 and yields the same probabilities as Equation
2.1.A. In addition to providing a closed form expression for the prob-
ability distribution, it has the advantage of illuminating the Bayesian
approach employed by the representative agent (to be introduced when
we present the economic model in Section 2:2). To see the relation to
the urn model, suppose that the agent does not know for sure the com-
position of the initial urn. His uncertainty is re‡ected by a probability
distribution, a prior distribution P (¼), over probabilities ¼ of attaining
a white ball in the …rst drawing. After observing the outcome of the …rst
drawing he then updates his probability beliefs by using Bayes rule and
obtains his posterior distribution as

P (¼ j X1) =
P (X1 j ¼)P (¼)R
P (X1 j ¼)P (¼) d¼

Here we assume that the prior employd is the beta distribution with
parameters ® = n=c and ¯ = (N ¡ n) =c re‡ecting the composition of the
initial urn and the strength of learning. Since the drawings are Bernoulli
trials, the beta distribution is a conjugate prior, which means that the
posterior distribution is also a beta distribution . Speci…cally, with a
prior given by Beta(®; ¯) ; after observing k white balls in ¿ drawings,
the posterior distribution is Beta(® + k; ¯ + ¿ ¡ k) (See DeGroot[1986]).
At each point in time, the representative agent uses the mean of the
current distribution to estimate the probability of getting a white ball
in the next drawing. Thus, initially his probability estimate is given



2.1 Bayesian Learning and Probability 53

by E (¼) = ®= (® + ¯) = n=N and his uncertainty is re‡ected by the
variance of the prior beta distribution

V ar (¼) =
®¯

(® + ¯)2 (® + ¯ +1)

which is decreasing in the urnsize N and increasing in the strength of
learning c. Thus, given c; a large initial urn implies extensive prior infor-
mation so that the probability estimate of the representative agent will be
very precise. After observing k white balls in ¿ drawings his new estimate
pk;¿ is given by the mean of a Beta(® + k; ¯ + ¿ ¡ k) distribution

pk;¿ =
® + k
®+ ¯ + ¿

Casella and Berger [2002] points out that pk;¿ can be written as a linear
combination of initial estimate ®= (® + ¯) = n=N and the sample mean,
k=¿ , that would serve as an estimate if one ignored the prior information.
Thus,

pk;¿ =
µ

¿
® + ¯ + ¿

¶
k
¿
+

µ
® + ¯
® + ¯ + ¿

¶
®
®+ ¯

Recalling that ® = n=c and ¯ = (N ¡ n) =c and letting ± = c=N we can
write this as

pk;¿ =
µ
¿±

1 + ¿ ±

¶
k
¿
+

µ
1

1 + ¿±

¶
n
N

Notice that ± now measures the strength of learning, and as ± ! 0,
pk;¿ ! n=N , the estimate used if no learning e¤ects were present.

To see how the Polya distribution can be expressed using the beta-
binomial representation, we start by assuming that the Xi : s are inde-
pendent Bernoulli trials with probability of drawing a white ball equal to
p, so that the probability of any ordered sequence is pk(1¡p)n¡k. Letting
p be a realization of a stochastic variable ¼ 2 [0; 1], we can write

Pr(Y¿ = k j ¼ = p) =
µ
¿
k

¶
pk(1¡ p)¿¡k
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Letting f¼(p) denote the probability density function for ¼ we get, using
the law of total probability,

Pr(Y¿ = k) =
Z 1

0

µ
¿
k

¶
pk(1¡ p)¿¡kf¼(p)dp 2.1.B

Assuming that f¼(p) is the beta distribution with parameters ® and ¯
(® > 0 and ¯ > 0), ¼ 2 Beta(®; ¯) that is

f¼(p j ®; ¯) =

8
>>><
>>>:

¡(® + ¯)
¡ (®) ¡ (¯)

p®¡1(1 ¡ p)¯¡1 for 0 < p < 1

0 otherwise

expression (2.1.B) becomes

Pr(Y¿ = k) =
R 1
0

µ
¿
k

¶
pk(1 ¡ p)¿¡k ¡ (®+ ¯)

¡ (®)¡ (¯)
p®¡1(1 ¡ p)¯¡1dp =

=
µ
¿
k

¶
¡(® + ¯)
¡ (®) ¡ (¯)

R 1
0 p
®+k¡1(1¡ p)¯+¿¡k¡1dp

2.1.C
Using that

Z 1

0
p®+k¡1(1¡ p)¯+¿¡k¡1dp = ¡(® + k) ¡ (¯ + ¿ ¡ k)

¡ (® + ¯ + ¿ )

and
B(®; ¯) =

¡(®) ¡ (¯)
¡ (® + ¯)

(2.1.C) simpli…es to

Pr(Y¿ = k) =
µ
¿
k

¶
¡(® + ¯)
¡ (®)¡ (¯)

¡ (® + k) ¡ (¯ + ¿ ¡ k)
¡ (® + ¯ + ¿ )

=

=
µ
¿
k

¶
B(®+ k; ¯ + ¿ ¡ k)

B(®; ¯)
2.1.D

where ® = n=c and ¯ = s=c. The ratio of beta functions in Equation
2.1.D re‡ects the assumption that the initial beliefs on the probability of
getting a white ball in the …rst drawing is beta distributed with parame-
ters ® and ¯:
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To see that expression 2.1.D is equivalent to expression 2.1.A, divide
the numerator and denominator in 2.1.A by c to get

Pr(Y¿ = k) =
µ
¿
k

¶
Ãn
c

!

0
@N
c

1
A

Ãn
c
+1

!

0
@N
c

+1

1
A

¢ : : : ¢

Ãn
c
+(k¡1)

!

0
@N
c

+(k¡1)

1
A

Ãs
c

!

0
@N
c

+k

1
A

¢ : : :

: : : ¢

Ã s
c
+(¿¡k¡1)

!

0
@
N
c

+(¿¡1)
1
A

Letting ® = n=c and ¯ = s=c we get

Pr(Y¿ = k) =
µ
¿
k

¶
®

(®+ ¯)
(®+ 1)

[(® + ¯) + 1]
¢ : : : ¢ [® + (k ¡ 1)]

[(®+ ¯) + (k ¡ 1)]
¢

¢ ¯
[(®+ ¯) + k]

: : :
[¯ + (¿ ¡ k ¡ 1)]
[(® + ¯) + (¿ ¡ 1)]

2.1.E
Using that

¡ (®+ k)
¡ (®)

= ® (® +1) : : : (®+ k ¡ 1)

(2.1.E) transforms into

Pr(Y¿ = k) =
µ
¿
k

¶ ¡ (®+ k)
¡ (®)

¡ (¯ + ¿ ¡ k)
¡ (¯)

¡ (® + ¯ + ¿ )
¡ (®+ ¯)

=

=
µ
¿
k

¶
¡ (®+ k) ¡ (¯ + ¿ ¡ k)¡ (®+ ¯)

¡ (®) ¡ (¯) ¡ (® + ¯ + ¿ )

which equals expression (2.1.D), showing that the Polya distribution can
be expressed with the beta distribution, where the parameters re‡ect the
initial distribution.

The Polya distribution can be used to model how the probabilities
evolve in a binomial tree by interpreting ”the probability of getting k
white balls in ¿ drawings” as ”the probability of getting k upsteps in ¿
steps”.

As an example, consider an individual whose beliefs on the up and
down movements of, say, the price of a stock, are characterized by Bayesian
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learning. Let his initial beliefs be given by n and N , so that initially he
believes that the probability that the stock price goes up in the next pe-
riod is ¼ = n=N . After having experienced the outcome he will revise his
probability beliefs in accordance with the parameter c which, given N;
is taken to measure the strength of learning. Thus, if an upstep occurs,
Bayesian updating of his prior implies that he now believes the proba-
bility of an upstep to be ¼U = (n + c) = (N + c). Similarly, if the …rst
step is a downstep he will take the probability of an upstep in the second
period to be ¼D = n= (N + c). Alternatively, these probabilities can be
obtained using the beta-binomial representation by noting that ¼U is the
expectation of a Beta

¡
n
c + 1; N¡nc

¢
distributed random variable and ¼D

is the expectation of a Beta
¡n
c ;
N¡n
c + 1

¢
distributed random variable.

Figure 2.1.A depicts the conditional probabilities at each node for a two-
period tree when n = 6; N = 10 and c = 1. Note that the strength of
learning in this setting also depends on the size of the urn initially, N ,
and that the e¤ect of the updating will diminish as more balls are added.

π=6/10

π  =7/11U

π  =6/11D

π    =8/12UU

π    =7/12UD

π    =7/12DU

π    =6/12DD

Figure 2.1.A: Conditional probabilities of upstep when N = 10;
n = 6 and c = 1

It is clear that when we have Bayesian learning, so that the true
probability distribution has c > 0 and constant probabilities are assumed,
as in the BS model, inaccurately setting c = 0 will underestimate the
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variance, something that empirical studies of biases of the BS-formula
have shown to be the case. In terms of the Polya urn, if we replace the
ball drawn and add one ball of the same color, i.e. if we indeed have
a Polya distribution with the parameter c = 1, and then calculate the
probability of getting k white balls/up-steps in ¿ drawings by using the
binomial distribution, we will underestimate the probabilities of getting
extreme values; this is the consequence of ignoring the Bayesian learning
e¤ects.

Figure 2.1.B shows two (continuous representations of) Polya dis-
tributions with c = 0 and c = 1, respectively. The graphs show the
probabilities of getting white balls in 100 drawings when the urn initially
contains 30 white balls and 20 black balls. Although the expected num-
ber of white balls is 60 for both distributions, the learning distribution
with c = 1 displays much fatter tails.
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Figure 2.1.B: Polya distributions with ¿ = 100; n = 30 , s= 20
and c is zero and one, respectively

Bayesian Learning and Recombinant Trees

A recombinant tree is a process such that the probabilities are path inde-
pendent, so that the probability of getting a white ball/upstep followed
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by a blackball/downstep equals the probability of the reversed sequence.
To illustrate that Bayesian learning induces a recombinant tree, we

note that for the …rst two drawings

Pr(X1 = 1; X2 = 0) = Pr(X1 = 1) Pr(X2 = 0 j X1 = 1) =

= n
N

s
N + c

and

Pr(X1 = 0; X2 = 1) = Pr(X1 = 0) Pr (X2 = 1 j X1 = 0) =

=
s
N

n
N + c

so that

Pr(X1 = 1; X2 = 0) = Pr(X1 = 0; X2 = 1)

For a formal proof start by considering an urn which initially contains n
white balls and s black balls. A sequence of ¿ ¡ 2 drawings in which a
white ball has been drawn l times will thus contain n + lc white balls
and a total number of balls equal to N + (¿ ¡ 2)c; denote the probability
of this composition after ¿ ¡ 2 drawings by Pr(A). Now there are two
ways for the urn to contain n+ lc+ c white balls after ¿ drawings, given
the composition after ¿ ¡ 2 drawings; getting a white ball in drawing
¿ ¡ 1 and a black ball in drawing ¿, or the other way around. The …rst
probability we can write as

Pr(A)Pr(X¿¡1 = 1; X¿ = 0 j A) =

= Pr(A)
(n + lc)

N + (¿ ¡ 2)c
[N + (¿ ¡ 1)c] ¡ (n + lc + c)

N + (¿ ¡ 1)c
=

= Pr(A)
(n + lc)[N + (¿ ¡ 2)c] ¡ (n + lc)2

[N + (¿ ¡ 2)c][N + (¿ ¡ 1)c]

2.1.F

Similarly, the probability of getting a black ball in drawing ¿ ¡ 1 and
white ball in drawing ¿ , is

Pr(A) Pr(X¿¡1 = 0; X¿ = 1 j A) =

= Pr(A)
[N + (¿ ¡ 2)c] ¡ (n + lc)

[N + (¿ ¡ 2)c]
(n+ lc)

[N + (¿ ¡ 1)c]

2.1.G
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The proof is completed by noting that the rightmost members of (2.1.F)
and (2.1.G) are equal.

2.2 The Lucas Model

The point of departure is the in…nite horizon model studied by Lucas
[1978]. Thus, we consider a representative agent economy where output
each period is exogenous and perishable. In equilibrium consumption
must then equal output and asset prices can be found by solving the
consumers problem.

The Dividend Process

There are two assets in the economy, a single-period, risk-free discount
bond in zero net supply trading at a price of B and earning interest of
r = (1=B)¡ 1, making the interest rate f = ln(1=B); and a stock traded
at ex-dividend price St in net supply of one. Following Lucas [1978] the
stock is a claim at an in…nite stream of perishable, real dividends. The
…rst dividend, coming at date t, will be denoted by dt, while a subsequent
dividend at node ¾ in the binomial lattice will be denoted d¾. To identify
the nodes, we will use § to denote the set of nodes, while §t+¿ refers to
the set of nodes at date t + ¿ , so that

§ = §t [ §t+1 [ : : : [ §t+¿ [ : : :

The set of nodes at date t+ ¿ itself can be partitioned, so that

§t+¿ = §0
t+¿ [ §1

t+¿ [ : : : [ §kt+¿ [ : : : [ §¿t+¿

where §kt+¿ is the set of nodes at date t + ¿ with k upsteps, 0 · k · ¿ .
At each point in time the growth rate will be either U ¡ 1 if an

upstep occurs or D ¡ 1 if a downstep occurs, so that d¾ = dtUkD¿¡k for
¾ 2 §kt+¿ .

When identifying nodes in time, we will use T = f0; 1; 2; : : :g to denote
the set of dates and T1 = f1; 2; : : :g to denote the set of future dates so
that ¾ 2 [¿2T1§t+¿ will refer to some node other than the initial node.
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The Consumer Problem

Given the dividend process, the asset prices are determined in equilibrium
by the representative agent’s …rst order conditions. The representative
agent maximizes expected utility of an in…nite stream of dividends. Be-
cause of the equilibrium setting, there exists a unique and positive vector
of state prices, normalized so that ¯t = 1, with which we can state the
maximization problem

Maxc
X1

¿=0

P
¾2§t+¿ ¸

¿u(c¾)P¾

s.t
X1

¿=0

P
¾2§t+¿ ¯¾c¾ ·

X1

¿=0

P
¾2§t+¿ ¯¾d¾

where

c¾ is consumption at node ¾
¸ is the subjective discount factor
P¾ is the probability of reaching node ¾
¯¾ is the state price of node ¾
d¾ is the dividend at node ¾

A note on terminology is appropriate : some authors reserve the term
state price for the one period model and use the term event prices for
multi period models. Here the state price ¯¾ is used to denote the date
t value of receiving 1 crown at any node ¾ 2 §.

Assuming that the consumer problem has a solution, and using the
market balance condition c¾ = d¾, we get the …rst order conditions

8
<
:

u0(dt)¡ ° = 0 for ¾ 2 §t

¸¿u0(d¾)P¾ ¡ °¯¾ = 0 for ¾ 2 [¿2T1§t+¿
2.2.A

State Prices

Using relation (2.2.A) we get ° = u0(dt) and can solve for the state prices

¯¾ =
u0(d¾)
u0(dt)

¸¿P¾ for ¾ 2 [¿2T1§t+¿



2.2 The Lucas Model 61

State prices; CRRA utility function

Assume that the representative agent’s utility function exhibits constant
relative risk aversion and has preferences given by

u (x) =

8
>><
>>:

x1¡®

1¡ ® if ® ¸ 0; ® 6= 1

lnx if ® = 1

Then
Du (x) = x¡®

so that
¯¾ =

d¡®¾
d¡®t
¸¿P¾ =

£
UkD¿¡k

¤¡®¸¿P¾

Probabilities in case of Full Information

In the Full Information case the probabilities are constant, and with
¼ being the probability of an upstep and (1 ¡ ¼) the probability of a
downstep we get, for ¾ 2 §kt+¿

P¾ = ¼k(1¡ ¼)¿¡k

Summing over all nodes at date t+ ¿ with k upsteps we get
X

¾2§kt+¿

P¾ =
µ
¿
k

¶
¼k(1¡ ¼)¿¡k

which is the probability of getting k upsteps until date t+ ¿ , i.e.

Pr
©
d¾ = dtUkD¿¡k

ª

Probabilities in case of learning

In the learning case, the probability is a function of the number of up-
steps, n, and the total number of steps N up to date t, constituting the
prior belief of the representative agent, as well as the strength of learning
c

P¾ =
B(n=c+ k; (N ¡ n)=c+ ¿ ¡ k)

B(n=c; (N ¡ n)=c) for ¾ 2 §kt+¿
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so that the probability of getting d¾ = dtU kD¿¡k is
X

¾2§kt+¿

P¾ =
µ
¿
k

¶
B(n=c+ k; (N ¡ n)=c+ ¿ ¡ k)

B(n=c; (N ¡ n)=c) for ¾ 2 §kt+¿

State prices for a constant risk aversion utility function with
Full Information

In this case
P¾ = ¼k(1¡ ¼)¿¡k for ¾ 2 §kt+¿

It follows that the state price is

¯¾ =
d¡®¾
d¡®t
¸¿¼k(1¡ ¼)¿¡k for ¾ 2 §kt+¿ 2.2.B

State prices for a constant risk aversion utility function with
learning

In this case

P¾ =
B(n=c + k; (N ¡ n) =c+ ¿ ¡ k)

B(n=c; (N ¡ n) =c) for ¾ 2 §kt+¿

It follows that

¯¾ =
d¡®¾
d¡®t
¸¿
B(n=c+ k; (N ¡ n)=c+ ¿ ¡ k)

B(n=c; (N ¡ n)=c) for ¾ 2 §kt+¿ 2.2.C

2.3 Stock, Bond and Call Price

Assuming that the price of the stock is the discounted value of the divi-
dends, then the ex-dividend, date t price of the stock is

St =
X1

¿=1

P
¾2§t+¿ ¯¾d¾

Since the bond is single-period, the date t bond price is

Bt =
P
¾2§t+1 ¯¾

The payo¤ to a European call option at the expiration date t + T at
some node ¾ 2 §kt+T is the di¤erence between the stock price S¾ and the
exercise price K;whenever this di¤erence is positive

(S¾ ¡K)+ = max (S¾ ¡K; 0)
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The current price of a European call option, Ct; is given by discounting
this amount with the state prices ¯¾ and summing over all nodes ¾ such
that (S¾ ¡K) > 0. Hence, the date t price of a call option with T periods
to expiration and exercise price K is

Ct =
P
¾2§t+T ¯¾ (S¾ ¡K)+

The Full Information Case

Given that a transversality condition holds, so that the discounted value
of the stock converges to zero, and that ¸ < 1= [D1¡® + ¼ (U 1¡® ¡D1¡®)],
ensuring that the in…nite sum of the discounted dividends converges and
that the stock price is positive, a closed form expression for the stock
price can be found.

Proposition 2.3.A In the case of Full Information the stock price, bond
price, interest rate and call price are given by

SFIt = dt
¸ [¼U1¡® + (1¡ ¼)D1¡®]

1¡ ¸ [¼U 1¡® + (1 ¡ ¼)D1¡®]

BFIt = ¸ [¼U¡®+ (1¡ ¼)D¡®]

fFIt = ln
1

¸ [¼U¡®+ (1 ¡¼)D¡®]

CFIt = ¸T
TP
k=0

µ
T
k

¶£
UkDT¡k

¤¡® ¼k (1¡ ¼)T¡k
¡
U kDT¡kSFIt ¡K

¢+

Proof. Stock Price. Assume that the discounted price of the stock
converges to 0. Then the stock price at date t, SFIt ; equals the value of
the future discounted dividends,

SFIt =
X
¿2T1

P
¾2§t+¿ ¯¾d¾ =

X
¿2T1

P
¾2§t+¿

·
u0(d¾)
u0(dt)

¸¿P¾
¸
d¾ =

=
1
d¡®t

X
¿2T1

P
¾2§t+¿ d

¡®
¾ ¸

¿P¾d¾

Since, for ¾ 2 §kt+¿
d¾ = dtUkD¿¡k



64 2. BAYESIAN LEARNING AND ASSET PRICING

and
P¾ = ¼k(1 ¡ ¼)¿¡k

we get

SFIt =
1
d¡®t

X1

¿=1
¸¿

½P¿
k=0

µ
¿
k

¶£
dtUkD¿¡k

¤1¡® ¼k(1 ¡¼)¿¡k
¾

=

=
1
d¡®t
d1¡®t

X1

¿=1
¸¿

½P¿
k=0

µ
¿
k

¶
[U 1¡®¼]k [D1¡®(1 ¡ ¼)]¿¡k

¾

Put a = U 1¡®¼ and b = D1¡®(1 ¡ ¼): Then

SFIt = dt
X1

¿=1
¸¿

½P¿
k=0

µ
¿
k

¶
akb¿¡k

¾
=

= dt
X1

¿=1
¸¿

(
P¿
k=0

µ
¿
k

¶·
(a + b) a
(a+ b)

¸k ·
(a+ b)b
(a + b)

¸¿¡k)
=

= dt
X1

¿=1
¸¿

(
(a+ b)¿

P¿
k=0

µ
¿
k

¶ ·
a
a + b

¸k · b
a + b

¸¿¡k)
=

= dt
X1

¿=1
¸¿ (a + b)¿

since
¿X

k=0

µ
¿
k

¶·
a
a + b

¸k ·
b
a + b

¸¿¡k
= 1

for ¿ 2 T1:
Finally, insert the expressions for a and b to get

SFIt = dt
X1

¿=1
¸¿ (a + b)¿

= dt
¸ (a + b)

1¡ ¸ (a + b)

= dt
¸ [¼U1¡®+ (1¡ ¼)D1¡®]

1¡ ¸ [¼U1¡® + (1¡ ¼)D1¡®]

where in the second step we have used the condition

¸
£
¼U1¡®+ (1¡ ¼)D1¡®¤ < 1
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, to ensure that the sum converges.

The Bond Price. Recall that the state prices at date t+ 1 are given
by

¸¼U¡® for ¾ 2 §1
t+1

and
¸(1 ¡ ¼)D¡® for ¾ 2 §0

t+1

Hence
BFIt = ¸¼U¡® + ¸(1¡ ¼)D¡® =

¸ [¼U¡® + (1¡ ¼)D¡®] =
¸ [D¡® + ¼ (U¡® ¡D¡®)]

Interest rate. With interest de…ned as r = (1=BFIt ) ¡ 1 , the interest
rate fFIt becomes

fFIt = ln (1 + r) = ln
1
BFIt

=

= ln
1

¸ [D¡® + ¼ (U¡® ¡D¡®)]
The Call Price. Since the stock price is homogenous in dividends the

stock price at a node ¾ 2 §kt+T is

SFI¾ = SFIt U kDT¡k

Discounting the positive payo¤s
¡
SFI¾ ¡K

¢+ at exercise date t + T by
the state prices yields the date t call price

CFIt =
P
¾2§t+T ¯¾

¡
SFI¾ ¡K

¢+

= ¸T
TP
k=0

µ
T
k

¶ £
U kDT¡k

¤¡® ¼k (1¡ ¼)T¡k
¡
UkDT¡kSFIt ¡K

¢+

¤
Due to the Lucas setting and the constant relative risk aversion by

the representative agent, the FI stock price at date t will be linearly
homogenous in dt:

Since the probability is constant over time, so is the FI bond price.
This means that the present value of a crown received at a future date is
independent of the sequence of high and low growth of the dividends.
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The Learning Case

In the learning case, the probability of an upstep at date t is given by
the prior ¼t = n=N . If an upstep were to occur the next period, the
representative agent with strength of learning c will revise his beliefs
and estimate the probability to ¼t+1 = (n + c)= (N + c). The distin-
guishing feature of the learning model is that the representative agent’s
perception of probability distributions over future dividends is based on
Bayesian updating and the realizations at the current date t that this
updating is done recursively over time. Hence, the agent not only re-
vises his probability beliefs over time, but also accounts for these future
revisions at date t. As shown in Section 2.1, when the representative
agent views the probability as a beta distributed random variable with
parameters n=c and (N ¡ n) =c then he beliefs that probability of getting
k occurrences of high growth in ¿ periods is

P¾ =
µ
¿
k

¶
B(n=c+ k; (N ¡ n)=c + ¿ ¡ k)

B(n=c; (N ¡n)=c) for ¾ 2 §kt+¿

Proposition 2.3.B presents the implications for asset prices of taking
learning into account. In Proposition 2.3.B, let G¿ =

£
U kD¿¡k

¤1¡® It
follows that the expectation of G¿ at date t is

Et [G¿ j n;N ] =
¿X

k=0

¡
U1¡®¢k ¡D1¡®¢¿¡k

µ
¿
k

¶
B(n=c+ k; (N ¡ n)=c+ ¿ ¡ k)

B(n=c; (N ¡ n)=c)

It is convenient to de…ne the in…nite sum of discounted expectations of
G¿ : Thus

Ãt (n;N ) =
1
§
¿=1
¸¿Et [G¿ j n;N ]

Note that the su¢cient condition used in Proposition 2.3.B ensure con-
vergence of the stock price independent of the initial composition of the
urn. Thus we can safely assume that the prior is given by n=N .
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Proposition 2.3.B Assume that ¸max
³
U1¡® ; D1¡®

´
< 1. Then

SBLt = dtÃt (n;N)

BBLt = ¸ [D¡®+ ¼t[U¡® ¡D¡®]]

fBLt = ¡ lnBBLt = ln
1

¸ [D¡®+ ¼t[U¡® ¡D¡®]]

CBLt = ¸T
XT

i=0

µ
T
i

¶
(U¡®)i (D¡®)T¡i

B(n=c+ i; (N ¡ n)=c+ T ¡ i)
B(n=c; (N ¡ n) =c) £

µ
U iDT¡iSBLt

Ãt+T (n + ic;N + Tc)
Ãt (n;N)

¡K
¶+

Proof. Stock Price. Assume that the discounted price of the stock
converges to 0. Then the stock price at date t, SBLt ; equals the value of
the future discounted dividends

SBLt =
X
¿2T1

P
¾2§t+¿ ¯¾d¾ =

X
¿2T1

P
¾2§t+¿

·
u0(d¾)
u0(dt)

¸¿P¾
¸
d¾ =

=
1
d¡®t

X
¿2T1

P
¾2§t+¿ d

¡®
¾ ¸

¿P¾d¾

Since, for ¾ 2 §kt+¿ , ¿ 2 T1 we have d¾ = dtUkD¿¡k and it follows that

SBLt =
1
d¡®t

X1

¿=1
¸¿

½P¿
k=0

£
dtUkD¿¡k

¤1¡®
µ
¿
k

¶
P¾

¾
=

= dt
X1

¿=1
¸¿

½P¿
k=0 [U1¡®]k [D1¡®]

¿¡k
µ
¿
k

¶
P¾

¾

= dt
X1

¿=1
¸¿E [G¿ j n;N ]

= dtÃt (n;N)

It remains to show that the condition ¸max
³
U1¡® ; D1¡®

´
< 1 guaran-

tees that SBLt is …nite. Hence
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SBLt = dt
X1

¿=1
¸¿

½P¿
k=0 [U1¡®]k [D1¡®]

¿¡k
µ
¿
k

¶
P¾

¾

· dt
X1

¿=1
¸¿

½P¿
k=0

h
max

³
U 1¡® ; D1¡®

´i¿ µ¿
k

¶
P¾

¾

· dt
X1

¿=1

h
¸max

³
U1¡®; D1¡®

´i¿ ½P¿
k=0

µ
¿
k

¶
P¾

¾

· dt
¸max

³
U 1¡® ; D1¡®

´

1 ¡ ¸max (U1¡® ; D1¡®)

Bond price. Recalling that for ¾ 2 §t+1, the state prices will be

¯¾ = ¸¼tU¡® for ¾ 2 §1
t+1

and

¯¾ = ¸(1¡ ¼t)D¡® for ¾ 2 §0
t+1

Hence
BBLt = ¸[U¡®¼t +D¡®(1 ¡ ¼t)] =

= ¸fD¡®+ ¼t[U¡® ¡D¡®]g

Interest rate. With interest de…ned as r = (1=BBLt ) ¡ 1 , the interest
rate fBLt becomes

fBLt = ln (1 + r) = ln 1
BBLt

= ln 1
¸ [D¡® + ¼t[U¡®¡D¡®]]

Call price. The date t price of a call option with T periods to expiration
and exercise price K is given by discounting the positive payo¤s at date
t+ T by the state prices and sum over all nodes

CBLt =
P
¾2§t+T ¯¾

¡
SBL¾ ¡K

¢+

where the state prices ¯¾ used to compute the date t value of the payo¤s
T periods ahead assume the values

¸T (U¡®)i (D¡®)T¡i
B(n=c + i; (N ¡ n) =c+ T ¡ i)

B(n=c; (N ¡ n)=c) ; 0 · i · T



2.3 Stock, Bond and Call Price 69

At expiration date the composition of the urn at a node ¾ 2 §it+T reached
after i upsteps is (n + ic;N + T c). Hence the stock prices SBL¾ distrib-
uted over the nodes at expiration date t+ T assume the values

dtU iDT¡i
1X

¿=1

¸¿Et+T [G¿ j n + ic;N + Tc]

= dtU iDT¡iÃt+T (n + ic;N + Tc) ; 0 · i · T

Using that dt = SBLt =Ãt (n;N), the stock prices at expiration date can
be rewritten as

U iDT¡iSBLt

1P
¿=1
¸¿Et+T [G¿ j n + ic;N + Tc]

1P
¿=1
¸¿Et [G¿ j n;N ]

= U iDT¡iSBLt
Ãt+T (n + ic;N + Tc)

Ãt (n;N)
; 0 · i · T

Discounting the payo¤s at exercise date with the stateprices we thus get
the date t call price CBLt as

¸T
TX

i=0

µ
T
i

¶ ¡
U¡®

¢i ¡D¡®
¢T¡i B(n=c+ i; (N ¡ n) =c+ T ¡ i)

B(n=c; (N ¡n) =c)

£
µ
U iDT¡iSBLt

Ãt+T (n + ic;N + Tc)
Ãt (n;N)

¡K
¶+

¤

If ® > 1 then the model implies adverse pricing (Cf Abel [1988] ), that
is the stock price increases when the probability of a downstep increases.
To avoid this intuitively unappealing case we restrict ourselves to study
the case when ® < 1, in which case U1¡® > D1¡®: Thus the convergence
condition in Proposition 2.3.B becomes ¸U1¡® < 1:

A key feature of the stock price with learning is that the stock-
dividend ratio is no longer constant as was the case with FI model. In
the learning case, in addition to the direct e¤ect of dividends, there is
an indirect e¤ect of dividends on the stock price since it changes the
probability beliefs re‡ected in the Ã function.
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The BL bond price varies and depends at each date on the probability
beliefs of the representative agent; since these are decided by the number
of times high and low growth has occurred this means that the bond
price varies not only over time but also, for each date t+ ¿, across the
nodes ¾ 2 §t+¿:

The pricing of bonds with learning a¤ects the discounting of future
sure income in the following way. The present value of a crown received
at future date depends not only on the number of occurrences of high
and low growth, but also on the sequence that these occur. This path
dependence has consequences for the computation of the risk neutral
probabilities, as will be seen in Section 2.4.

Compared to the Full Information case, learning a¤ects the call price
in two ways. First, learning causes the highest stock price at exercise day
to exceed the highest stock price in the FI case, while the lowest stock
price with learning is lower than the lowest stock price in the FI case,
that is, learning causes the support to widen. Second, the fatter tails of
the learning distribution carries over to the state prices used to discount
the payo¤s at exercise day, so that the BL state prices discounting the
high payo¤s will exceed the corresponding FI state prices.

Approximation of BL Stock Price

With a prior given by (n;N), computing the stock price with Bayesian
learning involves computing the expected value

Et [G¿ j n;N ] =
¿X

k=0

¡
U1¡®¢k ¡D1¡®¢¿¡k

µ
¿
k

¶
B(n=c+ k; (N ¡ n)=c+ ¿ ¡ k)

B(n=c; (N ¡ n)=c)

for all integers ¿ 2 [1; I ], where I is a number large enough to guarantee
convergence of the stock price. With daily data this is a demanding task
given the computer power currently available. To address this issue we
thus seek an approximation of Et [G¿ j n;N ] : The approximation results
in a closed form expression for the stock price with Bayesian learning
which not only is conveniant from a computational standpoint, but also
facilitates analytic tractability. We start by lettingD = 1=U and consider
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a second degree Taylor expansion of

G¤¿ (k) =
£
U1¡®¤2k¡¿

at some point y. Treating the number of upsteps k as a continuous
variable and letting ° = 2 logU 1¡®; the …rst and second derivatives are

DG¤¿ (k) = °G¤¿ (k)

D2G¤¿ (k) = °2G¤¿ (k)

and we arrive at the Taylor expansion at y by performing the computation

G¤¿ (k) = G¤¿ (y + (k ¡ y))

¼ G¤¿ (y) +DG¤¿ (y) (k ¡ y) + 1
2
D2G¤¿ (y) (k ¡ y)2

= G¤¿ (y) + °G¤¿ (y) (k ¡ y) + 1
2
°2G¤¿ (y) (k ¡ y)2

= G¤¿ (y)
·
1 + ° (k ¡ y) + 1

2
°2 (k ¡ y)2

¸

= ~G¤¿ (k)

Taking the expectation of the Taylor approximation ~G¤¿ (k) with respect
to some, so far unspeci…ed, measure yields

Et
h
~G¤¿ (k)

i
= Et

·
~G¤¿ (y)

µ
1 + ° (k ¡ y) + 1

2
°2 (k ¡ y)2

¶¸

= ~G¤¿ (y)
µ
Et [1] + °Et [k ¡ y] + 1

2
°2Et

£
(k ¡ y)2

¤¶

= ~G¤¿ (y)
µ
1 + °Et [k ¡ y] + 1

2
°2Et

£
(k ¡ y)2

¤¶

2.3.A
Since

Et
£
(k ¡ y)2

¤
= Et [k2 ¡ 2ky + y2]

= Et [k2]¡ 2yEt [k] + y2

= V (k) + (Et [k])2 ¡ 2yEt [k] + y2
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we get that Et
h
~G¤¿ (k)

i
equals

~G¤¿ (y)
µ
1 + °Et [k ¡ y] + 1

2°
2 £
V (k) + (Et [k])2 ¡ 2yEp̂ [k] + y2

¤¶

Now, let probability measure be the measure with Bayesian learning and
recall from Section 2.1 that the expectation and variance of a Polya
distributed variable k with parameters n, N , ¿ and c are

Et (k) = ¿
n
N

Vt (k) = ¿
n
N

³
1¡ n
N

´N + ¿c
N + c

Then, if we let y = Et (k) = ¿
n
N , 2.3.A reduces to

Et
h
~G¤¿ (k)

i
= ~G¤¿ (y)

µ
1 +

1
2
°2Vp̂ (k)

¶

= ~G¤¿ (y)
µ
1 + 1

2
°2¿ n
N

³
1 ¡ n
N

´ N + ¿ c
N + c

¶

Finally, using that ~G¤¿ (y) = [U1¡®]¿(
2n
N ¡1) and ° = 2 logU1¡® , we get

that Et
h
~G¤¿ (k)

i
equals

¿
£
U1¡®¤¿(2nN ¡1)

·
1
¿
+ 2 [(1¡ ®)U ]2 n

N

³
1¡ n
N

´ N + ¿ c
N + c

¸

Thus, replacing Et [G¿ ] in Proposition 2.3.BwithEt
h
~G¤¿ (k)

i
we can write

the approximated stock price with Bayesian learning as

~SBLt = dt
nX1

¿=1
¸¿Et

h
~G¤¿ (k)

io
= dt

½X1

¿=1
¸¿¿

£
U1¡®¤¿( 2nN ¡1)

£
·
1
¿
+2 [(1 ¡ ®) logU ]2 n

N

³
1 ¡ n
N

´ N + ¿ c
N + c

¸¾
(2.3.B)

We now proceed to show that this can be rewritten as a closed form
expression. Thus, with a view to eliminate the summation sign in relation
2.3.B we …rst note that

1P
t=1
txt =

x
(1 ¡x)2

and
1P
t=1
t2xt =

(1 + x) x
(1¡ x)3
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Letting Û = U (1¡®)( 2nN ¡1); the approximated stock price with learning,
~SBLt ; can be rewritten as

dt

( 1X

¿=1

³
¸Û

´¿
¿

·
1
¿
+ 2 [(1¡ ®) logU ]2 n

N

³
1¡ n
N

´ N + ¿c
N + c

¸)

= dt

( 1X

¿=1

³
¸Û

´¿
+

³
¸Û

´¿
¿2 [(1¡ ®) logU ]2 n

N

³
1¡ n
N

´N + ¿c
N + c

)

and further calculations give that ~SBLt equals

dt

8
<
:

1X

¿=1

³
¸Û

´¿
+

2 [(1¡ ®) logU ]2 n
N

³
1¡ n
N

´

N + c

£
1X

¿=1

h³
¸Û

´¿
¿ (N + ¿ c)

i)

= dt

8
<
:

1X

¿=1

³
¸Û

´¿
+

2 [(1¡ ®) logU ]2 n
N

³
1¡ n
N

´

N + c

£
"
N

1X

¿=1

³
¸Û

´¿
¿ + c

1X

¿=1

³
¸Û

´¿
¿ 2

#)

Finally, making use of the formulas on series above,

~SBLt = dt

8
<
:
¸Û

1 ¡¸Û
+

2 [(1¡ ®) logU ]2 n
N

³
1¡ n
N

´

N + c

£

2
64N ¸Û³

1 ¡ ¸Û
´2 + c

³
1 + ¸Û

´
¸Û

³
1 ¡¸Û

´3

3
75

9
>=
>;

Comparison: FI, BL and Approximation of BL

If ® = 1 then the stock price without learning equals the stock price with
Bayesian learning as well as its approximation and the common price is

SFIt = SBLt = ~SBLt = dt
¸

1¡ ¸
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Figure 2.3.A: Di¤erence between exact and approximated value
of E(G) (left). Discounted di¤erence (right)

When ® 6= 1 the stock price with learning will di¤er from its approxima-
tion. The error will depend on the values of the parameters ®, ¸, U , c; n
and N as well as the number of terms I used to achieve convergence of
the stock price. For a given value of I the exact stock price at date t is

SBLt = dt
IX

¿=1

¸¿E [G¿ j n; N ]

An analytical expression of the di¤erence between E [G¿ ] and its approx-
imation Et

h
~G¤¿

i
is di¢cult to derive. Instead we compute the di¤erence

for values of ¿ ranging between 10Ä4 and 105 and set the parameters to

® = 0:999 ¸ = 0:9999 c = 1 n = N ¡ n = 40

and let U assume the values 1:01 and 1:02. In Figure 2.3.A (left) the
di¤erence E [Gt] ¡ Et

h
~G¤¿ (k)

i
is shown for di¤erent values of ¿ . With

dt = 1 the resulting di¤erence in stock price is represented by the areas
de…ned by the discounted di¤erences shown in Figure 2.3.A (right).

It should be noted that setting c = 0 in the expression for the stock
price with learning in2.3.B, that is removing the possibility of learning
e¤ects, reproduces the expression for the stock price without learning in
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2.3.A. Setting c = 0 in the approximation of the stock price with learning
however does not result in the stock price without learning.

Generalizing Polya Urn Models

In Section 2.1 the concept of learning was illustrated by introducing
Polya’s urn model and in the subsequent derivation of the asset prices
with Bayesian learning the parameters of the Polya distribution reemerged.
In the expression for the stock price with Bayesian learning at date t the
parameters of the Polya distribution, all integers, have the following in-
terpretation:
n : number of upsteps prior to date t
N : total number of steps taken prior to date t
c : strength of learning

In this setting the strength of learning is a¤ected both byN and c; an
increase in c strengthens the learning whereas the opposite holds for an
increase in N . Clearly, the precision of the estimated probability of an
upstep is also e¤ected by the size of N; since a large value of N implies
extensive prior knowledge.

It would be preferable to have only one parameter steering the strength
of learning, since this would facilitate estimation and bene…t analytical
tractability. We now proceed to show that this is in fact possible by
introducing the parameter ± = c=N . Hence we normalize the model by
setting the total number of steps taken prior to date t; N; equal to unity.

Recall from Section 2.1 that the probability of getting k upsteps in ¿
steps is

Pk;¿ =
µ
¿
k

¶
n
N

n+ c
N + c . . .

n+ (k ¡ 1) c
N + (k ¡ 1)c

£ N ¡ n
N + kc

N ¡ n+ c
N + (k +1) c

. . .
N ¡ n + (¿ ¡ k ¡ 1) c
N + (¿ ¡ 1) c

Dividing all terms by N and setting ± = c=N and ¼ = n=N yields
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Pk;¿ =
µ
¿
k

¶
¼
1
¼ + ±
1 + ±

. . .
¼ + (k ¡ 1) ±
1 + (k ¡ 1) ±

£ (1¡ ¼)
1 + k±

(1¡ ¼) + ±
1 + (k + 1)±

. . .
(1¡ ¼) + (¿ ¡ k ¡ 1) ±

1 + (¿ ¡ 1) ±

It was shown in Section 2.1 that the urn model could be represented with
the beta function if the probability of an upstep ¼ was beta distributed
with parameters ® = n=c and ¯ = (N ¡ n) =c. For the normalized model
we have

® =
n
c =

¼
± and ¯ =

N ¡n
c =

1¡ ¼
±

Thus, if ¼ 2 Beta
µ
¼
±
;
1 ¡ ¼
±

¶
then the probability of getting k upsteps

in ¿ steps is

Pk;¿ =
µ
¿
k

¶B
µ
¼
±
+ k;

1¡ ¼
±

+ ¿ ¡ k
¶

B
µ
¼
±
;
1¡ ¼
±

¶

Whereas in the original urn model c was the number of balls to add if a
white ball was drawn, we can interpret ±, being a rational number, to be
the amount of sand to add to the normalized urn of size 1. Obviously ¼
is the initial probability of getting a white ball/upstep.

Thus, with ± = c=N and ¼ = n=N the normalized approximation
of Ãt (n;N) = §1¿=1¸

¿Et [G¿ j n;N ] is

­ (¼; ±) =

(
¸Û

1¡ ¸Û
+

2 [(1¡ ®) logU ]2 ¼ (1¡ ¼)
1 + ±

2
64

¸Û
³
1¡ ¸Û

´2 + ±

³
1 + ¸Û

´
¸Û

³
1 ¡ ¸Û

´3

3
75

9
>=
>;

2.3.C
where now Û = U (1¡®)(2¼¡1). Hence the approximated stock price with
learning is

~SBLt = dt­ (¼; ±) 2.3.D
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Similarly, the approximated date t price of a call with T periods to ex-
piration and strike price K is

~CBLt = ¸T
TP
k=0

µ
T
k

¶£
U2k¡T ¤¡®

B
µ
¼
±
+ k;

1 ¡ ¼
±

+ T ¡ k
¶

B
µ
¼
±
; 1¡ ¼
±

¶

£

0
BB@U2k¡T ~SBLt

­
µ
¼ + k±
1 + T±

; ±
1 + T±

¶

­ (¼; ±)
¡K

1
CCA

+

2.3.E

Rationalization of the BS Model

In this section we investigate the relationship between the Lucas model
without learning (Full Information, FI) and the Black and Scholes model.
We conclude with conditions on the parameters, which if met result in
identical option price predictions of the two models. This can be seen as
a rationalization of the Black and Scholes model, which takes the price
of the underlying asset as given and uses arbitrage arguments to price
the option. Alternatively, the Black and Scholes model can be viewed as
a reduced form of the FI model.

In the Lucas set-up, the stock pays a dividend. Thus, as a …rst
step in relating the FI model to the BS model, in order to facilitate the
comparison we give an account of the relationship between stocks with
and without dividends.

A BS model with dividends is de…ned by
S = initial stock price

U = up factor
D = down factor
R = 1+ r = return on bond
d = initial dividend

Thus, the owner of a BS stock paying dividends d receives at date 1

(S + d)U
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if an upstep occurs and
(S + d)D

if a downstep occurs.
It is possible to make a BS stock without dividends equivalent to a

BS stock with dividends, in the sense that both stocks give the same
return, by rede…ning the factors determining the return for the BS stock
without dividends. To this end we de…ne the upfactor for a BS stock
without dividends as

~U =
µ
S + d
S

¶
U

Similarly, the down factor becomes

~D =
µ
S + d
S

¶
D

With the bond giving date 1 return R, it is easy to show that the state
prices for both cases are identical. Hence, the state price in case of an
upstep is

¯h =
R¡

µ
S + d
S

¶
D

µ
S + d
S

¶
(U ¡D)R

= R ¡ ~D³
~U ¡ ~D

´
R

In case of a down step the state price is

¯ l =

µ
S + d
S

¶
U ¡R

µ
S + d
S

¶
(U ¡D)R

=
~U ¡R³

~U ¡ ~D
´
R

Since the up and down factors are assumed constant over time the one
period case is easily generalized to the T period case. A stock without
dividends and upfactor ~U and downfactor ~D has price after k upsteps in
T periods equal to

S
·
S + d
S
U

¸k ·
S + d
S
D

¸T¡k
=

·
S + d
S

¸T
SUkDT¡k

This relation has the following interpretation. Buying 1 unit of a stock
without dividends giving returns de…ned by ~U and ~D yields the same
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payo¤ at a (k; T )-node as the strategy of buying [(S + d)=S ]T amount of
a stock paying dividends and giving one period returns U and D.

This reasoning carries over to the valuation of call options. Thus a
call option on 1 unit of a stock without dividends and expiration date T
and strikeprice K has date T value

max

Ã
S

·
S + d
S
U

¸k ·S + d
S
D

¸T¡k
¡K; 0

!

at a (k; T)-nod. On the other hand, consider a call option on [(S + d)=S ]T

units of a stock with dividends with expiration date T which requires the
buyer to pay K at date T . It has the date T value

max

Ã·
S + d
S

¸T
SUkDT¡k ¡K; 0

!

at a (k; T )-nod, which is the same as the value of a call option on a stock
paying no dividends. Hence the two options have the same initial value.
The FI stock price at a (k; T)-node is

SUkDT¡k

and the corresponding state price is

¡
¸¼U¡®

¢k ¡
¸ (1¡ ¼)D¡®¢¿¡k = ¯kh¯¿¡kl

Letting A = ¼U1¡®+ (1¡ ¼)D1¡® we know from Proposition 2.3.A that
the initial dividend is

d = S
1 ¡¸A
¸A

By Proposition 2.3.A the FI bond price is

¸¼U¡®+ ¸ (1¡ ¼)D¡® = 1
R

Setting D = 1=U we thus obtain a non-linear equation system
8
><
>:

d = S
1¡ ¸A
¸A

¸¼U¡® + ¸ (1 ¡ ¼)U® =
1
R



80 2. BAYESIAN LEARNING AND ASSET PRICING

Given values of U; d and ® solving this equation system thus provides
values of ¸ and ¼ which make the Full Information model and the Black
and Scholes model equivalent in the following sense: the price of a call
option on one unit of a BS stock with upfactor (S + d)U=S is exactly
that which an FI agent with subjective discount factor ¸ would be willing
to pay for a call option on [(S + d) =S]T units of a stock paying initial
dividend d and having upfactor U . This holds regardless of the agents
probability beliefs and risk aversion, provided that these are consistent
with convergence of the FI stock price.

2.4 Bayesian Learning vs. Full Informa-
tion - an Example

The purpose of this section is to illustrate how the model with learning
compares to the model without learning. Thus, with current stock price
set to 30; we use the model with learning to generate the stock prices at
date t+5:We then get the date t+5 value of 6 call options di¤ering only
in their exercise prices. The state prices from the model with learning is
then used to calculate the date t price of the options. These prices are
then compared to the prices predicted by the FI model.

Generating Stock Price from the BL model

We use the following parameters

U = 1:2, D = 0:9; ® = 0:9 , ¸ = 0:9615

By setting the parameters as above, convergence of the sum giving the
stock price under Bayesian learning is guaranteed. With a prior given
by n = 6 and N = 10; making the initial probability of an upstep equal
to 0:6, the spot prices of the stock at date t + 5 were calculated by
approximating the in…nite sum from Proposition 2.3.B with the …rst 100
terms. This gives six distinct prices shared among the 32 terminal nodes
representing the di¤erent states of the world. Table 2.4.A shows these
stock prices, along with the numbers that were used to calculate the state
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prices according to relation (2.2.C). It also reports the values of the Ã
function for the di¤erent con…gurations of the urn at expiration date.

Table 2.4.A: Data generated at date t+5 by the model with
learning

# of
nodes

§ SBLt+5 P¾ d¾ Ã¾ ¯
¯¤# of
nodes

1 §5
t+5 82.8205 0.1259 2.4883 32.6986 0.0455 0.0455

5 §4
t+5 58.8249 0.0503 1.8662 30.9665 0.0236 0.1180

10 §3
t+5 41.8465 0.0280 1.3997 29.3716 0.0170 0.1700

10 §2
5 29.8138 0.0210 1.0498 27.9013 0.0165 0.1650

5 §1
t+5 21.2726 0.0210 0.7873 26.5440 0.0214 0.1070

1 §0
t+5 15.2003 0.0280 0.5905 25.2893 0.0369 0.0369

In Table 2.4.B the payo¤s at exercise day to six call options expiring
at date t+ 5; with strike prices K ranging from 5 to 80 are shown. The
date t prices, calculated using the state prices from Table 2.4.A, are
shown in the last row.

Table 2.4.B: Payo¤s to call options for the BL model at expi-
ration date. The strike prices range from 5 to 80.
The last row gives the date t learning prices.

§ CBL80 CBL65 CBL50 CBL35 CBL20 CBL5
§5
t+5 2.8205 17.8205 32.8205 47.8205 62.8205 77.8205

§4
t+5 0 0 8.8249 23.8249 38.8249 53.8249

§3
t+5 0 0 0 6.8465 21.8465 36.8465

§2
t+5 0 0 0 0 9.8138 24.8138

§1
t+5 0 0 0 0 1.2726 16.2726

§0
t+5 0 0 0 0 0 10.2003

Price date t 0.1284 0.8115 2.5358 6.1515 12.9076 22.3636

Generating Stock Price from the FI model

When computing the stock and call prices for the FI model we maintain
the values of U; D; ¸ and ® above. Table 2.4.C reports the stock prices
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at exercise date as well as the probabilities and state prices for the …nal
nodes. It is seen that the FI stock prices at expiration date varies less
than the corresponding BL stock prices. Further, note that the proba-
bilities of extreme stock prices are lower in the FI case, a feature which
carries over to the state prices.

Table 2.4.C: Data generated at date t+5 by the FI model

# of
nodes

§ SFI¾ P¾ d¾ ¯
¯¤# of
nodes

1 §5
t+5 74.6496 0.0778 2.4883 0.0281 0.0281

5 §4
t+5 55.9872 0.0518 1.8662 0.0243 0.1215

10 §3
t+5 41.9904 0.0346 1.3997 0.0210 0.0210

10 §2
5 31.4928 0.0230 1.0498 0.0181 0.1810

5 §1
t+5 23.6196 0.0154 0.7873 0.0157 0.0785

1 §0
t+5 17.7147 0.0102 0.5905 0.0135 0.0135

Table 2.4.D shows the payo¤s to the call options in the FI model, with
current call prices in the last row. Compared to the BL case, payo¤s for
states with many upsteps are lower, as are all current call prices. Note
that the lower variance of the FI stock prices results in zero payo¤s in all
states for the option with K = 80.

Table 2.4.D: Payo¤s to call options for the FI model at expira-
tion date. The strike prices range from 5 to 80.
The last row gives the date t FI prices

§ CFI80 CFI65 CFI50 CFI35 CFI20 CFI5
§5
t+5 0 9.6496 24.6496 39.6496 54.6496 69.6496

§4
t+5 0 0 5.9872 20.9872 35.9872 50.9872

§3
t+5 0 0 0 6.9904 21.9904 36.9904

§2
t+5 0 0 0 0 11.4928 26.4928

§1
t+5 0 0 0 0 3.6196 18.6196

§0
t+5 0 0 0 0 0 12.7147

Price date t 0 0.2715 0.8389 1.7720 3.1381 4.9178
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Risk neutral probabilities

We conclude the example by comparing the risk neutral probabilities of
the terminal nodes of the BL model and the FI model.

The risk neutral probability (Cf Leroy and Werner [2001]) of a state
¾ 2 §kt+¿ is

¼¾ = ¯¾
½¾

where ½¾ is the discount factor given by the product of the bond prices
at the preceding nodes on the path corresponding to the state ¾ 2 §kt+¿ .
The discount factor is the same for those …nal nodes which have the
same predecessor. As an example, consider a two-period tree. Then the
discount factor used for the node reached by two upsteps and the node
reached by one upstep followed by a downstep is

½¾ = B0Bu

where B0 is the bond price at the original node and Bu is the bond price
at the node reached after one upstep.
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Figure 2.4.A: Risk neutral probabilities for the BL and FI mod-
els for the 5 period example
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Computing the risk neutral probabilities is more complicated for the
BL model than for the FI model, since for the BL model the present
value of a crown received at a future node will depend not only on the
number of high and low growth periods preceding that node, but the
sequence in which they occur. Hence, with 32 …nal nodes, computing
the risk neutral probabilities in the BL case requires the computation
of 16 unique discount factors. Since the bond price in the FI model is
constant, only one discount factor needs to be computed.

Figure 2.4.A shows the risk neutral distributions for the BL and FI
models. The risk neutral probabilities for terminal nodes ¾ 2 §kt+5 are
summed. It is seen that the fatter tails of the (subjective) probability
distribution for the learning case carries over to the risk neutral distrib-
ution.

Summary

This chapter introduced a special case of the representative agent model
due to Lucas [1978], where dividends evolve on a binomial lattice and
preferences are represented by power utility. Furthermore, having intro-
duced the Polya distribution we could distinguish between the probability
beliefs of the FI agent and the BL agent by letting the learning parame-
ter c equal zero, in which case the binomial distribution is obtained,
and belonging to Z+, respectively. Thus, having speci…ed the dividend
process, the utility function and the respective probability distributions
we could give explicit expressions for the state prices for FI and BL cases,
respectively. Then, with the state prices at hand it was straightforward
to determine stock, bond and call prices with and without learning.

With learning, the implied probability distribution displays fatter
tails as compared to the FI (binomial) case. This feature carries over
to the state prices, implying that the BL agent values payo¤s in extreme
events higher than does the FI agent.

Introducing learning has several implications for the asset prices. The
bond price is no longer constant but will depend on the sequence of
occurrences of high and low growth. This in turn will cause the interest
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rate process under learning to be path dependent. The higher volatility
of the BL stock price obviously a¤ects the valuation of call prices under
learning, as does the valuation of the payo¤s at exercise date with the
BL call prices.

This chapter also investigated the relationship between the FI model
and the BS model, describing the conditions under which the two models
give identical call option price predictions. Thus, the FI model can be
viewed as an economic rationalization of the BS model. Alternatively,
the BS model can be viewed as a reduced form of the FI model.

In order to make the BL model more tractable, a closed form approx-
imation of the BL stock price was derived, utilizing the properties of the
Polya distribution. This approximation was further simpli…ed by nor-
malizing the urn so that the strength of learning was expressed through
the single parameter ±.

A drawback of the learning model presented here is that in order to
avoid learning to vanish as new balls are added, the initial urn needs to be
repeatedly replaced, causing jumps in the strength of learning. Although
sharp revisions in probability beliefs could conceivably be motivated by
dramatic events, further research on how to keep the strength of learning
from decreasing in a mechanical fashion is commendable.
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Chapter 3

Application of BL to Option
Pricing

Introduction

In Chapter 1 the shortcomings of the Black and Scholes (BS) option
pricing model was explored and the resulting volatility smiles were in-
vestigated for data on calls and puts on the Swedish OMX index. A
competing option pricing model utilizing the Lucas asset pricing model
and Bayesian Learning was presented in Chapter 2.

Chapter 2 also provided an account of the relationship between the
Black and Scholes model and the model combining the Lucas set-up
and no learning, the Full Information model (FI). It was shown that by
choosing the parameters appropriately, it was possible to obtain equality
between the FI and BS call prices.

Ever since Black and Scholes presented their option pricing formula
in 1973, a host of alternative option pricing models has been suggested.
Bates [2003] gives an overview of the results

In this chapter, we turn to the empirical performance of the learning
model and compare it with various versions of the BS/FI model. Thus
we apply the various call pricing models to data on call options on the
Swedish OMX index covering the period 1993¡ 2000 described in Chap-
ter 1. Here we restrict our study to prices recorded on Wednesdays,
yielding a sample of 4132 observed call prices distributed over 261 days.

87
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The number of observed call prices each day range between 5 and 40 and
the median number of observations is 15. The evaluation of the models
is done by computing the in-sample pricing errors for each date t in the
sample. In …tting the models to the data, two routes are taken. The …rst
approach utilizes all observations on each date t to estimate the models.
The second approach entails dividing the data into strata according to
moneyness and time to expiration, and …tting a model for each strata.
The stratas are de…ned as follows. Moneyness is divided into three sub-
sets de…ned by the intervals MOTM = [0:8; 0:98], MATM = (0:98; 1:02]
MITM = (1:02; 1:2]. Similarly, options are classi…ed according to time to
expiration by the intervals TS = [8; 32] ; TM = [33; 55], TL = [56; 90].

Table 3.0.A shows the distribution of call options in the sample over
these subsets.

Table 3.0.A: Distribution of calls across moneyness and time to
expiration

MOTM MATM MITM Total
TS 1240 633 501 2374
TM 720 347 187 1254
TL 286 162 56 504
Total 2246 1142 744 4132

Due to the discrete time set-up, we are concerned with the (daily)
upfactor U rather than the (annual) volatility ¾, although at times it
will be convenient to make the transformation ¾ = U ln

p
252:

The estimated parameters resulting from the in-sample estimation is
then used to assess the performance of the models out-of-sample. Sec-
tion 3.1 describes the measures of …t applied and how the estimation is
performed. Section 3.2 reports the in-sample results while Section 3.3
reports the out-of-sample results.

3.1 Estimation

The empirical performance of an option pricing model is assessed by
choosing the parameters such that the deviation from observed prices,
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Cobs; is minimized. Thus, for each date t in the sample, with nt ob-
servations in the subset of interest, we compute the root mean squared
valuation error

RMSV Et =

"
1
nt

ntX

i=1

¡
Cobsi (vt) ¡ Ci (vt; l)

¢2
#1=2

where the current stock price S; exercise price K, interest rate r and
time to expiration T at date t are collected in the vector vt = [S;K; r; T ].
Ci (vt; l) is the price prediction of the model we wish to evaluate having
parameters l. The minimization of RMSV Et is performed with respect
to the parameters in the vector l, although for the Full Information and
the Bayesian Learning models some parameters are …xed.

We also compute the relative root mean squared valuation error, de-
…ned as

RRMSVEt =
RMSVE

·
1
nt

ntP
i=1

¡
Cobsi (vt)

¢2
¸1=2 =

2
664

ntP
i=1

¡
C obsi (vt)¡ Ci (vt; l)

¢2

ntP
i=1

¡
C obsi (vt)

¢2

3
775

1=2

Summing over all dates t yields the measures

RMSV E =
P
t
RMSVEt and

RRMSV E =
P
t
RRMSVEt

We now proceed to present the various call pricing models and give
an account of the estimation procedures. Estimates of the relevant para-
meters were obtained by numerical minimization of the in-sample pricing
errors for each date t in the sample. The presentation is focused on the
unstrati…ed models where nt denotes all observations at date t used in
estimating the parameters of the model. The estimation procedures are
completely analogous for the strati…ed models where the BS, FI and BL
models are estimated on subsets of the data described above. These mod-
els are referred to by adding arguments M and T , so that BS(M ) refers
to the the BS model where the estimation produces a set of estimated
parameters for each interval of moneyness and BS(T) refers to the the
BS model where the estimation produces a set of estimated parameters
for each interval of time to expiration.
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Estimation of the Black and Scholes model

We estimate the modi…ed BS model presented in Chapter 2. It was shown
that the call price prediction of this model equaled the call price a FI
agent would be willing to pay for a call giving the right to ((S + d) =S)T

amount of stock in T days, given certain conditions on the parameters.
One condition stipulated that with upfactor U in the FI model, the cor-
responding upfactor ~U in the BS model should be set to

~U =
S + d
S
U

where d is the daily dividend. Thus, we obtain estimates of U and d and
the corresponding measure of …t of the BS model by numerically solving,
for each date t in the sample,

min
U;d

·
1
nt

ntP
i=1

³
Cobsi (vt) ¡ CBSi

³
vt; ~U

´´2
¸1=2

3.1.A

where nt is the number of observations at date t:
Being that the rationale for estimating this modi…ed version of the

BS model is to achieve equivalence with the equilibrium model with-
out learning, the estimation procedure is performed with a view to the
convergence condition of the FI model. Thus, while the dividend clearly
must be nonnegative, we increase the lower bound and restrain the search
to the interval [0:05; 1:5].

Estimation of the Full Information model

In estimating the FI model for date t we …x the risk aversion, ®, at 0:999
and retain the estimates of U and d received from …tting the BS model.
Thus, equipped with these values of ®; U and d and given the interest
rate r we proceed to solve for each observation i at date t the equation
system

8
><
>:

d = S
1¡ ¸A
¸A

¸¼U¡® + ¸ (1¡ ¼)U® =
1
R

3.1.B
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where R = 1 + r; A = ¼U1¡®+ (1 ¡¼)U®¡1 and S is the current stock
price. Recalling the results in Chapter 2, we know that the solution
provided by probability ¼ and subjective discount factor ¸ ensures the
equality of the BS and the FI call prices in the sense that

CBSi (vt; U; d) = CFIi (vt; U; d; ®; ¼; ¸)

where the FI call price CFIi (vt; U; d; ®; ¼; ¸) is obtained by discounting
with the FI state prices the payo¤

max
³
[(S + d) =S ]T U2k¡TS ¡K; 0

´

where [(S + d) =S]T is the amount of stock the FI agent has the right to
purchase at price K, as owner of a call maturing in T days.

The resulting measure of …t is then

RMSVEt =

"
1
nt

ntX

i=1

¡
C obsi (vt)¡ CFIi (vt; U; d; ®; ¼; ¸)

¢2
#1=2

3.1.C

and it should be clear from Chapter 2 that this yields the same result as
3.1.A.
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Figure 3.1.A: E¤ect of initial dividend on the probability and
and the subjective discount factor. Data are
from October 11 1995 with S=1396, r=0.089 and
U=1.01 implied by the observation
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It should be noted that for a given date t there will in general among
the nt observations be calls di¤ering in remaining days to expiration T .
It follows that the interest r used in 3.1.B will also di¤er for these calls,
and hence the resulting values of ¼ and ¸. As a result we study the daily
averages ¹¼ and ¹̧.

In solving 3.1.B for …xed values of ®; U , S and r; the resulting values
of ¼ and ¸ are decreasing in the dividend d. Figure 3.1.A shows the
solutions ¼ and ¸ to 3.1.B for a given day in the sample when U , S and r
are given by the data and we let d vary from 0:05 to 1:5. This illustrates
the need to restrict the values of d; high values of d could potentially
result in unrealistically low probabilities, while to low values of d could
cause the convergence criterion to be violated.

Estimation of the Bayesian Learning model

In estimating the learning model we employ the approximation presented
in Chapter 2, i.e. Equation 2.3.E. In addition to facilitate the compu-
tations, this approach has the added advantage of supplying a single
measure of the strength of learning, conveyed by the estimate of the pa-
rameter ±: Fixing the risk aversion ® at 0:999 we thus face the task of
…nding values of ¼, U , d, ¸ and strength of learning ± so as to minimize
RMSVEt:

One possible approach would be to maintain the FI estimates of ¼,
U , d, and ¸ and minimize RMSV Et with respect to ± ¸ 0. However, it
turns out that proceeding in this fashion leaves little room for learning
as the estimates of ± for most dates t then become zero, rendering the
improvement over the BS/FI model insigni…cant. Instead, the approach
followed here is to adopt the FI estimate of ¸, while we set d = 0:05 to
ensure convergence and minimize RMSVEt with respect to ¼, U and ±:

min
¼;U;±
RMSVEt =

"
1
nt

ntX

i=1

¡
Cobsi (vt)¡ CBLi (vt; U; d; ®; ¼; ¸; ±)

¢2
#1=2

3.1.D
In order to make the results comparable with the FI model, we pos-

tulate that the owner of a BL call maturing in T days has the right to
purchase [(S + d) =S ]T amount of stock at exercise date at price K. It
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should be noted that this approach to estimating the parameters is in-
consistent in that it does not take into account the restraints on how the
updating occurs over time imposed by the Bayesian setting.

Estimation of Black and Scholes Spline model

Next we estimate the BS spline model. Here, for each date t we let the
volatility input ¾S to the BS model depend on the exercise price K and
time to maturity T in the following way:

¾Si = max f0:01; °1 + °2Ki + °3K2
i + (°4 + °5K2

i )Tig

We get estimates of the parameters °t = (°1; °2; °3; °4; °5) by solving

min
°

ntX

i=1

¡
¾impi (vt) ¡ ¾Si (K;T; °)

¢2

for each date t; where ¾impi is the volatility implied by call i at date t.
Then, equipped with estimates of ° we can compute ¾Si for each option
and the corresponding upfactor Ui = e¾

S
i =
p
252: The BS spline call prices

CBSi
¡
vt; Ui

¡
¾Si

¢¢
result in the measure of …t

RMSVEt =

"
1
nt

ntX

i=1

¡
Cobsi (vt) ¡ CBSi

¡
vt; Ui

¡
¾Si

¢¢¢2
#1=2

3.2 In-Sample Results

The preceding estimation procedures yield a set of estimated parameters
and measures of …t for each of the models. In this section the results of
the estimations are presented and the competing models are evaluated.
We thus report for each model its ability to match the data as measured
by RMSV Et and RRMSVEt. While the …t of a model is of obvious
importance, the estimates of the parameters are interesting in their own
right. For each model we report statistics on its estimated parameters
and how they compare between the models. The fact that the FI model
can be viewed as an equilibrium representation of the BS model makes it
interesting to compare the FI and BL estimates of the parameters. The
one parameter only present in the BL model is ±; the strength of learning.
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We …rst present the results for the unstrati…ed models that were es-
timated using all data for each date and then proceed to the strati…ed
models that were estimated when the data were divided in subsets ac-
cording to moneyness and time to expiration.

Unstrati…ed Models

Measure of …t

To compare the results across models, we start by examining the mea-
sures RMSV Et and RRMSV Et for the BS,FI, BL and BS spline models.

Figure 3.2.A shows how RMSV Et and RRMSV Et have evolved over
time for the BS, BL and spline models. The pictures indicate that there
is a clear tendency for the BL model to outperform the BS model and
the spline model.
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Figure 3.2.A: RMSVE (left) and relative RMSVE (right) for
the BS, BL and BS spline models over time

Table 3.2.A presents a closer examination of the ability of the models
to …t data. Along with statistics on RMSVEt and RRMSV Et it shows
that the BL model gives the lowest overall error with a RMSVE of
280:79 SEK, which is about 2=3 that of the RMSV E of the BS model.
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The second best model is the spline model, which has a RMSV E of
344:99 SEK, which is about 4=5 that of the RMSVE of the BS model.

Due to the set-up, in theory the BS model and the FI model should
give identical measures of …t.

However, Table 3.2.A shows that there is indeed a slight discrepancy;
we attribute this di¤erence to the fact that for each date the BS call
prices are computed using the same values of U and d; whereas the cor-
responding FI call prices are obtained by di¤erent values of ¼ and ¸,
depending on the interest rate pertaining to the individual call. Also,
it is possible that the fact that the parameter d was restricted to the
interval [0:05; 1:5] a¤ects the results.

Table 3.2.A also presents the percentage of dates for which each model
gives the best …t; it is seen that the BL model is able to outperform the
other models about 67% of the dates in the sample. It should be pointed
out that the fact that the BS/FI models are able to do better than the
BL model in a few cases is in all likelihood a result of the route taken in
estimating the BL model; had we retained the values of ¼, U and d from
the FI model and minimized RMSVEt only with respect to ± ¸ 0, then
the exact BL call price would equal the FI call price if ± = 0.

Table 3.2.A: Statistics on measure of …t for the BS, FI, Spline
and BL models

BS FI Spline BL
mean RMSV Et 1:6049 1:6080 1:3414 1:0758
std RMSV Et 1:2903 1:2900 0:9540 0:8666
min RMSVEt 0:1100 0:1100 0:1531 0:0973
max RMSVEt 15:81 15:811 6:7832 6:4831
mean RRMSV Et 0:0437 0:04377 0:0366 0:0299
std RRMSV Et 0:0254 0:0254 0:0218 0:0228
min RRMSVEt 0:0055 0:0054 0:0066 0:0033
max RRMSVEt 0:1967 0:1967 0:1977 0:1943
RMSV E 418:88 419:69 350:11 280:79
RRMSV E 11:40 11:42 9:5567 7:80
% best …t 3:83 3:45 24:52 66:67
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In estimating the BS and FI models the parameter d was restricted
to the interval [0:05; 1:5]. In order to evaluate the impact of d on the
performance of the FI model, the estimation was also performed with
d …xed at 0:05, resulting in a RMSV E of 429:25: Since this is only
moderately higher than theRMSVE of 419:69 recorded when we allowed
d to vary, it suggests that the treatment of d is of limited importance for
the …t of the model.

Upfactor

While the daily upfactor in the FI model is U , the modi…ed upfactor in
the BS model was set to ~U = U (S + d)=S in order to achieve equivalence
between the two models. Obviously, ~U > U and we now proceed to
investigate how these upfactors compares with the upfactor in the BL
model. Figure 3.2.B depicts the daily upfactors and the corresponding
annual volatilities for each date in the sample. The …gure shows that for
most days in the sample the BL upfactor is smaller than the upfactors
of the FI and BS models; in fact, for only about 4% of the dates does
the BL upfactor exceed ~U and for only about 13% of the dates does it
exceed U .
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Figure 3.2.B: Daily upfactor (left) and annual volatility (right)
for the BS, FI and BL models
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Table 3.2.B presents statistics on the upfactor for all the models.
While the average upfactor does not di¤er very much for the BS and
FI models, corresponding to annual volatilities of 0:233 and 0:226 re-
spectively, the average upfactor of the BL model is considerably lower,
corresponding to an annual volatility of 0:194.

Table 3.2.B: Statistics on the daily upfactor for the BS, FI and
BL models

Upfactor
BS FI BL

min 1:0073 1:0065 1:0037
max 1:0237 1:0234 1:0259
mean 1:0124 1:012 1:0103
std 0:003612 0:003557 0:003489

Probability of an upstep

Estimation of the FI and the BL model yields competing estimates of
the probability ¼. Although potentially interesting, a comparison is ham-
pered by the sensitivity of FI estimates to the treatment of the parameter
d. Our approach entailed allowing d to vary in the interval [0:05; 1:5] in
the FI model, while for the BL model we set d = 0:05. The resulting
probabilities are shown in the left graph of Figure 3.2.C, while the right
picture shows the probabilities obtained when d was set to 0:05 in the FI
model as well.

Table 3.2.C: Statistics on the FI and BL probabilities.

Probability
FI BL, d = 0:05 FI, d = 0:05

min 0:4101 0:4833 0:5035
max 0:5151 0:5625 0:5163
mean 0:4921 0:5163 0:5083
std 0:0190 0:0083 0:0030

The …gures show that the e¤ect of allowing d to vary in the FI model
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is to strongly increase the volatility of the probabilities, in that low prob-
abilities are then attainable. Conversely, when d is …xed, the FI proba-
bilities are much less volatile than the BL probabilities. In both cases,
the FI probabilities are in general lower than the probabilities generated
by the BL model. Table 3.2.C summarizes the …ndings.
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Figure 3.2.C: Estimated probabilities from the FI model when
d varies and from the BL models when d is …xed
(left). Probabilities for the FI and BL models
when d is …xed for both models (right)

Subjective discount factor

Fitting of the FI model yielded estimates of the subjective discount factor
¸; which were then used when we adapted the BL model to data. These
daily estimates were contained in the interval [0:99789; 0:99998] with an
average ¸ of 0:9996. Figure 3.2.D shows that the variation of the daily
discount factor has remained relatively constant over time.

Daily dividend

In estimating the dividend d in the FI and BS models we restricted it to
the interval [0:05; 1:5] : As pointed out in the description of the estimation
procedure for the FI model, the lower bound is motivated by a concern
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to ensure convergence of the FI model, since to low values of d will cause
the discount factor ¸ to exceed 1. The lower bound was binding in 59
cases, while the upper bound was reached in 14 cases. The distribution
of the dividend over time is shown in Figure 3.2.E. The average dividend
was 0:478.
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Figure 3.2.D: The daily subjective discount factor over time
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Strength of learning

The strength of learning in the BL model is measured by the parameter
±. For 135 of the 261 days in the sample ± is zero. These dates, for which
there were no learning e¤ects, are evenly distributed over time. Inspec-
tion of Figure 3.2.F reveals that the variation of strength of learning is
roughly constant over time. Furthermore, no unambiguous relationship
between the strength of learning and the other parameters of the BL
model, or even the …t of the model, could be established.
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Figure 3.2.F: Strength of learning over time

The average ± was 0:0048 and the standard deviation was 0:0093 over
the entire sample. Disregarding those dates for which ± = 0 yields an
average of almost 0:01 and a standard deviation of 0:011:

Parameters of the BS spline model

Fitting the BS spline model to data yields for each date a set of estimates
of ° = [°1 °2 °4 °5 °5] which were used in modelling the volatility as a
function of moneyness and time to expiration. Figure 3.2.G shows the
distribution over time of these estimates and Table 3.2.D reports their
means and standard deviations.
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Table 3.2.D: Mean and standard deviation of parameters in the
BS spline model

°1 °2 °3 °4 °5
mean 0:2343 ¡8:888 ¤ 10¡5 ¡1:504 ¤ 10¡8 0:0043 ¡8:858 ¤ 10¡9

std 0:0729 0:0009 8:8524 ¤ 10¡8 0:03175 4:9703 ¤ 10¡8
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Figure 3.2.G: The distribution of the parameters in the spline
model over time (two outliers were removed)

Strati…ed Models

We now proceed to present the results from …tting the BS, FI and BL
models when the data was divided in subsets according to moneyness
and time to expiration. This classi…cation of models thus yields two set
of models; we denote by BS(M) ; FI(M ) and BL(M ) the models that
were estimated when the data was divided in subsets of moneyness and
by BS(T) ; FI(T) and BL(T) the models that were estimated when the
data was divided in subsets of time to expiration. In the following we
will present both the aggregate results for each model and the results by
intervals. This approach allows us to compare the estimated parameters
with the results in Chapter 1, where the strength of smile was measured
for intervals of moneyness and time to expiration. Of special interest



102 3. APPLICATION OF BL TO OPTION PRICING

here is how the strength of learning ± varies with time to expiration and
moneyness and how this variation compares with the strength of smile
with respect to time to expiration and moneyness as studied in Chapter
1..

Strati…cation of the models implies that it is not always possible to
obtain estimates of the parameters for each day and each strata, due to
lack of data. Table 3.2.E shows for each strata the number of days it was
possible to estimate the parameters of the strati…ed BS and BL model.

Table 3.2.E: Number of days with su¢cient number of observa-
tions, for each strata, for the BS and BL models,
respectively.

S M L OTM ATM ITM
BS 236 166 106 258 244 170
BL 234 162 85 250 204 118

Measure of …t

We start by comparing the models by intervals of moneyness and time
to expiration. Since the results for the BS and FI models are practically
identical, only the results for the FI model are displayed. Thus, com-
paring the average RMSVEt for the FI(T) and BL(T) models for each
interval of time to expiration it is seen from Table 3.2.F that all models
yield the best …t for options with long time to expiration. The improve-
ment of the BL(T ) model over the FI(T ) model is roughly the same for
all maturities; the mean RMSVEt of the BL(T) model is about half the
mean RMSV Et of the FI(T) model. Both models perform the worst for
options with medium time to expiration. However, the bene…t of adding
learning is the largest for these options with the average RMSV Et of the
BL model is only 44:7% that of the FI model for options with medium
time to expiration.

Turning to the relative measure of …t RRMSV Et the picture changes
slightly. For both models RRMSVEt is decreasing in time to maturity.
The bene…t of allowing learning is still the greatest for options with
medium time to expiration, with an average RRMSVEt only 43% that of
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Table 3.2.F: Statistics on RMSVE for the FI(T) and BL(T)
models. The last column contains the ratio of
the mean of RMSVE of BL(T) over the mean of
RMSVE of FI(T)

RMSVEt
FI(T) BL(T)

mean std mean std Ratio
S 1:2032 0:9457 0:5463 0:5428 0:45404
M 1:2450 0:8979 0:5570 0:7354 0:44739
L 1:1288 0:9192 0:5371 0:7934 0:47582

the FI model. However, both models now do worst for options with short
time to expiration. The improvement of the BL model is still the least
for options with long time to expiration, with an average RRMSV Et
52% that of the FI model. This result makes sense in the light of the
…ndings in Chapter 1, where it was established that the strength of smile
was decreasing in time to expiration.

Table 3.2.G: Statistics on RRMSVE for the FI(T) and BL(T)
models. The last column contains the ratio of the
mean of RRMSVE of BL(T) over the mean of
RRMSVE of FI(T)

RRMSVEt
FI(T) BL(T)

mean std mean std Ratio
S 0:0356 0:0223 0:0174 0:0150 0:48876
M 0:0343 0:0249 0:0147 0:0182 0:42857
L 0:0271 0:0195 0:0141 0:0207 0:52030

The BL(M) yields a lower average RMSV Et for all intervals of mon-
eyness than does the FI(M ) model. While the performance of both
models in terms of mean RMSV Et is decreasing in moneyness, the im-
provement of the BL(M) model over the FI(M ) model is increasing in
moneyness, with the greatest improvement for ITM options, which has
an average RMSVEt only 65% that of the FI(M ) model. For OTM
options, adding learning provides the least improvement, with an aver-



104 3. APPLICATION OF BL TO OPTION PRICING

age RMSV Et 77% that of the FI(M ) model. Table 3.2.H presents the
statistics on RMSVEt for the FI(M) and the BL(M) model.

Table 3.2.H: Statistics on RMSVE for the FI(M) and BL(M)
models. The last column contains the ratio of
the mean of RMSVE of BL(M) over the mean of
RMSVE of FI(M)

RMSVEt
FI(M ) BL(M)

mean std mean std Ratio
OTM 0:7764 0:6525 0:6013 0:5785 0:77447
ATM 0:9822 0:8999 0:7332 0:6665 0:74649
ITM 1:1857 1:1709 0:7661 0:8098 0:64612

The relative measure RRMSV Et reveals that the performance of
both option pricing models is increasing in moneyness, yielding the lowest
averages ofRRMSVEt for ITM options. The improvement of the BL(M )
model over the FI(M ) model also increases with moneyness; for OTM
options the average RRMSVEt of the BL(M) model is 73% that of
the FI(M ) model, while for ITM options the average RRMSV Et of the
BL(M ) model is only 64% that of the FI(M) model. The statistics on
RRMSVEt are presented in Table 3.2.I.

The …ndings in Chapter 1 revealed that the average strength of smile
was the highest for extreme values of moneyness, which would indicate
that possibility of improvement would be the highest for these options.
Disregarding the OTM options, the results here are compatible with that
pattern, although di¤ering strati…cation prevents a straightforward com-
parison.

Upfactor

The upfactor of the BS(T ) model by design exceeds the upfactor of the
FI(T ) model. For the unstrati…ed models we saw that the upfactors of
the BS and FI models in general exceeded the upfactor of the BL model.
This pattern carries over to the case when the estimation yields separate
estimates of the upfactor for each interval of time to expiration. Table
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Table 3.2.I: Statistics on RRMSVE for the FI(M) and BL(M)
models. The last column contains the ratio of the
mean of RRMSVE of BL(M) over the mean of
RRMSVE of FI(M)

RRMSVEt
FI(M) BL(M)

mean std mean std Ratio
OTM 0:0574 0:0389 0:0421 0:0302 0:73345
ATM 0:0270 0:0237 0:0193 0:0174 0:71481
ITM 0:0151 0:0124 0:0097 0:0100 0:64238

3.2.J shows that the upfactor of the FI(T) model clearly exceeds the
upfactor of the BL(T) model for all times to expiration. The average
annual volatility of the BL(T) model is at most about 70% that of the
FI(T) model. This relative di¤erence is most pronounced for options
with medium time to expirations.

Table 3.2.J: Statistics on the upfactor for the FI(T) and BL(T)
models. The last column contains the ratio of the
average annual volatilty of BL(T) over average an-
nual volatilty o FI(T)

Upfactor
BS(T ) FI(T) BL(T )

mean std mean std mean std Ratio
S 1:0124 0:0037 1:0120 0:0037 1:0086 0:0033 0:7179
M 1:0122 0:0037 1:0118 0:0035 1:0073 0:0028 0:6200
L 1:0109 0:0030 1:0105 0:0029 1:0068 0:0029 0:6488

In Table 3.2.K statistics on the upfactor of the BS(M), FI(M ) and
BL(M) models are reported. The average upfactor of the BS(M) and
FI(M) models exceeds the average upfactor of the BL(M ) model for all
intervals of moneyness. Furthermore, while the average upfactor of the
BS(M) and FI(M) models increases in moneyness, the average upfactor
of the BL(M ) model is decreasing in moneyness. Thus, while the average
annual volatility of the FI(M) model increases from 0:22 for OTM options
to 0:24 for ITMoptions, the corresponding annual volatility of the BL(M )
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model decrease from 0:202 for OTM options to 0:17 for ITM options.

Table 3.2.K: Statistics on the upfactor for the BS(M), FI(M)
and BL(M) models. The last column contains the
ratio of the average annual volatilty of BL(M) over
the average annual volatilty of FI(M)

Upfactor
BS(M ) FI(M ) BL(M )

mean std mean std mean std Ratio
OTM 1:0123 0:0034 1:0116 0:0034 1:0107 0:0037 0:9228
ATM 1:0125 0:0039 1:0119 0:0036 1:0107 0:0042 0:7742
ITM 1:0133 0:0046 1:0128 0:0045 1:0092 0:0041 0:7200

Probability of an upstep

The probabilities generated from the FI(T) and BL(T) models mimic
the pattern found for the unstrati…ed models in that on average the
probabilities from the BL(T) model are considerably higher for all times
to expiration. While the probabilities in general are higher for the BL(T)
model for all times to maturity, they vary less than the probabilities from
the FI(T ) model. Statistics on the probabilities of the FI(T) model and
the BL(T ) model are given in Table 3.2.L.

Table 3.2.L: Statistics on the probabilities of the FI(T) and
BL(T) models

Probability
S M L

mean std mean std mean std
FI(T) 0:4914 0:0217 0:4952 0:0161 0:4920 0:0170
BL(T) 0:5211 0:0141 0:5242 0:0117 0:5252 0:0122

Table 3.2.M displays statistics on the probabilities generated by the
FI(M ) and BL(M ) models. The average probability of the BL(M ) model
is increasing in moneyness and exceeds the average probability of the
FI(M ) model for all intervals of moneyness. For all levels of moneyness,
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the volatility of the BL(M ) probabilities is lower than the volatility of
the FI(M) probabilities.

Table 3.2.M: Statistics on the probabilities of the FI(M) and
BL(M) models

Probability
OTM ATM ITM

mean ¼ std ¼ mean ¼ std ¼ mean ¼ std ¼
FI(M) 0:4813 0:0220 0:4859 0:0191 0:4895 0:0194
BL(M ) 0:5098 0:0149 0:5134 0:0147 0:5212 0:0163

Subjective discount factor

The estimates of subjective discount factors generated by the FI(T)
model were used when the BL(T ) model was adapted to data. Simi-
larly, the estimates of subjective discount factors generated by the FI(M )
model were used when the BL(M ) model was estimated. Table 3.2.N re-
ports statistics on the discount factor for the FI(T ) model.

Table 3.2.N: Statistics on the subjective discount factor gener-
ated by the FI(T) model

Discount factor
S M L

mean 0:9996 0:9997 0:9996
std 0:0004338 0:0003464 0:0003587

Table 3.2.O reports statistics on the discount factor for the FI(M )
model. Lacking any theoretical predictions for the behavior of the dis-
count factor, we simply note that the average discount factor of the FI(T)
model exceeds the average discount factor of the FI(M ) model.

Daily dividend

The estimation of the dividend d is performed completely analogous to
the case of the unrestricted models. Thus, d is restricted to the interval
[0:05; 1:5] for the BS(M ) ; BS(T ) ;FI(M) and FI(T) models, while we set
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Table 3.2.O: Statistics on the subjective discount factor gener-
ated by the FI(M) model

Discount factor
OTM ATM ITM

mean 0:9994 0:9994 0:9995
std 0:0004535 0:0004882 0:0004789

d = 0:05 for the BL(T ) and BL(M) models. Table 3.2.P shows statistics
on the estimation of d, along with information on the number of times
the restriction were binding.

Table 3.2.P: Statistics on dividend for the BS/FI(T) and
BS/FI(M) models. lb is the number of times the
estimate was restricted by the lower bound 0.05
and ub is the number of times the estimate was
restricted by the upper bound 1.5

Dividend
S M L OTM ATM ITM

mean 0:4834 0:4331 0:5022 0:7396 0:6675 0:5667
std 0:4915 0:4156 0:4613 0:5067 0:4889 0:4730
lb 70 31 8 29 27 32
ub 20 5 4 25 18 9

Strength of learning

When the unstrati…ed learning model was …tted to data it was found that
learning e¤ects were absent in more than half of the 261 dates, yielding an
average ± less than 0:005. However, when the learning model is estimated
on intervals of time to expiration and intervals of moneyness, learning
e¤ects increase both in magnitude and presence. Table 3.2.Q presents
statistics on the strength of learning ± for both the BL(T) and the BL(M )
model. It also shows the number of dates for which ± could be estimated
for the various categories , and the number of times learning e¤ects were
present for each category.

For the BL(T) model the average ± is increasing in time to expiration.
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This observation is in line with the fact that the average RRMSV Et is
decreasing in time to expiration. Learning e¤ects were present in the vast
majority of the dates for all times to expiration; the least percentage of
times learning e¤ects were present occurred for options with short time
to expiration, where ± was positive more than 88 % of the dates.

For the BL(M ) model the average ± is increasing in moneyness.
Again, this is compatible with the results on RRMSVEt, which were
seen to be decreasing in moneyness. It also agrees with the fact that
the improvement over the FI(M) model, both in terms of RMSV Et and
RRMSV Et, is increasing in moneyness.

Compared to the BL(T) model, learning is weaker and less frequent
for the BL(M ) model.

Table 3.2.Q: Statistics on the strength of learnng for the BL(T)
and BL(M) models.

Strength of learning
S M L OTM ATM ITM

# dates 234 162 85 250 204 118
# ± > 0 207 157 76 115 104 78
% ± > 0 88:46 96:91 89:41 46 50:98 0:6610

max ± 0:0885 0:1086 0:0900 0:0900 0:0980 0:0900
std ± 0:0213 0:0216 0:0222 0:0159 0:0177 0:0220

mean ± 0:0237 0:0283 0:0246 0:0082 0:0088 0:0164

We conclude this section by comparing the measure of …t for the
unstrati…ed models and the strati…ed models. Obviously, the strati…ed
models will always outperform their unstrati…ed counterparts, at the cost
of more parameters.

We get RMSVEt for the models strati…ed according to time to ex-
piration by weighing the RMSV Et for each interval by the fraction of
observations in that interval. Hence

RMSV Et =

2
664

X

k=S;M;L

ntP
j=1
Ik (j)

nt
(RMSVEt (k))

2

3
775

1=2
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where Ik , k = S; M; L is an indicator function taking value 1 if
observation j is an option with time to expiration belonging to interval k
and 0 otherwise. RMSVEt for models strati…ed according to moneyness
is de…ned similarly.

The relative measure of …t RRMSV Et for the models strati…ed ac-
cording to time to expiration is computed by weighing the RRMSV Et
for each interval by the sum of squared observed call prices belonging
to the interval divided by the sum of all squared call prices for date t.
Hence

RRMSVEt =

2
664

X

k=S;M;L

P
C2
j;k

ntP
j=1
C2
j

(RRMSV Et (k))2

3
775

1=2

where the summation
P
C 2
j;k is done over all options belonging to inter-

val k; k = S; M; L. The relative RMSVEt for the models strati…ed
according to moneyness is computed similarly.

Table 3.2.R shows the measures of …t for all models. Since the BS
models give virtually identical results as the corresponding FI models,
only the results of the FI model are presented. The table also reports the
percentage of weeks that each model was able to outperform its competi-
tors. The results show that the model with Bayesian Learning strati…ed
according to time to expiration clearly dominates the alternatives; the
BL(T ) model has the best overall …t with an RRMSVE of 4:30, while
it is also the best model in about 57% of the 261 weeks in the sample.
However, it should be noted that comparing the …t of the unstrati…ed
models to the …t of the strati…ed models is an exercise seriously ‡awed
by the lack of data. Also, the discrepancy in sample points between the
strati…ed models conveyed by Table 3.2.E makes the use of RMSVE and
RRMSVE questionable as tools for ranking the strati…ed models.

Timmermann and Guidolin [2003] applies the (exact) BL option pric-
ing model, as well as several alternative models, to data on S&P 500 index
option prices over the period June 1988-December 1993. The approach
they adopt in estimating the BL model di¤ers from the one adopted here.
Thus, they …x U corresponding to an annual volatility of 5% and set the
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Table 3.2.R: RMSVE and RRMSVE for the each model

FI Spline BL FI(T) BL(T) FI(M ) BL(M )
RMSVE 419:69 344:99 280:79 357:57 157:83 275:19 180:51
RRMSVE 11:42 9:43 7:80 9:49 4:30 7:68 5:06
% best 0 1:15 0 1:92 57:47 3:07 36:4

risk aversion and annual subjective discount factor equal to 0:9 and 0:98;
respectively. Also, whereas the procedure adopted here yields, for each
week, estimates of ¼; ± and U , Timmermann and Guidolin produces
weekly estimates of ¼, N and the frequency with which new informa-
tion arrives, m. As opposed to the …ndings here, showing the BL model
to outperform the alternative models, they report that the BS spline
model is the best …tting model in-sample, followed by the model due to
Heston and Nandi [2000] and the BL model. The mean probability for
the unstrati…ed BL model in this study was found to be 0:5163; which
is considerably lower than the mean probability of 0:5589 reported by
Timmermann and Guidolin.

3.3 Out-of-Sample Results

While the previous exercise demonstrates the ability of the option pric-
ing models to …t the data in-sample, it also provides estimates of the
parameters for each Wednesday in the sample. We now proceed to test
the predictive capabilities of the models out-of-sample and use estimates
from each Wednesday t to compute the call prices at dates t + 1 and
t + 7. Furthermore, we assume that the index value and relevant in-
terest rate at date t + s is known at time t when the prediction is
made so that the predicted call price is CPredi;t+s = C (vt+s; lt), where
vt+s = [St+s;Kt+s; rt+s; Tt+s] and lt are the parameters estimated at date
t. When applying the strati…ed models to predict the call price at date
t+ s it will sometimes occur that no corresponding set of estimates from
the strati…ed model exists at date t; when this is the case the estimates
from the unstrati…ed models are used. To gauge the out-of-sample …t
we compute the Relative Root Mean Squared Prediction Error for each
predicted date, RRMSPEt, de…ned analogously to RRMSVEt:
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Table 3.3.A reports the mean RRMSPEt for all models and prediction
lengths. It also shows for each model the percentage of dates it was able
to outperform its competitors, in terms of RRMSVEt; among all models.

The …gures in parenthesis is the percentage of times the model out-
performs its competitors in the same class of models, the classes being the
unstrati…ed models, the models strati…ed according to time to expiration
and the models strati…ed according to moneyness.

For the one-day-ahead prediction the BL(T) model emerges as the
dominant model, as it displays both the lowest mean RRMSPEt of all
models, 0:0645; as well as being the best model in 21:79 % of the pre-
dicted dates, which is the highest percentage of all models. The lowest
mean RRMSPEt among the unstrati…ed models is obtained by the BL
model which is also the best of the unstrati…ed models in 45:53 % of the
predicted dates. In general, the strati…ed models display a lower mean
RRMSPEt than their unstrati…ed counterparts, although this does not
hold for the BL(M )model. The poor performance of the BS-spline model
indicates that parameter stability is clearly an issue for this model even
for one-day-ahead predictions.

Note that for one-day-ahead predictions, the models with the lowest
mean RRMSPEt preserve their ranking when the percentage of dates
they outperform the competing models is considered.

Turning to one-week-ahead predictions, for each class of models, the
model with Bayesian learning is superior to the corresponding alterna-
tives when it comes to the percentage of dates the models are able to
outperform its competitors.

However, for each class of models, the model with Bayesian learning
display higher mean RRMSPEt than the corresponding BS model. The
lowest mean RRMSPEt for each class of models is obtained by the FI
models. Thus, the lowest mean RRMSPEt is 0:0759 and is obtained by
the FI(M) model. The FI(M ) model is able to outperform its competi-
tors 14:11 % of the dates and is only surpassed in this regard by the
BL(T ) model, which outperforms its competitors 14:52 % of the dates.
Extending the prediction length has drastic consequences for the perfor-
mance of the BS-spline model. While for the other models the mean
RRMSPEt is marginally higher for the one-week-ahead predictions than
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for the one-day-ahead predictions for all models, for the BS-spline model
the mean RRMSPEt increases by a factor of 2:8. With …ve parameters
to estimate, the poor performance of the BS-spline model is attributed
to over…tting

Table 3.3.A: Mean Realtive Root Mean Squared Prediction Er-
ror (RRMSPE) for all models. ”% best” is the
percentage of dates the model has lower RRMSPE
than any other model. The value in parenthesis is
the percentage of dates the model has lower RRM-
SPE than any other model in the same class.

Mean RRMSPEt;Aggregated
t+1 t+7

mean
RRMSPEt

% best
mean

RRMSPEt
% best

BS 0.0694 3.11 (10:12) 0.0780 7.66 (14:52)
FI 0.0691 5.84 (20:23) 0.0768 6.45 (20:16)
BL 0.0660 16.34 (45:53) 0.0787 13.71 (43:14)

BS-spline 0.0981 10.90 (24:12) 0.2725 9.27 (22:18)
BS(T) 0.0691 3.50 (15:95) 0.0810 3.23 (21:37)
FI(T) 0.0688 5.84 (27:24) 0.0801 6.85 (35:89)
BL(T ) 0.0645 21.79 (56:81) 0.0897 14.52 (42:74)
BS(M ) 0.0674 6.23 (19:46) 0.0776 10.89 (27:42)
FI(M ) 0.0666 11.28 (35:02) 0.0759 14.11 (35:08)
BL(M ) 0.0699 10.12 (45:52) 0.0853 9.27 (37:50)
# dates 257 248

In order to assess the performance of the various option pricing models
for di¤erent contracts, Tables 3.3.B and 3.3.C report the mean RRMSPEt
for each model across moneyness and time to expiration, for one-day-
ahead and one-week-ahead predictions, respectively.

For one-day-ahead predictions, the BL model is the best unstrati…ed
model for all strata except for ITM calls. Its superiority is marked for
OTM contracts. The BL(T ) model is the best model for ATM, S and M
calls, while the FI(M ) model is the best model for OTM and L calls.
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Table 3.3.B: Average Relative Root Mean Prediction Error by
moneyness and time to expiration for prediction
one day ahead. " dates" is the number of dates
predicted and "median calls" is the median number
of calls at each predicted date.

Average RRMSPE by strata, t+ 1
OTM ATM ITM S M L

BS 0.1624 0.0712 0.0413 0.0682 0.0681 0.0854
FI 0.1618 0.0707 0.0413 0.0679 0.0679 0.0846
BL 0.1316 0.0681 0.0421 0.0658 0.0619 0.0800

Spline 0.2163 0.1012 0.0640 0.0876 0.0666 0.1228
BS(T) 0.1621 0.0710 0.0406 0.0707 0.0648 0.0794
FI(T) 0.1613 0.0705 0.0407 0.0704 0.0643 0.0787
BL(T) 0.1234 0.0657 0.0432 0.0661 0.0582 0.0762
BS(M ) 0.1218 0.0724 0.0459 0.0679 0.0650 0.0768
FI(M ) 0.1205 0.0713 0.0458 0.0673 0.0642 0.0759
BL(M ) 0.1270 0.0723 0.0448 0.0665 0.0699 0.0841
# dates 257 257 229 230 164 154

median calls 8 4 2 9 5 1

For one-week-ahead predictions, the BL model is the best unstrati…ed
model except for ATM and L calls, for which the FI model provides
the best …t. The best model overall is the FI(M ) model, except for
ITM contracts, for which the BL model provides the best …t, and ATM
contracts, for which the FI model provides the best …t.

In conclusion, for one-day-ahead predictions the BL(T) model pro-
vides the best mean …t, closely followed by the BL model. These models
also give the best …t the highest percentage of the predicted dates. When
the prediction length is extended to a week, the best model in terms of
mean RRMSPEt is the FI(M ) model, closely followed by the FI model.
However, for each class of models, the model with Bayesian learning still
provide the best …t the highest percentage of dates.

Furthermore, even for one-week-ahead predictions, the BL model is
the best unstrati…ed model for several types of contracts, especially for
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OTM contracts. This is in agreement with the …nding by Timmermann
and Guidolin in their application of the BL model to data on the S&P500,
showing that the BL model outperforms the competing models for OTM
contracts.

An interesting observation is that for all prediction lengths and all
classes of models, the FI model does slightly better out-of-sample, in
terms of mean RRMSPEt, than its BS counterpart. The advantage of
the FI model is even more apparent when one considers the percentage of
dates the models outperform the competitors; the FI model consistently
scores higher in this regard. These results are not likely to be random:
when predictions were made for 37 di¤erent prediction lengths, only once
did the BS model obtain a lower mean RRMSPEt than the FI model.

Table 3.3.C: Average Relative Root Mean Prediction Error by
moneyness and time to expiration for prediction
one week ahead. " dates" is the number of dates
predicted and "median calls" is the median number
of calls at each predicted date.

Average RRMSPE by strata, t+ 7
OTM ATM ITM S M L

BS 0.1738 0.0792 0.0445 0.0745 0.0830 0.0965
FI 0.1704 0.0779 0.0442 0.0739 0.0814 0.0941
BL 0.1596 0.0828 0.0440 0.0739 0.0804 0.1058

Spline 0.6776 0.2302 0.0637 0.1241 0.1404 0.4400
BS(T) 0.1800 0.0837 0.0445 0.0806 0.0822 0.0965
FI(T) 0.1785 0.0825 0.0444 0.0803 0.0813 0.0949
BL(T ) 0.1834 0.0915 0.0471 0.0883 0.0839 0.1050
BS(M ) 0.1462 0.0818 0.0495 0.0737 0.0812 0.0927
FI(M ) 0.1426 0.0803 0.0488 0.0725 0.0786 0.0917
BL(M) 0.1644 0.0873 0.0492 0.0767 0.0893 0.1112
# dates 247 247 217 223 158 138

median calls 8 4 2 9 5 1
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Summary

In this chapter we have performed in-sample tests of the BS, FI, BL
and BS spline option pricing models. Among the unstrati…ed models, it
was seen that the best overall …t, as measured by RMSVE, was obtained
by the BL model, which was only 2/3 that of the RMSVE of the BS
model. Furthermore, the BL model displayed the best …t in 65% of the
261 dates, followed by the BS spline model which was the best model in
26% of the dates. The BL estimates of the upfactor U was in general
considerably lower than the corresponding estimates for the BS and FI
models. Although potentially interesting, a comparison of the BL and
FI estimates of the probability ¼ is hampered by the sensitivity of the
probability to the dividend d.

The strength of learning ± in the unstrati…ed model varied consider-
ably over time, with only 48% of the estimates di¤erent from zero.

The BS, FI and BL models were also estimated on subsets according
to time to expiration and moneyness. The averages of RMSVEt and
RRMSVEt of the BL(T) model was about half that of the averages of
RMSVEt and RRMSVEt of the BS(T)/FI(T) model, for all times to
expiration. The strength of learning was considerably higher for all times
to expiration than for the unstrati…ed BL model, with an average ± in
general 5 times that of the ± of the unstrati…ed model. Furthermore, for
the BL(T) model, ± was di¤erent from zero in 91% of the observations.
These …ndings were related to the pattern of level and strength of smile
described in Chapter 1.

Learning made less of a contribution in the models strati…ed according
to moneyness, although it still provided a marked improvement. The
improvement in terms of RMSVEt and RRMSVEt of the BL(M) model
over the BS(M)/FI(M ) model was increasing in moneyness, with an
average RRMSVEt 64% that of the average RRMSVEt of the BS/FI
model. The strength of learning for the BL(M) model was also increasing
in moneyness and weaker than for the BL(T) model. Lack of data makes
it di¢cult to use the overall measure of …t RMSV E to compare the
strati…ed models with the unstrati…ed models, since the RMSV E of the
strati…ed models are biased downwards.



Summary 117

The out-of-sample tests of the option pricing models show that Bayesian
learning is useful for one-day-ahead predictions, as BL(T) is the best
model, closely followed by the BL model. Bayesian learning is less suc-
cessful for one-week-ahead predictions; here the FI(M ) model gives the
lowest mean RRMSPEt and the FI model is a close second. For one-
week-ahead predictions the strati…ed BL models gives the poorest …t,
along with the BS-spline model, suggesting that parameter stability may
be a concern.
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APPENDIX

Appendix A The Discrete Black-Scholes
Model

In order for the results from this study to be comparable with the implied
volatilities from the discrete time option model with Bayesian learning,
the discrete time BS (DBS) model is used to solve for the implied volatil-
ities. We therefore want to make sure that the discrete BS provides a
good approximation to its continuous counterpart. Speci…cally, we want
to link the volatility implied by discrete BS to the annual standard de-
viation used in the continuous BS formula.

The model

The discrete BS takes as given an equilibrium resulting in a current date
stock price S and a one period bond giving riskless return R:Denoting by
U the up return and byD the down return, the stock price in equilibrium
is assumed to either advance to SU or decline to SD with exogenous
probabilities q and 1 ¡ q, respectively. The condition U > R > D rules
out the existence of arbitrage opportunities and provides the risk neutral
probability of an upstep

p1 =
R¡D
U ¡D

The up rate of return u is de…ned to be lnU and the down rate of return
is de…ned to be lnD.
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One period expected rate of return and its variance

The expected return of the stock with respect to an exogenous probability
q in the one period model is

q lnU + (1 ¡ q) lnD = ¹q

and the variance of the return is

q (1¡ q) (lnU ¡ lnD)2 = ¾2q

Solving for U and D we get

U = e
¹q+¾q

vuut(1¡ q)
q

D = e
¹q¡¾q

vuut
q

(1¡ q)

Dividing the given period into M subperiods

For the purpose of investigating the relationship between the parameters
of the DBS and the moments of the return in the continuous BS model
we now divide the one period model into M subperiods and denote by
M = f1; 2; : : : ;m; : : : ;Mg the set of subperiods. For the given q we want
to choose subperiod returns UM; DM and RM such that the expected
return and variance of return of the one period model are maintained.
An obvious choice is RM = elnR=M and to get UM and DM we solve the
equation system

8
><
>:

M [q ln UM + (1¡ q) lnDM ] = ¹q

Mq(1 ¡ q)(lnUM ¡ lnDM)2 = ¾2q
so that the moments from the one period model are intact. Doing this
we obtain

UM = e

¹q
M

+
¾qp
M

vuut(1 ¡ q)
q

DM = e

¹q
M

¡
¾qp
M

vuut
q

(1 ¡ q)

(¤)
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However, ensuring that the M -period model provides the same mean
and variance as does the one-period model is not enough to show that
the discrete BS model converges to the continuous BS model. For that
purpose we de…ne the risk neutral probability of an upstep to be

pM =
RM ¡DM
UM ¡DM

As a …rst step we show that the riskneutral probability in the M -period
model converges to the exogenous probability q.

Convergence of riskneutral probabilities to exogenous

Let a = ¾2q (1 ¡ q) =q and b = ¾2qq= (1¡ q) : Then

pM = RM ¡DM
UM ¡DM

= er=M ¡ e¹q=M¡
p
b=M

e¹q=M+
p
a=M ¡ e¹q=M¡

p
b=M

where r = lnRM : Letting x = 1=M , f (x) = erx ¡ e¹qx¡
p
bx; g (x) =

e¹qx+
p
ax¡ e¹qx¡

p
bx and multiplying with e¡x¹ yields

pM =
ex(r¡¹) ¡ e¡

p
bx

e
p
ax ¡ e¡

p
bx

=
f (x)
g(x)

In order to apply l’Hopitals rule to determine the limit of pM asM tends
to in…nity we calculate the derivatives

f 0(x) = (r ¡¹)ex(r¡¹) +
p
b

2
p
x
e¡

p
bx

g0(x) =
p
a

2
p
x
e
p
ax +

p
b

2
p
x
e¡

p
bx

so that

f 0(x)
g0(x)

=
(r ¡ ¹)ex(r¡¹) +

p
b

2
p
x
e¡

p
bx

p
a

2
p
x
e
p
ax+

p
b

2
p
x
e¡

p
bx

=
2
p
x(r ¡ ¹)ex(r¡¹) +

p
be¡

p
bx

p
ae

p
ax +

p
be¡

p
bx
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Hence

lim
M!1

pM =
f 0(0)
g0(0)

=
0 +

p
bp

a+
p
b

=
¾

pqp
1¡ q

¾
·p

1¡ qpq +
pqp
1 ¡ q

¸

=
pqpqp1¡ qp

1¡ q = q

Consequently, as M ! 1 the riskneutral distribution approaches the
…xed value of q. Figure A illustrates the convergence to q = 1=2 when
¹= 0 , r = 0:04 and ¾ = 0:3:

0 20 40 60 80 100
0.492

0.493

0.494

0.495

0.496

0.497

0.498

0.499

0.5
Convergence of the Riskneutral Probability

Number of steps, M

p M

Figure A: Convergence of the riskneutral probability as number
of steps increases, when ¹ = 0; r = 0:04 and ¾ = 0:3

Moments of the limiting distribution

Equipped with the riskneutral probabilities pM we can now show that
the limiting value of the expected return and the variance of return with
respect to the riskneutral probability measure p. Thus we will see that
¹p tends to r ¡ (1=2) ¾2q and ¾2p tends to the variance with respect to
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the subjective probability measure q. For this purpose we de…ne the
random variable YM = zuM + (1¡ z) dM where z 2 Bin(pM ; 1), enabling
us to write the subperiod expected rate of return with respect to the
probability pM as

E [YM] = E [zuM + (1¡ z) dM ]

= E [zuM ] +E [(1¡ z) dM ] = uMpM + dM(1¡ pM)

where ln UM = uM and lnDM = dM. Since V [z] = pM (1¡ pM) and the
z’s are iid, the riskneutral variance of the subperiod rate of return is

V [YM] = V [zuM + (1 ¡ z) dM ]
= V [zuM ] + V [(1¡ z) dM ] + 2cov[zuM ;(1¡ z) dM]
= u2MV [z] + d2MV [(1¡ z)] + 2uMdMcov[z; (1¡ z)]
= (u2M + d2M) V [z] + 2uMdM (cov [z; 1] ¡ cov [z; z])
= (u2M + d2M) V [z] ¡ 2uMdMV [z]
= (uM ¡ dM)2 V [z]
= (uM ¡ dM)2 pM (1¡ pM)

Turning now to the riskneutral expected return and variance over all M
periods we …rst note that since the return over all M periods is ZM =P
i2MYM;i where each YM;i; i 2 M, is distributed as YM we have

E [ZM] = E

"X

i2M
YM;i

#
= ME [YM ] =M (pMuM + (1¡ pM) dM)

and

V [ZM ] = V

"X

i2M
YM;i

#
=MV [YM] = M (uM ¡ dM)2 pM (1 ¡ pM)

It now remains to evaluate these expressions as M ! 1.

Convergence of variance of the return

Recalling relation (¤) de…ning UM and DM we have

(lnUM ¡ lnDM)2 =
¾2q

q(1¡ q)
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Hence

uM ¡ dM = ¾qp
M

Ãs
(1 ¡ q)
q

+
r
q

1¡ q

!
= ¾qp
M

1p
q (1¡ q)

and since pM ! q as M tends to 1 we get

lim
M!1

V [ZM] = lim
M!1

M (uM ¡ dM)2 pM (1¡ pM)

= lim
M!1

¾2q
1

q(1 ¡ q)pM (1¡ pM) = ¾2q

Convergence of expectation of the return

Again letting a = ¾2q (1 ¡ q) =q and b = ¾2qq= (1 ¡ q) the subperiod rates
of return can be written

u =
¹q
M

+
p
a=M

d =
¹q
M ¡

p
b=M

so that the riskneutral probability of an upstep an downstep becomes

pM = RM ¡DM
UM ¡DM

= er=M ¡ e¹q=M¡
p
b=M

e¹q=M+
p
a=M ¡ e¹q=M¡

p
b=M

1 ¡ pM =
UM ¡RM
UM ¡DM

=
e¹q=M+

p
a=M ¡ er=M

e¹q=M+
p
a=M ¡ e¹q=M¡

p
b=M

so that

E [ZM ] = M (pMuM + (1¡ pM)dM)

= M
h
pM

³
¹q=M +

p
a=

p
M

´
+ (1¡ pM)

³
¹q=M ¡

p
b=

p
M

´i

= ¹q +
p
M

³
pM

p
a ¡ (1¡ pM)

p
b
´

Putting x = 1=
p
Mwe get
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p
M

³
pM

p
a¡ (1 ¡ pM)

p
b
´

=
p
M

0
@

p
a

³
er=M ¡ e¹q=M¡

p
b=M

´
¡

p
b
³
e¹q=M+

p
a=M ¡ er=M

´

e¹q=M+
p
a=M ¡ e¹q=M¡

p
b=M

1
A

=
p
M

0
@

p
a

³
er=M ¡ e¹q=M¡

p
b=M

´
¡

p
b
³
e¹q=M+

p
a=M ¡ er=M

´

e¹q=M+
p
a=M ¡ e¹q=M¡

p
b=M

1
A

=
p
M

0
@

p
a

³
e(r¡¹q)=M ¡ e¡

p
b=M

´
¡

p
b
³
e
p
a=M ¡ e(r¡¹q)=M

´

e
p
a=M ¡ e¡

p
b=M

1
A

=

³p
a +

p
b
´
ex

2(r¡¹q) ¡
³p
ae¡x

p
b +

p
bex

p
a
´

x
³
ex
p
a ¡ e¡x

p
b
´

Let f and g denote the functions with values given by the numerator and
the denominator, respectively. Then

f 0 (x) =
³p
a +

p
b
´
2x

¡
r ¡ ¹q

¢
ex

2(r¡¹q) +
³p
abe¡x

p
b ¡

p
abex

p
a
´

g0 (x) =
³
ex
p
a ¡ e¡x

p
b
´
+ x

³p
aex

p
a +

p
be¡x

p
b
´

Using l’Hopital’s rule repeatedly we get

lim
x!0

f 0 (x)
g0 (x)

= lim
x!0

³p
a +

p
b
´
2
¡
r ¡ ¹q

¢
ex

2(r¡¹q) +

³p
abe¡x

p
b ¡

p
abex

p
a
´

x³
ex
p
a ¡ e¡x

p
b
´

x
+

³p
aex

p
a +

p
be¡x

p
b
´

=

³p
a +

p
b
´
2

¡
r ¡ ¹q

¢
¡

³
a
p
b+ b

p
a
´

³p
a +

p
b
´
+

³p
a +

p
b
´

=
¡
r ¡ ¹q

¢
¡ 1

2

³
a
p
b + b

p
a
´

³p
a+

p
b
´ =

¡
r ¡ ¹q

¢
¡ 1

2
¾2q

so that E [ZM ] tends to r ¡ (1=2) ¾2q as M tends to in…nity.
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Although this expression does not explicitly contain the expected
return,¹q, calculated with respect to the probability q; it does depend
on the expected return as perceived by a riskneutral agent. This is so
because

pU + (1¡ p)D =
R ¡D
U ¡DU +

U ¡R
U ¡DD = R

and lnR = r.

Convergence in distribution

The stochastic stock price at date 1 after dividing into M subperiods is

SUkMDM¡kM = SekuM+(M¡k)dM = SeZM

where the number of upsteps k 2 Bin(pM ;M).
Let x > 0. We have

Pr (S1 · x) = Pr
¡
SeZM · x

¢
= Pr (ZM · lnx ¡ lnS)

so that

Pr

0
BB@
ZM ¡ E (ZM)

¾q
·

(lnx ¡ lnS)¡
µ
r ¡ 1

2¾
2
q

¶

¾q

1
CCA

Using a generalization of the Central Limit Theorem, due to Lindeberg,
it can be shown this probability tends to

©

0
BB@

(lnx ¡ ln S) ¡
µ
r ¡ 1

2
¾2q

¶

¾q

1
CCA

as M tends to in…nity, where © is the Standard Normal Distribution.
Analogously the stock price at time T is distributed as the limit

of SeTZM as M tends to in…nity. The limit of TZM has expectation¡
r ¡ (1=2) ¾2q

¢
T and standard deviation ¾qT:
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Appendix B Spot-Futures Parity

Future on stock with cash dividend; two dates

As a preliminary we …rst derive the price quoted at date t of a future
with delivery date T , at the agreed price Ft;T ; when the dividends on
the stock are known and non-stochastic with date T - value DT. We
thus consider an economy with two dates and three assets: a futures
contract stipulating the owner to pay the amount Ft;T at date T , a bond
with date-t price 1 each period giving return (1 + r) and a stock with
postdividend prices St and ST , respectively. The extended payo¤ matrix
W (Cf Borglin [2004]) can then be written as

W =

"
¡St ¡1 0

ST +DT (1 + r)(T¡t) ST ¡ Ft;T

#

where the …rst row contains the amounts to be delivered at date t and
the second row the payo¤s at date T:

Now consider the portfolio µ

µ =

2
64

¡1
(1 + r)¡(T¡t) (Ft;T +DT )

1

3
75

resulting in the net income vector Wµ equal to

"
¡St ¡1 0

ST +DT (1 + r)(T¡t) ST ¡ Ft;T

# 2
64

¡1
(1 + r)¡(T¡t) (Ft;T +DT )

1

3
75

=

"
St ¡ (1 + r)¡(T¡t) (Ft;T +DT )

0

#

Thus, in the absence of arbitrage we have

St ¡ (1 + r)(T¡t) (Ft;T +DT ) = 0

giving the price of the future

Ft;T = St(1 + r)¡(T¡t) ¡DT
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Letting ln(1 + r) = ½ we can write the future price as

Ft;T = Ste(T¡t)½ ¡DT

Future on stock with cash dividend; several dates

When calculating the futures price on a stock index it is customary to
view the index as a security that provides a known dividend yield, mean-
ing that one assumes, in the discrete case, that the cash dividends are
a constant proportion d of the predividend stock price. The continuous
dividend yield is then de…ned by ± = ln(1 ¡ d).

Although similar to the case where the amount of cash dividend to
be paid during the timespan is known, the arbitrage/replicating strategy
here di¤ers somewhat in that one does not buy one unit of the stock at
time t, but rather a fraction (1 ¡ d)T¡t. By repeatedly reinvesting the
cash dividends in the stock, a holding of one unit of the stock at date T
is accomplished.

We let an example with three dates illustrate the reasoning. Firstly,
assume that at date t we buy one unit of the stock at the price St. Then
the wealth in stock entering the date t +1 node equals the predividend
price, which is either StU or StD. Furthermore, since the cash dividend
is either StUd or StDd wealth is by dividends split up at t+ 1

8
>>>><
>>>>:

StU = StU(1¡ d)| {z }
post¡dividend price

+ StUd| {z }
cash dividend

StD = StD(1¡ d)| {z }
post¡dividend price

+ StDd| {z }
cash dividend

Accordingly, the postdividend price at t+1 is either StU(1¡d) orStD(1¡
d) so that the amount of stock leaving the date t+ 1 node is either

StU
StU(1¡ d) = 1

(1¡ d) or StD
StD(1 ¡ d) = 1

(1¡ d)
Entering the t + 2 node, the pre-dividend prices will be StU2(1 ¡ d),
StUD(1 ¡ d) or StD2(1 ¡ d). Since we arrive at the date t + 2 node
holding 1=(1¡ d) of the stock, the wealth at date t+ 2 is
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8
>>><
>>>:

StU2 = StU2(1 ¡ d) + StU2d

StUD = StUD(1 ¡ d) + StUDd

StD2 = StD2(1 ¡ d) + StD2d

corresponding to t + 2 postdividend prices StU2(1 ¡ d)2; StUD(1 ¡ d)2
and StD2(1 ¡ d)2 implying that the amounts of stock at postdividend
prices are

StU2

StU 2(1¡ d)2 =
1

(1¡ d)2
StUD

StUD(1¡ d)2 =
1

(1¡ d)2
StD2

StD2(1¡ d)2 = 1
(1¡ d)2

We thus conclude that buying the amount (1¡d)2 of the stock at date t,
and repeatedly reinvesting the cash dividends in the stock gives precisely
1 unit of the stock after dividends at date t + 2. Generally, buying the
amount (1 ¡ d)T¡t of the stock at date t will result in a holding of one
unit of the stock at date T .

To derive the arbitrage-free price of the future we consider the ex-
tended payo¤ matrix for three dates

W =

2
6666666664

¡St ¡1 0
...

...
...

StU 2 (1 + r)2 ¡Ft;T +StU2(1 ¡ d)2
StUD (1 + r)2 ¡Ft;T +StUD(1 ¡ d)2
StDU (1 + r)2 ¡Ft;T +StDU(1 ¡ d)2
StD2 (1 + r)2 ¡Ft;T +StD2(1 ¡ d)2

3
7777777775

where only the payo¤s for the initial date and last date have been written
out. With several periods the portfolio has to be adjusted after each
dividend date. Here we take the view of an investor who at the initial
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date acquired the portfolio µ

µ =

2
66664

¡(1¡ d)2
1

(1 + r)2
Ft;T

1

3
77775

Reinvesting the dividends in the stock will thus after two periods guar-
antee a holding of one unit of the stock. In the case of two upsteps, the
…nal value of the portfolio µ is 0 since

¡StU2(1¡ d)2 + Ft;T ¡ Ft;T + StU2(1¡ d)2 = 0

and it is easy to check that this will also hold for the other three cases.
Thus, assuming no arbitrage, the initial cost of this portfolio must be 0
so that

St(1 ¡ d)2 = 1
(1 + r)2

Ft;T

In the general case, we have for an initial date t and …nal date T

St(1 ¡ d)(T¡t) = 1
(1 + r)(T¡t)

Ft;T

implying that
Ft;T = St[(1 ¡ d)(1 + r)](T¡t)

which is equivalent to

Ft;T = Ste(T¡t)[ln(1¡d)+ln(1+r)]

Spot-future parity

Letting ln(1¡ d) = ± and ln(1 + r) = ½ we can thus state spot-future
parity as

Ft;T = Ste(T¡t)(½+±)

From this we can solve for the dividend intensity ± :

± =
1

(T ¡ t) [lnFt;T ¡ lnSt]¡ ½

and thus the spot-future parity can be used to infer the dividend intensity.
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Appendix C Put-Call Parity

Stock with known cash dividend; several dates

Analogously to the case of spot-futures parity, we …rst derive the arbi-
trage relation known as put-call parity when the dividends on the stock
are known with date T - value DT . Denoting the current call and put
prices by Ct and Pt, the extended payo¤ matrix W is given by

Date Stock Bk acc Call opt Put opt
0 ¡St ¡1 ¡Ct ¡Pt
T ST +DT (1 + r)(T¡t) (ST ¡K)+ (K ¡ ST )+

Thus

W =

"
¡St ¡1 ¡Ct ¡Pt

ST +DT (1 + r)(T¡t) (ST ¡K)+ (K ¡ ST )+

#

where (ST ¡K)+ = max(0; ST ¡K). By acquiring the portfolio

µ =

2
666664

¡1
K +DT

(1 + r)(T¡t)
1

¡1

3
777775

one gets the net income vector Wµ given by

"
¡St ¡1 ¡Ct ¡Pt

ST +DT (1 + r)(T¡t) (ST ¡K)+ (K ¡ ST )+

#
2
666664

¡1
K +DT

(1 + r)(T¡t)
1

¡1

3
777775

=

2
64

St ¡
1

(1 + r)(T¡t)
(K +DT )¡ C + P

¡ST +K + (ST ¡K)+ ¡K ¡ (K ¡ ST )+

3
75

It is easily veri…ed that regardless of whether ST >K or ST · K , the last
row, corresponding to the …nal dividend at date T; will equal 0: Hence,
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in the absence of arbitrage, we have

St ¡
K +DT

(1 + r)(T¡t)
¡ C + P = 0

so that
C = St + P ¡ K +DT

(1 + r)(T¡t)

Letting ln(1 + r) = ½ , we can state put-call parity as

C = St + P ¡ e¡(T¡t)½ (K +DT )

Stock with known cash dividend yield; several dates

Again letting d denote the constant proportion of the predividend stock
price and d̂ = 1¡ d, the extended payo¤ matrix, W; with three dates is
given by

Date/State Stock Bk acc Call opt Put opt
0 ¡St ¡1 ¡Ct ¡Pt
1 0 0 0 0

2

8
>>><
>>>:

1
2
3
4

StU2

StUD
StDU
StD2

(1 + r)2

(1 + r)2

(1 + r)2

(1 + r)2

(StU 2d̂2 ¡K)+

(StUDd̂2 ¡K)+

(StDUd̂2 ¡K)+

(StD2d̂2 ¡K)+

(K ¡ StU2d̂2)+

(K ¡ StUDd̂2)+
(K ¡ StDUd̂2)+
(K ¡ StD2d̂2)+

The holding of one unit of the stock at the …nal date is achieved by
repeatedly reinvesting the dividends in the stock. Acquiring at the initial
date the portfolio

µ =

2
66666664

¡ (1 ¡ d)2

K
(1 + r)2

1
¡1

3
77777775

gives a date 0 cost of

St (1 ¡ d)2 ¡ K
(1 + r)2

¡ C ¡ P
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The portfolio µ gives after two upsteps the net income

¡StU2 (1 ¡ d) +K + (StU2 (1 ¡ d)2 ¡K)+ ¡ (K ¡ StU 2 (1¡ d)2)+ = 0

It is easily veri…ed that at the …nal date, also for the states 2; 3 and 4; the
net income received at date 2 is zero. Hence, in order to avoid arbitrage,
the date 0 cost of the portfolio µ is zero.

Generally, for an initial date t and …nal date T we thus have

St (1¡ d)(T¡t) ¡ K
(1 + r)(T¡t)

¡ C ¡ P = 0

Again letting ln(1¡d) = ± and ln(1+r) = ½ we can write put-call parity
for the case when dividends are a known proportion of the stock price as

Ste(T¡t)± ¡Ke¡(T¡t)½ ¡ C ¡P = 0

Solving for ±; we get the dividend yield inferred by put-call parity:

± =
1

(T ¡ t) ln
e¡½(T¡t)K + C ¡ P

St
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