
LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

Energy-Centric Scheduling for Real-Time Systems

Gruian, Flavius

2002

Link to publication

Citation for published version (APA):
Gruian, F. (2002). Energy-Centric Scheduling for Real-Time Systems. [Doctoral Thesis (monograph),
Department of Computer Science]. Department of Computer Science, Lund University.

Total number of authors:
1

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.
 • Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

https://portal.research.lu.se/en/publications/262fa66d-f491-4304-94bf-f983b3d4868a

Energy-Centric Scheduling
for

Real-Time Systems

Flavius Gruian

Doctoral dissertation, 2002

Department of Computer Science
Lund Institute of Technology

Lund University

This thesis is submitted to the Board of Research: FIME — Physics, Infor-
matics, Mathematics and Electrical Engineering — at Lund Institute of Tech-
nology (LTH), Lund University, in partial fulfillment of the requirements for
the degree of Doctor of Philosophy in Engineering.

Document built with:
LATEX 2ε, gnuplot 3.7.2, FreeHand 10, Xfig 3.2 patchlevel 2, and MS Excel.

Version: November 16, 2002

ISBN 91-628-5494-1
ISSN 1404-1219
Dissertation 15, 2002
LU-CS-DISS:2002-2

Department of Computer Science
Lund Institute of Technology
Lund University
Box 118
SE-221 00 Lund
Sweden

Email: Flavius.Gruian@cs.lth.se
WWW: http://www.cs.lth.se/home/Flavius Gruian

c© 2002 Flavius Gruian

ii

iii

ABSTRACT

ENERGY CONSUMPTION is today an important design issue for all kinds of
digital systems, and essential for the battery operated ones. An important
fraction of this energy is dissipated on the processors running the application
software. To reduce this energy consumption, one may, for instance, lower
the processor clock frequency and supply voltage. This, however, might lead
to a performance degradation of the whole system. In real-time systems, the
crucial issue is timing, which is directly dependent on the system speed. Real-
time scheduling and energy efficiency are therefore tightly connected issues,
being addressed together in this work.

Several scheduling approaches for low energy are described in the thesis,
most targeting variable speed processor architectures. At task level, a novel
speed scheduling algorithm for tasks with probabilistic execution pattern is
introduced and compared to an already existing compile-time approach. For
task graphs, a list-scheduling based algorithm with an energy-sensitive pri-
ority is proposed. For task sets, off-line methods for computing the task max-
imum required speeds are described, both for rate-monotonic and earliest
deadline first scheduling. Also, a run-time speed optimization policy based
on slack re-distribution is proposed for rate-monotonic scheduling. Next, an
energy-efficient extension of the earliest deadline first priority assignment
policy is proposed, aimed at tasks with probabilistic execution time. Finally,
scheduling is examined in conjunction with assignment of tasks to processors,
as parts of various low energy design flows. For some of the algorithms given
in the thesis, energy measurements were carried out on a real hardware plat-
form containing a variable speed processor. The results confirm the validity of
the initial assumptions and models used throughout the thesis. These exper-
iments also show the efficiency of the newly introduced scheduling methods.

v

ACKNOWLEDGMENTS

Foremost, I would like to thank my supervisor, Krzysztof Kuchcinski, for his
permanent support and guidance, and for his steady confidence in my work.
Special thanks to my co-supervisor, Petru Eles, whose method and attitude
towards research often served as a model for myself, ever since the time of my
undergraduate studies. I am also very grateful to my other co-supervisor, Per
Larsson-Edefors, for his invaluable help in the early stages of this thesis.

During my years as a PhD-student, I had the privilege of working in two
successful departments, that both provided a pleasant and friendly environ-
ment. Many thanks to all the people in the Department of Computer and
Information Science at Linköping University, where I started on the graduate
studies path. My best regards also to the people in the Department of Com-
puter Science at Lund University, where I finally completed this thesis. The
present ESDLAB members and former CADLAB colleagues, and now friends,
have played an important role throughout my studies.

On the more practical side, many thanks to Intel, especially to Bill E.
Brown and Atila Alvandpour, for providing not only the hardware platform
for the experiments, but also prompt feedback and helpful suggestions. Also,
I very much appreciate the help given by Martin Nilsson with the experi-
mental setup and measurements. Many thanks to all the engineers in the
technical group, for providing a trustworthy and efficiently working system.
My appreciation to the administrative staff, for their excellent handling of all
kinds of practical problems.

I would also like to mention that this work was supported initially by
WITAS — The Wallenberg laboratory for research on Information Technol-
ogy and Autonomous Systems — and subsequently by ARTES – A network
for Real-Time research and graduate Education in Sweden.

vii

I owe a lot to my friends from all over the world, who were of more help
than they know it. My friends back home believed in me and supported me
from the beginning; without them I would have never started this journey.
The friends I made while in Linköping were of great help during my stay
there, and continue to bring joy into my life. Special thanks to Paul, who took
the time to read this thesis and to provide insightful feedback. My newest
friends from Lund do a good job in reminding me that there are other things
in life than writing theses. Thank you all. Finally, to someone very special:
this might have nothing to do with the curtains, but thank you for every single
moment we spent together. . .

None of this would have happened without the full support of my family.
My deepest gratitude and love to my parents, Mili and Liviu, who always
wanted the best for me.

Flavius Gruian
Lund, November 16, 2002

viii

CONTENTS

1 Introduction 1
1.1 Motivation . 1
1.2 Thesis Objectives . 2
1.3 Contributions . 3
1.4 Thesis Layout . 4

2 Background 5
2.1 Power, Energy, and Delay . 5

2.1.1 Power Consumption in CMOS Circuits 5
2.1.2 Energy Consumption in CMOS Circuits 9

2.2 Real-Time Systems . 10
2.3 System Synthesis . 12
2.4 Related Research . 13

2.4.1 Task Level Scheduling . 14
2.4.2 Task Group Level Scheduling 15
2.4.3 System-Level Synthesis 18

3 Models 21
3.1 Task Model . 21

3.1.1 Task attributes . 22
3.2 Task Group Models . 24

3.2.1 Task Graphs . 24
3.2.2 Enhanced Task Graphs . 25

ix

CONTENTS

3.2.3 Task Sets . 26
3.3 Processor Models . 27

3.3.1 Fixed Speed Processors . 28
3.3.2 Variable Speed Processors 29

3.4 Communication Models . 37

4 Task Level Scheduling 39
4.1 Slower Execution vs. Shutdown 40
4.2 Unique Execution Pattern . 42
4.3 Probabilistic Execution Pattern 42

4.3.1 Stochastic Scheduling . 44
4.3.2 Compiler-Assisted Speed Scheduling 48

4.4 Discussion . 50
4.4.1 A Few Real-Time Considerations 50
4.4.2 WCE Stretch vs. Stochastic 51
4.4.3 Stochastic vs. Compiler-Assisted Scheduling 54

5 Task Group Scheduling 61
5.1 The Energy of a Task Group Schedule 62
5.2 The Proportional Stretch Approach 64
5.3 List-Scheduling with Proportional Stretch 67
5.4 The LEneS Algorithm . 70

5.4.1 Scheduling an Enhanced Task Graph 70
5.4.2 The Average Energy of a Schedule 71
5.4.3 The Priority Function . 72
5.4.4 LEneS Algorithm Pseudo-code 74
5.4.5 LEneS Evaluation . 77
5.4.6 Conclusions . 81

5.5 Maximum Required Speed Approach 81
5.5.1 MRS for EDF scheduling 81
5.5.2 MRS for RM scheduling 86

5.6 RM Scheduling with Slack Distribution 89
5.6.1 The Slack Distribution Strategy 90
5.6.2 Worst Case Response Time Analysis 91
5.6.3 Experimental Results . 92
5.6.4 Conclusions . 96

5.7 Uncertainty-Based Scheduling 98
5.7.1 UBS for Tasks with Unique Deadline 98
5.7.2 Extending UBS for EDF 107
5.7.3 Conclusions . 112

x

CONTENTS

6 Architecture Selection and Scheduling 113
6.1 An Overview of Our Design Flow 113
6.2 Fixed Speed Processor Architectures 115

6.2.1 Modeling the Problem with Constraints 115
6.2.2 Searching for Solutions . 119
6.2.3 Experiments . 121

6.3 Variable Speed Processor Architectures 126
6.3.1 The “Speed-Up and Stretch” Approach 127
6.3.2 The “Eye-on-Energy” Approach 128
6.3.3 Simulated Annealing as Assignment Search 130
6.3.4 S&S vs. EonE Comparison 131

6.4 Chapter Summary . 134

7 Final Remarks 135
7.1 Summary and Conclusions . 135
7.2 Future Trends . 137
7.3 Future Work . 138

Bibliography 151

A Proofs 153
A.1 Stochastic schedule energy lower bound 153
A.2 Optimal order for UBS . 154

B The Test System 157
B.1 ADI 80200EVB . 157
B.2 MAXIM MAX1855 EV kit . 158
B.3 Measurements Setup . 158

C A Task Level Stochastic Schedule on 80200EVB 161

xi

CHAPTER 1

INTRODUCTION

THIS FIRST CHAPTER starts by presenting the motivation behind the research
work making the subject of this thesis, and continues with a succinct and gen-
eral problem formulation. We then point out the contributions of the thesis
to the real-time, design automation, and low power/energy areas. Finally, an
overview of our work is given, briefly describing the structure of the thesis.

1.1 Motivation

Energy consumption reduction is becoming nowadays an issue reflected in
most aspects of our lives. For digital systems, energy efficiency is an acute
problem appearing from the high computational demands in all sorts of ap-
plications. The obvious driving force behind addressing energy consumption
in digital systems is, at the first glance, the development of portable commu-
nication and computation. The consumers demand better performance and
more functionality from the hand-held devices, but this also means higher
power and energy consumption. Battery life is one of the most important pa-
rameters for such devices, directly influencing the system size and weight. At
the same time, although battery technology is also developing, its progress
is rather slow and cannot keep up with the demands of the modern digital
systems. At a deeper scrutiny, there are many areas that would benefit from
design methods targeting energy efficiency:

• Space applications is an area where weight has a great impact on cost,
because of the limited load of the carrier rockets and shuttles. Energy-
efficient design methods yield smaller solar panels and batteries for all
kinds of satellites and probes. For example, the electrical power sys-

1

1. INTRODUCTION

tem for the 2001 Mars Odyssey spacecraft accounts for 17% (65kg) of the
total mass, planned to operate for 4.6 years. Reducing the energy de-
mands through appropriate methods one could, for instance, add more
data acquisition instruments on board. As another example, the energy
available in a Deep Space 2 probe would yield only about two hours talk
time on an Ericsson 628 mobile phone.

• As mentioned before, portable devices, such as PDAs, mobile phones,
laptops need to use the battery energy as efficiently as possible. The di-
rect impact of energy-centric design techniques is on system size and/or
cost. The indirect impact is the environmental effect of using less bat-
teries (toxic waste) for the same functionality.

• Medical implants within the human body also require energy-efficient
designs. Pacemakers and different kinds of regulators would ideally con-
sume only the energy provided by the muscles. There exist already pro-
totypes of simple artificial retinas functioning only based on the energy
provided by the incident light.

• Lower energy consumption also means lower average power consump-
tion. Consequently, lower power consumption means less dissipated
heat. Finally, heat dissipation directly influences the packaging and
cooling solutions for integrated circuits. Energy efficiency brings thus
a bonus for all types of digital systems, in terms of lower cost packages
and cooling.

With all these applications, there is little doubt that energy efficiency is an
important optimization goal in digital system design. Furthermore, note that
most of these are in fact time critical systems. This is why the current thesis
addresses energy efficiency in the context of real-time systems.

1.2 Thesis Objectives

Timeliness and energy efficiency are often seen as conflicting goals. When
designing a real-time system, the first concern is usually time, leaving energy
efficiency as a hopeful consequence of empiric decisions. Yet, with the right
methods both goals can be achieved. Energy-efficient architectures may be
selected while still meeting the timing constraints. Furthermore, with the
advent of variable speed processors, scheduling acquired the new dimension of
processor speed. Classic real-time scheduling techniques can now be adapted
to address both timing and energy through efficient selection of processing
speed. The goal of the current thesis is to provide solutions to some of these
problems. Briefly, the answer and the leitmotif of the thesis lies in trading off
speed for energy, whenever timing requirements allow it.

2

1.3 CONTRIBUTIONS

1.3 Contributions

This thesis bridges the gap between the design of real-time and energy-effi-
cient systems by proposing several approaches that address timing and en-
ergy consumption in a unified manner. Their energy-efficient solutions, their
successful use of stochastic information, and their use of the increasingly pop-
ular variable speed processors, makes the described methods unique, to our
knowledge. Specifically, the thesis presents:

• A new task level scheduling strategy for tasks with probabilistic ex-
ecution pattern entitled Stochastic Scheduling, first introduced in
[Gru01a]. The technique is compared to several alternative approaches,
including compiler-assisted scheduling. Some practical results on a real
platform, showing the potential of our method, are also presented (Chap-
ter 4).

• A new task graph static scheduling approach, based on list schedul-
ing with an energy-centric priority function. The algorithm, entitled
LEneS, was initially introduced in [GK01]. A less successful, but much
simpler scheduling technique, LS-PS, is also described and compared to
LEneS (Sections 5.4 and 5.3).

• Methods for computing maximum required processing speeds for
task sets scheduled via the classic Earliest Deadline First and Rate-
Monotonic approaches. The simplicity and efficiency of these methods,
partially mentioned in [Gru01b, Gru01a], make them the basic real-time
energy reduction methods on variable speed processors (Section 5.5).

• An extension of the classic Rate-Monotonic Scheduling (RMS) for includ-
ing run-time slack distribution. This method, first introduced in
[Gru01a], is proven to yield the same timing behavior as the classic
RMS, but with significant reduction in energy consumption for sets of
tasks with probabilistic execution pattern (Section 5.6).

• A new ordering method for sets of tasks with probabilistic execution
times, named Uncertainty-Based Scheduling. Initially introduced
in [Gru01b], this method uses stochastic information in an aggressive
manner to lower the energy consumption without affecting the real-time
behavior, as proven by practical results on a real platform (Section 5.7).

• Analysis of several system-level design flows for low energy, directed
at task graphs, on both fixed and variable speed processor architectures.
For fixed speed processors we describe a novel approach for unified bind-
ing and scheduling, based on constraint programming, as introduced in

3

1. INTRODUCTION

[GK99]. For variable speed processor architectures, we describe two ap-
proaches, initially introduced in [Gru00b], that are based on the Simu-
lated Annealing heuristic and our own scheduling methods for low en-
ergy (Sections 6.2 and 6.3).

1.4 Thesis Layout

The thesis consists of four parts. The first, preliminary part, contains the
theoretical background necessary for understanding our work (Chapter 2) and
the models used throughout the thesis (Chapter 3). The subsequent parts
focus on describing our own research.

The second part focuses on task level scheduling for variable speed proces-
sor architectures (Chapter 4).

The third part presents a large variety of task group level scheduling tech-
niques (Chapter 5). These techniques address both task graphs and task sets.
Both static and run-time methods are described for tasks with fixed or proba-
bilistic execution pattern.

The fourth part addresses scheduling in the context of system-level design
flow (Chapter 6). Several design flows for low energy are described, both for
fixed and variable speed processor architectures.

Chapter 7 concludes the thesis, by presenting a summary and possible
future trends in this research area.

4

CHAPTER 2

BACKGROUND

THIS CHAPTER SETS THE FRAME for our work by reviewing first some basic
notions from micro-electronics, real-time systems, and design automation for
system-level synthesis. In the second part, we present some of the relevant
research related to our own, pointing out the significant differences.

2.1 Power, Energy, and Delay

In order to design power and energy-efficient systems, one has to understand
first the physical phenomena that lead to power dissipation or energy con-
sumption. Since today most digital circuits are implemented using CMOS1

devices, it is important to examine the relations between power, energy, and
signal delay in such devices. Although we focus here on CMOS circuits,
the power-energy-delay dependencies could be generalized for any technol-
ogy. Moreover, the methods and techniques we present in this thesis are at an
abstraction level that is rather independent of technology. These conclusions
are fundamental for our hardware models used in our work.

2.1.1 Power Consumption in CMOS Circuits

The issues discussed in the current section are valid for any CMOS circuit.
For the sake of simplicity, consider the CMOS inverter of Figure 2.1. The
power dissipated on this inverter can be decomposed into two basic types,
static and dynamic [RP96]:

PCMOS = Pstatic + Pdynamic (2.1)
1CMOS: Complementary Metal Oxide Semiconductor

5

2. BACKGROUND

V
dd

IN OUT

C

I
P

I
SC

I
NNMOS

PMOS

Figure 2.1: CMOS inverter

In the ideal case, CMOS circuits do not dissipate static power, since in
steady state there is no open path from source to ground. In reality, there are
always leakage currents through the MOS transistors, currents depending on
the threshold voltage and on the technological process. These currents yield
the static component of the CMOS power consumption. Although the static
power is today about two orders of magnitude smaller than the total power,
according to [Bor99] the typical chip’s leakage power increases about 5 times
each generation, and will soon become a significant portion of the total power.
Fortunately, by reducing the die temperature one can substantially lower the
leakage power. In other words, reducing the dynamic power component and
employing better cooling techniques will be even more critical in advanced
deep-sub-micron technologies.

The dynamic component of the CMOS power is dissipated during the tran-
sient behavior, i.e. during switching between logic levels. For the same CMOS
inverter depicted above, if the input switches from one logic level to the oppo-
site, at some moment both the NMOS and PMOS transistors will be open,
thus allowing a short circuit current (ISC) to appear between source and
ground. With a careful design of the transition edges, this dynamic sub-
component can be kept below 10-15% of the total power consumption.

Most of the power is, thus, consumed by charging and discharging the out-
put capacitance. Consider, for the moment, that the input executes one full
cycle from high logic-level to low logic-level and then back to high. During a
high-to-low transition, an amount of energy equal to CV 2

dd is drained from Vdd

through Ip, part of which is stored in the output capacitance while the rest
is dissipated on the PMOS transistor. During the reverse, low-to-high transi-
tion, the output capacitance is discharged through IN . Thus, during one cycle
a total energy equal to CV 2

dd is consumed. Note that the power consumption

6

2.1 POWER, ENERGY, AND DELAY

directly depends on the switching activity of the signals involved. In this con-
text, let us define the switching activity, α, as the number of high-to-low tran-
sitions during one predefined period. Since we are discussing synchronous
circuits, involving a periodic signal (a clock) with frequency f , we can choose
the predefined period mentioned earlier, as the clock period. The effective fre-
quency of switches in this case is given by the product: αf . In CMOS circuits,
this component of power dissipation accounts for at least 85-90% of the total
power consumption [RP96].

From all the considerations made above, we can approximate the power
dissipated on a CMOS circuit node using the following formula:

PCMOS ≈ Pdynamic ∼ αfCV 2
dd (2.2)

This means that the power consumption in a CMOS circuit is proportional
to the switching activity, capacitive load, clock frequency, and the square of
the supply voltage. All the power and energy reduction techniques try to
minimize one or more of these factors. Unfortunately, they are all coupled in
some manner. For example the circuit delay ∆, which sets the clock frequency,
depends on the supply voltage:

1
f
∼ ∆ ∼ Vdd

(Vdd − Vt)γ
(2.3)

where Vt is the threshold voltage and γ is the saturation velocity index. For a
sufficiently small Vt we can rewrite the relation between clock frequency and
supply voltage as:

f ∼ V
(γ−1)
dd (2.4)

Dependencies, although less obvious, exist between the other factors in the
power formula. This means that power minimization is an issue that has to
be treated carefully, as detailed below.

Supply voltage (Vdd) reduction appears to be the most promising, be-
cause of its quadratic dependency to power. A decrease in voltage by a fac-
tor of two yields a decrease in power by a factor of four. Unfortunately, the
possibility to reduce the supply voltage is limited by several factors, such as
design performance and compatibility. When the supply voltage approaches
the threshold voltage, the circuit delays become large (Figure 2.2), since the
output capacitance is charged and discharged slowly. This sets the lower limit
for the supply voltage around 2× Vt [RP96]. The degradation in performance
could be attenuated by working at lower threshold voltages, but this gives rise
to other problems. When the threshold voltage becomes very small, the leak-
age currents through the MOS transistors increase, leading to an increase of
static power consumption. Supply voltage reduction works best when com-
bined with techniques which speed up the design, such as parallelization and

7

2. BACKGROUND

 0

 2

 4

 6

 8

 10

 0.5 1 1.5 2 2.5 3

D
el

ay
 ~

 V
dd

/(
V

dd
-V

t)γ

Vdd

Vt =0.1, γ=2.0
Vt =0.3, γ=2.0
Vt =0.0, γ=2.0
Vt =0.1, γ=1.3
Vt =0.3, γ=1.3
Vt =0.0, γ=1.3

Figure 2.2: The dependency between circuit delay and supply voltage for dif-
ferent threshold voltages Vt and velocity saturation factors γ.

pipelining. The gain in speed can be converted into a decrease in power and
energy, by reducing the supply voltage. Furthermore, reducing the supply
voltage is a method that can be used for both dynamic and static CMOS cir-
cuits.

Lowering the clock frequency (f) has direct influence on the design per-
formance, and it is usually combined with speed-up techniques and supply
voltage manipulation. Stopping the clock for some circuit parts can be viewed
as ”component shut-down” at high levels of abstraction. This approach will
only work for static CMOS components, since dynamic components loose in-
formation if the clock signal is turned off.

Decreasing the capacitive load (C) is yet another way to diminish the
power consumption. The physical capacitance in a CMOS circuit consists
in fact of two capacitances [RP96]: device and interconnect parasitic capac-
itance. In the past, the device capacitance has dominated over the intercon-
nect parasitic capacitance but, with the process of technology down-scaling,
the interconnect capacitance becomes more and more important, and has to
be taken into consideration. Physical capacitance can be kept low by reducing
the number of gates, using shorter wires and smaller devices. On the other
hand, the reduction of device size reduces the current drive of the transistor,
making the circuit to operate slower. This performance loss might prevent Vdd

reduction, which is a more efficient technique for power minimization.

8

2.1 POWER, ENERGY, AND DELAY

The switching activity (α) is much influenced by the data being pro-
cessed (except for logic styles with pre-charged nodes [RP96]). From Equation
2.2, if a CMOS circuit does not change its state, it virtually does not consume
any power. The signal with the highest activity in a circuit is, by far, the clock.
Therefore, several power reduction methods focus on lowering the number of
clocked nodes in a CMOS circuit. For certain logic styles, an important source
of switching activity is glitching, or unwanted and spurious transitions that
occur before a node settles down to its final steady-state value.

The switching activity is directly influenced by the choice of number rep-
resentation in a design. For example, considering a signal oscillating around
zero, using a 2’s complement representation imposes the switching of most of
the bits whenever passing through zero. In this case, a Sign-Magnitude rep-
resentation could be more suitable. For counters and address buses, a Grey
code representation is the best choice. Of course, one should consider also the
implications in the functional units design and/or the conversion circuits, if
needed, when choosing the number representation.

The work presented in this thesis is based mainly on supply voltage scal-
ing coupled with clock frequency minimization. Switching activity or capaci-
tive load reduction are only indirectly addressed, in the chapter dedicated to
system-level synthesis. This comes from the fact that our scheduling problem
assumes that the work performed by each task is already decided. More pre-
cisely the capacitive load and number of switches is fixed at the moment the
tasks are scheduled. Furthermore, the low level aspects of power minimiza-
tion are somewhat encapsulated in the power versus speed (clock frequency
and supply voltage) dependency specific for each processor.

2.1.2 Energy Consumption in CMOS Circuits

As stated in the thesis title, we focus on energy rather than power consump-
tion. Although low power and energy efficiency are often perceived as overlap-
ping goals, there are certain differences when designing for one or the other.
Formally, the energy consumed by a system is the amount of power used dur-
ing a certain period of time:

E =
∫ t

0

P (t)dt (2.5)

Every computation, simple or complex, requires a specific interval of time to
be completed. The energy consumption decreases if the time required to per-
form the operation decreases and/or the power consumption decreases. Thus,
compared to the pure power consumption minimization problem, energy re-
duction includes the time aspect. A technique that would lower the power,
but at the same moment increase the computational time, might even lead to

9

2. BACKGROUND

an increase in energy consumption. For example, one could halve the power
consumption by only halving the clock frequency in Equation 2.2. At the same
time the overall computational time required to perform the same operation
would double, leading to no effect on energy consumption. On the other hand,
the supply voltage forces an upper limit on the clock frequency. For this rea-
son supply voltage and clock frequency scaling are addressed in conjunction.
Note that often lower energy consumption means slower systems. Real-time
scheduling and energy minimization are therefore closely related problems,
that should be tackled in conjunction for best results.

2.2 Real-Time Systems

Real-time systems are considered to be those types of systems which have to
respond to certain stimuli within a finite and specified delay [BW01]. In other
words, the correctness such systems depends not only on the logical result
of the computations, but also on the time at which the results are produced
[SSRB98]. For hard real-time systems, it is imperative that responses oc-
cur within the specified deadline, any exception leading to a total failure of
the system. In soft real-time systems response times are important, but the
system will still function correctly if some deadlines are occasionally missed.

Although the work presented in this thesis focuses on hard real-time sys-
tems, certain algorithms can be easily adapted for soft real-time systems,
leading to even greater reductions in energy consumption while keeping a
reasonable Quality of Service. Furthermore, we only consider the timing as-
pects characterizing real-time systems, without involving other specific fea-
tures concerning, for instance, data sampling, computational accuracy, con-
trol efficiency, concurrency, reliability or safety. We also consider that, in
principle, if basic real-time scheduling algorithms can be augmented with low
energy techniques, then the extensions or enhancements of these algorithms
for more complex real-time applications can employ the same low energy tech-
niques. In fact, our energy-efficient methods can be applied once the real-time
system timing behavior has been determined, without significantly affecting
the design decisions beyond the choice of energy-aware components (such as
variable speed processors).

Building upon the properties of the real-time applications, scheduling tech-
niques exhibit several important characteristics [SSRB98, Axe97]:

• Flexibility, or the ability of the run-time scheduler to adapt to changes
in the task set,

• Predictability, or the ability to analyze the run-time behavior by, for
instance, estimating the task response time and verifying the timing
constraints, and

10

2.2 REAL-TIME SYSTEMS

• Complexity, or the volume of computation required to take schedul-
ing decisions. One can distinguish between off-line complexity, when
optimality is an issue, or at run-time complexity, when the scheduling
overhead is important.

Following these properties, real-time scheduling algorithms can be distin-
guished into [Bur91, BW01]:

• Static or dynamic. A static approach takes all scheduling decisions in
advance and requires prior knowledge about the properties of the sys-
tem, but yields little run-time overhead. For instance, in the case of a
fixed set of purely periodic, fixed execution time tasks, it is possible to lay
out a complete schedule beforehand, using a cyclic executive approach.
Yet, there are certain drawbacks with this method. For example, build-
ing the executive is NP-hard in the general case and sporadic tasks are
difficult to handle [Loc92]. A dynamic scheduling method determines
the schedules at run-time, being therefore more flexible. Fixed-priority
scheduling (FPS) assigns static priorities to tasks, but schedules them at
run-time. Rate-monotonic scheduling (RMS) is from the FPS class, since
priorities are assigned according to task rates (fixed). By comparison,
in earliest deadline first (EDF) scheduling even the priorities are com-
puted at run-time, the highest priority tasks being those with the near-
est deadline. Occasionally, in the real-time community, the scheduling
approaches are referred to as static and dynamic depending on the deci-
sion regarding task priorities. In this sense FPS is called static and EDF,
dynamic.

• Preemptive or non-preemptive. In a preemptive scheme certain low
priority tasks may be suspended if higher priority tasks need to be ex-
ecuted. Alternatively, in non-preemptive approaches, once started each
task finishes its execution without interruption from others. Clearly,
preemptive schemes are more flexible, but they also introduce certain
time overhead due to the context switches. Intermediate approaches
also exist, such as deferred preemption schemes, where preemption can-
not occur during certain critical time intervals.

• Centralized or distributed. A uni-processor system or a multi-proc-
essor system with shared memory, where the inter-processor communi-
cation time is negligible, are typical examples of centralized systems. In
distributed systems, communications take considerable time that have
to be accounted for, during feasibility analysis and scheduling.

The work presented in this thesis covers a wide range of scheduling tech-
niques. For variable speed processors, the new dimension introduced by speed
selection makes even the scheduling of individual tasks non-trivial, especially

11

2. BACKGROUND

for tasks with probabilistic execution time. At task group level, we look at
both static and dynamic scheduling strategies for low energy. In particular,
we address static cyclic scheduling for task graphs, FPS in the form of RMS
or deadline-monotonic scheduling, and the EDF scheme. Preemption or non-
preemption is assumed according the underlying real-time scheduling mod-
els. For instance, preemption is required in RMS, but not in some cases of EDF
(single-rate, common arrival). In one case we advocate the use of preemp-
tion, just to lower the energy consumption when a non-preemptive strategy
would also fulfill the real-time constraints (see Section 5.7). In all cases, pre-
emption time overhead is considered to be negligible. We focus mainly on
the uni-processor case, yet some of our scheduling methods are designed for
heterogeneous architectures (see Sections 5.3, 5.4 and Chapter 6).

2.3 System Synthesis

For best results, the energy consumption issue should be addressed through-
out the design cycle of a system. Therefore, it is important to stress the place
of our methods in this whole design cycle. Although the thesis focuses mainly
on task scheduling, in Chapter 6, we step back and look at how scheduling
relates to the system architecture and task mapping. These are essential de-
cisions that have to be taken during system-level synthesis, which is only a
part of the typical design process, as detailed in the following.

Digital systems can be specified at different levels of abstraction. A tra-
ditional view of these levels and the relations between them is captured by
the Y-chart, introduced in [GK83]. The most commonly used levels of abstrac-
tion are the physical, the logic, the register-transfer (RT), the behavioral, and
the system level. At system level, the digital system is specified in terms of
interacting, concurrent processes, which can be implemented either as hard-
ware components, or in software. The support architecture is given in terms of
boards, processors, memories, and buses. The hardware part of a system-level
specification can be decomposed in several behavioral specifications, consist-
ing of a sequential algorithm, or a single process. At RT level, the specification
is further refined to a description in terms of operations between variables. At
this point, the support architecture is composed of ALUs2, multiplexers, and
registers. At logic level, digital hardware is represented in terms of boolean
functions implementable by gates, latches, flip-flops, etc. Finally, at physi-
cal level, also referred to as circuit level, the hardware is described in terms
of transistors, resistors or even silicon areas. Since there is no universally
accepted description for these abstraction levels, different research and in-
dustry groups might have different views on this matter. It is also hard to

2ALU: Arithmetic and Logic Unit

12

2.4 RELATED RESEARCH

define clear cuts between any two adjacent levels. Very often, the digital sys-
tem specification consists of several connected specifications, given at various
levels of abstraction.

The complexity of certain systems can be dealt with by using high ab-
straction level descriptions. For a given specification, moving down from
system to physical levels, more and more information is added. The speci-
fication becomes more detailed, larger and, therefore, harder to handle. We
refer to this refinement process as synthesis [MLD92], although the term is
often used to describe the translation from a behavioral representation of
the design into a structural one [GDWL92, DeM94]. In particular, system-
level synthesis deals with the formulation of the basic architecture of the
implementation [EKP98a]. The most important decisions during the system-
level synthesis step, are the allocation of the set of physical processors and
the mapping of processes (or tasks) onto this processors while optimizing
or fulfilling certain design parameters. For real-time applications, the tim-
ing constraints are an essential design parameter. Although, system parti-
tioning, hardware/software co-design, and interconnect-structure design are
a few fundamental issues related to system-level synthesis [EKP98a] that
affect the energy consumption, we will not address them explicitly in this
thesis. More precisely, assuming an already partitioned system, our architec-
ture selection and task mapping approach choose specific task implementa-
tions, which might happen to be software or hardware solutions, and certain
communication channels, based on the final effect on energy and timing, be-
ing oblivious to the lower level implementation choices. Furthermore, our
scheduling methods only deal with ordering and speed selection (when nec-
essary), without significantly altering the task implementations in order to
affect the internal timing or energy consumption.

2.4 Related Research

In the last few years, the research surrounding low power and low energy
systems has become a flourishing area. Initially, most work focused on low
power design at the lower abstraction levels. Gradually, as design automation
started to be used at higher and higher abstraction levels, energy consump-
tion became an important design metric, overshadowing power consumption
at system-level. Finally, the already matured real-time area and low power
and low energy design met first in the form of dynamic power management
and then into dynamic voltage scaling, as variable voltage processors made
their appearance. Relatively recent surveys of this area can be found in
[Jha01, BD99, Ped01].

A large spectrum of compile-time techniques for low energy software also
appeared. A few early reviews of such techniques can be found in [TMW94a,

13

2. BACKGROUND

TMW94b, MOI+97]. Some of these are memory energy reduction through
efficient data access [PD99, DKV+02], switching reduction through register
relabeling and instruction scheduling [Shi01, LLM+01, CC01, PKVI01], or
various algorithmic transformations [CBD01, SBD01].

Note that all these techniques are orthogonal with speed scheduling algo-
rithms. Once the tasks have been compiled to yield the lowest energy con-
sumption with the compile-time techniques, task level and task group level
speed scheduling techniques can be applied, in conjunction with power man-
agement, to additionally reduce the system energy consumption.

2.4.1 Task Level Scheduling

At a first glance, deciding a task level speed distribution might appear as a
trivial problem, implicitly solved at task group level. In fact, on fixed speed
processors, it is not at all a problem. On the other hand, for variable speed
processors, task level scheduling becomes an interesting issue because:

• real processors can only run at a limited, discrete range of speeds, most
likely not including the ideal speed for the task in question, and

• an overwhelming majority of tasks exhibit variable (probabilistic) exe-
cution pattern, allowing for slowdown at run-time.

Thus, running the task always at only one speed, the one which guarantees
meeting the deadline even for the worst case, is not the best solution from the
energy consumption point of view. For this reason, several research groups
have recognized and addressed the task level speed scheduling problem.

For applications involving variable processing rate, the available time for
a given task may vary from instance to instance. Re-evaluating the speed for
every instance can, thus, save energy. Chandrakasan et al. (1996) present
in [CGX96] such an adaptive scheduling method, designed for digital signal
processing (DSP) applications, such as MPEG. Pering et al. (1998) evaluate
in [PBB98] several adaptive speed scheduling methods for DSP applications.
The majority of these kind of methods are soft real-time, more concerned with
the quality of service, than with meeting hard deadlines. The present thesis
focuses on hard real-time systems.

Ishihara and Yasuura (1998) have proven in [IY98] that a task can op-
timally run at any virtual speed, by running it in two phases at two differ-
ent real speeds. These speeds are the ones bounding the virtual speed. The
authors have also shown that the number and distribution of real available
speeds has a direct impact on the energy efficiency of such a schedule. In fact,
this dual-phase execution model seems to remain the standard for tasks with
fixed execution pattern.

14

2.4 RELATED RESEARCH

For tasks with variable execution pattern, the speed scheduling problem is
even more interesting. Lee and Sakurai (2000) describe in [LS00b, LS00a]
a method for run-time adjustment of processor speed. The task is divided in
regions corresponding to time slots of equal length. At the end of each region’s
execution, a re-evaluation of the speed is performed in the following way. If
the elapsed execution time after a certain number of regions is smaller than
the alloted number of time slots, the execution speed can be lowered by an eas-
ily determined factor. A similar approach is presented by Shin et al. (2001)
in [SKS01] as a part of a wider strategy, including task group level scheduling.
Another task level scheduling method is described by Mossé et al. (2000) in
[MACM00], where the regions and their corresponding time slots may have
different sizes, while the slack (the difference between the elapsed and the
worst case time at a certain moment) is distributed to regions according to
various strategies. A more advanced approach, entitled intra-task scheduling,
is described by Shin, Kim et al. (2001) in [SKL01]. In this method, speed
re-calculation is performed after control decision affecting the execution path,
at the beginning of representative basic blocks. A somewhat similar approach
is taken by Hsu and Kremer (2001) in [HK01, HK02], where the task is
profiled on basic-block level regions. In that work, a single or multiple re-
gions are selected for speed scaling, based on their CPU and memory load.
The method introduces a small performance degradation, acceptable only for
soft real-time systems. The scheduling methods presented in this paragraph
can all be classified as compiler-assisted approaches, since the task must be
profiled and pre-processed off-line by, for instance, adding speed switching
code snippets in essential points. Briefly, the algorithms must be aware of the
internal structure of the task.

In parallel, a different class of scheduling method is emerging, which do
not require knowledge about the internal structure of the task. These algo-
rithms can be employed directly at run-time, without the need of a special
pre-processing step. Besides our own stochastic scheduling method, the only
other algorithm from the same class is PACE by Lorch and Smith (2001).
Presented in [LS01, Lor01], PACE was originally designed for soft real-time
systems, but its pre-deadline part is based on the same idea as our own algo-
rithm. Namely, it uses the probability distribution function of the task execu-
tion pattern to derive optimal schedules in the long run. The method of com-
puting the distribution of the workload over the available processor speeds
in PACE is slightly different from our own stochastic scheduling, but their
results are also promising.

2.4.2 Task Group Level Scheduling

One of the first attempts to an energy-sensitive scheduling strategy at task
group level, appears to be the method of Weiser et al. (1994) presented in

15

2. BACKGROUND

[WWDS94]. Assuming a variable voltage processor, that work examines sev-
eral speed scaling heuristics, all based on processor load. An extension of
that work was presented by Govil et al. (1995) in [GCW95]. A more formal
analysis of the minimum-energy scheduling problem, for periodic indepen-
dent tasks on a variable speed processor, is presented by Yao et al. (1995) in
[YDS95]. By examining the processor load on specific intervals, the authors
describe an off-line optimal algorithm and two on-line heuristics for speed
scheduling on top of the classical EDF. Furthermore, lower bounds for the
on-line heuristics are determined in that work. Remaining one of the most
important in the field, [YDS95] triggered the interest for a more formal ap-
proach to energy-efficient scheduling.

Hong et al. (1998) describe in [HPS98] a speed scheduling method for
periodic and sporadic tasks, as an extension to EDF, also based on the proces-
sor load and worst case behavior. In [HKQ+98], the same authors present a
non-preemptive speed scheduling strategy for sets of independent tasks with
arbitrary arrivals and deadlines. The method is based on a heuristic task or-
dering step followed by a speed selection step. Qu et al. (1999) address in
[QKPS99] energy reduction in pipelines, using variable speed stages selected
depending on the latency constraints and data size.

Rate-monotonic scheduling (RMS) is first addressed in the context of en-
ergy-efficient scheduling by Lee and Krishna (1999) in [LK99]. Using a
dual-speed processor model, the authors evaluate a speed scaling algorithm
based on RMS, composed both of an off-line step and an on-line strategy. Fur-
thermore, the authors investigate the energy efficiency of their method for
tasks with probabilistic execution pattern. In [SC99], Shin et al. (1999) also
present an extension of RMS, this time for multiple speeds processor. Based
on tracking the next arrival times, their method adjusts the speeds for the
running tasks, whenever there are no tasks waiting. The authors extend the
method in [SKS01], to include task level speed scheduling based on compile-
time application slicing. In another publication [SCS00], the same authors
give an algorithm for computing a common maximal required speed for a task
set, scheduled in with RMS. Our own RM-MRS method, presented in Section
5.5.2 improves this approach by identifying individual speeds for each task in
the set. Jejurikar and Gupta (2002) further extend this method in [JG02],
for handling task synchronization.

Okuma et al. (1999) introduce in [OIY98], and improve later in [OIY01],
an EDF-based two phase scheduling algorithm that assigns speeds to tasks
with different arrivals, deadlines, and capacitive load. In the off-line phase,
each task is assigned a slot for execution and consequently a maximal speed,
problem solved using ILP3. At run-time, if a task finishes early, the unused
processor time is greedily assigned to the immediately next task instance,

3ILP: Integer Linear Programming

16

2.4 RELATED RESEARCH

lowering its off-line determined speed. On the same line, Swaminathan
and Chakrabarty (2001) describe in [SC01b] both a MILP4 approach and a
heuristic for determining energy-efficient speed settings for EDF policy. Their
approach assumes a dual-speed processor, but takes into account the speed
switching latency and energy overhead.

Manzak and Chakrabarti (2000) present in [MC00] an off-line schedul-
ing algorithm for tasks with arbitrary arrivals and deadlines, which again
includes switching activity (or capacitive load as in [OIY01]). That approach
is based on a heuristic that starts from a feasible schedule and gradually de-
creases the speed of certain tasks until no feasible schedule can be obtained.
The same authors describe in [MC01] a speed selection algorithm based on
a similar method, including periodic tasks this time. Their method tries to
assign the same lowest possible speed for all tasks, but can still lead to un-
used processor times. Based on [MC00] and [YDS95], Pouwelse et al. (2001)
describe in [PLS01] a low complexity sub-optimal scheduling method, imple-
mented on a StrongARM with variable voltage platform. Their energy prior-
ity scheduler tries to level the speed schedule, by increasing the workload of
low speed regions, through occasionally splitting tasks. Aydin et al. (2001)
present in [AMMMA01] an off-line polynomial-time algorithm for determin-
ing the optimal speeds for tasks with fixed execution time, but with different
power characteristics, scheduled using EDF.

Quan and Hu (2001) adapt in [QH01, QH02] the algorithm presented by
Yao [YDS95] to tasks with fixed priorities. Their new approach still focuses
on off-line scheduling for tasks with fixed execution pattern.

Pillai and Shin (2001) describe in [PS01] a few techniques for speed
scheduling of periodic task sets, together with experimental results on an
AMD K6-2+/ Linux platform. Their off-line method computes a single max-
imal required speed, based on utilization. Their cycle conserving on-line ap-
proach is similar to our slack distribution strategy presented in [Gru01a], to
which the authors refer in their paper. Unlike in [Gru01a], no formal analysis
of the feasibility of their method is presented. Another method they present,
look-ahead DVS for EDF, tries to defer as much work as possible to as late
as possible, while still keeping the deadline, in the hope that tasks will fin-
ish earlier than the worst case. Although it does not uses stochastic data for
the tasks, their approach is based on a similar idea we base our task level
stochastic scheduling method.

Kim et al. (2002) present in [KKM02] a run-time slack distribution strat-
egy for EDF, based on an slack estimation heuristic that considers both accu-
mulated and expected slack.

With the plethora of speed scheduling algorithms, a common evaluation
platform becomes essential for the designer to detect the best method in a

4MILP: Mixed Integer Linear Programming

17

2. BACKGROUND

specific case. Shin et al. (2002) present such an environment, SimDVS,
in [SKJ+02, KSY+02], together with an performance evaluation of several
dynamic voltage scaling algorithms, including some of our own.

Note that few of the approaches mentioned above take into account the
run-time possibilities for speed scaling yield by the dynamic slack generated
in the system [LK99, SC99, PS01, OIY01, KKM02]. This slack appears from
tasks finishing execution early, from the variation of processor demand, etc.
Even fewer techniques distribute this slack to the best advantage of the whole
system [AMMMA01]. Most of these approaches were developed in fact in
parallel with our own slack distribution strategy for RMS. Furthermore, none
of these task group level techniques use the stochastic information related to
task execution pattern to derive more efficient orders, as in our uncertainty
based scheduling approach.

The work mentioned until now focuses on task sets of independent tasks.
Scheduling task graphs for energy efficiency was also addressed in the con-
text of distributed systems containing variable speed processors. Luo and
Jha (2000) describe in [LJ00] a joint scheduling method for periodic task
graphs and aperiodic tasks that allows for energy-efficient speed selection at
run-time. The static phase dedicated to task graph scheduling, distributes
the tasks loosely between arrival and deadline, such that the inter-task slack
can accommodate aperiodic tasks or allow for speed reduction at run-time.
The same authors improve their methods in [LJ02], with a critical-path anal-
ysis based static scheduling method, task execution order refinement, and a
improved run-time speed recalculation algorithm. Since several researchers
have addressed also architecture selection in conjunction with task graph
scheduling, we cover these in the next section.

2.4.3 System-Level Synthesis

For architectures with fixed speed processors, the problem of energy-efficient
mapping and scheduling task graphs is somewhat similar to low power be-
havioral synthesis with multiple supply voltages, as addressed for example in
[CP97, SR99, SC98, MC02, KB99, Mar00].

At system-level, the problem of energy consumption on processors with
fixed speed was first addressed as a natural continuation of cost minimiza-
tion or performance oriented co-synthesis. Kirovski and Potkonjak (1997)
describe in [KP97] a system-level power minimization approach for hard real-
time tasks, based on load balancing combined with supply voltage reduction.
Dave et al. (1999) present in [DLJ99], an energy-aware co-synthesis system,
COSYN-LP, based on an energy-conscious clustering technique for minimizing
inter-processor communication. Yang et al. (2001) present in [YWM+01]
a combined static-dynamic scheduling algorithm for task graphs on system
containing a fixed speed processor system. The static phase finds a set of

18

2.4 RELATED RESEARCH

schedules with different lengths and energy consumption, that may have dif-
ferent tasks allocated to processors with different speeds. The dynamic phase
chooses the best schedule from the off-line set, based on the required pro-
cessing rate. Thus, the allocation of tasks to processors and the schedule may
change at run-time. Dick (2002) presents in [Dic02] several system-level syn-
thesis algorithms targeting, among other objectives, low power consumption.
The most representative in the context of our work are perhaps MOGAC [DJ97]
and its enhancement, EMOGAC, for designing heterogeneous distributed sys-
tems based on a genetic algorithm (GA) for assignment and list-scheduling.

System-level synthesis using variable speed processors only recently made
its way into the research community, our work from [Gru00b] being among the
first addressing this subject. Schmitz and Al-Hashimi (2001) investigate
the same problem in [SAH01, SAHE02], using GAs to optimize mapping and
scheduling of task graphs. The GA optimizing the schedule it is nested in
another GA, optimizing the mapping. In the scheduling GA heuristic, list-
scheduling and voltage scheduling are performed consecutively, as two sepa-
rate steps. In [SAHE02] the authors compare their scheduling strategy to our
own LEneS method. Zhang et al. (2002) present in [ZHC02] an approach
based on a two steps, the first being a combined assignment and ordering
while the second being voltage selection for each task in the task graph. The
first step is solved by a custom heuristics that balances the load on the proces-
sors. The voltage selection step is formulated and solved as an ILP problem.

There are many other approaches to reduce the energy consumption dur-
ing system-level synthesis, that are based on memory size reduction, memory
access minimization, algorithmic transformations, pipelining, etc. We only
mentioned here the methods that are in the same class with the ones de-
scribed in this thesis.

19

CHAPTER 3

MODELS

THROUGHOUT THE THESIS several different models are used for describing
the system under design. The present chapter introduces these models. First
we introduce the models used to describe the behavior of the system. Task
and task group models are addressed at this point. Then we present the
models describing the hardware resources available, such as processors and
communication channels.

3.1 Task Model

In the beginning of the system-level design and synthesis, before anything is
decided about the implementation, a task models a certain part of the func-
tionality of the system. Here we introduce a task as a computational process,
yet this model is extensible to communications, as pointed out later.

Definition 3.1. A task is a sequential process, a single thread of execution,
describing a part of the system behavior.

Furthermore, our task model has the following characteristics:

1. it may communicate with the outside world (other tasks) only before or
after its execution, not during execution;

2. it may be preempted at any point, unless the hardware resource imposes
some restrictions in this sense.

Although the first point appears to be a restriction, it can be easily fulfilled,
since any actual process that needs to exchange information during execution

21

3. MODELS

can be decomposed into a sequence of processes interrupted by communica-
tions. When we are talking about a task assigned to a certain processor, task
refers to an executable specially adapted (compiled, interpreted) to that pro-
cessor. An executable task has additional characteristics:

3. it consists of atomic computational steps, namely clock cycles;

4. preemption can occur between any two consecutive clock cycles, but not
during a clock cycle.

The number of clock cycles required by a task depends on the processor ex-
ecuting that task. Note also that point 4 is actually a refinement of the 2nd

characteristic of a task.
Occasionally we use the term task instance (or job) to describe a process,

running executable. For tasks with multiple possible execution paths this is
an important distinction since two instances of the same task may exhibit
different behavior. The interesting distinction for us is difference between the
number of clock cycles required by the two instances. Later on we address
both tasks using the same number of clock cycles for each instance and tasks
with instances that use different number of clock cycles. The latter model is
more realistic for tasks whose execution depends on the input data.

3.1.1 Task attributes

Different scheduling methods describe tasks using abstract models of vari-
ous complexity. A task is usually represented by a n-tuple of values (or at-
tributes). Examining the attributes of a task, one can distinguish between
requirements-related and implementation-related attributes.

The system specification usually contain requirements that refer to dead-
lines, task period, and maybe dependencies between tasks. All the scheduling
methods described in this thesis were designed in principle to work for tasks
with hard deadlines (see Section 2.2). Yet, most of the scheduling methods
we present can be modified for soft or firm deadlines, as mentioned in specific
sections. Since some of our methods were designed for periodic tasks, another
task attribute used is the task period. Occasionally, deadlines or periods are
specified for groups of (usually dependent) tasks instead of for each and every
task separately. This is usually the case for systems described as task graphs
(see Section 3.2.1).

Other task attributes, such as the computational demand, execution time
or execution pattern, are strongly influenced by implementation. The proces-
sor type, its operating clock frequency, power consumption, the compiler, and
the specific algorithms used are all implementation choices. Once the assign-
ment of tasks to processors is decided, and the tasks brought to an executable
format (i.e. compiled and linked) we can talk about the execution pattern of

22

3.1 TASK MODEL

that task. In its simplest form, the execution pattern can refer only to the
number of clock cycles needed in the worst case (WCE). Most of the scheduling
algorithms in the literature work only with timing information exhibited by
the worst case execution. To achieve energy-efficient schedules, we actually
make use of more extensive information about the task execution. In our case
the proper definition for the execution pattern is the following.

Definition 3.2. The execution pattern of an executable task is a proba-
bility distribution function, η(x), describing the probability that the task will
execute for exactly x clock cycles.

Note that η(x) = 0 if x /∈ [BCE, WCE], where BCE refers to clock cycles
for the best case execution and WCE refers to the clock cycles for the worst
case execution. Occasionally, even more information is required about the
task. Some scheduling algorithms [SKL01] use a flow graph representation
[ASU86] for the task. Such an algorithm will be briefly discussed in Section
4.3.2.

Although by task we usually refer to a computational process, communi-
cations can be modeled in a similar way. A reasonable assumption regarding
communications is that tasks executed on the same processor can communi-
cate instantly, in zero time, using for example shared memory. Inter-processor
communication on the other hand takes time, resources (i.e. the bus), and con-
sumes power. Moreover, we assume that communications do not take proces-
sor time (i.e. are handled by off-chip controllers and buffers). Our scheduling
algorithms can thus treat computational tasks and communications in a sim-
ilar manner, as long as the assignment step takes care of correctly binding
tasks to processors and communications to channels (buses). The energy re-
duction techniques for communication channels are different than those for
processors, but they turn up to be typical speed vs. energy trade-offs after all,
as briefly described in Section 3.4.

Finally, in our algorithms a task τi is represented by the following n-tuple:

τi =< Di, Ti, ηi(x) > (3.1)

where Di is the deadline, Ti the period, and ηi(x) the execution pattern of
task τi. Some of the scheduling algorithms presented in this thesis use only
specific characteristics of the execution pattern instead of the full function:

• best case number of clock cycles, BCEi = max{x}ηi(x)>0

• worst case number of clock cycles, WCEi = min{x}ηi(x)>0

• mean number of clock cycles, Xi =
∑

x ηi(x)x

Note that for tasks with fixed execution pattern (single execution path) BCEi =
WCEi = Ci , where Ci is the number of clock cycles required by the task.

23

3. MODELS

3.2 Task Group Models

Usually the system under design is more complex than a single task, and
needs to be represented by a group of tasks. The algorithms presented in this
thesis, work either on task graphs or task sets, each representation exhibiting
its own advantages and drawbacks, as described below.

3.2.1 Task Graphs

Task graphs are frequently used in hardware design automation, being simi-
lar to Data Flow Graphs (DFG) or Control Data Flow Graphs (CDFG) [DeM94].
Task graphs emphasize the dependencies between tasks and are suited for de-
scribing fairly static and possibly hierarchical structures.

Definition 3.3. A task graph is a directed a-cyclic graph Γ = (N,V) where
each node is a task τi ∈ N and each edge (τi, τj) ∈ V specifies that task τi

must finish its execution before τj starts executing.

Conditional execution can be modeled in several ways. One may for exam-
ple assign guards to some of the edges. Tasks which have guarded incident
edges are executed not only when all its predecessors finished their execution
but also only if the guard condition is true. In this case, each combination of
conditions can be considered as representing a distinct non-conditional task
graph. Scheduling a conditional task graph can be reduced then to scheduling
several non-conditional task graphs and combining the results, as for example
in [EKP+98b]. Alternatively, dealing with conditional paths in constraint pro-
gramming based modeling is a straightforward extension of a non-conditional
task graph scheduling, as shown in [Kuc99, SGK99, SGK00, KW01]. Another
way to handle conditional execution is to move conditions inside tasks, ob-
taining tasks with variable execution time, depending on the conditions. The
conditional task graph is then modeled as a non-conditional task graph made
of tasks with variable execution time. Our static scheduling strategies can
handle such task graphs, except the tasks will always be assumed to exhibit
their worst case execution pattern. For the reasons described above we will
not explicitly use the conditional task graph model in this thesis.

The nodes in the task graph described above can model both computations
and communications. In general, the task graph can be viewed as a bipartite
graph, where every edge connects a computational node with a communica-
tion node. Since we assume instantaneous communication for computational
tasks assigned to the same processor, our task graphs can contain, after as-
signment, edges that connect two computations.

Since the task graph usually describes a repetitive process, an implicit
loop is assumed over the whole graph. An iteration starts by executing first
those tasks that do not depend on other tasks and proceeds executing the rest

24

3.2 TASK GROUP MODELS

of the tasks once their predecessors finished. The iteration finishes as soon as
all reachable tasks finish their execution. Timing constraints resulting from
requirements at this level usually refer to the time required for executing
one whole iteration. In our model, only when the current iteration finishes, a
new task graph instance can begin executing. Correlating this with equation
3.1 containing the n-tuple describing a task, we can say that all tasks will
have the same period and deadline, ∀i ∈ N , Ti = Di = GraphExecutionDelay.
By contrast, pipelining techniques use task graph execution models where
iterations overlap [Kuc99, SGK00, KW01]. Although our techniques can be
adapted to pipeline scheduling, this thesis does not explicitly address pipeline
scheduling.

A-cyclic task graphs can also model internal loops, in a hierarchical man-
ner. Each loop can be modeled by a node which is itself an a-cyclic sub-graph.
Together with the implicit loop assumed for each a-cyclic graph, this hierar-
chical modeling can capture nested loops over sub-groups of tasks as in Figure
3.1.

τ1

τ4

τ3
τ2

τ6

τ5

τ51
τ52

τ53

τ5Cond Cond

Loop

Loop

Conditions: Cond, Loop

Figure 3.1: A task graph with conditions and loops. The depicted graph is
hierarchical, with τ5 modeling a sub-graph forming a loop. Cond controls
the execution to take either the τ2 or τ3 path. Loop controls the repetitive
execution of the τ5 sub-graph.

3.2.2 Enhanced Task Graphs

The scheduling algorithm presented in Section 5.4 uses an Enhanced Task
Graph (ETG) model, derived from classic task graphs. Since the resources
used are variable speed processors, the execution time of a task can vary de-
pending on the processor clock frequency. Therefore, each task, is more accu-

25

3. MODELS

rately modeled by two important events: start of its execution and the end of
its execution. Figure 3.2 details examples of a task graph and its correspond-
ing ETG. In the task graph, depicted on the left, tasks are represented by
the circles annotated by pairs of values. A pair consists of the execution time
of the task and the identifier of the processor executing the task. The black
disks represent communications annotated with the duration and the identi-
fier of the bus/link used for that specific communication. The arcs define the
partial order of task execution, which is imposed by the various data depen-
dencies. The ETG is obtained from the initial task graph by substituting each
node with a pair of nodes: a start node (the circles), marking the beginning
of the execution of that node, and an end node (the grey disks), marking the
completion of the task. The execution times of the tasks are now assigned to
the internal edges. In our current model, only computational tasks are sub-
ject to change their execution delay, while the communication delays remain
fixed. The thick edges in the ETG represent the fixed delays. The other edges
depict modifiable delays, and the associated numbers define their minimal
values. The information regarding the assignment of tasks to processors is
also transferred to the ETG.

a) Task Graph b) Enhanced Task Graph

τ1

τ5

τ2

τ4

τ3

(2, 1)

(7, 1)

(3, 1)

(6, 1)

(2, 3)

(1, 3)

(9, 2)

6
(1)

(1)

(1)

(1)

(2)

(3)

3

7

9

1

2

2

Figure 3.2: A Task Graph and its corresponding Enhanced Task Graph

3.2.3 Task Sets

The task set model emphasizes the timing requirements for each task. They
are more suited for modeling dynamic systems employing priority based run-
time scheduling. In our task set model, there is no data or control dependency
between tasks, so there is no communication taking place between the tasks.
Moreover, our scheduling algorithms focus on the case when the tasks run on

26

3.3 PROCESSOR MODELS

a single processor. Tasks are still represented using the triple from equation
3.1, with the mention that for any task the deadline is not larger than the
period. Occasionally our algorithms use more restricted models (i.e. deadlines
equal to periods), as explicitly stated in the corresponding sections.

An important characteristic of a task set is the processor utilization im-
posed by the task set. Since we are dealing with variable speed processors,
the utilization is always defined for the reference speed, that is usually the
maximum processor speed. Furthermore, since the tasks have variable exe-
cution pattern, we distinguish between worst case utilization and actual uti-
lization. With the notations introduced in Section 3.1.1 we give the following
definitions:

Definition 3.4. Given a task set of N tasks
{τi = (Di, Ti, ηi(x))}i=1...N the worst case utilization is computed as:

UWCE =
1

fref

N∑
i=1

WCEi

Ti
(3.2)

where fref is the reference clock frequency. The actual utilization over H
hyper-periods is computed as:

U(H) =
1

fref

1
H

H∑
h=1

N∑
i=1

dTi/THe∑
j=1

Xhj
i

Ti
(3.3)

where Xhj
i is the number of cycles executed by the jth task instance of task

τi in hyper-period h. TH is the duration of the hyper-period, computed as the
least common multiple of all task periods, lcm ({Ti}i=1...N).

Note that the actual utilization can be accurately computed only after ex-
ecution, when all the execution patterns for all task instances are known. For
a sufficiently long interval of time, an estimate of the actual utilization is the
expected value of utilization U :

U = U(t)|t→∞ ≈ 1
fref

N∑
i=1

Xi

Ti
(3.4)

3.3 Processor Models

A basic assumption for modeling resources is that a task can exclusively use
only one resource at a certain time. This can perfectly model for example tasks
implemented as software running on a processor or ASICs implementing a

27

3. MODELS

single task. Escaping our model are the cases where several tasks are imple-
mented on a single ASIC, executing in parallel, sharing functional units. Yet,
since our scheduling techniques focus mainly on architectures composed ex-
clusively of processors running software tasks, the above mentioned assump-
tion is reasonable enough.

Other assumptions are that the processors are synchronous designs (for
which it makes sense to talk about clock frequency) and given a certain clock
frequency, all clock cycles require the same amount of energy, irrespective of
the computational requests. This means that the power consumption of a
processor for a given clock speed remains almost constant and independent
on the running task.

In practice the power difference between various instruction can vary con-
siderably ([TMW94b]). Yet, complex tasks, as encountered in this design
phase, consist of rather heterogeneous mixes of instructions, meaning that
the variation in power consumption over a relatively small number of clock
cycles is statistically insignificant [RJ98]. We make one exception from this
rule for the NOP instruction, which is assumed to consume only around 20%
of the normal (average) power [SC99]. A processor constantly executing NOPs
will thus use only 20% of the energy it would use by doing some useful work.

The constant power per clock cycle assumption given above may also be in-
accurate at task group level, if the tasks exhibit very different computational
requirements. For example an intensive data processing tasks (such as shuf-
fling data in memory) may consume more power than a control task. Although
our algorithms do not explicitly distinguish between such tasks, they can be
adjusted to accommodate these cases by assigning different weights to tasks
accordingly.

3.3.1 Fixed Speed Processors

In the first part of Chapter 6 we address architecture selection for minimal en-
ergy, using fixed speed processors as resources. This type of resource models
processors operating at constant clock frequency and voltage, thus dissipat-
ing a constant amount of power. They also have at least two power modes:
ACTIVE, when they execute instructions, consequently consuming significant
power, and SLEEP, when instruction processing is stopped and the power con-
sumption is much lower. The processor can, thus, enter the SLEEP state
whenever it is idle. Power modes are a common feature today for all types
of processors, and especially embedded processors (see Example 3.1). Effi-
ciently selecting power modes for resources, at run-time, is an area usually
referred to as Dynamic Power Management (DPM). The Advanced Configu-
ration and Power Interface (ACPI) specification is a joint effort by Compaq,
Intel, Microsoft, Phoenix, and Toshiba towards a standard API supporting

28

3.3 PROCESSOR MODELS

DPM [Com02]. ACPI 2.0 is implemented in most WindowsTM operating sys-
tems and in the Linux kernel version 2.4. However, DPM is not the focus of
this thesis.

Example 3.1 (Intelr 80200 Power Modes):
The Intelr 80200 processor [Int01] has three1 power modes: ACTIVE, IDLE,
and SLEEP. The ACTIVE mode is the normal operation mode. The other two
are low power modes, selectable by programming CP14, register 7. In the low
power modes, parts of the processor are shut down to achieve a low power con-
sumption. In IDLE mode, the processor stops fetching and executing instruc-
tions but keeps its Phase-Lock Logic (PLL) running and maintains its archi-
tectural state. Interrupts re-instate the ACTIVE mode almost instantly. In
SLEEP mode, the PLL is stopped and the architectural state lost. Re-entering
the ACTIVE mode from SLEEP takes considerably more time, since it requires
a full reset sequence and restoring the architectural state. The following table
summarizes power modes’ data for an 80200 running at 733MHz and 1.5V:

Power Mode ACTIVE IDLE SLEEP

PLL On On Off
Architectural State kept kept lost
Latency to ACTIVE - ∼ 1 clock cycle > 2000 clock cycles
Core current (Icc) 720mA 190mA N/A

For real processors, switching between power modes exhibits a certain la-
tency and consumes additional energy. Our algorithms do not consider power
mode switching latency and energy overhead explicitly. However, if these are
significant compared to the task delay and energy, the scheduling algorithms
can be extended to include the mode switching overhead.

3.3.2 Variable Speed Processors

Most of the scheduling techniques described in this thesis refer to architec-
tures using variable speed processors. For these type of processor the clock
frequency and supply voltage can be adjusted at run-time. Scheduling for
these processors requires not only deciding on the time moments for certain
events but also deciding on the clock frequency and supply voltage for each
time interval. Therefore, the techniques addressing variable speed proces-
sors are usually known as Dynamic Voltage Scaling (DVS) techniques.

The ideal model of a variable speed processor is able to run at a contin-
uous range of clock frequencies and voltages. Moreover, since the goal is to

1A fourth power mode, DROWSY, initially present in the 80200 description is currently de-
specified.

29

3. MODELS

consume as little energy as possible, for a given clock frequency there is an
unique optimal supply voltage. This is the lowest voltage for which the circuit
delay still permits the given clock frequency (see Section 2.1). The (optimal)
supply voltage, power consumption and cycle energy are therefore uniquely
determined by the clock frequency. In the following, instead of using the ab-
solute clock frequency as a basis to describe the processor clock and supply
settings, we will use the term processor speed. The processor speed is the rel-
ative value of the clock frequency f compared to a reference clock frequency
fref , which is usually also the maximal clock frequency:

sf =
f

fref
(3.5)

A processor running at half speed will thus have the clock frequency half the
reference frequency, with all the resulting consequences in terms of supply
voltage, power and energy consumption. Using the equations introduced in
2.1, the voltage and power consumption at frequency f can be written in terms
of their reference values:

Vf = Vrefs
1

γ−1
f Pf = Prefsα

f (3.6)

where γ, the saturation velocity index, is approximated by 2.0 in the classi-
cal MOSFET models. More accurate models [RP96] show that γ is closer to
1.3, yet this does not affect the dependency types, which remain non-linear.
Since α = 1 + 2

γ−1 , power consumption is a convex function of speed. In fact,
since tasks execute clock cycles, it makes more sense to talk about clock cycle
energy for a certain frequency, ef , than to talk about power consumption at a
frequency, Pf :

ef =
∫ a+ 1

f

a

Pfdt = Pref

∫ a+ 1
f

a

sα
f dt =

= ereffrefsα
f

1
f

= erefsα−1
f =

= erefs
2

γ−1
f (3.7)

For γ = 2, the clock cycle energy depends quadratically on speed. This is
the commonly used model in DVS research and also the model we use in this
work. As proven by our experimental results presented later on, the model is
accurate enough for our algorithms to perform efficiently on a real platform.
Finally, the energy of a task that executes a certain number cycles Nf at each
frequency f taken from a set F can be computed as:

Eideal =
∑
f∈F

Nfef = eref

∑
f∈F

Nfs2
f (3.8)

30

3.3 PROCESSOR MODELS

We denoted the energy in equation 3.8 by Eideal since it does not include the
effects of speed switching on energy. The ideal model of the variable speed
processor can switch between clock frequencies and supply voltages without
any time or energy overhead.

A more realistic model of a variable speed processor has to address two
real phenomena:

• the range of available speeds is limited and discrete

• switching speeds has a time and energy overhead

We will now look at these problems in more detail.

Discrete Range of Speeds

In practice, the range of available speeds on a processor can only be discrete
(see Section 3.3.2 for examples). This comes from the fact that the core clock
frequency is generated internally by a Phase-Locked Loop (PLL) or Delay
Loop Logic (DLL) using an external, fixed frequency clock. The internally
generated frequency is a multiple of the external frequency. The supply volt-
age follows then the steps imposed by the available clock frequency steps.

Even on a discrete range of speeds, one can simulate a continuous range
of speeds for long enough tasks. The virtual clock frequency can be obtained
by running different parts of the task at different real clock frequencies. To
simulate a desired frequency fv, it is enough to use two real frequencies, one
higher fH > fv and one lower fL < fv. A task requiring N clock cycles will
then run NH clock cycles at fH , and NL = N −NH clock cycles at fL. To know
exactly how many clock cycles to run at each real frequency, it is enough to
make sure that the time covered by running the N clock cycles at fv is equal
to the time covered by running NH at fH plus NL at fL. In other words, we
have to solve the following equation in NH :

N

fv
=

NH

fH
+

N −NH

fL
(3.9)

Finally, if we take into account the fact that the number of clock cycles has to
be an integer, we obtain the following solution for equation 3.9:

NH =
⌈
N

1/fv − 1/fL

1/fH − 1/fL

⌉
NL = N −NH (3.10)

Note that the virtual frequency obtained using this splitting may be slightly
higher than the desired virtual frequency. This difference might be signifi-
cant only for very short tasks, using a small number of clock cycles and for a
large discrepancy between the real frequencies. If switching between the two

31

3. MODELS

frequencies takes a relatively important interval of time tH→L, one may take
this into calculation. Equation 3.9 becomes then:

N

fv
=

NH

fH
+

NL

fL
+ tH→L (3.11)

From the energy consumption point of view, as shown in [IY98], it is op-
timal if one chooses fH and fL to be the closest bounding frequencies for fv.
Using this execution model, for a discrete range of speeds, the real energy
function becomes then a linear approximation of the ideal energy function.
Between any two adjacent real frequencies, the energy varies in a linear man-
ner (see Figure 3.3). The more real speeds are available, the better the ap-
proximation of the ideal energy function.

Ta
sk

 E
ne

rg
y

(E
)

Task Execution Time (D)

minimal delay
maximal energy SpeedH

SpeedL

ideal energy-delay

curve

maximal delay, minimal energy

D = X/fm + (N - X)/fL

D = N/fH

D = N/fL

Speedm

dual frequency execution:
intermediate delay and energy

Figure 3.3: Energy-delay dependency for a three-speed processor,
SpeedL, Speedm, SpeedH . Intermediate speeds are possible by executing parts
of the tasks at the available speeds.

Speed Switching Overhead

In modern processors, the clock signal accounts for a large part of the power
consumption ([RP96] reports up to 40% of the processor power is consumed by
the clock). To reduce jitter, noise and power consumption, the high speed core
clock signals are today generated on-chip, using Phase-Locked Loops (PLL) or
Delay Loop Logic (DLL). An external slow, and thus low power, clock signal
is used by the on-chip PLL/DLL to generate the fast core clock. Changing
the frequency of the PLL output signal has certain latency, since the loop has

32

3.3 PROCESSOR MODELS

to adjust to the new frequency. This means usually that during the time in
which the PLL re-locks, the processor has to stall (see Example 3.2). So there
is a certain time overhead when switching between speeds.

The voltage supply design may also contribute to the speed switching over-
head. This happens for the architectures where the processor must stall until
the supply voltage stabilizes. Of course, if both the supply voltage and clock
frequency change simultaneously, only the slowest of the two operations will
affect the switch latency. Yet, many processors are designed such that they
can keep executing instructions at constant rate while the voltage switches
between two levels (assuming also the lowest voltage allows the working clock
frequency).

Example 3.2 (Intel 80200 Speed Switching Overhead):
Intel 80200 is based on the XScale architecture and has an ARM core. Its core
clock frequency can be changed at run-time by writing in a certain control
register. Once a value has been written there, the processor stalls, and the
DLL re-locks on the new frequency. The latency of this operation is around
2000 clock cycles as reported in [Int01]. In Figure 3.4, we show the profile
of a speed switch for the 80200. First the clock frequency is changed to a
lower frequency. The power consumption approaches zero for the duration
of the DLL re-locking on the new frequency. Then the voltage is adjusted
accordingly. (see Appendix B for a detailed description of the system used)
While the voltage changes, the processor executes instructions, so the latency
is given by the DLL re-lock interval. From the figure, this can vary around
30µs . . . 35µs.

Slightly improved designs, that can change their clock frequency in one
clock cycle, can be imagined. For example one could use two PLLs/DLLs, one
generating the operating clock, and the other adjusting to a new frequency.
When a new frequency is requested, the secondary PLL will begin re-locking
on the new frequency, while the processor will continue executing using the
primary PLL clock. As soon as the secondary PLL re-locked, the two PLLs
swap roles. Thus, the processor would not stall while the clock switches to the
new frequency. Note that this solution still exhibits a certain latency, since
the processor will continue using the old frequency for some time.

Alternatively, one may use three PLLs, locked on consecutive frequencies.
The one operating the processor would always be the one locked on the middle
frequency (say PLL2). Whenever a speed-up or a slow-down is required, the
processor can instantly switch to using one of the other PLLs (say PLL3). Then
the third PLL (PLL1) would need to re-lock on a new frequency, such that
PLL3 will be the one generating the middle frequency, while PLL1 and PLL2

generate the bounding frequencies. Although the speed change is instant in
this case, there would still be a limitation on the speed switch frequency. The
time between two speed switches has to be at least the time required by a

33

3. MODELS

Figure 3.4: Oscilloscope Trace of Speed Switching for an Intel 80200. The
three signals are, from top to bottom, Vcc the core voltage (Ch1, 500mV/div),
Icc core current (Ch2, 200mA/div) and Pcc core power (Math, 200mW/div).
The horizontal scale is set to 10µs/div. Left: switching from 733MHz@1.5V to
666MHz@1.4V Right: switching from 400MHz@1.1V to 333MHz@1.0V

PLL to re-lock on a new frequency. In any case, these solutions can bring a
real DVS processor very close to an ideal one.

Furthermore, there are solutions which use voltage controlled clock gen-
erators and do not stall the processor while changing the clock frequency
(see Example 3.3). In these solutions, the clock frequency follows the sup-
ply voltage, which requires certain time to switch between levels. Thus, even
for these architectures, switching between processor speeds has certain time
overhead.

Example 3.3 (lpARM Speed Switching Overhead):
The lpARM processor is a 0.6µ technology DVS-capable Low Power ARM pro-
cessor developed at UC Berkeley [BPSB00, PBB00]. It includes an ARM8 core
running at a clock frequency produced by an on-chip voltage-controlled oscilla-
tor (VCO). On lpARM, a speed switch from 5MHz@1.2V to 80MHz@3.8V takes
a 70µs, as reported in [BPSB00]. The same authors report in [PBB00] that a
simulated lpARM takes 25µs to switch from 10MHz@1.1V to 100MHz@3.3V.
Due to the particular design of the lpARM, the processor can continue exe-
cuting instructions while switching speeds. Although the transition between
speeds is not instantaneous, the property that the processor can continue op-
erating while switching, makes the actual latency much smaller than the
speed switch. Using a rough approximation, the actual latency (of gradu-
ally getting to the right speed instead of instant switching) would be around
half the time to switch between two speeds. Finally, the actual switching

34

3.3 PROCESSOR MODELS

time overhead with the data given in [BPSB00] would be around 35µs from
5MHz@1.2V to 80MHz@3.8V.

Real processors do exhibit latency in a speed switch. Yet, depending on
the number of speed switches relative to the performed tasks, there are cases
when the time overhead may be small enough to be considered negligible.
Most of the algorithms and simulations presented in this thesis assume that
the speed switching overhead is negligible. Yet, they do not necessarily re-
quire zero overhead and, furthermore, they can be extended to consider non-
zero switching latency.

To summarize, unless explicitly stated, the processor models used in the
experiments and algorithms presented in this thesis exhibit a discrete range
of supply voltage and zero-latency speed switching.

Examples of Variable Speed Processor Solutions

Variable speed processors are making their first steps in real applications.
Here we briefly describe five solutions, implemented by various embedded
processors. Four of them are industry developments by Transmeta, AMD,
and Intel. The fifth solution is the result of a academic research project at
UC Berkeley. The Transmeta and AMD approaches include both hardware
features and software managers for power efficiency. This makes them rather
transparent to the software developer. The Intel and Berkeley solutions are
focused on the hardware support, offering full control to the software devel-
oper.

Example 3.4 (Transmeta Crusoe’s LongRun):
Crusoe is a Transmeta processor family (TM5x00), with a VLIW2 core and
x86 Code MorphingTM software that provides x86-compatibility. Besides four
power management states, these processors support run-time voltage and
clock frequency hopping. Frequency can change in steps of 33MHz and the
supply voltage in steps of 25mV, within the hardware’s operating range. The
number of available speeds depends thus on the model. The TM5600 model
for example, operates in normal mode between 300-667MHz and 1.2-1.6V
[Fle01], meaning eleven different speed settings. The corresponding power
consumption varies between 1.5W and 5.5W. The speed is decided using feed-
back from the Code Morphing algorithm, which reports the utilization. The
LongRun manager employs this feedback to compute and control the optimal
clock speed and voltage. Note that this is a fine grain control, transparent
to the programmer. The algorithms we present in this thesis require direct
control over the processor speed, and would substitute or augment LongRun.
Nevertheless, the Crusoe architecture is a successful example of a variable

2VLIW: Very Long Instruction Word

35

3. MODELS

speed processor, widely used in low power systems. A comparison with a
conventional mobile x86 processor using Intel SpeedStep (see Example 3.6),
running a software DVD player, reported in [Fle01], shows the TM5600 to
consume almost three times less power than the mobile x86 (6W for TM5600
vs. 17W for the mobile x86).

Example 3.5 (AMD’s PowerNow!):
AMD introduced PowerNow!, a technology for on-the-fly independent control
of voltage and frequency. Their embedded processors from the AMD-K6-2E+
and AMD-K6-IIIE+ families are all implementing PowerNow!. According to
[AMD00], AMD PowerNow! is able to support 32 different core voltage set-
tings ranging from 0.925V to 2.00V with voltage steps of 25mV or 50mV. Clock
frequency can change in steps of 33MHz or 50MHz, from an absolute low of
133MHz or 200MHz, respectively. The voltage and frequency changes are
controlled through a special block, the Enhanced Power Management (EPM)
block. At a speed change, an EPM timer ensures stable voltage and PLL
frequency, operation which can take at most 200µs. During this time, in-
struction processing stops. A comparison with a Pentium III 600+ using Intel
SpeedStep (see Example 3.6) shows that the AMD’s processor with Power-
Now! consumes around 50% less power than the Pentium with SpeedStep
(3W for AMD-K6-2E+ vs. 7W for Pentium III 600+).

Example 3.6 (Intel’s SpeedStep):
Intel’s SpeedStep is probably the earliest solution from the ones presented
here, and consequently the weakest one. Besides normal operation, Speed-
Step defines the following low power states: Sleep, Deep Sleep, and Deeper
Sleep. It only specifies two speeds, orthogonal with the power states, a Max-
imum Performance Mode (fast clock, high voltage, high power) and a Battery
Optimized Mode (slower clock, lower voltage, power efficient). For instance,
Mobile Intel Pentium 4 - M Processor [Int02] uses 1.3V and 1.2V for the two
speeds, while the clock frequencies are 1.8GHz (or as low as 1.4GHz depend-
ing on the model) and 1.2GHz respectively. The power consumption of the
Mobile Pentium 4 is anywhere between 30W (Maximum Performance 1.8GHz)
and 2.9W (in Deeper Sleep, 1V). Switching between speeds requires going to
Deep Sleep, change the voltage and frequency, and wake up again, procedure
which requires at least 40µs.

Example 3.7 (Intel’s XScale):
Intel has recently come out with XScale, an ARM core based architecture that
supports on-the-fly clock frequency and supply voltage changes [Int00]. The
frequency can be changed directly, by writing values in a register, while the
voltage has to be provided from and controlled via an off-chip source. The
XScale core specification allows 16 different clock settings, and four different
power modes (one ACTIVE and three other). The actual meaning of these

36

3.4 COMMUNICATION MODELS

settings are dependent on the Application Specific Standard Product (ASSP).
For instance, the 80200 processor supports clock frequencies up to 733MHz,
adjustable in steps of 33-66MHz. The core voltage can vary between 0.95V
and 1.55V. For our specific test system with the 80200, described in Appendix
B, there are only 6 speed settings (from 733MHz@1.5V down, in 66MHz/0.1V
steps). Switching between speeds takes around 30µs, as detailed in Example
3.2. The power consumption for the 80200 (core plus pin power) is anywhere
between 1W (at maximum speed) and a few µW (in sleep mode).

Example 3.8 (UC Berkeley’s lpARM):
The lpARM processor, developed at UC Berkeley, is a low power, ARM core
based architecture, capable of run-time voltage and clock frequency changes.
The prototype described in [BPSB00] (0.6µ technology) is, reportedly, able to
run at clock frequencies in the 5-80MHz range, with 5MHz increments. The
supply voltage is adjustable in the 1.2-3.8V range. See Example 3.3 for details
on speed switching in lpARM.

These examples show that variable speed processors become more and
more common. They usually have a discrete range of voltages and/or clock
frequencies, and exhibit latency when switching between speeds. Voltage
scheduling algorithms targeting energy efficiency have to take into account
these characteristics of real processors. Although some of these real proces-
sors already provide voltage scheduling methods they are not suitable for
hard real-time tasks. The scheduling algorithms presented in this thesis
make good use of the hardware capabilities of such processors, especially in
hard real-time environments.

3.4 Communication Models

In the task graph model, computational tasks may pass information to their
successors. We assume that communication between two tasks situated on
the same processor takes no time and energy at all. Whenever tasks situated
on different processors have to communicate, the time and energy required
depend on several factors:

• the amount of information to be transmitted: in principle the more infor-
mation one has to communicate, the more time and energy it is required;

• the way the data is encoded: redundant data encoding may help to
reduce for example the bus switching activity, but it may take longer
time to communicate the same amount of information [SB95, MOI96,
BDM+97b, BDM+97a];

• the type of channel used to communicate: this refers to both the physical
characteristics (width of the bus) and the transmission protocol.

37

3. MODELS

In our algorithms we consider that time and energy for a certain communi-
cation are fixed for a given communication channel. Other research explicitly
addresses encoding schemes and bus protocols for reduced energy and power
[SB95, MOI96, BDM+97a]. Furthermore, we assume that the time and en-
ergy consumption for each communication on every channel are provided to
our algorithms as input data, along with the task attributes (such as period,
deadline, and WCE).

With respect to scheduling and resource assignment, communications are
treated similarly with tasks (as mentioned in Section 3.1.1), in the sense that
only one communication can use a certain channel at a certain moment. Fi-
nally, in our system model, a certain communication cannot overlap with its
source or destination computational task. Although communications can oc-
cur while a processor executes other computational tasks, they must be infor-
mation transfers between tasks that are not currently executing.

38

CHAPTER 4

TASK LEVEL SCHEDULING

SCHEDULING FOR LOW ENERGY can be addressed either at individual task
level or at the level of tasks group. At group level, efficient scheduling strate-
gies are usually application specific. At task level, the scheduling methods are
more general, since they are oblivious of the actual system. In this chapter,
we address task level scheduling strategies, while task group level scheduling
makes the subject of the next chapter.

At task level, the scheduling decisions concern the processor speeds or
power modes sequence used while executing that task. Considering that a
task τ needs to execute alone during an allowed time interval A, the schedul-
ing problem consists, in principle, of mapping task regions (in clock cycles) to
processor speeds. Using the processor speed as introduced by equation 3.5,
we define the speed schedule of a task:

Definition 4.1. Given a task τ requiring X clock cycles to execute on a pro-
cessor with S speeds, a (speed) schedule for τ is an assignment of processor
speeds to task clock cycles (a mapping ξ : {1, . . . , X} → S where S ⊆ <+) such
that the task execution time (computed as tτ =

∑X
i=1 1/[frefξ(i)]) respects the

real-time constraints imposed through the allowed execution time A.

This definition is valid both for real processors, with discrete and limited
range of speeds, and ideal processors, without speed constraints. Note also
that it does not explicitly state the relation between the task execution time
and the allowed execution time. For hard deadlines tτ ≤ A while for soft
deadlines it may occasionally happen that tτ > A.

Actually, the scheduling problem is not fully solved unless one decides
what the processor does during the entire allowed execution time. If the
task finishes before the deadline, the processor may for for instance either

39

4. TASK LEVEL SCHEDULING

continue to execute NOPs, or stop executing instructions and switch to a low
power mode.

4.1 Slower Execution vs. Shutdown

First, it is important to realize that, whenever possible, it is more energy effi-
cient to run the processor slower than to execute as fast as possible followed
by processor shutdown. Consider a task τ that executes X clock cycles dur-
ing an allowed time A. Note that in order for the task to be finished during
interval A, X/fref ≤ A. In the first case, the task executes as fast as possible
(at a clock frequency fref) and then the processor is shut down. By shut down
we understand a low power mode, during which the processor cannot execute
instructions. If we consider the power consumption in the low power mode
small enough and the overhead for mode switching as negligible, the energy
consumption for this scenario is (using equation 3.8):

Eshutdown = Xeref (4.1)

In the second case, the processor speed is lower such that the task execution
extends over the whole interval A. This would mean that the minimum re-
quired frequency is f = X/A. Using equations 3.5, 3.7, 3.8, and 4.1, we can
compute the energy consumed in this scenario:

Eslower = Xef = Xerefs
2

γ−1
f =

= Eshutdown

(
X

Afref

) 2
γ−1

(4.2)

As discussed in Section 3.3.2, the power of the right term is always greater
than 1. The term raised to power is on the other hand at most 1, as noted in
the beginning of this section. Finally this means that Eslower ≤ Eshutdown, or
it is always better to run the task slower than to finish it early and then go to
a sleep state.

Example 4.1 (Slow execution vs. shutdown on Intel 80200):
Consider a task that takes around 37ms to execute at the highest speed
(733MHz at 1.5V) on an Intel 80200. The deadline is 100ms. One can ei-
ther execute it as fast as possible and then go to a low power state (IDLE) or
execute it slower (333MHz at 1.0V) and go to a low power state. Figure 4.1
depicts an oscilloscope trace for the first case, while figure 4.2 a trace for the
second. The energy consumption turns out to be more than twice higher in
the first case. This measurement confirms the fact that running slower when
possible is a better strategy than running as fast as possible and switch to a
low power mode.

40

4.1 SLOWER EXECUTION VS. SHUTDOWN

Power

Icc

Vcc

Figure 4.1: Oscilloscope trace of Vcc, Icc and their product, the power
(200mW/div), when the task executes as fast as possible. Energy, the area
under power curve, is approximately 21.6mJ

Power

Icc

Vcc

Figure 4.2: Oscilloscope trace of Vcc, Icc and their product, the power
(100mW/div), when the task executes as slow as possible. The energy con-
sumed is approximately 9.6mJ

In practice, this difference is even more significant, from the following rea-
sons. The power consumption in the low power mode is actually not zero,
which makes the processor consume energy even in the low power mode.
Switching between power modes is likely taking more time and energy than
switching between processor speeds. This makes the variable voltage scheme

41

4. TASK LEVEL SCHEDULING

a more effective energy reduction technique than the simple dynamic power
management (DPM).

4.2 Unique Execution Pattern

Tasks with all instances requiring the same number of clock cycles are what
we call tasks with unique execution pattern. In other words, for a fixed pro-
cessor speed, the execution time is constant and the same for all instances,
regardless of the input data. Using the notations from Section 3.1.1:

Definition 4.2. A task τ with execution pattern η(x) has a unique execu-
tion pattern if and only if ∃C such that η(C) = 1 (and ∀x 6= C, η(x) = 0).

A speed schedule for a task with fixed execution pattern would, in princi-
ple, consist of an assignment of different speeds to the different clock cycles
up to C, as given in Definition 4.1. We denote the execution interval of each
clock cycle i by Ai (= 1/[frefξ(i)]). The energy consumption of a single clock
cycle can be rewritten using equations 3.5 and 3.7 (γ = 2) as:

ei = eref

(
1

frefAi

)2

= K 1
A2

i

i = 1, . . . , C (4.3)

Finally, the total energy of the task, under the constraint that the total exe-
cution time τ meets deadline A, can be written as:

E =
C∑

i=1

ei = K
C∑

i=1

1
A2

i

where
C∑

i=1

Ai = A (4.4)

It can be shown (see Appendix A.1) that the lower bound for E is KC3/A2

which can be obtained if and only if all the clock cycles are of the same certain
length: Ai = A/C. This means that there is a unique ideal processor speed for
all clock cycles. This is the speed for which the task execution exactly covers
A (Figure 4.3.b). Formally, the minimal energy frequency and speed are:

fideal =
C

A
sideal =

C

Afref
(4.5)

Unfortunately, real processors can only work at a discrete range of clock fre-
quencies. Yet, a close to optimal virtual speed can be obtained even on real
processors, as discussed in Section 3.3.2.

4.3 Probabilistic Execution Pattern

If the required number of clock cycles differs from instance to instance, the
task is said to have a probabilistic execution pattern. Since we assume to

42

4.3 PROBABILISTIC EXECUTION PATTERN

Switch

Compute
Switch Switch Switch

Compute Compute Compute Compute
Compute Compute

Switch Switch
Switch

WCE
X

Deadline

Ideal-stretch

WCE-stretch

Stochastic schedule

Compiler-Assisted

Maximum Speed
a)

b)

c)

d)

e)

P
o

w
er

Figure 4.3: Various types of task level schedules: a) Using maximum speed,
b) Ideal-stretch, c) WCE-stretch, d) stochastic, and e) compiler-assisted. The
dark grey regions refer to a single instance execution, while the lighter grey
ones refer to the worst case.

have no knowledge about the data input to each instance, or how this data
is processed, we cannot be sure of the exact execution path beforehand. The
number of clock cycles required by an instance is modeled as a probability
distribution function (see Section 3.1.1). Tasks with unique execution pattern
are actually a particular case of tasks with probabilistic execution pattern.

The important characteristic of tasks with probabilistic execution pattern
is that they will not always exhibit their worst case behavior. If one can
adapt the processor speed such that the task does not execute faster than
it is needed, one can reduce the energy consumption. At the same time the
real-time deadlines have to be met, forcing a lower limit on the task execution
speed.

Ideally, one would know the exact number of required clock cycles before

43

4. TASK LEVEL SCHEDULING

the instance starts executing and thus schedule for the optimal speed (Figure
4.3.b). Of course, this choice, referred to as ideal-stretch, is seldom possible in
practice. The obvious approach, referred to as WCE-stretch, is to plan for the
worst case: assume that the task will exhibit its worst case behavior, and use
the corresponding speed (see Figure 4.3.c). The drawback of this approach is
that the worst case behavior is rather improbable, and using the high speed is
seldom actually required to meet the deadline. This means that WCE-stretch
is not energy efficient. There are other techniques which are more efficient
from the energy point of view. We describe in detail our own approach to this
problem, stochastic voltage scheduling (Figure 4.3.d). We also briefly describe
another class of energy-efficient scheduling methods, called compiler-assisted
scheduling, based on the work described in [SKL01] and [MACM00] (Figure
4.3.e). Finally, the section concludes with a more detailed comparison between
the approaches described here.

4.3.1 Stochastic Scheduling

The basic idea behind stochastic scheduling consists in finding a speed sched-
ule that minimizes the expected value of instance energy while still meeting
the deadline. An instance starts executing at a low speed and then gradually
accelerates, to meet the deadlines. Since the instance might not be a worst
case, it can happen that high speed (and power eager) regions are avoided.

The stochastic schedule (Figure 4.3.d) for a task τ is obtained using its ex-
ecution pattern η(y). The execution pattern can be obtained off-line, via simu-
lation, or built and improved at run-time. Let us denote by X the random vari-
able associated with the number of clock cycles used by a task instance. We
also use the cumulative density of probability function, cdf(x) =

∑x
y=1 η(y),

associated with the random variable X. This function reflects the probability
that a task instance finishes before a certain number of clock cycles. If WCE
is the worst case number of clock cycles, clearly cdf(z) = 1 for ∀z ≥ WCE.

Recall that building a schedule for a task means assigning a specific pro-
cessor speed for every clock cycle up to WCE. Each cycle x, depending on the
adopted speed, will consume a specific energy, ex. But each of these cycles are
executed with a certain probability, so the average energy consumed by cycle
x can be computed as (1 − cdf(x))ex. To obtain the expected energy for the
whole task, we have to consider all the cycles up to WCE:

E =
WCE∑
x=1

(1− cdf(x))ex (4.6)

This is the value we want to minimize by choosing appropriate voltage levels
and clock frequencies for each cycle. Since WCE may be a large number in
practice, one can group several consecutive clock cycles into equal size groups.

44

4.3 PROBABILISTIC EXECUTION PATTERN

In that case, x would refer to such regions of consecutive clock cycles. For the
sake of brevity and clarity we describe here only the simpler case, when the
speeds are decided clock cycle by clock cycle.

A clock length of kx corresponds to a clock frequency fx = 1/kx. Using
equation 3.7 for β = 2/(γ − 1) we can rewrite the clock cycle energy as:

ex = efx
= eref

(
fx

fref

)β

=

=
eref

fβ
ref

1

kβ
x

=

= K 1

kβ
x

(4.7)

where eref/fβ
ref is constant (K) for a given processor. As mentioned in Section

3.3.2, in the common case γ = 2 making β = 2. For clarity we bind now β = 2,
but the rest of the calculus can be carried out for any reasonable value of β.

Task τ has to complete its execution during an allowed execution time, A.
If we denote the clock length associated to clock cycle x by kx, this constraint
can be written as:

WCE∑
x=1

kx ≤ A (4.8)

If we substitute 4.7 in 4.6 we obtain:

E = K
WCE∑
x=1

(1− cdf(x))
k2

x

(4.9)

which is the value to be minimized. For the sake of simplicity and without loss
of generality we will assume K = 1 from now on. By mathematical induction
one can prove (see Appendix A.1) that the right hand side of 4.9 has a lower
bound (using also 4.8):

ELB =

(∑WCE
x=1

3
√

1− cdf(x)
)3

(∑WCE
y=1 ky

)2 ≥ 1
A2

(
WCE∑
x=1

3
√

1− cdf(x)

)3

(4.10)

This energy lower bound can be reached if and only if:

ky = A
3
√

1− cdf(y)∑WCE
x=1

3
√

1− cdf(x)
(4.11)

These are the optimal values for the clock cycle length in each clock cycle up
to WCE.

45

4. TASK LEVEL SCHEDULING

For processors with a discrete range of speeds, these values will most likely
not overlap with the available clock lengths. These ideal clock lengths have
to be converted to available clock cycle lengths. This conversion is done in
a similar way to deriving a dual level voltage schedule from an ideal one, as
described in Section 3.3.2 and detailed in the following.

In principle, to transform the ideal clock frequencies into real ones, we
have to distribute the work done in each ideal clock cycle to real clock cycles.
To obtain the work performed during real clock cycles, we start from the two
consecutive available clock cycles bounding the ideal clock cycle ky, CKi <
ky ≤ CKi+1. The work of the ideal cycle can be performed during the same
time interval using real clock cycles, if:

ky = wiyCKi + w(i+1)yCKi+1 (4.12)
with wiy + w(i+1)y = 1
and ky ∈ (CKi, CKi+1]

where wiy is the part of the work of ky given to CKi and the rest is the work
given to CKi+1. Thus, each ideal cycle in the task will distribute its work
between two of the several available clock lengths. It is possible that several
ideal clock cycles ky will distribute some of their work to the same real clock
cycle j, since they end up to be right above or right below the real clock cycle
value: ky ∈ (CKj−1, CKj] or ky ∈ (CKj , CKj+1]. For simplicity, we denote the
set of ideal clock cycles ky distributing their work load to the same real clock
cycle j by Yj . The accumulated workloads for each available clock cycle is
obtained by summing up the workloads resulting from individual ideal clock
cycles:

wj =
∑

ky∈Yj

wjy, j ∈ 1 . . . V L (4.13)

where V L is the number of available processor speeds (corresponding to pairs
of supply voltage levels and clock frequencies). Note that the cumulated work-
loads wj are real numbers. Since we can only execute an integer number of
clock cycles, these workloads have to be transformed to integers. This conver-
sion is not as trivial as it seems at a first glance.

First, if the x in equation 4.6 was referring to groups of cycles rather than
single clock cycles, the decimal part of wi can be partially converted into in-
tegers. Thus, if x refers to groups of q actual clock cycles, the corresponding
workload for each available clock cycle will actually be wactual

j = qwj , which is
still a real number. This adjustment, if applicable, is useful in reducing the
error introduced by the next step, which does the actual transformation from
real numbers to integers.

Let us consider then a straightforward transformation, using smallest in-
teger larger than the workload, dwje. Since a task instance starts executing

46

4.3 PROBABILISTIC EXECUTION PATTERN

using the slowest speeds and each region uses one full additional clock cycle,
it might happen that the deadline is missed. This comes from the fact that
parts of the high speed clocks are forced into slow clocks. A better choice is
to use the largest integer smaller than the workload bwjc. Additionally, the
cycles lost by this truncation, computed as WCE −

∑
jbwjc need to be added

to the fastest speed workload. This may result in sub-optimal energy con-
sumption, but the error is negligible for tasks requiring a large number of
clock cycles. Of course, better transformations are possible, but we will not
investigate this subject further.

Example 4.2 (Stochastic Schedules for Normal Distributions):
This example uses a task with an execution pattern distributed according
to a normal probability with the mean µ = 70 cycles and the standard de-
viation σ = 10. The number of clock cycles for the worst case execution
WCE = 100. Note that these figures can be percentages instead of actual
amounts of clock cycles. Let us consider that the available resource is a pro-
cessor with four clock frequencies f , f/2, f/3, and f/4. Note that for the
fastest clock f , the worst case execution will complete after a time interval
given by WCEf = WCE/f . We are able now to compute two voltage schedules
obtained for two different values of the allowed execution time, A = 3WCEf

and A = 2WCEf . These are the cases when the allowed execution time is
three times and respectively twice the time required by the worst case at the
fastest clock. The schedules, depicted in Figure 4.4, are given in number of
clock cycles executed at each available frequency. Note that the tasks may fin-
ish before executing the whole schedule, before reaching higher speed regions.

Computational complexity

Computing the stochastic schedule for a task has to be done before the task
starts executing. If the allowed execution time A varies, the actual distribu-
tion of the workload to speeds also varies. In that case, the exact stochastic
schedule has to be determined at run-time. Yet, there are computations that
can be performed off-line. If the probability distribution of the execution pat-
tern is available off-line, the coefficients of A in equation 4.11 can also be com-
puted off-line. If the probability distribution is built at run-time, these coeffi-
cients need to be recomputed every time the distribution changes. This step
has an algorithmic complexity of order O(WCE). The exact values for the ideal
clock cycles have to be computed at run-time, when the allowed execution time
becomes known (also exhibiting O(WCE) complexity). Computing the cumula-
tive workloads requires finding the bounding clock frequencies, available on
a real processor, for each ideal clock cycle O(WCE log V L). Transforming the
real workloads into integer numbers will also exhibit O(V L). Finally, assum-

47

4. TASK LEVEL SCHEDULING

47@f/4 25@f/3 20@f

27@f/3 47@f/2 26@f

8

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100

1 - cdf

1-cdf function for
a normal distribution
execution pattern
with mean and
standard deviation:
m = 70, s = 10

% of WCE clocks

Execution probability

A = 3 x WCE / f

A = 2 x WCE / f

a)

b)

Figure 4.4: Two stochastic schedules for a task with normal distribution ex-
ecution pattern, obtained for two different values of the allowed execution
time.

ing V L ≤ WCE, which is reasonable since V L, the number of processor speeds,
is rather small, the overall worst case complexity for computing the stochastic
schedule is O(WCE log V L). Since WCE is the determining factor in the overall
complexity, it is clear now why working on groups of clock cycles instead of
individual clock cycles is preferable.

4.3.2 Compiler-Assisted Speed Scheduling

For comparison, we briefly describe another class of energy-efficient schedul-
ing methods for tasks with variable execution pattern. Instead of minimizing
the energy over a large number of instances, these methods are based on the
idea of scheduling each task instance as efficiently as possible. Each task is
divided in sections for which the worst case execution pattern is estimated
(see Figure 4.3.d). The sections are usually procedures and loop bodies as
in [MACM00] or basic blocks detected at assembly level as in [SKL01], but
may be arbitrary slices of code as in [LS00b]. The method is based on the
observation that sections do not always follow their worst case scenario and
subsequent sections may benefit from the resulting unused time, referred to
as slack. At the beginning of each section the processor speed is adjusted
to accommodate the slack and at the same time to be able to complete the
remaining work even for the worst case scenario. In principle it is most ef-
fective to apply the new speed as soon as a decision decreased the number
of cycles required by the remaining worst case execution. That is the reason
why procedures, loops or basic blocks are chosen as sections. The compiler
introduces the code needed for updating the worst case execution pattern and

48

4.3 PROBABILISTIC EXECUTION PATTERN

for switching the processor speed. Therefore, this class of methods is referred
to as compiler-assisted scheduling.

There are several important aspects in compiler-assisted scheduling:

• section granularity — If there were no overhead for the scheduling code,
the ideal section would be the basic block (see [ASU86] for a definition
of a basic block). Yet, one must take into consideration the overhead of
computing and switching the processor speed. For example, if the basic
blocks are around 10 clock cycles, and a speed switch takes 1000 cycles
(Intel 80200, [Int01]), re-scheduling in every basic block will result in a
ridiculously large increase in overall execution time. Moreover, there are
basic blocks that do not change the worst case execution. Finally, since
the available speed range is discrete, some of the re-scheduling points,
resulting in minor changes in speeds, can be discarded. Therefore, in
practice, the optimal section size may be much larger than a basic block.
Choosing the best set of re-scheduling points is a complex task, usually
handled by heuristics.

• worst case pattern estimation — Detecting the number of cycles executed
by a section in the worst case is another delicate issue since it has to
consider pipeline stalls, cache misses, interrupts, etc. Moreover, it of-
ten requires the designer to explicitly state loop bounds or input data
characteristics.

• slack distribution — Once a section produces some slack, this has to be
distributed to the following sections. There are several slack distribu-
tion strategies, but we only mention here two. A greedy approach would
give all slack to the immediately next section, which might result in the
processor speed oscillating up and down across sections. A better strat-
egy is to distribute the slack proportionally over all sections, according
to the ratio between each individual section and total remaining worst
case execution time.

• speed selection — Both soft and hard real-time tasks may employ com-
piler-assisted speed scheduling. For hard real-time tasks, the speed will
always be chosen to meet the deadline even in worst case. For soft real-
time tasks, one may occasionally choose to select speeds according to a
predictive algorithm [MACM00]. Note also that in practice only avail-
able speeds may be selected, making this aspect strongly related to the
first one, section granularity.

It is important to realize which are the static/compile-time decisions and
which are run-time decisions for a compiler-assisted schedule. First, the re-
scheduling points are fixed by introducing the required code only at specific
fixed locations. Moreover, if the allowed execution time for the task is fixed,

49

4. TASK LEVEL SCHEDULING

speed selection may also be static, without keeping track about the slack at
run-time. In this case the code performing re-scheduling may be a simple
speed change, without any computations. Yet, it is more likely that the al-
lowed execution time changes from instance to instance at run-time. This
means that the optimal speeds vary and have to be re-computed. Therefore,
the overhead of re-scheduling increases. Furthermore, the subset of the cho-
sen re-scheduling points might not be the best for each instance with its spe-
cific allowed execution time. The advantages and drawbacks of this method
compared to the previously described ones are detailed in the next section.

4.4 Discussion

In this section we compare three of the scheduling methods described previ-
ously in this chapter: WCE-stretch, stochastic and compiler-assisted schedul-
ing. First, we address some real-time issues in the context of the aforemen-
tioned scheduling methods. Then we examine the advantages of using our
own stochastic schedule versus using a simple WCE-stretch schedule. Next we
look at stochastic scheduling and compiler-assisted scheduling side by side,
and compare them not only from the energy efficiency point of view, but also
from the design complexity and implementation points of view.

4.4.1 A Few Real-Time Considerations

From the real-time perspective, the task level speed schedule decides if the
task finishes in time or not. For hard deadlines, the task must finish during
the allowed execution time A. All three scheduling methods, WCE-stretch,
stochastic and compiler assisted, can do this without problems if the time
estimates used to compute the schedule are accurate.

For soft deadlines, the situation is slightly different. Using a stochas-
tic scheduling approach one can accurately choose the probability for an in-
stance to finish after the deadline. If, for example, we are willing to allow 10%
deadline misses, it is enough to examine the 1 − cdf(x) function and choose
a new WCE for which the function value is 10%. The other two scheduling
strategies, are not so successful. The WCE-stretch may only control the worst
case deadline overshoot. The compiler-assisted approach may also control the
overshoot, but for individual paths. Although the compiler-assisted method
may be changed to allow an expected number of deadline violations, for the
stochastic approach this is straightforward.

50

4.4 DISCUSSION

4.4.2 WCE Stretch vs. Stochastic

The WCE-stretch scheduling approach treats in principle all instances as be-
ing the worst case. This implies running at a constant high speed throughout
all the phases of task instance execution. By contrast, the stochastic approach
lowers the energy consumption of the early phases at the expense of the later
phases. Over a large number of runs this leads to a considerable decrease for
the early phases, since they will always be executed, and a small increase for
the later phases, that are seldom executed.

Let us examine first an ideal situation, when the processor may run at
any speed from almost 0 to almost ∞. The expected energy consumed by the
stochastic schedule in this case can reach the lower bound given by equation
4.10:

Estoch = K 1
A2

(
WCE∑
x=1

3
√

1− cdf(x)

)3

(4.14)

The expected energy of the WCE-stretch schedule can be computed as:

EWCE−stretch = eWCE−stretchX (4.15)

where X is the mean of the execution pattern distribution and eWCE−stretch

is the clock cycle energy for the speed required by the WCE-stretch method.
Using equation 4.7 (with β = 2) and the fact that the clock frequency for WCE-
stretch is fWCE−stretch = WCE/A, we can rewrite the expected energy of the
WCE-stretch schedule as:

EWCE−stretch = K 1
A2

WCE2X (4.16)

Finally, to get an idea about the gain of using a stochastic schedule, we need
to look at the ratio between the energy of the stochastic schedule and that of
a WCE-stretch schedule:

ε =
Estoch

EWCE−stretch
=

(∑WCE
x=1

3
√

1− cdf(x)
)3

XWCE2
(4.17)

Notice that the ratio depends on the distribution and it is independent on
the allowed execution time A. This holds only for the ideal case when the
range of speeds is unbounded. Table 4.1 contains the efficiency ratio ε for
several distributions. Granted the shape of the distribution is important, the
stochastic schedule is always better or at least as efficient in the long run as
the WCE-stretch schedule.

For more realistic assumptions, such as limited range of speeds, the ad-
vantage of a stochastic schedule becomes smaller. Consider a task with an
execution pattern varying according to a normal distribution with the mean

51

4. TASK LEVEL SCHEDULING

Table 4.1: Stochastic vs. WCE-stretch schedule energy for various task execu-
tion pattern distributions.

distribution ε

Uniform(0, WCE) 0.8419
Normal(µ = WCE/2, σ = µ/3) 0.6461
Normal(µ = 2WCE/3, σ = WCE/9) 0.7417
Normal(µ = WCE/3, σ = WCE/9) 0.3048
Exponential(λ = 10/WCE) 0.2434

µ = (BCE + WCE)/2 and the standard deviation σ = (WCE − BCE)/6. For
several cases ranging from highly flexible execution time (BCE/WCE = 0.1)
to almost fixed (BCE/WCE = 0.9) we built stochastic schedules for a range
of allowed execution times (from WCE/f to 3 × WCE/f). For this experiment
we considered a processor with 9 different voltage levels, equally distributed
between f and f/3. For a large number of task instances generated accord-
ing to the given distribution we computed both the energy of the stochastic
schedule and the WCE-stretch schedule. The average energy consumption of
the stochastic schedule as a part of the WCE-stretch schedule is depicted in
Figure 4.5. Note that when the allowed time approaches either WCE/f or
3× WCE/f , the energy consumptions become equal. The lowest possible clock
frequency is f/3, which anyway means 3-times WCE/f , so there is no better
schedule for these cases. In turn, when the allowed time closes WCE, there
is no other way but to use the fastest clock. Somewhere between the slowest
and the fastest frequencies (e.g., when allowed execution time is twice WCE)
we obtain the largest energy gain since the stochastic schedule can use the
whole spectrum of available frequencies. Note that the energy gains become
more important when the task execution time varies more (BCE/WCE → 0.1).

Example 4.3 (Task Level Voltage Schedules on Intel 80200):
To practically examine the energy saved by a stochastic approach versus a
WCE-stretch method we used the Intel 80200 system described in Appendix B.
The task in this experiment is composed of a simple loop that terminates after
a variable number of iterations in each instance (see Appendix C). The num-
ber of iterations is computed at the beginning of each job according to a normal
distribution with µ = 950 and σ = 300. At the highest speed (733MHz), the
best case and the worst case execution times are 30ms and 78ms, respectively.
We considered that the task has to finish in at most 117ms (which is 150% of
the worst case at the highest speed). When we use the WCE-stretch approach,
we have to chose the ideal speed for which the worst case will finish exactly
at the deadline. This will be realized in practice by using two real speed set-
tings: 533MHz@1.3V and 466MHz@1.2V. Using only the 533MHz@1.3V speed

52

4.4 DISCUSSION

0.3
0.5

0.7
0.9

11.522.53

70%
75%
80%
85%
90%
95%

100%

BCE/WCE
Allowed/WCE

Stochastic vs. WCE-stretch
Schedule Energy

Levels

 95.5%
 90.8%
 86.1%
 81.4%
 76.6%

Figure 4.5: Average task energy for stochastic schedule compared to WCE-
stretch schedule energy (100%) as a function of task execution pattern distri-
bution and allowed time.

setting would give 107ms execution time in the worst case while using only
the 466MHz@1.2V speed setting would be too slow since the worst case would
take about 123ms. Finally, the WCE-stretch schedule will be composed by ex-
ecuting first 1150 iterations of the main loop at 466MHz@1.2V and the rest
at 533MHz@1.3V. The power distribution for this schedule is depicted in the
oscilloscope trace from Figure 4.6 above.

To obtain a stochastic schedule in this situation we have to know the best
and worst case execution patterns. These two cases happen for the extremes
of the value controlling the iterations in the task main loop. More precisely,
these are 50 and 1850 respectively (the [−3σ, 3σ] interval). Using these num-
bers as the input to our method for computing a stochastic schedule we get
the number of iterations to be executed at each speed between the lowest and
the highest: [186, 640, 181, 109, 79, 62, 593]. The power distribution for this
schedule is depicted in the oscilloscope trace from Figure 4.6 below. When
using the stochastic schedule, the worst case takes almost 117ms including
the speed switches.

Running the two schedules for a large number of instances and averaging
the power consumption, we obtain the average energy consumptions for both.
The WCE-stretch average energy, as resulting from the trace in Figure 4.7
above, is around 24mJ. The stochastic schedule average energy, as resulting
from the trace in Figure 4.7 below, is around 20mJ. Finally, this means that
in the long run, using a stochastic scheduling approach, the energy consump-
tion decreases by approximately 18% in this case.

53

4. TASK LEVEL SCHEDULING

Figure 4.6: The power distribution for the WCE-stretch (above) and stochastic
(below) schedules used in example 4.3. Different power levels reflect the
different speed settings used. The worst case covers the whole schedule, while
the other cases only the initial sections of the schedule.

Figure 4.7: The averaged power curve of the WCE stretch (above) and stochas-
tic (below) schedules used in example 4.3. The area under the graph repre-
sents the energy consumption, which is around 24mJ for the above curve and
20mJ for the below one.

4.4.3 Stochastic vs. Compiler-Assisted Scheduling

There are several important differences between our stochastic scheduling
approach and a compiler-assisted method. We discuss them next.

54

4.4 DISCUSSION

Scheduling Overhead

As detailed in Section 4.3.1, for stochastic scheduling the stages requiring
some computations are the off-line phase and at the execution start of a task
instance. This implies, for example, computing the exact number of clock
cycles after which to increase the processor speed. Subsequently, at these
time moments, the only operation required consists of speed change requests
to the processor. To give the control to the scheduler at these specific time
moments, timers/event counters can be used. If the allowed execution time is
the same for all instances, the speed switching code sequences can be inserted
directly in the right points (as in Example 4.3).

The compiler-assisted approach involves an important off-line phase for
identifying and processing the re-scheduling points. At run-time, the code in-
serted in these points actively checks the progress of the task instance and
adjusts the processor speed accordingly. For a discrete and limited range of
available speeds, the best set of points for switching speed may vary if the
allowed execution time changes from instance to instance. To obtain good re-
sults, a compiler-assisted schedule needs usually more re-scheduling points
than a stochastic schedule, depending, for example, on the number of basic
blocks or functions. However, if the allowed execution time is the same for all
instances, the appropriate speeds may be computed off-line and the schedul-
ing points will only contain speed switching code.

For the most general case, the stochastic approach requires some overhead
at each instance start-up, to compute the schedule. The compiler-assisted
method has no overhead at start-up, yet it uses more re-scheduling points
at run-time, even if not all of them result in speed switches. Considering
the significant overhead of speed switching in real processors today (∼ 1000
cycles on Intel 80200 [Int01]), a few additional cycles used on re-computing
the optimal speed make for a negligible difference. To conclude, there is little
difference in the overall run-time overhead between the two approaches.

Implementation Complexity

Considering the implementation level of both methods, one can distinguish
between operating system (OS) level and task level. In principle we consider
an implementation to be OS-level when the task is completely unaware that
it runs on a variable speed or fixed speed processor. Alternatively we con-
sider an implementation to be task level when the task handles all the speed
scheduling related issues. Note that a task level implementation may or may
not use interfaces provided by the OS.

The compiler-assisted approach requires access to the internal structure
of the task. This is used to detect the re-scheduling points, each of which
requires specific handling. The OS may be oblivious to the speed selection

55

4. TASK LEVEL SCHEDULING

related operations performed by the task. This may be an advantage if one is
forced to use older, energy-unaware operating systems.

Stochastic scheduling does not need to have any information about the
internal structure of the task. It can be implemented exclusively inside the
OS, while the task remains oblivious to the fact that it runs on a variable
speed processor. Alternatively, if one wishes to use an existent OS, a task
level scheduler may be implemented together with the task. In this sense,
stochastic scheduling is the less restrictive of the two methods.

The consequences of implementing voltage management at OS or at task
level are important. In principle, it is safer to manage the hardware resources
via common interfaces, that are aware of the system architecture. Further-
more, better management is possible if the decisions are taken based on the
overall state of the system, instead of just partial or local states. In partic-
ular, slack can be distributed more efficiently if a central, common scheduler
is used instead of letting the tasks handle slack internally. All these suggest
that OS level speed management is more likely to be more energy efficient
than task level scheduling. Of course, knowledge about the internal struc-
ture of the task would additionally improve the efficiency. The only instance
for employing a pure task level speed management is when the requirements
force the use an old (energy unaware) OS.

Energy Efficiency

Until now we have not looked at the actual energy efficiency of the two meth-
ods. In fact it is not easy to compare the two approaches in general since their
results depend on rather orthogonal properties.

For example, compiler-assisted voltage scheduling depends very much on
the internal task predictability, while it is not very sensitive to deadline vari-
ations. An important property of the compiler-assisted scheduling is that dur-
ing task execution, more and more information is acquired about the actual
execution time of the task. Knowing this right in the beginning of the task
would lead to an ideal schedule, using the optimal speed. If the actual exe-
cution time is not revealed until the very end (the task terminates suddenly,
based for example on an external interrupt), one has to be prepared for the
worst case. In this situation, the task will actually use the WCE-stretch sched-
ule. Between the two extremes just described, lies the real behavior of any
compiler-assisted schedule.

The stochastic approach is not dependent on the internal task predictabil-
ity since the schedule is fixed before the task starts executing. However, this
method is very dependent on the deadline variations. If, for example, the al-
lowed execution time is very close to the WCE at the maximum speed, there is
little a stochastic schedule can do. All task instances would end up running at
a close to maximum speed. On the other hand, the compiler-assisted method

56

4.4 DISCUSSION

would detect early finishing instances at run-time and lower the processor
speed accordingly.

Finally, a comparison between the two methods from the energy efficiency
point of view would only make sense for particular tasks and requirements.
Example 4.4 contains such an analysis for a task with a normal distribution
execution pattern.

Example 4.4 (Schedule Energy Efficiency Analysis):
Consider a task with an execution pattern exhibiting a Gaussian distribution
with µ = WCE/2 and σ = WCE/6. This is enough for building a stochas-
tic schedule, yet for the compiler-assisted method we need more information
about the internal structure of the task. For this reason we consider that
there is a point in the task instance before which nothing is known about
the actual execution time, and after which the exact execution time becomes
known. If this point is in the beginning of the task, the compiler-assisted
schedule will be closer to an ideal schedule. Conversely, if this decision point
approaches the end of the task, the compiler-assisted schedule will be closer
to the WCE schedule. In the following we denote the ratio between the first re-
gion clock cycles and the total execution time X by ϑ, the unawareness factor
of the task. It is interesting to see how the energy efficiency of the compiler-
assisted schedule depends on this factor. The total energy consumed in the
compiler-assisted schedule is composed of the energy consumed by the two
separate regions. The first one is executing X1 = ϑX cycles at a clock fre-
quency required by finishing the WCE during the allowed execution time A,
f1 = WCE/A. The second region is executing the remaining X2 = (1 − ϑ)X
cycles at the clock frequency required to exactly finish at the end of the al-
lowed time A, f2 = X2/(A−X1/f1). From these, using also the equations and
notations in Sections 4.3.1 and 4.4.2, can be shown that the compiler-assisted
schedule energy is:

ECA(X) = E1 + E2 = K
(

WCE

A

)2

X

[
ϑ +

(1− ϑ)3

(WCE/X − ϑ)2

]
(4.18)

The mean or expected value for the compiler-assisted approach may be com-
puted as:

ECA = ECA(X) =
∫ WCE

0

ECA(x)η(x)dx (4.19)

where η(x) is the execution pattern distribution, here a Gaussian distribution
with µ = WCE/2 and σ = WCE/6. Note that ECA cannot be computed sim-
ply as ECA(X). Furthermore, we are interested in comparing this with the
EWCE−stretch energy, as computed in equation 4.16:

ε′ =
ECA

EWCE−stretch
= ϑ +

(1− ϑ)3

X

∫ WCE

0

x

(WCE/x− ϑ)2
η(x)dx (4.20)

57

4. TASK LEVEL SCHEDULING

Note that for our execution pattern distribution, X = WCE/2. Using numeri-
cal integration we computed the value of ε′ for ϑ varying between 0 and 1 and
for various values of WCE. It turns out that for the given distribution, ε′ is
only a function of ϑ, independent of the WCE or the allowed execution time A.
The results are depicted in Figure 4.8.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
ar

t o
f W

C
E

-s
tr

et
ch

 s
ch

ed
ul

e
en

er
gy

Unawareness factor

Compiler-Assisted Schedule Energy Efficiency

0.64...

0.58

Stochastic is better

Compiler-Assisted is better

Figure 4.8: The compiler-assisted vs. the WCE-stretch schedule energy ratio,
ε′, as a function of task unawareness factor, ϑ.

It is important to realize that the expression of ε′ is accurate only if the
processor has some ideal characteristics. Namely, the processor has to be able
to run at any speed between almost 0 and the worst case speed. For real
processors, the efficiency of the compiler-assisted schedule degrades, as was
the case for the stochastic schedule. Yet, for this analysis we will stick to the
ideal model of the processor.

Line 2 in Table 4.1 already contains the efficiency of a stochastic schedule
for the given distribution. The 0.64 . . . value of ε says that the expected energy
of a stochastic schedule is always around 64% of the energy of the WCE-stretch
schedule, independent of the internal characteristics of the task. However,
Figure 4.8 shows that the compiler-assisted schedule consumes 64% of the
WCE-stretch schedule energy for the unawareness factor ϑ ≈ 0.58. If the task
exhibits an unawareness factor larger than 0.58 a compiler-assisted schedule
would consume more energy than the stochastic schedule. On the contrary,
if ϑ is smaller than 0.58, the compiler-assisted schedule would consume less
energy than the stochastic schedule.

58

4.4 DISCUSSION

Conclusion

After comparing the stochastic and compiler-assisted scheduling methods, we
conclude that there is no best scheduling strategy for all situations. Energy
efficiency, scheduling overhead, implementation level are just a few factors
that can pull the choice either way. One must carefully analyze the problem
and pick the most suited scheduling method for the specific situation.

59

CHAPTER 5

TASK GROUP SCHEDULING

THIS CHAPTER ADDRESSES energy-efficient scheduling of task groups under
real-time constrains. We discuss both static scheduling of task graphs and
run-time scheduling of task sets. Task graph scheduling strategies were de-
signed for multi-processor systems, but may be used also for the uni-processor
case. For run-time scheduling we focus on the uni-processor case and schemes
with both static priorities (Rate-Monotonic like) and dynamic priorities (Ear-
liest Deadline First). We show that, with special scheduling strategies, groups
composed of tasks with probabilistic execution pattern can run in an energy
efficient manner. A classification of the scheduling methods presented here is
given in Table 5.1.

Table 5.1: A classification of the task group scheduling strategies presented
in this chapter. The section dedicated to each method is given in parenthesis.

execution uni-proc. multi-proc.
Task — Proportional Stretch (5.2) LS-PS (5.3)

Graph LEneS (5.4)
Task fixed Maximum Required Speed (5.5)
Set probabilistic Slack Distribution RM (5.6) —

Uncertainty Based (5.7)

From the scheduling techniques presented here, those addressing task
graphs are static, performed off-line, oblivious to the dynamic characteris-
tics of the task. In these methods, all tasks are treated as having unique
(fixed) execution pattern, usually the same as WCE. The approaches used
for the multi-processor case (LS-PS, LEneS) may in fact be used even for the
uni-processor case, yet their performance is no better than the uni-processor

61

5. TASK GROUP SCHEDULING

specific method (Proportional Stretch).
The scheduling approaches addressing task sets were designed, in princi-

ple, for the uni-processor case. If the tasks exhibit a fixed execution pattern,
all the energy-efficient scheduling decisions may be taken off-line (Maximum
Required Speed). For tasks with variable execution pattern, one may addi-
tionally employ run-time techniques for energy reduction (Uncertainty-Based
Scheduling, Slack Distribution RM).

Note that all the scheduling strategies presented in this chapter assume
that the binding of tasks to processors (task mapping) is already decided.
The choices that have to be made at this level are related to timing, such
as deciding the task order or/and exact duration for each task execution or,
alternatively, the recommended processor speed for each task. Many of the
strategies presented here are additions or improvements to already existing
energy-unaware scheduling techniques.

5.1 The Energy of a Task Group Schedule

Before describing any scheduling techniques, it is important to take a look at
the measure we want to minimize: the energy consumption. Each schedule
yields a certain energy consumption, depending on the processor speeds as-
signed to the workload required by the tasks and the communication between
them. Since we consider the communication energy to be decided by the task
mapping, the energy we are interested to minimize during scheduling is the
task group energy.

For periodic tasks with fixed execution time, the energy is constant over
all hyper-periods and can be exactly computed off-line. Given a group of tasks
{τi}, each with a unique execution pattern and assigned to a processor Pi, a
schedule ξ imposes a unique speed sij for each of the Ci clock cycles of task τi.
Since the tasks may arrive with different periods Ti, it makes sense to com-
pute the energy consumption over a hyper-period. The hyper-period, denoted
by H, is computed as the least common multiplier of all the task periods,
H = lcm{Ti}i=1...N . Finally, to compute the energy needed by a certain task
over a hyper-period one must add all the energy consumption of all its H/Ti

number of instances. If we denote the energy of instance j of task i by Eij

then the energy of a schedule ξ is:

Eξ =
N∑

i=1

H/Ti∑
j=1

Eij (5.1)

For tasks with fixed execution pattern, the instance energy is fixed over all

62

5.1 THE ENERGY OF A TASK GROUP SCHEDULE

instances in a hyper-period Eij = Ei, so the schedule energy becomes:

Eξ =
N∑

i=1

H

Ti
Ei (5.2)

Note that, for task graphs, all tasks have the same period, meaning that all
tasks run only once in a hyper-period. In this case, in equation 5.2, H/Ti = 1.
Also, the processors may have different power consumption characteristics
that have to be taken into consideration by using corresponding energy-speed
functions, ePi .

Using the notations from Section 3.3.2, the energy of a task with fixed
execution pattern is computed as:

Ei =
Ci∑

j=1

ePi(sij) (5.3)

Using the equation 3.7, for processors that can run at any speed, the expres-
sion above becomes:

Ei = ePi

ref

Ci∑
j=1

sij
β (5.4)

For tasks with variable execution time, one can compute the expected energy
off-line:

Ei =
Ci∑

j=1

sij
β(1− cdfi(j)) (5.5)

The actual energy consumption can be computed usually only after execution,
when all the execution times are available.

Finally, we are interested in sets of tasks with fixed execution time, each
running at a single ideal speed, on a single processor. We will also use the
most common value for β = 2. From equations 5.2 and 5.4 we obtain the
schedule energy:

Eξ =
N∑

i=1

H

Ti
erefCisi

2 = Heref

N∑
i=1

Ci

Ti
si

2 (5.6)

When all tasks run at the same speed s, and using Definition 3.4 of processor
utilization U , the above equation becomes:

Eξ = Hereffrefs2U (5.7)

Note that, if no speed scaling is performed, as in all classic real-time schedul-
ing algorithms, the energy of a schedule is E1 = HereffrefU . This means

63

5. TASK GROUP SCHEDULING

that the energy consumption of a uniformly scaled schedule differs from a
non-scaled schedule by a factor of s2. The processor utilization can be at most
100%, which can be achieved by a uniformly scaled schedule if and only if the
speed is reduced to smin = U . Consequently, the lower bound for energy con-
sumption of a uniformly scaled schedule ELB has then the following property:

ELB = U2E1 (5.8)

Although we arrived at this formula for task sets, the same conclusion can
be drawn for task graphs running on homogeneous architectures. Most of the
following energy reduction methods are attempting to maximize utilization,
varying the speed as little as possible and still keeping a feasible schedule.
For task graphs on heterogeneous architectures, the more specialized LEneS
algorithm (Section 5.4) is a possible answer.

5.2 The Proportional Stretch Approach

Consider for the moment a task group with a single, global timing constraint
(deadline A), running on a single processor. As shown in Section 4.1, from the
energy point of view it is best if any idle time is eliminated by running the
tasks slower. In fact, following the same reasoning given in Section 4.2, we
can conclude that there is a unique speed for all tasks that gives an optimal,
minimal energy schedule.

At the reference speed, for the reference frequency fref , the total execution
time for the group will be C = 1/fref

∑
i Ci. For the deadline C, the optimal

unique speed used by any ordering is exactly the reference speed. Any order
is therefore an optimal schedule from the energy consumption point of view.
For all other deadlines A, the optimal schedule is obtained when all tasks
execute at the same speed, covering the entire time interval A. The optimal
speed is in this case sA = C/A. The conclusion is that an optimal schedule
for a deadline A may be obtained from any optimal schedule for C by a simple
uniform stretch, proportional to C/A. Note also that sA is actually equivalent
to the processor utilization U , matching the conclusion on energy lower bound
from Section 5.1. Finally, proportional stretch is a method that can be applied
even to multi-processor systems and has a few important properties, as we
detail in the following.

proportional stretch is a simple, and usually off-line technique, similar to
the task level WCE-stretch. In fact, it is not a proper scheduling algorithm,
but just a method of transforming an already existent schedule into another
schedule, and do this optimally from the energy point of view. In our classifi-
cation, this approach is declared as working on task graphs, but it can work
as well for sets of tasks with the same deadline. The method can be applied

64

5.2 THE PROPORTIONAL STRETCH APPROACH

thus to task groups with a single deadline, on which internal deadlines de-
pend, if they exist. We have also classified this as a uni-processor technique,
yet it works also for multi-processor systems using a single type of processors.
For heterogeneous multi-processor systems this method is not optimal. Fur-
thermore, this method is only optimal for the case when the number of speeds
used by a processor is not restricted. Whenever the transformation imposes
speeds that cannot be achieved by the processor, the transformed schedule
might not be optimal.

In principle, proportional stretch adapts an existent (possibly energy effi-
cient) schedule built for a deadline A1 to a new deadline A2. More precisely,
all the speeds required to run the tasks in the schedule for A1 are scaled with
the same factor given by ρ = A1/A2. In fact, this is equivalent to saying that
the actual execution time for each task, or task portion is stretched by the
same factor ρ.

Definition 5.1. Given task group {τi}i=1...N with a deadline A1 and a sched-
ule ξ1 imposing the task execution times {ti}i=1...N , a proportional stretch
for a new deadline A2 is a new schedule ξ2, obtained from ξ1, that scales each
task execution times with the same factor A1/A2, resulting in the task execu-
tion times given by {A1/A2ti}i=1...N .

This definition is valid for both non-preemptive and preemptive schedules.
Moreover, there is no restriction on the task level schedule at this point. Each
task may run at any combination of processor speeds inside its allowed exe-
cution time interval. Informally, the entire schedule stretches like an rubber
band to fit the new deadline.

This method has an important characteristic on ideal processors (able to
run at any speed). The technique guarantees that if the schedule for A1 is
optimal from the energy point of view, then the schedule for A2 will also be
optimal.

Theorem 5.1 (Proportional Stretch Optimality):
If a schedule for a deadline A1 is energy optimal, then the proportional stretch
for any other deadline A2 is also energy optimal for that deadline.

The theorem can be proven immediately using the relation between the
energy of a schedule and its stretched equivalent:

Lemma 5.2 (The Energy of a Proportionally Stretched Schedule):
Given a schedule ξ with an energy consumption E, then its proportional
stretch by a factor ρ has an energy consumption equal to ρβE.

The lemma is deduced from equations 5.2 and 5.4, where all the proces-
sors have the same power characteristic (obvious for the uni-processor case),

65

5. TASK GROUP SCHEDULING

by substituting each speed sij with scaled speeds ρsij . Note that the propor-
tional stretch transformation preserves the order given by the energy con-
sumption. Given two schedules for deadline A1, denoted by ξ1(A1) and ξ2(A1),
having the energy consumptions ordered as E1(A1) < E2(A1), the energy con-
sumptions of their proportional stretches for deadline A2 are still in the same
relation: E1(A2) < E2(A2). Therefore, if a schedule yields minimum energy
consumption for A1, its ρ proportional stretch also yields the minimum energy
consumption for A2.

Returning to the theorem, for any schedule respecting A1 there is exists
a ρ = A1/A2 proportionally stretched schedule for A2 (Remember that the
processor can run at any speed). Conversely, for any schedule respecting
A2, there is a proportionally stretched schedule respecting A1, with a fac-
tor ρ−1 = A2/A1. The proportional stretch transformation is thus a bijective
relation. This means that there are no schedules for one deadline that are not
transformations of schedules for the other deadline. Combining this observa-
tion with the consequences of Lemma 5.2, we arrive at the property expressed
by Theorem 5.1.

Note that, if the system has resources that can operate at only one speed,
Theorem 5.1 no longer applies. Since we consider inter-processor communica-
tions to be of fixed delay, the above optimality claim does not hold for sched-
ules containing inter-processor communications. The problem comes from
the fact that the communication delay does not change, making the actual
stretching factor for tasks lower in practice. In such cases, one could con-
sider the path with the critical computational time as the one to be stretched.
Consequently, the available time should exclude the communication time, in
particular the maximum communication time on the path with longer compu-
tations than the critical time. Let us denote paths by pi and pj , critical path
by pc, the sum of delays for stretch-able tasks in a path p by V ar(p), and the
sum of delays for fixed tasks of a path p by Fix(p). With this notations, a good
proportional stretch factor is computed as:

ρ′ =
maxpi

{V ar(pi)}
A−maxV ar(pj)≥V ar(pc){Fix(pj)}

(5.9)

We will not pursue analyzing this stretching method, since our LEneS algo-
rithm, presented later on, is anyway able to handle fixed delay tasks better.

The following scheduling methods will often make use of the proportional
stretch transformation to derive energy-efficient schedules for different dead-
lines from a certain initial schedule. As mentioned before, the derived sched-
ules are energy optimal only if the initial schedules are energy optimal. More-
over, for multi-processor systems, all the processors must be of the same type
to guarantee optimality. Furthermore, the schedule has to be free of fixed de-
lay operations (such as inter-processor communications). In all other cases,

66

5.3 LIST-SCHEDULING WITH PROPORTIONAL STRETCH

although not yielding optimal schedules, proportional stretch remains a sim-
ple and fast method to adapt schedules to new deadlines in an energy efficient
manner.

5.3 List-Scheduling with Proportional Stretch

One of the classic scheduling heuristics for resource constrained task graphs
is list-scheduling [DeM94]. Widely used for static scheduling, list-scheduling
is in fact a family of priority based scheduling algorithms. Selecting the right
priority function plays an important role in finding schedules. For example,
a typical problem is execution time minimization under resource constraints.
In this case, a popular priority function is the one based on the worst case re-
maining execution time (or critical-path). The longer the critical-path start-
ing in a certain node, the higher the priority of that node. The constraints
on resources usually refer to the number of available resources of a certain
type, as is often the case in high-level synthesis. Alternatively, the resource
constraints may refer to the exact assignment of operations to resources.

A pseudo-code description of a generic list-scheduling heuristic is given in
Figure 5.1. The algorithm accepts as input a graph Γ, having its nodes τ al-
ready assigned to specific resources (Res(τ)), and a priority function f . Note
that the heuristic iteratively schedules nodes (τ), that have all their prede-
cessors (Pred(τ,Γ)) scheduled. It does so based on a priority function, that
usually depends on the specific task but may include other parameters. If the
priority of a node changes through out the scheduling procedure, depending
for example on the previously scheduled nodes (Σ) or scheduling step (t), the
priority is said to be dynamic. However, if the node priorities remain constant
throughout the scheduling procedure, the priorities are said to be static. In
this case they may be computed only once, in the beginning of the algorithm.
Section 5.4 describes an algorithm from the list-scheduling family, having a
dynamic priority function based on a combination between energy and exe-
cution time. For the moment we will focus on the classic list-scheduling with
critical-path priority function extended with a proportional stretch transfor-
mation.

As mentioned before, a priority function commonly used with list-sched-
uling for execution time optimization is the critical-path priority. The graph
nodes which have the longest path of successors, in terms of execution time,
are assigned the highest priority. In fact critical-path yields static priorities,
since it depends on the graph structure only.

The classic list-scheduling heuristic assumes fixed speed processors. With
this assumption, it is enough to decide the start moment of a task to ob-
tain a schedule. However, a speed scheduling algorithm must decide not
only the start moment but also the processor speed or the end moment of

67

5. TASK GROUP SCHEDULING

List Scheduling(Γ(N,V), f) {
t ← 0;
Σ ← ∅;
do {

for each free resource r ∈ R {
Nready ← {τ ∈ N \ Σ | Pred(τ , Γ) ∈ Σ ∧ Res(τ) = r};
for each task τ ∈ Nready

calculate pτ ← f(τ , . . .);
τnext ← τ ∧ pτ = min{pi}i∈Nready ;

Schedule τnext at moment t;
Σ ← Σ ∪ {τnext}
}
t ← the earliest moment r resource becomes available;
Update the free resources in R;
} while(Σ 6= N);
}

Figure 5.1: Pseudo-code for the list-scheduling heuristic

a task (see Section 5.4). Still we may use a classic list-scheduling on a DVS-
processor if we perform subsequent transformations for adjusting the execu-
tion speed. Taking into account that list-scheduling with critical-path priority
tries to minimize the execution time, the proportional stretch transformation
(from Section 5.2) appears to be a good subsequent step. This observation led
us to the list-scheduling with proportional stretch (LS-PS) strategy for DVS-
processors.

The LS-PS approach is comprised of two successive off-line steps:

1. Perform list-scheduling with critical-path priority using the reference
speed(s) of the processor(s). This step will result in a schedule requiring
time C to complete.

2. Perform a proportional stretch on the schedule resulted from the previ-
ous step with the factor C/A, where A is the allowed execution time for
the whole task graph.

A consequence of this algorithm is that all tasks on a certain processor will
execute at the same speed. Although an easy method to implement, LP-PS
performs optimally only under specific circumstances. From the analysis of
the proportional stretch transformation given in Section 5.2, we deduce that
LP-PS is optimal for homogeneous systems and directed task graphs with
all paths equal in length1. Note also that it must be free of non-zero delay

1The graphs do not need to yield 100% utilization, but only to have all paths critical.

68

5.3 LIST-SCHEDULING WITH PROPORTIONAL STRETCH

communications, for the optimality claim to hold. For homogeneous systems,
where the processors have different power characteristics, or containing non-
scalable operations (e.g., non-zero delay communications), or the graph con-
tains non-critical paths, LP-PS fails to employ certain possibilities for energy
reduction (see Figure 5.2 a and b).

Resource
Power

Time

Deadline

Bus

Proc. 1

Proc. 2

T2

T1 T3 T4

a) ClassicLS

Resource
Power

Time

Deadline

Bus

Proc. 1

Proc. 2

b) LS-PS

T2

T1 T3 T4

Resource
Power

Time

Deadline

Bus

Proc. 1

Proc. 2

c) LEneS

T2

T1 T3 T4

PS

Unused
Slack

Uneven
Scaling

Unscalable
comm

Figure 5.2: Scheduling a simple task graph with three different strategies.

We designed a better algorithm, called LEneS, that takes into account both
issues mentioned before, as detailed next.

69

5. TASK GROUP SCHEDULING

5.4 The LEneS Algorithm

In this section we present an off-line, non-preemptive Low-Energy Scheduling
(LEneS) algorithm designed for Enhanced Task Graphs (ETG). The ETGs are
already assigned to resources, which are variable speed processors. Being an
off-line (static) scheduling algorithm, LEneS regards tasks as having a unique
execution pattern. The algorithm also works for tasks with probabilistic exe-
cution pattern, if we employ only the tasks’ WCE.

LEneS is based on a list-scheduling algorithm, and uses a priority func-
tion sensitive on both critical path and energy. In every scheduling step, the
node priorities change and have to be recalculated. Moreover, this priority
function is tuned during several scheduling attempts. Whenever a schedul-
ing attempt fails (the deadline is violated), the priority function is adjusted
and a re-scheduling is attempted.

Next, the scheduling problem is defined more precisely. Then we provide a
background for understanding the priority function, followed by the descrip-
tion of the priority function used by LEneS. We describe the method for tuning
this priority function, and finally we show some experimental results.

5.4.1 Scheduling an Enhanced Task Graph

The ETG, as described in Section 3.2.2, is especially useful in representing
tasks on variable speed processors, since the duration of a task may vary
with the processor speed. In an ETG, the nodes represent start-task and end-
task events that have to take place at certain time moments. Scheduling an
ETG means finding these time moments while respecting the dependencies
and timing constraints:

Definition 5.2. Given a deadline d, a schedule for an enhanced task graph
ΓE = (Nstart∪Nend, V

′) is an assignment of time moments to nodes (a mapping
ξ : N → <, where N = Nstart ∪Nend) such that ∀vij ∈ V ′, ξ(i) + wij ≤ ξ(j) and
∀k ∈ N, 0 ≤ ξ(k) ≤ d.

Here, wij is the weight of the edge between nodes i and j, if it exists, and
0 otherwise. These weights denote the timing constraints as minimal delays
between two events. For example, the minimal delay between a start and an
end event of the same task is given by the task WCE at the highest processor
speed.

Beside dependencies and timing constraints, a schedule must also respect
resource constraints. In this case, since the ETG is already assigned, the only
constraint is that tasks using the same processor should have non-overlapping
execution times. Formally, if tasks τ1 = (start1, end1) and τ2 = (start2, end2)
are assigned to the same resource, [ξ(start1), ξ(end1)) ∩ [ξ(start2), ξ(end2))
= ∅. Task graph assignment is discussed in more detail in Chapter 6.

70

5.4 THE LENES ALGORITHM

Starting from the definition of a schedule, we also define the concept of
partial schedule of an ETG. A partial schedule is a set of all possible schedules,
given that a certain node can be scheduled anywhere inside a certain time
interval:

Definition 5.3. Given an ETG ΓE = (N,V ′) and a deadline d, a partial
schedule is an assignment of an interval [ai, bi] to each node i ∈ N , where
0 ≤ ai ≤ bi ≤ d, and ,∀k ∈ N ∧ ∀tk ∈ [ak, bk], ∃σk = {tj |j ∈ N, j 6= k, tj ∈ [aj , bj]}
such that ξ = σk ∪ {tk} is a schedule.

From this definition it is clear that two partial schedules may contain com-
mon schedules. Furthermore, we can define the following relation between
two partial schedules:

Definition 5.4. A partial schedule ξ1 covers another partial schedule ξ2 if
∀i ∈ N , a1

i ≤ a2
i ∧ b2

i ≤ b1
i , where ai and bi have the same meaning as in

definition 5.3, and the superscripts identify the partial schedule. ξ2 is, in this
case, a subset of the set of schedules represented by ξ1.

The idea of the LEneS algorithm consists in choosing, in each scheduling
step, a partial schedule covered by the old one. The chosen partial schedule
should have the smallest possible energy compared to all the other partial
schedules. We define the energy consumption associated with schedules and
partial schedules in Section 5.4.2. The starting partial schedule must be one
covering all the possible schedules. For this, we start by performing the As
Soon As Possible (ASAP) and As Late As Possible (ALAP) scheduling for the
ETG, without resource constraints.

Definition 5.5. The ASAP schedule of an ETG, ΓE = (N,V ′) is the schedule
in which the exact time moments for scheduling each i ∈ N node are given by
ξ(i) = max

(
{0} ∪ {ξ(j) + wji}vji∈V ′

)
, also denoted by ASAPi.

Definition 5.6. The ALAP schedule of an ETG, ΓE = (N,V ′) is the schedule
in which the exact time moments for scheduling each i ∈ N node are given by
ξ(i) = min

(
{d} ∪ {ξ(j)− wij}vij∈V ′

)
, also denoted by ALAPi.

Finally, for an ETG and a certain deadline d, no node can be scheduled out-
side its [ASAPi, ALAPi] interval, also referred to as node mobility. Therefore, it
is sufficient to use these values as the initial values for our LEneS approach,
to make sure all possible schedules are considered during scheduling.

5.4.2 The Average Energy of a Schedule

Since we are interested in finding the schedule with a minimal energy con-
sumption, we need to define what is the energy of a schedule. For this reason

71

5. TASK GROUP SCHEDULING

we start from the energy expression of individual tasks. The energy consumed
by the task can be approximated by a piece-wise linear dependency on its ex-
ecution time as discussed in Chapter 3. Given the energy function we define
the average energy of an ETG node. We consider that the start-nodes have
zero energy, while the average energy of the end-nodes models the full task
energy. Given that an end-node can be scheduled anywhere inside a certain
time interval [a, b] ∈ [ASAP, ALAP], its average energy is:

E[a,b] =
1

b− a

∫ b

a

E(t)dt ASAP ≤ a < b ≤ ALAP (5.10)

We consider the average energy over an interval [a, b] for a certain end-
node, as a measure of the quality of the set of solutions obtained by scheduling
that end-node anywhere in [a, b]. At limit, when a gets closer to b, E[b,b] = E(b)
is the energy yielded by scheduling that node exactly at moment b. For a
given node, we are able to compare different possible time intervals, or sets of
solutions using the average energy as a measure.

The notion of average energy can be extended to sets of schedules of an
ETG by using partial schedules. We define the average energy of a partial
schedule using the average energy of a node as:

E =
∑
i∈N

E[ai,bi] (5.11)

Since all the start-nodes are considered to have zero energy, the sum given
above ultimately involves only the end-nodes.

We can now compare any two partial schedules, using their energy con-
sumption. Given two partial schedules, we consider that one is better than
the other if it has lower average energy.

Finally, the scheduling starts from the partial schedule covering all others,
which is obtained by using the ASAP-ALAP intervals for the given deadline d.
We will denote the energy of this initial partial schedule by E[0,d]. Then, for
each time moment t from 0 up to d, decisions are taken that change the partial
schedule. We will denote the partial schedule for a certain time moment t (also
referred to as scheduling step), by Et. The exact algorithm used to restrict the
partial schedule to a schedule is detailed in Section 5.4.4. Next we focus on
the priority function used by this algorithm.

5.4.3 The Priority Function

The priority function for a node reflects the energy gain (or loss) induced by
a specific scheduling decision. At a certain time step t, there are nodes (with
index i) which are eligible for scheduling. If they are delayed by a certain time
ε, their mobility will change from [t, ei] to [t+ ε, ei]. This change can propagate

72

5.4 THE LENES ALGORITHM

to the nodes ordered after them. For each of the eligible nodes at a certain
scheduling step, delaying the node by ε yields a new partial schedule, with a
corresponding average energy, Ei

t+ε. We are interested in the partial schedule
yielding the most significant energy reduction. Therefore, our priority func-
tion for a node i, which is about to be scheduled at a certain time step t, is
computed as the difference between the average energy of the current partial
schedule, Ei

t , and the one obtained by scheduling node i later, Ei
t+ε. In the

special case when the moment t is the latest possible moment, the node must
be scheduled, so its priority becomes infinite:

f(i, t) =
{

Ei
t − Ei

t+ε if alapi > t
∞ otherwise

(5.12)

A negative priority means that it is better to schedule the node later, while
a positive value means that it is better to schedule the node at that very
moment. The priority function presented above considers only the energy
aspect, and may fail to lead to feasible schedules, especially when the deadline
is tight. To be able to find schedules even for tight deadlines, we used the
following, improved priority function:

g(i, t) = f(i, t) + αi
|f(i, t)|

d− t− cpi
(5.13)

where d is the deadline and cpi is the delay of the longest path starting in node
i (for the fastest processor speed). Each node has an associated coefficient
αi, which controls the emphasis on lowering energy vs. generating a tight
schedule. Having a different α for each node allows us to treat the nodes
on the critical path in a different manner, focusing, for those nodes, more on
fulfilling the deadline than on lowering the energy. With the priority given
above, if all αi are large enough, the priority function behaves closer to a
classic, critical-path priority. Moreover, the set of smallest αi for a given graph
and certain deadline yields the lowest energy consumption for that graph and
deadline. Next, we describe the method of tuning the values of the α set.

Tuning the Priority Function

Depending on the values for the α coefficients, it can happen that no schedule
is found. In that case, the αs for the nodes on the critical path are increased,
thus emphasizing the timing aspect of the priority function. A new schedul-
ing is attempted with the new α values. In the worst case, all α reach their
maximal value, MAX α, set by the designer, and the g(t, i) priority function
becomes similar to a classic critical-path priority function.

73

5. TASK GROUP SCHEDULING

5.4.4 LEneS Algorithm Pseudo-code

A pseudo-code description of the LEneS algorithm is given in Figure 5.3. The
algorithm consist of list-scheduling on ETG, ETG LS, using our priority func-
tion, wrapped in a tuning algorithm for the αi coefficients.

The algorithm starts by setting all the αi coefficients to 0. A null α coef-
ficient in equation 5.13 means that the node priorities will be based only on
their possible impact on energy consumption. Thus, LEneS attempts to sched-
ule the ETG for the current set of coefficients, using the ETG LS procedure
described in detail in the next section. If this fails, the deadline appears to
be too tight to accommodate a loose (low speed) critical path. The algorithm
then increases the influence of timing on the priority for the nodes on the
critical path. This is done by increasing the α coefficients for the nodes on
the critical path. If all nodes on the critical path have already reached the
maximum value for α and no schedule was found, non-critical paths must be
made more sensitive on timing, since they might indirectly prevent the task
graph from finishing before the deadline. This is done by increasing all α
coefficients in the graph. Finally, if no schedule is found even when all the co-
efficients reached the maximum value, the algorithm concludes that there is
no possible schedule. This situation is in fact equivalent to scheduling using
a classic list-scheduling with critical-path as priority function. If the classic
list-scheduling cannot find a schedule, then neither can LEneS. Note that
the algorithm focuses in the beginning only on energy consumption and, if
no schedule is found, focuses more and more on timing, by increasing the α
coefficients. The result of this procedure is a set of α which yields low energy
schedule under the given timing constraint.

boolean LEneS(etg , deadline) {
set all αi ← 0;
while(not ETG LS(etg , g, deadline)) {

let {αk} be the coefficients of the nodes on the critical path;
if(all αi ≥ MAX α) return false;
else if(all αk == MAX α) increase all αi with ε;
else increase only all αk with ε;
}
return true;
}

Figure 5.3: The Full LEneS Algorithm

74

5.4 THE LENES ALGORITHM

List-Scheduling on ETGs

As mentioned before, our LEneS algorithm is based on list-scheduling adapted
for tasks running on variable speed processors. Scheduling a task on these
kind of processors means deciding at least two parameters: the start of task
execution and the speed of the processor (alternatively the end of task execu-
tion). Therefore, ETGs are well suited for our problem. Since ETG nodes are
events describing the start and end of execution for a task, one has to be care-
ful to schedule new tasks (start events) only when the processor is free (after
end events). This is one of the major adaptations of list-scheduling in our
scheduling algorithm, LEneS. Another adaptation is the method of advancing
the time in each scheduling step (t in the listing from Figure 5.1). In princi-
ple, list-scheduling on fixed speed processors may jump at the end of a task,
since the execution time is unique and known. However, for variable speed
processors, a task may finish after different time intervals, depending on the
running speed. Even for processors with a limited number of speeds, the
task execution time may vary smoothly, as shown in Section 3.3.2. Therefore,
the time should vary almost continuously wherever a scheduling decision can
be made. In a real implementation, one may choose to vary the time in suffi-
ciently small time steps (e.g. the length of the clock at the highest speed). The
drawback of choosing too big time steps is that the algorithm might find less
efficient schedules. On the other hand, choosing too small time steps leads
to longer execution times. The algorithmic complexity of the whole LEneS al-
gorithm is investigated in Section 5.4.5. A third important characteristic of
our LEneS algorithm is the adaptive priority function, extensively described
in Section 5.4.3.

The specific list-scheduling algorithm used by LEneS is presented in Fig-
ure 5.4. The ETG nodes are scheduled iteratively on free resources. Whenever
a start node is scheduled on a certain resource, that resource is removed from
the free resources list. Once the corresponding end node has been scheduled,
the resource becomes free again. Note that the algorithm first attempts to
schedule end nodes, in the hope that more resources become free or more
start nodes become ready. Only nodes with positive priorities are considered
for scheduling. A positive priority means that there is an decrease in energy
when the node is scheduled earlier rather than later. Moreover, for each re-
source only the node with the highest positive priority is scheduled at one
time. Note also that time advances in constant and relatively small steps
ε. Treating time in this pseudo-continuous manner is necessary in our case,
since tasks may finish at any moment, depending on the processor speed.
Ideally the nodes should be scheduled at the precise time moment when their
priority becomes zero, if initially was negative. In practice, finding these ex-
act time moments is difficult, resting on an accuracy versus speed trade-off.
Using a constant step as time increment turned out to be a sufficiently exact

75

5. TASK GROUP SCHEDULING

method for our case, if the step is chosen wisely.

Finally, if the time scale passes the deadline and there still are unsched-
uled nodes, the algorithm ends. This means that the ETG may not be sched-
uled before the given deadline for the current priority function parameters.
If all nodes are scheduled by the time we reach the deadline, the algorithm
succeeds.

boolean ETG LS(Γ(Nstart ∪ Nend,V), f , deadline) {
Rfree ← all; t ← 0; Σ ← ∅;
do {

/* extract all end task nodes and compute their priority */
Nend,ready ← {i | i ∈ Nend \ Σ ∧ ∀ j ∈ Pred(i, Γ), j ∈ Σ ∧ tj + wij ≤ t};
for each node i ∈ Nend,ready calculate pi ← f(i, . . .);
/* keep the nodes that have a positive priority */

N+
end,ready ← {i | i ∈ Nend,ready ∧ pi > 0};

for each i ∈ N+
end,ready {

/* schedule the node now, on its assigned resource */
ti ← i; Σ ← Σ ∪ {i}; Rfree ← Rfree ∪ {Res(i)};
}
/* extract all start task nodes and compute their priority */
Nstart,ready ← {i | i ∈ Nstart \ Σ ∧ ∀ j ∈ Pred(i, Γ), j ∈ Σ ∧ tj + wij ≤ t};
for each task i ∈ Nstart,ready calculate pi ← f(i, . . .);
/* keep those that have positive priority */

N+
start,ready ← {i | i ∈ Nstart,ready ∧ pi > 0};

Lready ← Order N+
start,ready by decreasing pi;

for each node i ∈ Lready from head to tail
if(Res(i) ∈ Rfree) {

/* schedule the node now, on its assigned resource */
ti ← i; Σ ← Σ ∪ {i}; Rfree ← Rfree \ {Res(i)};
}

t ← t + ε;
} while(t < deadline);
Try to schedule all remaining end task nodes;
if(Σ 6= Nstart ∪ Nend) return false;
else return true;
}

Figure 5.4: The adapted List-Scheduling used by LEneS

76

5.4 THE LENES ALGORITHM

5.4.5 LEneS Evaluation

There are two important characteristics of our LEneS approach that have to
be investigated. First, we are interested in the algorithmic complexity or the
computational time required to carry out our algorithm. Although this is less
important for an off-line algorithm such as LEneS, it is still decisive for achiev-
ing a fast design space exploration. Secondly, the essential characteristic of
an energy-aware algorithm is its efficiency in finding low energy solutions.
We address both of these characteristics next.

Algorithmic Complexity and Execution Time

The complexity analysis of the LEneS algorithm shows that it has a computa-
tional complexity of O(V MN3log(MAX α)), where N is the number of nodes
in the ETG, M is the number of time steps in the tightest deadline, V is the
highest number of speeds supported by a processor, and MAX α is the max-
imal value allowed for the α’s. This expression is confirmed if we look at the
time required for scheduling for different settings.

The following experiment evaluates the LEneS algorithm from the schedul-
ing speed point of view. The results are depicted in Figure 5.5. The points
in the base plane of the 3D graph reflect the system configuration: num-
ber of processors and the distribution of tasks on the processors. For each
of the configurations, we generated hundred random task graphs and then
used LEneS to schedule them, obtaining an average scheduling time. The
average time needed to perform the scheduling is represented on the verti-
cal axis. Using interpolation, we obtained the dotted curves on the surface.
The curves mark different time levels, ranging from 1 second to 10 minutes.
For example, for a task graph of 56 tasks, evenly distributed on eight pro-
cessors (seven tasks per processor), LEneS will require around 5 minutes to
find the schedule. For scheduling the largest type of graphs (hundred nodes
on ten processors), LEneS requires around 24 minutes. For this experiment
we assumed that the processors can run at three different speed settings. We
considered the supply voltages for these settings to be 3.3V, 2.1V, and 0.9V.
The clock frequencies at each voltage were obtained using a realistic CMOS
delay-voltage dependency (Section 2.1.1) with threshold voltage set at 0.4V.
The values depicted in Figure 5.5 were obtained by running LEneS on a Sun
Ultra 10 workstation (440MHz UltraSparcIIi processor, 256MB RAM).

In some cases, the long execution time for large designs makes our method
suitable only for final scheduling, and not for fast evaluation inside a design-
space exploration loop. Yet, this drawback can be overcome, if LEneS is com-
bined with a simpler scheduling strategy or a fast estimator, as we point out
in Chapter 6.

77

5. TASK GROUP SCHEDULING

2
4

6
8

10 2
4

6
8

10

1s

10s

1min 5min
10min

24min

5ms

7

Processors
Tasks/
Processors

Scheduling Time

Figure 5.5: Execution time required by performing LEneS on various archi-
tectures and ETGs (carried out on a 440MHz UltraSparcIIi processor, 256MB
RAM).

Energy Savings

The next set of experiments inspects the energy saving capability of the LEneS
algorithm compared to the classic list-scheduling with critical-path based pri-
ority function (ClassicLS). For several system configurations, as in the previ-
ous experiment, we scheduled the ETGs using both LEneS and ClassicLS. For
the tightest schedule length, we compared the energies consumed by the two
solutions, obtaining a surface similar to the one in Figure 5.5. For clarity, we
depicted in Figure 5.6 only the projection of the levels on the horizontal plane
instead of the whole 3D graph. For this experiment, we assumed that we use
processors with four speed settings (supply voltages of 3.3V, 2.5V, 1.7V, and
0.9V with corresponding realistic frequency values). Note that the saved en-
ergy can be as high as 28% when using LEneS as opposed to ClassicLS. For
architectures with two voltage processors (3.3V and 0.9V), using a similar ex-
periment we obtained slightly smaller energy savings. In the majority of the
cases, the saved energy was four times smaller compared to the four supply
voltage processors. This difference comes from the fact that for a two speed
processor, the energy-delay curve (Figure 3.3) is a worse approximation of the
ideal one, compared to the case of a four speed processor.

Note that the saved energy increases with the degree of parallelism (more
processors or less tasks per processor). This comes from the fact that the per-
cent of tasks on the critical-path decreases. In this case, there are potentially
more tasks which can run slower, and thus save energy. The critical-path
length is also influenced by the assignment of tasks to processors, not only by
the dependencies in the task graph. An unbalanced assignment can overload

78

5.4 THE LENES ALGORITHM

2 4 6 8 10
2

4

6

8

10

savings >25%

savings >20%

savings >15%

savings >10%

7
8x7=56 tasks

Processors

Ta
sk

/P
ro

ce
ss

or

M
ax

 fo
r

10
x4

: 2
8,

4%

Figure 5.6: Energy savings obtained via LEneS compared to ClassicLS on
different size architectures and ETGs.

a processor unnecessarily, increasing also the critical-path. In these cases,
our LEneS method performs extremely well since it can take advantage of the
idle processors. However, if the processors are perfectly balanced, LEneS be-
haves as ClassicLS. A more detailed analysis of the influence of assignment
on scheduling can be found in Chapter 6.

In the experiments presented until now, we assumed that we always have
to execute the task graph as fast as possible. In reality, in most of the cases
the deadlines are given as design requirements. Often the designers do not
require the tasks to execute as fast as possible. In these cases, there is a time
slack which can be used to further reduce the energy. The next experiment ex-
plores the behavior of LEneS in these more relaxed cases. We considered three
scheduling methods: the classical list-scheduling with critical path as prior-
ity (ClassicLS), list-scheduling with proportional stretch (LS-PS) from Section
5.3, and LEneS with proportional stretch (LEneS-PS) as described in Section
5.2. For various extensions of the tightest deadline, we compared the en-
ergy saved by using LEneS-PS over the other two approaches for a number of
random task graphs. In Figure 5.7 we depicted the curves obtained by aver-
aging the results for two sets of thirty random graphs (TG1 and TG2). Both
sets contain task graphs of thirty nodes, but the degree of parallelism differs,
representing two extremes. TG1 uses ten processors (high parallelism), while
TG2 uses only three processors (low parallelism). The continuous curves show
the energy saved by LEneS-PS over LS-PS. The dotted ones show the energy
saved by LEneS-PS over ClassicLS. Although, LS-PS performs well, being able
to save around 60% energy at 50% deadline extension compared to ClassicLS,
LEneS-PS performs best by saving 7–28% energy, compared to LS-PS.

79

5. TASK GROUP SCHEDULING

0

10

20

30

40

50

60

70

80

90

0 10 20 30 40 50 60 70 80 90 100

TG1 (3tasks x 10procs)

TG2 (10tasks x 3procs)

TG1 (3tasks x 10procs)

TG2 (10tasks x 3procs)

vs. LS-PS

Deadline extension in %E
ne

rg
y

sa
ve

d
by

 L
E

ne
S

-P
S

 in
 %

vs. Classic LS

Figure 5.7: Relative energy savings over ClassicLS for LEneS-PS and LS-PS
for different deadlines.

The final experiment explores the potential energy savings for a real-life
application. The sub-system we are interested in is an optical flow detection
(OFD) algorithm, which is part of a traffic monitoring system (see [DGK+00]).
In this implementation, the optical flow algorithm consists of 32 tasks, run-
ning on two ADSP-21061L digital signal processors. Limited by other tasks,
OFD can process an image of 78 × 120 pixels at a rate up to 12.5Hz. The es-
timated energy consumption for one iteration of the OFD implementation at
this rate is 27.2mJ. Depending on traffic or monitoring altitude, such a high
processing rate is a waste of resources. For instance, at a high altitude and
sparse traffic, the bird’s-eye view changes very slowly, therefore, requiring in-
frequent updates. In many cases, a rate of 2Hz is sufficient, which means
approximately six times deadline extension for one iteration of the OFD. Im-
portant energy savings would be obtained if the design were to use processors
supporting multiple voltages. Moreover, using the approach we presented
here, the schedule can be dynamically adapted at run-time to fit the desired
deadline, depending on the required processing rate. Assuming that the DSPs
can operate at 3.3V, 2.5V, 1.7V, or 0.9V, we applied the LEneS method for the
OFD. The results show as much as 83% processor energy saving possibility for
a sampling rate of 2Hz. For that rate, all the tasks are using the two lowest
possible voltages. Overall, the processors have to run 42.48% of the time at
1.7V, and the rest of the time at 0.9V. For this particular example, the differ-
ence between the energy obtained through LEneS-PS and LS-PS was less than
4%. This difference is rather small because of the reduced number of tasks

80

5.5 MAXIMUM REQUIRED SPEED APPROACH

executing off the critical path, and which anyway have little freedom to scale.
Note also that as the deadline extension grows, the tasks use lower voltages.
For lower supply voltages, the energy-delay dependency (see Figure 3.3) has
a smaller slope, so longer delays yield gradually smaller energy savings. At
limit, all tasks execute at the lowest voltage, and further deadline extension
will not bring new energy savings.

5.4.6 Conclusions

In this section we introduced a new static scheduling method, LEneS, that
handles designs with dependent tasks mapped onto dynamic supply voltage
processors. LEneS is based on list-scheduling and uses a special priority func-
tion to derive schedules with low energy consumption. Using a method for
tuning its priority function, our algorithm is able to find schedules that are
more energy efficient than other energy-aware scheduling strategies. The ex-
periments we present show that even for the tightest possible deadline, up
to 28% energy savings can be obtained without any performance loss, using
our scheduling approach. For loose deadlines, LEneS can be combined with
the scaling method from Section 5.2, leading to important energy savings. In
particular, using this technique, we can obtain 77% energy savings over a
critical-path priority based list-scheduling, for a 50% deadline extension.

5.5 Maximum Required Speed Approach

The Maximum Required Speed (MRS) method presented in this section is de-
signed as an off-line step for task sets scheduling. The main idea of this ap-
proach rests on reaching a close to 100% processor utilization by identifying
tasks that can run slower. More precisely, MRS is not a scheduling algorithm
in itself, but a procedure to compute the smallest possible processing speeds
for which a task set is still schedulable with a specific on-line algorithm. At
run-time, the task set is still scheduled according to the on-line algorithm,
but the processor speeds are set using the off-line computed values. Note
that the speed choice must not affect the feasibility of the schedule. For tasks
with fixed execution time, the only modification of the non-DVS run-time al-
gorithms resides in adding a speed switching sequence. We focus here on two
MRS instances, distinguished by classic run-time scheduling methods: Earli-
est Deadline First (EDF) and Rate Monotonic (RM).

5.5.1 MRS for EDF scheduling

Given a set of tasks with arbitrary periods, deadlines, and execution times,
the EDF schedule feasibility necessary condition is that the processor utiliza-

81

5. TASK GROUP SCHEDULING

tion (as in Definition 3.4) be not larger than 1 ([BMR90]). In this general
case, the U ≤ 1 condition is not sufficient, meaning that there might not exist
any schedule for the task set in question. The direct implication on our speed
scheduling problem is that any modification of the execution time might lead
to a task set that cannot be scheduled. We examine next a few restrictions of
the general task set model.

Deadlines equal to periods

The U ≤ 1 turns out to be also a sufficient condition for synchronous [LL73]
and asynchronous [Cof76] periodic task sets, with deadlines equal to periods
(∀τi, Di = Ti). This means that one can run the processor slower, such that
the actual utilization approaches 1 and at the same time reduce the power
consumption while keeping the feasibility of the schedule. Finally, in this
particular case, the maximum required speed for EDF is common for all tasks
and equal to the processor utilization for the reference (maximal) speed:

sEDF-MRS = U (5.14)

Since this technique is straightforward, it is commonly adopted in EDF with
DVS scheduling ([PS01, SC01a]). In fact, the energy yield by EDF-MRS turns
out to be the lower bound of the energy consumption for a given task set,
since it uses up the processor time entirely and runs all tasks at a common,
smallest speed (as discussed in Sections 4.2, 5.1, and 5.2).

Deadlines shorter than periods

Unfortunately, for task sets where Di ≤ Ti, which is a simple extension of
the D = T model given above, the feasibility analysis is much more difficult,
becoming intractable ([LM80, BRH90]). Consequently, finding optimal speeds
— which is equivalent to examining families of task sets — is an even more
difficult problem. Yet, upper bounds for maximum required speeds can be
found using sufficiency conditions. For example, an easy to compute upper
bound for the maximum required speed can be deduced from the sufficient
condition described by Theorem 3.11 from [SSRB98]:

N∑
i=1

Ci

min{Di, Ti}
≤ 1 (5.15)

where Ci refers to the time required by the worst case execution pattern WCE
at the reference (and fastest) frequency fref : Ci = WCEi/fref . One may thus
allow lower frequencies as long as this condition is not violated, and the task

82

5.5 MAXIMUM REQUIRED SPEED APPROACH

set remains feasible under EDF scheduling. Finally, the speed upper bound in
this case becomes:

sEDF-MRS =
N∑

i=1

Ci

min{Di, Ti}
(5.16)

Note that when deadlines are equal to periods this upper bound overlaps with
the value of sEDF-MRS given before. It is also possible that this upper bound
computes to a value greater than 1, even if the task set can be scheduled under
EDF. For these situations, sEDF-MRS has little practical use, and other methods
have to be employed for finding better speed bounds. For more restricted task
set models, there are approaches that instead of finding a unique speed for
all tasks, compute specific speeds for each and every task. We examine one of
these next.

Same period for all tasks

For task sets with deadlines shorter than their periods (Di ≤ Ti), but all hav-
ing the same period (∀τi, τj , Ti = Tj), the EDF schedule feasibility problem is
solvable in polynomial time (the Sequencing with Release Times and Dead-
lines, SS1, with preemption problem from [GJ79]). For tasks with different
arrival times (asynchronous), Yao et al. [YDS95] present an off-line algorithm
for computing the processor speeds yielding the lowest energy consumption.
A similar but simpler strategy can be applied to sets of tasks with the same
arrival times (synchronous). We present such a method in the following. First
we give a few useful definitions, adapted from [SSRB98].

Definition 5.7. Given a set of real-time jobs running on a variable speed
processor, the processor demand of the job set on the interval [t1, t2) is

h[t1,t2) =
∑

t1≤Dk<t2

Ck

fk
(5.17)

where each job executes its Ck clock cycles at a specific clock frequency fk.

In other words, the processor demand is the amount of computation time,
at various frequencies, required by the jobs that can execute after t1 and have
to finish before moment t2.

Definition 5.8. Given a set of real-time jobs running on a variable speed
processor, the loading factor on the interval [t1, t2) is the fraction of the
interval needed to execute its job, that is, u[t1,t2) = h[t1,t2)/(t2 − t1)

The important intervals in our case are those delimited by the deadlines
Dk, k = 1 . . . N , and the common arrival time 0. Intuitively the necessary con-
dition for a feasible schedule is for all of these N loading factors to be smaller

83

5. TASK GROUP SCHEDULING

than 1. In fact this is also a sufficient condition, as proven in [SSRB98] (The-
orem 3.5). Finally, this means that we can tweak with the clock frequency
while maintaining the feasibility of the EDF schedule if the following condi-
tion remains true:

sup
0≤t1<t2≤DN

{u[t1,t2)} ≤ 1 (5.18)

Using the above observation, we arrive at a specific algorithm for assigning
clock frequencies to tasks, given in Figure 5.8. The algorithm iteratively in-
creases the loading factors to the maximum possible, such that the feasibility
condition remains true. It starts by computing the loading factors for the in-
tervals of type [0, Dk) using the maximum frequency fmax for all tasks. If i is
the index of the largest loading factor ui, this corresponds to interval [0, Di).
This interval contains the most demanding sequence of jobs, namely τ1 . . . τi.
Using a frequency of fi = fmaxui for these tasks will still produce a feasible
schedule (all loading factors remain less or equal to 1). The new loading factor
for the task sequence up to τi becomes in fact 1. This also means that no other
tasks may execute during the [0, Di) interval. We can then consider that we
have to solve a new problem: that of scheduling tasks τi+1 . . . τN during the in-
terval [Di, DN). Note that no matter how we affect these lower priority tasks,
they will have no influence on the higher priority tasks and the decision on
their clock frequency thereof. In the new problem, by modifying all deadlines
to D′

j = Dj − Di we arrive at a similar problem as the one we started with,
except with a reduced number of tasks. We can now re-iterate the procedure
for this reduced problem. All this continues until we cannot build a reduced
problem, since there are no tasks left. At this point we assign frequencies
to all tasks. The supply voltage is then adjusted to the optimal one for each
frequency. This procedure is in fact quite similar to the one we use for RM-
MRS, described in Section 5.5.2. The algorithm presented in Figure 5.8 can be
made more efficient, once we notice the dependency between loading factors
computed for a given problem. Namely, the loading factors corresponding to
lower priority tasks contain the loading factors for the higher priority tasks.
Considering the loading factors for tasks τp and τp+k, this dependency can be
written as:

up+k =
upDp +

∑
p<j≤p+k Cj/fj

Dp+k
(5.19)

The loading factors can be, thus, computed incrementally. Finally, the worst
case time complexity of an improved algorithm turns out to be of order O(N2).

Example 5.1 (EDF-MRS for a set of five tasks):
Consider the set of five tasks given in Table 5.2 that has to be scheduled
on a variable speed processor with the maximum clock frequency of 1GHz.
Following the algorithm from Figure 5.8 we compute the maximum required
speeds for all tasks. Compared to the single, maximal speed case the energy

84

5.5 MAXIMUM REQUIRED SPEED APPROACH

edf mrs sameT({τ1,. . .,τN }) {
for i = 1 to N do fi ← fmax;
q ← 1; δ ← 0;
do {

for i = q to N do

ui ←
∑

0<j≤i Cj/fj

Di−δ
;

p = index of maxp≤i≤N{ui};
δ = Dp;
for i = q to p do

fi ← fmax*up;
q ← p + 1;
} while(p < N);
return {fi}
}

Figure 5.8: An algorithm for detecting maximum required speeds for an EDF
schedule of set of tasks with common period and different deadlines

Table 5.2: EDF-MRS applied on a five tasks set with common period (T = 20ms)
Task Loading Factor Final f

C(×106) D(ms) 1st iteration,δ = 0 2nd iteration,δ = 9 (MHz)
1 1 4 1/4 = 0.25 - 667
2 3 8 (1 + 3)/8 = 0.5 - 667
3 2 9 (4 + 2)/9 = 0.(6) - 667
4 1 14 (6 + 1)/14 = 0.5 1/5 = 0.2 364
5 3 20 (7 + 3)/20 = 0.5 (1 + 3)/11 = 0.364 364

consumption is reduced, and can be computed as follows. First, we assume
the common dependency between energy and speed, as given in equation 3.8.
Namely, the energy depends quadratically on speed. In our case 60% of the
work (6× 106 cycles out of 10× 106) will execute at a speed of 0.667 (667MHz /
1GHz). The rest will execute at a speed of 0.364 (364MHz/1GHz). Finally, the
energy consumption of the MRS schedule, as a percentage of the maximum
speed schedule energy is:

EMRS/Emax = 0.6 ∗ 0.6672 + 0.4 ∗ 0.3642 ≈ 0.32

In conclusion, our EDF-MRS schedule saves in this case about 68% energy
compared to the single, maximum speed schedule.

85

5. TASK GROUP SCHEDULING

5.5.2 MRS for RM scheduling

For RM scheduling, computing the right speeds is more complicated than for
the EDF. First, one cannot directly employ the utilization at the maximum
speed as the new common speed for all tasks, as in EDF since the task set
might become un-schedulable. One may choose to use as a limit the utilization
imposed by the condition proposed by Liu and Layland in [LL73]. With this
approach the maximum required speed is unique and equal to:

sRM-MRS =
U

N(21/N − 1)
(5.20)

At a closer look, the schedule feasibility condition proposed in [LL73] is a suf-
ficient one and covers the worst possible case for the task group characteris-
tics. An exact analysis as proposed in [LSD89] may further reveal possibilities
for stretching tasks while still meeting the deadlines. Based on this, [SC99]
describes a method to compute the maximum required frequency (speed) for
a task set. We go even further, and instead of computing a single common
maximum required speed for the whole task set {τi}i=1...N , as in [SC99], we
compute individual speeds for each task τi. Note that the speed required by
a task is inverse proportional to the task stretching factor. Finding the max-
imum required speeds is in fact equivalent to finding the minimal stretching
factors {αi}i=1...N . We focus on computing the α factors.

As introduced by equation 3.1, we model a task as a triple including the
task deadline Di and period Ti. Since MRS is a static method, the third rel-
evant task parameter in our case is the worst case execution time (WCET).
The task WCET, denoted by Ci in the following, refers to the time required by
the worst case execution pattern WCE at the reference (and fastest) frequency
fref : Ci = WCEi/fref . Note that for a task with a unique execution pattern,
where BCE = WCE = C, WCET can also be written Ci = Ci/fref . Furthermore,
we consider that the tasks in the group are indexed according to their priority,
computed as in RM-scheduling (1/Ti).

We compute the stretching factors in an iterative manner, starting from
the highest priority tasks and continuing with lower priority tasks. Consider
that index q points to the latest task which has been assigned a stretching
factor. Initially, q = 0. Each of the tasks {τi}q<i≤N has to be executed before
one of its scheduling points Si as defined in [LSD89]:

Si =
{

kTj |1 ≤ j ≤ i ∧ 1 ≤ k ≤
⌊

Ti

Tj

⌋}
(5.21)

The above equation defines all the scheduling points when the deadlines are
equal to task periods, Ti = Di. For task sets where Ti 6= Di, we need to change
the set of scheduling points according to:

S′i = {t|t ∈ Si ∧ t < Di} ∪ {Di} (5.22)

86

5.5 MAXIMUM REQUIRED SPEED APPROACH

Task τi exactly meets its deadline if there exists a scheduling point Sij ∈ Si

for which the following relation holds:∑
1≤r≤q

αrCr

⌈
Sij

Tr

⌉
+ αij

∑
q<p≤i

Cp

⌈
Sij

Tp

⌉
= Sij (5.23)

Note that for the tasks which already have assigned a stretching factor we
used that one, αr, while for the rest of the tasks we assumed they will all use
the same and yet to be computed stretching factor, αij , which is dependent on
the scheduling point. For task τi, the best scheduling choice, from the energy
point of view, is the largest of its αij . At the same time, from equation 5.23,
this is equal for all tasks {τi}q<i≤N . In fact, there is a task with index m for
which its best stretching factor is the smallest among all other tasks:

∃m, q < m ≤ N, such that max
q<j≤m

(αmj) = min
q<i≤n

(max
q<j≤i

(αij)) (5.24)

Note that this does not necessarily correspond to the last task, τN . If q = 0,
this task sets the minimal clock frequency as computed in [SC99]. Hav-
ing found the index m, all tasks between q and m can be at most stretched
(equally) by the stretching factor of m. Thus, we assign them stretching fac-
tors as:

αr = max
q<j≤m

(αmj), r = q + 1 . . .m (5.25)

With this, an iteration of the algorithm for finding the stretching factors is
complete. The next iteration then proceeds for q = m. The process ends when
q reaches N , meaning all tasks have been given their own off-line stretching
factors. Finally, the maximum required processor speed for each task is given
by the inverse of its off-line stretching factor:

si = 1/αi, i = 1 . . . N (5.26)

Example 5.2 (RM-MRS for a Set of Five Tasks):
This example contains the results of MRS for the set of five tasks described in
Table 5.3. For this set, the task deadlines are equal to the task periods. For
the RM scheduling method, the stretching factors are computed individually.
Note that tasks 3 and 4 can be stretched off-line more than 1 and 2, while
5 has the largest stretching factor. The processor utilization changes from
0.687 to 0.994. Observe also that the stretching factors for the lower priority
tasks require more iterations to compute. For the EDF scheduling, there is
a single stretching factor, common to all tasks, equal to 1/0.687. The maxi-
mum required processor speeds relative to the reference speed are obtained
by inverting the α factors.

If we consider that the tasks have fixed execution pattern, we can easily
compute the energy consumptions for the RM-MRS and EDF-MRS. For this

87

5. TASK GROUP SCHEDULING

Table 5.3: A Numerical Example of MRS

Task MRS α factors (and speeds)
RM EDF

WCET (C) Period (T) α# (speeds) iterations α (speed)
1 1 5 1.428 (0.700) 1 .
2 5 11 1.428 (0.700) 1 .
3 1 45 1.785 (0.560) 2 1.4556 (0.687)
4 1 130 1.785 (0.560) 2 .
5 1 370 2.357 (0.424) 3 .

we found out the number of executed instances of each task over the task
set hyper-period, computed as the least common multiplier (lcm) of the task
periods. For our example, lcm(5, 11, 45, 130, 370) is 476190. Next, we know that
the energy consumed during a clock cycle is dependent on the square of the
processor speed (see equation 3.8). The energy of a task instance is therefore
proportional to Cis

2
i . Finally, we can sum up the energy consumption after

the number of instances for each task. The numerical results are detailed in
Table 5.4. Note that, for this example, we assumed that no power is consumed
during idle and speed switching. Also, the processor is ideal in the sense that
it can run at any speed under the reference speed. It is interesting to note
that, for this case, the energy consumed using RM-MRS is very close to that
using EFD-MRS. Both approaches manage to save about 52% of the energy
consumed by using only the classic RM and EDF employing the same, reference
speed for all tasks. Moreover, the EDF-MRS energy is exactly the lower bound
energy as defined by equation 5.8. Namely, the energy lower bound is U2 of
the maximum speed energy, which numerically is 0.6872 = 0.4720, or 47.20%.

Table 5.4: Computing the RM-MRS and EFD-MRS energy consumption for the
task set in Table 5.3

Task Instance Energy Instances per All Instances Energy
RM-MRS EDF-MRS Hyper-period RM-MRS EDF-MRS
1 0.4904 0.4720 95238 46704.0 44952.3
2 2.4520 2.3599 43290 106147.0 102160.1
3 0.3139 0.4720 10582 3321.6 4994.7
4 0.3139 0.4720 3663 1149.8 1728.9
5 0.1800 0.4720 1287 231.7 607.5

Total Energy Consumption: 157554.1 154443.5
% from Max Speed Energy (327220.0) 48.15% 47.20%

88

5.6 RM SCHEDULING WITH SLACK DISTRIBUTION

5.6 RM Scheduling with Slack Distribution

Off-line speed scheduling methods are sufficient for tasks with fixed execution
pattern. The strategies presented until now are all striving to increase the
utilization by running the task slower, consuming the idle processor times.
Whenever tasks with variable execution pattern are present in the system,
there are certain idle periods that are very hard or impossible to predict off-
line. These idle times can be efficiently used only by run-time speed schedul-
ing methods. These run-time methods have to detect and maybe predict the
time which remains unused by every instance (or slack, as introduced in Sec-
tion 4.3.2). Furthermore, the slack has to be distributed to future task in-
stances, allowing each of them to run at a lower speed. Once an instance
received its slack, it can dispose of it according to various task level speed
scheduling methods. Such run-time speed scheduling methods, or slack dis-
tribution strategies, are orthogonal with both the off-line methods and task
level speed scheduling approaches. All these methods may be used in con-
junction, for achieving a more efficient system from the energy point of view.

On-line speed scheduling was already addressed to a certain extent by sev-
eral publications. In [SC99] a task instance is run at a lower speed only if is
the only one running and has enough time until a new task arrives. In all
other situations tasks are executed at the speed dictated by the off-line anal-
ysis. In [LS00b] tasks are stretched to their WCET at run-time, independent
of other tasks, using several internal checking/re-scheduling points. The al-
gorithm presented in [LK99] uses only two voltage levels. The slack produced
by finishing a task early is entirely used to run the processor at the low volt-
age. As soon as this slack is consumed, the task switches to the high voltage.
Our scheduling method is perhaps most resemblant to the optimal schedul-
ing method OPASTS presented in [HPS98]. Yet, OPASTS performs analysis
over task hyper-periods, which may lead to working on a huge number of task
instances for certain task sets.

In this section we describe a slack distribution strategy built on top of rate-
monotonic (RM) scheduling. Our method is designed to work on processors
with an arbitrary number of speeds. It has a low computational complexity,
independent of the characteristics of the task sets. Briefly, in our strategy, an
early finishing task may pass on its unused processor time to any of the tasks
executing next. But this slack cannot be used by any task at any time since
deadlines have to be met. We solve this by considering several levels of slacks,
with different priorities, as in the slack stealing algorithm [LRT92].

Next, we present the on-line slack distribution strategy in detail (Section
5.6.1) and prove that our strategy keeps the worst case response time guar-
anteed by RM-scheduling (Section 5.6.2). We continue by describing a few
experiments showing the effectivity of our method (Section 5.6.3) and, finally,
present our conclusions in Section 5.6.4.

89

5. TASK GROUP SCHEDULING

5.6.1 The Slack Distribution Strategy

Our on-line slack distribution strategy makes use of several levels of slack.
For a task set {τi}1≤i≤N that exhibits M different priorities, we use M levels
of real-time slack {Sj}1≤j≤M . Without great loss of generality consider that
the tasks have different priorities, or M = N . We also consider that the task
set and slack levels are already ordered by priority, where level 1 corresponds
to the highest priority. The slack in each level is a cumulative value, the sum
of the unused processor times remaining from the tasks with higher priority.
Initially, all level slacks Sj are set to 0. At run-time, the slack levels are
managed as follows:

• Whenever an instance k of a task τi with priority i starts executing, it
can use an arbitrary part ∆Ck

i of the slack available at level i, Si. So the
allowed execution time for instance k of task τi will be:

Ak
i = Ci + ∆Ck

i (5.27)

where Ci is task τi worst case execution time for the maximum (refer-
ence) processor speed, equal to WCEi/fref . The remaining slack from
level i cannot be used again on the same level. Therefore the slack level
i is reset to 0. We can also see this as a degradation of the slack from
level i into level i + 1 slack. To summarize, each level of slack will be
updated according to:

S′j =
{

0 , j ≤ i
Sj −∆Ck

i , j > i
(5.28)

• Whenever a task instance finishes its execution, it will generate some
slack if it finishes before its allowed time. If Xk

i is the actual execution
time of instance k of task τi, the generated slack is:

∆Ak
i = Ak

i −Xk
i (5.29)

This slack can be used by the lower priority tasks. In this case, the slack
levels are updated according to:

S′′j =
{

Sj , j ≤ i
Sj + ∆Ak

i , j > i
(5.30)

• idle processor times are subtracted for all slacks. This ensures that
the critical instance from the classic RM analysis remains the same.

The computational complexity required by the on-line method is, thus, lin-
early dependent to the number of slack levels: O(M).

90

5.6 RM SCHEDULING WITH SLACK DISTRIBUTION

Note that task instances can only use slack generated from higher priority
tasks and produce lower priority slack. We call this slack degradation. When-
ever the lowest priority task starts executing, all slack levels are reset. Note
also that not necessarily all slack at one level is used by a single task. Various
strategies can be employed, but we mention here only the two we used in our
experiments:

• Greedy: the task gets all the slack available for its level:

∆Ck
i = Si (5.31)

• Mean proportional: we consider the mean execution time Xi for each
task instances waiting to execute (in the ready queue). The slack is
proportionally distributed according to these:

∆Ck
i = Si

Xi∑
τj∈ReadyQ Xj

(5.32)

5.6.2 Worst Case Response Time Analysis

The strategy of managing the slack just described, allows us to keep the crit-
ical instance response time for all tasks, as we prove next. The response time
Ri(t) for task τi is computed as:

Ri = Ai + Ii(t) (5.33)

where Ai is its allowed execution time, as before, and Ii(t) is the interference
from the other tasks. From the managing strategy given before, the cumu-
lated slack on each level i, at a certain time t is of the form:

Si(t) = Si−1 −
∑

k

∆Ck
i−1 +

∑
k

∆Ak
i−1, k =

⌈
t

Ti−1

⌉
(5.34)

More informally, the slack of level i is composed of all slack from level i − 1,
less the slack used by the instances of tasks with priority i−1 but plus all the
slack generated by these. The number of instances executed in the current
hyper-period, k, is determined by the task period. Note that S1 is always zero.
Eliminating the iteration from the previous formula:

Si(t) =
∑

1≤j<i

(∑
k

∆Ak
j −

∑
k

∆Ck
j

)
, k =

⌈
t

Tj

⌉
(5.35)

The task with the highest priority will never receive slack, therefore ∆Ck
1 = 0.

The interference from the high priority tasks, Ii(t) is the time used to execute

91

5. TASK GROUP SCHEDULING

all arrived instances of these high priority tasks:

Ii(t) =
∑

1≤j<i

∑
k

Xk
j , k =

⌈
t

Tj

⌉
(5.36)

With the notations from the Section 5.6.1, we write the relation between the
instance k execution time, Xk

j , its allowed time Ak
j , its used slack ∆Ck

j and its
produced slack, ∆Ak

j :

Xk
j = Ak

j −∆Ak
j = Cj + ∆Ck

j −∆Ak
j , k =

⌈
t

Tj

⌉
(5.37)

Introducing this in 5.36:

Ii(t) =
∑

1≤j<i

∑
k

(Cj + ∆Ck
j −∆Ak

j), k =
⌈

t

Tj

⌉
(5.38)

The last two terms in the sum are actually giving the slack of level i, as in
5.35, so we can re-write 5.38 as:

Ii(t) =
∑

1≤j<i

kCj − Si(t), k =
⌈

t

Tj

⌉
(5.39)

Note that the maximal response time for a task is obtained when it uses all
the slack available at its level:

Ri(t) = Ci + Ii(t) + Si(t) (5.40)

From the last two equations:

Ri(t) = Ci +
∑

1≤j<i

⌈
t

Tj

⌉
Cj (5.41)

which is exactly the response time as defined by the RM analysis, obtained
when all tasks execute their worst case [LL73, BW01]. Thus, if the RM analy-
sis decides that a task set is schedulable, the conclusion remains valid when
using our on-line slack distribution policy.

5.6.3 Experimental Results

To evaluate our slack distribution strategy from the energy consumption point
of view, we compared it to several other methods or possible bounds:

• 100%: No speed scheduling is performed, all tasks run as fast as possi-
ble.

92

5.6 RM SCHEDULING WITH SLACK DISTRIBUTION

• Upper Bound: Is the theoretical upper bound in energy reduction. This
is obtained in a post-execution analysis, by considering that the tasks
are uniformly stretched up to maximum processor utilization (see the
Proportional Stretch Approach, Section 5.2). This limit is hardly achiev-
able in practice, since the actual execution patterns for all task instances
are never available beforehand. Moreover, this optimum obtained by
uniformly stretching all instances usually violates some deadlines, be-
ing therefore impractical.

• Off-line+1stretch: This method is composed of the off-line RM-MRS
step and a very simple run-time speed scheduling, originally described
in [SC99]. Namely, whenever a job is running alone on the processor, it
is allowed to use all the time until the next arrival of any job.

• All: Our run-time speed scheduling strategy using the mean propor-
tional slack distribution method, and the Stochastic Scheduling task
level strategy (see Section 4.3.1), also augmented with the previous Off-
line+1stretch method. This is the most complete low energy schedul-
ing approach, combining off-line, run-time, task level and task set level
scheduling strategies.

• Ideal: Same as All, except assuming exact knowledge about each job
execution pattern. This means that every time a task arrives, its exact
execution pattern becomes known. Thus, we can directly set an ideal
speed for that job.

The virtual processor used for these experiments has 14 voltage levels,
with clock frequencies equally distributed between f=100MHz and 11MHz. A
power-down mode is also available, in which the processor consumes 5% of
the highest frequency average energy. We assumed that the NOP instruction
consumes only 20% of the average power at the maximum speed, as in [SC99].
For the first scheme, 100%, we assume that whenever the processor is idle, it
executes NOPs, while for the rest of the schemes, we assume that the processor
goes into the available low power mode.

First, we took two real-life hard-RT applications and simulated them on
the virtual processor using the scheduling modes given above. The first appli-
cation, slightly adapted from [KRH+96], is a computerized numerical control
machine (CNC controller) and has the task set characteristics given in Ta-
ble 5.5. The second application, adapted from [LVM91], is a generic avionics
platform (GAP) and has the task set characteristics given in Table 5.6. For
both task sets we assumed tasks with probabilistic execution patterns as fol-
lows. We considered that the number of clock cycles varies between a best
case (BCE) and a worst case (WCE) according to a normal distribution. All
distributions have the mean µ = (BCE + WCE)/2 and the standard deviation

93

5. TASK GROUP SCHEDULING

σ = (WCE − BCE)/6. Keeping the WCE given in the initial specification, we
varied the BCE such that the BCE/WCE ratio changed from 0.1 to 0.9. A small
ratio means that the task execution pattern can vary a lot, while a close to
1 ratio means that the task has almost fixed execution pattern. For each ra-
tio we applied the scheduling methods given above and estimated the energy
consumption via simulation. The results are depicted in Figure 5.9 for CNC
and in Figure 5.10 for GAP.

Table 5.5: Task set characteristics for the CNC controller

in [KRH+96] Task Characteristics
(priority) appear as WCE@fmax(µs) T (µs) D (µs)

1 τsmpl 35 2400 2400
2 τcalv 40 2400 2400
3 τxref 165 2400 2400
4 τyref 165 2400 2400
5 τxctrl 570 9600 4000
6 τyctrl 570 7800 4000
7 τdist 180 4800 4800
8 τstts 720 4800 4800

70

75

80

85

90

95

100

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

%
 e

ne
rg

y
re

du
ct

io
n

BCE/WCE

All

Ideal

Off-line+1stretch

UpperBound

Figure 5.9: The energy reduction off the 100% execution mode for the CNC
controller.

We also tested our All scheduling policy on randomly generated task sets
of 50 and 100 tasks. The task sets were generated as follows. For each set, the

94

5.6 RM SCHEDULING WITH SLACK DISTRIBUTION

Table 5.6: Task set characteristics for GAP

in [LVM91] Task Characteristics
(priority) appear as WCE@fmax(µs) T = D (µs)

1 Radar Tracking Filter 200 2500
2 RWR Contact Mgmt 500 2500
3 Data Bus Poll Device 100 4000
4 Weapon Aiming 300 5000
5 Radar Target Update 500 5000
6 Nav Update 800 5900
7 Display Graphic 900 8000
8 Display Hook Update 200 8000
9 Tracking Target Upd 500 10000

10 Weapon Release 300 20000
11 Nav Steering Cmds 300 20000
12 Display Stores Update 100 20000
13 Display Keyset 100 20000
14 Display Stat Update 300 20000
15 BET E Status Update 100 100000
16 Nav Status 100 100000

Timer Interrupt not included (implicit)
Weapon Protocol not included (aperiodic)

Total Utilization = 84.05

task periods (and deadlines) were selected using a uniform distribution in 100
. . . 5000 and 100 . . . 10000 respectively. The worst case execution times were
then randomly generated such that the task set would yield approximately
0.67 processor utilization, for the fastest clock. The average utilization after
off-line RM-MRS turned out to be 0.92 for the sets of 50 tasks, and 0.85 for the
sets of 100 tasks. Using the same processor type as in the previous experi-
ment, we simulated the run-time behavior of the several scheduling methods.
We again used post-simulation data to obtain the upper bound, as in the pre-
vious experiment. The values depicted in Figure 5.11 are averages over one
hundred sets of tasks.

As results from these experiments, for tasks with probabilistic execution
pattern, an on-line slack distribution strategy yields a dramatical decrease
in energy consumption. Simpler on-line scheduling techniques, such as Off-
line+1stretch [SC99], are improved significantly by adding our slack distribu-
tion policy. Task level scheduling strategies may additionally contribute to
this result, yet with a marginal 3-4%. In fact, any further decrease in energy
consumption requires great efforts, since we are approaching the practical

95

5. TASK GROUP SCHEDULING

10

20

30

40

50

60

70

80

90

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

%
 e

ne
rg

y
re

du
ct

io
n

BCE/WCE

All

Ideal

Off-line+1stretch

UpperBound

Figure 5.10: The energy reduction off the 100% execution mode for the GAP
application.

bound. An interesting property of the All policy seems to be the fidelity it
follows the UpperBound. All is consistently 12%, 25%, 20% and 25% under
the UpperBound for CNC, GAP, 50 task sets, and 100 task sets, respectively.
This means that our scheduling strategy uses the variation of BCE/WCE ide-
ally, performing with the same efficiency independent of the task execution
pattern characteristics.

5.6.4 Conclusions

In this section we presented and analyzed a scheduling policy for hard real-
time tasks running on a variable voltage supply processor, with the final pur-
pose of reducing the energy consumption. The policy is designed for sets of
tasks with fixed priorities assigned in a rate/deadline monotonic manner.

It consists of both off-line and on-line scheduling decisions, taken both at
task and task set levels. The off-line decisions use exact timing analysis to de-
rive off-line speed scaling factors for each task. The on-line policy distributes
available processor time on priority basis, using slack levels and statistics.
The section also contains a proof that our scheduling policy meets all dead-
lines. Our method can be fully implemented in a RTOS2, without appealing to
special compilers or changing the software. Yet, combined with the aforemen-
tioned methods, our approach may yield even greater energy reductions. The

2RTOS: Real-Time Operating System

96

5.6 RM SCHEDULING WITH SLACK DISTRIBUTION

0

50%

60%

70%

80%

90%

100%

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Upper Bound

Off-line+1stretch

Ideal stretch
All

BCE/WCE

30 %

40%

50%

60%

70%

80%

90%

100%

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Off-line+1stretch

All
Ideal stretch

Upper Bound

BCE/WCE

sets of 50 tasks

sets of 100 tasks

E
ne

rg
y

R
ed

uc
tio

n
E

ne
rg

y
R

ed
uc

tio
n

Figure 5.11: The average energy reduction off the 100% execution mode for a
hundred sets of (above) 50 tasks and (below) 100 tasks.

experimental results show that our policy can be successfully used to reduce
the energy consumption in hard real-time systems.

97

5. TASK GROUP SCHEDULING

5.7 Uncertainty-Based Scheduling

The scheduling technique described in this section is specifically designed
for tasks with probabilistic execution time. Scheduling hard real-time tasks
means guaranteeing the deadlines, even in the worst case. A big discrepancy
between the average and the worst case execution patterns implies that the
task usually ends up being scheduled at a much higher speed than it is ac-
tually required. Narrowing down this discrepancy as soon as possible during
run-time re-scheduling means achieving a close to optimal speed faster. This
difference between the worst case and average execution pattern reflects the
uncertainty about the actual execution time of a task. Hence, the name of our
method: Uncertainty-Based Scheduling (UBS). Our UBS technique can be clas-
sified as an off-line sequencing method, that improves the run-time decisions
regarding the required processor speeds. Thus, our approach implies the use
of a run-time speed scheduler, which adjusts the processor speed whenever a
task finishes or in specific preemption points determined off-line by UBS.

In the following, we describe UBS for two specific cases. The first is the very
simple case of scheduling a set of independent tasks before a given deadline.
The second focuses on improving EDF with UBS for sets of tasks with different
deadlines.

5.7.1 UBS for Tasks with Unique Deadline

The simplest possible scheduling situation is that of independent tasks with
a unique common deadline. For tasks with unique execution pattern, it is
optimal to run all tasks at the same speed, such that the set finishes exactly
at the deadline (Section 4.1). For tasks with probabilistic execution time, a
run-time scheduler would improve the energy efficiency. Once a task finishes
execution, the run-time scheduler would recompute the optimal speed using
the remaining tasks WCE and the remaining available time. Formally, the op-
timal speed required after executing a number of k tasks would be computed
as:

s(τ1, . . . , τk) =
1

fref

∑n
i=k+1 WCEi

A−
∑k

j=1 Xj

(5.42)

where A is the common deadline and Xj are the actual number of clock cycles
executed by the already finished k tasks. Note that the speeds depend on the
already scheduled tasks. Therefore, the order in which the tasks in the set are
executed has direct influence on the speeds and consequently, on the energy
consumption.

Definition 5.9. Given a task set {τi}1≤i≤N , an execution order
O =< o1, o2, . . . , oN > is a permutation of < 1, 2, . . . , N > which specifies the

98

5.7 UNCERTAINTY-BASED SCHEDULING

exact sequence of task dispatching: τo1 executes first, then τo2 , and so on,
ending with τoN

.

From now on, we will denote the actual number of clock cycles executed
by τoi

by xi. Remember that the energy consumption during a single clock
cycle depends quadratically on speed, as shown in Section 3.3.2: e(s) = Ks2.
Remember also that given a task executes at a constant speed s for X clock
cycles, its energy consumption is: E = Xe(s). We can now write the ex-
pression of the energy consumption of a single iteration, for a given order
O =< o1, o2, . . . , on >:

EO = E(< o1, . . . , oN >) =
= E(< o1 >) + E(o2| < o1 >) + . . . + E(oN | < o1, . . . , oN−1 >) =
= x1e(s) + · · ·+ xNe(s(τo1 , . . . , τoN−1))

= K
(
x1s

2 + · · ·xNs(τo1 , . . . , τoN−1)
2
)

(5.43)

We denoted by E(ok| < o1, . . . , ok−1 >) the energy consumed by an instance
of task τok

given it executes after tasks τo1 . . . τok−1 , in this order. Also, the
initial speed, computed before any task starts executing, was denoted by s.

The above expression refers to a single instance of the task set. To examine
the energy effects over a longer time we have to compute the expected value of
the energy consumption. The expected energy consumption for a given order
O =< o1, o2, . . . , on > can be computed as:

EO =
∫
· · ·
∫

O

E(< o1, . . . , oN >)η(x1) . . . η(xN)dx1 . . .dxN (5.44)

Example 5.3 (Order and Energy of a Three Tasks Set):
Consider a set of three tasks with a uniform distribution as execution pattern,
having the following associated BCE and WCE: τ1:(12,20), τ2:(10,30), τ3:(24,40).
We examine here two execution orders: < 1, 3, 2 > and < 2, 3, 1 >. Assum-
ing we use the above described run-time speed scheduling strategy, we can
compute the expected energy consumptions associated with these orders (see
Equation 5.44). For example, for order < 2, 3, 1 > the expected energy is com-
puted as the following triple integral:∫ 30

10

∫ 40

24

∫ 20

12

1
128

[
81x2

2000
+

245x3

(100− x2)2
+

45x1

(100− x2 − x3)2

]
dx2dx3dx1

Using numerical integration, we obtained the expected energy values for the
two different orders mentioned above. The results are listed in Table 5.7.
Note that the energy is a function of three random variables. We wanted to
see the difference between using the function of expected values (E[X]) in-
stead of the expected value of the function (E[X]). The E[X] approximation

99

5. TASK GROUP SCHEDULING

of the expected energy definitely computes faster since the integrals disap-
pear, but the accuracy of the results might be a problem in some cases. For
the two orders presented below, the differences are a mere 0.6% and 1.3%,
respectively. We also computed the energy for two additional scenarios. Case
3 is the ideal case, when we know that all tasks will execute always at their
mean execution time ((WCE − BCE)/2). In this case, the optimal speed is 0.68
of the nominal speed. In case 4, no run-time speed scheduling is performed
and therefore the speed must always accommodate WCE. Finally, note that
the execution order has a significant influence on the energy consumption.
The order < 2, 3, 1 > is preferred over < 1, 3, 2 >, since the first yields only
88% of the second order energy consumption.

Table 5.7: Expected energy consumption for four different scenarios

Case Execution Type E[X] E[X] E[X] % Ideal
1 Order < 1, 3, 2 > 42.094 41.839 134%
2 Order < 2, 3, 1 > 37.482 36.978 119%
3 Ideal: always mean 31.443 (speed 0.68) 100%
4 Off-line WCE speed 55.080 (speed 0.9) 175%

Problem Definition

With the specified run-time speed scheduling strategy and the given task set
model, the problem we are facing is finding the execution order for which
the expected energy consumption is minimized. A simplified problem is the
case when each task generates only instances with the same execution time.
The run-time speed scheduler still considers the tasks WCE for computing
the next optimal speed. For clarity, we denote next the worst case execution
time WCE/fref by c and the instance execution time by x. Furthermore, we
will assume that the energy depends quadratically on speed and the cycle
energy for the reference frequency is 1. We can now present an easy to read
formulation of the simplified ordering problem.

Definition 5.10 (The Simplified UBS Problem). Given:

• A set of n tasks as pairs of (real) numbers:

(x1, c1), (x2, c2), . . . , (xi, ci), . . . , (xn, cn) ci > xi > 0

• A time interval A such that:
n∑

i=1

ci ≤ A

100

5.7 UNCERTAINTY-BASED SCHEDULING

The tasks are to be executed on a processor in a certain order defined as a
permutation π(1, 2, . . . , n) such that the following measure (energy consump-
tion) is minimized:

E = xπ1 + xπ2

(∑n
k=1 cπk

− cπ1

A− xπ1

)2

+ · · ·

· · · +xπi

(∑n
k=1 cπk

−
∑i−1

j=1 cπj

A−
∑i−1

j=1 xπj

)2

+ · · ·+ xπn

(
cπn

A−
∑n−1

j=1 xπj

)2

The simplified ordering problem as presented above appears to be NP-hard
(see Appendix A.2). We conclude then that the initial case, for which the
instances have variable execution patterns, is at least as hard.

In Search of the Optimal Order

For the problem defined above, an exact algorithm would take a prohibitive
amount of time for finding the optimal order. Thus, we need a heuristic that
can provide us with a near optimal order. In this section we describe such a
heuristic, together with the reason behind it.

First, it is important to realize that computing the actual energy for a
given order is very expensive because of the multiple integral. Moreover, this
integral is usually only solvable using numerical integration. However, the
E[X] approximation for our expected energy, E[X], seems to be somewhere
around 1-2%, as in Example 5.3. From now on we will use this approximation
for our heuristic.

For a certain order < 1, . . . , k, k + 1, . . . , N >, we can compute the energy
consumption according to equation 5.43. Let the initial speed be s0 and the
last speed sN−1. We also denote the speeds for the partial order < 1, . . . , k −
1 > and < 1, . . . , k − 1, k > by sk−1 and sk−1,k respectively. These speeds are
computed according to equation 5.42. Finally the energy for this order is:

E = X1s
2
0 + · · ·+ Xks2

k−1 + Xk+1s
2
k−1,k + · · ·+ XNs2

N−1 (5.45)

Swapping the places of of tasks k and k + 1, the sum yielding the energy
consumption will differ only at terms k and k+1. All others contain attributes
of both tasks in commutative relations (sums), where order is not important.
More precisely, the speed after a partial order < 1, . . . , k, k + 1, . . . , p > is
exactly the same as the speed for the order < 1, . . . , k + 1, k, . . . , p >. Denoting
the new energy by E′, we can write the difference in the two energy as follows:

E′ − E = Xk+1s
2
k−1 + Xks2

k−1,k+1 −Xks2
k−1 −Xk+1s

2
k−1,k

= Xk+1

(
s2

k−1 − s2
k−1,k

)
−Xk

(
s2

k−1 − s2
k−1,k+1

)
(5.46)

101

5. TASK GROUP SCHEDULING

For the k, k + 1 order to consume less energy than the k + 1, k order, we must
have E′ > E. Considering that sk−1 > sk−1,k and sk−1 > sk−1,k+1, the previous
condition can be written as:

Xk

s2
k−1 − s2

k−1,k

<
Xk+1

s2
k−1 − s2

k−1,k+1

(5.47)

Note that both sides of this inequality depend only on the set of previous tasks
1 . . . k − 1, and the current task k (or k + 1). Also the order of the previous
tasks is not important. Using these observations we can build a constructive
algorithm, which incrementally adds tasks to a partial order o according to
the following priority function:

pubs(o, τk) =
Xk

s2
o − s2

o,k

(5.48)

where so is the speed after the given partial order and so,k is the speed after
adding task τk at the end of the partial order o. Note that a low value of pubs

means high priority.
There are two important properties of the pubs priority function:

• favors short tasks (smaller X yield lower values). This makes sense,
considering we want to achieve a lower speed faster.

• favors lower speeds (smaller so,k yield lower values). This is also de-
sirable since we want to achieve as low speeds as possible early. Note
that lower speed means also a large difference between the mean execu-
tion time X and the worst case WCE. In other words, tasks exhibiting big
uncertainties are favored, hence the name for our method: uncertainty
based scheduling.

The heuristic for deciding the execution order starts with an empty set of
scheduled tasks, and the initial speed computed to accommodate the worst
case for all tasks (as in case 4 in Example 5.3). The priorities for the un-
scheduled tasks are the computed using pubs and the one with the highest
priority (lowest value) scheduled. The order is updated and the procedure
re-iterates until all tasks are scheduled. As described here, this algorithm
exhibits a worst case time complexity of the order O(N2), with N as the num-
ber of tasks. Next, we examine the efficiency of this approach in finding good
solutions.

Example 5.4 (Simple UBS on Intel 80200 XScale):
We examined the performance of our scheduling heuristic on the real platform
described in Appendix B. For this we built a set of five tasks (presented in
Table 5.8), each of them performing simple arithmetic operations inside a

102

5.7 UNCERTAINTY-BASED SCHEDULING

loop. Each task has a uniform distribution as execution pattern, from a BCE to
a WCE given in number of loop iterations. Measured on the system, each loop
corresponds to approximately 3550 MCLKs, or memory clock cycles. Since in
our system the MCLK is 100MHz, each loop iteration is around 35.5µs. In the
worst case, the task set at the highest processor speed (733MHz) would take
1490731 MCLKs or almost 15ms. In the absence of any dedicated real-time
clock available on the board, we use the MCLK counters to get information
about actual task execution times. Since the MCLK counter cannot be trusted
during a frequency switch, the drawback with this solution is the inaccuracy
introduced by speed switching in timing. However, the total time spent in
switching is around 5× 30µs, which is 0.15ms, or hundred times smaller than
the total execution time of the task set in the worst case at the highest speed.
In this light, the influence of speed switching on timing can be considered
negligible. We set the experiment such that the period and deadline for the
task set is 16ms, to accommodate also the timing delay introduced by speed
and task switching. This means that for the worst case less than 7% slack is
available in the system.

Table 5.8: The five tasks set scheduled on XScale

Task BCE WCE
loops MCLKs loops MCLKs
1 10 35504 100 355010
2 20 70992 50 177460
3 15 53247 80 283928
4 30 106482 100 354921
5 80 283928 90 319417
+ 155 550153 420 1490736
WCE time @ 733MHz is approx. 15ms

We considered the following scheduling strategies:

• No Scaling: All tasks execute at the maximum speed, 733MHz.

• Best Order: The speed is computed at run-time before each task starts
executing. Each task executes at a single speed, out of the five available
in our test system. This speed is the minimum speed that guarantees
the deadline even in the worst case. The order computed by our UBS
heuristic, in this case yielding the order: 1,3,4,2,5.

• Worst Order: Same run-time scheduling strategy as before, except the
order is reversed: 5,2,4,3,1.

103

5. TASK GROUP SCHEDULING

• Variable Random Order: Same run-time scheduling strategy, except
the order is randomly chosen for each instance of the task set. In the
long run, this strategy should yield neither the worst nor the best result
from the energy point of view. In fact, it should be very close to the
mean energy between a certain order and its reverse order. Considering
that the random re-ordering of tasks requires more energy than a fixed
order, the energy consumption for this policy will be slightly over the
actual mean.

Note that the latest three strategies share the run-time speed computation
part, and differ only in task ordering. Furthermore, for all the above strate-
gies the processor goes to a low power state (IDLE) once all jobs complete.

We run the task set for all these scheduling strategies, and average the
power consumption over a large number (thousands) of task set instances.
The average shapes of the power curve are depicted in Figure 5.12. Table 5.9
presents the numerical results. Note that the different orders yield different
average energy consumptions. Moreover, as expected, the variable random
order energy is very close to the median between the best and reverse best
(worst) order. Finally, the best order yields an energy consumption that is
only 80% of the no scaling case, and 92% of the median, variable random
order energy. This experiment shows that our UBS ordering performs better
than chance (median) even on a real system.

Table 5.9: Average energy consumptions for the various scheduling methods

Method Energy/Period (mJ) As % of 1 As % of 3
1 No Scaling 88.95 100.00 115.10
2 Worst Order 82.35 92.58 106.70
3 Variable Order 77.28 86.88 100.00
4 Best Order 71.15 80.00 92.07

UBS Heuristic vs. Optimal Order

We compare our fast ordering heuristic based on the pubs priority function
with optimal orders, obtained using full search.

For this, we randomly generated sets of tasks with the following charac-
teristics. The WCE for each tasks are chosen from a uniform distribution such
that the total WCE for each set is constant, 10000. Next, the BCE for each
task is chosen from a uniform distribution to fall somewhere between 0 and
0.8×WCE. The execution pattern for each task is set to a normal distribution,
with mean µ = (WCE + BCE)/2 and standard deviation σ = (WCE − BCE)/6.

104

5.7 UNCERTAINTY-BASED SCHEDULING

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016

A
ve

ra
ge

 P
ow

er
 (

W
)

Time (seconds)

No Scaling
Worst Order: 5,2,4,3,1

Variable Random Order
Best Order: 1,3,4,2,5

Figure 5.12: Oscilloscope trace for the power consumption during several
scheduling methods for the given set of tasks with probabilistic execution pat-
tern. The curves are averages over thousands of instances.

The deadline for each task set is chosen to be the sum of all task WCE (10000).
Therefore, in the worst case, the processor would have to run at the maximum
speed to meet this deadline. For each task set we obtained the order accord-
ing to our pubs function and computed its energy using numerical integration
from Equation 5.44. We carried this out for three hundred task sets of a given
size, and selected the minimum, maximum and computed the average value
over all. We obtained this triplet for sets of three, four, five, and six tasks, and
plot them in Figure 5.13 as UBS.

For each task set we also performed full search to find the optimal order.
For every possible order of tasks, we computed the energy consumption using
numerical integration from Equation 5.44. From all orders we kept the one
yielding the lowest energy consumption. As before, we noted the minimum,
maximum and averages of all these energy values, and plot them in Figure
5.13 as FullSearch. All values are relative to non-scaling average case energy
for each specific graph.

Note that the maximum set size we report results for is six, since the
run times for the experiments became prohibitively long. For example, after
almost four days of run time, using full search we were unable to examine

105

5. TASK GROUP SCHEDULING

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

2 3 4 5 6 7

%
 o

f N
o

S
ca

lin
g

A
vg

. E
ne

rg
y

Task set size

UBS
Full Search

Figure 5.13: Average, minimum, and maximum “lowest energy” values found
by UBS and Full Search for different task set sizes.

even two hundred sets of seven tasks (on an AMD Athlon XP1600+, 256MB
RAM, Java implementation under SuSE Linux 7.3). However, the same task
finished in six hours for sets of six tasks. There are several reasons for this
increase in execution time. The time for computing the numerical integral
grows exponentially: we used five integration points for each dimension, thus,
for each integral, 5N values need to be computed, where N is the number of
tasks. Then, the number of possible orders for a set of N tasks grows in a
factorial manner, N !. A rough estimate says that full search for a set of seven
tasks requires approximately 5×7 = 35 times more execution time than a full
search for a set of six tasks. On the other hand, UBS keeps a low complexity
O(N2), being able to find solutions fast, even for large task sets.

From Figure 5.13 it results that UBS is very efficient in finding optimal
order, at least for small task sets. In fact, the difference between the energy
found by full search and UBS is less than 1%. Also compared to the non-scaling
case, when the processor always runs at the maximum speed and then goes
to idle at 0 power, UBS can in average reduce the power consumption around
28-37% without any deadline extension.

106

5.7 UNCERTAINTY-BASED SCHEDULING

5.7.2 Extending UBS for EDF

The UBS strategy can be extended to more complex cases, as an improvement
of classic real-time scheduling techniques. Note that, from the timing point of
view, tasks with the same priority may execute in any order, without affecting
the real-time behavior of the task set. This means that one can choose the
most energy-efficient order for these tasks and still meet all deadlines. When-
ever there are no tasks with the same priority, one may slightly alter the task
set without affecting the timing. We present next such a method for sets of
tasks with unique period and different deadlines.

In the previous section, we presented the UBS ordering heuristic for sets
of tasks with unique period and deadline. Now, we will examine how UBS
may be applied to an extension of the task set model, with tasks to having
different deadlines. From [SSRB98], we know that the preemptive earliest
deadline first policy (EDF) finds feasible schedules even up to 100% proces-
sor utilization. Thus, we build our UBS heuristics on the EDF strategy. First,
computing the run-time speeds for each task can be done using the EDF-MRS
algorithm, presented in Figure 5.8. Although intended as an off-line speed
selection strategy, EDF-MRS can be transformed into a run-time policy, if em-
ployed before every new job starts executing. More precisely, if an instance of
task k finishes at time t, the speed for the next job is computed as (see Section
5.5.1):

s(τ1, . . . , τk) = max
k<j≤N

{
1

fref

∑j
i=k+1 WCEi

Dj − t

}
(5.49)

Our initial UBS strategy works on tasks with the same priority from the real-
time point of view. Therefore, the basic idea of the extension for EDF is to look
at the intervals between two consecutive deadlines. The sub-set of tasks using
any of these intervals can be ordered according to our pubs priority function.
The pseudo-code for our EDF-UBS algorithm is given in Figure 5.14. At the
beginning of the ordering procedure, all tasks are assumed to use the speeds
computed using EDF-MRS. Starting from the latest deadline DN , we exam-
ine the tasks required to finish between two consecutive deadlines (Di−1, Di].
Initially this WorkList contains only the tasks required to finish by DN . The
tasks in the WorkList are ordered according to pubs and use the maximal re-
quired speed computed by EDF-MRS. These tasks fill the (Di−1, Di] interval
backwards from Di, starting from the lowest priority task according to pubs.
At some point, it is possible that the whole interval is occupied and there still
are tasks in the WorkList. All these tasks will need to be scheduled earlier
than Di−1, so they are moved to the next iteration WorkList. Moreover, it
is possible that a specific task has to be split in two, in order to entirely fill
the (Di−1, Di] interval. In this case, the prefix is regarded as a new task,
with a new WCE and a new expected execution time X. The new WCE is ob-

107

5. TASK GROUP SCHEDULING

edf ubs({τk,. . .,τN}) {
/* Compute task speeds with EDF MRS */
WorkList ← ∅;
for i = N downto 2 do {

t ← Di;
NextWorkList ← ∅;
WorkList ← WorkList ∪ {all τ with deadline Di};
Order WorkList descending according to pubs;
for each τj ∈ WorkList do {

if(wcej/fj ≤ t − Di−1)
Schedule τj during [t − wcej/fj , t);

else {
/* This task does not fit. Split it into prefix and postfix */
wceprefix ← wcej − (t − Di−1)*fj ;
Dprefix ← Di−1;

Xprefix ← prefix expected execution;

τprefix ← new task(wceprefix, Dprefix, Xprefix);
/* Will schedule this next iteration */
NextWorkList ← NextWorkList ∪ {τprefix};
wcepostfix ← wcej − wceprefix;
Dpostfix ← Di;

Xpostfix ← postfix expected execution;

τpostfix ← new task(wcepostfix, Dpostfix, Xpostfix);
Schedule τpostfix during [Di−1, t);
/* Extract tauj from the working list */
WorkList ← WorkList \ {τj};
/* Add remaining unscheduled tasks to the next iteration list */
NextWorkList ← NextWorkList ∪ {unscheduled τ from WorkList};
break;
}
/* Move to the previous inter-deadline interval */
t ← t − wcej/fj ;
}
WorkList ← NextWorkList;
}
}

Figure 5.14: The EDF-UBS algorithm for deciding an energy-efficient order of
sets of tasks with different deadlines and unique period.

tained from the old WCE, less the part that can be scheduled in (Di−1, Di].
The expected execution time for the prefix task can be obtained from the task
execution pattern distribution. For example, for a uniform distribution this is

108

5.7 UNCERTAINTY-BASED SCHEDULING

the mean between the (old) BCE and the new WCE. Finally, the prefix task is
added to the next iteration WorkList and can be regarded now as a task which
has to finish before Di−1. The postfix (the rest of the split task), is still sched-
uled in the current (Di−1, Di] interval. The procedure moves on to scheduling
tasks between Di−2 and Di−1. Finally, the procedure ends when we reached
time 0 and all tasks have been scheduled.

Note that the EDF-UBS procedure given above may introduce preemption
points, otherwise unnecessary in the classic EDF approach. However, it is
likely that not all task splits will lead to preemptions, since the prefix and the
postfix may happen to follow each other immediately in the complete sched-
ule. In these cases, the parts are merged to form the old task and no context
switching is necessary. It is also important to notice that if the prefix tasks
do not finish before the preemption point, there is no need to recompute the
speeds or order the remaining tasks or task parts. Both EDF-MRS and EDF-
UBS are called only when an original task finishes before its WCE.

Example 5.5 (EDF-UBS for a set of five tasks):
Consider the set of five tasks introduced in Example 5.1. Additionally, as-
sume that tasks 3 and 5 have their execution pattern according to a uniform
distribution between 0 and their WCE, while the rest of the tasks, 1,2, and 4,
always finish at their WCE. We are interested in the EDF-UBS order at the
moment when all the tasks are present in the system and are about to start
executing.

Our EDF-UBS method starts by deciding the maximum required speeds
for each task using EDF-MRS. For our set, we already computed these values
in Example 5.1. Tasks 4 and 5 run at 364MHz while tasks 1,2, and 3 run
at 667MHz. We start now from the longest deadline and look back to the
previous deadline, obtaining the interval [14, 20). During this interval, the
only task executing is task 5, at 364MHz. Note that task 5 cannot finish
during this interval since it would require 8.24ms instead of 20 − 14 = 6ms.
Here, we have the situation of splitting a task into a prefix and a postfix.
Task 5 postfix (5+) is composed of 2.18 × 106 cycles in worst case, half of that
in the expected case (because of the uniform distribution), and has to finish
before 20ms. Task 5 prefix (5−) is composed of the rest of 0.82 × 106 cycles
in the worst case, half of that in the expected case, and has to finish before
14ms. In other words, task 5 prefix cannot be executed in [14, 20), and has
been moved for scheduling somewhere before that. Next, we have to examine
the interval [9, 14). The two tasks to be scheduled here are task 4 and task 5
prefix. Using our pubs priority function, it turns out that task 5 prefix has to
execute first during [9, 11.25) and task 4 last, during [11.25, 14). Fortunately
in this case, all tasks fit in the working interval, so no task splitting occurs.
The procedure continues then in a similar manner for intervals [8, 9), [4, 8),
and [0, 4), as detailed by Table 5.10. Note that, after completing the whole

109

5. TASK GROUP SCHEDULING

procedure, task 2 prefix and task 2 postfix are exactly one after the other, so
they can be merged together into task 2 again.

Table 5.10: Applying EDF-UBS for a five tasks set given in Example 5.1.

Working Working Tasks UBS Order Mentions
Interval Original Leftovers
[14, 20) 5 - 5+ 5 splits into:

5−(WCE = 0.82, X = 0.41)
5+(WCE = 2.18, X = 1.09)

[9, 14) 4 5− 5−:[9, 11.25),4:[11.25, 14)
[8, 9) 3 - 3+ 3 splits into:

3−(WCE = 1.33, X = 0.66)
3+(WCE = 0.67, X = 0.33)

[4, 8) 2 3− 2+ 2 splits into:
2−(WCE = 0.33, X = 0.33)
2+(WCE = 2.67, X = 2.67)

[0, 4) 1 3−; 2− 3−:[0, 2),1:[2, 3.5),2−:[3.5, 4)
Final order: (after merging 2− and 2+)
3−:[0, 2),1:[2, 3.5),2:[3.5, 8),3+:[8, 9),5−:[9, 11.25),4:[11.25, 14),5+:[14, 20)

For this particular example, two tasks have been split yielding two pre-
emption points that were not present in the classic EDF schedule. The ad-
vantage from the energy point of view is that processor speed can be lowered
early, and therefore reduce the energy consumption. For example, executing
3− before 1 and 2 may lead to finishing task 3 during its 3− part. This means
that task 3 is out of the system, and task 1 and 2 may be rescheduled to use a
lower speed using EDF-MRS. At this point, EDF-MRS will consider only tasks
1, 2, 4, and 5. On the other hand, keeping the classic order 1,2,3,4,5, results
in inevitably executing 1 and 2 at a high speed.

To realize the important difference between using only run-time EDF-MRS
and additionally using EDF-UBS, let us consider the best case behavior, when
both tasks 3 and 5 finish as soon as they start. For EDF-UBS, at moment 0,
the above scheduling takes place and task 3− starts executing, finishing at
once. At this moment we recompute the speeds for tasks 1,2,4, and 5 using
EDF-MRS. This results in the required speed of 500MHz for tasks 1 and 2, and
333MHz for tasks 4 and 5. Next we may apply EDF-UBS again, on the task
set 1,2,4 and 5, as depicted in Table 5.11.

Tasks 1 and 2 will now continue to execute all their cycles at 500MHz.
No changes in the schedule occur until 5− starts and immediately finishes its
execution. At this point, time 8ms, the new best speed for task 4 is 167MHz.
Finally the energy consumed during this time is given by the cycles executed

110

5.7 UNCERTAINTY-BASED SCHEDULING

Table 5.11: Applying EDF-UBS for the tasks remaining after task 3 finishes as
soon as it starts.

Working Working Tasks UBS Order Mentions
Interval Original Leftovers
[14, 20) 5 - 5+ 5 splits into:

5−(WCE = 1.0, X = 0.5)
5+(WCE = 2.0, X = 1.0)

[8, 14) 4 5− 5−:[8, 11),4:[11, 14)
...

...
Final order:
1:(0, 2),2:[2, 4),5−:[8, 11),4:[11, 14),5+:[14, 20)

by tasks 1 and 2 at 500MHz and 4 at 167MHz (using Equation 3.8):

Ebest
edf ubs = eref

[
(1 + 3)× 106 × 0.52 + 1× 106 × 0.1672

]
= 1.028× 106eref

On the other hand, the run-time EDF-MRS schedule would require tasks
1 and 2 to execute at 667MHz before moving on to task 3. At time moment
6ms, task 3 starts and immediately finishes its execution. A new EDF-MRS
speed selection for tasks 4 and 5 yields a speed of 285MHz for both ((1 + 3)×
106/(20ms − 6ms)). Task 4 executes all its cycles at 285MHz and finally task
5 starts and finishes immediately. The energy consumption for this case is
(using Equation 3.8):

Ebest
edf = eref

[
(1 + 3)× 106 × 0.6672 + 1× 106 × 0.2852

]
= 1.861× 106eref

The ratio between the two energy consumptions is clearly in the favor of
EDF-UBS, showing that Ebest

edf ubs is only 55.24% of the run-time EDF-MRS en-
ergy. If all tasks exhibit their worst case behavior, the energy consumption of
the two approaches are roughly the same.

In the ideal situation, for zero overhead in preemption or scheduling, us-
ing the EDF-UBS over the simpler run-time EDF-MRS always pays off. In prac-
tice, the more complex computations required by EDF-UBS and the preemp-
tion costs introduce an overhead in energy consumption. Depending on the
task set characteristics it will not always pay off to use EDF-UBS instead of
the simpler run-time EDF-MRS strategy. Although UBS can, in theory, lead
only to improvements from the energy consumption point of view, the practi-
cal case requires careful evaluation, because of the scheduling overhead.

111

5. TASK GROUP SCHEDULING

5.7.3 Conclusions

Scheduling strategies that take into account the probabilistic parameters of
task execution have been proven successful for task level speed selection. In
this section we have shown that knowledge about the execution pattern of
tasks can be used at task group level in a similar manner. In principle the ear-
lier one eliminates the uncertainties, the faster the optimal speed is reached.
Based on this observation, we introduced the Uncertainty-Based Scheduling
(UBS) method for reduced energy consumption. Our method orders tasks or
tasks portions with the same real-time priority such that the average energy
is minimized. Using a simple, but efficient priority function, UBS schedules
first tasks that are short or yield a large decrease in speed. We have shown
that for sets of tasks with unique period and deadline, UBS is energy efficient
on a real system, based on the Intel80200 XScale processor. Furthermore,
UBS is an energy-aware scheduling policy that can be added on top of other
strategies originally designed for guaranteeing real-time behavior. As an ex-
ample, we described an extension of the Earliest Deadline First EDF policy
that takes advantage of UBS.

112

CHAPTER 6

ARCHITECTURE SELECTION
AND SCHEDULING

THE SCHEDULING STRATEGIES presented in the previous two chapters as-
sume that the system architecture is already decided. Yet, selecting the ar-
chitecture and binding the tasks to processors are important design choices,
that greatly influence scheduling and, ultimately, energy consumption. For
this reason, the current chapter examines architecture selection and schedul-
ing in conjunction, as integral parts of a design flow for energy-efficient sys-
tems. In particular, the chapter starts by introducing a generic design flow
for low energy, involving assignment and scheduling at some point. Next,
two particular cases are examined: First, fixed speed processor systems are
addressed using a combined, single step approach for scheduling and task
mapping. Then we describe two possible design flows intended for architec-
tures with variable speed processors. The experimental results presented for
each approach show the importance of addressing the energy issue as soon as
possible in the design process, during every design decision.

6.1 An Overview of Our Design Flow

Although our work focuses on energy consumption minimization, there are
several system parameters that actually have to be considered during the de-
sign process. The final design is a trade-off between fabrication cost, energy
consumption, flexibility and many other metrics. In our view, only the de-
signer can decide on the importance of each of these metrics, or choose the
preferred solution, in other words. For this reason, we adopt a design flow

113

6. ARCHITECTURE SELECTION AND SCHEDULING

that involves design space exploration. Before taking a decision the designer
should be able to examine several design solutions, relax constraints, enforce
new ones, and re-design at will.

Figure 6.1 contains an overview of our energy-aware design flow. In our
specific case, the input to the design exploration process is the task-graph de-
scribing the system functionality. The number and type of available resources,
or the resource pool, is often given/controlled by the designer. By altering the
resource pool, the designer can explore the design space in search of more
suitable solutions. In real-time systems, important constraints are related to
timing. In our case, the execution deadline is given as a requirement. Thus,
the design process, as described here, is time and resource constrained. For

Evaluate

System
Specification
(task graph)

Energy Aware
Assignment &

Scheduling

Satisfactory
Solution

Explore More
Solutions

Assigned and Scheduled Task Graph
+ Required Architecture

Timing
(deadline)

Resource
Pool

Constraints

Figure 6.1: Generic design flow using design space exploration

a certain input configuration, the process should be able to assign tasks to
some of the resources in the pool (deciding thus the architecture) and sched-
ule them, such that the energy consumption is minimized. The designer must
be able to examine the solution presented at this point, and decide if it is
acceptable. If the solution is not good enough for some reason, the designer
should be able to alter the initial constraints and reiterate the design pro-
cess in the hope of finding a better solution. Note that the iterations must be
fast enough to yield an interactive process, in which the designer can (un)do
changes and receive feedback in due time.

The design approaches presented next address only one such iteration,

114

6.2 FIXED SPEED PROCESSOR ARCHITECTURES

covering the dashed box titled Energy Aware Assignment & Scheduling from
Figure 6.1.

6.2 Fixed Speed Processor Architectures

Classic system-level synthesis problems, for fixed speed processor architec-
tures, are often solved using integer linear programming (ILP) [PP92], con-
straint programming (CP) [Kuc01], or various heuristics [Wol97]. The goal,
in these cases, is usually the minimization of the execution time of a given
task graph using a pre-defined resource pool. Assigning tasks to resources
and to time moments are carried out in an integrated manner, appearing as a
single step seamlessly combining scheduling and assignment. The advantage
of such an integrated approach is the potentially larger set of choices during
design, as opposed to a step by step process (assignment followed by schedul-
ing). In turn, the search space may become so vast, that only a small number
of possible solutions may actually be inspected. However, good heuristics may
help in choosing the interesting subset of the possible solutions.

Instead of the classic scheduling problems, which usually optimize the
schedule length, we are interested in minimizing the energy consumption.
Moreover, the energy consumption is a non-linear function of processor power
and task execution time, even for fixed speed processors. This makes our
optimization problem more difficult than the classic schedule length mini-
mization problem. In the following, we briefly present a constraint program-
ming approach to the joint assignment-scheduling problem, under time and
resource constraints. Our method, introduced in [GK99, SGK00] and detailed
in [Gru00a], is based on a constraint programming approach, targeting sched-
ule length minimization under resource constraints, described in [Kuc99].

6.2.1 Modeling the Problem with Constraints

Informally, the problem we are willing to solve is the following. Given the
tasks, the dependencies between them, and a set of available resources, we
want to determine the exact time moments and resources used by each task.
The variables of interest for each task are thus the resource used and the
exact moment of time the task executes. We assume non-preemptive execu-
tion and that each task uses only one resource. Also, the execution length for
a task may vary with the resource used. Furthermore, the schedule has to
meet the deadline. Finally, the goal is to minimize the energy consumption of
the whole system. More formally, the above problem is described as follows.

115

6. ARCHITECTURE SELECTION AND SCHEDULING

Task Modeling

Each task i in the task graph is modeled by a triple of variables: < Ti, Di, Ri >,
where Ti is the start time for task i, Di is the execution time required by the
task on its assigned resource Ri. All these variables can take values from
a domain. For our purpose, since the number of resources is finite and the
execution for each task is fixed, these domains are finite. The domain of Ri

for example may initially be the whole set of resources, but, as constraints are
imposed, it may become smaller. For simplicity, we consider that resources are
identified by a unique number, therefore initially:

dom(Ri) = {1, . . . , ρ} (6.1)

Without loss of generality we can even consider that Ti and Di are given in
clock cycles, if the processors have the same clock speed. Otherwise we can
choose the greatest common divisor (gcd) of the clock cycle lengths as time
unit. The initial domain of Ti stretches from a certain zero moment to the
deadline, since we may schedule task i anywhere during this time:

dom(Ti) = {t0, . . . , tdeadline} (6.2)

Further constraints resulting from dependencies will likely restrict this initial
domain. Finally, the domain of Di is given by the execution time dir (estimates
or measurements) of task i on each available resource r. Note also that Di

and Ri strongly determine each other, since a certain assignment fixes the
execution time, while a certain execution time might be achieved only on a
few resources, if at all. Formally, we can write this as:

dom(Di) =
⋃

r∈dom(Ri)

{dir}, dom(Ri) =
⋃

d∈dom(Di)

{p|dip ≡ d} (6.3)

Modeling Dependencies

The directed edges in the task graph reflect the dependencies between various
tasks. If the task graph is Γ(N,V) we can formally include this partial order
in our constraint model using the following relations:

∀vij ∈ V Ti + Di ≤ Tj (6.4)

The above relation imposes the requirement that if there exist an edge from i
to j, then task j may only start after task i completed its execution. Addition-
ally, all tasks must finish before the deadline:

∀i ∈ N Ti + Di ≤ Tdeadline (6.5)

116

6.2 FIXED SPEED PROCESSOR ARCHITECTURES

Modeling Resource Usage

One of the assumptions for our problem is that resources may handle only one
task at the time. Furthermore, we assume that tasks use at most one resource
at the time. Computational tasks always use one processor. Communications
can also be viewed as tasks using a single resource, which is a communica-
tion channel (bus, point-to-point link). Yet, communications are slightly more
special than computations, since two communicating tasks executing on the
same processor may use shared memory to exchange information. In this
case, the communication seems to have disappeared since it does neither use
an external channel, nor takes time. This situations can be captured without
problems by additional constraints that relate the execution time of a commu-
nication to the resources assigned to the tasks involved.

In any case, a task can be viewed as a rectangle in an imaginary time-
resource space. On the time axis, the task stretches from Ti over Di time
units. On the resource axis, the task covers resource Ri, by for example
stretching between Ri and next resource Ri + 1. With this interpretation,
the constraint for the exclusive use of resources is that for no rectangles in
the time-resource space to overlap:

∀i, j ∈ N Ti ≥ Tj + Dj ∨ Tj ≥ Ti + Di ∨Ri 6= Rj (6.6)

Since this kind of constraints involve all tasks at once, they are usually re-
ferred to as global constraints. Although these can be modeled using a dis-
junction of primitive constraints, most constraint programming environments
offer optimized implementations of various global constraints. In particular,
CHIP5 [COS96] offers the diffn constraint for modeling non-overlapping n-
dimensional rectangles, while SICStus [Lab02] offers, for example, the dis-
joint2 constraint for 2-dimensional rectangles.

Modeling Energy

The goal of our optimization process is the minimization of the total energy.
The total energy is in fact the sum of individual task energies. Once a task is
assigned to a resource, we can directly estimate its energy. Assuming the av-
erage power consumption for each resource is given, the task energy is simply
computed as its execution delay times the average power. For complex tasks,
involving a proportionate blend of instructions, the energy estimate computed
in this way is not far from the actual energy consumption. Alternatively, if the
design process requires accurate metrics, the energy for each task on every re-
source may be obtained via simulations or actual measurements. The method
of obtaining these energy estimates is in fact beyond the scope of our discus-
sion. In any case, for each task i, our method requires an energy estimate eir

on every resource r. The dependency between the resource Ri and task energy

117

6. ARCHITECTURE SELECTION AND SCHEDULING

Ei is in fact similar to that between task execution time Di and its resource
Ri:

dom(Ei) =
⋃

r∈dom(Ri)

{eir}, dom(Ri) =
⋃

e∈dom(Ei)

{p|eip ≡ e} (6.7)

Finally, the value to minimize is the total energy:

E =
∑
i∈N

Ei (6.8)

A simple theoretical lower bound of the energy consumption can be computed
for each task graph assuming that:

a. there is no communication over buses between tasks and

b. every task is executed on the processor which requires the lowest possi-
ble energy for executing that task.

With these observations the lower bound for the energy can be computed as:

ELB =
∑
i∈N

min
j∈dom(Ri)

eij (6.9)

In practice this lower bound is very optimistic, and can be achieved only in
very special cases. When all the tasks are executed as in point b given above,
in general, they might need to execute on different processors. Consequently,
if there is any communication between this kind of tasks, it has to be per-
formed on the bus. On the other hand, if all the communicating tasks are
executed on the same processor, such that all use shared memory without
loading the bus (as in point a), this might not be the best choice from the
computational tasks energy point of view. Finally, even if a and b are satis-
fied, the time constraints might be violated, leading to invalid solutions. In
the experiments presented later on, this is the energy lower bound we use for
evaluating the different synthesis algorithms.

Example 6.1 (An Example of Modeling with Constraints):
Consider the task graph composed of three computations and two communi-
cations depicted in Figure 6.2. Each node in the graph will be modeled by a
4-tuple of finite domain variables < Ti, Di, Ri, Ei >, denoting the start time,
delay, resource, and energy used by task i, respectively. Let us consider that
there are three processors available, all able to execute the computations and
one bus for communications. We will identify these resources through inte-
gers 1,2,3 for processors and 4 for the bus. Note that the domains for the
resource variables Ri (equation 6.1) should reflect the fact that computations

118

6.2 FIXED SPEED PROCESSOR ARCHITECTURES

can only be executed by processors and communications only executed on the
bus:

dom(R1) = dom(R2) = dom(R3) = {1, 2, 3} dom(R4) = dom(R5) = {4}

The delay Di and energy Ei for each task, on each of these resources, are also
given in Figure 6.2. These relations between resources and delay, are modeled
using constraints of type 6.3. For instance, for task τ3 this appears as:

(dom(R3) = {1, 3} ⇐⇒ D3 = 1) ∨ (R3 = 2 ⇐⇒ D3 = 2)

Similar relations have to be written for energy, following the form of con-
straint 6.7. For task τ3 this appears as:

(dom(R3) = {1, 3} ⇐⇒ E3 = 4) ∨ (R3 = 2 ⇐⇒ E3 = 1)

Note that for communications, there are situations when the delay and energy
can become zero, according to our assumption. This is the case for τ5 when
both τ2 and τ3 execute on the same processor. This situation is expressed
formally as:

R2 = R3 ⇐⇒ (D5 = 0 ∧ E5 = 0)

Regarding timing, let us consider that the task graph has to execute between
0 and 6. This would mean that dom(Ti) = {0 . . . 6}. Furthermore, we have to
enforce the precedence constraints modeled by the arcs in the graph:

T1 + D1 ≤ T4 ∧ T2 + D2 ≤ T5 ∧ T4 + D4 ≤ T3 ∧ T5 + D5 ≤ T3 ∧ T3 + D3 ≤ 6

where the last relation expresses the fact that τ3 must finish before the dead-
line. Finally, we are interested in the total energy of the system:

E = E1 + E2 + E3 + E4 + E5

This is the measure we want to minimize under the constraints presented
above. Note that, according to equation 6.9, the lower bound for this value
would be 4 + 1 + 1 + 0 + 0 = 6, which would mean that all tasks execute on
different processors, yet no communication takes place. Obviously, this lower
bound is not achievable in this case.

6.2.2 Searching for Solutions

Once the problem has been specified using constraints, the next step is to look
for solutions. With the variable set V = {V1, V2, . . . , Vn}, searching for a solu-
tion means assigning gradually to each variable Vi, values from its domain
dom(Vi) = {wi1, wi2, . . .}, and backtracking when no further assignments are

119

6. ARCHITECTURE SELECTION AND SCHEDULING

1 2

3

4 5

τ1 τ2 τ3 τ4 τ5

Ri D1 E1 D2 E2 D3 E3 D4 E4 D5 E5

1 2 8 5 3 1 4 – – – –
2 4 4 3 4 2 1 – – – –
3 3 6 6 1 1 4 – – – –
4 – – – – – – 1 2 1 2

Figure 6.2: Task graph and resource pool for Example 6.1

possible. The search space can be viewed as a search tree, in which every
level is associated to one variable (Figure 6.3). After each assignment, the
constraints are revised using the specific value for the assigned variable. As
a result, some of the domains of the still unassigned variables may shrink,
thus pruning the search tree. Whenever an assignment leads to at least one
void domain, that branch cannot produce any solution with that partial as-
signment, so a new assignment must be tried. If there are no further possible
assignments, the search must backtrack to the previous level. When all the
variables have been assigned, a solution is found. If the purpose of the search
is finding one solution, the whole process stops. If the purpose of the search is
choosing a solution from a set of solution, other assignments have to be tried,
backtracking to the previous level. In particular, we want to find those values
for the task start times Ti and resources Ri that yield the minimum value for
energy E.

V1 =

V2 =

Vn =

w11 w12 w13

w21

wn3 wn3wn1

w22

Figure 6.3: A search tree. On every level, a variable is bound to a value from
its domain. The square nodes represent assignments which do not lead to any
solutions.

This search process has actually a lot of similarities with a typical branch-
and-bound process. The cost deciding the bounding is also a constrained vari-

120

6.2 FIXED SPEED PROCESSOR ARCHITECTURES

able with its own domain. During the search, while propagating (recalcu-
lating) the constraints, the domain of the cost variable might become empty.
This will yield cutting that branch, and trying others. As in a typical branch-
and-bound process, each time a better solution is produced, a new bound is
imposed leading to a restriction of the domain of the cost variable. The search
strategy presented above explores the entire search space, and it will be re-
ferred to as full-search or complete-search.

Depending on the complexity of the problem, the search space can become
huge, and finding all solutions becomes infeasible. In these situations, partial
exploration of the search space is used. The solutions found using partial
search cannot be proven to be optimal, but they can be near optimal, if the
partial search strategy is well chosen.

In our experiments we often use a heuristic named credit-search, pre-
sented in [BBSC97]. Credit-search starts as a pseudo-exhaustive search at
the upper levels of the search tree, and continues as a limited local search
on the lower levels. Each decision taken during the search will consume a
number of credit points from an initial credit. Each branch will get a num-
ber of credit points, depending on a preset distribution ratio. As soon as the
credit points are consumed, the search tries to go on the first available branch.
Whenever the search blocks, it backtracks and tries new branches. The num-
ber of explored branches is controlled mainly by the initial credit, while the
disposal of these branches depends on the distribution ratio. The local search
is controlled by the number of allowed backtracks. For a sufficiently large
initial credit, and/or number of backtracks, credit-search degenerates into a
full-search.

To implement our design flow using the constraint programming modeling
methods just described, we made use of the COSYTEC logic programming en-
vironment CHIP 5.1 [COS96]. All the experiments were performed using this
implementation.

6.2.3 Experiments

The experiments described in this section were designed to capture the main
features of our single step design approach, using constraint programming.
First, they show the numerous design choices when low energy is targeted.
The experimental results reflect the trade-off between energy and system cost
in terms of resource and speed. Secondly, we compare our energy-directed de-
sign flow to other slightly different approaches, easier to implement. These
methods attempt to minimize the energy in an indirect way, by tuning param-
eters influencing the power or energy consumption. We present two of these,
targeting communications and resource utilization, respectively. As proven by
the experiments, these methods are indeed successful, but only in particular

121

6. ARCHITECTURE SELECTION AND SCHEDULING

situations. Finally, the results show that the most successful is our complete
energy-directed design flow.

The Speed-Cost-Energy Tradeoff

In order to illustrate the design alternatives from the energy consumption
point of view, we used an example introduced in [PP91]. The task-graph
containing nine tasks and eight communications is depicted in Figure 6.4.
The available resource library contains three types of processors with costs
{4, 5, 2}, having the average power consumptions {4, 6, 5}, and one bus. We
assumed that a bus in use consumes around twice the power of a processor,
while all communications take 1 time unit. Also, the tasks have different exe-
cution delays on different processor types, yielding different energy consump-
tions. The 3D graph in Figure 6.4 depicts the design space for the example
described above, obtained with a complete search. The bars represent designs
having minimal energy consumption for the constraints imposed on both cost
and execution time. From these results we conclude that energy savings can
be obtained if the limits on deadline and/or maximal cost are relaxed. In
principle, more processors and longer execution deadlines make it possible to
select better alternatives from the energy point of view.

Optimization Scenarios

The constraint based modeling method presented earlier gives us the possi-
bility to explore and compare different energy optimization alternatives. We
considered three energy optimization techniques: the first approach focuses
only on the processor energy, the second targets only the communication en-
ergy, and, finally, the third combines processor and communication energy
consumption.

The first optimization scenario, what we call the naive designer’s method,
is presented in Figure 6.5. It uses a straightforward design method, select-
ing processors in a greedy manner. The designer starts with an empty set
of processors and keeps adding new processors taken from the available re-
source pool, until a feasible schedule is found for the imposed time limit. The
processor to be extracted from the available set and added to the current al-
location set is always the processor which has the lowest power consumption.
The function do synthesis in Figure 6.5 consists of a branch-and-bound with
credit-search (see Section 6.2.2), which tries to assign tasks to processors and
to time slots. If no solution is possible with a certain partial assignment, the
algorithm backtracks and tries a different assignment until the first possible
schedule and binding are found, or there are no more possible partial assign-
ments.

122

6.2 FIXED SPEED PROCESSOR ARCHITECTURES

789
10

11
12

13
14

15

6

8

10

0

50

100

150

200

250
Energy

DeadlineMaximal
Cost

6
7
8
9
10

1

4

7

2

5

8

3

6

9

Proc Cost T1 T2 T3 T4 T5 T6 T7 T8 T9

P1 4 2 2 1 1 1 1 3 1

P2 5 3 1 1 3 1 2 1 2 1

P3 2 1 1 2 3 1 4 1 3

Example
Task Graph

Execution Times for each Task on each Processor

Cost

Figure 6.4: An example task graph and possible solutions depicted in a time-
cost-energy design space. The bars with the same shade represent designs
with the same cost limit.

In the second scenario, we minimize the amount of communication be-
tween processors by assigning as many dependent tasks as possible on the
same processor. This is carried out by grouping the computational tasks into
clusters representing processors, while trying to minimize the cut between
clusters. As in the previous scenario, we used the branch-and-bound (B&B)
algorithm with credit-search, yet we attempt to minimize the total communi-
cation energy. The B&B algorithm determines the resource binding such that
the communication on the buses is minimal. Thus, the power consumption of
the processors is not directly considered.

In the third scenario, both communication energy and computation energy
are considered during optimization. The function to be minimized is the to-
tal energy as given in equation 6.8. Again, we use a B&B algorithm with
credit-search as in the previous scenarios, but the goal is total energy mini-
mization. The algorithm tries to allocate processors, bind tasks to processors,
and schedule the task graph. The B&B algorithm assigns tasks to processors
with the minimal power consumption first and then tries to find a schedule
for this assignment. The algorithm backtracks if no solution can be found.

123

6. ARCHITECTURE SELECTION AND SCHEDULING

naive designer(ResourcePool, Deadline) {
Allocation ← ∅;
SolutionFound ← FALSE;
do {

(Schedule, Binding) ← do synthesis(Allocation, Deadline);
if(valid solution(Allocation,Schedule,Binding))

SolutionFound ← TRUE;
else {

NewProcessor ← lowest power(ResourcePool);
Allocation ← Allocation ∪ {NewProcessor};
ResourcePool ← ResourcePool \ {NewProcessor}
}
} while(!SolutionFound);
return (Allocation, Schedule, Binding);
}

Figure 6.5: The naive designer’s method pseudo-code.

Note that none of these approaches guarantees optimal solutions, since
they are based on partial search of the design space. Yet, they perform quite
well, as the experiments presented next are showing.

As input for the experiments, we randomly generated task graphs of dif-
ferent sizes, for two different situations. First, we assumed that the bus (or
communication) power is five to ten times lower than the power consumption
of the processors. For the second situation, we assumed that the bus power
consumption is five to ten times larger than the processor power. Although
these two alternatives are extremes in practice, they illustrate the two basic
situations we are interested in:

1. when the computation energy is dominant (true mainly for systems-on-
chip) and

2. when the communication energy is dominant (true for systems contain-
ing expensive communication channels).

For each of the three optimization techniques presented before, we plot two
curves, one for each of the two situations described above. For each graph,
we determined the shortest possible schedule with the available resources,
running separate experiments based on the methods presented in [Kuc99],
which yield near optimal results. Relaxing this deadline and applying each
of the three methods, we found better designs from the energy consumption
point of view. The plotted values are average energy values relative to the
energy lower bound as formulated in equation 6.9.

124

6.2 FIXED SPEED PROCESSOR ARCHITECTURES

Figure 6.6 presents these experimental results for twenty random graphs
with 20 tasks and communications. For these experiments, the resources
available were five processors with the power consumptions {6, 7, 8, 9, 10},
and one bus. The bus power consumption is 1, for the naive1, bus1, and all1
curves and 50 for the naive50, bus50 and all50. The naiveX curves are the
solutions obtained by the naive designer, the busX curves are the ones ob-
tained optimizing only the bus energy consumption, and the allX are the so-
lutions obtained with our unified approach. We also considered large graphs,

0

20

40

60

80

100

120

140

160

0 50 100 150 200 250

deadline extension in % over the shortest schedule

naive1

bus1

all1

naive50

bus50

all50

en
er

gy
 i

n
%

 o
ve

r
th

e
lo

w
er

 b
ou

nd graphs of 20 tasks

Figure 6.6: Energy consumption vs. schedule length for the graphs of 20
tasks.

comparable to the most complex practical systems. Figure 6.7 presents the
curves for twenty random graphs with 130 computational tasks and commu-
nications. The resources available in this case were four buses and fifteen
processors, three of each kind of the five processors used in the previous ex-
periment. All the experiments were run with the CHIP 5.1 system, on a Sun
SPARC center 2000 (50MHz). The time for finding one solution was limited to
10 minutes for the 20 nodes graphs and 20 minutes for the 130 nodes graphs.

The naive designer algorithm requires little time, since the first solution
found is the one reported. From the diagrams, we can deduce that the naive
designer approach, although very simple, performs better than the bus ori-
ented approach when the communication power is low. The situation changes
when the communication power becomes significant. It is interesting to no-
tice that, for relaxed deadlines, independent of the communication power, the
naive designer still performs better. This can be explained by the fact that
few processors and long deadlines force fewer communications, since more

125

6. ARCHITECTURE SELECTION AND SCHEDULING

0

50

100

150

200

0 50 100 150 200 250 300

naive1

bus1

all1

naive50

bus50

all50

deadline extension in % over the shortest schedule

en
er

gy
 i

n
%

 o
ve

r
th

e
lo

w
er

 b
ou

nd graphs of 130 tasks

Figure 6.7: Energy consumption vs. schedule length for the graphs of 130
tasks.

and more processes execute on the same processor.
Finally, considering both communications and tasks during optimization is

obviously the best strategy. It performs better than the two other techniques,
regardless of the communication power and of the deadlines. In real cases,
the designers try to obtain rather fast designs, so they focus mainly on tight
deadlines, represented somewhere in the left area of our graphs. As shown by
the experiments, for these tight deadlines, the unified method obtains much
better solutions than any of the other two.

6.3 Variable Speed Processor Architectures

Using a single step approach for architectures with variable speed proces-
sors is impractical, since the complexity of the problem grows exponentially.
Even on dual-speed processors, tasks may in principle execute at an enor-
mous number of virtual speeds between the two actual clock speeds. For this
reason, we adopt a different design methodology, consisting of a two sequen-
tial steps, assignment generation followed by fast scheduling (see Figure 6.8),
enclosed in the energy-aware optimization loop. Granted such an approach
may find fewer good solutions, its speed makes it more suitable as an inter-
active design space exploration method. To get an energy-efficient design, all
the steps in the design flow should get feedback from the subsequent steps.
If these steps are performed independently, only local optima can be found.

126

6.3 VARIABLE SPEED PROCESSOR ARCHITECTURES

Energy Aware
Assignment & Scheduling

Schedule

Generate
Assignment Energy

Estimator

SA

Figure 6.8: A two step design process. The assignment step, guided by a fast
energy consumption estimator, is followed by a scheduling step.

For this reason, in the assignment step we use a heuristic search (Simulated
Annealing, SA, in our implementation) guided by a cost function, estimating
the final outcome of the synthesis. In particular, we are interested in estimat-
ing the energy consumption after scheduling, therefore the estimator has to
take into consideration the scheduling method. We present next two design
approaches that differ in the estimation method and scheduling step.

6.3.1 The “Speed-Up and Stretch” Approach

The first method is what we consider one of the simplest, although not triv-
ial, approaches to low energy system design (Figure 6.9 a). It is based on
the idea that one can trade execution speed for low power/energy. In princi-
ple the task graph is assigned in such way that the schedule is as short as
possible, considering all processors run at the maximum speed. This assign-
ment is performed using simulated annealing, mentioned before and detailed
later on. Then, this tightest schedule is stretched, by lowering the supply
voltage selectively for each processor, such that it covers all the time interval
to the desired deadline. For this reason, we call this design flow Speed-Up
and Stretch (S&S). Scheduling is performed using list-scheduling with a pri-
ority function based on critical path. The combined scheduling and stretching
method is the same one described in Section 5.3, as List-Scheduling with Pro-
portional Stretch (LS-PS). Note that this approach does not require any infor-

127

6. ARCHITECTURE SELECTION AND SCHEDULING

mation about the energy consumed by the processors. It uses the assignment
and scheduling techniques from a classic, energy-unaware approach.

The idea behind finding the fastest possible schedule comes from the two
observations. First, the critical paths become shorter, allowing lower speeds,
and thus lower energy consumption. Secondly, the processor load gets bal-
anced and close to the maximum 100%. Consequently, the idle intervals on
all processors get smaller. Ideally, for the tightest schedule all processors
would be busy 100% of their time. The following, proportional stretch step
assigns the lowest (and same) speed for all tasks. Shorter schedule means
lower speed.

Finally, the LS-PS scheduling method used by the S&S approach is fast
enough for the energy estimator. Once a schedule is found for the given as-
signment, the energy can be computed in a simple manner, considering the
speed is common for all tasks.

a) Speed-Up and Stretch (S&S) b) Eye-on-Energy (EonE)

Schedule

Generate
Assignment Energy

Estimator

SA
LS-PS

Schedule

Generate
Assignment Energy

Estimator

SA LEneS-PS

Tune Energy Estimator

Figure 6.9: Two energy-aware design flows.

6.3.2 The “Eye-on-Energy” Approach

One of the problems with the previous approach is that the scheduling strat-
egy, discussed in Section 5.3, performs badly on heterogeneous sets of proces-
sors or for task graphs with unbalanced paths. In Section 5.4 we presented
LEneS, a better scheduling algorithm, able to handle the above mentioned
situations.

For instance, LEneS is able to reduce the energy consumption by 25% for
certain assigned task/graphs, without any performance loss. Although this

128

6.3 VARIABLE SPEED PROCESSOR ARCHITECTURES

improved algorithm saves energy compared to the simpler LS-PS, it takes
longer time to find a schedule. For example, scheduling a task-graph with
56 tasks on eight processors takes around 5 minutes. This is far too long to
include in an energy estimator contained by the Simulated Annealing loop,
required by our design flow. To overcome this problem, we built a separate
function, which can quickly estimate the energy consumption when using our
LEneS scheduling strategy. A more detailed description of the estimator is
presented later on. Finally, using our LEneS strategy enhanced with Propor-
tional Stretch (scheduling algorithm referred to as LEneS-PS in Section 5.4),
the new estimation method, we developed an improved design flow.

Our new design flow, called Eye-on-Energy (EonE), is depicted in Figure
6.9.b, and works as follows. At first, the energy estimator is tuned for the
current task-graph by fitting its estimates to the energy values obtained after
a complete (and time-consuming for that matter) scheduling with LEneS-PS.
Then we perform a heuristic search using simulated annealing (SA), as in the
S&S approach, except this time the search is directed by the estimated energy,
as opposed to schedule length. Finally, with the best assignment found by SA,
the design is scheduled using LEneS-PS.

The Energy Estimator

Our EonE design flow requires an estimate for the energy consumption of
the design obtained assignment and the LEneS scheduling algorithm. This
estimate must be computed fast enough to be useful inside the SA search
heuristic. The following function was chosen for computing the estimate:

Ê = a

(
Emax

Nproc

)(
Tmin

D

)2

+ bδE + c (6.10)

where Emax is the maximal energy consumption for the given assignment,
obtained when all the tasks run as fast as possible. Nproc is the number of
processors used by the assignment. Tmin is the length of the fastest schedule,
obtained through a classic list-scheduling with a critical-path priority func-
tion. D is the required deadline. δE is the energy square deviation taken over
each processor. Finally, a, b, and c are constants, specific for every task graph.
The reason behind choosing such function is the following. The first ratio
gives in principle the average maximal energy consumed by each processor.
The bigger this value is, the larger the final energy consumption gets. The
second ratio describes the scaling ability of the schedule. If this factor is high,
meaning that even the tightest schedule needs a long time to complete, the
more likely there will be very little extra time for scaling. The square power
comes from the energy/delay dependency. The second term in the estimator
expression describes how well balanced the energy is among the available pro-

129

6. ARCHITECTURE SELECTION AND SCHEDULING

cessors, for the tightest schedule. Several of our experiments suggested that
a smaller value for this term leads to a lower final energy consumption.

Parameters a, b, and c are tuned by fitting the function to the energy val-
ues obtained for several random assignments, that are then scheduled with
LEneS-PS. Given the function shape, we use non-linear regression to deter-
mine a, b, and c. In particular, in our implementation we used the non-linear
least square fit provided by the newmat C++ library [Dav02].

The algorithmic complexity required to compute Ê for a certain assign-
ment is given by the complexity of determining its components. The most
costly of all is Tmin, the length of the tightest schedule, which is determined
through a classic list-scheduling. Thus, the complexity of computing the cost
of an assignment is the same as in the S&S approach, which uses LS-PS.

Next we evaluate the accuracy of the energy estimator Ê. This implies
comparing the values returned by the estimator against those resulted after
LEneS, for a number of different task graphs and assignments. For this, we
used one hundred random graphs of thirty nodes, with a dependency depth
no larger than five tasks. As a resource pool, we assumed six processors with
different average power consumption. The tightest possible deadline with the
given resources was obtained using SA, with the schedule length as cost func-
tion. First, we fitted the a, b, and c parameters of the estimator using 30
different random assignments for each task-graph. Then, for other 30 ran-
dom assignments, we examined how well the estimates fit the actual energy
values for these assignments. The standard deviation (average, minimum,
and maximum) of the estimates for both sets of assignments is depicted in
Figure 6.10. Although the estimates for the new assignments (not used for
function fitting) are less accurate, the difference is rather small (1-2%). Thus,
using only 30 assignments, the estimator parameters are good enough to fit
other, random assignments. We conclude that the estimator tuning step in the
EonE approach can use only 30 assignments, without significant loss in accu-
racy. Finally, these experiments show that the average standard deviation of
the estimates from the actual energy values obtained by LEneS is around 8%,
sufficiently accurate to be used as an estimator in the SA search.

6.3.3 Simulated Annealing as Assignment Search

Finding the best task-to-processor assignment is an NP-hard problem. For
this reason we use a well known and easy to implement heuristic search
method: simulated annealing. There are several aspects which define a spe-
cific implementation of a simulated annealing algorithm, differing between
our two design flows as follows.

The neighborhood is defined in terms of one type of move, which is re-
assigning one randomly selected task to a different processor. In the SA im-
plemented in the S&S approach, a random task is assigned to the processor

130

6.3 VARIABLE SPEED PROCESSOR ARCHITECTURES

0

2

4

6

8

10

12

14

0 25 50 75 100

S
ta

nd
ar

d
de

vi
at

io
n

of
 th

e
es

tim
at

es
 in

 %

Deadline extension in % over the shortest schedule

from the 30 fitted assignments E
from the 30 random assignments E

Figure 6.10: The accuracy of the Ê estimator. The figure depicts average,
minimum, and maximum standard deviations of estimates from the LEneS
yield energy consumption. Both deviations from the fitted and random as-
signments are shown.

which yields the fastest execution time for that very task. In the SA imple-
mented in the EonE approach, a random task is assigned to the processor
which yields the lowest energy consumption for that task. To allow the search
to exit local minima, whenever the selected task is already assigned on the
best processor (best local assignment), a random assignment is performed for
that task.

The parameters of the SA cooling scheme can be used to speed up the
search with the risk of obtaining worse solutions, as shown in Figure 6.11.
The number of iterations at one temperature is dynamically computed de-
pending on the problem size and temperature. The stopping condition is given
by the dynamics of the solution. If the solution remains unchanged (within
a 5% range) in the last three temperatures, the search stops. The SA cost
function in the EonE approach is the estimated value of energy. For the S&S
approach, the cost function is the schedule length.

6.3.4 S&S vs. EonE Comparison

The most interesting aspect of the two design flows, S&S and EonE, is, of
course, their efficiency in producing low energy designs. In the following two

131

6. ARCHITECTURE SELECTION AND SCHEDULING

25

30

35

40

45

50

55

0 20 40 60 80 100 120

cooling factor = 0.93
cooling factor = 0.82

elapsed temperature levels

Cost = Estimated Energy

Cost = 17.65

Cost = 16.73

Figure 6.11: Assignment energy evolution during SA search for two different
parameter settings.

experiments, we compare the previously mentioned design flows both for ar-
tificially created task graphs, and for a real life application.

For the first experiment, we used one hundred graphs with twenty nodes
and with a dependency depth no larger than four tasks. The reference dead-
line is the tightest possible deadline with the available resources. For each
task graph, this value was obtained by running SA with the schedule length
as cost function. We applied then both S&S and EonE design flows on all
these task graphs and recorded the energy consumption of the reported solu-
tions. Figure 6.12 depicts the energy saved by the EonE approach compared
to the S&S approach, as average, minimal, and maximal values, for various
deadline extensions. On average, EonE can save around 15% energy in com-
parison to S&S. In some cases, EonE can save as much as 34% energy. The
negative values appear because of the energy estimation error (that can be as
much as 13% as shown in Figure 6.10), which results in the S&S approach to
behave better in some cases.

Next, we present the actual energy saving capabilities of the two design
flows introduced in this paper. For this, we chose a real-life application con-
sisting of a sub-system of an Unmanned Aerial Vehicle (see [DGK+00]). The
sub-system we are interested in is an optical flow detection (OFD) algorithm,
which is part of the traffic monitoring system. In the current implementation,
the optical flow algorithm consists of 32 tasks, running on ADSP-21061L dig-
ital signal processors. Limited by other tasks, OFD can process 78x120 pixels
at a rate up to 12.5Hz. In many cases, a much lower rate is sufficient. Be-

132

6.3 VARIABLE SPEED PROCESSOR ARCHITECTURES

-10

0

10

20

30

40

0 25 50 75 100

E
on

E
 e

ne
rg

y
sa

vi
ng

s
ov

er
 S

&
S

 in
 %

Deadline extension in % over the tightest schedule

Figure 6.12: The energy saved by applying EonE versus using the S&S de-
sign flow. The figure depicts maximum, average, and minimum values for a
hundred randomly generated task graphs.

cause of this dynamic behavior, important energy savings would be obtained
if the design were to use processors supporting multiple voltages. Depending
on the wanted rate, the processors can be run faster or slower, in order to re-
duce the energy consumption. Assuming we can run the DSPs at 3.3V, 2.5V,
1.7V, or 0.9V, we applied our two low energy design flows for the OFD. For
two different processing rates, lower than 12.5Hz (column 1 in Table 6.1), we
assumed different pools of available resources: with two, three, and four pro-
cessors respectively (column 2 in Table 6.1). For each of these configurations
we considered three design methods. First, we considered the real current
situation, when no voltage scaling can be performed (the Single Vdd column),
but the processors are shut down whenever they are idling. This energy is
always the same, since the processors are identical and always execute at the
same speed. This is the reference we compare the other methods to. Then, we
applied the low energy design flows described before and compared them to
the reference energy (the S&S and EonE columns respectively). As reflected
by Table 6.1, there is a trade-off between cost (number of processors) and low
energy consumption. Note also that even for only 50% slower processing rate
the energy consumption can be almost halved. The simple S&S approach per-
forms fairly well, but for very low energy applications the EonE approach is
recommended.

133

6. ARCHITECTURE SELECTION AND SCHEDULING

Table 6.1: S&S and EonE solutions energy for two rates of the OFD algorithm.
Processing Number of Energy in % of the Single Vdd case

Rate Processors Single Vdd S&S EonE
6.25 Hz 2 100 49.47 48.95

(half rate) 3 100 45.16 41.18
4 100 42.07 39.92

8.33 Hz 2 100 71.33 69.64
(2/3 rate) 3 100 60.13 57.04

4 100 55.86 52.77

6.4 Chapter Summary

The current chapter addressed scheduling in conjunction with architecture
selection, as a parts of several energy-centric design flows. In this context,
we focused on static scheduling of task graphs, first on fixed speed processor
architectures and then on variable speed processor architectures.

For architectures with fixed speed processors, we presented a single step
approach for assigning tasks to processors (binding) and to time moments
(scheduling). The problem, formulated as a time-and-resource constrained
optimization, is modeled using constraints and solved through a branch-and-
bound search. We presented a couple of simple heuristics for minimizing
the energy consumption, through reducing only the communications or al-
ternatively selecting low power processors. Finally, we presented a unified
communication-computation energy minimization strategy. The experimen-
tal results show that although simple optimization heuristics perform fairly
good, the best results can be obtained only by using the total energy as a
minimization goal.

For architectures with variable speed processors, we described a two step
design flow, consisting of energy estimate driven binding followed by schedul-
ing. In this context, we presented two variations of this design flow. The
first one indirectly minimizes the overall energy consumption, by trying to
uniformly load the processors, while finding a short schedule. The second
uses our LEneS scheduling method at its core, and is driven by a fast energy
estimator. Finally, the experimental results show that the first approach, al-
though very simple, behaves surprisingly well, achieving low energy designs.
Still, the second approach, employing especially designed energy-centric tech-
niques, performs best.

134

CHAPTER 7

FINAL REMARKS

THIS CONCLUDING CHAPTER presents a summary of the work contained in
this thesis, together with a few important conclusions that can be drawn from
our results. It also highlights some of the possible future developments and
trends that could shape the area of low power and low energy digital system
design. Finally, the chapter closes with a brief enumeration of the possible
directions for our research work.

7.1 Summary and Conclusions

Energy consumption is today an issue emerging in increasingly many appli-
cations, ranging from battery powered portable devices to desktop computers.
Some of these applications are time critical, falling under the umbrella of
real-time systems. For these types of systems, task scheduling is an essential
design aspect. Classic real-time design techniques do not address the schedul-
ing problem from the energy efficiency point of view. Conversely, the typi-
cal methodologies for designing low energy systems often have a hard time
in fulfilling the constraints of a real-time system. Energy efficiency usually
means carrying out operations at a lower pace, on slower but power-efficient
resources. Therefore, the choice of resources and the schedule influences the
energy consumed by the system. With the advent of the variable speed proces-
sors — whose speed, thus energy consumption may be adjusted at run-time
— the connection between energy efficiency and scheduling becomes even
stronger. Scheduling in this case implies also selecting the right speeds for
each task in each time moment.

The current thesis presents several speed scheduling algorithms for sys-
tems containing variable speed processors, yielding energy-efficient designs,

135

7. FINAL REMARKS

while still fulfilling the hard real-time constraints.
The thesis starts with a presentation of the relevant background, followed

by a review of related research. The task, task group, and resource models
used throughout the thesis, are then introduced.

Next, a set of speed scheduling choices at task level were described and
compared, including stochastic scheduling. This is our own task level schedul-
ing method, that minimizes the expected case energy consumption by employ-
ing the task execution pattern probability distribution. Stochastic schedul-
ing is examined side by side with complier-assisted scheduling, from various
points of view, such as energy efficiency, run-time overhead, and implementa-
tion complexity. The experimental results obtained on a hardware platform
with a variable speed processor (see Appendix B) shown at this point, confirm
the validity of our starting assumptions and the success of our method. We
conclude that the best task level scheduling strategy is highly case dependent,
but can be detected using careful analysis.

A wide range of task group scheduling policies were described next. First,
we focused on static scheduling for task graphs on variable speed processors.
A few simple low energy scheduling heuristics were examined, employing sim-
ple proportional scaling transformations. We then presented LEneS, a more
advanced algorithm based on list-scheduling with an energy-sensitive prior-
ity function. Briefly, LEneS reduces the energy by assigning lower speeds to
non-critical tasks. Next, we focused on sets of independent tasks running on
single processor systems. We presented methods for computing the minimum
required speeds for each task, under rate-monotonic and earliest deadline
first scheduling schemes. Then we described an energy-efficient run-time ex-
tension of the rate-monotonic policy, using slack re-distribution. The worst
case response time analysis presented at this point, shows that our method
behaves as well as than the classic rate-monotonic scheduling policy, while
achieving important energy savings. The task group scheduling chapter con-
cludes with the description of an ordering policy built on top of the earliest
deadline first scheduling, entitled Uncertainty-Based Scheduling. The policy,
designed for tasks with variable execution pattern, uses stochastic informa-
tion about the tasks to derive orders that yield, at run-time, minimal energy
consumption in the long run. The evaluation presented there, showed that
the ordering algorithm is much faster and, at the same time, as efficient as a
simulated annealing heuristics. The energy measurements performed on the
available hardware system confirmed both the importance of a good ordering
and the efficiency of our own policy.

Finally, we examined task graph scheduling in conjunction with architec-
ture selection, as parts of low energy system-level synthesis. In this context,
we presented several design flows directed at lowering the energy consump-
tion while fulfilling the real-time constraints. First, we described a constraint

136

7.2 FUTURE TRENDS

programming based approach for solving task mapping and scheduling in a
unified manner, while minimizing the system energy. As pointed out, a good
methodology for design space exploration reveals the cost vs. low energy vs.
performance tradeoff, which offers many choices to a designer. Next, we pre-
sented two more system-level design flows for energy-efficient architectures
of variable speed processors. One of them is a very simple approach, that
takes initially energy-unaware techniques, but combines them into an energy-
centric design methodology. The other approach directly targets energy con-
sumption reduction during task mapping and scheduling. A comparison be-
tween the two design flows shows that, although the simpler method performs
fairly well, the best results are always obtained using our specially designed
energy-aware techniques.

In conclusion, even hard real-time systems can be made energy efficient,
if one employs methods as the ones presented in this thesis. Performing com-
putations as slow as possible, while fulfilling the deadlines, is the key to low
energy real-time systems. In this sense, architectures composed of variable
speed processors seem to offer the best support platform for energy efficiency.
Furthermore, better scheduling algorithms can be designed if stochastic data
about the tasks execution time is taken into consideration. Additionally, these
algorithms may be implemented at operating system level, improving the soft-
ware portability.

7.2 Future Trends

The importance of any research results concerning speed scheduling is best
examined in the context of future possible developments in the digital appli-
ances area. Variable speed systems offer today the best combination of perfor-
mance and energy efficiency. Highly configurable or programmable hardware
support are preferred because of their flexibility. In this sense, variable speed
processors are the best solution for a wide area of applications. Such proces-
sors already make their way into desktop computers, laptops, PDAs1, and all
sorts of embedded systems. Judging by their huge potential to reduce the sys-
tem cost (energy consumption, cooling) while maintaining performance, it is
our conviction that in the near future most processors will be variable speed
processors. Furthermore, the overhead of the speed switch, which accounts
for a couple of thousand clock cycles today, will most likely decrease signif-
icantly, using architectural solutions similar to the one described in Section
3.3.2. The number of speed settings, today usually between two and eleven,
will probably increase slightly, pushing the energy/delay characteristic closer
to an ideal one. Although synchronous design is very likely to remain the

1PDA: Personal Digital Assistant

137

7. FINAL REMARKS

basis for the majority of processors, asynchronous designs showing promis-
ing power-performance characteristics have already been presented [EGT01]
and could some day replace the synchronous processors. However, even asyn-
chronous processors can be designed to support multiple speed settings by
varying the supply voltage. Therefore, speed scheduling methods remain nec-
essary, regardless of the synchronous-asynchronous choice.

In the future, operating system level speed management is expected as
opposed to task/user level speed scheduling carried out at compile time. This
is because the operating system has, in principle, a better view and control
over all system resources. Another reason is portability and code mobility
among systems with different variable or fixed speed processors.

To take advantage of the intrinsic parallelism of some applications and
consume as little energy as possible, multi-processor systems seem to be the
best option. The increasing number of distributed applications will require a
system level energy manager, that will take global rather than local choices.
Such a manager should adaptively choose the best distribution of speeds for
each component, together with the required computation and communication
amount to fulfill the system functionality in an energy efficient manner. An
example of this kind of application are wireless networks.

7.3 Future Work

Regarding possible improvements or extensions of our current work, we would
like to examine more aggressive methods to incorporate stochastic data into
existing real-time scheduling strategies. In this sense, we plan to evaluate in
detail our Uncertainty-Based Scheduling policy for more general cases than
those presented in this thesis. In principle, we are interested in examining
the influence of the overhead introduced by the additional context switches
required by UBS.

To further verify the efficiency of our methods, we intend to implement
some of these inside the IVM2, a real-time Java Virtual Machine designed for
embedded systems, developed in our department [Ive03]. We plan to use the
already familiar XScale evaluation board to examine the energy consumption
for the enhanced IVM.

Finally, since wireless networks seem to become more common, in particu-
lar sensor networks, we intend to look more closely into energy management
for distributed systems. Problems that are especially interesting in this case
are adaptive functionality partitioning depending on the locally available en-
ergy, coupled with task migration, routing, and communication for low energy.

2IVM: Infinitesimal (Java) Virtual Machine

138

BIBLIOGRAPHY

[ADI] ADI Engineering. 80200EVB Reference Platform.
http://www.adiengineering.com/product80200EVB.html.

[AMD00] AMD. AMD PowerNowTM Technology Dynamically Manages
Power and Performance, Rev. A, November 2000. Informational
White Paper No. 24404.

[AMMMA01] H. Ayidin, R. Melhem, D. Mossè, and P. Mejia-Alvarez. De-
termining optimal processor speeds for periodic real-time tasks
with different power characteristics. In Proceedings of the 13th
Euromicro Conference on Real-Time Systems, pages 225–232,
2001.

[ASU86] A. V. Aho, R. Sethi, and J. D. Ullman. Compilers: Principles,
Techniques, and Tools. Addison-Wesley, 1986.

[Axe97] J. Axelsson. Analysis and Synthesis of Heterogeneous Real-
Time Systems. PhD thesis, Linköping Technical University,
1997. No. 502.

[BBSC97] N. Beldiceanu, E. Bourreau, H. Simonis, and P. Chan. Partial
search strategy in CHIP. In Proceedings of the 2nd Metaheuris-
tic International Conference, 1997.

[BD99] L. Benini and G. DeMicheli. System-level power optimization:
Techniques and tools. In Proceedings of the 1999 International
Symposium on Low Power Electronics and Design, pages 288–
293, 1999.

139

BIBLIOGRAPHY

[BDM+97a] L. Benini, G. DeMicheli, E. Macii, M. Poncino, and S. Quez.
System-level power optimization of special purpose applica-
tions: the Beach solution. In Proceedings of the 1997 Interna-
tional Symposium on Low Power Electronics and Design, pages
24–29, 1997.

[BDM+97b] L. Benini, G. DeMicheli, E. Macii, D. Sciuto, and C. Silvano.
Asymptotic zero-transition activity encoding for address busses
in low-power microprocessor-based systems. In Proceedings of
the Seventh Great Lakes Symposium on VLSI, pages 77–82,
1997.

[BMR90] S. K. Baruah, A. K. Mok, and L. E. Rosier. Preemptively
scheduling hard real-time sporadic tasks on one processor. In
Proceedings of IEEE Real-Time Symposium, 1990.

[Bor99] S. Borkar. Design challenges of technology scaling. IEEE Micro,
19(4):23–29, July-August 1999.

[BPSB00] T. D. Burd, T. A. Pering, A. J. Stratakos, and R. W. Brodersen. A
dynamic voltage scaled microprocessor system. IEEE Journal
of Solid State Circuits, 35(11), November 2000.

[BRH90] S. K. Baruah, L. E. Rosier, and R. R. Howell. Algorithms and
complexity concerning the preemptive scheduling of periodic,
real-time tasks on one processor. Real-Time Systems, 2, 1990.

[Bur91] A. Burns. Scheduling hard real-time systems: a review. Soft-
ware Engineering Journal, pages 116–128, May 1991.

[BW01] A. Burns and A. Wellings. Real-Time Systems and Program-
ming Languages. Adison-Wesley, 3rd edition, 2001.

[CBD01] E.-Y. Chung, L. Benini, and G. DeMicheli. Automatic source
code specialization for energy reduction. In Proceedings of the
2001 International Symposium on Low Power Electronics and
Desing, pages 80–83, 2001.

[CC01] K.-W. Choi and A. Chatterjee. Efficient instruction-level op-
timization methodology for low-power embedded systems. In
Proceedings of the 14th International Symposium on System
Synthesis, pages 147–152, 2001.

[CGX96] A. Chandrakasan, V. Gutnik, and T. Xanthopoulos. Data driven
signal processing: An approach for energy efficient computing.
In Proceedings of the 1996 International Symposium on Low
Power Electronics and Design, pages 347–352, 1996.

140

BIBLIOGRAPHY

[Cof76] E. G. Jr. Coffman. Introduction to deterministic scheduling the-
ory. In Computer and Job-Shop Scheduling Theory. Wiley, New
York, 1976.

[Com02] Compaq, Intel, Microsoft, Phoenix, and Toshiba. Advanced
Configuration & Power Interface Specification, Revision 2.0a,
March 31 2002.

[COS96] COSYTEC. CHIP, System Documentation. COSYTEC, 1996.

[CP97] J.-M. Chang and M. Pedram. Energy minimization using mul-
tiple supply voltages. IEEE Transactions on VLSI Systems,
5(4):436–443, December 1997.

[Cyg] Cygnus. GNUPro Tools for Intelr XScaleTM. Cygnus, Cygnus
Solutions, 1325 Chesapeake Terrace, Sunnyvale, CA 94089,
USA. http://www.cygnus.com/.

[Dav02] R. B. Davies. Documentation for newmat10A, a matrix library
in C++, October 2002.

[DeM94] G. DeMicheli. Synthesis and Optimization of Digital Circuits.
McGraw Hill, 1994.

[DGK+00] P. Doherty, G. Granlund, K. Kuchcinski, E. Sandewall, K. Nord-
berg, E. Skarman, and J. Wiklund. The WITAS unmanned
aerial vehicle project. In Proceedings of the 14th European Con-
ference on Artificial Intelligence, 2000.

[Dic02] R.P. Dick. Multiobjective Synthesis of Low-Power Real-Time
Distributed Embedded Systems. PhD thesis, Princeton Univer-
sity, Dept. of Electrical Engineering, November 2002.

[DJ97] R.P. Dick and N.K. Jha. Mogac: A multiobjective genetic algo-
rithm for the co-synthesis of hardware-software embedded sys-
tems. In Proceedings of the 1997 International Conference on
Computer Aided Design, pages 522–529, 1997.

[DKV+02] V. Delaluz, M. Kandemir, N. Vijaykrishnan, M. J. Irwin,
A. Sivasubramaniam, and I. Kolcu. Compiler-directed array
interleaving for reducing energy in multi-bank memories. In
Proceedings of the 15th International Conference on VLSI De-
sign, 2002.

[DLJ99] B. P. Dave, G. Lakshminarayana, and N. K. Jha. COSYN:
Hardware-software co-synthesis of heterogeneous distributed
embedded systems. IEEE Transactions on VLSI Systems,
7(1):92–104, March 1999.

141

BIBLIOGRAPHY

[EGT01] A. Efthymiou, J.D. Garside, and S. Temple. A comparative
power analysis of an asynchronous processor. In Proceedings of
the 11th International Workshop — Power And Timing Model-
ing, Optimization and Simulation, pages 10.1.1–10, September
2001.

[EKP98a] P. Eles, K. Kuchcinski, and Z. Peng. System Synthesis with
VHDL. Kluwer Academic Publishers, 1998.

[EKP+98b] P. Eles, K. Kuchcinski, Z. Peng, A. Doboli, and P. Pop. Schedul-
ing of conditional process graphs for the synthesis of embedded
systems. In Proceedings of the 1998 Design, Automation and
Test in Europe, pages 132–138, 1998.

[Eve79] S. Even. Graph Algorithms. Computer Science Press, 1979.

[Fle01] M. Fleischmann. LongRun power management - dynamic
power management for crusoe processors. Technical report,
Transmeta Corporation, January 17, 2001.

[GCW95] K. Govil, E. Chan, and H. Wasserman. Comparing algorithms
for dynamic speed-setting of a low-power CPU. In ACM In-
ternational Conference on Mobile Computing and Networking,
pages 13–25, 1995.

[GDWL92] D. Gajski, N. Dutt, A. Wu, and S. Lin. High-Level Synthesis, In-
troduction to Chip and System Design. Kluwer Academic Pub-
lishers, 1992.

[GJ79] M. R. Garey and D. S. Johnson. Computers and Intractability:
A Guide to the Theory of NP-Completeness. W.H. Freeman and
Company, New York, 1979.

[GK83] D. D. Gajski and R. Kuhn. Guest editors’ introduction: New
VLSI tools. IEEE Computer, 6(12):11–14, December 1983.

[GK99] F. Gruian and K. Kuchcinski. Low energy architecture selection
and task scheduling for system-level design. In Proceedings
of the 25th EuroMicro Conference, volume 1, pages 296–302,
September 1999.

[GK01] F. Gruian and K. Kuchcinski. LEneS: Task-scheduling for low-
energy systems using variable voltage processors. In Proceed-
ings of the 2001 Asia South Pacific – Design Automation Con-
ference, pages 449–455, January 30 – February 2 2001.

142

BIBLIOGRAPHY

[Gru00a] F. Gruian. Energy-aware design of digital systems. Licentiate
Thesis 809, Linköping Technical University, IDA, March 2000.

[Gru00b] F. Gruian. System-level design methods for low-energy archi-
tectures containing variable voltage processors. In B. Falsafi
and T.N. Vijaykumar, editors, Lecture Notes in Computer Sci-
ence, number 2008, pages 1–12. Springer, 2000. First Interna-
tional Workshop on Power-Aware Computer Systems.

[Gru01a] F. Gruian. Hard real-time scheduling for low-energy using
stochastic data and dvs processors. In Proceedings of the 2001
International Symposium on Low Power Electronics and De-
sign, pages 46–51, August 6–7 2001.

[Gru01b] F. Gruian. On energy reduction in hard real-time systems con-
taining tasks with stochastic execution times. In IEEE Work-
shop on Power Management for Real-Time and Embedded Sys-
tems, pages 11–16, May 29 2001.

[HK01] C.-H. Hsu and U. Kremer. Compiler-directed dynamic volt-
age scaling based on program regions. Technical Report DCS-
TR461, Rutgers University, November 2001.

[HK02] C.-H. Hsu and U. Kremer. Single region vs. multiple regions:
A comparison of different compiler-directed dynamic voltage
scheduling approaches. In Workshop on Power-Aware Computer
Systems, 2002.

[HKQ+98] I. Hong, D. Kirovski, G. Qu, M. Potkonjak, and M. B. Srivas-
tava. Power optimization of variable voltage core-based sys-
tems. In Proceedings of the 1998 Design Automation Confer-
ence, pages 176–181, 1998.

[HPS98] I. Hong, M. Potkonjak, and M. B. Srivastava. On-line schedul-
ing of hard real-time tasks on variable voltage processor. In
Digest of Technical Papers of ICCAD’98, pages 653–656, 1998.

[Int00] Intel. Intelr XScaleTM Core Developer’s Manual, December
2000. Order Number: 273473-001.

[Int01] Intel. Intelr 80200 Processor based on Intelr XScaleTM Mi-
croarchitecture Datasheet, September 2001. Order Number:
273414-003.

[Int02] Intel. Mobile Intelr Pentiumr 4 Processor-M with 512KB L2
Cache on .13 Micron Process at 1.6 GHz and 1.7 GHz Datasheet,
April 2002. Order Number: 250686-002.

143

BIBLIOGRAPHY

[Ive03] A. Ive. Implementation of an embedded real-time Java virtual
machine prototype. Licentiate thesis, Dept. of Computer Sci-
ence, Lund University, 2003. To be published.

[IY98] T. Ishihara and H. Yasuura. Voltage scheduling problem for
dynamically variable voltage processors. In Proceedings of the
1998 International Symposium on Low Power Electronics and
Design, pages 197–202, 1998.

[JG02] R. Jejurikar and R. Gupta. Energy aware task scheduling with
task synchronization for embedded real time systems. In Pro-
ceedings of the 2002 International Conference on Compilers, Ar-
chitectures, and Synthesis for Embedded Systems, pages 164–
169, 2002.

[Jha01] N. K. Jha. Low power system scheduling and synthesis. In
Proceedings of the 2001 IEEE/ACM International Conference
on Computer Aided Design, pages 259–263, 2001.

[KB99] A. Kumar and M. Bayoumi. Multiple voltage-based scheduling
methodology for low-power in the high-level synthesis. In Pro-
ceedings of the 1999 IEEE International Symposium on Circuits
and Systems, volume 1, pages 371–374, 1999.

[KKM02] W. Kim, J. Kim, and S. L. Min. A dynamic voltage scaling algo-
rithm for dynamic-priority hard real-time systems using slack
time analysis. In Proceedings of the 2002 Design, Automation
and Test in Europe Conference and Exhibition, pages 788–794,
2002.

[KP97] D. Kirovski and M. Potkojak. System-level synthesis of low-
power hard real-time systems. In Proceedings of the 34th De-
sign Automation Conference, pages 697–702, 1997.

[KRH+96] N. Kim, M. Ryu, S. Hong, M. Saksena, C.-H. C.-H. Choi, and
H. Shin. Visual assessment of a real-time system design: A
case study on a CNC controller. In Proceedings of the 17th IEEE
Real-Time Systems Symposium, pages 300–310, 1996.

[KSY+02] W. Kim, D. Shin, H. S. Yun, J. Kim, and S. L. Min. Performance
comparison of dynamic voltage scaling algorithms for hard real-
time systems. In Proceedings of the 8th IEEE Real-Time and
Embedded Technology and Applications Symposium, 2002.

[Kuc99] K. Kuchcinski. Synthesis of distributed embedded systems. In
Proceedings of the 25th EuroMicro Conference, volume 1, pages
22–28, September 1999.

144

BIBLIOGRAPHY

[Kuc01] K. Kuchcinski. Constraints driven design space exploration for
distributed embedded systems. Journal of Systems Architec-
ture, (47):241–261, 2001.

[KW01] K. Kuchcinski and K. Wolinski. Synthesis of conditional be-
haviours using hierarchical conditional dependency graphs and
constraint logic programming. In Proceedings of the 2001 Eu-
romicro Symposium on Digital Systems Design, pages 220–227,
2001.

[Lab02] Intelligent Systems Laboratory. SICStus Prolog User’s Man-
ual. Swedish Institute of Computer Science, 3.9.1 edition, June
2002.

[LJ00] J. Luo and N. K. Jha. Power-conscious joint scheduling of pe-
riodic task graphs and aperiodic tasks in distributed real-time
systems. In Proceedings of the 2000 IEEE/ACM International
Conference on Computer Aided Design, pages 357–364, 2000.

[LJ02] J. Luo and N. K. Jha. Static and dynamic variable voltage
scheduling algorithms for real-time heterogeneous distributed
embedded systems. In Proceedings of the 15th International
Conference on VLSI Design, pages 719–726, 2002.

[LK99] Y.-H. Lee and C. M. Krishna. Voltage-clock scaling for low en-
ergy consumption in real-time embedded systems. In Proceed-
ings of the 6th International Conference on Real-Time Comput-
ing Systems and Applications, pages 272–279, 1999.

[LL73] C. L. Liu and J. W. Layland. Scheduling algorithms for multi-
programing in a hard real time environment. JACM, 20(1):46–
61, 1973.

[LLM+01] M. Lorenz, R. Leupers, P. Marwedel, T. Drager, and G. Fettweis.
Low-energy DSP code generation using a genetic algorithm. In
Proceedings of the 2001 International Conference on Computer
Design, pages 431–437, 2001.

[LM80] J.Y.-T. Leung and M. L. Merrill. A note on preemptive schedul-
ing of periodic, real-time tasks. Information Processing Letters,
11(3), 1980.

[Loc92] C. Locke. Software architecture for hard real-time applications:
cyclic executives vs. fixed priority executives. Real-Time Sys-
tems, 4(1):37–35, 1992.

145

BIBLIOGRAPHY

[Lor01] J. R. Lorch. Opertaing Systems Techniques for Reducing Proces-
sor Energy Consumption. PhD thesis, University of California
Berkeley, 2001.

[LRT92] J. Lehoczky and S. Ramos-Thuel. An optimal algorithm for
scheduling soft-aperiodic tasks in fixed-priority preemptive sys-
tems. In Proceedings of the 1992 Real Time Systems Sympo-
sium, pages 110–123, 1992.

[LS00a] S. Lee and T. Sakurai. Run-time power control scheme using
software feedback loop for low-power real-time applications. In
Proceedings of the 2000 Asia and South Pacific Design Automa-
tion Conference, pages 381–386, 2000.

[LS00b] S. Lee and T. Sakurai. Run-time voltage hopping for low-power
real-time systems. In Proceedings of the 2000 Design Automa-
tion Conference, pages 806–809, 2000.

[LS01] J. R. Lorch and A. J. Smith. Improving dynamic voltage scaling
algorithms with PACE. In Proceedings of ACM SIGMETRICS
2001 Conference, pages 50–61, 2001.

[LSD89] J. Lehoczky, L. Sha, and Y. Ding. The rate monotonic scheduling
algorithm: exact characterization and average case behavior. In
Proceedings of the 1989 Real Time Systems Symposium, pages
166–171, 1989.

[LVM91] C. D. Locke, D. R. Vogel, and T. J. Mesler. Building a pre-
dictable avionics platform in Ada: a case study. In Proceedings
of the 12th IEEE Real-Time Systems Symposium, pages 181–
189, 1991.

[MACM00] D. Mossè, H. Aydin, B. Childers, and R. Melhem. Compiler-
assisted dynamic power-aware scheduling for real-time appli-
cations. In Workshop on Compilers and Operating Systems for
Low-Power, October 2000.

[Mar00] D. Marculescu. Power efficient processors using multiple sup-
ply voltages. In Workshop on Compilers and Operating Systems
for Low Power, 2000.

[MAX00] MAXIM. MAXIM MAX1855 Evaluation Kit. MAXIM, first edi-
tion, 2000. http://www.maxim-ic.com/.

[MC00] A. Manzak and C. Chakrabarti. Variable voltage task schedul-
ing for minimizing energy or minimizing power. In Proceedings

146

BIBLIOGRAPHY

of the 2000 IEEE International Conference on Acoustics, Speech,
and Signal Processing, volume 6, pages 3239–3242, 2000.

[MC01] A. Manzak and C. Chakrabarti. Variable voltage task schedul-
ing algorithms for minimizing energy. In Proceedings of the
2001 International Symposium on Low Power Electronics and
Design, pages 279–282, 2001.

[MC02] A. Manzak and C. Chakrabarti. A low power scheduling scheme
with resources operating at multiple voltages. IEEE Transac-
tions on VLSI Systems, 10(1):6–14, February 2002.

[MLD92] P. Michel, U. Lauther, and P. Duzy, editors. The Synthesis Ap-
proach to Digital System Design. Kluwer Academic Publishers,
1992.

[MOI96] H. Mehta, R. M. Owens, and M. J. Irwin. Some issues in gray
code addressing. In Proceedings of the Sixth Great Lakes Sym-
posium on VLSI, pages 178–181, 1996.

[MOI+97] R. Mehta, R. M. Owens, M. J. Irwin, R. Chen, and D. Ghosh.
Techniques for low energy software. In Proceedings of the 1997
International Symposium on Low Power Electronics and De-
sign, pages 72–75, 1997.

[OIY98] T. Okuma, T. Ishihara, and H. Yasuura. Real-time scheduling
for a variable voltage processor. In Proceedings of the 12th Inter-
national Symposium on System Synthesis, pages 25–29, 1998.

[OIY01] T. Okuma, T. Ishihara, and H. Yasuura. Software energy reduc-
tion techniques for variable voltage processors. IEEE Design &
Test of Computers, pages 31–41, March-April 2001.

[PBB98] T. A. Pering, T. D. Burd, and R. W. Brodersen. The simulation
and evaluation of dynamic voltage scaling algorithms. In Pro-
ceedings of the 1998 International Symposium on Low Power
Electronics and Design, pages 76–81, 1998.

[PBB00] T. A. Pering, T. D. Burd, and R. W. Brodersen. Voltage schedul-
ing in the lpARM microprocessor system. In Proceedings of the
2000 International Symposium on Low Power Electronics and
Design, pages 96–101, 2000.

[PD99] P. R. Panda and N. D. Dutt. Low-power memory mapping
through reducing address bus activity. IEEE Transaction on
VLSI Systems, 7(3):309–320, September 1999.

147

BIBLIOGRAPHY

[Ped01] M. Pedram. Power optimization and management in embedded
systems. In Proceedings of the 2001 Asia and South Pacific –
Design Automation Conference, pages 239–244, 2001.

[PKVI01] A. Parikh, M. Kandemir, N. Vijaykrishnan, and M. J. Irwin.
VLIW scheduling for energy and performance. In Proceedings
of the 2001 IEEE Computer Society Workshop on VLSI, pages
111–117, 2001.

[PLS01] J. Pouwelse, K. Langendoen, and H. Sips. Energy priority
scheduling for variable voltage processors. In Proceedings of
the 2001 International Symposium on Low Power Electronics
and Design, pages 28–33, 2001.

[PP91] S. Prakash and A. C. Parker. Synthesis of application-specific
multiprocessor architectures. In Proceedings of the 28th Design
Automation Conference, pages 8–13, 1991.

[PP92] S. Prakash and A. C. Parker. Synthesis of application-specific
heterogeneous multiprocessor systems. In Proceedings of the
19th Annual International Symposium on Computer Architec-
ture, page 434, 1992.

[PS01] P. Pillai and K. G. Shin. Real-time dynamic voltage scaling for
low-power embedded operating systems. In Proceedings of the
2001 Symposium on Operating System Principles, pages 89–
102, 2001.

[QH01] G. Quan and X. Hu. Energy efficient fixed-priority scheduling
for real-time systems on variable voltage processors. In Pro-
ceedings of the 2001 Design Automation Conference, pages 828–
833, 2001.

[QH02] G. Quan and X. Hu. Minimum energy fixed-priority schedul-
ing for variable voltage processors. In Proceedings of the 2002
Design, Automation and Test in Europe Conference and Exhibi-
tion, pages 782–787, 2002.

[QKPS99] G. Qu, D. Kirovski, M. Potkonjak, and M. B. Srivastava. En-
ergy minimization of system pipelines using multiple voltages.
In Proceedings of the 1999 IEEE International Symposium on
Circuits and Systems, volume 1, pages 362–365, 1999.

[RJ98] J. T. Russell and M. F. Jacome. Software power estimation and
optimization for high performance, 32-bit embedded processors.

148

BIBLIOGRAPHY

In Proceedings of the 1998 International Conference on Com-
puter Design: VLSI in Computers and Processors, pages 328–
333, 1998.

[RP96] J. M. Rabaey and M. Pedram, editors. Low Power Design
Methodologies. Kluwer Academic Publishers, 1996.

[SAH01] M. T. Schmitz and B. M. Al-Hashimi. Considering power vari-
ations of dvs processing elements for energy minimization in
distributed systems. In Proceedings of the 14th International
Symposium on System Synthesis, pages 250–255, 2001.

[SAHE02] M. T. Schmitz, B. M. Al-Hashimi, and P. Eles. Energy-efficient
mapping and scheduling for DVS enabled distributed embed-
ded systems. In Proceedings of the 2002 Design, Automation
and Test in Europe Conference and Exhibition, pages 514–521,
2002.

[SB95] M. R. Stan and W. P. Burleson. Bus-invert coding for low-power
I/O. IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, 3(1):49–58, March 1995.

[SBD01] T. Simunic, L. Benini, and G. DeMicheli. Energy-efficient de-
sign of battery-powered embedded systems. IEEE Transactions
on VLSI Systems, 9(1):15–28, February 2001.

[SC98] W.-T. Shiue and C. Chakrabarti. Low-power scheduling with
resources operating at multiple voltages. In Proceedings of the
1998 IEEE International Symposium on Circuits and Systems,
volume 2, pages 437–440, 1998.

[SC99] Y. Shin and W. Choi. Power conscious fixed priority schedul-
ing for real-time systems. In Proceedings of the 36th Design
Automation Conference, pages 134–139, 1999.

[SC01a] A. Sinha and A. P. Chandrakasan. Energy efficient real-
time scheduling [microprocessors]. In Proceedings of the 2001
IEEE/ACM International Conference on Computer Aided De-
sign, pages 458–463, 2001.

[SC01b] V. Swaminathan and K. Chakrabarty. Investigating the ef-
fect of voltage-switching on low-energy task scheduling in hard
real-time systems. In Proceedings of the 2001 Asia and South
Pacific – Design Automation Conference, pages 251–254, 2001.

149

BIBLIOGRAPHY

[SCS00] Y. Shin, K. Choi, and T. Sakurai. Power optimization of real-
time embedded systems on variable speed processors. In Pro-
ceedigns of the 2000 IEEE/ACM International Conference on
Computer Aided Design, pages 365–368, 2000.

[SGK99] R. Szymanek, F. Gruian, and K. Kuchcinski. Application of con-
straint programming to digital system design. In Proceedings
of the 1st Workshop on Constraint Programming for Decision
and Control, pages 57–64, 1999.

[SGK00] R. Szymanek, F. Gruian, and K. Kuchcinski. Digital system
design using constraint logic programming. In Proceedings of
PACLP, pages 10–12, 2000.

[Shi01] W.-T. Shiue. Energy-efficient backend compiler design for em-
bedded systems. In Proceedings of IEEE Region 10 Interna-
tional Conference on Electrical and Electronic Technology, vol-
ume 1, pages 103–109, 2001.

[SKJ+02] D. Shin, W. Kim, J. Jeon, J. Kim, and S. L. Min. SimDVS: An
integrated simulation environment for performance evaluation
of dynamic voltage scaling algorithms. In Workshop on Power-
Aware Computer Systems, 2002.

[SKL01] D. Shin, J. Kim, and S. Lee. Intra-task voltage scheduling for
low-energy hard real-time applications. IEEE Design & Test of
Computers, 18(2), March-April 2001.

[SKS01] Y. Shin, H. Kawaguchi, and T. Sakurai. Cooperative voltage
scaling (CVS) between OS and applications for low-power real-
time systems. In Proceedings of the 2001 IEEE Custom Inte-
grated Circuits Conference, pages 553–556, 2001.

[SR99] M. Sarrafzadeh and S. Raje. Scheduling with multiple voltages
under resource constraints. In Proceedings of the 1999 IEEE
International Symposium on Circuits and Systems, volume 1,
pages 350–353, 1999.

[SSRB98] J. A. Stankovic, M. Spuri, K. Ramamritham, and G. C. But-
tazzo. Deadline Scheduling For Real-Time Systems: EDF and
Related Algorithms. Kluwer Academic Publishers, 1998.

[TMW94a] V. Tiwari, S. Malik, and A. Wolfe. Compilation techniques for
low energy: An overview. In Proceedings of the 1994 IEEE Sym-
posium on Low Power Electronics, pages 38–39, 1994.

150

BIBLIOGRAPHY

[TMW94b] V. Tiwari, S. Malik, and A. Wolfe. Power analysis of embedded
software: A first step towards software power minimization.
IEEE Transaction on VLSI Systems, 2(4):437–445, December
1994.

[Wol97] W. H. Wolf. An architectural co-synthesis algorithm for dis-
tributed, embedded computing systems. IEEE Transactions
on Very Large Scale Integration (VLSI) Systems, 5(2):218–229,
1997.

[WWDS94] M. Weiser, B. Welch, A. Demers, and S. Shenker. Scheduling for
reduced CPU energy. In Proceedings of the 1994 Symposium on
Operating Systems Design and Implementation, pages 13–23,
1994.

[YDS95] F. Yao, A. Demers, and S. Shenker. A scheduling model for re-
duced CPU energy. IEEE Annual Foundations of Computer Sci-
ence, pages 374–382, 1995.

[YWM+01] P. Yang, C. Wong, P. Marchal, F. Catthoor, D. Desmet, D. Verk-
est, and R. Lauwereins. Energy-aware runtime scheduling for
embedded-multiprocessor SOCs. IEEE Design & Test of Com-
puters, 118(5):46–58., 2001.

[ZHC02] Y. Zhang, X. Hu, and Z. Chen. Task scheduling and voltage
selection for energy minimization. In Proceedings of the 2002
Design Automation Conference, pages 183–188, 2002.

151

APPENDIX A

PROOFS

A.1 Stochastic schedule energy lower bound

We have to prove that the average energy E as described by equation 4.9 has
the lower bound ELB as given by equation 4.10. For the sake of clarity, we
will substitute now x by i, WCE by N , 3

√
(1− cdf(x)) by ai and kx by bi. The

relation to prove becomes then:

N∑
i=1

a3
i

b2
i

≥

(∑N
i=1 ai

)3

(∑N
j=1 bj

)2 ∀i, j : 0 ≤ ai < bj (A.1)

We will prove this inequality by mathematical induction. First we show that
the above holds for the simple case of N = 2. Moving everything to the left
side, we obtain:

a3
1

b2
1

+
a3
2

b2
2

− (a1 + a2)3

(b1 + b2)2
≥ 0 ⇐⇒

(a2b
2
1 + 2a2b2b1 + 2a1b1b2 + a1b

2
2)(a2b1 − a1b2)2

(b1b2(b1 + b2))2
≥ 0 (A.2)

which is obviously true, since all the terms in the left side are non-negative.
Next, assuming the inequality holds for N = k, we show that it also holds for
N = k + 1. We have thus equation A.1 for N = k given as true:

k∑
i=1

a3
i

b2
i

≥

(∑k
i=1 ai

)3

(∑k
j=1 bj

)2 (A.3)

153

A. PROOFS

Adding a3
k+1

b2k+1
to both sides we obtain:

k+1∑
i=1

a3
i

b2
i

≥

(∑k
i=1 ai

)3

(∑k
j=1 bj

)2 +
a3

k+1

b2
k+1

(A.4)

Furthermore, equation A.2 can be applied to the right hand side:(∑k
i=1 ai

)3

(∑k
j=1 bj

)2 +
a3

k+1

b2
k+1

≥

((∑k
i=1 ai

)
+ ak+1

)3

((∑k
j=1 bj

)
+ bk+1

)2 (A.5)

From the last two inequalities, A.4 and A.5, it results:

k+1∑
i=1

a3
i

b2
i

≥

(∑k+1
i=1 ai

)3

(∑k+1
j=1 bj

)2 (A.6)

which is exactly the form for N = k + 1. We have shown that the case for
N = k + 1 is true, assuming the form for N = k is true. Finally, together with
A.2, this means that the initial inequality A.1 holds for any value of N , by
mathematical induction. Q.E.D.

This result can be applied to equation 4.4 from Section 4.2. Examining the
right hand side of equation 4.4 and using A.1, we can write:

E = K
C∑

i=1

13

A2
i

≥ K C3(∑C
i=1 Ai

)2 (A.7)

Considering that
∑C

i=1 Ai = A we obtain the energy lower bound invoked in
Section 4.2:

E ≥ KC3

A2
(A.8)

A.2 Optimal order for UBS

We are interested in finding the optimal task order, defined as a permuta-
tion π(1, 2, . . . , n), such that the following measure (energy consumption) is
minimized:

E = xπ1 + xπ2

(∑n
k=1 cπk

− cπ1

A− xπ1

)2

+ · · ·

· · · +xπi

(∑n
k=1 cπk

−
∑i−1

j=1 cπj

A−
∑i−1

j=1 xπj

)2

+ · · ·+ xπn

(
cπn

A−
∑n−1

j=1 xπj

)2

154

A.2 OPTIMAL ORDER FOR UBS

We transform now this problem into another problem, from the Network Flow
class [Eve79]. Initially, any task may start executing, using the same initial
speed. Subsequently, any new choice has to be made from the tasks waiting
to execute. Note that the speed after certain k tasks is dependent only on the
set of executed tasks, but not on their order:

s({π1, . . . , πk}) =
C −

∑k
i=1 cπi

A−
∑k

j=1 xπk

where (C) =
∑n

i=1 cπi . We model each such state as a graph node, in an acyclic
polar graph depicted in Figure A.1. The root node, having no predecessors
represents the initial state, where the set of executed task is ∅. The sink node
represents the state where all tasks have been ordered. The number of nodes
on the level k, after executing k tasks, is equal to Ck

n, the number of combina-
tions of k from n. From each node on level k, there are n − k outgoing edges,
since any of the remaining tasks may be scheduled next. Each edge between
level k and k + 1 can be augmented with the energy consumption yielded by
scheduling task πk+1 after the set of previous k tasks. More precisely, each
edge from a node representing a set S to a node representing a set with an
additional node S ∪ {p} will have a label:

lS,p = xps(S)2

S,pl

S {p}U

N\{2}

N\{1}

N\{i}

N\{n}

N ={2}

{i}

{1}

{n}

{ }

X

X

X 1

i

n

X 2

1 node n nodes n!/[k!(n-k)!] n nodes 1 noden!/[(k+1)!(n-k-1)!]

S {1,...,n}

Level 0 Level 1 Level k Level k+1 Level n-1 Level n

n-k edges

Figure A.1: The acyclic polar digraph obtained from the initial problem. Each
route from the root node to the sink is a possible order of execution for the n
tasks.

155

A. PROOFS

It is obvious now that every path from the initial state ∅ to the final state
represents an order, while the sum of edge labels represents the energy con-
sumption for that order. Finding the order with the minimal energy is a prob-
lem similar to computing the minimum completion time in a PERT1 digraph
[Eve79]. The time complexity of such an algorithm can be kept down to O(|V |)
where |V | is the number of edges. Note that for our problem the number of
edges can be computed as:

|V | = nC0
n + (n− 1)C1

n + . . . + (n− k)Ck
n + . . . + Cn−1

n

which is larger than 2n where n is the number of tasks to be ordered. In
other words, finding the optimal order using the transformation just described
would require a time complexity of order at least O(2n). Note that this is not
a proof, but rather an indication that our initial problem might be NP-hard.

1PERT: Program Evaluation and Review Technique

156

APPENDIX B

THE TEST SYSTEM

THE SYSTEM USED TO EVALUATE our dynamic speed scaling algorithms was
provided by Intel, and consists of three separate boards. The main board,
ADI 80200EVB (also referred to as LRH), home of the Intel 80200 XScale
processor, an external voltage supply board for the 80200 core, MAX1855 EV
kit, and an adapter board between the LRH and the MAX1855.

B.1 ADI 80200EVB

The ADI Engineering’s 80200EVB evaluation board [ADI] for Intel 80200
(733MHz) XScale features, along with the processor, a 80200 FPGA Com-
panion Chip (a Xilinxr XC2S200 Spartan-IITM) handling the SDRAM con-
trol, processor interface, peripheral interface, system clock generation, and
a planned PCI interface. The on-board memory consists of 32MB PC100
SDRAM (x64 configuration) and 4MB Flash (x8 configuration). The periph-
eral interface is an RS232, used mainly for uploading/debugging software.
Additionally, on the 80200EVB board there are a 7-segment LED display and
a JTAG (hardware testing) port.

The 80200 companion chip generates the 100MHz memory bus clock, the
processor core clock (5 . . . 11 multiples of 66.666MHz), and the serial port
baud clock, up to a 57.6K rate. Since the processor requires the core clock
to be at least 3 × faster than the memory clock, the lowest frequency for the
80200 is 333MHz (5 × 66.6MHz). The core clock frequency can be changed
according to the Intel 80200 XScale core specification [Int00], by accessing
co-processor 14, register 6. On the other hand, the core voltage is handled by
the companion boards, described further on. Note that there are no dedicated

157

B. THE TEST SYSTEM

real-time clocks or watchdog timers on the LRH, which makes it almost im-
possible to accurately keep track of time exclusively on the processor. First,
there is no way to determine the duration of a frequency switch on the proces-
sor, but only from outside. Further more, to wake up the processor from a low
power state, an external signal is required, such as an interrupt or a reset.
For these reasons we used an external signal generator (HP 3312A Function
Generator), that generates a nIRQ whenever new tasks are supposed to ar-
rive. Although the nIRQ is masked and therefore not actually handled, it
still wakes up the processor from the sleep state. This signal is also used to
synchronize the Icc and Vcc signals in the oscilloscope, which makes it possi-
ble to sample and report averages over hyper-periods. For the software part,
we used the GNUPro Toolkit from CYGNUS [Cyg]. All code was compiled for
XScale on a Sun SPARC Solaris host, using an ELF format.

B.2 MAXIM MAX1855 EV kit

The MAX1855 evaluation kit (EV kit) [MAX00] demonstrates a dynamically
adjustable notebook CPU power supply application circuit. The DC-DC con-
verter steps down high-voltage or AC adapters, generating a precision low-
voltage CPU core Vcc. The output voltage, adjustable through a 5-bit DAC,
ranges between 0.6V and 1.75V, with up to 18A current load. This output
voltage is used for the Intel 80200 core voltage, Vcc. The selection can be done
through a program write at address 0x0060.0000, for which only the lower 4
bits are valid. These are translated to the 5 bits D[4:0] required by the EV
kit via a look-up table located on the adapter board. In our configuration, the
value at address 0x0060.0000 can be in the 3 . . . 9 interval, corresponding to
voltages in the 1.6V . . . 1.0V interval. The EV kit operates at 300kHz switch-
ing frequency for voltages around 1.35–1.6V and slightly slower for lower volt-
ages. Note that while the Vcc is changed by the EV kit, the processor still oper-
ates. Recall that the clock frequency switch stalls the processor until the PLL
re-locks on the new frequency. The voltage and frequency are thus adjusted
separately. This requires careful design of a switch, since the voltage must
support the core clock frequency. In particular, when increasing the processor
speed, first one has to increase the voltage and only after that increase the
frequency. The reverse must be done when decreasing the speed, namely first
lower the frequency and then the voltage.

B.3 Measurements Setup

All the measurements were carried out using a Tektronix TDS 340A two
channel digital real-time oscilloscope. Obtaining the core energy consumption

158

B.3 MEASUREMENTS SETUP

meant tracing the power consumption Pcc or the core voltage-current product
Vcc × Icc over time. The core voltage is easily accessible on the LRH board.
The core current Icc was measured indirectly by measuring the voltage drop
on a 0.1Ω resistor in series with the 80200 core, already present on the LRH
board. Since this drop was very small, we used the amplifier from Figure B.1,
to increase this measure ten times. Finally, at the output of the amplifier we
obtained a voltage computed as ≈ Icc × 0.1Ω× 10, or exactly the core current.
Once we were able to measure the core power, it was possible to average the

+
-

9V470nF

470nF

diff

trim
offset

Ω

to Oscilloscope

Ω
LF351

Vcc

Ω

Vreg

3

2

Icc

U = Icc x 1

Vin = 10/11 Vreg

trim

9V

0.1

1k

1k

1k

5.1k

4.3k

5
1

4

7

Ω

Ω

Ω

Ω

Ω

10k

GND

CPU

-

+

-

+

-

+

Figure B.1: The setup for measuring the core current Icc. The voltage drop on
the 0.1Ω resistor is amplified using an LF351 operational amplifier.

power over several task set hyper-periods or task periods. Throughout the
thesis there are often oscilloscope screen dumps with such waveforms. When-
ever we had to measure the energy consumption, which is the area under the
power waveform, we could output the waveform to a file, in time-power pairs
of values. These files were then processed on a workstation to obtain the exact
energy figures for the setup.

159

APPENDIX C

A TASK LEVEL STOCHASTIC
SCHEDULE ON 80200EVB

The following listing contains the code of a task with normal distribution
pattern, that can be scheduled both using the stochastic approach and the
WCE-stretch method, used in Example 4.3. The code as given compiles for a
stochastic schedule. To obtain a WCE-stretch schedule, one needs to simply
comment the 4th line. For a stable oscilloscope trace we generated nIRQs
with a 200ms period, meant to wake up the processor from the idle state, as
detailed in Appendix B.1.

#include ". ./H-sparc-sun-solaris2.5/xscale-elf/include/math.h"

#include ". ./H-sparc-sun-solaris2.5/xscale-elf/include/stdlib.h"

#define STOCH
#define TOLOOP2 10000

#define cpwait asm("mrc p15,0,r0,c2,c0,0; mov r0,r0; sub pc,pc,#4")

#define MHz733 9
#define MHz666 8
#define MHz600 7
#define MHz533 6
#define MHz466 5
#define MHz400 4
#define MHz333 3

inline void switch frequency(unsigned number) {
/*

9 -> clk mult factor 11 -> 733 MHz
. . .

161

C. A TASK LEVEL STOCHASTIC SCHEDULE ON 80200EVB

3 -> clk mult factor 5 -> 333 MHz
*/
asm("ldr r1, %0; mcr p14, 0, r1, c6, c0, 0 " : : "m" (number));

}

#define VCC733 4
#define VCC666 4
#define VCC600 5
#define VCC533 6
#define VCC466 7
#define VCC400 8
#define VCC333 9

inline void switch voltage(unsigned number) {
asm("ldr r0, %0; mov r1, #0x00600000; str r0,[r1]": : "m" (number));

}

inline void go to idle() {
unsigned intctlstat;
/* enable write to cp13 (and all others) */
asm("ldr r0, =0x3FFF; mcr p15, 0, r0, c15, c1, 0");
cpwait;
/* enable external IRQs via INTCTL */
asm("mov r1, #2; mcr p13, 0, r1, c0, c0, 0");
/* disable IRQs */
asm("mrs r0, CPSR; orr r0,r0,#0xd0; msr CPSR_c, r0");
/* go to idle mode 1, drowsy 2 */
asm("mov r0, #1; mcr p14, 0, r0, c7, c0, 0");

}

/* Allowed: 2775.0 Period: 2775.0 Wcet=1850.0
VDD:[186 640 181 109 79 62 593] */

inline int delayaction(float n) {
unsigned i,j,k,z;
for(i=0;i<n;i++) {

switch(i) {
#ifdef STOCH

case 186:
switch voltage(VCC400);
switch frequency(MHz400);

break;
case 826:

switch voltage(VCC466);
switch frequency(MHz466);
break;

case 1007:
switch voltage(VCC533);
switch frequency(MHz533);

break;
case 1116:

switch voltage(VCC600);
switch frequency(MHz600);
break;

162

case 1195:
switch voltage(VCC666);
switch frequency(MHz666);
break;

case 1257:
switch voltage(VCC733);
switch frequency(MHz733);
break;

#else
case 1150:

switch voltage(VCC533);
switch frequency(MHz533);

break;
#endif

default:;
}
for(j=0;j<TOLOOP2;j++) {

k++;
z=z+z;

}
}

#ifdef STOCH
switch frequency(MHz333);
switch voltage(VCC333);

#else
switch frequency(MHz466);
switch voltage(VCC466);

#endif

return z;
}

inline float polarBoxMuller() {
float x1, x2, w, y1, y2;
do {

x1 = 2.0 * rand()/(float)RAND MAX − 1.0;
x2 = 2.0 * rand()/(float)RAND MAX − 1.0;
w = x1 * x1 + x2 * x2;

} while (w >= 1.0);

w = sqrtf((−2.0 * logf(w)) / w);
y1 = x1 * w;
/* y2 = x2 * w; */

/* just make sure it’s between -3 and 3 (std=1, mean=0) */
if(y1>3.0) y1 = 3.0;
if(y1<−3.0) y1=−3.0;
return y1;

}

int main() {
float repeats;

163

C. A TASK LEVEL STOCHASTIC SCHEDULE ON 80200EVB

/* get to the right voltage and frequency */
#ifdef STOCH

switch frequency(MHz333);
switch voltage(VCC333);

#else
switch frequency(MHz466);
switch voltage(VCC466);

#endif

while(1) {
repeats = 950.0+polarBoxMuller()*300.0;
/* repeats = 1850; */
delayaction(repeats);
go to idle();

}
}

164

