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ABSTRACT

ENERGY CONSUMPTION is today an important design issue for all kinds of
digital systems, and essential for the battery operated ones. An important
fraction of this energy is dissipated on the processors running the application
software. To reduce this energy consumption, one may, for instance, lower
the processor clock frequency and supply voltage. This, however, might lead
to a performance degradation of the whole system. In real-time systems, the
crucial issue is timing, which is directly dependent on the system speed. Real-
time scheduling and energy efficiency are therefore tightly connected issues,
being addressed together in this work.

Several scheduling approaches for low energy are described in the thesis,
most targeting variable speed processor architectures. At task level, a novel
speed scheduling algorithm for tasks with probabilistic execution pattern is
introduced and compared to an already existing compile-time approach. For
task graphs, a list-scheduling based algorithm with an energy-sensitive pri-
ority is proposed. For task sets, off-line methods for computing the task max-
imum required speeds are described, both for rate-monotonic and earliest
deadline first scheduling. Also, a run-time speed optimization policy based
on slack re-distribution is proposed for rate-monotonic scheduling. Next, an
energy-efficient extension of the earliest deadline first priority assignment
policy is proposed, aimed at tasks with probabilistic execution time. Finally,
scheduling is examined in conjunction with assignment of tasks to processors,
as parts of various low energy design flows. For some of the algorithms given
in the thesis, energy measurements were carried out on a real hardware plat-
form containing a variable speed processor. The results confirm the validity of
the initial assumptions and models used throughout the thesis. These exper-
iments also show the efficiency of the newly introduced scheduling methods.
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CHAPTER 1

INTRODUCTION

THIS FIRST CHAPTER starts by presenting the motivation behind the research
work making the subject of this thesis, and continues with a succinct and gen-
eral problem formulation. We then point out the contributions of the thesis
to the real-time, design automation, and low power/energy areas. Finally, an
overview of our work is given, briefly describing the structure of the thesis.

1.1 Motivation

Energy consumption reduction is becoming nowadays an issue reflected in
most aspects of our lives. For digital systems, energy efficiency is an acute
problem appearing from the high computational demands in all sorts of ap-
plications. The obvious driving force behind addressing energy consumption
in digital systems is, at the first glance, the development of portable commu-
nication and computation. The consumers demand better performance and
more functionality from the hand-held devices, but this also means higher
power and energy consumption. Battery life is one of the most important pa-
rameters for such devices, directly influencing the system size and weight. At
the same time, although battery technology is also developing, its progress
is rather slow and cannot keep up with the demands of the modern digital
systems. At a deeper scrutiny, there are many areas that would benefit from
design methods targeting energy efficiency:

e Space applications is an area where weight has a great impact on cost,
because of the limited load of the carrier rockets and shuttles. Energy-
efficient design methods yield smaller solar panels and batteries for all
kinds of satellites and probes. For example, the electrical power sys-
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1. INTRODUCTION

tem for the 2001 Mars Odyssey spacecraft accounts for 17% (65kg) of the
total mass, planned to operate for 4.6 years. Reducing the energy de-
mands through appropriate methods one could, for instance, add more
data acquisition instruments on board. As another example, the energy
available in a Deep Space 2 probe would yield only about two hours talk
time on an Ericsson 628 mobile phone.

e As mentioned before, portable devices, such as PDAs, mobile phones,
laptops need to use the battery energy as efficiently as possible. The di-
rect impact of energy-centric design techniques is on system size and/or
cost. The indirect impact is the environmental effect of using less bat-
teries (toxic waste) for the same functionality.

e Medical implants within the human body also require energy-efficient
designs. Pacemakers and different kinds of regulators would ideally con-
sume only the energy provided by the muscles. There exist already pro-
totypes of simple artificial retinas functioning only based on the energy
provided by the incident light.

e Lower energy consumption also means lower average power consump-
tion. Consequently, lower power consumption means less dissipated
heat. Finally, heat dissipation directly influences the packaging and
cooling solutions for integrated circuits. Energy efficiency brings thus
a bonus for all types of digital systems, in terms of lower cost packages
and cooling.

With all these applications, there is little doubt that energy efficiency is an
important optimization goal in digital system design. Furthermore, note that
most of these are in fact time critical systems. This is why the current thesis
addresses energy efficiency in the context of real-time systems.

1.2 Thesis Objectives

Timeliness and energy efficiency are often seen as conflicting goals. When
designing a real-time system, the first concern is usually time, leaving energy
efficiency as a hopeful consequence of empiric decisions. Yet, with the right
methods both goals can be achieved. Energy-efficient architectures may be
selected while still meeting the timing constraints. Furthermore, with the
advent of variable speed processors, scheduling acquired the new dimension of
processor speed. Classic real-time scheduling techniques can now be adapted
to address both timing and energy through efficient selection of processing
speed. The goal of the current thesis is to provide solutions to some of these
problems. Briefly, the answer and the leitmotif of the thesis lies in trading off
speed for energy, whenever timing requirements allow it.

2



1.3 CONTRIBUTIONS

1.3 Contributions

This thesis bridges the gap between the design of real-time and energy-effi-
cient systems by proposing several approaches that address timing and en-
ergy consumption in a unified manner. Their energy-efficient solutions, their
successful use of stochastic information, and their use of the increasingly pop-
ular variable speed processors, makes the described methods unique, to our
knowledge. Specifically, the thesis presents:

e A new task level scheduling strategy for tasks with probabilistic ex-
ecution pattern entitled Stochastic Scheduling, first introduced in
[GruOla]. The technique is compared to several alternative approaches,
including compiler-assisted scheduling. Some practical results on a real
platform, showing the potential of our method, are also presented (Chap-
ter 4).

e A new task graph static scheduling approach, based on list schedul-
ing with an energy-centric priority function. The algorithm, entitled
LEneS, was initially introduced in [GKO01]. A less successful, but much
simpler scheduling technique, LS-PS, is also described and compared to
LEneS (Sections 5.4 and 5.3).

e Methods for computing maximum required processing speeds for
task sets scheduled via the classic Earliest Deadline First and Rate-
Monotonic approaches. The simplicity and efficiency of these methods,
partially mentioned in [Gru0O1b, GruOla], make them the basic real-time
energy reduction methods on variable speed processors (Section 5.5).

e An extension of the classic Rate-Monotonic Scheduling (RMS) for includ-
ing run-time slack distribution. This method, first introduced in
[GruOla], is proven to yield the same timing behavior as the classic
RMS, but with significant reduction in energy consumption for sets of
tasks with probabilistic execution pattern (Section 5.6).

e A new ordering method for sets of tasks with probabilistic execution
times, named Uncertainty-Based Scheduling. Initially introduced
in [Gru01b], this method uses stochastic information in an aggressive
manner to lower the energy consumption without affecting the real-time
behavior, as proven by practical results on a real platform (Section 5.7).

e Analysis of several system-level design flows for low energy, directed
at task graphs, on both fixed and variable speed processor architectures.
For fixed speed processors we describe a novel approach for unified bind-
ing and scheduling, based on constraint programming, as introduced in

3



1. INTRODUCTION

[GK99]. For variable speed processor architectures, we describe two ap-
proaches, initially introduced in [GruOO0b], that are based on the Simu-
lated Annealing heuristic and our own scheduling methods for low en-
ergy (Sections 6.2 and 6.3).

1.4 Thesis Layout

The thesis consists of four parts. The first, preliminary part, contains the
theoretical background necessary for understanding our work (Chapter 2) and
the models used throughout the thesis (Chapter 3). The subsequent parts
focus on describing our own research.

The second part focuses on task level scheduling for variable speed proces-
sor architectures (Chapter 4).

The third part presents a large variety of task group level scheduling tech-
niques (Chapter 5). These techniques address both task graphs and task sets.
Both static and run-time methods are described for tasks with fixed or proba-
bilistic execution pattern.

The fourth part addresses scheduling in the context of system-level design
flow (Chapter 6). Several design flows for low energy are described, both for
fixed and variable speed processor architectures.

Chapter 7 concludes the thesis, by presenting a summary and possible
future trends in this research area.




CHAPTER 2

BACKGROUND

THIS CHAPTER SETS THE FRAME for our work by reviewing first some basic
notions from micro-electronics, real-time systems, and design automation for
system-level synthesis. In the second part, we present some of the relevant
research related to our own, pointing out the significant differences.

2.1 Power, Energy, and Delay

In order to design power and energy-efficient systems, one has to understand
first the physical phenomena that lead to power dissipation or energy con-
sumption. Since today most digital circuits are implemented using CMOS!
devices, it is important to examine the relations between power, energy, and
signal delay in such devices. Although we focus here on CMOS circuits,
the power-energy-delay dependencies could be generalized for any technol-
ogy. Moreover, the methods and techniques we present in this thesis are at an
abstraction level that is rather independent of technology. These conclusions
are fundamental for our hardware models used in our work.

2.1.1 Power Consumption in CMOS Circuits

The issues discussed in the current section are valid for any CMOS circuit.
For the sake of simplicity, consider the CMOS inverter of Figure 2.1. The
power dissipated on this inverter can be decomposed into two basic types,
static and dynamic [RP96]:

PCMOS = Pstatic + denamic (21)

1CMOS: Complementary Metal Oxide Semiconductor




2. BACKGROUND

PMOS

NMOS

Figure 2.1: CMOS inverter

In the ideal case, CMOS circuits do not dissipate static power, since in
steady state there is no open path from source to ground. In reality, there are
always leakage currents through the MOS transistors, currents depending on
the threshold voltage and on the technological process. These currents yield
the static component of the CMOS power consumption. Although the static
power is today about two orders of magnitude smaller than the total power,
according to [Bor99] the typical chip’s leakage power increases about 5 times
each generation, and will soon become a significant portion of the total power.
Fortunately, by reducing the die temperature one can substantially lower the
leakage power. In other words, reducing the dynamic power component and
employing better cooling techniques will be even more critical in advanced
deep-sub-micron technologies.

The dynamic component of the CMOS power is dissipated during the tran-
sient behavior, i.e. during switching between logic levels. For the same CMOS
inverter depicted above, if the input switches from one logic level to the oppo-
site, at some moment both the NMOS and PMOS transistors will be open,
thus allowing a short circuit current (Ig¢) to appear between source and
ground. With a careful design of the transition edges, this dynamic sub-
component can be kept below 10-15% of the total power consumption.

Most of the power is, thus, consumed by charging and discharging the out-
put capacitance. Consider, for the moment, that the input executes one full
cycle from high logic-level to low logic-level and then back to high. During a
high-to-low transition, an amount of energy equal to CV7, is drained from V4
through I, part of which is stored in the output capacitance while the rest
is dissipated on the PMOS transistor. During the reverse, low-to-high transi-
tion, the output capacitance is discharged through 7. Thus, during one cycle
a total energy equal to CV2, is consumed. Note that the power consumption

6



2.1 POWER, ENERGY, AND DELAY

directly depends on the switching activity of the signals involved. In this con-
text, let us define the switching activity, «, as the number of high-to-low tran-
sitions during one predefined period. Since we are discussing synchronous
circuits, involving a periodic signal (a clock) with frequency f, we can choose
the predefined period mentioned earlier, as the clock period. The effective fre-
quency of switches in this case is given by the product: «f. In CMOS circuits,
this component of power dissipation accounts for at least 85-90% of the total
power consumption [RP96].

From all the considerations made above, we can approximate the power
dissipated on a CMOS circuit node using the following formula:

PC]WOS ~ denamic ~ afCVde (22)

This means that the power consumption in a CMOS circuit is proportional
to the switching activity, capacitive load, clock frequency, and the square of
the supply voltage. All the power and energy reduction techniques try to
minimize one or more of these factors. Unfortunately, they are all coupled in
some manner. For example the circuit delay A, which sets the clock frequency,
depends on the supply voltage:

A~ 4 (2.3)
f (Vaa — Vi)Y

where V; is the threshold voltage and ~ is the saturation velocity index. For a
sufficiently small V; we can rewrite the relation between clock frequency and

supply voltage as:
fvah (2.4)

Dependencies, although less obvious, exist between the other factors in the
power formula. This means that power minimization is an issue that has to
be treated carefully, as detailed below.

Supply voltage (V;;) reduction appears to be the most promising, be-
cause of its quadratic dependency to power. A decrease in voltage by a fac-
tor of two yields a decrease in power by a factor of four. Unfortunately, the
possibility to reduce the supply voltage is limited by several factors, such as
design performance and compatibility. When the supply voltage approaches
the threshold voltage, the circuit delays become large (Figure 2.2), since the
output capacitance is charged and discharged slowly. This sets the lower limit
for the supply voltage around 2 x V; [RP96]. The degradation in performance
could be attenuated by working at lower threshold voltages, but this gives rise
to other problems. When the threshold voltage becomes very small, the leak-
age currents through the MOS transistors increase, leading to an increase of
static power consumption. Supply voltage reduction works best when com-
bined with techniques which speed up the design, such as parallelization and

7



2. BACKGROUND
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Figure 2.2: The dependency between circuit delay and supply voltage for dif-
ferent threshold voltages V; and velocity saturation factors ~.

pipelining. The gain in speed can be converted into a decrease in power and
energy, by reducing the supply voltage. Furthermore, reducing the supply
voltage is a method that can be used for both dynamic and static CMOS cir-
cuits.

Lowering the clock frequency (f) has direct influence on the design per-
formance, and it is usually combined with speed-up techniques and supply
voltage manipulation. Stopping the clock for some circuit parts can be viewed
as "component shut-down” at high levels of abstraction. This approach will
only work for static CMOS components, since dynamic components loose in-
formation if the clock signal is turned off.

Decreasing the capacitive load (C) is yet another way to diminish the
power consumption. The physical capacitance in a CMOS circuit consists
in fact of two capacitances [RP96]: device and interconnect parasitic capac-
itance. In the past, the device capacitance has dominated over the intercon-
nect parasitic capacitance but, with the process of technology down-scaling,
the interconnect capacitance becomes more and more important, and has to
be taken into consideration. Physical capacitance can be kept low by reducing
the number of gates, using shorter wires and smaller devices. On the other
hand, the reduction of device size reduces the current drive of the transistor,
making the circuit to operate slower. This performance loss might prevent V,;
reduction, which is a more efficient technique for power minimization.

8



2.1 POWER, ENERGY, AND DELAY

The switching activity («) is much influenced by the data being pro-
cessed (except for logic styles with pre-charged nodes [RP96]). From Equation
2.2, if a CMOS circuit does not change its state, it virtually does not consume
any power. The signal with the highest activity in a circuit is, by far, the clock.
Therefore, several power reduction methods focus on lowering the number of
clocked nodes in a CMOS circuit. For certain logic styles, an important source
of switching activity is glitching, or unwanted and spurious transitions that
occur before a node settles down to its final steady-state value.

The switching activity is directly influenced by the choice of number rep-
resentation in a design. For example, considering a signal oscillating around
zero, using a 2’s complement representation imposes the switching of most of
the bits whenever passing through zero. In this case, a Sign-Magnitude rep-
resentation could be more suitable. For counters and address buses, a Grey
code representation is the best choice. Of course, one should consider also the
implications in the functional units design and/or the conversion circuits, if
needed, when choosing the number representation.

The work presented in this thesis is based mainly on supply voltage scal-
ing coupled with clock frequency minimization. Switching activity or capaci-
tive load reduction are only indirectly addressed, in the chapter dedicated to
system-level synthesis. This comes from the fact that our scheduling problem
assumes that the work performed by each task is already decided. More pre-
cisely the capacitive load and number of switches is fixed at the moment the
tasks are scheduled. Furthermore, the low level aspects of power minimiza-
tion are somewhat encapsulated in the power versus speed (clock frequency
and supply voltage) dependency specific for each processor.

2.1.2 Energy Consumption in CMOS Circuits

As stated in the thesis title, we focus on energy rather than power consump-
tion. Although low power and energy efficiency are often perceived as overlap-
ping goals, there are certain differences when designing for one or the other.
Formally, the energy consumed by a system is the amount of power used dur-
ing a certain period of time:

t
E= / P(t)dt (2.5)
0

Every computation, simple or complex, requires a specific interval of time to
be completed. The energy consumption decreases if the time required to per-
form the operation decreases and/or the power consumption decreases. Thus,
compared to the pure power consumption minimization problem, energy re-
duction includes the time aspect. A technique that would lower the power,
but at the same moment increase the computational time, might even lead to

9



2. BACKGROUND

an increase in energy consumption. For example, one could halve the power
consumption by only halving the clock frequency in Equation 2.2. At the same
time the overall computational time required to perform the same operation
would double, leading to no effect on energy consumption. On the other hand,
the supply voltage forces an upper limit on the clock frequency. For this rea-
son supply voltage and clock frequency scaling are addressed in conjunction.
Note that often lower energy consumption means slower systems. Real-time
scheduling and energy minimization are therefore closely related problems,
that should be tackled in conjunction for best results.

2.2 Real-Time Systems

Real-time systems are considered to be those types of systems which have to
respond to certain stimuli within a finite and specified delay [BWO01]. In other
words, the correctness such systems depends not only on the logical result
of the computations, but also on the time at which the results are produced
[SSRB98]. For hard real-time systems, it is imperative that responses oc-
cur within the specified deadline, any exception leading to a total failure of
the system. In soft real-time systems response times are important, but the
system will still function correctly if some deadlines are occasionally missed.

Although the work presented in this thesis focuses on hard real-time sys-
tems, certain algorithms can be easily adapted for soft real-time systems,
leading to even greater reductions in energy consumption while keeping a
reasonable Quality of Service. Furthermore, we only consider the timing as-
pects characterizing real-time systems, without involving other specific fea-
tures concerning, for instance, data sampling, computational accuracy, con-
trol efficiency, concurrency, reliability or safety. We also consider that, in
principle, if basic real-time scheduling algorithms can be augmented with low
energy techniques, then the extensions or enhancements of these algorithms
for more complex real-time applications can employ the same low energy tech-
niques. In fact, our energy-efficient methods can be applied once the real-time
system timing behavior has been determined, without significantly affecting
the design decisions beyond the choice of energy-aware components (such as
variable speed processors).

Building upon the properties of the real-time applications, scheduling tech-
niques exhibit several important characteristics [SSRB98, Axe97]:

e Flexibility, or the ability of the run-time scheduler to adapt to changes
in the task set,

e Predictability, or the ability to analyze the run-time behavior by, for
instance, estimating the task response time and verifying the timing
constraints, and

10



2.2 REAL-TIME SYSTEMS

e Complexity, or the volume of computation required to take schedul-
ing decisions. One can distinguish between off-line complexity, when
optimality is an issue, or at run-time complexity, when the scheduling
overhead is important.

Following these properties, real-time scheduling algorithms can be distin-
guished into [Bur91, BWO01]:

e Static or dynamic. A static approach takes all scheduling decisions in
advance and requires prior knowledge about the properties of the sys-
tem, but yields little run-time overhead. For instance, in the case of a
fixed set of purely periodic, fixed execution time tasks, it is possible to lay
out a complete schedule beforehand, using a cyclic executive approach.
Yet, there are certain drawbacks with this method. For example, build-
ing the executive is NP-hard in the general case and sporadic tasks are
difficult to handle [Loc92]. A dynamic scheduling method determines
the schedules at run-time, being therefore more flexible. Fixed-priority
scheduling (FPS) assigns static priorities to tasks, but schedules them at
run-time. Rate-monotonic scheduling (RMS) is from the FPS class, since
priorities are assigned according to task rates (fixed). By comparison,
in earliest deadline first (EDF) scheduling even the priorities are com-
puted at run-time, the highest priority tasks being those with the near-
est deadline. Occasionally, in the real-time community, the scheduling
approaches are referred to as static and dynamic depending on the deci-
sion regarding task priorities. In this sense FPS is called static and EDF,
dynamic.

e Preemptive or non-preemptive. In a preemptive scheme certain low
priority tasks may be suspended if higher priority tasks need to be ex-
ecuted. Alternatively, in non-preemptive approaches, once started each
task finishes its execution without interruption from others. Clearly,
preemptive schemes are more flexible, but they also introduce certain
time overhead due to the context switches. Intermediate approaches
also exist, such as deferred preemption schemes, where preemption can-
not occur during certain critical time intervals.

e Centralized or distributed. A uni-processor system or a multi-proc-
essor system with shared memory, where the inter-processor communi-
cation time is negligible, are typical examples of centralized systems. In
distributed systems, communications take considerable time that have
to be accounted for, during feasibility analysis and scheduling.

The work presented in this thesis covers a wide range of scheduling tech-
niques. For variable speed processors, the new dimension introduced by speed
selection makes even the scheduling of individual tasks non-trivial, especially
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for tasks with probabilistic execution time. At task group level, we look at
both static and dynamic scheduling strategies for low energy. In particular,
we address static cyclic scheduling for task graphs, FPS in the form of RMS
or deadline-monotonic scheduling, and the EDF scheme. Preemption or non-
preemption is assumed according the underlying real-time scheduling mod-
els. For instance, preemption is required in RMS, but not in some cases of EDF
(single-rate, common arrival). In one case we advocate the use of preemp-
tion, just to lower the energy consumption when a non-preemptive strategy
would also fulfill the real-time constraints (see Section 5.7). In all cases, pre-
emption time overhead is considered to be negligible. We focus mainly on
the uni-processor case, yet some of our scheduling methods are designed for
heterogeneous architectures (see Sections 5.3, 5.4 and Chapter 6).

2.3 System Synthesis

For best results, the energy consumption issue should be addressed through-
out the design cycle of a system. Therefore, it is important to stress the place
of our methods in this whole design cycle. Although the thesis focuses mainly
on task scheduling, in Chapter 6, we step back and look at how scheduling
relates to the system architecture and task mapping. These are essential de-
cisions that have to be taken during system-level synthesis, which is only a
part of the typical design process, as detailed in the following.

Digital systems can be specified at different levels of abstraction. A tra-
ditional view of these levels and the relations between them is captured by
the Y-chart, introduced in [GK83]. The most commonly used levels of abstrac-
tion are the physical, the logic, the register-transfer (RT), the behavioral, and
the system level. At system level, the digital system is specified in terms of
interacting, concurrent processes, which can be implemented either as hard-
ware components, or in software. The support architecture is given in terms of
boards, processors, memories, and buses. The hardware part of a system-level
specification can be decomposed in several behavioral specifications, consist-
ing of a sequential algorithm, or a single process. At RT level, the specification
is further refined to a description in terms of operations between variables. At
this point, the support architecture is composed of ALUs?, multiplexers, and
registers. At logic level, digital hardware is represented in terms of boolean
functions implementable by gates, latches, flip-flops, etc. Finally, at physi-
cal level, also referred to as circuit level, the hardware is described in terms
of transistors, resistors or even silicon areas. Since there is no universally
accepted description for these abstraction levels, different research and in-
dustry groups might have different views on this matter. It is also hard to

2ALU: Arithmetic and Logic Unit
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define clear cuts between any two adjacent levels. Very often, the digital sys-
tem specification consists of several connected specifications, given at various
levels of abstraction.

The complexity of certain systems can be dealt with by using high ab-
straction level descriptions. For a given specification, moving down from
system to physical levels, more and more information is added. The speci-
fication becomes more detailed, larger and, therefore, harder to handle. We
refer to this refinement process as synthesis [MLD92], although the term is
often used to describe the translation from a behavioral representation of
the design into a structural one [GDWL92, DeM94]. In particular, system-
level synthesis deals with the formulation of the basic architecture of the
implementation [EKP98a]. The most important decisions during the system-
level synthesis step, are the allocation of the set of physical processors and
the mapping of processes (or tasks) onto this processors while optimizing
or fulfilling certain design parameters. For real-time applications, the tim-
ing constraints are an essential design parameter. Although, system parti-
tioning, hardware/software co-design, and interconnect-structure design are
a few fundamental issues related to system-level synthesis [EKP98a] that
affect the energy consumption, we will not address them explicitly in this
thesis. More precisely, assuming an already partitioned system, our architec-
ture selection and task mapping approach choose specific task implementa-
tions, which might happen to be software or hardware solutions, and certain
communication channels, based on the final effect on energy and timing, be-
ing oblivious to the lower level implementation choices. Furthermore, our
scheduling methods only deal with ordering and speed selection (when nec-
essary), without significantly altering the task implementations in order to
affect the internal timing or energy consumption.

2.4 Related Research

In the last few years, the research surrounding low power and low energy
systems has become a flourishing area. Initially, most work focused on low
power design at the lower abstraction levels. Gradually, as design automation
started to be used at higher and higher abstraction levels, energy consump-
tion became an important design metric, overshadowing power consumption
at system-level. Finally, the already matured real-time area and low power
and low energy design met first in the form of dynamic power management
and then into dynamic voltage scaling, as variable voltage processors made
their appearance. Relatively recent surveys of this area can be found in
[JhaO1, BD99, Ped01].

A large spectrum of compile-time techniques for low energy software also
appeared. A few early reviews of such techniques can be found in [TMW94a,
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TMW94b, MOI*97]. Some of these are memory energy reduction through
efficient data access [PD99, DKV*02], switching reduction through register
relabeling and instruction scheduling [Shi01, LLM*01, CC01, PKVIO1], or
various algorithmic transformations [CBD01, SBDO01].

Note that all these techniques are orthogonal with speed scheduling algo-
rithms. Once the tasks have been compiled to yield the lowest energy con-
sumption with the compile-time techniques, task level and task group level
speed scheduling techniques can be applied, in conjunction with power man-
agement, to additionally reduce the system energy consumption.

2.4.1 Task Level Scheduling

At a first glance, deciding a task level speed distribution might appear as a
trivial problem, implicitly solved at task group level. In fact, on fixed speed
processors, it is not at all a problem. On the other hand, for variable speed
processors, task level scheduling becomes an interesting issue because:

e real processors can only run at a limited, discrete range of speeds, most
likely not including the ideal speed for the task in question, and

e an overwhelming majority of tasks exhibit variable (probabilistic) exe-
cution pattern, allowing for slowdown at run-time.

Thus, running the task always at only one speed, the one which guarantees
meeting the deadline even for the worst case, is not the best solution from the
energy consumption point of view. For this reason, several research groups
have recognized and addressed the task level speed scheduling problem.

For applications involving variable processing rate, the available time for
a given task may vary from instance to instance. Re-evaluating the speed for
every instance can, thus, save energy. Chandrakasan et al. (1996) present
in [CGX96] such an adaptive scheduling method, designed for digital signal
processing (DSP) applications, such as MPEG. Pering et al. (1998) evaluate
in [PBB98] several adaptive speed scheduling methods for DSP applications.
The majority of these kind of methods are soft real-time, more concerned with
the quality of service, than with meeting hard deadlines. The present thesis
focuses on hard real-time systems.

Ishihara and Yasuura (1998) have proven in [IY98] that a task can op-
timally run at any virtual speed, by running it in two phases at two differ-
ent real speeds. These speeds are the ones bounding the virtual speed. The
authors have also shown that the number and distribution of real available
speeds has a direct impact on the energy efficiency of such a schedule. In fact,
this dual-phase execution model seems to remain the standard for tasks with
fixed execution pattern.
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For tasks with variable execution pattern, the speed scheduling problem is
even more interesting. Lee and Sakurai (2000) describe in [LLS00b, LS00a]
a method for run-time adjustment of processor speed. The task is divided in
regions corresponding to time slots of equal length. At the end of each region’s
execution, a re-evaluation of the speed is performed in the following way. If
the elapsed execution time after a certain number of regions is smaller than
the alloted number of time slots, the execution speed can be lowered by an eas-
ily determined factor. A similar approach is presented by Shin et al. (2001)
in [SKSO01] as a part of a wider strategy, including task group level scheduling.
Another task level scheduling method is described by Mossé et al. (2000) in
[MACMOO0], where the regions and their corresponding time slots may have
different sizes, while the slack (the difference between the elapsed and the
worst case time at a certain moment) is distributed to regions according to
various strategies. A more advanced approach, entitled intra-task scheduling,
is described by Shin, Kim et al. (2001) in [SKLO1]. In this method, speed
re-calculation is performed after control decision affecting the execution path,
at the beginning of representative basic blocks. A somewhat similar approach
is taken by Hsu and Kremer (2001) in [HKO01, HKO02], where the task is
profiled on basic-block level regions. In that work, a single or multiple re-
gions are selected for speed scaling, based on their CPU and memory load.
The method introduces a small performance degradation, acceptable only for
soft real-time systems. The scheduling methods presented in this paragraph
can all be classified as compiler-assisted approaches, since the task must be
profiled and pre-processed off-line by, for instance, adding speed switching
code snippets in essential points. Briefly, the algorithms must be aware of the
internal structure of the task.

In parallel, a different class of scheduling method is emerging, which do
not require knowledge about the internal structure of the task. These algo-
rithms can be employed directly at run-time, without the need of a special
pre-processing step. Besides our own stochastic scheduling method, the only
other algorithm from the same class is PACE by Lorch and Smith (2001).
Presented in [LLS01, Lor01], PACE was originally designed for soft real-time
systems, but its pre-deadline part is based on the same idea as our own algo-
rithm. Namely, it uses the probability distribution function of the task execu-
tion pattern to derive optimal schedules in the long run. The method of com-
puting the distribution of the workload over the available processor speeds
in PACE is slightly different from our own stochastic scheduling, but their
results are also promising.

2.4.2 Task Group Level Scheduling

One of the first attempts to an energy-sensitive scheduling strategy at task
group level, appears to be the method of Weiser et al. (1994) presented in
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[WWDS94]. Assuming a variable voltage processor, that work examines sev-
eral speed scaling heuristics, all based on processor load. An extension of
that work was presented by Govil et al. (1995) in [GCW95]. A more formal
analysis of the minimum-energy scheduling problem, for periodic indepen-
dent tasks on a variable speed processor, is presented by Yao et al. (1995) in
[YDS95]. By examining the processor load on specific intervals, the authors
describe an off-line optimal algorithm and two on-line heuristics for speed
scheduling on top of the classical EDF. Furthermore, lower bounds for the
on-line heuristics are determined in that work. Remaining one of the most
important in the field, [YDS95] triggered the interest for a more formal ap-
proach to energy-efficient scheduling.

Hong et al. (1998) describe in [HPS98] a speed scheduling method for
periodic and sporadic tasks, as an extension to EDF, also based on the proces-
sor load and worst case behavior. In [HKQ"98], the same authors present a
non-preemptive speed scheduling strategy for sets of independent tasks with
arbitrary arrivals and deadlines. The method is based on a heuristic task or-
dering step followed by a speed selection step. Qu et al. (1999) address in
[QKPS99] energy reduction in pipelines, using variable speed stages selected
depending on the latency constraints and data size.

Rate-monotonic scheduling (RMS) is first addressed in the context of en-
ergy-efficient scheduling by Lee and Krishna (1999) in [LK99]. Using a
dual-speed processor model, the authors evaluate a speed scaling algorithm
based on RMS, composed both of an off-line step and an on-line strategy. Fur-
thermore, the authors investigate the energy efficiency of their method for
tasks with probabilistic execution pattern. In [SC99], Shin et al. (1999) also
present an extension of RMS, this time for multiple speeds processor. Based
on tracking the next arrival times, their method adjusts the speeds for the
running tasks, whenever there are no tasks waiting. The authors extend the
method in [SKSO01], to include task level speed scheduling based on compile-
time application slicing. In another publication [SCS00], the same authors
give an algorithm for computing a common maximal required speed for a task
set, scheduled in with RMS. Our own RM-MRS method, presented in Section
5.5.2 improves this approach by identifying individual speeds for each task in
the set. Jejurikar and Gupta (2002) further extend this method in [JGO02],
for handling task synchronization.

Okuma et al. (1999) introduce in [OIY98], and improve later in [OIYO01],
an EDF-based two phase scheduling algorithm that assigns speeds to tasks
with different arrivals, deadlines, and capacitive load. In the off-line phase,
each task is assigned a slot for execution and consequently a maximal speed,
problem solved using ILP3. At run-time, if a task finishes early, the unused
processor time is greedily assigned to the immediately next task instance,

31LP: Integer Linear Programming
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lowering its off-line determined speed. On the same line, Swaminathan
and Chakrabarty (2001) describe in [SC01b] both a MILP* approach and a
heuristic for determining energy-efficient speed settings for EDF policy. Their
approach assumes a dual-speed processor, but takes into account the speed
switching latency and energy overhead.

Manzak and Chakrabarti (2000) present in [MCO00] an off-line schedul-
ing algorithm for tasks with arbitrary arrivals and deadlines, which again
includes switching activity (or capacitive load as in [OIY01]). That approach
is based on a heuristic that starts from a feasible schedule and gradually de-
creases the speed of certain tasks until no feasible schedule can be obtained.
The same authors describe in [MCO01] a speed selection algorithm based on
a similar method, including periodic tasks this time. Their method tries to
assign the same lowest possible speed for all tasks, but can still lead to un-
used processor times. Based on [MCO00] and [YDS95], Pouwelse et al. (2001)
describe in [PLS01] a low complexity sub-optimal scheduling method, imple-
mented on a StrongARM with variable voltage platform. Their energy prior
ity scheduler tries to level the speed schedule, by increasing the workload of
low speed regions, through occasionally splitting tasks. Aydin et al. (2001)
present in [AMMMAQOQ1] an off-line polynomial-time algorithm for determin-
ing the optimal speeds for tasks with fixed execution time, but with different
power characteristics, scheduled using EDF.

Quan and Hu (2001) adapt in [QHO01, QHO02] the algorithm presented by
Yao [YDS95] to tasks with fixed priorities. Their new approach still focuses
on off-line scheduling for tasks with fixed execution pattern.

Pillai and Shin (2001) describe in [PS01] a few techniques for speed
scheduling of periodic task sets, together with experimental results on an
AMD K6-2+/ Linux platform. Their off-line method computes a single max-
imal required speed, based on utilization. Their cycle conserving on-line ap-
proach is similar to our slack distribution strategy presented in [Gru0Olal, to
which the authors refer in their paper. Unlike in [Gru0O1la], no formal analysis
of the feasibility of their method is presented. Another method they present,
look-ahead DVS for EDF, tries to defer as much work as possible to as late
as possible, while still keeping the deadline, in the hope that tasks will fin-
ish earlier than the worst case. Although it does not uses stochastic data for
the tasks, their approach is based on a similar idea we base our task level
stochastic scheduling method.

Kim et al. (2002) present in [KKMO02] a run-time slack distribution strat-
egy for EDF, based on an slack estimation heuristic that considers both accu-
mulated and expected slack.

With the plethora of speed scheduling algorithms, a common evaluation
platform becomes essential for the designer to detect the best method in a

4MILP: Mixed Integer Linear Programming
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specific case. Shin et al. (2002) present such an environment, SimDVS,
in [SKJ*02, KSYT02], together with an performance evaluation of several
dynamic voltage scaling algorithms, including some of our own.

Note that few of the approaches mentioned above take into account the
run-time possibilities for speed scaling yield by the dynamic slack generated
in the system [LK99, SC99, PS01, OIY01, KKMO02]. This slack appears from
tasks finishing execution early, from the variation of processor demand, etc.
Even fewer techniques distribute this slack to the best advantage of the whole
system [AMMMAO1]. Most of these approaches were developed in fact in
parallel with our own slack distribution strategy for RMS. Furthermore, none
of these task group level techniques use the stochastic information related to
task execution pattern to derive more efficient orders, as in our uncertainty
based scheduling approach.

The work mentioned until now focuses on task sets of independent tasks.
Scheduling task graphs for energy efficiency was also addressed in the con-
text of distributed systems containing variable speed processors. Luo and
Jha (2000) describe in [LJO0O] a joint scheduling method for periodic task
graphs and aperiodic tasks that allows for energy-efficient speed selection at
run-time. The static phase dedicated to task graph scheduling, distributes
the tasks loosely between arrival and deadline, such that the inter-task slack
can accommodate aperiodic tasks or allow for speed reduction at run-time.
The same authors improve their methods in [LLJ02], with a critical-path anal-
ysis based static scheduling method, task execution order refinement, and a
improved run-time speed recalculation algorithm. Since several researchers
have addressed also architecture selection in conjunction with task graph
scheduling, we cover these in the next section.

2.4.3 System-Level Synthesis

For architectures with fixed speed processors, the problem of energy-efficient
mapping and scheduling task graphs is somewhat similar to low power be-
havioral synthesis with multiple supply voltages, as addressed for example in
[CP97, SR99, SCI98, MC02, KB99, Mar00].

At system-level, the problem of energy consumption on processors with
fixed speed was first addressed as a natural continuation of cost minimiza-
tion or performance oriented co-synthesis. Kirovski and Potkonjak (1997)
describe in [KP97] a system-level power minimization approach for hard real-
time tasks, based on load balancing combined with supply voltage reduction.
Dave et al. (1999) present in [DLJ99], an energy-aware co-synthesis system,
COSYN-LP, based on an energy-conscious clustering technique for minimizing
inter-processor communication. Yang et al. (2001) present in [YWM™01]
a combined static-dynamic scheduling algorithm for task graphs on system
containing a fixed speed processor system. The static phase finds a set of
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schedules with different lengths and energy consumption, that may have dif-
ferent tasks allocated to processors with different speeds. The dynamic phase
chooses the best schedule from the off-line set, based on the required pro-
cessing rate. Thus, the allocation of tasks to processors and the schedule may
change at run-time. Dick (2002) presents in [Dic02] several system-level syn-
thesis algorithms targeting, among other objectives, low power consumption.
The most representative in the context of our work are perhaps MOGAC [DJ97]
and its enhancement, EMOGAC, for designing heterogeneous distributed sys-
tems based on a genetic algorithm (GA) for assignment and list-scheduling.

System-level synthesis using variable speed processors only recently made
its way into the research community, our work from [Gru0OOb] being among the
first addressing this subject. Schmitz and Al-Hashimi (2001) investigate
the same problem in [SAHO01, SAHEO02], using GAs to optimize mapping and
scheduling of task graphs. The GA optimizing the schedule it is nested in
another GA, optimizing the mapping. In the scheduling GA heuristic, list-
scheduling and voltage scheduling are performed consecutively, as two sepa-
rate steps. In [SAHEO02] the authors compare their scheduling strategy to our
own LEneS method. Zhang et al. (2002) present in [ZHCO02] an approach
based on a two steps, the first being a combined assignment and ordering
while the second being voltage selection for each task in the task graph. The
first step is solved by a custom heuristics that balances the load on the proces-
sors. The voltage selection step is formulated and solved as an ILP problem.

There are many other approaches to reduce the energy consumption dur-
ing system-level synthesis, that are based on memory size reduction, memory
access minimization, algorithmic transformations, pipelining, etc. We only
mentioned here the methods that are in the same class with the ones de-
scribed in this thesis.
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CHAPTER 3

MODELS

THROUGHOUT THE THESIS several different models are used for describing
the system under design. The present chapter introduces these models. First
we introduce the models used to describe the behavior of the system. Task
and task group models are addressed at this point. Then we present the
models describing the hardware resources available, such as processors and
communication channels.

3.1 Task Model

In the beginning of the system-level design and synthesis, before anything is
decided about the implementation, a task models a certain part of the func-
tionality of the system. Here we introduce a task as a computational process,
yet this model is extensible to communications, as pointed out later.

Definition 3.1. A task is a sequential process, a single thread of execution,
describing a part of the system behavior.

Furthermore, our task model has the following characteristics:

1. it may communicate with the outside world (other tasks) only before or
after its execution, not during execution;

2. it may be preempted at any point, unless the hardware resource imposes
some restrictions in this sense.

Although the first point appears to be a restriction, it can be easily fulfilled,
since any actual process that needs to exchange information during execution
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can be decomposed into a sequence of processes interrupted by communica-
tions. When we are talking about a task assigned to a certain processor, task
refers to an executable specially adapted (compiled, interpreted) to that pro-
cessor. An executable task has additional characteristics:

3. it consists of atomic computational steps, namely clock cycles;

4. preemption can occur between any two consecutive clock cycles, but not
during a clock cycle.

The number of clock cycles required by a task depends on the processor ex-
ecuting that task. Note also that point 4 is actually a refinement of the 2”4
characteristic of a task.

Occasionally we use the term task instance (or job) to describe a process,
running executable. For tasks with multiple possible execution paths this is
an important distinction since two instances of the same task may exhibit
different behavior. The interesting distinction for us is difference between the
number of clock cycles required by the two instances. Later on we address
both tasks using the same number of clock cycles for each instance and tasks
with instances that use different number of clock cycles. The latter model is
more realistic for tasks whose execution depends on the input data.

3.1.1 Task attributes

Different scheduling methods describe tasks using abstract models of vari-
ous complexity. A task is usually represented by a n-tuple of values (or at-
tributes). Examining the attributes of a task, one can distinguish between
requirements-related and implementation-related attributes.

The system specification usually contain requirements that refer to dead-
lines, task period, and maybe dependencies between tasks. All the scheduling
methods described in this thesis were designed in principle to work for tasks
with hard deadlines (see Section 2.2). Yet, most of the scheduling methods
we present can be modified for soft or firm deadlines, as mentioned in specific
sections. Since some of our methods were designed for periodic tasks, another
task attribute used is the task period. Occasionally, deadlines or periods are
specified for groups of (usually dependent) tasks instead of for each and every
task separately. This is usually the case for systems described as task graphs
(see Section 3.2.1).

Other task attributes, such as the computational demand, execution time
or execution pattern, are strongly influenced by implementation. The proces-
sor type, its operating clock frequency, power consumption, the compiler, and
the specific algorithms used are all implementation choices. Once the assign-
ment of tasks to processors is decided, and the tasks brought to an executable
format (i.e. compiled and linked) we can talk about the execution pattern of
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that task. In its simplest form, the execution pattern can refer only to the
number of clock cycles needed in the worst case (WCE). Most of the scheduling
algorithms in the literature work only with timing information exhibited by
the worst case execution. To achieve energy-efficient schedules, we actually
make use of more extensive information about the task execution. In our case
the proper definition for the execution pattern is the following.

Definition 3.2. The execution pattern of an executable task is a proba-
bility distribution function, n(z), describing the probability that the task will
execute for exactly x clock cycles.

Note that n(xz) = 0 if = ¢ [BCE, WCE|, where BCE refers to clock cycles
for the best case execution and WCE refers to the clock cycles for the worst
case execution. Occasionally, even more information is required about the
task. Some scheduling algorithms [SKLO0O1] use a flow graph representation
[ASUS86] for the task. Such an algorithm will be briefly discussed in Section
4.3.2.

Although by task we usually refer to a computational process, communi-
cations can be modeled in a similar way. A reasonable assumption regarding
communications is that tasks executed on the same processor can communi-
cate instantly, in zero time, using for example shared memory. Inter-processor
communication on the other hand takes time, resources (i.e. the bus), and con-
sumes power. Moreover, we assume that communications do not take proces-
sor time (i.e. are handled by off-chip controllers and buffers). Our scheduling
algorithms can thus treat computational tasks and communications in a sim-
ilar manner, as long as the assignment step takes care of correctly binding
tasks to processors and communications to channels (buses). The energy re-
duction techniques for communication channels are different than those for
processors, but they turn up to be typical speed vs. energy trade-offs after all,
as briefly described in Section 3.4.

Finally, in our algorithms a task 7; is represented by the following n-tuple:

T =< DZ,E,’I]Z(I') > 3.1)

where D; is the deadline, 7; the period, and 7;(x) the execution pattern of
task 7;. Some of the scheduling algorithms presented in this thesis use only
specific characteristics of the execution pattern instead of the full function:

e best case number of clock cycles, BCE; = max{a:}m(xbo

e worst case number of clock cycles, WCE; = min{z}, )50
e mean number of clock cycles, X; = > n;(z)z

Note that for tasks with fixed execution pattern (single execution path) BCE; =
WCE; = C; , where C; is the number of clock cycles required by the task.
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3.2 Task Group Models

Usually the system under design is more complex than a single task, and
needs to be represented by a group of tasks. The algorithms presented in this
thesis, work either on task graphs or task sets, each representation exhibiting
its own advantages and drawbacks, as described below.

3.2.1 Task Graphs

Task graphs are frequently used in hardware design automation, being simi-
lar to Data Flow Graphs (DFG) or Control Data Flow Graphs (CDFG) [DeM94].
Task graphs emphasize the dependencies between tasks and are suited for de-
scribing fairly static and possibly hierarchical structures.

Definition 3.3. A task graph is a directed a-cyclic graph I" = (N, V) where
each node is a task 7, € N and each edge (7;,7;) € V specifies that task 7;
must finish its execution before 7; starts executing.

Conditional execution can be modeled in several ways. One may for exam-
ple assign guards to some of the edges. Tasks which have guarded incident
edges are executed not only when all its predecessors finished their execution
but also only if the guard condition is ¢rue. In this case, each combination of
conditions can be considered as representing a distinct non-conditional task
graph. Scheduling a conditional task graph can be reduced then to scheduling
several non-conditional task graphs and combining the results, as for example
in [EKP198b]. Alternatively, dealing with conditional paths in constraint pro-
gramming based modeling is a straightforward extension of a non-conditional
task graph scheduling, as shown in [Kuc99, SGK99, SGK00, KW01]. Another
way to handle conditional execution is to move conditions inside tasks, ob-
taining tasks with variable execution time, depending on the conditions. The
conditional task graph is then modeled as a non-conditional task graph made
of tasks with variable execution time. Our static scheduling strategies can
handle such task graphs, except the tasks will always be assumed to exhibit
their worst case execution pattern. For the reasons described above we will
not explicitly use the conditional task graph model in this thesis.

The nodes in the task graph described above can model both computations
and communications. In general, the task graph can be viewed as a bipartite
graph, where every edge connects a computational node with a communica-
tion node. Since we assume instantaneous communication for computational
tasks assigned to the same processor, our task graphs can contain, after as-
signment, edges that connect two computations.

Since the task graph usually describes a repetitive process, an implicit
loop is assumed over the whole graph. An iteration starts by executing first
those tasks that do not depend on other tasks and proceeds executing the rest
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of the tasks once their predecessors finished. The iteration finishes as soon as
all reachable tasks finish their execution. Timing constraints resulting from
requirements at this level usually refer to the time required for executing
one whole iteration. In our model, only when the current iteration finishes, a
new task graph instance can begin executing. Correlating this with equation
3.1 containing the n-tuple describing a task, we can say that all tasks will
have the same period and deadline, Vi € N, T; = D; = GraphExecutionDelay.
By contrast, pipelining techniques use task graph execution models where
iterations overlap [Kuc99, SGK00, KWO01]. Although our techniques can be
adapted to pipeline scheduling, this thesis does not explicitly address pipeline
scheduling.

A-cyclic task graphs can also model internal loops, in a hierarchical man-
ner. Each loop can be modeled by a node which is itself an a-cyclic sub-graph.
Together with the implicit loop assumed for each a-cyclic graph, this hierar-
chical modeling can capture nested loops over sub-groups of tasks as in Figure
3.1

Conditions: Cond, Loop

Figure 3.1: A task graph with conditions and loops. The depicted graph is
hierarchical, with 75 modeling a sub-graph forming a loop. Cond controls
the execution to take either the 7 or 73 path. Loop controls the repetitive
execution of the 75 sub-graph.

3.2.2 Enhanced Task Graphs

The scheduling algorithm presented in Section 5.4 uses an Enhanced Task
Graph (ETG) model, derived from classic task graphs. Since the resources
used are variable speed processors, the execution time of a task can vary de-
pending on the processor clock frequency. Therefore, each task, is more accu-
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rately modeled by two important events: start of its execution and the end of
its execution. Figure 3.2 details examples of a task graph and its correspond-
ing ETG. In the task graph, depicted on the left, tasks are represented by
the circles annotated by pairs of values. A pair consists of the execution time
of the task and the identifier of the processor executing the task. The black
disks represent communications annotated with the duration and the identi-
fier of the bus/link used for that specific communication. The arcs define the
partial order of task execution, which is imposed by the various data depen-
dencies. The ETG is obtained from the initial task graph by substituting each
node with a pair of nodes: a start node (the circles), marking the beginning
of the execution of that node, and an end node (the grey disks), marking the
completion of the task. The execution times of the tasks are now assigned to
the internal edges. In our current model, only computational tasks are sub-
ject to change their execution delay, while the communication delays remain
fixed. The thick edges in the ETG represent the fixed delays. The other edges
depict modifiable delays, and the associated numbers define their minimal
values. The information regarding the assignment of tasks to processors is
also transferred to the ETG.

@) Task Graph b) Enhanced Task Graph
el®)

(6,1)

2,3 \ @1
ON

3

(7. 1)

@1

Figure 3.2: A Task Graph and its corresponding Enhanced Task Graph

3.2.3 Task Sets

The task set model emphasizes the timing requirements for each task. They
are more suited for modeling dynamic systems employing priority based run-
time scheduling. In our task set model, there is no data or control dependency
between tasks, so there is no communication taking place between the tasks.
Moreover, our scheduling algorithms focus on the case when the tasks run on
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a single processor. Tasks are still represented using the triple from equation
3.1, with the mention that for any task the deadline is not larger than the
period. Occasionally our algorithms use more restricted models (i.e. deadlines
equal to periods), as explicitly stated in the corresponding sections.

An important characteristic of a task set is the processor utilization im-
posed by the task set. Since we are dealing with variable speed processors,
the utilization is always defined for the reference speed, that is usually the
maximum processor speed. Furthermore, since the tasks have variable exe-
cution pattern, we distinguish between worst case utilization and actual uti-
lization. With the notations introduced in Section 3.1.1 we give the following
definitions:

Definition 3.4. Given a task set of NV tasks
{r; = (D;, T;,ni(x)) }i=1.. v the worst case utilization is computed as:

1 L weE;
fref i—1 Ti

UWCE = 3.2)

where f,.; is the reference clock frequency. The actual utilization over H
hyper-periods is computed as:

[Ti/Th

H N hj
U( fr?f : ZZ Xi] (33)

h=1i=1 j=1

e

where Xihj is the number of cycles executed by the j*” task instance of task
7; in hyper-period h. Ty is the duration of the hyper-period, computed as the
least common multiple of all task periods, icm ({T3},_; 5)-

Note that the actual utilization can be accurately computed only after ex-
ecution, when all the execution patterns for all task instances are known. For
a sufficiently long interval of time, an estimate of the actual utilization is the
expected value of utilization U:

N —_

1 X;

e R = (3.4)
|t .fref pt T.

U=U(t)

3.3 Processor Models

A basic assumption for modeling resources is that a task can exclusively use
only one resource at a certain time. This can perfectly model for example tasks
implemented as software running on a processor or ASICs implementing a
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single task. Escaping our model are the cases where several tasks are imple-
mented on a single ASIC, executing in parallel, sharing functional units. Yet,
since our scheduling techniques focus mainly on architectures composed ex-
clusively of processors running software tasks, the above mentioned assump-
tion is reasonable enough.

Other assumptions are that the processors are synchronous designs (for
which it makes sense to talk about clock frequency) and given a certain clock
frequency, all clock cycles require the same amount of energy, irrespective of
the computational requests. This means that the power consumption of a
processor for a given clock speed remains almost constant and independent
on the running task.

In practice the power difference between various instruction can vary con-
siderably ([TMW94b]). Yet, complex tasks, as encountered in this design
phase, consist of rather heterogeneous mixes of instructions, meaning that
the variation in power consumption over a relatively small number of clock
cycles is statistically insignificant [RJ98]. We make one exception from this
rule for the NOP instruction, which is assumed to consume only around 20%
of the normal (average) power [SC99]. A processor constantly executing NOPs
will thus use only 20% of the energy it would use by doing some useful work.

The constant power per clock cycle assumption given above may also be in-
accurate at task group level, if the tasks exhibit very different computational
requirements. For example an intensive data processing tasks (such as shuf-
fling data in memory) may consume more power than a control task. Although
our algorithms do not explicitly distinguish between such tasks, they can be
adjusted to accommodate these cases by assigning different weights to tasks
accordingly.

3.3.1 Fixed Speed Processors

In the first part of Chapter 6 we address architecture selection for minimal en-
ergy, using fixed speed processors as resources. This type of resource models
processors operating at constant clock frequency and voltage, thus dissipat-
ing a constant amount of power. They also have at least two power modes:
ACTIVE, when they execute instructions, consequently consuming significant
power, and SLEEP, when instruction processing is stopped and the power con-
sumption is much lower. The processor can, thus, enter the SLEEP state
whenever it is idle. Power modes are a common feature today for all types
of processors, and especially embedded processors (see Example 3.1). Effi-
ciently selecting power modes for resources, at run-time, is an area usually
referred to as Dynamic Power Management (DPM). The Advanced Configu-
ration and Power Interface (ACPI) specification is a joint effort by Compaq,
Intel, Microsoft, Phoenix, and Toshiba towards a standard API supporting
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DPM [ComO02]. ACPI 2.0 is implemented in most Windows™ operating sys-
tems and in the Linux kernel version 2.4. However, DPM is not the focus of
this thesis.

Example 3.1 (Intel® 80200 Power Modes):

The Intel® 80200 processor [Int01] has three! power modes: ACTIVE, IDLE,
and SLEEP. The ACTIVE mode is the normal operation mode. The other two
are low power modes, selectable by programming CP14, register 7. In the low
power modes, parts of the processor are shut down to achieve a low power con-
sumption. In IDLE mode, the processor stops fetching and executing instruc-
tions but keeps its Phase-Lock Logic (PLL) running and maintains its archi-
tectural state. Interrupts re-instate the ACTIVE mode almost instantly. In
SLEEP mode, the PLL is stopped and the architectural state lost. Re-entering
the ACTIVE mode from SLEEP takes considerably more time, since it requires
a full reset sequence and restoring the architectural state. The following table
summarizes power modes’ data for an 80200 running at 733MHz and 1.5V:

] Power Mode | ACTIVE | IDLE \ SLEEP \
PLL On On Off
Architectural State kept kept lost
Latency to ACTIVE - ~ 1 clock cycle | > 2000 clock cycles
Core current (Icc) | 720mA 190mA N/A

For real processors, switching between power modes exhibits a certain la-
tency and consumes additional energy. Our algorithms do not consider power
mode switching latency and energy overhead explicitly. However, if these are
significant compared to the task delay and energy, the scheduling algorithms
can be extended to include the mode switching overhead.

3.3.2 Variable Speed Processors

Most of the scheduling techniques described in this thesis refer to architec-
tures using variable speed processors. For these type of processor the clock
frequency and supply voltage can be adjusted at run-time. Scheduling for
these processors requires not only deciding on the time moments for certain
events but also deciding on the clock frequency and supply voltage for each
time interval. Therefore, the techniques addressing variable speed proces-
sors are usually known as Dynamic Voltage Scaling (DVS) techniques.

The ideal model of a variable speed processor is able to run at a contin-
uous range of clock frequencies and voltages. Moreover, since the goal is to

1A fourth power mode, DROWSY, initially present in the 80200 description is currently de-
specified.
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consume as little energy as possible, for a given clock frequency there is an
unique optimal supply voltage. This is the lowest voltage for which the circuit
delay still permits the given clock frequency (see Section 2.1). The (optimal)
supply voltage, power consumption and cycle energy are therefore uniquely
determined by the clock frequency. In the following, instead of using the ab-
solute clock frequency as a basis to describe the processor clock and supply
settings, we will use the term processor speed. The processor speed is the rel-
ative value of the clock frequency f compared to a reference clock frequency
fres, which is usually also the maximal clock frequency:

_f
fref

A processor running at half speed will thus have the clock frequency half the
reference frequency, with all the resulting consequences in terms of supply
voltage, power and energy consumption. Using the equations introduced in
2.1, the voltage and power consumption at frequency f can be written in terms
of their reference values:

(3.5)

Sf

1
Vf = Vre‘fsj’cyfl Pf = Prefs(; (3.6)

where ~, the saturation velocity index, is approximated by 2.0 in the classi-
cal MOSFET models. More accurate models [RP96] show that ~ is closer to
1.3, yet this does not affect the dependency types, which remain non-linear.
Since o = 1 + %, power consumption is a convex function of speed. In fact,
since tasks execute clock cycles, it makes more sense to talk about clock cycle
energy for a certain frequency, es, than to talk about power consumption at a
frequency, P;:

o+ o+
e = / Pedt = Pref/ S?dt =
a a
al _ a—1 __
ereffrefsff - e'r‘efsf -
2
- e'r‘efsj’zil (37)

For v = 2, the clock cycle energy depends quadratically on speed. This is
the commonly used model in DVS research and also the model we use in this
work. As proven by our experimental results presented later on, the model is
accurate enough for our algorithms to perform efficiently on a real platform.
Finally, the energy of a task that executes a certain number cycles Ny at each
frequency f taken from a set F' can be computed as:

Eigeat = ) Nyeg = ey ) Nys} (3.8)
feF feF
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We denoted the energy in equation 3.8 by E;4..; since it does not include the
effects of speed switching on energy. The ideal model of the variable speed
processor can switch between clock frequencies and supply voltages without
any time or energy overhead.

A more realistic model of a variable speed processor has to address two
real phenomena:

e the range of available speeds is limited and discrete
e switching speeds has a time and energy overhead

We will now look at these problems in more detail.

Discrete Range of Speeds

In practice, the range of available speeds on a processor can only be discrete
(see Section 3.3.2 for examples). This comes from the fact that the core clock
frequency is generated internally by a Phase-Locked Loop (PLL) or Delay
Loop Logic (DLL) using an external, fixed frequency clock. The internally
generated frequency is a multiple of the external frequency. The supply volt-
age follows then the steps imposed by the available clock frequency steps.

Even on a discrete range of speeds, one can simulate a continuous range
of speeds for long enough tasks. The virtual clock frequency can be obtained
by running different parts of the task at different real clock frequencies. To
simulate a desired frequency f,, it is enough to use two real frequencies, one
higher fy > f, and one lower f; < f,. A task requiring N clock cycles will
then run Ny clock cycles at fy, and N;, = N — Ny clock cycles at fr,. To know
exactly how many clock cycles to run at each real frequency, it is enough to
make sure that the time covered by running the N clock cycles at f, is equal
to the time covered by running Ny at fg plus Ny at f;. In other words, we
have to solve the following equation in Ny:

N_Nu  N-Nu
fo fu fr

Finally, if we take into account the fact that the number of clock cycles has to
be an integer, we obtain the following solution for equation 3.9:

1/fo—1/fL
1/ fu—1/fL

Note that the virtual frequency obtained using this splitting may be slightly
higher than the desired virtual frequency. This difference might be signifi-
cant only for very short tasks, using a small number of clock cycles and for a
large discrepancy between the real frequencies. If switching between the two

3.9

Ny = [N —‘ N =N — Ny (3.10)
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frequencies takes a relatively important interval of time tg_.;, one may take
this into calculation. Equation 3.9 becomes then:

-+ +tu_rL (3.11)

From the energy consumption point of view, as shown in [IY98], it is op-
timal if one chooses fy and f;, to be the closest bounding frequencies for f,.
Using this execution model, for a discrete range of speeds, the real energy
function becomes then a linear approximation of the ideal energy function.
Between any two adjacent real frequencies, the energy varies in a linear man-
ner (see Figure 3.3). The more real speeds are available, the better the ap-
proximation of the ideal energy function.

minimal delay
maximal energy Speedy

Ry =ia

‘\‘Speedm D =X, + (N-X)/f
°‘~~.
dual frequency execution:

intermediate delay and energy

Task Energy (E)

el Speed|

maximal delay, minimal energy
D = N/f_

Task Execution Time (D)

Figure 3.3: [Energy-delay dependency for a three-speed processor,
Speedy, Speed,,, Speedy. Intermediate speeds are possible by executing parts
of the tasks at the available speeds.

Speed Switching Overhead

In modern processors, the clock signal accounts for a large part of the power
consumption ([RP96] reports up to 40% of the processor power is consumed by
the clock). To reduce jitter, noise and power consumption, the high speed core
clock signals are today generated on-chip, using Phase-Locked Loops (PLL) or
Delay Loop Logic (DLL). An external slow, and thus low power, clock signal
is used by the on-chip PLL/DLL to generate the fast core clock. Changing
the frequency of the PLL output signal has certain latency, since the loop has
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to adjust to the new frequency. This means usually that during the time in
which the PLL re-locks, the processor has to stall (see Example 3.2). So there
is a certain time overhead when switching between speeds.

The voltage supply design may also contribute to the speed switching over-
head. This happens for the architectures where the processor must stall until
the supply voltage stabilizes. Of course, if both the supply voltage and clock
frequency change simultaneously, only the slowest of the two operations will
affect the switch latency. Yet, many processors are designed such that they
can keep executing instructions at constant rate while the voltage switches
between two levels (assuming also the lowest voltage allows the working clock
frequency).

Example 3.2 (Intel 80200 Speed Switching Overhead):

Intel 80200 is based on the XScale architecture and has an ARM core. Its core
clock frequency can be changed at run-time by writing in a certain control
register. Once a value has been written there, the processor stalls, and the
DLL re-locks on the new frequency. The latency of this operation is around
2000 clock cycles as reported in [Int01]. In Figure 3.4, we show the profile
of a speed switch for the 80200. First the clock frequency is changed to a
lower frequency. The power consumption approaches zero for the duration
of the DLL re-locking on the new frequency. Then the voltage is adjusted
accordingly. (see Appendix B for a detailed description of the system used)
While the voltage changes, the processor executes instructions, so the latency
is given by the DLL re-lock interval. From the figure, this can vary around
30us .. .35us.

Slightly improved designs, that can change their clock frequency in one
clock cycle, can be imagined. For example one could use two PLLs/DLLs, one
generating the operating clock, and the other adjusting to a new frequency.
When a new frequency is requested, the secondary PLL will begin re-locking
on the new frequency, while the processor will continue executing using the
primary PLL clock. As soon as the secondary PLL re-locked, the two PLLs
swap roles. Thus, the processor would not stall while the clock switches to the
new frequency. Note that this solution still exhibits a certain latency, since
the processor will continue using the old frequency for some time.

Alternatively, one may use three PLLs, locked on consecutive frequencies.
The one operating the processor would always be the one locked on the middle
frequency (say PLLy). Whenever a speed-up or a slow-down is required, the
processor can instantly switch to using one of the other PLLs (say PLL3). Then
the third PLL (PLL;) would need to re-lock on a new frequency, such that
PLL3 will be the one generating the middle frequency, while PLL; and PLL,
generate the bounding frequencies. Although the speed change is instant in
this case, there would still be a limitation on the speed switch frequency. The
time between two speed switches has to be at least the time required by a
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Figure 3.4: Oscilloscope Trace of Speed Switching for an Intel 80200. The
three signals are, from top to bottom, V.. the core voltage (Chl, 500mV/div),
I.. core current (Ch2, 200mA/div) and P.. core power (Math, 200mW/div).
The horizontal scale is set to 10us/div. Left: switching from 733MHz@1.5V to
666MHz@1.4V Right: switching from 400MHz@1.1V to 333MHz@1.0V

PLL to re-lock on a new frequency. In any case, these solutions can bring a
real DVS processor very close to an ideal one.

Furthermore, there are solutions which use voltage controlled clock gen-
erators and do not stall the processor while changing the clock frequency
(see Example 3.3). In these solutions, the clock frequency follows the sup-
ply voltage, which requires certain time to switch between levels. Thus, even
for these architectures, switching between processor speeds has certain time
overhead.

Example 3.3 IpARM Speed Switching Overhead):

The 1pARM processor is a 0.6u technology DVS-capable Low Power ARM pro-
cessor developed at UC Berkeley [BPSB00, PBB00]. It includes an ARMS8 core
running at a clock frequency produced by an on-chip voltage-controlled oscilla-
tor (VCO). On IpARM, a speed switch from 5MHz@1.2V to S0MHz@3.8V takes
a 70us, as reported in [BPSBO00]. The same authors report in [PBB00] that a
simulated IpARM takes 25us to switch from 10MHz@1.1V to 100MHz@3.3V.
Due to the particular design of the lpARM, the processor can continue exe-
cuting instructions while switching speeds. Although the transition between
speeds is not instantaneous, the property that the processor can continue op-
erating while switching, makes the actual latency much smaller than the
speed switch. Using a rough approximation, the actual latency (of gradu-
ally getting to the right speed instead of instant switching) would be around
half the time to switch between two speeds. Finally, the actual switching
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time overhead with the data given in [BPSBO00] would be around 35us from
5MHz@1.2V to 80MHz@3.8V.

Real processors do exhibit latency in a speed switch. Yet, depending on
the number of speed switches relative to the performed tasks, there are cases
when the time overhead may be small enough to be considered negligible.
Most of the algorithms and simulations presented in this thesis assume that
the speed switching overhead is negligible. Yet, they do not necessarily re-
quire zero overhead and, furthermore, they can be extended to consider non-
zero switching latency.

To summarize, unless explicitly stated, the processor models used in the
experiments and algorithms presented in this thesis exhibit a discrete range
of supply voltage and zero-latency speed switching.

Examples of Variable Speed Processor Solutions

Variable speed processors are making their first steps in real applications.
Here we briefly describe five solutions, implemented by various embedded
processors. Four of them are industry developments by Transmeta, AMD,
and Intel. The fifth solution is the result of a academic research project at
UC Berkeley. The Transmeta and AMD approaches include both hardware
features and software managers for power efficiency. This makes them rather
transparent to the software developer. The Intel and Berkeley solutions are
focused on the hardware support, offering full control to the software devel-
oper.

Example 3.4 (Transmeta Crusoe’s LongRun):

Crusoe is a Transmeta processor family (TM5x00), with a VLIW? core and
x86 Code Morphing™ software that provides x86-compatibility. Besides four
power management states, these processors support run-time voltage and
clock frequency hopping. Frequency can change in steps of 33MHz and the
supply voltage in steps of 25mV, within the hardware’s operating range. The
number of available speeds depends thus on the model. The TM5600 model
for example, operates in normal mode between 300-667MHz and 1.2-1.6V
[Fle01], meaning eleven different speed settings. The corresponding power
consumption varies between 1.5W and 5.5W. The speed is decided using feed-
back from the Code Morphing algorithm, which reports the utilization. The
LongRun manager employs this feedback to compute and control the optimal
clock speed and voltage. Note that this is a fine grain control, transparent
to the programmer. The algorithms we present in this thesis require direct
control over the processor speed, and would substitute or augment LongRun.
Nevertheless, the Crusoe architecture is a successful example of a variable

2VLIW: Very Long Instruction Word
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speed processor, widely used in low power systems. A comparison with a
conventional mobile x86 processor using Intel SpeedStep (see Example 3.6),
running a software DVD player, reported in [Fle01], shows the TM5600 to
consume almost three times less power than the mobile x86 (6W for TM5600
vs. 17W for the mobile x86).

Example 3.5 (AMD’s PowerNow!):

AMD introduced PowerNow!, a technology for on-the-fly independent control
of voltage and frequency. Their embedded processors from the AMD-K6-2E+
and AMD-K6-IIIE+ families are all implementing PowerNow!. According to
[AMDO00], AMD PowerNow! is able to support 32 different core voltage set-
tings ranging from 0.925V to 2.00V with voltage steps of 25mV or 50mV. Clock
frequency can change in steps of 33MHz or 50MHz, from an absolute low of
133MHz or 200MHz, respectively. The voltage and frequency changes are
controlled through a special block, the Enhanced Power Management (EPM)
block. At a speed change, an EPM timer ensures stable voltage and PLL
frequency, operation which can take at most 200us. During this time, in-
struction processing stops. A comparison with a Pentium III 600+ using Intel
SpeedStep (see Example 3.6) shows that the AMD’s processor with Power-
Now! consumes around 50% less power than the Pentium with SpeedStep
(BW for AMD-K6-2E+ vs. 7TW for Pentium III 600+).

Example 3.6 (Intel’s SpeedStep):

Intel’s SpeedStep is probably the earliest solution from the ones presented
here, and consequently the weakest one. Besides normal operation, Speed-
Step defines the following low power states: Sleep, Deep Sleep, and Deeper
Sleep. It only specifies two speeds, orthogonal with the power states, a Max-
imum Performance Mode (fast clock, high voltage, high power) and a Battery
Optimized Mode (slower clock, lower voltage, power efficient). For instance,
Mobile Intel Pentium 4 - M Processor [Int02] uses 1.3V and 1.2V for the two
speeds, while the clock frequencies are 1.8GHz (or as low as 1.4GHz depend-
ing on the model) and 1.2GHz respectively. The power consumption of the
Mobile Pentium 4 is anywhere between 30W (Maximum Performance 1.8GHz)
and 2.9W (in Deeper Sleep, 1V). Switching between speeds requires going to
Deep Sleep, change the voltage and frequency, and wake up again, procedure
which requires at least 40pus.

Example 3.7 (Intel’s XScale):

Intel has recently come out with XScale, an ARM core based architecture that
supports on-the-fly clock frequency and supply voltage changes [Int00]. The
frequency can be changed directly, by writing values in a register, while the
voltage has to be provided from and controlled via an off-chip source. The
XScale core specification allows 16 different clock settings, and four different
power modes (one ACTIVE and three other). The actual meaning of these
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settings are dependent on the Application Specific Standard Product (ASSP).
For instance, the 80200 processor supports clock frequencies up to 733MHz,
adjustable in steps of 33-66MHz. The core voltage can vary between 0.95V
and 1.55V. For our specific test system with the 80200, described in Appendix
B, there are only 6 speed settings (from 733MHz@1.5V down, in 66 MHz/0.1V
steps). Switching between speeds takes around 30us, as detailed in Example
3.2. The power consumption for the 80200 (core plus pin power) is anywhere
between 1W (at maximum speed) and a few uIV (in sleep mode).

Example 3.8 (UC Berkeley’s IpARM):

The IpARM processor, developed at UC Berkeley, is a low power, ARM core
based architecture, capable of run-time voltage and clock frequency changes.
The prototype described in [BPSB0O0] (0.6 technology) is, reportedly, able to
run at clock frequencies in the 5-80MHz range, with 5MHz increments. The
supply voltage is adjustable in the 1.2-3.8V range. See Example 3.3 for details
on speed switching in I[pARM.

These examples show that variable speed processors become more and
more common. They usually have a discrete range of voltages and/or clock
frequencies, and exhibit latency when switching between speeds. Voltage
scheduling algorithms targeting energy efficiency have to take into account
these characteristics of real processors. Although some of these real proces-
sors already provide voltage scheduling methods they are not suitable for
hard real-time tasks. The scheduling algorithms presented in this thesis
make good use of the hardware capabilities of such processors, especially in
hard real-time environments.

3.4 Communication Models

In the task graph model, computational tasks may pass information to their
successors. We assume that communication between two tasks situated on
the same processor takes no time and energy at all. Whenever tasks situated
on different processors have to communicate, the time and energy required
depend on several factors:

e the amount of information to be transmitted: in principle the more infor-
mation one has to communicate, the more time and energy it is required;

e the way the data is encoded: redundant data encoding may help to
reduce for example the bus switching activity, but it may take longer
time to communicate the same amount of information [SB95, MOI96,
BDMt97b, BDM*97al;

e the type of channel used to communicate: this refers to both the physical
characteristics (width of the bus) and the transmission protocol.
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In our algorithms we consider that time and energy for a certain communi-
cation are fixed for a given communication channel. Other research explicitly
addresses encoding schemes and bus protocols for reduced energy and power
[SB95, MOI96, BDM*97a]. Furthermore, we assume that the time and en-
ergy consumption for each communication on every channel are provided to
our algorithms as input data, along with the task attributes (such as period,
deadline, and WCE).

With respect to scheduling and resource assignment, communications are
treated similarly with tasks (as mentioned in Section 3.1.1), in the sense that
only one communication can use a certain channel at a certain moment. Fi-
nally, in our system model, a certain communication cannot overlap with its
source or destination computational task. Although communications can oc-
cur while a processor executes other computational tasks, they must be infor-
mation transfers between tasks that are not currently executing.
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CHAPTER 4

TASK LEVEL SCHEDULING

SCHEDULING FOR LOW ENERGY can be addressed either at individual task
level or at the level of tasks group. At group level, efficient scheduling strate-
gies are usually application specific. At task level, the scheduling methods are
more general, since they are oblivious of the actual system. In this chapter,
we address task level scheduling strategies, while task group level scheduling
makes the subject of the next chapter.

At task level, the scheduling decisions concern the processor speeds or
power modes sequence used while executing that task. Considering that a
task 7 needs to execute alone during an allowed time interval A, the schedul-
ing problem consists, in principle, of mapping task regions (in clock cycles) to
processor speeds. Using the processor speed as introduced by equation 3.5,
we define the speed schedule of a task:

Definition 4.1. Given a task 7 requiring X clock cycles to execute on a pro-
cessor with S speeds, a (speed) schedule for 7 is an assignment of processor
speeds to task clock cycles (a mapping ¢ : {1,..., X} — S where S C ®T) such
that the task execution time (computed as ¢, = Z;X: 1 1/[fres&(7)]) respects the
real-time constraints imposed through the allowed execution time A.

This definition is valid both for real processors, with discrete and limited
range of speeds, and ideal processors, without speed constraints. Note also
that it does not explicitly state the relation between the task execution time
and the allowed execution time. For hard deadlines ¢, < A while for soft
deadlines it may occasionally happen that ¢, > A.

Actually, the scheduling problem is not fully solved unless one decides
what the processor does during the entire allowed execution time. If the
task finishes before the deadline, the processor may for for instance either
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continue to execute NOPs, or stop executing instructions and switch to a low
power mode.

4.1 Slower Execution vs. Shutdown

First, it is important to realize that, whenever possible, it is more energy effi-
cient to run the processor slower than to execute as fast as possible followed
by processor shutdown. Consider a task 7 that executes X clock cycles dur-
ing an allowed time A. Note that in order for the task to be finished during
interval A, X/f,.; < A. In the first case, the task executes as fast as possible
(at a clock frequency f,.r) and then the processor is shut down. By shut down
we understand a low power mode, during which the processor cannot execute
instructions. If we consider the power consumption in the low power mode
small enough and the overhead for mode switching as negligible, the energy
consumption for this scenario is (using equation 3.8):

Eshutdown - Xeref (41)

In the second case, the processor speed is lower such that the task execution
extends over the whole interval A. This would mean that the minimum re-
quired frequency is f = X/A. Using equations 3.5, 3.7, 3.8, and 4.1, we can
compute the energy consumed in this scenario:

2

Esiower = Xef = Xerefsf =
X \ 7T
= Es utdown \ 77 4.2
hutd (Afref> (4.2)

As discussed in Section 3.3.2, the power of the right term is always greater
than 1. The term raised to power is on the other hand at most 1, as noted in
the beginning of this section. Finally this means that F,uer < Fshutdown, OF
it is always better to run the task slower than to finish it early and then go to
a sleep state.

Example 4.1 (Slow execution vs. shutdown on Intel 80200):

Consider a task that takes around 37ms to execute at the highest speed
(733MHz at 1.5V) on an Intel 80200. The deadline is 100ms. One can ei-
ther execute it as fast as possible and then go to a low power state (IDLE) or
execute it slower (333MHz at 1.0V) and go to a low power state. Figure 4.1
depicts an oscilloscope trace for the first case, while figure 4.2 a trace for the
second. The energy consumption turns out to be more than twice higher in
the first case. This measurement confirms the fact that running slower when
possible is a better strategy than running as fast as possible and switch to a
low power mode.
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Figure 4.1: Oscilloscope trace of V.., I.. and their product, the power
(200mW/div), when the task executes as fast as possible. Energy, the area
under power curve, is approximately 21.6mdJ

Ch1 500mV Ch2 Z00mV M T0ms ExXt 7 oV

100mvy 10ms

Figure 4.2: Oscilloscope trace of V.., I.. and their product, the power
(100mW/div), when the task executes as slow as possible. The energy con-
sumed is approximately 9.6mdJ

In practice, this difference is even more significant, from the following rea-
sons. The power consumption in the low power mode is actually not zero,
which makes the processor consume energy even in the low power mode.
Switching between power modes is likely taking more time and energy than
switching between processor speeds. This makes the variable voltage scheme
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a more effective energy reduction technique than the simple dynamic power
management (DPM).

4.2 Unique Execution Pattern

Tasks with all instances requiring the same number of clock cycles are what
we call tasks with unique execution pattern. In other words, for a fixed pro-
cessor speed, the execution time is constant and the same for all instances,
regardless of the input data. Using the notations from Section 3.1.1:

Definition 4.2. A task 7 with execution pattern n(z) has a unique execu-
tion pattern if and only if 3C such that n(C) = 1 (and Vz # C, n(x) = 0).

A speed schedule for a task with fixed execution pattern would, in princi-
ple, consist of an assignment of different speeds to the different clock cycles
up to C, as given in Definition 4.1. We denote the execution interval of each
clock cycle i by A; (= 1/[frc&(7)]). The energy consumption of a single clock
cycle can be rewritten using equations 3.5 and 3.7 (v = 2) as:

1\’ 1

€; = Eref m :K:Ailz 221,70 (43)
Finally, the total energy of the task, under the constraint that the total exe-
cution time 7 meets deadline A, can be written as:

C C 1 C
E:;ei:KZ;A—? WhereZ;AizA (4.4)

It can be shown (see Appendix A.1) that the lower bound for E is KC3/A?
which can be obtained if and only if all the clock cycles are of the same certain
length: A, = A/C. This means that there is a unique ideal processor speed for
all clock cycles. This is the speed for which the task execution exactly covers
A (Figure 4.3.b). Formally, the minimal energy frequency and speed are:

C C
. = X = 4.
fzdeal A Sideal A fref ( 5)

Unfortunately, real processors can only work at a discrete range of clock fre-
quencies. Yet, a close to optimal virtual speed can be obtained even on real
processors, as discussed in Section 3.3.2.

4.3 Probabilistic Execution Pattern

If the required number of clock cycles differs from instance to instance, the
task is said to have a probabilistic execution pattern. Since we assume to
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Figure 4.3: Various types of task level schedules: a) Using maximum speed,
b) Ideal-stretch, ¢) WCE-stretch, d) stochastic, and e) compiler-assisted. The
dark grey regions refer to a single instance execution, while the lighter grey
ones refer to the worst case.

have no knowledge about the data input to each instance, or how this data
is processed, we cannot be sure of the exact execution path beforehand. The
number of clock cycles required by an instance is modeled as a probability
distribution function (see Section 3.1.1). Tasks with unique execution pattern
are actually a particular case of tasks with probabilistic execution pattern.

The important characteristic of tasks with probabilistic execution pattern
is that they will not always exhibit their worst case behavior. If one can
adapt the processor speed such that the task does not execute faster than
it is needed, one can reduce the energy consumption. At the same time the
real-time deadlines have to be met, forcing a lower limit on the task execution
speed.

Ideally, one would know the exact number of required clock cycles before
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the instance starts executing and thus schedule for the optimal speed (Figure
4.3.b). Of course, this choice, referred to as ideal-stretch, is seldom possible in
practice. The obvious approach, referred to as WCE-stretch, is to plan for the
worst case: assume that the task will exhibit its worst case behavior, and use
the corresponding speed (see Figure 4.3.c). The drawback of this approach is
that the worst case behavior is rather improbable, and using the high speed is
seldom actually required to meet the deadline. This means that WCE-stretch
is not energy efficient. There are other techniques which are more efficient
from the energy point of view. We describe in detail our own approach to this
problem, stochastic voltage scheduling (Figure 4.3.d). We also briefly describe
another class of energy-efficient scheduling methods, called compiler-assisted
scheduling, based on the work described in [SKLO01] and [MACMO00] (Figure
4.3.e). Finally, the section concludes with a more detailed comparison between
the approaches described here.

4.3.1 Stochastic Scheduling

The basic idea behind stochastic scheduling consists in finding a speed sched-
ule that minimizes the expected value of instance energy while still meeting
the deadline. An instance starts executing at a low speed and then gradually
accelerates, to meet the deadlines. Since the instance might not be a worst
case, it can happen that high speed (and power eager) regions are avoided.

The stochastic schedule (Figure 4.3.d) for a task 7 is obtained using its ex-
ecution pattern 7(y). The execution pattern can be obtained off-line, via simu-
lation, or built and improved at run-time. Let us denote by X the random vari-
able associated with the number of clock cycles used by a task instance. We
also use the cumulative density of probability function, cdf(x) = Zzzl n(y),
associated with the random variable X. This function reflects the probability
that a task instance finishes before a certain number of clock cycles. If WCE
is the worst case number of clock cycles, clearly cdf (z) = 1 for Vz > WCE.

Recall that building a schedule for a task means assigning a specific pro-
cessor speed for every clock cycle up to WCE. Each cycle z, depending on the
adopted speed, will consume a specific energy, e,.. But each of these cycles are
executed with a certain probability, so the average energy consumed by cycle
x can be computed as (1 — cdf(z))e,. To obtain the expected energy for the
whole task, we have to consider all the cycles up to WCE:

E= Z(l —cdf (r))es (4.6)

This is the value we want to minimize by choosing appropriate voltage levels
and clock frequencies for each cycle. Since WCE may be a large number in
practice, one can group several consecutive clock cycles into equal size groups.
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In that case, x would refer to such regions of consecutive clock cycles. For the
sake of brevity and clarity we describe here only the simpler case, when the
speeds are decided clock cycle by clock cycle.

A clock length of k, corresponds to a clock frequency f, = 1/k,. Using
equation 3.7 for § = 2/(y — 1) we can rewrite the clock cycle energy as:

_ _ fo \"
€x = €f, = Eref ﬂ
re

Eref 1

fref k
1

where .5/ ffef is constant (K) for a given processor. As mentioned in Section
3.3.2, in the common case v = 2 making = 2. For clarity we bind now 3 = 2,
but the rest of the calculus can be carried out for any reasonable value of 3.

Task 7 has to complete its execution during an allowed execution time, A.
If we denote the clock length associated to clock cycle x by k., this constraint
can be written as:

Z k, < A (4.8)

If we substitute 4.7 in 4.6 we obtain:

WCE

E- /cz - 4.9)

which is the value to be minimized. For the sake of simplicity and without loss
of generality we will assume K = 1 from now on. By mathematical induction
one can prove (see Appendix A.1) that the right hand side of 4.9 has a lower
bound (using also 4.8):

WCE 3 /71 —edf( AL
Erp = ( . ) >3 (Z Y1 = cdf (x ) (4.10)
WCE
(Zy:l ky)
This energy lower bound can be reached if and only if:
3/1
by = A— V1= W) (4.11)

WCE W

These are the optimal values for the clock cycle length in each clock cycle up
to WCE.
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For processors with a discrete range of speeds, these values will most likely
not overlap with the available clock lengths. These ideal clock lengths have
to be converted to available clock cycle lengths. This conversion is done in
a similar way to deriving a dual level voltage schedule from an ideal one, as
described in Section 3.3.2 and detailed in the following.

In principle, to transform the ideal clock frequencies into real ones, we
have to distribute the work done in each ideal clock cycle to real clock cycles.
To obtain the work performed during real clock cycles, we start from the two
consecutive available clock cycles bounding the ideal clock cycle k,, CK; <
ky < CK;y1. The work of the ideal cycle can be performed during the same
time interval using real clock cycles, if:

k‘y = win’Ki + w(i+1)yCKi+l 4.12)
and k'y € (CK“CKH_l]

where w;, is the part of the work of k, given to CK; and the rest is the work
given to CK,; ;. Thus, each ideal cycle in the task will distribute its work
between two of the several available clock lengths. It is possible that several
ideal clock cycles k, will distribute some of their work to the same real clock
cycle j, since they end up to be right above or right below the real clock cycle
value: k, € (CK;_1,CKj] or k, € (CK;,CK,1]. For simplicity, we denote the
set of ideal clock cycles k, distributing their work load to the same real clock
cycle j by ;. The accumulated workloads for each available clock cycle is
obtained by summing up the workloads resulting from individual ideal clock
cycles:

wi= > wjy, jEL..VL (4.13)

ky€Y;

where V L is the number of available processor speeds (corresponding to pairs
of supply voltage levels and clock frequencies). Note that the cumulated work-
loads w; are real numbers. Since we can only execute an integer number of
clock cycles, these workloads have to be transformed to integers. This conver-
sion is not as trivial as it seems at a first glance.

First, if the z in equation 4.6 was referring to groups of cycles rather than
single clock cycles, the decimal part of w; can be partially converted into in-
tegers. Thus, if x refers to groups of ¢ actual clock cycles, the corresponding
workload for each available clock cycle will actually be w?“““l = qwj, which is
still a real number. This adjustment, if applicable, is useful in reducing the
error introduced by the next step, which does the actual transformation from
real numbers to integers.

Let us consider then a straightforward transformation, using smallest in-
teger larger than the workload, [w,]. Since a task instance starts executing
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using the slowest speeds and each region uses one full additional clock cycle,
it might happen that the deadline is missed. This comes from the fact that
parts of the high speed clocks are forced into slow clocks. A better choice is
to use the largest integer smaller than the workload |w,|. Additionally, the
cycles lost by this truncation, computed as WCE — 3 [w; | need to be added
to the fastest speed workload. This may result in sub-optimal energy con-
sumption, but the error is negligible for tasks requiring a large number of
clock cycles. Of course, better transformations are possible, but we will not
investigate this subject further.

Example 4.2 (Stochastic Schedules for Normal Distributions):

This example uses a task with an execution pattern distributed according
to a normal probability with the mean u = 70 cycles and the standard de-
viation ¢ = 10. The number of clock cycles for the worst case execution
WCE = 100. Note that these figures can be percentages instead of actual
amounts of clock cycles. Let us consider that the available resource is a pro-
cessor with four clock frequencies f, f/2, /3, and f/4. Note that for the
fastest clock f, the worst case execution will complete after a time interval
given by WCE; = WCE/f. We are able now to compute two voltage schedules
obtained for two different values of the allowed execution time, A = 3WCE
and A = 2WCE;. These are the cases when the allowed execution time is
three times and respectively twice the time required by the worst case at the
fastest clock. The schedules, depicted in Figure 4.4, are given in number of
clock cycles executed at each available frequency. Note that the tasks may fin-
ish before executing the whole schedule, before reaching higher speed regions.

Computational complexity

Computing the stochastic schedule for a task has to be done before the task
starts executing. If the allowed execution time A varies, the actual distribu-
tion of the workload to speeds also varies. In that case, the exact stochastic
schedule has to be determined at run-time. Yet, there are computations that
can be performed off-line. If the probability distribution of the execution pat-
tern is available off-line, the coefficients of A in equation 4.11 can also be com-
puted off-line. If the probability distribution is built at run-time, these coeffi-
cients need to be recomputed every time the distribution changes. This step
has an algorithmic complexity of order O(WCE). The exact values for the ideal
clock cycles have to be computed at run-time, when the allowed execution time
becomes known (also exhibiting O(WCE) complexity). Computing the cumula-
tive workloads requires finding the bounding clock frequencies, available on
a real processor, for each ideal clock cycle O(WCElog VL). Transforming the
real workloads into integer numbers will also exhibit O(V L). Finally, assum-
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Figure 4.4: Two stochastic schedules for a task with normal distribution ex-
ecution pattern, obtained for two different values of the allowed execution
time.

ing VL < WCE, which is reasonable since V' L, the number of processor speeds,
is rather small, the overall worst case complexity for computing the stochastic
schedule is O(WCE log VL). Since WCE is the determining factor in the overall
complexity, it is clear now why working on groups of clock cycles instead of
individual clock cycles is preferable.

4.3.2 Compiler-Assisted Speed Scheduling

For comparison, we briefly describe another class of energy-efficient schedul-
ing methods for tasks with variable execution pattern. Instead of minimizing
the energy over a large number of instances, these methods are based on the
idea of scheduling each task instance as efficiently as possible. Each task is
divided in sections for which the worst case execution pattern is estimated
(see Figure 4.3.d). The sections are usually procedures and loop bodies as
in [MACMOO] or basic blocks detected at assembly level as in [SKLO1], but
may be arbitrary slices of code as in [LS00b]. The method is based on the
observation that sections do not always follow their worst case scenario and
subsequent sections may benefit from the resulting unused time, referred to
as slack. At the beginning of each section the processor speed is adjusted
to accommodate the slack and at the same time to be able to complete the
remaining work even for the worst case scenario. In principle it is most ef-
fective to apply the new speed as soon as a decision decreased the number
of cycles required by the remaining worst case execution. That is the reason
why procedures, loops or basic blocks are chosen as sections. The compiler
introduces the code needed for updating the worst case execution pattern and
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for switching the processor speed. Therefore, this class of methods is referred
to as compiler-assisted scheduling.
There are several important aspects in compiler-assisted scheduling:

e section granularity — If there were no overhead for the scheduling code,
the ideal section would be the basic block (see [ASU86] for a definition
of a basic block). Yet, one must take into consideration the overhead of
computing and switching the processor speed. For example, if the basic
blocks are around 10 clock cycles, and a speed switch takes 1000 cycles
(Intel 80200, [Int01]), re-scheduling in every basic block will result in a
ridiculously large increase in overall execution time. Moreover, there are
basic blocks that do not change the worst case execution. Finally, since
the available speed range is discrete, some of the re-scheduling points,
resulting in minor changes in speeds, can be discarded. Therefore, in
practice, the optimal section size may be much larger than a basic block.
Choosing the best set of re-scheduling points is a complex task, usually
handled by heuristics.

e worst case pattern estimation — Detecting the number of cycles executed
by a section in the worst case is another delicate issue since it has to
consider pipeline stalls, cache misses, interrupts, etc. Moreover, it of-
ten requires the designer to explicitly state loop bounds or input data
characteristics.

e slack distribution — Once a section produces some slack, this has to be
distributed to the following sections. There are several slack distribu-
tion strategies, but we only mention here two. A greedy approach would
give all slack to the immediately next section, which might result in the
processor speed oscillating up and down across sections. A better strat-
egy is to distribute the slack proportionally over all sections, according
to the ratio between each individual section and total remaining worst
case execution time.

e speed selection — Both soft and hard real-time tasks may employ com-
piler-assisted speed scheduling. For hard real-time tasks, the speed will
always be chosen to meet the deadline even in worst case. For soft real-
time tasks, one may occasionally choose to select speeds according to a
predictive algorithm [MACMOO0]. Note also that in practice only avail-
able speeds may be selected, making this aspect strongly related to the
first one, section granularity.

It is important to realize which are the static/compile-time decisions and
which are run-time decisions for a compiler-assisted schedule. First, the re-
scheduling points are fixed by introducing the required code only at specific
fixed locations. Moreover, if the allowed execution time for the task is fixed,
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speed selection may also be static, without keeping track about the slack at
run-time. In this case the code performing re-scheduling may be a simple
speed change, without any computations. Yet, it is more likely that the al-
lowed execution time changes from instance to instance at run-time. This
means that the optimal speeds vary and have to be re-computed. Therefore,
the overhead of re-scheduling increases. Furthermore, the subset of the cho-
sen re-scheduling points might not be the best for each instance with its spe-
cific allowed execution time. The advantages and drawbacks of this method
compared to the previously described ones are detailed in the next section.

4.4 Discussion

In this section we compare three of the scheduling methods described previ-
ously in this chapter: WCE-stretch, stochastic and compiler-assisted schedul-
ing. First, we address some real-time issues in the context of the aforemen-
tioned scheduling methods. Then we examine the advantages of using our
own stochastic schedule versus using a simple WCE-stretch schedule. Next we
look at stochastic scheduling and compiler-assisted scheduling side by side,
and compare them not only from the energy efficiency point of view, but also
from the design complexity and implementation points of view.

4.4.1 A Few Real-Time Considerations

From the real-time perspective, the task level speed schedule decides if the
task finishes in time or not. For hard deadlines, the task must finish during
the allowed execution time A. All three scheduling methods, WCE-stretch,
stochastic and compiler assisted, can do this without problems if the time
estimates used to compute the schedule are accurate.

For soft deadlines, the situation is slightly different. Using a stochas-
tic scheduling approach one can accurately choose the probability for an in-
stance to finish after the deadline. If, for example, we are willing to allow 10%
deadline misses, it is enough to examine the 1 — cdf () function and choose
a new WCE for which the function value is 10%. The other two scheduling
strategies, are not so successful. The WCE-stretch may only control the worst
case deadline overshoot. The compiler-assisted approach may also control the
overshoot, but for individual paths. Although the compiler-assisted method
may be changed to allow an expected number of deadline violations, for the
stochastic approach this is straightforward.
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4.4.2 WCE Stretch vs. Stochastic

The WCE-stretch scheduling approach treats in principle all instances as be-
ing the worst case. This implies running at a constant high speed throughout
all the phases of task instance execution. By contrast, the stochastic approach
lowers the energy consumption of the early phases at the expense of the later
phases. Over a large number of runs this leads to a considerable decrease for
the early phases, since they will always be executed, and a small increase for
the later phases, that are seldom executed.

Let us examine first an ideal situation, when the processor may run at
any speed from almost 0 to almost co. The expected energy consumed by the
stochastic schedule in this case can reach the lower bound given by equation
4.10:

WCE 3
Estoch - ’C% (Z 3\/ 1- Cdf(x)> (414)
r=1

The expected energy of the WCE-stretch schedule can be computed as:

EWCEfstretch = eWCEfstretchX (415)

where X is the mean of the execution pattern distribution and ewcg—_sireten
is the clock cycle energy for the speed required by the WCE-stretch method.
Using equation 4.7 (with 8 = 2) and the fact that the clock frequency for WCE-
stretch is fwcg—streten = WCE/A, we can rewrite the expected energy of the
WCE-stretch schedule as:

1 _
EWCEfstretch — ICEWCEQX (416)

Finally, to get an idea about the gain of using a stochastic schedule, we need
to look at the ratio between the energy of the stochastic schedule and that of
a WCE-stretch schedule:

3
Estoch (Z;Vili: V11— Cdf(x)>
°T = = (4.17)
EWCEfstretch XWCE2

Notice that the ratio depends on the distribution and it is independent on
the allowed execution time A. This holds only for the ideal case when the
range of speeds is unbounded. Table 4.1 contains the efficiency ratio ¢ for
several distributions. Granted the shape of the distribution is important, the
stochastic schedule is always better or at least as efficient in the long run as
the WCE-stretch schedule.

For more realistic assumptions, such as limited range of speeds, the ad-
vantage of a stochastic schedule becomes smaller. Consider a task with an
execution pattern varying according to a normal distribution with the mean
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Table 4.1: Stochastic vs. WCE-stretch schedule energy for various task execu-
tion pattern distributions.

| distribution I
Uniform(0, WCE) 0.8419
Normal(y = WCE/2, 0 = 11/3) 0.6461

Normal(y = 2WCE/3, 0 = WCE/9) | 0.7417
Normal(y = WCE/3, 0 = WCE/9) | 0.3048
Exponential(A = 10/WCE) 0.2434

1 = (BCE + WCE)/2 and the standard deviation ¢ = (WCE — BCE)/6. For
several cases ranging from highly flexible execution time (BCE/WCE = 0.1)
to almost fixed (BCE/WCE = 0.9) we built stochastic schedules for a range
of allowed execution times (from WCE/f to 3 x WCE/f). For this experiment
we considered a processor with 9 different voltage levels, equally distributed
between f and f/3. For a large number of task instances generated accord-
ing to the given distribution we computed both the energy of the stochastic
schedule and the WCE-stretch schedule. The average energy consumption of
the stochastic schedule as a part of the WCE-stretch schedule is depicted in
Figure 4.5. Note that when the allowed time approaches either WCE/f or
3 x WCE/ f, the energy consumptions become equal. The lowest possible clock
frequency is f/3, which anyway means 3-times WCE/f, so there is no better
schedule for these cases. In turn, when the allowed time closes WCE, there
is no other way but to use the fastest clock. Somewhere between the slowest
and the fastest frequencies (e.g., when allowed execution time is twice WCE)
we obtain the largest energy gain since the stochastic schedule can use the
whole spectrum of available frequencies. Note that the energy gains become
more important when the task execution time varies more (BCE/WCE — 0.1).

Example 4.3 (Task Level Voltage Schedules on Intel 80200):

To practically examine the energy saved by a stochastic approach versus a
WCE-stretch method we used the Intel 80200 system described in Appendix B.
The task in this experiment is composed of a simple loop that terminates after
a variable number of iterations in each instance (see Appendix C). The num-
ber of iterations is computed at the beginning of each job according to a normal
distribution with © = 950 and o = 300. At the highest speed (733MHz), the
best case and the worst case execution times are 30ms and 78ms, respectively.
We considered that the task has to finish in at most 117ms (which is 150% of
the worst case at the highest speed). When we use the WCE-stretch approach,
we have to chose the ideal speed for which the worst case will finish exactly
at the deadline. This will be realized in practice by using two real speed set-
tings: 533MHz@1.3V and 466MHz@1.2V. Using only the 533MHz@1.3V speed
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Figure 4.5: Average task energy for stochastic schedule compared to WCE-
stretch schedule energy (100%) as a function of task execution pattern distri-
bution and allowed time.

setting would give 107ms execution time in the worst case while using only
the 466MHz@1.2V speed setting would be too slow since the worst case would
take about 123ms. Finally, the WCE-stretch schedule will be composed by ex-
ecuting first 1150 iterations of the main loop at 466MHz@1.2V and the rest
at 533MHz@1.3V. The power distribution for this schedule is depicted in the
oscilloscope trace from Figure 4.6 above.

To obtain a stochastic schedule in this situation we have to know the best
and worst case execution patterns. These two cases happen for the extremes
of the value controlling the iterations in the task main loop. More precisely,
these are 50 and 1850 respectively (the [—30, 30] interval). Using these num-
bers as the input to our method for computing a stochastic schedule we get
the number of iterations to be executed at each speed between the lowest and
the highest: [186, 640, 181, 109, 79, 62, 593]. The power distribution for this
schedule is depicted in the oscilloscope trace from Figure 4.6 below. When
using the stochastic schedule, the worst case takes almost 117ms including
the speed switches.

Running the two schedules for a large number of instances and averaging
the power consumption, we obtain the average energy consumptions for both.
The WCE-stretch average energy, as resulting from the trace in Figure 4.7
above, is around 24mdJ. The stochastic schedule average energy, as resulting
from the trace in Figure 4.7 below, is around 20md. Finally, this means that
in the long run, using a stochastic scheduling approach, the energy consump-
tion decreases by approximately 18% in this case.
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Figure 4.6: The power distribution for the WCE-stretch (above) and stochastic
(below) schedules used in example 4.3. Different power levels reflect the
different speed settings used. The worst case covers the whole schedule, while
the other cases only the initial sections of the schedule.
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Figure 4.7: The averaged power curve of the WCE stretch (above) and stochas-
tic (below) schedules used in example 4.3. The area under the graph repre-
sents the energy consumption, which is around 24mdJ for the above curve and
20md for the below one.

4.4.3 Stochastic vs. Compiler-Assisted Scheduling

There are several important differences between our stochastic scheduling
approach and a compiler-assisted method. We discuss them next.
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Scheduling Overhead

As detailed in Section 4.3.1, for stochastic scheduling the stages requiring
some computations are the off-line phase and at the execution start of a task
instance. This implies, for example, computing the exact number of clock
cycles after which to increase the processor speed. Subsequently, at these
time moments, the only operation required consists of speed change requests
to the processor. To give the control to the scheduler at these specific time
moments, timers/event counters can be used. If the allowed execution time is
the same for all instances, the speed switching code sequences can be inserted
directly in the right points (as in Example 4.3).

The compiler-assisted approach involves an important off-line phase for
identifying and processing the re-scheduling points. At run-time, the code in-
serted in these points actively checks the progress of the task instance and
adjusts the processor speed accordingly. For a discrete and limited range of
available speeds, the best set of points for switching speed may vary if the
allowed execution time changes from instance to instance. To obtain good re-
sults, a compiler-assisted schedule needs usually more re-scheduling points
than a stochastic schedule, depending, for example, on the number of basic
blocks or functions. However, if the allowed execution time is the same for all
instances, the appropriate speeds may be computed off-line and the schedul-
ing points will only contain speed switching code.

For the most general case, the stochastic approach requires some overhead
at each instance start-up, to compute the schedule. The compiler-assisted
method has no overhead at start-up, yet it uses more re-scheduling points
at run-time, even if not all of them result in speed switches. Considering
the significant overhead of speed switching in real processors today (~ 1000
cycles on Intel 80200 [Int01]), a few additional cycles used on re-computing
the optimal speed make for a negligible difference. To conclude, there is little
difference in the overall run-time overhead between the two approaches.

Implementation Complexity

Considering the implementation level of both methods, one can distinguish
between operating system (OS) level and task level. In principle we consider
an implementation to be OS-level when the task is completely unaware that
it runs on a variable speed or fixed speed processor. Alternatively we con-
sider an implementation to be task level when the task handles all the speed
scheduling related issues. Note that a task level implementation may or may
not use interfaces provided by the OS.

The compiler-assisted approach requires access to the internal structure
of the task. This is used to detect the re-scheduling points, each of which
requires specific handling. The OS may be oblivious to the speed selection
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related operations performed by the task. This may be an advantage if one is
forced to use older, energy-unaware operating systems.

Stochastic scheduling does not need to have any information about the
internal structure of the task. It can be implemented exclusively inside the
OS, while the task remains oblivious to the fact that it runs on a variable
speed processor. Alternatively, if one wishes to use an existent OS, a task
level scheduler may be implemented together with the task. In this sense,
stochastic scheduling is the less restrictive of the two methods.

The consequences of implementing voltage management at OS or at task
level are important. In principle, it is safer to manage the hardware resources
via common interfaces, that are aware of the system architecture. Further-
more, better management is possible if the decisions are taken based on the
overall state of the system, instead of just partial or local states. In partic-
ular, slack can be distributed more efficiently if a central, common scheduler
is used instead of letting the tasks handle slack internally. All these suggest
that OS level speed management is more likely to be more energy efficient
than task level scheduling. Of course, knowledge about the internal struc-
ture of the task would additionally improve the efficiency. The only instance
for employing a pure task level speed management is when the requirements
force the use an old (energy unaware) OS.

Energy Efficiency

Until now we have not looked at the actual energy efficiency of the two meth-
ods. In fact it is not easy to compare the two approaches in general since their
results depend on rather orthogonal properties.

For example, compiler-assisted voltage scheduling depends very much on
the internal task predictability, while it is not very sensitive to deadline vari-
ations. An important property of the compiler-assisted scheduling is that dur-
ing task execution, more and more information is acquired about the actual
execution time of the task. Knowing this right in the beginning of the task
would lead to an ideal schedule, using the optimal speed. If the actual exe-
cution time is not revealed until the very end (the task terminates suddenly,
based for example on an external interrupt), one has to be prepared for the
worst case. In this situation, the task will actually use the WCE-stretch sched-
ule. Between the two extremes just described, lies the real behavior of any
compiler-assisted schedule.

The stochastic approach is not dependent on the internal task predictabil-
ity since the schedule is fixed before the task starts executing. However, this
method is very dependent on the deadline variations. If, for example, the al-
lowed execution time is very close to the WCE at the maximum speed, there is
little a stochastic schedule can do. All task instances would end up running at
a close to maximum speed. On the other hand, the compiler-assisted method
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would detect early finishing instances at run-time and lower the processor
speed accordingly.

Finally, a comparison between the two methods from the energy efficiency
point of view would only make sense for particular tasks and requirements.
Example 4.4 contains such an analysis for a task with a normal distribution
execution pattern.

Example 4.4 (Schedule Energy Efficiency Analysis):

Consider a task with an execution pattern exhibiting a Gaussian distribution
with 4 = WCE/2 and ¢ = WCE/6. This is enough for building a stochas-
tic schedule, yet for the compiler-assisted method we need more information
about the internal structure of the task. For this reason we consider that
there is a point in the task instance before which nothing is known about
the actual execution time, and after which the exact execution time becomes
known. If this point is in the beginning of the task, the compiler-assisted
schedule will be closer to an ideal schedule. Conversely, if this decision point
approaches the end of the task, the compiler-assisted schedule will be closer
to the WCE schedule. In the following we denote the ratio between the first re-
gion clock cycles and the total execution time X by ¢, the unawareness factor
of the task. It is interesting to see how the energy efficiency of the compiler-
assisted schedule depends on this factor. The total energy consumed in the
compiler-assisted schedule is composed of the energy consumed by the two
separate regions. The first one is executing X; = 9X cycles at a clock fre-
quency required by finishing t