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Abstract—Irregular QC LDPC codes with parity-check ma-
trices having different degree distributions are studied. A new
algorithm for finding regular and irregular QC LDPC codes
with a good girth profile as well as a good sliding-window girth
is presented. As examples, simulation results for QC LDPC codes
with good girth profile, rate R=4/5, and lengths about 1000,
2000, and 4000, constructed from base matrices with proper
degree distributions are given. Their simulated BER and FER
performances for belief propagation decoding are compared with
the best previously known irregular QC LDPC codes of the same
rate and length. It is shown that the constructed codes outperform
the best previously known codes of same rate and lengths.

I. INTRODUCTION

It is well-known that low-density parity-check (LDPC)
codes with iterative low-complexity decoding achieve perfor-
mances close to the Shannon limit. This fact attracts attention
of many researches to this class of codes and makes LDPC
codes a good choice for modern communication standards [1],
[2], [3]. In this paper we will focus on quasi-cyclic (QC) LDPC
codes. It is well-known that such codes can be represented in
the form of tailbiting block codes, which supports searching
for new low-complexity encoding codes. There exist two
subclasses of QC LDPC block codes: regular and irregular. If
each column of its parity-check matrix contains exactly J ones
and each row contains exactly K ones the corresponding QC
LDPC code is called (J,K)-regular; and irregular otherwise.

The length of the shortest cycle in the Tanner graph of a QC
LDPC code, that is, its girth, is considered to be an important
code parameter, as it determines the number of independent
iterations in low-complexity belief-propagation decoding. A
typical approach to constructing new both regular and irregular
QC LDPC codes is based on searching for a suitable labeling
of a proper base parity-check matrix (base Tanner graph [4])
which satisfies the target girth of its Tanner graph (see, for
example, [5], [6], [7] and references therein). It is intuitively
clear that the bit error rate performance of QC LDPC codes
obtained in such a way depends also on the structure of the
base matrix, more precisely on its column degree distribution
[8], that is, the distribution of its column weights. Some
publications state that a girth of 6 is sufficient to achieve bit
error rate performance close to the theoretical limit (see, for
example, [9] and references therein) and that QC LDPC codes
with larger girth typically have smaller minimum distances
resulting in higher error floors. Moreover, it is typically stated

that for irregular codes the structure of the base matrix plays
an even more important role than the girth of the Tanner graph.
In other words, if the girth of the Tanner graph is 6 then by
improving its degree distribution a bit error rate performance
close to the theoretical limit can be achieved. For example, in
the WIMAX standard [1], a set of such high-rate irregular QC
LDPC codes of rates R=1/2, 2/3, 3/4, and 5/6 and rather short
lengths were suggested. In [9], examples of similar high-rate
irregular QC LDPC codes of short and moderate lengths with
improved bit error rate performance are given. To the best of
our knowledge nobody reported noticeably better results than
[9], especially for rate R = 4/5 and lengths less than or equal
to 4000.

In this paper we study the relation between the girth of
the Tanner graph corresponding to irregular QC LDPC codes
constructed from base matrices with good degree distributions
and the achievable bit error performance. A new algorithm is
presented to find labelings yielding a good girth profile, that
is, a vector of girth values whose ith component is equal to
the girth of the Tanner graph corresponding to the submatrix
constructed by using i columns of the smallest weight of its
parity-check matrix. Moreover, our algorithm guarantees that
in a sliding-window containing w consecutive columns of the
parity-check matrix ordered by their weights, the minimal girth
value is larger than or equal to a predetermined value gw > g,
where g is the target girth. By applying a greedy algorithm [10]
to obtain a base matrix for an irregular QC LDPC code with
a good degree distribution, followed by our new algorithm for
finding labelings with a good girth profile, we constructed a set
of both regular and irregular QC LDPC codes of rate R = 4/5
and lengths about 1000, 2000, and 4000. Their bit error rate
(BER) and frame error rate (FER) performances is compared
with performances of QC LDPC codes from [9] with the same
rate and lengths. Finally, some conclusions are drawn.

II. REGULAR AND IRREGULAR QC LDPC CODES

A rate R = b/c parent convolutional LDPC code can be
determined by its polynomial parity-check matrix H(D) of
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H(D) =


h11(D) h12(D) . . . h1c(D)
h21(D) h22(D) . . . h2c(D)

...
...

. . .
h(c−b)1(D) h(c−b)2(D) . . . h(c−b)c(D)

 (1)

where hij(D) is either zero or a monomial entry, that is, Dwij

with wij being a nonnegative integer. Its degree matrix W
follows as the (c−b)×c matrix with entries wij at the positions
of the monomials Dwij and −1 at the zero positions. If each
column of H(D) contains J nonzero elements and each row
contains K nonzero elements the QC LDPC convolutional
code is (J,K)-regular; and irregular otherwise.

By tailbiting the parent convolutional code to length M >
m we obtain the parity-check matrix
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of an (Mc,Mb) QC LDPC block code, where

H(D) = H0 +H1D + · · ·+HmD
m

and Hi, i = 0, 1, . . . ,m, are binary (c− b)× c matrices.
The polynomial parity-check matrix H(D) (1) can be

interpreted as a base matrix B labeled by monomials, where
B is the (c− b)× c binary matrix with ones at the positions
of the nonzero entries of H(D), satisfying

B = H(D)|D=1

Interpreting both B and HTB as biadjacency matrices [11]
yields their corresponding Tanner graphs GB and G, respec-
tively. Moreover, the parity-check matrix H(D) (1) of the
parent convolutional code corresponds to an infinite Tanner
graph obtained by unwrapping the Tanner graph G of the
tailbiting block code and extending it to infinity in the time
domain. Hence, the problem of finding new QC LDPC codes
can be reduced to finding suitable base matrices B as well as
proper labelings for the base Tanner graphs GB determined by
B. The girth g is used as a target when searching for good QC
LDPC codes. It is known that there exist a tailbiting length M
and a set of edge labels, such that the girth g of the Tanner
graph for the corresponding tailbiting block code of length
n =Mc satisfies the inequalities [7].

g ≥ 2d2 ≥ gB + dgB/2e ≥ 3gB (3)

where gB is the girth of the base Tanner graph GB and d2
is the minimum second generalized Hamming distance of the
linear block code whose parity-check matrix is equal to the
incidence matrix of GB. Notice that the free girth gfree, that
is, the length of the shortest cycle in the infinite Tanner graph
determined by the polynomial matrix H(D) upperbounds g,
that is, g ≤ gfree.

For irregular QC LDPC codes, let Jmin and Jmax denote the
minimum and maximum numbers of the nonzero entries in any
column of H(D), respectively. Then the degree distribution of
the parity-check matrix H(D) as well as of the base matrix
B is given by the vector

dp =
(
nJmin

nJmin+1 . . . nJmax

)
where ni denotes the number of columns having i nonzero
elements. Since the degree distribution can contain zeros, it
can be efficiently represented as a set

λs =
{
d(1)(n1), d

(2)(n2), . . . , d
(l)(nl)

}
where ni is the number of columns with d(i) nonzero elements,
d(1) = Jmin, d(l) = Jmax, and

∑l
i=1 ni = c. Notice that

the degree distribution is invariant with respect to column
permutations.

Denote as Hi
TB, i = 1, 2, . . . ,Mc, a submatrix of HTB

formed by its i columns with the smallest column weight and
let gi be the girth of the corresponding Tanner graph with
biadjacency matrix Hi

TB. Then we call the Mc-tuple

gp = (g1 g2 . . . gMc = g)

where gi > gi+1, i = 1, 2, ...,Mc, the girth profile of the QC
LDPC block code determined by HTB. It can be efficiently
represented as the ordered set

Sg =
{
g(1)(n1), g

(2)(n2), . . . , g
(l)(nl)

}
(4)

where nj < nj+1, nl =Mc, and gi = g(j) for nj−1 < i ≤ nj
with n0 = 0. A girth profile gp is said to be superior to (>)
another profile gp∗

if there exists a positive integer p such that

gj =

{
= g∗j j = 1, 2, . . . , p− 1
> g∗j p ≤ j ≤Mc

Similarly, for the infinite Tanner graph with biadjacency matrix
H(D) the free girth profile is defined [10] as

gp
free = (gfree,1 gfree,2 . . . gfree,c)

Note that the inequality gp
free ≥ gp always holds.

Next we will present an algorithm for searching for QC
LDPC codes having a sliding-window girth gw. For simplicity,
we restrict ourselves to girth profiles for which ni in (4) are
multiples of M and represent the corresponding girth profiles
as vectors of length c

g̃p = (g̃1 g̃2 . . . g̃c = g)

that is, we use the free girth profile gfree but take also the
tailbiting length M into account. Hence, the corresponding
set Sg contains at most c elements.



III. A SLIDING-WINDOW ALGORITHM FOR SEARCHING
QC LDPC BLOCK CODES WITH GOOD GIRTH PROFILE

Assume that by applying the greedy algorithm given in [10]
we have constructed a base matrix B of size (c− b)× c with
a given degree distribution

λs =
{
d(1)(n1), d

(2)(n2), . . . , d
(l)(nl)

}
Moreover, let M be the tailbiting length and g be the target
girth value. Our goal is to obtain a proper labeling for the base
matrix B such that a parity-check matrix H(D) of the parent
convolutional code has a good free girth profile gp

free with
gfree,c ≥ g. Moreover, by tailbiting H(D) to length M we ob-
tain the parity-check matrix HTB of the (Mc,Mb) QC LDPC
block code whose girth profile gp satisfies gMc = g̃c ≥ g.

Let Lw denote the current number of columns of the sliding-
window within the base matrix B which should be labeled with
the target girth gw > g, then choose the maximum number of
trials to be Nmax, as well as the minimal and maximal number
of the surviving candidates during each round to be Smax and
Smin, respectively.

Moreover, let Bi denote a submatrix of B formed by its first
i columns, where i ≤ c, and let B(j)

i denote the submatrix of
Bi containing the j last columns of Bi, j = min{i, Lw}.

1. Choose the initial number of columns i0 and set i = i0.
Perform a random labeling of the nonzero positions of
Bi with target girth values g and gw for Bi and B

(j)
i ,

respectively. Generate s source candidates Wi, Smin ≤
s ≤ Smax. Set the number of candidates n = 0 and the
number of trials N = 0.

2. While i ≤ c
2.1 Choose randomly one of the s source candidates Wi.

Assign random labels to the column bi+1 of the base
matrix B and append it to the matrix Wi, that is,
form Wi+1 = [Wi;wi+1] and set N ← N + 1.

2.2 If the girth constraints g and gw (for Bi and B
(j)
i )

are satisfied, then add Wi+1 to the set of target
candidates, set n← n+1, and, as long as N < Nmax

and n < Smax, goto step 2.1.
2.3 If n ≥ Smin, replace the set of source candidates Wi

by the set of target candidates Wi+1, set i← i+ 1,
set s = n, n = 0, and goto step 2. Otherwise, stop
the algorithm and revise Lw and gw.

Notice that labeling a base matrix using the algorithm above
implies constructing a system of girth inequalities for [W ;w]
with target girth g using algorithm A or B presented in [7]
while taking the tailbiting length M additionally into account.

In Fig. 1, the simulated bit error rate (BER) and frame error
rate (FER) performances for belief propagation decoding of
QC LDPC blocks codes with rate R = 4/5 and lengths about
1000, 2000, and 4000 with random labeling are compared with
the QC LDPC codes with the same parameters but improved
labelings obtained by using the above algorithm (Table I). As
clearly seen from Fig. 1, improving the girth profile according
to the proposed algorithm yields significantly better BER and
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Fig. 1. Comparison of bit and frame error rates for QC LDPC codes with
random and good labelings.

FER performances, especially for higher signal-to-noise ratios
(SNRs).

Notice that our search criteria were entirely based on
girth constraints for the QC LDPC code parity-check ma-
trix and its submatrices. However, the proposed algorithm
implicitly achieves rather good approximate cycle extrinsic
(ACE) message degrees since it yields larger girth values for
cycles formed by low-weight columns and thereby low-weight
columns have larger connectivity [12].

IV. SIMULATION RESULTS AND COMPARISON

In the following we will present the BER and FER per-
formances of regular and irregular QC LDPC codes with rate
R = 4/5 and lengths about 1000, 2000, and 4000 constructed
by applying the algorithm given above to base matrices with
a good degree distribution and compare those results with
QC LDPC codes from [9] with the same rate and lengths.
Using the greedy algorithm in [10] we constructed a set of
base matrices of size r × 5r, r = 3, 4, . . . , 7, with good
degree distributions including weights from 2 up to r. By
using the proposed algorithm, we obtained suitable labelings
for these base matrices, yielding an improved girth profile
g̃p, from which we selected the ones with the best BER and
FER performances. In Fig. 2, BER and FER performances
for four QC LDPC codes of rate R = 4/5 and lengths about
4000 (Table I) are compared. The corresponding code para-
meters, such as the girth g of the corresponding Tanner graph,
girth profile g̃p, sliding-window girth gw, sliding-window
size Lw, and degree distribution λs (for irregular codes),
are presented in Table I. Clearly, irregular codes have better
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Fig. 2. Comparison of bit and frame error rates for QC LDPC codes of
length 4000 with different base matrices and good labelings.

BER and FER performances than their regular competitors
for relatively low SNRs. However, for higher SNR values the
(J = 4,K = 20)-regular QC LDPC code of rate R = 16/20
yields surprisingly good BER and FER performances, while
the (J = 3,K = 15)-regular rate R = 12/15 QC LDPC code
has significantly worse performances even for higher SNRs.
Among all irregular QC LDPC codes of length about 4000,
the best performances are obtained by using the QC LDPC
code of rate R = 28/35.

The high efficiency of the irregular rate R = 28/35 QC
LDPC code can be explained as follows: The girth of the
Tanner graph corresponding to the submatrix which contains
all columns with two nonzero elements and some of the
columns with three nonzero elements is equal to 12, while
using all other columns with three nonzero elements we obtain
a girth larger than or equal to 10 (see the girth profile in
Table I). Moreover, for a sliding-window size of Lw ≥ 3
among all columns with four nonzero elements, the sliding-
window girth follows as gw = 8. Finally, all remaining
columns have a stronger protection due to their relatively large
column weight. Thus, most of the cycles corresponding to
g = 6 include code symbols which participate in at least 5
different parity-checks, yielding an overall improved BER and
FER performance.

In Figs. 3–5, the simulated BER and FER performances
of the constructed QC LDPC codes (Table I) of lengths about
1000, 2000, and 4000, respectively, are compared with the best
known competing codes [9]. Typically, the selected irregular
codes whose base matrix has a good degree distribution yield
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Fig. 3. Bit and frame error rates for the QC LDPC block codes of R = 4/5
and length 1000.

TABLE I
PARAMETERS OF RATE R = 4/5 QC LDPC BLOCK CODES

Code Base matrix H n, k g, gw, Lw gp

A1 3× 15 (1005,804) 6,8,9 10(4),8(9),6(15)
A2 all ones (2010,1608) 8,10,4 10(5),8(15)
A4 (4005,3204) 8,10,6 12(5),10(8) ,8(15)
B1 4× 20 (1000,800) 6,8,6 8(7),6(15)
B2 all ones (2020,1616) 6,8,9 8(10),6(15)
B4 (4000,3200) 6,8,13 8(13),6(15)
C1 5× 25, (1000,800) 6,8,4 8(16),6(25)
C2 2(4),3(10), (2025,1620) 6,8,7 8(19)6(25)
C4 4(5),5(6) (4000,3200) 6,8,10 12(7),10(14),8(21),6(25)
D1 6× 30, (1020,816) 6,8,4 12(6),10(8),8(9),6(30)
D2 2(5),4(15), (2010,1608) 6,8,8 12(7),10(8),8(11),6(30)
D4 5(6),6(4) (4020,3216) 6,8,7 12(9), 10(10),8(20),6(30)
E1 7× 35, (1015,812) 6,8,2 10(15),8(22),6(35)
E2 2(6),3(11), (2030,1624) 6,8,3 12(9),10(17),8(24)
E4 4(7),6(7),7(4) (4025,3220) 6,8,3 12(11),10(18),8(21),6(35)
R1 3× 15 (1005,804) g = 6

R2 all ones (2010,1608) g = 6

R4 random (4005,3204) g = 8

P1 [9], ex. 1 (961,765) g = 6

P4 [9], ex. 8 (3969,3213) g = 6

better BER and FER behavior for lower SNRs and lose
compared to the regular codes with column weight larger than
3 for higher SNRs. In a wide range of SNRs, QC LDPC
codes of lengths 1000 and 4000 outperform the best previously
known codes of the same rate and lengths. For lengths about
2000 we were unable to find any competing QC LDPC code
of rate R = 4/5.
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Fig. 4. Bit and frame error rates for the QC LDPC block codes of R = 4/5
and length 2000.

V. CONCLUSION

In this paper we suggested a computer-search based ap-
proach to improve the girth profile of QC LDPC codes. This
approach consists of selecting QC LDPC codes with large
girth values for subsets of columns of the code parity-check
matrix. QC LDPC codes with different degree distributions
of their base matrices were analyzed. A set of both regular
and irregular QC LDPC codes of rate R = 4/5 of rather
short lengths with good degree distributions and improved
girth profile were constructed. Comparisons of the simulated
BER and FER performances of the selected codes show that
irregular codes are typically better for lower SNRs and lose
compared to regular codes with column weight larger than
3 for higher SNRs. However, increasing the size of the base
matrix gives more possibilities for improving its structure and
could yield better irregular codes. This study brought us to
the conjecture that, besides the girth profile and the degree
distribution, the maximum column weight is an important
parameter for QC LDPC codes. In particular, we note that
even regular QC LDPC codes with larger column weight yield
surprisingly good BER and FER performances.
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