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Abstract

A well-founded decision needs to take into account as much information
from a sample as possible. In gamma spectrometry, the number of photons
and their energy are the two quantities readily accessible to the physicist
and both should be used in order to increase the power of a statistical test.
While the problem of counts of pulses has been much studied the problem
of spectral distribution of pulses has been generally overlooked. This work
presents a statistical test combining tests on count rate and tests on spec-
tral distribution. The proposed method is shown to have an acceptable false
positive rate and, when compared with two other test statistics found in the
literature, greater power.

1 Introduction

Statistical inference about analyte activity present in a sample is an im-
portant research topic in health physics and part of the more fundamental
question: is there a signal present? To answer this question, using statistical
inference, one either accepts or rejects the null hypothesis

H0: No signal present in sample

versus

H1: Signal present in sample

at an a priori determined signi�cance level, α. The test statistic used can
vary, but ideally the probability of rejecting H0 when it is in fact true, i.e.
a false positive or type I error, should be α [5].
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Strom and MacLellan [19] evaluated eight test statistics with respect to
their actual false positive rates, α′. For the lowest count rates (typically a
Poisson mean µb < 2), they found that no method satis�ed the prede�ned
signi�cance level, α. It has long been known that this result is due to the
discrete nature of counting statistics and the e�ects are especially severe in
the low-level region (see e.g. [2, 7, 14]). Interestingly, the most well-known
method in the health physics �eld, given by Currie [9], also showed the worst
result with regard to α′, even for intermediate count rates, while the method
of Stapleton showed good results, i.e. α′ ≈ α for µb > 5 [19].

Taking into account the spectral information in a gamma-ray spectrum
(or histogram) should increase the power of the test, but going from one bin
to multiple bins also increases the complexity of the problem. One method,
which calculates the probability for each possible pulse con�guration, given
some background distribution, was presented by Meray et al. [15]. Compared
with the single-bin method of Currie this approach signi�cantly lowered the
detection limit (see Ref. [9] for a de�nition) [16].

This work presents a new test based on a combination of a count rate
test, viz. a modi�cation of the Sumerling & Darby (S&D) test [20], and a
likelihood ratio test of the spectral distribution of the counts. The two p-
values so obtained are subjected to Fisher's method for combining p-values.
Both the false and true positive rates for the proposed method are evaluated
and compared with those of several other methods.

The method described in this work is designed for, and evaluated in,
a mobile gamma spectrometry context. This typically means conducting
repeated short-term measurements, possibly for an extended period of time,
while searching for a radioactive source. To avoid too many false positive
alarms the chosen α is small (0.1 to 1%) and the count rates in the simulations
are low to intermediate (5 ≤ µb ≤ 30). High count rate environments, where
pulses are abundant, can provide many challenges but generally not with
respect to the problem addressed in this work. The present work might still
be useful in other scienti�c �elds, despite the chosen context.

2 Theory and Methods

Starting with the basic model of radioactive counting, the Poisson distri-
bution, we show that the spectral distribution of pulses, given the total
count, is described by binomial or multinomial probabilities, depending on
the number of channels used. We then present two hypotheses that split
the radioactive counting problem into two parts: �rst, the problem of pulse
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sums, and secondly, the problem of spectral distribution.

2.1 Single-channel Poisson model

Suppose we have a radioactive counting experiment with two samples. These
samples will henceforth be referred to as background and sample. Suppose
also that the experiment involves only one channel in which pulses are reg-
istered. The probability of observing k pulses from sample is a Poisson
probability

P (X = k) =
e−µµk

k!
(1)

where µ is the true mean. Substituting µ by λ in Eq. (1) then gives the
probability of observing k pulses from background. By combining the counts
from sample, x, and background, y, so that z = x + y, the conditional
probability of observing a sample-background pair can be written

P (X = x, Y = y |Z = z) =

(
z

x

)
qx(1− q)y (2)

where q = µ/(µ + λ). For a derivation, which is straight-forward using two
Poisson distributions, see e.g. [6, 19].

An interesting observation is that in high energy physics (HEP) and
gamma-ray astronomy (GRA) the single-channel problem of Poisson ratios
is called signal-bin/sideband and the on/o� problem respectively. It is an
old problem that has got much attention, see e.g. Cousins et al. [6] for
a comprehensive review. The problem is also well known in the health
physics/gamma-ray spectroscopy �eld, see e.g. [1, 9, 10, 18, 19].

2.2 Dual-channel properties

If the pulses from sample and background are split into two separate chan-
nels, c1 and c2, then for each channel the probability of observing k pulses
from background or sample is given by Eq. (1), substituting µ by the appro-
priate true mean. The joint probability of observing x1 and x2 pulses from
sample in the two channels is then

P (X1 = x1, X2 = x2) = P (x1)P (x2) =
e−µ1µx11
x1!

e−µ2µx22
x2!

(3)

where the �rst step can be carried out since the random variables X1, X2

are assumed to be independent. The background pulses are also Poisson
distributed with true means λ1, λ2 in c1 and c2 respectively. The probability
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of observing Y1 = y1 and Y2 = y2 counts in background is also given by
Eq. (3), substituting µi by λi. The conditional probability of observing a
pair of counts from sample, given the sum of the counts, can be shown to be

P (X1 = x1|X1 +X2 = x) =

(
x

x1

)(
µ1

µ1 + µ2

)x1 ( µ2
µ1 + µ2

)x−x1
(4)

and analogously for the background

P (Y1 = y1|Y1 + Y2 = y) =

(
y

y1

)(
λ1

λ1 + λ2

)y1 ( λ2
λ1 + λ2

)y−y1
(5)

2.3 Multichannel properties

Moving on to k channels and using the notation

x = x1 + x2 + . . .+ xk (6a)

µ = µ1 + µ2 + · · ·+ µk (6b)

q1 =
µ1
µ
, q2 =

µ2
µ
, . . . , qk =

µk
µ

(6c)

x = (x1, x2, . . . , xk) (6d)

q = (q1, q2, . . . , qk) (6e)

the probability of observing x in channels 1, 2, . . . , k is

P (x) =
e−µµx

x1!x2! · · ·xk!

(
µ1
µ

)x1 (µ2
µ

)x2
· · ·
(
µk
µ

)xk
=
e−µµx

x!

(
x

x1, x2, . . . , xk

)
qx11 q

x2
2 · · · q

xk
k

(7)

where (
x

x1, x2, . . . , xk

)
=

x!

x1!x2! · · ·xk!
is a multinomial coe�cient. The conditional probability of observing x, given
a total of x pulses, is then

P (x|x) =
P (x)

P (x)
=

(
x

x1, x2, . . . , xk

)
qx11 q

x2
2 · · · q

xk
k (8)

which is a probability in a multinomial distribution, Multk(x ;q). Note that
if we are interested only in the i'th frequency in Eq. (8) it is binomially
distributed

(xi|x) ∈ Bin(x, qi) (9)

The probability of observing a spectral distribution y within background can
be derived using Eqs. (6-7), substituting xi and µi by yi and λi.
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2.4 Hypotheses

To test if sample and background are two samples from the same underlying
distribution several tests and hypotheses can be constructed. In this work

we choose to study two di�erent hypotheses, the �rst one, H
(S)
0 , concerning

the pulse sum and the second, H
(R)
0 , concerning the spectral distribution

within the samples:

H
(S)
0 :

k∑
i=1

µi =

k∑
i=1

λi (10a)

H
(R)
0 : µi/µ = λi/λ for i = 1 . . . k (10b)

H
(SR)
0 : µi = λi for i = 1 . . . k (10c)

where, as easily seen, H
(SR)
0 is the combination of H

(S)
0 and H

(R)
0 .

2.5 Test statistics for H
(S)
0

2.5.1 Sumerling and Darby's method

The probability mass function (pmf) of S&D is given in Eq (2). Summing
over all probabilities from x up to z = x+y gives the probability of observing
x or more pulses in sample, given the sum, z, of the pulses in sample and
background:

PSD =
z∑
i=x

(
z

i

)
qi(1− q)z−i (11)

which is the test statistic [20]. If the counting times of sample and back-
ground are equal, then q = 1/2. In the case of di�erent counting times for
sample (tx) and background (ty), q becomes

q =
tx

tx + ty
(12)

The null hypothesis, H
(S)
0 , that the sample is blank is rejected if a blank sam-

ple would have produced a gross count at least as large as the one observed
at most 100α% of the time [20]; that is, if

PSD ≤ α (13)

As noted by Refs. [2, 7], the binomial test is known to be conservative, i.e.
it will always reject H0 less than 100α% of the time under H0.
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2.5.2 Currie's method

The test proposed by Currie [9] is based on a comparison of the net count
x− y and the quantity

Ccurrie(y) = kα
√

2y (14)

where kα is the quantile of a standard normal distribution such that P (X >

kα) = α; H
(S)
0 is rejected at the α-level if: x− y > Ccurrie.

ANSI/HPS N13.30-1996 [12] presented Eq. (14) in a more general form,
where the counting times of background (ty) and sample (tx) can be di�erent

CN13.30(y, tx, ty) = kα

√
y

ty

(
1

tx
+

1

ty

)
(15)

[19] therefore dubbed this variant of Currie's rule to �N13.30�. In this form

the null hypothesis, H
(S)
0 , is rejected if the net count rate Rn = x/tx−y/ty >

CN13.30.

2.5.3 Stapleton's method

Stapleton's method, described in [19], computes a standard normal deviate,
zstapleton, from the observed counts x, y and counting times tx, ty

zstapleton(x, y, tx, ty) = 2

√
x+d
tx
−
√

y+d
ty√

1
tx

+ 1
ty

(16)

where d is a parameter, 0 < d < 1. Throughout this work, d was 0.4 to
be comparable to the results of Strom and MacLellan [19]. Using this test,

H
(S)
0 is rejected if zstapleton > kα.

2.5.4 Sumerling and Darby, mid-p version

As noted above, the S&D method is known to be conservative. A proposition
to remove the conservativeness of discrete test statistics was proposed by
Lancaster [14]; the method has been evaluated and recommended by e.g.
Refs. [2, 3, 7] . In our case the technique amounts to taking only half the
probability in the �rst term of Eq. (11):

PSDmidp =
1

2
P (X = x | z) + P (X > x | z)

=
1

2

(
z

x

)
qx(1− q)z−x +

z∑
i=x+1

(
z

i

)
qi(1− q)z−i

(17)
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where the second term is interpreted as zero if x = z. As for the S&D-

method, H
(S)
0 is rejected at the α-level if PSDmidp ≤ α. Since PSD > PSDmidp

the latter version will be less conservative.

2.6 Test statistics for H
(R)
0

2.6.1 Goodness-of-�t test

The �t of a multinomial model to a data set, x, can be tested using a
goodness-of-�t (GoF) test [4]. The probability of observing a data set at
least as extreme as the one observed, P (x), can be written as

P�t =
∑

a:P (a)≤P (x)

P (a) (18)

To test if an observed outcome x came from a distribution according to the
null, [8] gives the following four-step recipe:

1. For every possible outcome a, calculate the probability P (a) according
to Eq. (8)

2. Rank the probabilities from smallest to largest

3. Starting with the smallest rank, add the consecutive probabilities up to
and including that associated with x; this cumulative probability gives
the chance of obtaining an outcome that is no more probable than x

4. Reject H0 if this cumulative probability is at most α

Naively traversing all combinations at least as extreme as x (step 1-2) quickly
becomes computationally infeasible, as the number of channels k, and pulse
sum x, grow. To overcome this, an approximation to the distribution of
the log-likelihood ratio statistic G2 can be used instead. One such approx-
imation, based on Fast Fourier Transform (FFT), is given by Keich and
Nagarajan. The p-value of the �t is approximated from the entropy score

s0 =

k∑
i=1

xi ln

(
xi
πix

)
(19)

where πi are the expected background cell probabilities and x =
∑
xi [13,

17]. However, in order to use the multinomial GoF test, the background
probabilities πi have to be known.
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2.6.2 Test using likelihood ratio

A test of the pulse distribution can be performed using the likelihood func-
tion. The multinomial probability function was given in Eq. (8). Using the
same notation we now have two multinomial observations, the sample x and
the background, y, which are independent. The likelihood function is

P (x|x)P (y|y)

where

P (x|x) = cx

k∏
i=1

(
µi
µ

)xi
(20)

P (y|y) = cy

k∏
i=1

(
λi
λ

)yi
; (21)

here cx and cy are irrelevant constants.
If we introduce

ξi =
µi
µ
, ηi =

λi
λ

the likelihood function can be written

L(ξ,η) = cxcy

(
k∏
i=1

ξxii

)(
k∏
i=1

ηyii

)
(22)

and under the null hypothesis ξ = η we get

sup
H0

L = cxcy

k∏
i=1

(zi
z

)zi
(23)

where zi = xi + yi, z = x+ y, while

sup
H1

L = cxcy

(
k∏
i=1

(xi
x

)xi)( k∏
i=1

(
yi
y

)yi)
(24)

Using the notation

Λ =
supH0

L
supH1

L
(25)

the log-likelihood ratio statistic is obtained as

−2 ln Λ = 2
k∑
i=1

{
xi ln

(
xi
x

)
+ yi ln

(
yi
y

)
− zi ln

(
zi
z

)}
(26)
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This statistic has an approximate χ2(k−1) distribution for large counts [21].

H
(R)
0 is rejected at the α level if

1− Fk−1(−2 ln Λ) < α (27)

where Fk−1 is the cumulative chi-square function for k−1 degrees of freedom.
Note that the method only traverses the sum given in Eq. (26) once, it
therefore has linear complexity i.e. O(k).

In the special case k = 2 there is a possibility to distinguish between one-
and two-sided tests; the version described above is two-sided. However, there
are situations where a one-sided test could be useful. Suppose we have two
bins, the �rst one covering a region of interest and the second a region where
only background pulses are expected. The alternative hypothesis would then
be

H1,> :
µ1
µ
>
λ1
λ

(28)

Clearly supH0
L is still given by Eq. (23) while, cf. Eq. (24),

sup
H1,>

L =

{
supH1

L if
x1
x
>
y1
y

supH0
L otherwise

(29)

and hence

Λ =


supH0

L
supH1

L
if

x1
x
>
y1
y

1 otherwise
(30)

Now −2 ln Λ has, under H0, an approximate distribution that is no longer
χ2(1); rather, it is a mixture in equal proportions of a χ2(1) and a χ2(0)
where χ2(0) is a one-point distribution at zero.

2.7 The proposed method

Combining a test on the pulse sum, H
(S)
0 , with a test on the pulse distri-

bution, H
(R)
0 , can be expected to present advantages: utilising more of the

information contained in the sample will likely increase the power of the test.
Given p-values from two independent tests, one can combine them according
to Fisher [11]

pSR = (1− ln(pSpR)) pSpR (31)

where pSR is the p-value of the combined test. Another possibility is to derive

the likelihood ratio directly for H
(SR)
0 , cf. section 2.4; however, that option
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is not explored further in this work. Instead we propose using the mid-p
version of the S&D method given in Eq. (17) in conjunction with a test on
the likelihood ratio, given in Eq. (30). In the present work we consider only
the case k = 2 and use the one-sided version of the likelihood ratio test.

3 Numerical Calculations and Monte Carlo Simu-

lations

3.1 False positives

The actual false positive rates α′ were derived by direct calculations or es-
timated through paired-blanks Monte Carlo simulations. A recipe for the
direct probability calculations of α′ is given in Appendix D.1 by Cousins et
al. [6]. The direct calculation method was used for all methods testing the

pulse sum, i.e. H
(S)
0 . For the methods testing H

(R)
0 or H

(SR)
0 the direct

method was not used because of the complexity of the multinomial problem.
The false positive rate was evaluated for Poisson true means µ = λ,

ranging from 5 to 30 with α at 0.1% and 1%. These are strict signi�cance
levels; for example Strom and MacLellan evaluated α's from 0.1% to 5%.
However, for mobile gamma spectrometry a false alarm rate of more than
1% would be inadequate as many short-term measurements are carried out,
often for an extended period of time. For each λ in the simulations, 2k×106

samples (one sample and one background, for each channel) were drawn from
an appropriate Poisson distribution.

3.2 True positives

While the actual false positive rate simulations evaluate the test statistics
with respect to their false alarm rate, another set of numerical calculations
and simulations were required to evaluate the method's sensitivities. By
simulating a 137Cs point source at r = 20 m from a virtual detector, the
di�erent methods were evaluated with respect to their true positive rates,
i.e. their sensitivities. In all simulations and calculations 1 s observations
were used.

The source emitted photons isotropically which, after attenuation in air,
gave rise to a mean count rate, N s−1, in the detector

N(A) =
ε pγ e

−ar

4πr2
A = 1.683× 10−7A (32)

10



where A is the 137Cs activity (Bq), a = 9.4 × 10−3 m−1 the assumed linear
attenuation coe�cient in air, pγ = 0.851 the probability of 662 keV photon
emission given a 137Cs decay and ε = 1.2 × 10−3 m2 the assumed detector
e�ciency. The latter corresponds to a detector with a relative e�ciency of
roughly 50% in relation to a 3�x3� NaI(Tl).

The true positive Monte Carlo simulations were constructed using the
following scheme; for each activity A:

1. Perform the following n times:

i. Draw 2k background samples ai, bi ∈ Po(λi)

ii. Draw 137Cs pulses aγ ∈ Po(N(A)), cf. Eq. (32)

iii. Add aγ to a according to p = (p1, . . . , pk)

iv. Check whether H0 is rejected at the α-level using x = a and y = b

2. Estimate the power of the test for activity A

1− β =
nrejceted

n
(33)

where β is the probability of a false negative.

The range of activities tested was A = [20, 200] MBq, e�ectively adding
N = [3.37, 33.7] pulses per second to the sample. The background count

rate, λi, was 10. As in the previous section, the results for H
(S)
0 were instead

derived using direct calculation.

4 Results and Discussion

4.1 False positives - results under H0

Results from the false positive calculations and simulations are given in Ta-
bles 1-3. Standard errors are given for the simulated results. The results are

split into three tables: Table 1 holds the results for test statistics for H
(S)
0 ,

Table 2 the results for test statistics for H
(R)
0 and Table 3 for the proposed

method, testing H
(SR)
0 . The tests on spectral distribution were done using

two bins which had equal probabilities, pi = 1/2, given an event. This has
been performed using both the one- and the two-sided version.

With two exceptions the tests perform better at the 1%-level than at the
0.1%-level. The relation between the reference tests, as regards their perfor-
mance, are the same at the two levels. The results of Currie's test are, as
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α = 0.1 % α = 1 %
Currie S&D S&D Stapleton Currie S&D S&D Stapleton

µ = λ mid-p mid-p

5 2.768 0.029 0.067 0.143 5.79 0.33 0.65 1.19
10 1.483 0.044 0.078 0.136 3.57 0.55 0.91 1.02
15 0.948 0.051 0.085 0.120 3.08 0.60 0.90 1.00
20 0.742 0.059 0.091 0.108 2.70 0.65 0.94 1.01
25 0.618 0.062 0.092 0.106 2.43 0.70 0.97 1.00
30 0.532 0.065 0.094 0.103 2.22 0.70 0.95 1.02

Table 1: Actual false positive rates, α′, given in percent (%), for the tests on H
(S)
0 .

already demonstrated by e.g. Strom and MacLellan, unacceptable. Sumer-
ling and Darby's test is very conservative, but most of this conservativeness
is gone when using the mid-p version. Stapleton's test shows the overall
best performance, but the proposed test and S&D mid-p test also yield false
positive rates close to α. These latter two methods show relatively better
results at the 0.1%-level, than at the 1%-level.

α = 0.1 % α = 1 %
Likelihood ratio Goodness-of-�ta Likelihood ratio Goodness-of-�ta

µi = λi
2.5 0.190 ± 0.004 0.001 ± 0.000 1.82 ± 0.01 0.12 ± 0.00
5 0.196 ± 0.004 0.060 ± 0.002 1.47 ± 0.01 0.95 ± 0.01
7.5 0.145 ± 0.004 0.126 ± 0.004 1.22 ± 0.01 1.31 ± 0.01
10 0.125 ± 0.004 0.107 ± 0.003 1.14 ± 0.01 1.25 ± 0.01
12.5 0.124 ± 0.004 0.100 ± 0.003 1.11 ± 0.01 1.12 ± 0.01
15 0.109 ± 0.003 0.103 ± 0.003 1.08 ± 0.01 1.07 ± 0.01

a assumes known πi.

Table 2: Actual false positive rates, α′, given in percent (%), for the tests

on H
(R)
0 using two equiprobable bins. For the cases shown in the table the

one-sided and two-sided likelihood ratio tests have identical α′.

One can imagine scenarios were it might be appropriate or advantageous
to use the goodness-of-�t test, given by Keich and Nagarajan (K&N). One
condition must, however, be met in order to use that method: the expected
spectral distribution of the background has to be known. One would then
expect the GoF test to perform better than the likelihood ratio tests at low
values of λ, because the chi-square approximation, which is central to the
likelihood ratio tests, is not very good at the lowest values of λ. However,
as seen in Table 2, the results of the K&N GoF test are in the same range
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as the much simpler likelihood ratio tests at the 1%-level.

Proposed method
α = 0.1 % α = 1 %

µi = λi
2.5 0.070 ± 0.003 1.305 ± 0.011
5 0.153 ± 0.003 1.227 ± 0.011
7.5 0.121 ± 0.003 1.088 ± 0.010
10 0.107 ± 0.003 1.031 ± 0.010
12.5 0.103 ± 0.003 1.025 ± 0.010
15 0.097 ± 0.003 0.999 ± 0.010

Table 3: Actual false positive rates, α′, given in percent (%), for the proposed
method using two equiprobable bins.

4.2 True positives - results under H1

Figs. 1-2 present the results from the true positive simulations and calcula-
tions at the α = 0.1%-level. Fig. 1 shows the power (1− β) of the di�erent
methods as a function of the activity, as described in section 3.2. The meth-
ods of Currie and S&D are omitted from Fig. 1 due to their unacceptable
false positive rates (cf. Table 2). As shown in Fig. 1 the proposed method has
a higher power than the reference methods, for all levels of signal (activities)
added.

Fig. 1 shows a best-case scenario for the special case k=2; that is, all
137Cs pulses are placed in the �rst bin. This is favourable for the proposed
method. However, and as described in the likelihood ratio test section (2.6.2),
it is not an unrealistic scenario. The e�ect of di�erent signal probabilities,
i.e. di�erent p, is shown in Fig. 2. As can be seen in Fig 2., the power
of the proposed method is higher than that of the S&D mid-p version as
long as 70% or more (p1 ≥ 0.7) of the 137Cs pulses are placed in the �rst
bin. For values of p1 below this critical level the proposed method performs

worse than the methods testing for H
(S)
0 alone. This can be understood by

considering that the proposed method is using the one-sided likelihood ratio
test. This test, as shown in Eq. (30), is sensitive to a higher proportion of
the total pulses in the �rst bin than the second. Cases where this is not true
(50% if p = (0.5, 0.5)) are therefore ignored by the proposed method.
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Figure 1: Actual true positive rates, 1− β, as a function of the 137Cs activity.
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Figure 2: Actual true positive rates, 1−β, as a function of the 137Cs activity,
for a range of pi parmeter values. The mid-p version of Sumerling & Darby's
test is also given, for reference. Top curve (solid line, circles): p = {1.0, 0},
then in steps of 0.1 (dashed lines, circles) to bottom curve (dashed line,
circles) p = {0.5, 0.5}.
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5 Conclusions

This work has presented a novel method consisting in combining counts of
pulses with spectral distribution of pulses. The proposed method showed an
acceptable false positive rate (α′), in relation to the given α, and good power
(1 − β), when compared with the reference methods. It is fast to use, with
linear complexity in relation to the number of channels used.
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